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Constraints on Hypothesis Selection in Causal Learning
Pedro Tsividis (tsividis@mit.edu), Joshua B. Tenenbaum (jbt@mit.edu), Laura Schulz (lschulz@mit.edu)

Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences,
77 Massachusetts Ave., Cambridge, MA 02139 USA

Abstract

How do children identify promising hypotheses worth testing?
Many studies have shown that preschoolers can use patterns of
covariation together with prior knowledge to learn causal rela-
tionships. However, covariation data are not always available
and myriad hypotheses may be commensurate with substantive
knowledge about content domains. We propose that children
can identify high-level abstract features common to effects and
their candidate causes and use these to guide their search. We
investigate children’s sensitivity to two such high-level fea-
tures — proportion and dynamics, and show that preschoolers
can use these to link effects and candidate causes, even in the
absence of other disambiguating information.
Keywords: Causal learning; intuitive theories; information
search; analogy.

Introduction
The last fifteen years have produced a spate of research high-
lighting the kinds of epistemic practices that allow children
to effectively navigate their complex world (see Gopnik &
Wellman, 2012; Schulz, 2012b; Tenenbaum et al., 2011, for
reviews.). Children rationally infer causal relationships from
statistical evidence (e.g., Gopnik et al., 2004), selectively ex-
plore when evidence is confounded or surprising (Schulz &
Bonawitz, 2007; Bonawitz et al., 2012), evaluate the relation-
ship between samples and populations (Denison & Xu, 2010;
Gweon et al., 2010; Xu & Denison, 2009), infer the existence
of unobserved variables to explain anomalous data (Schulz
et al., 2008), isolate candidate causes in order to distinguish
between competing hypotheses (Cook et al., 2011; van Schi-
jndel et al., 2015), and effectively search through hypothesis
spaces for information (Nelson et al., 2014). These prac-
tices combine to enable the formation of intuitive theories
— abstract, coherent, causal, ontologically-committed frame-
works that guide prediction, explanation, and action (Gopnik
& Meltzoff, 1997; Carey, 1985; Murphy & Medin, 1985).

Powerful as these kinds of epistemic practices are, they
do not speak to how children might identify plausible hy-
potheses in the first place. Given that children do not always
see a cause covary with an effect, and that there is an infi-
nite space of hypotheses consistent with the learner’s prior
knowledge, children must have a method for constraining hy-
pothesis spaces before engaging in (often costly) hypothesis-
testing.

Langley et al. (1987) framed the process of scientific dis-
covery as one of means-ends problem-solving, focusing on
the value of heuristics that could enable scientists to reach a
satisfying theory without exploring all possible alternative in-
termediate states. We suspect that child learners are guided by
analogous heuristics for constraining their hypothesis spaces;

here we focus on whether children can use such heuristics to
select between different hypotheses.

One recent proposal suggests that the problems considered
by learners contain, in their abstract form, information about
the abstract forms of their solutions (Schulz, 2012a; Magid et
al., 2014). For instance, answers to “Where” questions are
likely to involve two- or three-dimensional maps; answers
to “When?” questions might involve timelines; answers to
“Why” questions might involve chains or tree structures. In
this sense, a well-posed problem already contains elements of
its solution. “1917” might be the right or wrong answer with
respect to when the Russian revolution took place, but with
respect to the question of why it took place, it is not even in
the space of possible answers.

Abstract information about the structural form of a solution
may be especially important in the setting of causal learning.
You may know, for instance, that you are trying to identify
a causal mechanism responsible for something that blinks on
and off. If you have a choice between a mechanism like a
doorbell or a mechanism like a pulley, you might favor the
former; given an effect whose outcome space is discrete, a
candidate cause with discrete outcomes may seem preferable
to one that has continuous outcomes. Of course, nothing
guarantees that this inference is correct, but in the absence
of other information, it is a reasonable strategy for narrowing
down the hypothesis space. An initial test of this general idea
showed that four- and five-year-olds were sensitive to abstract
properties relating the form of candidate causes and effects.
In a series of experiments, children successfully mapped dis-
crete causes to discrete effects and continuous causes to con-
tinuous effects (Magid et al., 2014).

If priors about causal processes enable learners to select
good hypotheses in the absence of covariation data or content-
specific prior knowledge, what form should these priors take?
If they are to be effective across a variety of problems, these
priors cannot be about lower-level cognitive features such as
color, height, pitch, and malleability, since causal relations
do not often preserve these. That is, color changes are not
usually caused by other colors; pitch changes are not caused
by other pitch changes. More importantly, the space of possi-
ble mappings between specific low-level features is too large
for such an approach to be efficient. However, certain higher-
level amodal features such as extent, rate, arity (the number of
states that a variable can take), distributional properties, and
dynamics, are invariant to the lower-level features, allowing
for more relevant and more efficient comparisons. We pro-
pose that children are sensitive to these higher-level features
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and can use them to match effects with their causes. In this
paper we focus on two: distributional properties and dynam-
ics.

Experiment 1: Distributional Properties

As long as objects in two (or more) sets can be grouped
into types, the relative proportions of those types across sets
can be evaluated. This holds regardless of the features that
serve to establish object identity, making such operations
widely applicable. Even young infants have been shown to
understand proportion, as they map proportion to probability
of outcomes and can use proportion to guide their actions
(Xu & Garcia, 2008; Xu & Denison, 2009; Denison & Xu,
2010). Here we ask whether young children believe that
causal processes preserve proportion and if they can use this
information to select between candidate causal hypotheses
that cannot be distinguished by other means (e.g., covariation
data, surface features, or domain-specific prior knowledge).

Participants Sixteen preschoolers (mean1: 5 years, 1
month; range: 4 years, 3 months — 5 years, 7 months.) were
recruited from a local children’s museum.

Materials We used Paint Tool SAI to create four flowers,
two for each stimulus set. Within each stimulus set, the flow-
ers differed in shape but matched in color (yellow for one
stimulus set; blue for the other). For each stimulus set, there
was a warm-up picture displaying only the two kinds of flow-
ers and two test pictures: one test picture had 16 flowers of
each kind (1:1 proportions); the other flower had 28 flow-
ers of one kind and 4 of the other (7:1 proportions). We
also used four different kinds of seeds, two for each stimulus
set. Within each stimulus set, the seeds were near-identical to
each other in size and texture, but different in color both from
each other and the flowers (black and red seeds paired with
yellow flowers in the first stimulus set, and brown and orange
seeds paired with blue flowers in the second). The seeds were
combined either in 1:1 or 7:1 proportions and were presented
in containers, each containing approximately 100 seeds. See
Figure 1.

Procedure Children were tested individually in a private
room off the museum floor. The experimenter started the ex-
periment by placing the warm-up picture of two flowers on
the table in front of the child. He pointed to the two flowers
and said, “Look, we have two flowers. This is a daisy and this
is a lily. Now, you know how flowers are grown, right? With
seeds! You put seeds into the ground and you water them and
give them sun, and then flowers bloom! But seeds and flowers

1All children were 4 or 5 years old. Due to a data storage error,
the ages of 8 of the children were only recorded accurately to the
year; these children have been excluded from the estimated mean
and range.

(a) (b)

(c) (d)

Figure 1: Schematic of seeds and actual flower fields used.
Left: 1:1. right: 7:1.

are funny, because flowers end up not looking at all like the
seeds they came from; the seeds change in all kinds of ways:
they change in color, and size, and shape.” Two seeds were
placed on the table in front of the children, and introduced as
the seeds that were used to make the flowers. Children were
told, “These are the seeds we used to make the flowers. And
just like we just talked about, they look totally different from
the flowers, so we can’t tell which seeds made which flowers
just by looking at them.” Then children were then told, “Now,
we actually have whole fields of flowers, but before I show
you the fields, let me tell you about how they were made.”
The two capfuls were brought out and placed on the table,
next to each other (left-right randomized). “We had these two
capfuls. And what we did was we took a bunch of seeds from
this capful and threw them on one field, and we took a bunch
of seeds from this capful and threw them onto the other field.”
The experimenter made a grabbing and throwing motion from
each capful to the floor using alternating hands to illustrate.
The experimenter then said, “Now I’ll show you what the two
fields ended up looking like,” and brought out the two pictures
of the fields of flowers (one with the 1:1 proportions and the
other with the 7:1 proportions), placing them one above the
other on the table (top-bottom randomized). He pointed to
each field in turn and said, “Which capful do you think was
used to make this field?”.

After the child pointed to match each field with a capful,
the experimenter removed all the stimuli and then repeated
the procedure for a second trial with the second stimulus
set, transitioning by saying, “Now, let me show you some
more flowers.” Presentation order of the fields and of the
capfuls within stimulus set was randomized across and
within participants, as was stimulus-set order.

2
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Results There is no strict sense in which we can say that
the children responded ‘correctly’ or ‘incorrectly’ given that
there is no fact of the matter here. However, we can say
whether children, as predicted, used the abstract property of
proportionality to select one hypothesis over the other. Chil-
dren were counted as having succeeded on a trial if they
matched both capfuls in the trial to the correct fields. (The
two questions — one for each field — within a trial were
treated as non-independent because in introducing the cap-
fuls, the experimenter had said that one capful was used
for one field and one for the other. Thus the most con-
servative measure was to require a correct response to both
questions). The probability of succeeding on both trials by
chance is .25. Ten out of sixteen children responded at ceil-
ing, answering correctly on both trials. The probability of
success is .625; bootstrap-estimated 95% confidence interval:
[.354, .848]. p < .01 by two-tailed binomial test. Figure 2
shows the number of children who were correct on 0, 1, or
both trials.

Figure 2: Experiment 1 results (N=16): Mean trials correct
= 1.62. Probability of full success (2/2 trials) is .625; 95%
confidence interval: [.354, .848] (chance: .25). p < .01 by
two-tailed binomial test.

Thus, children showed a clear preference for the
proportion-preserving causal process, supporting our hypoth-
esis.

Experiment 2: Dynamic Properties
Experiment 1 suggests that children are sensitive to propor-
tionality in mapping causes to effects. However, if children
have a general ability to identify plausible hypotheses using
abstract amodal features, they should be sensitive to other
kinds of relationships, as well. In Experiment 2, we look
at children’s sensitivity to dynamic properties. Specifically,

we expect that, given data that saliently vary over time on
some dimension, children will infer the latent structure of the
variation and expect the cause of the data to possess similar
latent structure. Children could be sensitive to a variety of
dynamics. As a first pass, we investigate two: monotonicity
and periodicity.

Participants Thirty-two preschoolers (mean: 4 years, 9
months; range: 4 years, 0 months — 5 years, 9 months.)
were recruited from the local children’s museum.

Materials We used sixteen 2”x2” pieces of white card-
board to make two sets of eight cards. For one set, four
cards had a large red dot in the middle and four had a yellow
one; for the other set, the dots on each of eight cards varied
continuously from red through orange to yellow. These were
presented in groups of eight, and represented the lights in
two special rooms (See Figure 3). We also created four
separate two-minute videos (two per stimulus set) using
Adobe Flash and displayed them on the experimenter’s
laptop computer. Each video had ten identical ‘alien bugs’
moving around randomly. In two of these videos, the bugs
changed in their speed over the course of the video. In the
other two, the bugs grew spots on their back; the number
of these spots changed throughout the course of the video.
Each of these two features could change in two ways —
either periodically or monotonically. We generated videos
manifesting each of the four possible feature × dynamics
combinations and split them into two stimulus sets as follows:

Stimulus Set 1 In video 1, the bugs’ speed was gov-
erned by a periodic function — the bugs accelerated to a
noticeably high speed (4 inches/second) over the course
of 5 seconds, then decelerated to their original speed (.5
inches/second) over the course of 5 seconds, then re-
accelerated to the high speed, and so on. This oscillation
persisted throughout the two-minute video. In video 2, the
bugs maintained a constant speed (.5 inches/second), but they
grew black spots on their backs; the number of these spots
increased from 0-20 over the course of the two-minute movie.

Stimulus Set 2 In video 1, the periodically-governed
bugs moved at constant speed but varied in their number of
spots, which oscillated between 0-10 spots (each half-period
lasted 5 seconds, so that the fewest and most spots appeared
matched the time-points at which the bugs were going
slowest and fastest in stimulus set 1). In video 2, The
monotonically-varying bugs changed in speed, starting out
slowly and rising constantly throughout the video. See
Figure 4 for a schematic depiction of these videos.

Procedure Children were told that they would be shown
some alien bugs, but that before seeing the bugs, they would

3
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Figure 3: ‘Lights’ used for experiment 2. Top: periodic. Bot-
tom: monotonic.

learn about the rooms the bugs were in. These rooms were
described as identical except that they differed in their ‘spe-
cial lights’. The experimenter said, “The lights in the first
room start out looking like this. . . then after a while they look
like this. . . then after a while they look like this. . . ”, placing
a light on the table each time he said ‘this’. The lights were
placed one by one on the table, left-to-right facing the child.
Once the eight lights from the first set were placed, the ex-
perimenter said, “In the other room, the lights start out look-
ing like this. . . then after a while they look like this. . . ” and
placed the lights for that room in the same manner as for the
first. For one of the rooms the experimenter used the red and
yellow (periodic) lights in alternation; for the other the exper-
imenter used the continuously-varying red-to-yellow (mono-
tonic) lights. Room type (periodic or monotonic) was ran-
domized, as was whether the first light in each room was red
or yellow. The language used to describe both sets of lights
was identical. The first four lights in each set were placed on
the table approximately every 3 seconds; to keep the descrip-
tion conversational, each of the last four lights was placed
approximately every 1 second. This also ensured that there
was no way to map the rate of presentation of the cards to the
rate of change of either speed or spots in either display.

Following this, the children were invited to look at the
bugs. In the first stimulus set, for the periodic bugs, the chil-
dren were invited to attend to their speed: as the video played,
the researcher pointed out when the bugs sped up (“See, now
they’re getting faster”) and when they slowed down (“. . . and
now they’re getting slower”). For the monotonic bugs, the
video was played twice. The first time, the experimenter al-
lowed the children to observe the changing number of spots
on their own. After there were approximately 15 spots on
each bug, the experimenter restarted the movie, and this time
counted the number of spots on the bugs as these increased
in number, summarizing the change after there were 6 spots
(“They’re getting more and more spots.”).

For the second stimulus set, the procedure was identi-
cal, except that the language was modified appropriately
to describe the different changes in the bugs. The experi-
menter pointed out when the spots on the periodic bugs were
increasing or decreasing in number (“Now they’re getting
more/fewer spots”), and on the monotonic bugs, pointed out
the increasing speed (“Now they’re going faster. . . and now
the’re going faster. . . and now they’re going even faster. . . ”,

Figure 4: Periodic (green) and monotonic (purple) bugs from
stimulus set 2. The green bugs move at constant speed but
increase and decrease in number of spots; the purple bugs
increase speed monotonically, as indicated by the increasing
length of the vectors.

etc.).
Each child only saw one stimulus set — that is, one set of

periodic bugs and one set of monotonic bugs. Stimulus-set
assignment was counterbalanced.

After the children were familiarized with the stimuli, they
were shown the first bugs they had seen, asked to remember
how they changed, and then were told the following: “So,
we know that these guys are in one of these two rooms that
we talked about before. They can see the lights in the room
but we can’t. And what’s causing the speed to change is the
lights of the room they’re in. They could be in this room or
in this room. Do you know what room they’re in?” Children
were asked to point to the room they thought the bugs were
in. After this, they were shown the other bugs and the above
description and question were repeated verbatim, changing
only ‘speed’ to ‘spots’ (or vice-versa if the first-seen bugs
had varied in spots). It was emphasized that each of the bugs
could be in each of the two rooms.

4
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Results Due to the fact that each group of bugs was inde-
pendently described as being potentially in each room, the
two questions are independent; the probability of answering
both questions correctly by chance is .25. Children were sen-
sitive to the fact that bugs could have been in the same room,
as evidenced by the fact that six children placed both types
of bugs in the same room. Nineteen out of thirty-two chil-
dren were at ceiling, answering correctly on both trials. The
probability of success is: .594; bootstrap-estimated 95% con-
fidence interval: [.406, .763]. p< .001 by two-tailed binomial
test. Figure 5 shows the number of children who were correct
on 0, 1, or 2 trials. Performance across the two stimulus sets
was comparable: 10/16 children were at ceiling for the first
and 9/16 children were at ceiling for the second.

Figure 5: Experiment 1 results (N=32): Mean trials correct
= 1.375. Probability of full success (2/2 trials): .594, 95%
confidence interval: [.406, .763] (chance: .25). p < .001 by
two-tailed binomial test.

Discussion
In two experiments, we investigated whether children use
higher-level features of data to match causes to effects. In
Experiment 1, these features were static and distributional:
children showed a preference for a causal process that pre-
served distributional identity, matching 1:1 seeds to 1:1 flow-
ers and 7:1 seeds to 7:1 flowers irrespective of surface prop-
erties of the seeds and flowers (size, color, texture, etc.). In
Experiment 2, the higher-level features were dynamic: chil-
dren showed a preference for a causal process that preserved
dynamic form — periodic or monotonic — irrespective of
the lower-level features in which these dynamics were man-
ifested; periodically-varying lights were seen as the cause
of the spots on bugs or the speed of the bugs, depending
on which one varied periodically, and monotonically-varying

lights were seen as the cause of the monotonically-varying
feature of bugs. In both experiments, children received no in-
formation about how causes and effects covaried; inferences
were made based only on abstract properties of the stimuli.

The idea of using high-level features to match percepts has
been presented previously, in the literature on cross-modal
matching (see, e.g., Lewkowicz & Turkewitz, 1980; Spence,
2011). Cross-modal matching is often presented as a partial
solution to the binding problem and the focus is on mappings
between stimuli belonging to different perceptual modalities
(i.e., the sight and feel of a stimulus). We believe that it
is possible that the inferences children drew here and those
shown in studies on cross-modal matching may rely on the
same representational machinery; specifically, we believe that
both rely on the use of particularly powerful higher-level fea-
tures of the stimuli. However, the mechanisms we suggest are
applicable to a far wider array of problems than mere cross-
modal matching. The higher-level features we have exam-
ined, namely distributional properties and dynamics, are cal-
culable both within and across modes; in our case we have
examined their application within a perceptual modality and
have found them to apply both to naturalistic stimuli such as
seeds and flowers and to arbitrary stimuli, such as randomly-
moving animated alien bugs. In principle, the same kinds of
inferences could be used for problems entirely abstract in na-
ture (e.g., using the dynamics of the interest rate to map it
onto changes in the Gross Domestic Product).

Research on analogy (Gentner & Markman, 1997; Gen-
tner, 1977; Gick & Holyoak, 1980) has shown that children
and adults are able to bring distinct mental representations
into structural alignment and to use the relations that obtain
within one domain to reason about the other. We believe that
analogical reasoning is an elegant example of the more gen-
eral ability to use high-level features to constrain hypothesis
spaces. Note that here, however, we did not set up a situa-
tion where children could go from a known problem and so-
lution to a new problem and a new solution by setting up a
relational mapping between arguments (e.g., Christie & Gen-
tner, 2010). Rather, children had to infer the representation
that might connect the form of the effect to the form of the
candidate causes and use this representation to guide their re-
sponses. We emphasize this not to minimize the importance
of analogical reasoning, but because the general ability to rep-
resent these abstract high-level predicates may allow learners
to narrow the hypothesis space even when problems do not
present as analogies.

A variety of empirical questions remain: We have shown
that children are sensitive to high-level features like propor-
tionality and periodic or monotonic dynamics, and can use
these to infer causal relationships. Do children in fact use
these features to constrain hypothesis generation, or to con-
strain a large hypothesis space? When such features conflict
with lower-level features, such as color, texture, or size, how
do children resolve the conflict? Perhaps most interestingly,

5
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how do children learn these high-level predicates, and which
predicates are available to them at different times through-
out development? Given the prevalence of phenomena in the
world for which distributional properties and dynamics are
coherent and relevant, it may not be surprising that four- and
five-year-olds can use these; what about younger children and
what about other kinds of properties (e.g,. extent, other kinds
of dynamics, richer distributional information, or combina-
tions of these)? Much remains to be understood about how
children identify abstract features, and about what other kinds
of high-level features they can recognize; much also remains
to be understood about how we might computationally char-
acterize the ability to represent, learn, and use these higher-
level features. We hope to address these questions in future
work.
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