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Buried stressors in nitride semiconductors: Influence
on electronic properties

A. E. Romanov,a! P. Waltereit, and J. S. Speck
Materials Department, University of California, Santa Barbara, California 93106

sReceived 30 March 2004; accepted 28 November 2004; published online 26 January 2005d

An analysis is presented on the effect of the strain field originating from a subsurface stressorspoint
source of dilatation or a dilatating ellipsoidal inclusiond on the electronic properties of nitride
semiconductors. With good accuracy, real quantum dots can be modeled as such stressors. We
consider the following material structure design: a uniform semi-infinite GaN matrix with a buried
stressor or a GaN matrix with a singlesIn,GadN quantum well, which is grown pseuodomorphically
between the stressor and the free surface. We utilize isotropic elasticity to determine the strain field
in the structures under investigation. We then apply ak·p perturbation theory approach to examine
the shifts of the conduction and valence band edges caused by the stressor. We find lateral
confinement for electrons and holes, which can be proposed for the realization of strain-induced
quantum dots in the quantum well. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1851016g

I. INTRODUCTION

The distinguishing properties of nitride semiconductors
include their large spontaneous polarization and large piezo-
electric coefficients. In nitride-based heterostructures, dis-
continuities in spontaneous polarization coupled with piezo-
electric generated polarization caused by lattice mismatch
give rise to large internal electric fields. In addition, the ef-
fect of elastic strains is magnified by large values of the
deformation potentials in nitride semiconductors. A brief
comparison of GaAs and GaN parameters responsible for
strain-related effects is given in Table I.

In general, strain-induced phenomena have a large im-
pact on electronic properties of semiconductors1,2 The con-
duction and valence band levels and the band gap can be
modified by strain. Strain-induced piezoelectric polarization
charges lead to electrostatic fields of a magnitudesMV/cmd
that cannot be neglected in nitride semiconductors. In fact,
strain and polarization effects may be exploited to tailor het-
erostructures. Examples include two-dimensional electron
gases atsAl,GadN/GaN interfaces and large internal electro-
static fields that give rise to the quantum-confined Stark ef-
fect sQCSEd in quantum wellssQWsd. Such heterostructures
have been studied in detail both experimentally and theoreti-
cally, the latter being facilitated by the symmetry of two-
dimensional heterostructures.3 However, little is known
about the impact of deviations from the two-dimensional na-
ture of heterostructures on device properties. These devia-
tions may be either intentional, e.g.,sIn,GadN quantum dots
sQDsd,4 and surface and subsurface stressors, or uninten-
tional, as a result of uncontrolled thickness or composition
modulation in growing multiple QWs.5 In this article, we
investigate the influence of the intentionally nonuniform
strain field originating from a subsurface stressor on the elec-
tronic properties of nitride semiconductors. The stressor is

chosen either as point source of dilatation or as dilatating
ellipsoidal inclusion in order to account for both far- and
near-field effects in tractable analytical form.

The effect of finite size of QDssnanosized inclusionsd
on electronic and optoelectronic properties of semiconductor
materials was intensively studied during the last decade.6–8

The ultimate motivation for all of these studies was to de-
scribe and detect the confinement of the carriersselectrons
and holesd in QDs. Originally, the confinement was attributed
to the size effect on the carrier wave functions placed in
three-dimensional potential boxes.2,8 In addition, it was
pointed out that due to the crystal lattice mismatch between
the materials of QD and surrounding matrix, considerable
elastic strains can be generated inside a QD.9,10 Such intrin-
sic strains contribute to the modification of semiconductor
band structure via thedeformation potentials.1 The influence
of intrinsic strains of QDs on their electronic properties have
been discussed for example in Refs. 11–13. On the other
hand QDs generate nonuniform elastic strains in their vicin-
ity modifying the physical properties of the matrix.14 As ear-
lier as at the end of 1980s, it was proposed to use the non-
uniform strains fields originating fromsurface stressorsfFig.
1sadg for lateral confinement of excitons and carriers15,16 in a
QW, which in turn was responsible for vertical confinement
fsee Fig. 1sadg. In these reports, it was demonstrated that
strain-induced lateral confinement may be achieved in
InGaAs/GaAs QWs, resulting in redshifted photolumines-
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TABLE I. Comparison of GaAs and GaN response to elastic strain. Data for
GaAs are taken from Ref. 14; for GaN data see Sec. III.

Material
Band gap

seVd

Interband hydrostatic
deformation potential

seVd

Typical magnitude for
piezoelectric coefficient

sC m−2d

GaAs 1.42 ac−av=−7.9 e14=−0.16
GaN 3.45 a1=ai−D1=−3.1

a2=a'−D2=−11.2
e31=−0.49
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cence spectra. These and other earlier observations were
summarized in Ref. 17. Later on, Tulkkiet al.18 examined
the influence of a surface stressor on the optical properties of
a buried QW and obtained good agreement with correspond-
ing experiments by Lipsanenet al.19

Davies20 and Schoenfeldtet al.21 developed the idea that
a subsurface stressorfFig. 1sbdg could be used as a tool to
modify the confinement in nearby QW in the case of zinc-
blende structures. Davies investigated both surface22 and
subsurface20 stressors and reported spatially direct and indi-
rect electron-hole transitions, respectively. However, Davies
neglected the presence of hydrostatic strain induced by a
subsurface stressor in a semi-infinite medium. Although the
properties of QDs in wurtzite semiconductors were already
addressedssee, for example, the comprehensive paper by An-
dreev and O’Reilly23 on the relation between the shape and
size of the dot in GaN/AlN system and confined wave func-
tions in the dotd, their possible role as a subsurface stressor
was not investigated. In this article, we present the develop-
ment of our model for the subsurface stressors in nitride
semiconductors originally proposed in Ref. 24.

An important part of the analysis of strain-induced ef-
fects relies on modeling the stressor itself, i.e., the elastic
fields produced by stressor. A number of recent studies have
addressed the elasticity problems for QDs, i.e., stressors, of
various shapes, for various crystal symmetriesszinc-blende
and wurtzite semiconductorsd including the anisotropy of
material properties.25–28 The effect of coupling electric and
elastic fields generated by QDs in the materials with piezo-
electric response was also studied.29 In this article, we do not

include the anisotropy of the material under investigation
and do not examine complex dot geometries. Rather, we em-
ploy simple models for stressor shapes and work in the
framework of linear isotropic elasticity. We account for the
screening influence of the free surface on the stressor elastic
fields, as was proposed in Ref. 30. In Sec. II, we provide
necessary relations on the elasticity of subsurface point stres-
sors and subsurface dilatating ellipsoidal inclusions. We
present a survey on thek·p approach in calculating the re-
sponse of the electronic subsystem of the material on the
external or internal strain.1 The background is also devoted
to the consideration of strain-induced polarization in nitride
semiconductors. In the main part of the article, we develop
the model for buried stressors in uniform GaN and GaN with
an embedded QW. The results of the model are then pre-
sented and discussed with emphasis on the lateral change in
the energy gap due to strain-induced QDs inside the QW in
III-nitride binary and ternary compounds.

II. BACKGROUND

A. Elasticity of subsurface stressors

Practically all effects of QDs on the surrounding mate-
rial depend on their long-range elastic field. From this point
of view, an individual QD serves as astressor; i.e., a source
of elastic strains and stresses. The elastic field of the stressor
depends on the geometry of the stressor: its volume and
shape as well as the character of intrinsic distortions of the
stressor, e.g., the crystal lattice mismatch between dot and
matrix materials or differences in thermal expansion coeffi-
cients. Furthermore the elastic field depends on the elastic
properties both inside the stressor material and the surround-
ing matrix as well as the position of the stressor with respect
to interfaces and free surfaces. Independent of quantum dot
applications, the mechanical properties of stressors were ex-
tensively studied in solid mechanics starting with Eshelby’s
work on elastic inclusions.31,32

A complete solution of the elasticity problem in the most
general case of stressors in closed analytical form is not pos-
sible. For problems related to QDs, three main methods have
been applied to determine the elastic behavior of the stressor:
sid theory of elastic inclusions based on exact or approximate
analytical solutions of elasticity equationss“Eshelby-like” or
related approachesd,11,14,23,25,30sii d finite element methods
sFEMd,27,30,33,34andsiii d atomistic modeling.35,36Approaches
sid to siii d all have their particular advantages and disadvan-
tages. FEM is very effective for specific cases but does not
provide general solutions, and is furthermore affected by
choice of boundary conditions for the modeling domain. Ato-
mistic models require accurate interatomic potentials and are
further restricted to small systems of atoms in comparison
with dot sizes and the surrounding matrix.

The theory of elastic inclusions provides integral expres-
sions for elastic fields, which can be expressed in closed
analytical form in special cases, e.g., relatively simple inclu-
sion shapes in elastically isotropic media. In many cases, it is
sufficient to apply such a simplified description. In this ar-
ticle, we utilize two analytic approaches in stressor mechan-
ics, which include the effect of the free surface and the dot

FIG. 1. Strain-induced QDs in semiconductor structures.sad QD induced in
a QW by a surface stressor, e.g., InP or InAs, in materials with zinc-blende
crystal structure.sbd QD induced by buried stressor, e.g., InN, in materials
with wurtzite crystal structure.
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shape: apoint stressorsPSd and a dilatatingellipsoidal inclu-
sion sEId, which are shown schematically in Fig. 2.

In the application to semiconductor QDs, stressors origi-
nate from the crystal lattice mismatch, which can be de-
scribed with the help of the misfit parameter

f =
am − ad

ad
, s1d

wheread and am are crystal lattice parameters for dot and
matrix materials, respectively. Here, we assume isotropic
mismatches; i.e., the misfitf is the same in three orthogonal
directions. This assumption defines a so-called dilatating
stressor, since the dilationsrelative change of the volumed
inside the stressor is 3f. Distortions in the surrounding ma-
trix also increase with stressor volumeV. Therefore, stres-
sors can be characterized by their strengthS= fV. In the fol-
lowing presentation, we will employ the strengthS as the
main parameter for the dilatating stressor.

The simplest approach to express the far field of dilatat-
ing stressors is to ignore their geometry altogether, and to
consider them as point sources of dilatationfsee Fig. 2sadg of
given effective strengthS; i.e., to consider them as PSs. The
stressessi j

PS due to a PS can be found by combining the
stresses of point force dipoles. Note that if the response of a
body to a point forcesi.e., Green’s functiond is known, the
elastic fields caused by any distribution of forces can be ob-
tained by linear superposition.37 In the case of a PS of ex-
pansion, three mutually perpendicular pairs of forcesseach

pair consists of a dipole of opposing forces of magnitudeP,
separated by a distanced along their mutual line of actiond
may be usedfsee Fig. 2sadg. Throughout this article, we refer
to such a stressor aspositivePSsi.e., a positive stressor itself
would have a larger lattice constant than the surrounding
matrixd. If one considers a cube of volumeV=d3, the aver-
age stress in the cube isP/d2, which in turn can be related to
the strains arising from the misfitf via Hooke’s law. Based
on such considerations, one can relate the PS strength toP
andd, as

SPS=
Pd

2G

1 − 2n

1 + n
, s2d

where G is the isotropic material shear modulus andn is
Poisson’s ratio. By taking the limit asd→0, maintainingPd
constant, the complete elastic field for a positive PS of ex-
pansion with given strengthS may be determined. The ana-
lytic form for the elastic fields of the PS exists in all those
cases when Green’s function has a closed solution. The
stressessi j

PS for a PS placed at the distanceh away from the
free surface of an isotropic half-space are given in the Ap-
pendix fsee Eq.sA1dg. The strain components«i j

PS can be
found from stresses by applying Hooke’s lawfEq. sA4dg. For
example, the important hydrostatic strain component
«hydro

PS sr ,zd=«ii
PS=oi=1

3 «ii
PS of the subsurface PS can be ob-

tained with the help of Eq.sA5d, and it is equal to

«hydro
PS sr,zd = S

s1 + nds1 − 2nd
ps1 − nd

2sz+ hd2 − r2

fr2 + sz+ hd2g5/2, s3d

where the cylindrical coordinatessr ,zd are usedsnote thatz
is identical to x3 defined in the Appendixd. The plot of
«hydro

PS sr ,zd is given in Fig. 3sad. Due to the presence of the
free surface, the hydrostatic strain fielddoes not vanishfor
the subsurface PS. This property is in contrast to the case of
a PS in an infinite isotropic medium and it has important
consequences for strain induced changes in the conduction
bandssee the subsequent presentationd.

In the near field, strains and stresses diverge in the PS
model; therefore, a more accurate approximation is required.
To take into account the stressor proximity effects in an ana-
lytical treatment, we will consider a dilatating EI, as shown
schematically in Fig. 2sbd. In general, the elastic fields of an
arbitrarily shaped dilatating inclusion can be determined by
integrating the corresponding elastic fields for a PS; i.e., by
distributing PSs over the finite volume of the inclusion. In
the case of an EI, the stressessi j

EIsr d outside the inclusion can
be found by integration of PS stresses over the ellipsoid in-
terior VEI:

si j
EIsr d =E

VEI

1

VPSsi j
PSsr − r 8ddV8. s4d

The results of the evaluation of the Eq. 4 are given in the
Appendix. In the examples to follow we discuss an oblate
spheroidsEI with two equal semi-axesa1=a2.a3d at a depth
h from the surface. The strength of such a stressor is given
by

FIG. 2. The models proposed for analytical treatment of subsurface stressors
in GaN. sad Schematic for a PS placed in a GaN layer. The PS is described
by three orthogonal force dipoles with separationd and magnitudeP acting
on the faces of a cube with volumed3 in the limit of d→0. sbd Dilatating
oblate EI with volumeV= 4

3pa1
2a3 and mismatchf with respect to the sur-

rounding material. Two of three principal diameters of the ellipsoid are
assumed to be equal; i.e.,a2=a1.
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SEI = 4
3 fpa1

2a3. s5d

The expressions for stress and strain in this casefsee Eqs.
sA7d andsA4dg are more cumbersome than those for the PS.
However, a more realistic idealization of the stressor geom-

etry is achieved. Thus, using these expressions, we can ana-
lyze the near-field effects and also consider the influence of
the aspect ratio of the stressor.

A comparison of exact analytical solutions is given in
Fig. 3 for both the EI and PS placed at the same distanceh
from the free surface and both with the same effective
strengthSEI=SPS=S. The dilatation field«kk

EI of the EI fFig.
3sadg agrees extremely well with the corresponding depen-
dence for the PS. In the absence of the free surface, the
dilatation outside the EI vanishes as originally, shown by
Eshelby.31 The individual components of strain and stresses
in the far field also demonstrate a remarkable agreement as
seen in the Fig. 3sbd, where the dependencies of radial strains
on z are plotted. In the near fieldsclose to the stressord, there
is a quantitative difference between the predictions of the
two models. The more realistic EI model shows finite values
of strain up to the surface of the ellipsoid. Therefore, we will
apply the EI description for the analysis the stressor effects
in its close proximity. However, in the far field, i.e., at the
distancesl . lc<V1/3 sin case of not extremely elongated EId,
the simpler PS solutions can be successfully used for a com-
prehensive analysis of stressor-induced variation of elec-
tronic properties.

B. Conduction and valence band changes
in the presence of strain

Mechanical strains, i.e., deviations of the unit cell from
its geometry in the unstrained crystal, also modify the band
structure of semiconductors. For example, the band gap of a
semiconductor increases upon hydrostatic compression.38,39

Commonly, the effects of strain on the band structure can be
described using the Bir–Pikus approach,1 which utilizes the
k·p perturbation theory formalism in order to determine the
deviations of the energy bands from those in the unstrained
crystal. Thek·p perturbation theory formalism is based on
Bloch wave solutions of the Schrödinger equation of the
form cnksrd=unksr dexpsik·r d, wheren and k are the band
index and the electron wave vector, respectively. Substituting
these Bloch functions into the Schrödinger equation, one can
show that the Hamiltonian operator for the unit cell wave
functions unksr d can be written as the sum of the Hamil-
tonian operator fork =0 and a term proportional tok·p, with
p=s" / id¹. Furthermore, the eigenfunctionsun0sr d, i.e., for
k =0, form a complete set of eigenfunctions such that all
unksr d may be written as a linear combination of allun0sr d,
also known as theLuttinger–Kohn representation.1 Hence,
one can apply first-order perturbation theory with a perturba-
tion k·p and a basisun0sr d to investigate the band structure
in the vicinity of k =0. The new eigenstates will then be the
linear combination of theun0sr d. One common example is
the Luttinger–Kohn model, which describes the valence band
structure of common III-V semiconductors.2 Bir and Pikus1

showed that the form of the strain dependence of the Hamil-
tonian is essentially identical to thek-dependence of the
Hamiltonian. For example, a term proportional tokxky corre-
sponds to a term proportional to the strain component«xy.

In unstrained wurtzite GaN, there are three closely
spaced top valence bandssVBsd at the Brillouin-zone center,

FIG. 3. Comparison of point versus ellipsoidal stressor.sad Hydrostatic
strain sdilatation fieldd «iisr ,zd induced by the subsurface stressors. The
strain is given in units ofsS/ph3dfs1+nds1−2ndg / s1−nd, where S is the
effective strength of the stressor placed at the distanceh from the free
surface of an isotropic half-space andn is Poisson’s ratio.sbd Dependence of
the radial strain«rrs0,zd on depth in the GaN layer. The stressorsEI or PSd
is located at a distanceh=41 nm from the surface and has effective strength
S= fV equivalent to an In0.5Ga0.5N inclusion with a volume of 200p nm3 and
f =0.051. The strain is normalized by 1.26310−4, which corresponds to an
effective Poisson ration̄=0.234 for GaN. Results for ellipsoidal and point
stressors are shown by solid and dashed lines, respectively.

FIG. 4. Characteristic distances for a buried stressor in GaN layer with
embedded QW. The sample surfacez=0 corresponds to thes0001d GaN

growth plane with thez axis in thef0001̄g crystallographic direction.
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usually referred to as heavy-holesHHd, light-hole sLHd, and
crystal-field split-off holesSCHd.40,41 These VB states have
atomicp-orbital character, in contrast to the bottom conduc-
tion bandsCBd, which has atomics-orbital character. Since
the large band gap of GaN reduces the interaction of CB and
VB states, the Hamiltonian for the strain dependence of the
VB can be separately given by the 636 matrix3

Hv = 3
F 0 − H* 0 K* 0

0 G D − H* 0 K*

− H D l 0 I* 0

0 − H 0 l D I*

K 0 I D G 0

0 K 0 I 0 F

4 , s6d

with the following strain-dependent elements:

F = D1 + D2 + l + u,

G = D1 + D2 + l + u,

H = isA6kzk+ + A7k+ + D6«z+d,

I = isA6kzk+ − A7k+ + D6«z+d,

K = A5k+
2 + D5«+,

D = Î2D3,

l = A1kz
2 + A2k'

2 + D1«zz+ D2s«xx + «yyd,

u = A3kz
2 + A4k'

2 + D3«zz+ D4s«xx + «yyd,

«+ = «xx − «yy + 2i«xy,

«z+ = «xz+ i«yz,

k+ = kx + iky,

k'
2 = kx

2 + ky
2

The parametersDj s j =1 to 6d are the deformation potentials
for the VB, andAj s j =1 to 7d are equivalent to the Luttinger
parametersssee Ref. 40 for detailsd and determine the hole
effective masses;«lm and kl sl ,m=x,y,zd are the strain and
wave vector components, respectively.D1 is the crystal-field
parameter, whileD2 andD3 are the spin-orbit energy param-
eters. The basis forHv is given by the usual choice
s1/Î2duX+ iY ,al, s1/Î2duX+ iY ,bl, uZ,al, uZ,bl, s1/Î2duX
− iY ,al, s1/Î2duX− iY ,bl. Here, uXl, uYl, and uZl have the
symmetry properties of the atomicpx, py, andpz orbital func-
tions.ual andubl denote the spin wave functions correspond-
ing to spin up and spin down respectively. The diagonaliza-
tion of the matrix fEq. s6dg yields the three distinct VB
maximaEv,j.

The Hamiltonian for the strain dependence of the CB
minimum is given by a 232 matrix with basisuS,al and
uS,bl. The eigenvalue of the Hamiltonian can be expressed
by

Ec = a«zz+ a's«xx + «yyd +
"2kz

2

2me
+

"2k'
2

2me'

, s7d

wherea', ai and mei, me' denote the CB deformation po-
tentials and electron effective mass, respectively. Since in the
following analysis we will be only interested in the ground-
state energiessk =0d, we will find that Eqs.s6d and s7d are
substantially simplified.

C. Polarization effects in nitride semiconductors

A sizable redshift of the ground-level transitions of
wurtzite nitride semiconductor quantum wells has been ob-
served by various groups42–45for increasing well width. This
phenomenon is sometimes accompanied by the concomitant
reduction of the oscillator strength and by the increase of the
decay time of the transition. All together, these effects point
towards the existence of strong built-in electrostatic fields in
wurtzite nitride semiconductors, which causes a substantial
QCSE.3 The underlying phenomenon is the presence of large
electrical polarization fields in wurtzite nitride semiconduc-
tors: the spontaneous polarizations are of the same order of
magnitude as those of ferroelectrics.46 As we already men-
tioned Sec. I, the magnitude of the piezoelectric constants
considerably exceeds that of other III-V semiconductors.

The presence of polarization is strongly connected to the
unit cell symmetry of a crystal. Nitride semiconductors exist
in both the zinc-blende and wurtzite structures. In both cases,
each group-III atom is tetrahedrally coordinated to four ni-
trogen atoms. The main difference between these two struc-
tures is the stacking sequence of close packed diatomic
planes. These stacking sequences are ABABAB along the
wurtzite h0001j directions and ABCABC along the zinc-
blendeh111j directions. This difference in stacking sequence
results in distinct space group symmetries:P63mc for wurtz-

ite andF4̄3m for zincblende.
In the absence of external electric fields, the total mac-

roscopic polarizationP of a solid is the sum of the sponta-
neous polarization of the equilibrium structure and of the
strain-induced, piezoelectric polarization.The zinc-blende
compound semiconductors such as GaAs and InP have four
symmetry equivalent polark111l axes whose contributions
cancel each other in equilibrium. Hence, these materials are
free of electrical polarization at equilibrium. In contrast, the
wurtzite phase has a singular polar axis, namely, thef0001g
axis. Thus, the wurtzite phase has a spontaneous electrical
polarization parallel to thef0001g direction even at equilib-
rium.

In practice, semiconductor layers are often grown under
strain due to the lattice mismatch with the underlying sub-
strate. Such deformations of the unit cell can lead to addi-
tional piezoelectric polarization. The presence of this kind of
polarization is again closely related to the unit cell symme-
try; namely, to the lack of inversion symmetry. The contri-
butions of the four polar axes of zinc-blende structures can-
cel each other for growth along ak001l direction. However,
growth along one of the polar axes reduces the symmetry
and the crystal exhibits piezoelectric polarization. In con-
trast, the wurtzite structure with its unique polarf0001g axis
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always carries piezoelectric polarization for any growth di-
rection. The total electric polarizationP is the sum of spon-
taneous polarizationPsp and piezoelectric polarizationPpz.

In general, the elementary cell of material under consid-
eration can be subjected to an arbitrary strain«i j . By taking
into account the symmetry of the space groupP63mc of
wurtzite GaN, the piezoelectric polarization is related to
strains as:47

Ppz = 1 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0
21

«xx

«yy

«zz

«yz

«xz

«xy

2 , s8d

with the elementseij of the piezoelectric tensor in Voigt
notation.48

Any spatial change in total polarizationP leads to a
fixed charger=−= ·P. Prime examples are two-dimensional
electron gases atsAl,GadN/GaN interfaces and alternating
sheet charge in QWs, giving rise to the QCSE.3,49 In the
following analysis, we will calculate the distribution of fixed
charges induced by subsurface stressors.

III. DESCRIPTION OF THE MODEL

In our model, shown schematically in Fig. 4, the dilata-
tion stressor is located atr =sx2+y2d1/2=0 andz=h. The ma-
terial surrounding the stressor is considered either to be a
uniform GaN matrix or a GaN/InxGa1−xN/GaN single QW
that is grown pseudomorphically between the stressor and
the free surface. The designations for the characteristic
lengthsh, hQW, and lQW are also shown in the Fig. 4. The
z=0 plane is taken as thes0001d sample surface and thez
axis points into the sample; hence, thez axis is parallel to

f0001̄g. As we already discussed in Sec. II A, the elastic
properties of a medium are, in general, anisotropic, and the
stressor may have arbitrary shape and size, leading to a com-
plex elastic field in close vicinity to the stressor, thus requir-
ing rather elaborate analytical or FEM calculations. To sim-
plify the model and to proceed with analytically tractable
results, the following approximations were employed:sid the
stressor is taken as either a PS or a dilatation EI,sii d the same
elastic constants were used forsIn,GadN and GaN, andsiii d
isotropic elasticity is used with an effective Poisson’s ratio
and shear modulus, which are derived from anisotropic elas-
tic constants of GaNssee the Appendix for detailsd. We note
that the EI provides a good approximation for the elastic
fields of inclusions with more complex shapes.30 Addition-
ally, since the QW alloys are relatively diluteswe will treat
InxGa1−xN with x=0.05 or 0.15d, we believe that we were
justified in assuming the same elastic constants for the matrix
and wells.

As shown in Sec. II, the strength of the stressor can be
defined viaS= fV, whereV is the stressor volume andf is the
crystal lattice mismatch between material of the stressor and
surrounding material. The volume of the stressor can be di-
rectly estimated from the experimental data of QD structures

in III-nitride semiconductors.4,50We consider QDs embedded
in a GaN matrix with typical dot dimensions of around
20 nm as a lateral size in the basal plane and a height along
thez axis of approximately 2 nm, similar to recently reported
GaN dots in an AlN matrix.50 For simplicity, we prescribe a
volume of 200p nm3 to the stressor. In our numerical ex-
amples we will always use this value forV.

The effective misfit parameterf for wurtzite semicon-
ductors can be estimated by taking into account the differ-
ence in crystal lattice translations in the basal plane and in
the z-axis direction. The lattice parameters of III-nitrides are
given in Table II. For such materials, one can introduce a pair
of misfit parametersfa and fc, given by

fa =
am − ad

ad
, s9ad

fc =
cm − cd

cd
, s9bd

where am, ad, and cm, cd are thea and c wurtzite lattice
parameters of the matrix and the dot, respectively. The effec-
tive stressor/matrix mismatch can then be defined as

f =
2fa + fc

3
. s10d

The results of Eq.s10d are summarized in Table III for a
number of possible combinations of the dot and matrix ma-
terials. One can see that for III-nitrides both positivesf
.0d and negativesf ,0d stressors can be realizedsat least
hypotheticallyd.

After the strength of the stressor is determined via the
effective misfitf and the effective volumeV, the elastic field
«i j

stressor induced in the matrix by the stressor is found by
applying the formulas for PS and EI described in Sec. II. As
it follows from the analysis for the case of elastic isotropy,
the only material parameter appearing in the stressor strain
distributions is Poisson’s ratio. Since wurtzite GaN is elasti-
cally anisotropic, we choose to use an effective Poisson’s
ratio n̄ fgiven by Eq.sA18dg, which was derived by averag-

TABLE II. Crystal lattice parameters of III-nitrides with wurtzite structure
sRefs. 52 and 59d.

Lattice parameters AlN GaN InN

a sÅd 3.112 3.189 3.54
c sÅd 4.982 5.185 5.705

TABLE III. Effective lattice mismatch for wurtzite III-nitrides.

Material
Misfit

parameter
fStressor Matrix

GaN AlN 0.029
InN GaN 0.096

In0.5Ga0.5N GaN 0.051
AlN GaN −0.030
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ing Poisson’s ratios along the three mutually perpendicular
axes chosen in characteristic crystallographic directions, as

n̄ = −
1

3
Ss13

s33
+

s12 + s13

s11
D . s11d

where sij are the elastic compliances for GaN. Using the
elastic constants from Ref. 51 we obtainn̄=0.234.

When a pseudomorphically grown single QW is consid-
ered, additional uniform strains«i j

QW are generated inside the
well, given by

«xx
QW = «yy

QW = fQW, s12ad

«zz
QW = −

2n̄

1 − n̄
fQW, s12bd

where the misfit parameter for the QWfQW is defined as

fQW =
am − aQW

aQW
. s13d

The in-plane lattice parameteraQW of the QW material with
the composition InxGa1−xN can be found in accordance with
the Vegard’s law:

aQW = xaInN + s1 − xdaGaN. s14d

Using Eqs.s13d ands14d and taking into account the data for
the lattice parameters of GaN and InNsTable IId, we obtain
fQW=−0.016 and −0.0055 for In content ofx=0.15 and 0.05,
respectively.

Finally, the combined action of the stressor and the QW
is given by the superposition of the corresponding elastic
strains:

«i j
total = «i j

stressor+ «i j
QW. s15d

To evaluate the influence of the stressor on the material elec-
tronic properties, we apply ak·p approach as presented in
Sec. II. For deformation potentials of GaN we use set I from
Table IV, which corresponds to parameters utilized in our
preliminary publication.25 Because the data on deformation
potentials for wurtzite III-nitrides are diverse, we also have
checked different sets of values, which are also included as
set II and set III in Table IV. Set II is recommended band
structure parameters from a recent review article by Vurgaft-
man and Meyer52 and set III represents the data used by Van

de Walle in his study of “absolute” deformation potentials
and the band offsets at wurtzite III-nitrides heterojunctions.53

We note that in spite of distinctly different values of the
individual deformation potentials, all three sets provide com-
parable values for interband deformation potentials, i.e.,a1

=ai−D1 and a2=a'−D2. It also will be shown in the next
section that all the sets of parameters have similar effects on
the band edge shifts in III-nitrides induced by subsurface
stressors.

For the analysis of the stressor-induced polarization
charges we use the following values of the piezoelectric co-
efficient for GaN:e33=0.73 C m−2, e31=−0.49 C m−2,54 and
e15=−0.40 C m−2, where the value of the coefficiente15 is
the estimate obtained on the averaging the data reported in
Refs. 23 and 55.

IV. STRESSOR-INDUCED BAND EDGE SHIFTS

The change of the VB structure isnonlinearwith strain
as these energies represent the eigenvalues of a 636 Hamil-
tonian in thek·p calculationsssee Sec. II for detailsd. We
will examine the shifts of the CB and VB edges due to the
subsurface stressor strain field by utilizing thek·p perturba-
tion approach developed by Bir and Pikus,1 and employing
the corresponding deformation potentials for GaN.3 Due to
strain, both the CB and the VB states, i.e., HH, LH, and
SCH, are modified leading to shifts of the corresponding
band edges relative to their values for unstrained material.
The stressor strain field leads to changes in the original VB
states such that it is no longer correct to simply describe
them as HH, LH, and SCH.24 Therefore, we label the indi-
vidual VBs as top, middle, and bottom VB according to their
energy, with the top VB being closest to the CB.

The shifts of the CB energiesEc
def in a uniform GaN

matrix due to positive and negative subsurface PSs are
shown in Fig. 5. We use parameters for the PSs that are
equivalent in the far field to In0.5Ga0.5N and AlN QDs with
misfit parametersf =0.051 andf =−0.030, respectively. All
the results shown for the PS are calculated within the valid
range of the point source approximation as we do not ap-
proach the point source closer than its characteristic length
lc. The shift of the CB is proportional to the hydrostatic strain
fe.g., see Eq.s7d in Sec. IIg; hence, Fig. 5 resembles Fig. 3sad
in different units. We see that either a positive or negative PS
leads to only slight changes in the CB energy in the subsur-
face region above the stressor. In contrast, the changes in the
VB energiesEv

def sinduced by PSs and shown in Fig. 6d show
a rather complex dependence on the actual location. In-plane
and out-of-plane cross sections of the VB structure are
shown along thez axis and for two different depthsz in Figs.
6sad–6scd, respectively. In Fig. 6, the left column gives re-
sults for the positive PS, whereas the right column provides
the results for the negative PS. The lower part of the figure
fFig. 6sddg presents results for the other set of band structure
parameters; namely, set II from Table IV. Near the surface,
the VBs have relative separations only slightly different from
the values of unstrained materialfsee Fig. 6sadg. However, in
the case of the positive PS, with increasing depthz, the sepa-
ration of the top and middle VBs decreases until they cross

TABLE IV. Band structure parameters of wurtzite GaN.

Parameters
Set I, Ref. 3

seVd
Set II, Ref. 52

seVd
Set III, Ref. 53

seVd

D1 0.022 0.010 ¯

D2 0.005 0.017 ¯

ai −45.5 −8.6 −6.0
a' −44.5 −6.8 −6.0
D1 −41.4 −3.7 0.11
D2 −33.3 4.5 5.54
D3 8.2 8.2 5.76
D4 −4.1 −4.1 −3.04
D5 −4.7 −4.0 ¯

D6 D6=sD3+4D5d / Î2 ssee Ref. 40, and references thereind.
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sat z<25 nm for the parameters used for Fig. 6d. Finally, the
top VB moves towards the CB, while the other two VBs
bend away from the CB, maintaining their separation. For
the negative PS such a behavior is not observed; in this case
no crossing occurs, but both the top and the middle VBs
move towards the CB when approaching the negative PS.

It follows from Figs. 6sbd and 6scd sleft and rightd, for
r .h, that the VBs are only weakly affected by the presence
of the stressor regardless of the depthz. Close to the sample
surfacefFig. 6sbdg, the relative positions of the VBs change
only slightly close to the symmetry axis. This influence is
due to the hydrostatic component of the strain tensor. When
approaching the stressorfsee Fig. 6scdg, its effect becomes
visible even still inside the region of the far-field approxima-
tion. The remarkable feature of the PS influence on the VB
structure is the unidirectional effect of positive and negative
stressors. Both types of stressor raise the top VB level.

It is clear from the comparison of the Figs. 6scd and 6sdd
that the use of the different set of deformation potential pa-
rameterssi.e., set II instead set Id does not change the main
conclusion on the character of the stressor influence on the
shift of the VB edge. The same observation was also ob-
tained for the parameters of set III from the Table IV. There-
fore, all the following reported results were obtained by us-
ing the deformation potential parameters of set I.

It is interesting to consider the case of a
GaN/InxGa1−xN/GaN QW structure, which will provide ver-
tical confinement of the carriers. The total strain field from
Eq. s15d was used as input for the Hamiltonian in thek·p

calculations. For a positive stressor, we obtained a CB po-
tential exhibiting lateral electron confinement atr =0 regard-
less of the actual depth of the QW. However, holes will be
either trapped away or atr =0 depending on the actual loca-
tion of the well. Therefore, we identify two important possi-
bilities. For a shallow well close to the surface, electrons and
holes show significant lateral separation and thus would have
low radiative recombination rates. However, for a QW suffi-
ciently close to the stressor, both electrons and holes may be
trapped atr =0 in such a way that they are spatially localized
resulting in a strain-induced QD inside the QW. To investi-
gate this effect in detail, we use an EI instead of a PS since
the QW may stay in close proximity to a stressor.

Figure 7 provides the results of the VB calculations for
an EI placed at the depthh=41 nm in a GaN matrix with an
additional QW characterized byhQW=3 nm, andlQW=4 nm.
The material for the EI was chosen to be either In0.5Ga0.5N
spositive stressor withf =0.051d or AlN snegative stressor
with f =−0.030d; the volume of the EI was taken asV
=200p nm3. The material in the InxGa1−xN QW corresponds
to either x=0.05 smoderate strained welld or x=0.15
sstrongly strained welld. From the analysis of the plots, we
may see the difference regarding the results obtained for the
point stressor. In the case of positive EI, the local minimum
in the VB profile emerges just above the center of the ellip-
soid; i.e., atr =0. For a strongly strained QW, the minimum
can be even lower than the far-fieldslarge rd VB energy
level, as shown in Fig. 7sbd. At the same time, there is a
pronounced maximum of the order of 50 to 100 meV shifted
towards the ends of ellipsoid. For a negative EI, the top VB
has the maximum above the inclusion center. The character-
istic change inEv

def with respect to the values for the QW in
the absence of the stressor is,50 meV.

In the general case, from our simplified description we
cannot predict the exact positions of VB and CB edges, but
can provide only relative change in their energy due to de-
formation effects. Useful information, however, can be ob-
tained for the change of the energy gapDEg in strain-induced
QD, as is presented in Fig. 8. In thez direction there is a
sharp change ofDEg, which is caused mainly by the chemi-
cal composition and uniform strain inside the QW. This ef-
fect is combined with the effect of the stressor. In ther
direction, the influence of the nonuniform strain of the EI
manifests itself more clearly. For example, the negative stres-
sor fsee Fig. 8sbd rightg demonstrates the nonuniform strain-
related reduction of the band gap of the order of 50 meV. To
calibrate the results of the calculations, we utilized the fol-
lowing value for the gap change in the strained In0.15Ga0.85N
QW: DEg

QW=−0.61 eV. This value was obtained by extrapo-
lating the experimentally found coefficientdEg/dx
=−4.1 eV for pseudomorphically strained InxGa1−xN
layers.56 It is clear from Fig. 8sbd that negative stressors in
the vicinity of QWs can give rise to strain-induced dots
within the wells.

V. STRESSOR-INDUCED POLARIZATION CHARGES

The density of fixed polarization charges in the system
with the stressor is related to local variations of the total

FIG. 5. Map for GaN CB edge changesEc
def due to strain fields of buried

stressors.sad For the positive PS with effective strengthS= fV equivalent to
an In0.5Ga0.5N inclusion with a volume of 200p nm3 and f =0.051.sbd For
the negative PS with effective strengthS= fV equivalent to an AlN inclusion
with a volume of 200p nm3 and f =−0.030. The stressors are located at a
distanceh=41 nm from the surface The effective Poisson’s ratio was taken
as n̄=0.234, the contour values are given in meV.
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polarizationP, which is the sum of the spontaneous and the
piezoelectric polarization,Psp and Ppz, respectively. The
spontaneous and piezoelectric polarization constants of ter-
nary alloys are linearly interpolated between the correspond-
ing values of the binaries. For calculatingPpz we employ
fsee Eq.s8dg the piezoelectric tensor of wurtzite nitride semi-
conductors, which gives us

Ppz = 1 e15«xz

e15«yz

e31s«xx + «yyd + e33«zz
2 , s16d

where the piezoelectric constants of GaNe31, e33, and e15

have the values given in Sec. III. Finally, the density of fixed
polarization chargesrsx,y,zd is given by −¹ ·P.

The example of these calculations is shown in Fig. 9 for
the positive stressor in the absence of a QW. The fixed
charge densityr exhibits the same symmetry as the strain
field; i.e., rotational symmetry with respect to thez axis:
rsx,y,zd=rsr ,zd. This finding is due to the symmetry of the
piezoelectric tensor and is in contrast to the case of a stressor

in a zinc-blende crystal where thez axis has 4̄symmetry axis
for the polarization charge density, leading to a quadrupole
of the fixed electric charge density.14 As seen from Fig. 9,
both positive and negative polarization charges are present.
For large in-plane separationsr, we have a relatively low

density of negative fixed charges in the 1016 cm−3 range. As
we approach thez axis, we can distinguish two regimes.
Close to the surface, we have positive fixed charges in the
mid- to high-1016 cm−3 range. This charge density can be
easily screened by free electrons, taking into account the
usually reported unintentionaln-type doping level of
1016–1017 cm−3 in GaN. In contrast, for larger depths, nega-
tive fixed charges are found that can be as high as in the mid-
1018 cm−3 range at a distance oflc from the stressor on thez
axis.

In general, one has to combine the effects of deformation
potentials and polarization charges in order to obtain self-
consistent solutions for wave functions and energies of elec-
trons and holes. Therefore, one has to solve both the
Schrödinger and the Poisson equations simultaneously. This
is straightforward in one dimensionfsee, e.g., Ref. 57g, but,
is a substantial numerical task in two or three dimensions. In
this work, we restricted ourselves to the uncoupled effects of
deformation potentials and polarization charges, but will pur-
sue self-consistent solutions in future work.

In the absence of solutions of both the Schrödinger and
the Poisson equations, we can still gain insight into the re-
sults of this work. Inn-type material, the Fermi level should
remain close to the CB; thus most, if not all, of the strain-
induced band motion will be in the VB. A positive stressor

FIG. 6. Strain-induced changeEv
def in the VB structure

of GaN due to the presence of the subsurface point
stressors.sad Dependence of the VB maxima on depthz
for r =0. sbd, scd, and sdd Radial dependencies for the
energy of VBs forz=15, z=33, andz=33 nm sset IId,
respectively. Results for partssad, sbd, andscd were ob-
tained for deformation potential parameters from set I,
and results forsdd were obtained for deformation poten-
tial parameters from set II. VBs are designated as top,
middle, and bottom ones.stop closest to the CBd. The
left column presents the results for positive PS, with the
effective strengthS equivalent to In0.5Ga0.5N inclusion
with a volume of 200p nm3 and f =0.051. The right
column presents the results for negative PS, with the
effective strengthS equivalent to AlN inclusion with a
volume of 200p nm3 and f =−0.030. The distance from
the stressor to the layer surface ish=41 nm. The effec-
tive Poisson’s ratio was taken asn̄=0.234.
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will give rise to a negative polarization-induced fixed charge
density in the surrounding matrixssee Fig. 9d and addition-
ally, a positive stressor inn-type material will cause upward
motion of the VB ssee Fig. 6d. Thus, in n-type materials,
excess holes, such as generated by photoexcitation or elec-
trical injection, will be attracted to the stressor. InxGa1−xN or
InN dots in ann-type GaN matrix should be a reasonable
realization of this case—the InxGa1−xN dots will be a posi-
tive stressor and intentional or unintentional doping of the
GaN matrix is readily achieved. Analogous arguments can be
developed for negative stressors. In this case, favorable
structures forp-type matrices with negative stressors would
attract minority carriersselectrons in this cased.

VI. SUMMARY AND CONCLUSIONS

We have investigated the influence of the non uniform
elastic field that originates from a subsurface stressorse.g.,
quantum dotd on the electronic properties of III-nitrides. Two
different analytical models of subsurface stressors were ex-
plored: sid point source of dilatation, i.e., point stressorsPSd
and sii d dilatation ellipsoidal inclusionsEId. The stressor ef-
fective strength was shown to be equal to the product of the
inclusion volumeV and lattice mismatchf between the ma-
terials of the inclusion and surrounding matrix. The cases of
positive se.g., In0.5Ga0.5N inclusion, f =0.051d and negative
se.g., AlN inclusion,f =−0.030d stressors in GaN matrix have
been considered. It was argued that the PS model is valid for
all stressors in the far field and therefore can be applied with
a good accuracy at distancel . lc<V1/3 sin case of inclusions
that are not extremely elongatedd.

We proposed and analyzed the following material struc-
ture design: a uniform semi-infinite GaN matrix with a bur-
ied stressor or GaN matrix with a single InxGa1−xN sx
=0.05 and 0.15d QW that is grown pseuodomorphically be-
tween the stressor and the free surface. The presence of the
strained QW is responsible for the vertical confinement for
electron and holes, whereas the presence of the buried stres-
sor can provide lateral confinement of the carriers.

To examine the shifts of the CB and VB edges caused by
the stressor, we applied ak·p perturbation theory approach
with prescribed values of deformation potentials typical for
III-nitrides. We found that buried stressors only affect the CB
in the near-surface region. For “deep” stressorssplaced at
large distanced from the surface the effect is small. Signifi-
cant influence has been found of stressors on the VB shift. It
has been demonstrated that both negative and positive stres-
sors cause upward motion of top VB. In the vicinity of the
either an AlN or In0.5Ga0.5N stressor, the change in energy of
the top valence band can be on the order of 50 meV. Stres-
sors in the vicinity of a QW provide the possibility for form-
ing strain-induced QDs within the QW with lateral confine-
ment also on the order of 50 meV.

In addition to the effect of band edge shift and the
change in the energy gap via deformation potentials, subsur-
face stressors are responsible for the formation of polariza-
tion charges, with their distribution depending on symmetry
of the piezoelectric tensor and the character of the stressor
deformation field. It was shown that positive stressors with
strength typical for experimentally observed in III-nitrides
quantum dots give rise to large negative space charge in the
vicinity of the stressor.

A complete understanding of the optical emission behav-
ior of III-N structures should include effects of heteroge-
neous strain caused by composition fluctuations, disloca-
tions, and intentional or unintentional stressors.

ACKNOWLEDGMENTS

The authors acknowledge several useful discussions with
Prof. Jasprit Singh and Prof. Chris Van de Walle. This work
was supported in part by AFOSRsT. Steiner and G. Witt,
program managersd.

FIG. 7. Dependence of the strain-induced changeEv
def in the VB structure on

spatial coordinates for GaN/InxGa1−xN/GaN QW sandwich structure in the
presence of the subsurface ellipsoidal stressors:sad for x=0.05 and positive
In0.5Ga0.5N EI; sbd for x=0.15 and positive In0.5Ga0.5N EI; and scd for x
=0.15 and negative AlN EI. Stressor parameters: volumeV=200p nm3,
aspect ratioa2=a3=3, h=41 nm. QW parameters:hQW=3 nm, lQW=4 nm.
The effective Poisson’s ratio was taken asn̄=0.234. The dashed lines show
the top VB level in the absence of stressor. The plots are given for the
bottom of the QW as shown schematically in the inset insbd.
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APPENDIX: STRESSES OF SUBSURFACE
STRESSORS AND EFFECTIVE POISSON’S RATIO OF
THE MATERIAL

Stresses for the point source of dilatation: positive
PS

In the coordinate systemsx1,x2,x3d related to the free
surface of the isotropic half-space, the PS occupies the posi-
tion s0,0,hd. Its stresses are:30,58

si j = S
Gs1 + nd
2ps1 − ndF ]2

]xi]xj
S−

1

R1
D + ndi j

]2

]x3
2S 4

R2
D

− x3
]3

]x3]xi]xj
S 2

R2
D + s− 4n + 3ds− 1 +d3i + d3jd

3
]2

]xi]xj
S 1

R2
D − d3j

]2

]x3]xi
S 1

R2
D − d3i

]2

]x3]xj
S 1

R2
DG ,

sA1d

where S is the PS strength,G is the shear modulus,n is
Poisson’s ratio, di j is Kroneker delta, and R1,2

=Îx1
2+x2

2+sx37hd2. The hydrostatic pressure is defined as

p = −
1

3
skk = −

1

3o
k=1

3

skk, sA2d

which gives the following result for the subsurface PS:

p = −
2S

3

Gs1 + nd2

ps1 − nd
]2

]x3
2S 1

R2
D . sA3d

Strains are related to the Hooke’s law:

«i j =
1

2m
Ssi j −

n

1 + n
skkdi jD . sA4d

Local dilatationshydrostatic straind is expressed as

«hydro= «ii = o
i=1

3

«ii = −
3

2m

1 − 2n

1 + n
p, sA5d

where the coefficient in front of the pressurep on the right-
hand side of Eq.sA5d represents the inverse bulk modulus.

Stresses for the dilatating ellipsoidal inclusion:
positive EI

As shown by Mura,37,58 the stress field for an EI in a
half-space can be obtained by integrating the displacement
field that gave rise to Eq.sA1d over the domain

FIG. 8. Change of the band gap in
GaN/InxGa1−xN/GaN QW sandwich
due to buried ellipsoidal stressors.sad
Band gap dependence on depthz for
r =0. sbd Band gap dependence on the
in-plane position near the top and the
bottom of the QW. The left and right
columns present results for positive
In0.5Ga0.5N and negative AlN EIs, re-
spectively. Stressors parameters: vol-
ume V=200p nm3, aspect ratioa2

=a3=3, h=41 nm. QW parameters:x
=0.15, hQW=3 nm, lQW=4 nm. The
effective Poisson’s ratio was taken as
n̄=0.234. Dashed line shows the top
VB level in the absence of stressor.

FIG. 9. Spatial dependence of the subsurface stressor induced fixed polar-
ization charge density.sad Map for charge distribution in GaN due to the
strain field of the buried stressor; the contour values for the charge density
are given in 1016ueu /cm3. sbd Radial dependencies for the charge density for
z=1 andz=15 nm, respectively. The plots were obtained for a positive PS
located at a distanceh=41 nm from the surface and with effective strength
S= fV equivalent to an In0.5Ga0.5N inclusion with a volume of 200p nm3 and
f =0.0507. The effective Poisson’s ratio was taken asn̄=0.234. The piezo-
electric coefficient for GaN were taken ase33=0.73 C m−2, e31

=−0.49 C m−2, ande15=−0.40 C m−2.
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x18
2

a1
2 +

x28
2

a2
2 +

sx38 − hd2

a3
2 ø 1, sA6d

wherea1, a2, and a3 denote the semi-axes of the ellipsoid
along the respective coordinate directions, andh denotes the
depth of the center of the ellipsoid from the surface. For
points exterior to the inclusion, the stress components take
the form

si j = S
Gs1 + nd
2ps1 − ndF−

]2c

]xi]xj
− x3

]3f

]x3]xi]xj
+ 4ndi j

]3f

]x3
2

− s3 − 4ndsd3i + d3j − 1d
]3f

]xi]xj
− sd3i + d3jd

]3f

]xi]xj
G ,

sA7d

where

c =
3

4
E

l

` 1 −S y1
2

a1
2 + s

+
y2

2

a2
2 + s

+
y3

2

a3
2 + s

D
Îsa1

2 + sdsa2
2 + sdsa3

2 + sd
ds, sA8d

with

y1
2

a1
2 + l

+
y2

2

a2
2 + l

+
y3

2

a3
2 + l

= 1; sA9d

and

f =
3

4
E

m

` 1 −S z1
2

a1
2 + s

+
z2

2

a2
2 + s

+
z3

2

a3
2 + s

D
Îsa1

2 + sdsa2
2 + sdsa3

2 + sd
ds, sA10d

with

z1
2

a1
2 + m

+
z2

2

a2
2 + m

+
z3

2

a3
2 + m

= 1. sA11d

The coordinate transformation foryi and zi is defined such
that

y1 = z1 = x1, y2 = z2 = x2, y3 + h = z3 − h = x3. sA12d

It was found that the integrals represented by Eqs.sA8d and
sA10d, which require the roots of Eqs.sA9d and sA11d, re-
spectively, forl andm, can be obtained analytically in terms
of elementary functions if at least two of the semi-axesa1,
a2, and a3 are equal.30 We make use this property in our
analysis of subsurface EI influence on the material band
structure.

Effective Poisson’s ratio in materials with wurtzite
crystal structure

Poisson’s ratio n of a material is defined asn
=−«trans/«long, where«long and«trans are the longitudinal and
the transverse strain responses, respectively, to a longitudinal
tensile stresssloadd slong. It is assumed that the transverse
direction is stress free.

Wurtzite GaN is elastically anisotropic; hence, the Pois-
son’s ratio is also anisotropic. Here, we choose to use an
isotropic Poisson ration̄, which is obtained by averaging the
three Poisson ratios along the three Cartesian axes, which

correspond to high symmetry directions of wurtzite. These
individual Poisson’s ratios are obtained using the Hooke’s
law relation between normal stresses and strains in a case of
elastic anisotropy:

1«xx

«yy

«zz
2 = 1s11 s12 s13

s12 s11 s13

s13 s13 s13
21sxx

syy

szz
2 , sA13d

where sij are the elastic compliance constants in Voigt
notation.48

In the following, we express the Poisson rationxsy,zd in
terms of the stiffness constants by settingsxxsyy,zzd=slong, and
the two remaining stresses to zero as the transverse direc-
tions are free surfaces. Since thexy plane is chosen normal
to thec direction, it is elastically isotropic. Thus, the trans-
verse strain is also isotropic in this plane for a given longi-
tudinal strain along thez axis. Thus, forszz=slong, we obtain

s13 3 slong = «xx = «yy, s33 3 slong = «zz, sA14d

leading to

nz = −
s13

s33
. sA15d

However, thexz and yz planes are anisotropic. Thus, for
sxxsyyd=slong, we get

s11 3 slong = «xxsyyd, s12 3 slong = «yysxxd, s13 3 slong = «zz.

sA16d

We define an average Poisson’s ratio alongx sandyd by

nx = ny = −
s12 + s13

2s11
. sA17d

Finally, we obtain

n̄ =
2nx + nz

3
= −

1

3
Ss13

s33
+

s12 + s13

s11
D . sA18d
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