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ABSTRACT OF THE DISSERTATION 

Numerical Study of 3D Magnetohydrodynamic Flows Towards Liquid Metal Blankets, Including 

Complex Geometry and Buoyancy Effects 

by 

Tyler James Rhodes 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2019 

Professor Mohamed Abdou, Chair 

 

Understanding magnetohydrodynamic (MHD) phenomena associated with complex duct 

geometries and buoyancy effects is required to effectively design liquid metal (LM) blankets for 

fusion reactors. These topics are investigated in the present work by numerically simulating 3D 

LM MHD flow using HIMAG (HyPerComp Incompressible MHD solver for Arbitrary Geometry), a 

code developed by HyPerComp with support from UCLA. In Part I of this dissertation, the 

simulated geometry is a manifold consisting of a rectangular feeding duct which abruptly expands 

along the applied magnetic field direction to distribute LM into several parallel channels. As a first 

step in qualifying the flow, a magnitude of the curl of the induced Lorentz force is used to 

distinguish between inviscid, irrotational core flows and boundary and internal shear layers where 

inertia and/or viscous forces are important. Scaling laws are obtained which characterize the 3D 

MHD pressure drop and flow balancing as a function of the flow parameters and the manifold 

geometry. Associated Hartmann (Ha) and Reynolds (Re) numbers in the computations are ~103 

and ~101-103 respectively while the expansion ratio is varied from 4 to 12. An accurate model for 

the pressure drop is developed for the first time for inertial-electromagnetic and 
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viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that increasing 

the distance between the manifold inlet and the entrances of the parallel channels can improve 

flow balance by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the 

expansion region of the manifold. Lastly, a Resistor Network Model is developed to describe the 

effect of the length of the poloidal channels on flow balancing in LM manifold. As the poloidal 

channels lengthen, the flow balance improves. 

The simulated geometry in Part II consists of a straight, vertical duct which runs perpendicular to 

a strong, fringing applied magnetic field. There is also a region of applied heating as the primary 

goal of Part II is to explore buoyancy effects in MHD duct flows. The unsteady 3D MHD equations 

are solved using HIMAG. Results are presented for both upwards and downwards flows in 

electrically conducting (wall conductance ratio cw=0.12) and nonconducting ducts for a range of 

Ha~102, Re~103-104, and Grashof (Gr) numbers~107-108. While increasing Gr or decreasing Re 

increases buoyancy effects, increasing Ha was shown to increase maximum temperature by 

enhancing flow stability. The extent to which the flow is quasi-2D is analyzed and buoyant effects, 

in competition with Joule dissipation, are shown to bring about 3D flow features and newly 

discovered MHD mixed convection phenomena. Steeply diminishing volumetric heating, which 

approximates nuclear heating, is applied to the vertical MHD flows for comparison to flows with 

surface heating only. Surface heating generates stronger buoyancy effects than volumetric 

heating of the same total power; however, many of the same phenomena occur. Therefore, 

surface heating, the only option for lab experiments, can be useful in exploring the effects of 

volumetric heating in MHD flows. Lastly, the results of a surface heating case are presented for 

the purpose of comparison with other codes and experiments, especially the MaPLE-U 

experiment that is currently is underway at UCLA. 
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Chapter 1: Introduction 

1.1 Liquid Metal Blankets for Fusion Power Reactors 

To make clear the importance of studying the physics and phenomena of MHD duct flows in the 

context of fusion power reactors, a brief introduction to fusion reactor theory is provided. The goal 

of all power fusion reactors is to sustainably produce electrical power by harnessing the energy 

made available through fusing atomic nuclei. There are several research paths towards achieving 

this goal but the most promising of these aim to fuse the hydrogen isotopes deuterium and tritium 

( 𝐻1
2 + 𝐻1

3 → 𝐻𝑒2
4 + 𝑛0

1 + 17.6𝑀𝑒𝑉) which produces an alpha particle at 3.5 MeV and a neutron at 

14.1 MeV per reaction. Typically, a plasma of deuterium and tritium will be heated to extremely 

high temperatures (~100 million oC) and pressure such that the fuel “ignites” and the fusion 

reactions become self sustaining. Super-conducting magnets are commonly utilized in reactor 

designs to help facilitate the reaction; not only will the magnetic field exert pressure on the plasma 

fuel, the magnetic field also prevents the exceedingly hot plasma from touching the walls of the 

core region in a scheme known as magnetic confinement. The 3.5 MeV alpha particles produced 

by fusion are also confined by the magnetic field along with the rest of the plasma. As these 

particles accelerate, they heat the surface of the reactor’s first wall via bremsstrahlung radiation. 

The 14.1 MeV neutrons produced by fusion do not interact with the magnetic field and so they 

exit the plasma and the core region and penetrate the first wall to be absorbed in the breeding 

blankets. 

Breeding blankets are an integral part of Deuterium-Tritium fusion power reactors [1]. Surrounding 

the core region, blankets are responsible for shielding the outer components (e.g. the magnets), 

collecting and transporting heat to be used in electrical power generation, and producing tritium 

to fuel the reactor. It should be noted that while deuterium is common in sea water, tritium does 

not exist naturally on Earth as it undergoes beta-decay with a short half-life of only 12.3 years. 
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Therefore, it must be produced via nuclear reactions. In blanket designs, a liquid metal (LM) or 

solid breeder material is situated near the first wall to interact with the flux of neutrons emanating 

from the reactor’s core. The breeder material always contains lithium which reacts with neutrons 

to produce the tritium needed to fuel the reactor. LM breeder blanket designs are attractive due 

to the high thermal conductivity (~10 W/mK) of the LM, low susceptibility to radiation damage, and 

the designs’ capacity to provide a sufficient tritium breeding ratio. However, there are some 

additional challenges associated with LM breeders. For instance, because the strong, 

plasma-confining magnetic field permeates the blanket and LM has high electrical conductivity 

(~106 S/m), LM blanket flows are highly magnetohydrodynamic (MHD). MHD flows are 

characterized by significant electromagnetic Lorentz forces which, among other effects, tend to 

dampen or modify turbulence, smoothen axial velocity profiles, and significantly increase the 

pressure drop when the applied magnetic field is transverse to the flow direction (as in LM 

blankets for fusion power reactors). Efforts to design LM blankets require more research towards 

predicting the behavior of MHD flows in fusion blanket conditions. Such efforts are made even 

more challenging by complex blanket duct geometries (e.g. expansions and manifolds) and by 

the strong buoyant effects produced by the steep volumetric heating in the LM from neutron 

radiation and surface heating at the first wall [2]. These challenges are addressed in the numerical 

studies of the present work. In Part I of this dissertation, 3D numerical simulations of MHD flow in 

manifolds are used to characterize large 3D MHD pressure drops occurring where ducts undergo 

expansion to feed multiple channels. Then, flow balancing among multiple channels is analyzed 

with respect to the dimensionless parameters and aspects of the duct geometry. In Part II, 

buoyancy effects in vertical MHD duct flows are analyzed using 3D numerical simulations of many 

scenarios including one-sided surface heating, steep volumetric heating, electrically conducting 

and nonconducting walls, upward flows, and downward flows, as well as several combinations of 

dimensionless parameters.  
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1.2 MHD Duct Flows 

Much has been written on the subject of MHD duct flows. The simplest configurations of such 

flows have been solved analytically by the likes of Shercliff (1953) [3], who studied the case of 

electrically nonconducting duct walls, Uflyand (1961) [4] and Chang and Lundgren (1961) [5], who 

studied ducts with perfectly conducting walls, and Hunt (1965) [6], who solved several cases with 

various configurations of perfectly conducting walls and walls with arbitrary conductivity. Exact 

analytic solutions were determined for steady flow in straight rectangular ducts with uniform 

applied magnetic fields that are perpendicular to the flow. These authors analyzed fully developed 

flow, i.e. when all flow variables except pressure do not change along the flow direction and the 

pressure gradient is also uniform and constant, which reduces the problem to 2D since the axial 

direction has no variation. The solutions presented in these early works, expressed exactly as 

Fourier series, were the first of two types of analytical solutions of 2D MHD flows. The second 

type of solutions are asymptotic solutions which are derived using the simplifying assumption that 

electromagnetic forces are characteristically much larger than viscous forces and or inertia. These 

assumptions are often expressed using nondimensional numbers Ha, N>>1 where the Hartmann 

number squared Ha2 represents the ratio of electromagnetic to viscous forces, and the interaction 

parameter N represents the ratio of electromagnetic to inertial forces. 

Hartmann (1937) [7] derived exact 1D solutions to MHD flows prior to Shercliff’s 2D derivations. 

Hartmann analyzed the case of fully developed laminar MHD flow between infinite parallel plates 

in a uniform magnetic field that is perpendicular to both the plates and the flow direction. Hartmann 

found that as Ha was made sufficiently large, the velocity profile became uniform except for very 

thin boundary layers attached to the no-slip plates. These so-called Hartmann boundary layers 

appear in duct flows along walls which are not parallel to the applied magnetic field and are 

therefore called Hartmann walls.  



4 

When Shercliff published his exact solution for fully developed MHD duct flows in 1953, he also 

included an analysis of the resulting velocity field. In addition to the Hartmann boundary layer, 

Shercliff observed a second layer attached to the sidewalls (i.e. walls parallel to the magnetic 

field) which behaved differently. This second MHD boundary layer came to be known as the 

Shercliff layer or, as in the present work, the side layer. A decade later, Hunt and Stewartson 

(1965) [8] used a boundary layer technique to study fully developed MHD duct flow at high Ha 

with insulated Hartmann walls (i.e. walls normal to the magnetic field) and perfectly conducting 

Shercliff walls (i.e. walls parallel to the magnetic field). They observed the thickness of the two 

MHD boundary layers to scale with Ha-1 and Ha-1/2 for the Hartmann and side layers respectively. 

The bulk of the flow, called the core, is outside the boundary layers and is characterized by the 

paucity of viscous and inertial forces when Ha, N>>1. 

1.3 MHD Flows in Complex Geometries 

Any LM blanket of a power fusion reactor exhibits a variety of complex geometry flows, including 

flows in bends, contractions, expansions, elbows, etc., where a liquid metal breeder circulates in 

the presence of a strong plasma-confining magnetic field for tritium breeding and possibly cooling 

and power conversion. Among them, manifolds are the key 3D elements as they are responsible 

for distributing the liquid inside the blanket. In blankets of toroidal tokamak reactors for example, 

such manifolds distribute LM flow from a radial feeding pipe at the blanket inlet to several poloidal 

channels and, collect the liquid from the poloidal flows to an exit pipe at the blanket outlet. Though 

these manifolds are small compared to the full length of the liquid metal circuit, they are the main 

contributors to the total pressure drop in the blanket due to 3D magnetohydrodynamic (MHD) 

effects that occur near sudden changes in the blanket geometry [2]. Reducing the pressure drop 

of the circulating breeder is one of the most fundamental practical goals of the blanket design and 

analysis. Additionally, it is important that the LM is distributed evenly throughout the blanket as 

areas with low flowrate are prone to overheating. Therefore, it is important to understand and 
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quantify the 3D effects in the manifold flows relating to MHD pressure drop and flow distribution. 

These 3D MHD effects are associated with 3D induced electric currents that close their circuit 

mostly in the axial direction. The electromagnetic Lorentz forces associated with the 3D currents 

are responsible for complex 3D flow patterns, formation of boundary and internal MHD layers, 3D 

pressure gradients, and ultimately, high, extra pressure losses. 

3D MHD effects are known to be caused by non-uniform applied magnetic fields and, as in the 

present work, by axial variations of the flow geometry [2]. By comparison, 2D MHD effects are 

associated with 2D electric currents that circulate in the cross-sectional plane perpendicular to 

the main flow direction. The 2D effects are typical of fully developed MHD flows in which the 

velocity field does not change with the axial coordinate while the pressure varies linearly in the 

axial direction without variation within the cross-sectional plane. A number of analytic solutions 

(e.g. [3], [6]) are available for predicting 2D MHD flows, whereas 3D MHD flows are much more 

complicated such that the flow behavior must be studied experimentally or via numerical 

modeling.  

Branover and Lielausis (1962) [9] and Branover, Vasil’ev, and Gel’fgat (1967) [10] performed 

experiments which featured a liquid metal flow in an electrically nonconducting duct that expanded 

suddenly in the plane of a transverse applied magnetic field. They observed large velocity jets in 

the side layers which carried nearly all the flow near the sudden expansion. The latter experiment 

also provided data on the pressure drop across the expansion which fit reasonably well to a 

correlation in the form ΔP3D=ζ(0.5)ρU2, where ζ, the local pressure drop coefficient, is proportional 

to N. In an effort to explain the formation of jets in the side layers (M-shaped velocity profile) in 

the previously mentioned experiments with sudden expanding ducts, Gel-fgat and Kit (1971) [11] 

pointed out that in such regions where the duct width along the magnetic field direction changes, 

the Lorentz force is rotational and so could not be balanced by pressure gradients alone. Their 

conclusion was that the occurrence of side layer jets near expansions could be explained by the 
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necessity for hydrodynamic forces to arise in order to balance the rotational Lorentz force. This 

effect is also observable in flow through fringing magnetic fields and flows with other geometries 

that change along the flow direction. For example, MHD flow through nonuniform magnetic fields 

was studied asymptotically by Holroyd and Walker (1978) [12] who observed formation of side 

layer jets in the vicinity of the fringe.  

Around the same time, while studying MHD flow over 2D obstacles, Ludford (1960) [13] observed 

a new type of internal layer which spread out along magnetic field lines from the obstacle. When 

Hunt and Leibovich (1967) [14] observed internal layers in their asymptotic analysis of 2D duct 

flows with diverging walls, they coined the term “Ludford layer” to describe such internal layers 

that span the flow at locations where the walls not parallel to the magnetic field have sufficiently 

high curvature for large Ha and N. Their 2D asymptotic analysis of Ludford layers suggested the 

existence of essentially three possible flow regimes which are characterized by the forces that 

balance the pressure gradient inside the Ludford layer: (i) the viscous-electromagnetic (VE) 

regime which holds for N>>Ha3/2, (ii) the inertial-electromagnetic (IE) regime for N<<Ha3/2, and a 

third regime (iii) where all three forces (IVE) are balanced for N~Ha3/2 [15].  

Hunt and Ludford (1968) [16] studied 3D MHD flow over obstacles inside ducts that have diverging 

walls and observed how the shear layer changes when the obstacle is conducting versus 

nonconducting. In that paper, they approximated solutions to the 3D governing equations using 

asymptotic analysis, taking the limit of dimensionless numbers such as Reynolds number Re, Ha, 

and, N approaching infinity. As a sequel to that paper, Walker, Ludford, and Hunt (1971) [17] 

studied 3D MHD duct flows with diverging walls using the analysis developed in the previous 

paper and observed three cases: the first case having the top and bottom walls diverge with the 

sidewalls remaining parallel, the second case having the sidewalls diverge while the Hartmann 

walls remain parallel, and a final case where both sets of walls diverged. In the first case, they 

found that velocity jets occurred near the sidewalls while the second case’s velocity profile was 
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conventional. When both walls diverged, the velocity profile included much larger velocities near 

the sidewalls which even reversed direction depending on the geometry. A third paper in the 

series was published by Walker, Ludford, and Hunt (1972) [18] which used the same 3D analysis 

of the first two papers to study diverging duct flow, this time with electrically nonconducting walls. 

They found large velocity jets in the side layers which carry most of the flow when the duct 

expands into the magnetic field direction. They also found that the disturbance caused by the 

expansion decays exponentially upstream. 

Aitov, Kalyutik, and Tananaev (1983) [19] used numerical methods to solve for the entire flow 

field of 3D MHD flow through a suddenly expanding duct, as did Myasnikov and Kalyutik (1997) 

[20] and Bühler (2003) [21]. The latter used an asymptotic numerical method which neglected 

inertial force and demonstrated that without inertia, the flow becomes discontinuous at a sudden 

expansion, and even in gradual but short expansions, indicating the existence of a region near 

expansions where inertial forces are non-negligible. The former two studies were restricted to 

small Ha (10 and 40 respectively) due to the relatively high computational costs associated with 

higher Ha. All three of the above studies confirmed that side layer jets quickly form in the regions 

leading up to sudden expansions in electrically nonconducting ducts. 

 Another noteworthy numerical work is that of Molokov (1994) [22] who studied 3D MHD flow 

through a variety of complex geometries including expansion, manifolds, u-bends, elbows, and 

others. Citing the arguments of Hunt and Leibovich (1967) [14] and Tsinober and Stern (1964) 

[23], Molokov posited that the pressure drop (in the MHD scale [p*=p/σUB2b]) across a sudden 

expansion in an insulated MHD duct flow would scale as Ha-1/2 and N-1/3. Later, Stiegletz, Barleon, 

Bühler, and Molokov (1996) [24] published a study on MHD flow through elbows that indicated a 

similar scaling for the pressure drop across the shear layer that occurred when the duct turned in 

the magnetic field direction. 
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In her thesis, Mistrangelo (2006) [25] numerically simulated the full 3D MHD equations in an 

electrically conducting duct featuring a sudden expansion in the plane of a uniform magnetic field. 

She observed many phenomena at Ha up to 1000 which are consistent with the present work 

(though the present work features insulating walls) including recirculation in the side layers 

downstream of the sudden expansion.  

Other experimental studies of MHD flows through ducts featuring sudden expansions include 

Evtushenko, Sidorenkov and Shishko (1992) [26], Bühler, Horanyi and Arbogast (2007) [27], and 

Messadek and Abdou (2009) [28]. The latter featured multiple parallel channels which the flow 

entered downstream of the expansion. Surprisingly, it was observed that the flow balance among 

the parallel channels became less balanced as Ha increased.  

Another numerical study which is relevant to the present work was performed by Mistrangelo and 

Bühler (2014) [29] who simulated an insulated MHD manifold flow which also featured an elbow 

to better match fusion blanket geometry. The flow distribution data they provide matches trends 

which are studied in more detail in the present work. They also demonstrated that a significant 

MHD pressure drop occurs across the expansion, the proper scaling of which is a major topic of 

the present work. 

1.4 MHD Duct Flows with Buoyancy Effects 

The volumetric nuclear heating induced by neutrons in LM fusion blankets is highly non-uniform 

along the radial direction with the majority of the heating occurring near the first wall [30]. The 

heating decreases rapidly moving outwards along the radius of the reactor as the neutron flux is 

attenuated by the LM. Such high radial gradient in heating is bound to produce temperature 

gradients which will in turn give rise to buoyant forces. Buoyant force is oriented opposite to the 

direction of gravity and the orientation of the LM blanket flows will vary along the perimeter of the 

reactor’s core [1], so the possible buoyant effects have a wide spectrum of phenomena with many 
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important particular cases to study. Moreover, there is the simultaneous effect of the strong 

magnetic field to consider, the strength of which also varies by location inside the reactor. 

Depending on the flowrate, magnetic field, and relative strength of buoyant effects, the flow 

regime may be that of MHD forced flow, weakly unsteady MHD mixed convection, or strongly 

unsteady MHD mixed convection. In addition to Ha and Re, such flows are also characterized by 

the Grashof number Gr which represents a ratio of buoyant force to viscous force. 

While many studies have been performed for MHD duct flows in the context of fusion research 

and development, relatively few studies have included the combined effect of buoyancy and MHD 

simultaneously as in the present work.  

Bühler (1998) [31] performed asymptotic analysis on buoyancy driven flows in long vertical ducts 

with transverse magnetic fields and various heating modes. His analysis, which assumes 

Ha4>>Gr, suggests the inviscid core does not necessarily behave two-dimensionally and that 

large jets attached to the sidewalls will carry most of the flow for conducting walls. The problem 

was revisited by Mistrangelo and Bühler (2011) [32] using numerical methods, confirming the 

previous conclusions and validating their numerical approach.  

Zikanov, Thess, and Sommeria (1998) [33] performed DNS type simulation of a vertical duct flow 

with periodic axial boundaries driven by uniform axial temperature gradients. The focus of their 

study was on elevator modes: antiparallel vertical jets which grow due to buoyant effect. They 

found the elevator modes to be stabilized by an axial applied magnetic field to enhance vertical 

heat transfer. 

There have been experimental efforts to study MHD mixed convection duct flows. Experiments in 

Russia by Melnikov et al. (2013) [34] as part of the MPEI – JIHT RAS MHD‐facility showed 

significant low frequency, high magnitude, temperature fluctuations in downward flow of mercury 

in a round tube heated on one side via radiation. Experiment on a rectangular duct in the same 
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facility by Kirillov et al. (2016) [35] also showed periodic temperature fluctuations but also included 

velocity data which indicated significant asymmetry due to buoyant effects in downward MHD flow 

of mercury. Belyaev et al. (2018) [36] studied MHD mixed convection in a vertical pipe with 

transverse magnetic field and uniform surface heating using the more recent HELM Experimental 

Facility at the JIHT RAS. The experimental results indicated that the magnetic field promoted high 

amplitude temperature fluctuations at moderate Ha (300-350) but suppressed fluctuations at 

higher Ha (>500) for Re on the order of 104 and Gr on the order 107. As of recently, the MaPLE-U 

experiment is underway at UCLA. The present dissertation provides numerical comparison for 

future results of this experiment which consists of vertically driven PbLi in a square duct with 

one-sided surface heating and a region of uniform, transverse magnetic field.  

In the past few decades, there have been substantial numerical efforts to explore the combined 

effects of MHD and buoyancy in vertical MHD mixed convection duct flows with transverse 

magnetic fields and applied heating. However, in order to reduce the cost of computations, 

researchers mostly limited their investigations to 2D flows, either by studying the fully developed 

flow, or by assuming the flow is quasi-2D. The former assumes that the velocity does not change 

along the flow direction while the latter assumes that the velocity does not change along the 

magnetic field direction (outside of the boundary layers).  

Fully developed downward flows in vertical ducts were studied by several researchers: Sposito 

and Ciofalo (2008) [37] studied fully developed downward flow with an analytic temperature 

solution and numerical velocity and electric potential solutions for vertical square ducts with 

variable wall conductivity and applied magnetic field and uniform volumetric heating. Smolentsev 

et al. (2008) [38] found solutions of fully developed flow in insulated vertical ducts with exponential 

volumetric heating and transverse magnetic field using a newly developed analytical solution in 

addition to a numerical Q2D approach. The results of the two approaches showed good 

agreement and indicated the occurrence of flow reversal in buoyancy opposed MHD flows for the 
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first time. The flow reversal was also characterized by the steepness of the heating curve and a 

ratio of the parameters Ha, Re, and Gr. Based on Smolentsev’s prediction of flow reversal in 

buoyancy opposed MHD flows, blanket designs are recommended to avoid having downward 

flows in channels closest to the first wall. Saleh and Hashim (2010) [39] studied fully developed 

downward flow in electrically nonconducting ducts numerically. Mistrangelo and Bühler (2012) 

[40] numerically investigated the effects of changing the transverse magnetic field direction 

relative to the applied surface heating and changing the electrical conductivity of the walls by 

considering fully developed flows. Chutia and Deka (2012) [41] studied fully developed flow using 

MATLAB with low parameters Gr, Ha~102 and Re=1. Zhang and Zikannov [42] used a Q2D model 

to study turbulent convection in horizontal pipes in 2015. Later, in 2018 [43] they studied instability 

and flow reversal in vertical MHD flows with applied heating and a transverse magnetic field. All 

studies featuring downward flows with strong buoyancy effects reported considerable flow 

reversal.  

Liu and Zikanov (2015) [44] numerically simulated vertical MHD mixed convection duct flow with 

a transverse magnetic field and a heated wall using a quasi-2D formulation to observe stable 

elevator modes.  

Some efforts to model fully 3D flows have been made for the purpose of studying MHD mixed 

convection flow phenomena in the context in fusion blankets. Vetcha (2012) [45] studied the 

instability of buoyancy assisted and buoyancy opposed flows in his thesis which included fully 3D 

numerical simulation of MHD mixed convection flow. His study begins with linear stability analysis 

and DNS of MHD inflectional instabilities and then continues with Q2D numerical investigation of 

MHD mixed convection upward flows with volumetric heating for various Gr up to 109, Re up to 

104 and Ha up to 500. Steady, weak turbulence, and strong turbulence regimes were 

characterized based on the dimensionless parameters. Lastly, fully 3D numerical modeling using 

HIMAG was performed for the sake of comparison with buoyancy assisted duct flow solutions 
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from Q2D models and analytic solutions for fully developed flow [38]. Zikanov and Listartov (2016) 

[46] simulated the test section geometry of Melnikov et al. (2013) [34] which included a vertical 

pipe flow with transverse magnetic field and one-sided heating. From the results, they identified 

the mechanism behind temperature fluctuations observed in experiment and they explain the 

mechanism as “the growth and breakdown of elevator convection modes”. Listratov et al. (2018) 

[47] simulated horizontal pipe flow with a transverse magnetic field and one-sided uniform heating 

from below to study the effect of Ha, Re, and Gr on high amplitude temperature fluctuations from 

buoyant effects.  

The studies on the combined effects of MHD and buoyancy in the present work reveal new 

phenomena which may influence many aspects of blanket design including thermomechanical 

fatigue and corrosion of the duct walls, tritium permeation, and heat transfer for power generation. 

Moreover, the results presented in this dissertation (Part II) will be valuable for the development 

of future numerical tools and validation of new experimental results.  
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Part I: MHD Flows in Manifolds 

In Part I, 3D numerical analysis of MHD flows were performed in a simplified model of an inlet 

manifold subject to a transverse magnetic field (Fig.1). 

In this prototypic model, flow enters the manifold of height 2a through the feeding duct of width 

2d and length Lin before entering the expansion region, which has length Lexp, width 2b, and 

average velocity U. From the expansion region, the flow proceeds into three or more identical 

parallel channels of the width 2h and length Lchan and exits through a common outlet of width 2b 

and length Lexit. These dimensions have a strong effect on the flow distribution and the pressure 

drop and are subject to optimization. In the present study, some of the dimensions are used as 

FIG. 1.  A prototypic manifold geometry for numerical simulation. Fully developed flow enters the feeding duct, spreads 
out into the expansion region, is sorted into multiple parallel channels, and collects in the common outlet where it 
becomes fully developed before exiting the duct. 
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computational parameters to address the effect of the manifold design on the flow. The flow in 

the manifold occurs in a uniform transverse magnetic field B, which is also used as a parameter 

in the computational study. In this study, only nonconducting manifolds are considered such that 

all induced electric currents are closed inside the flow domain.   

Part I of this dissertation is organized as follows: Chapter 2 contains a description of the problem 

formulation and numerical methods used; Chapter 3 contains a brief comparison to experimental 

results, a mesh refinement study, a discussion of the physics and phenomena of MHD manifold 

flows, a discussion of the developed 3D MHD pressure drop model, a discussion of the flow 

distribution in manifolds, an analysis of a Resistor Network Model for describing flow distribution, 

and an example application of the developed pressure model to a dual coolant lead lithium (DCLL) 

blanket; Chapter 4 contains a summary of conclusions. 

Chapter 2: Physical and Mathematical Model of MHD Flows 
in Manifolds 

To study 3D MHD manifold flow behavior sketched in Fig. 1, a well-verified MHD solver developed 

by HyPerComp/UCLA, HIMAG [48], is used to simulate the laminar flow of liquid metal of 

kinematic viscosity ν, electrical conductivity σ and density ρ through an electrically insulated 

manifold in a strong transverse magnetic field B. Such a flow is characterized by the following key 

dimensionless parameters: the Hartmann number, 𝐻𝑎 = 𝑏𝐵√𝜎/𝜈𝜌 ; the Reynolds number, 𝑅𝑒 =

𝑏𝑈

𝜈
; the expansion ratio, 𝑟𝑒𝑥𝑝 = 𝑏/𝑑; the dimensionless length of the expansion region, Lexp/b; the 

dimensionless length of the parallel channels, Lchan/b; and the channel size parameter, 𝑠𝑐 =

ℎ/𝑏.  In addition to Re and Ha, the interaction parameter, 𝑁 =
𝐻𝑎2

𝑅𝑒
, which characterizes the ratio 

of electromagnetic to inertia forces, is another important parameter. The half width b of the 

expansion region was chosen as a length scale in the definition of Ha, Re, and N, to best 
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characterize the 3D MHD effects which exist primarily in the expansion region. Furthermore, the 

expansion region is also where the flow is redistributed and where stationary vortex tubes may 

exist. For the same reasons, the average velocity in the expansion region U was chosen as the 

velocity scale. However, because the flow in the expansion region is electrically coupled with the 

flow in the inlet via 3D currents, the expansion ratio rexp is required in order to fully characterize 

the flow. Physical properties were chosen to equal those of eutectic lead-lithium alloy (PbLi) at 

500ºC. The applied magnetic field B is varied to control Ha. U was chosen such that the inlet 

velocity U*rexp=0.01m/s is the same for all the simulations and  
𝑎

𝑑
= 0.8 for every simulation. 

The HIMAG code solves the full incompressible MHD equations, shown below (1-4), using an 

electric potential formulation with the assumption that the induced magnetic field is small enough 

to be neglected compared to the applied one. Equations (1-4) are the modified form of the 

Navier-Stokes-Maxwell equations written in the inductionless approximation, which include the 

continuity equation, momentum equation with the Lorenz force term on the right-hand-side, Ohm’s 

law to compute the induced electric current, and the electric potential equation respectively:  

∇ ∙ 𝐮 = 0,       (1) 

𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ ∇𝐮 = −

1

𝜌
∇p + 𝜈∇2𝐮 +

1

𝜌
𝐉 × 𝐁,    (2) 

𝐉 = 𝜎(−∇ϕ + 𝐮 × 𝐁),      (3) 

∇ ∙ (𝜎∇ϕ) = ∇ ∙ (𝜎𝐮 × 𝐁).      (4) 

Here, u, J, and B are the velocity, electric current density, and magnetic field vectors respectively 

and p and ϕ are the pressure and electric potential. Equation (4) is obtained by taking the 

divergence of Eq. (3) while stipulating that electric current is continuous (∇ ∙ 𝐉 = 0). To consider 

both the liquid and the surrounding solid wall, which may have different electrical conductivity, the 

electrical conductivity  𝜎 is put inside the derivatives in Eq. (4).  
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HIMAG (HyPerComp Incompressible MHD solver for Arbitrary Geometry) is a three-dimensional, 

unstructured grid based MHD flow solver developed over the last decade by a US software 

company named HyPerComp, with support from UCLA. The numerical approach is based on 

finite-volume discretization using a collocated arrangement (all unknowns are located at the cell 

centers) with second-order accuracy in space and time. The mass conservation is satisfied, and 

the pressure field is evaluated using a four-step projection method with semi-implicit Crank–

Nicolson formulation for the convective and diffusion terms. A charge conserving consistent 

scheme developed in [49, 50] is applied to accurately compute the electric potential and the 

electric current density at high Hartmann numbers. Given the unstructured nature of the solver, 

multiple strategies are employed to account for mesh skewness and non-orthogonality. Finally, 

the solver algorithms are parallelized using MPI architecture, thereby making the solver capable 

of being run on large computational clusters. Additional details regarding the formulation and 

validation of the HIMAG code can be found elsewhere (e.g. [51]).  

Equations (1-4) are solved numerically on non-uniform rectangular meshes (Fig. 2). In making 

each mesh, I ensured that there are at least 5 nodes inside all Hartmann layers on the walls 

perpendicular to the magnetic field and 12 nodes inside each side layer on the wall parallel to the 

magnetic field. Also, higher mesh resolution was used in the liquid next to the back wall of the 

expansion region, which is perpendicular to the axial direction, and at the beginning and end of 

the multiple channels.  
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FIG. 2. An example computational mesh with 2.05 million cells for a manifold geometry with 3 channels, Lexp/b=0.5, 
Lchan/b=2, rexp=4, and sc=0.3. 

Shercliff flow [3] is used at the inlet boundary condition for both the pressure gradient and the 

velocity profile in the feeding duct and a fully developed flow outlet boundary condition in the form 

𝜕

𝜕x
= 0 is used at the exit. The pressure is set to zero at the outlet and the fluid-wall boundaries 

have Neumann pressure conditions (
𝑑𝑝

𝑑𝑛
= 0). The no slip and no flow-through conditions are 

enforced at fluid-wall interfaces (𝐮𝐰𝐚𝐥𝐥 = 𝟎). Normal components of electric current density are 

set to zero at the outer domain boundary (
𝑑𝜙

𝑑𝑛
= (𝐮 × 𝐁) ∙ 𝒏̂). Since this study deals with a 

nonconducting manifold, the wall electrical conductivity is set to zero. Simulations were started 

with initially uniform flow conditions with a time step size of Δt=10-4 s. Using the Hoffman2 

computer cluster at UCLA, each simulation was run in parallel on 64 or 128 nodes until steady 

state solutions were reached as determined by the L2 norm of the residuals reaching the order of 

10-10. The L2 norms of residuals were calculated according to Eqs. (5) and (6):  

|𝐫| = √∑ ri
2,       (5) 

ri = Fi
m+1 − Fi

m.      (6)   
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Here the L2 norm |𝐫| of residuals ri is calculated for each of the flow variables F for time step m. 

The subscript i is the cell index. Many simulations varying by geometry and Ha were started 

simultaneously. Once each simulation converged, the converged solutions were used as initial 

conditions for subsequent simulations at higher values of the flow parameters to reduce the 

computational time. Totally, 130 cases have been computed. The minimal computational time 

was half a day and the longest simulations ran for a month, depending on the flow parameters 

and manifold geometry. Generally, computational time increased as Re was increased. 

Chapter 3: Results of Manifold Simulations and Discussion 

3.1 Comparison to Previous Results  

Present simulation results show superior agreement with the experimental measurements and 

demonstrate significant improvement compared to the previous computations of flow distribution 

in an MHD manifold. Fig. 3 shows the flow distribution for a manifold that feeds three channels as 

determined by experimental work by Messadek et al. at UCLA [28], numerical work by Morley et 

al. [52], and the present numerical work.  
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FIG. 3. A comparison of present simulation results with previous numerical and experimental work [17]. Here flow 
distribution is reported as the percentage of flow through each of three channels. Ha=2190, Re=250, rexp=4, Lchan/b=2, 
Lexp/b=1, sc=0.3.  

The computations of the present study show just a small imbalance among three parallel channels 

(for the given set of the parameters). This is very similar to the earlier experiments but different 

from the computational predictions in [52]. The recent improvement in the computations of the 

manifold flows is attributed solely to the addition of a common outlet region with length Lexit so that 

the use of the uniform pressure boundary condition (p=0) is more appropriate. In the previous 

computations in [52], the outlet section was not included such that the flow at the manifold exit 

was artificially forced to agree with uniform pressure boundary condition.  

3.2 Mesh Refinement Study 

Prior to the main computations, a mesh sensitivity study was performed using an electrically 

nonconducting manifold without multiple channels at Ha=4380, Re=100 and rexp=8, on three 

computational meshes of ~106 cells each in order to quantify the discretization error, including 

“coarse”, “medium” and “fine” meshes. Each consecutive mesh featured approximately twice as 

many cells as the previous mesh. The number of cells in each mesh is shown in Table 1.   
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Table 1. Mesh Refinement Details. 

Mesh # of cells along x # of cells along y # of cells along z Total # of cells 

Coarse 110 154 33 490776 

Medium 139 191 40 932040 

Fine 174 240 50 1832500 

 

The manifold’s centerline axial pressure gradient obtained in the mesh sensitivity study for the 

three meshes is plotted in Fig. 4 along with the pressure gradient of fully developed flow (Shercliff 

solution [3]). 

 

FIG. 4. Results of a mesh refinement study. Axial pressure gradient is plotted along the y=z=0 centerline of a manifold 
without multiple channels for three meshes: coarse, medium and fine. Fully developed flow Shercliff solution is also 
shown.  Zooming in on the sudden expansion at x/b=0.5 reveals differences between the meshes. Here, Ha=4380, 
Re=100, rexp=8. 
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The difference in pressure drop between the medium mesh and the coarse mesh is 2.55%. The 

difference in pressure drop between the fine mesh and the medium mesh is 0.027%. For all other 

computations in the present work, meshes similar to the fine mesh are used.  

3.3 Characteristic Features of MHD Manifold Flow 

Before going into details of the proposed pressure model and flow distribution analysis, the most 

important flow features are summarized here to describe the fundamental manifold flow physics. 

The discussion is based on the present computations for electrically nonconducting manifolds as 

shown in Fig. 1 in a range of flow parameters relevant to a fusion blanket at Ha~103, rexp>4, and 

Re~101-103. In this parameter space, the computed flows are laminar, symmetrical with respect 

to the symmetry planes y=0 and z=0, and steady. The most characteristic flow feature, as 

observed in all the computations, is the appearance of induced 3D (axial) currents as shown in 

Fig. 5 and related 3D MHD effects that manifest themselves through abrupt variations in the 

velocity and pressure field where the flow geometry changes. 

 

 

FIG. 5. Electric currents circulate in an MHD manifold flow. The currents become 3D near changes in the flow geometry. 
rexp=4, Lexp/b=2, Lchan/b=2, sc=0.3, and n=3 channels for Ha=1465 and Re=50.  

Sources for the 3D MHD effects exist at three locations along the flow path (see the sketch in Fig. 

1): first where the liquid enters the expansion region, then where it is distributed into parallel 
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channels, and finally near the exit of the channels where the liquid is collected before exiting the 

manifold. The generation of such 3D currents at these three locations can be explained through 

Ohm’s law. Namely, the average velocity changes due to continuity as the flow geometry 

changes. These changes in the mean velocity (while the applied magnetic field doesn’t change) 

cause axial variations in the electric potential distribution which in turn drive an axial electric 

current whose circuit is closed upstream and downstream of each cross-sectional variation. This 

phenomenon is illustrated in detail for the sudden expansion in Fig. 6.  

 

 

FIG. 6. Electric potential and currents on the y=0 center plane. Axial currents are generated near the sudden expansion 

at x/b=0.5 and then close upstream and downstream of the expansion. Ha=5475, Re=50, and rexp=10. 

Such 3D circulations are shown to occur where the mean velocity decreases across the sudden 

expansion, increases into each individual parallel channel, and then decreases again into the 

outlet region. Compared to 2D currents, which are limited by the resistance of the Hartmann layers 

where they close, 3D currents mostly close inside the bulk of the fluid. As a result, even small 

changes in cross-section cause bulk current densities that are much greater than the 2D 

ɸ/(aUB) 
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circulations which occur in the feeding duct near the inlet, in the middle of the parallel channels, 

and near the end of the outlet region as shown in Fig. 5.  

The observed 3D and 2D current circuits and associated Lorentz forces have a strong impact on 

the flow and the pressure field as illustrated in Fig. 7, which shows velocity profiles at nine selected 

locations along the flow path as well as the axial pressure distribution.   

 

FIG. 7. (Bottom) Non-dimensional pressure is plotted for the centerlines of the center (solid red) and side (dashed blue) 
channels over a top-down view (xy) of a manifold with rexp=4, Lexp/b=2, Lchan/b=2, sc=0.3, and n=3 channels for Ha=1465 

B 
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and Re=50. The vertical grey lines labeled (a) through (i) correspond to the 9 axial velocity profiles shown above. (Top) 
Non-dimensional axial component of velocity, u/U, is plotted for yz cross-sections at 9 locations along the manifold. 

Inside the feeding duct, the 3D MHD effects are responsible for smoothly transitioning the flow 

from a fully developed Shercliff velocity profile at the inlet [location (a) in Fig. 7] to an M-shaped 

profile [location (b)]. The trend of forming the M-shaped velocity profile accelerates rapidly 

between locations (b) and (c) and falls off just as quickly downstream of the expansion. Inside the 

expansion region, a complex M-shaped flow structure [location (d)] quickly changes to a nearly 

uniform flow, evenly distributed in the transverse direction [location (e)], owing to the tendency of 

MHD duct flows in a strong transverse magnetic field to become quasi-2D. The 3D effects 

reappear at locations (f) and (h) at the entry to at the exit from the parallel channels. Inside the 

parallel channels, between locations (f) and (h), the flow is almost fully developed as seen from 

the linear pressure distribution and Shercliff-type velocity profiles at location (g). Once exiting the 

parallel channels, the flow in the outlet region quickly becomes fully developed [location (i)].  

The flow downstream of the sudden expansion [between locations (c) and (e)] is particularly 

complex and warrants further discussion. Flow enters the expansion region with the majority of 

the flow localized near the sidewalls parallel to the magnetic field (Fig. 7c). In the side layers, 

y-direction pressure gradients force flow outwards toward the periphery of the channel. The 

y-direction pressure gradients are induced by axial electric currents as follows: axial currents exist 

near the sidewalls as seen in Fig. 8a which cause z-direction Lorentz force in the expansion 

region; according to the direction of the axial currents here, these forces are positive near the 

center and negative near sides (at |y|>0); as the core pressure is uniform along the y-direction, 

the sidewall pressure will be greater near the center and lesser near the sides compared to the 

core pressure due to the z-direction Lorentz forces. The pressure on the sidewall gradually 

becomes uniform as the axial current density approaches zero away from the expansion. The 

resulting pressure distribution near the sidewalls causes liquid to return to the back wall of the 

expansion region in a manner that also distributes it along the y-direction as illustrated in Fig. 8b. 
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Once the fluid reaches the internal layer along the back wall, it drops out of the side layers to 

enter the Q2D core.  

 

FIG. 8. (a) Electric currents and contours of z-direction Lorentz force at the z/a=.94 plane in the side layer. (b) Velocity 
streamlines and pressure contours at z/a=.94 plane in the side layer.  The dashed lines are streamlines which intersect 
the Hartmann walls at reattachment points and define a reattachment length. rexp=10, Ha=5475, and Re=50. 

The present observations of reverse flow in the side layers is consistent with those of Bühler [21], 

who first observed reverse flow in MHD sudden expansions, and of Mistrangelo [25], who studied 

the reverse flow in more detail. Mistrangelo also defined the reattachment length as the distance 

between a sudden expansion and a limiting streamline which bounds the reverse flow. She noted 

that the reattachment length shrinks with stronger applied magnetic field, scaling with N-1/3. The 

electromagnetically driven 3D flow structure in the expansion region allows the core to become 

Q2D after a very short distance into the expansion region (note the evenly distributed core flow in 

Fig. 7d). Past the reattachment length, the entire flow in the expansion region becomes Q2D. The 

above description of the flow structure in the expansion region is typical for the entire parameter 

(a) (b) 
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space of the present simulations; however, at large enough Re, additional complexity enters the 

flow in the expansion region as stationary vortex tubes are observed to form (see Fig. 9).  

 

FIG. 9. Velocity streamlines in the y=0 center xz-plane of an insulating duct with a sudden expansion at x/b=0.5. rexp=8, 
Ha=3400, and Re=500, 1000, 1500, and 2000 for (a), (b), (c), and (d) respectively. The contours are of x-direction 

velocity. 

In the course of computations, the vortices were observed to travel downstream until a steady 

state was achieved. The equilibrium axial position of the vortices is observed to increase with Re. 

The number of vortices also increases as Re increases. The vortex tubes span the duct along 

                 0.5                                       1.0                                        1.5        

(a) Re=500 

(b) Re=1000 

(c) Re=1500 

(d) Re=2000 
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magnetic field lines, confirming that the Q2D flow regime is dominant in the bulk of the flow despite 

the complexity.  

Apart from the above considerations that refer to 2D versus 3D flow features, it is useful to look 

at the structure of MHD flows in the manifold from the point of view of the magnitude of curl of the 

Lorentz force. As shown below, a high magnitude of ∇ × 𝐉 × 𝐁 indicates special flow subdomains, 

where inertial and/or viscous forces are important [53]. To begin, we note that in the fusion 

relevant parameter space, N>>1 and Ha>>1 so that the flow is essentially inertialess and inviscid 

and pressure gradients tend to balance electromagnetic forces wherever possible. Such flow 

subdomains where viscous and inertia forces can be neglected are usually referred to as “core 

flows” [54].  However, there can be subdomains where the Lorentz force cannot be fully balanced 

by the pressure gradients because pressure gradients are always curl free while the Lorentz force 

can include a rotational component. Thus, in such subdomains where its curl is non-zero, 

rotational hydrodynamic forces must exist to balance Lorentz force. For instance, in fully 

developed MHD flows, the Lorentz force is curl free everywhere except for inside the Hartmann 

boundary layers at the walls perpendicular to the magnetic field and Shercliff layers at the duct 

walls parallel to the magnetic field, where viscous forces are very important. In uniform magnetic 

fields, ∇ × 𝐉 × 𝐁 reduces to (𝐁 ∙ ∇)𝐉 so curl of Lorentz force can be interpreted as a measure of 

nonuniformity of current density along the B-field direction. Thus, we can predict that Lorentz force 

will be strongly rotational at expansions and contractions that occur in the plane parallel to B (as 

in the present case) because variation in current density is expected to occur along the B-field. 

The same cannot be said for expansions and contractions that are perpendicular to B.  

Plots of the magnitude of ∇ × 𝐉 × 𝐁 in Fig. 10 confirm this prediction and reveal thin internal layers 

at the sudden expansion and contractions where viscous and inertial forces must be significant 

to balance electromagnetic forces. According to the 2D Ludford layer theory [14], and also as 

confirmed for 3D flows by Bühler [21] and Mistrangelo [25], the thickness δ of the internal layer 
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scales with Ha-1/2 if the flow regime is viscous-electromagnetic for N>>Ha3/2 and with N-1/3 in the 

inertial-electromagnetic regime for N<<Ha3/2. In the literature, the internal layer is also sometimes 

referred to as the expansion layer, a term coined by Bühler to differentiate the 3D phenomenon 

from the 2D Ludford layer. Here, these layers are referred to as internal layers. Fig. 10 clearly 

demonstrates formation of thin internal layers at the sudden expansion and at the entrance to and 

exit from the parallel channels. Hartmann and Shercliff boundary layers, where viscous forces are 

dominant, are also visible.  

 

FIG. 10. Contours of the log of the magnitude of 𝛻 × 𝑱 × 𝑩 are shown on the y=0 xz-plane (a) and the z=0 xy-plane (b) 
indicating that most of the manifold flow can be classified as a core flow except for special subdomains at the sudden 
expansion, entry to and exit from the parallel channels, as well as boundary layers where rotational hydrodynamic 
forces are important. Here, rexp=4, Lexp/b=2, Lchan/b=2, sc=0.3, and n=3 channels for Ha=1465 and Re=50. 

Unlike the thin internal and boundary layers highlighted by high magnitudes of ∇ × 𝐉 × 𝐁, the 

magnitude of  ∇ × 𝐉 × 𝐁 is negligibly small in the core flows. When the liquid flows through the 

manifold, relatively large core flow subdomains are separated by thin internal layers. At such 

locations where ∇ × 𝐉 × 𝐁 changes along the flow direction, large changes to the velocity field 

must also occur to generate sufficient hydrodynamic forces [11]. In support of this claim, the 

formation of M-shaped velocity profiles (Figs. 7c,f,h) are observed near each change in duct 

cross-section. For example, in the feeding pipe, the flow slowly transitions from a fully developed 

(a)  

(b)  
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Shercliff velocity profile at the inlet (Fig. 7a) to an M-shaped profile (Fig. 7b) as the velocity in the 

core decreases and the velocity near the sidewalls increases. Then, over a short distance where 

strong ∇ × 𝐉 × 𝐁 appears in the flow, the velocity profile quickly becomes severely M-shaped and 

3D (Fig. 7c). Away from each change in cross-section, the flow transitions towards a fully 

developed Shercliff velocity profile (Figs. 7a,e,g,i). The formation of M-shaped velocity profiles at 

expansions was first observed in experiments performed at Riga by Branover and Shcherbinin 

[55] and was later studied analytically by Walker, Ludford, and Hunt [18] and observed numerically 

by many authors [19-21, 25, 52, 56-58].  

The pressure distribution in the manifold flow is of special interest as typically, high MHD pressure 

drops in fusion blankets exert critical limitations on any liquid metal blanket design. As shown in 

Fig. 7 at the bottom, the pressure is distributed non-uniformly along the flow path: local minimums 

in axial pressure are observed at expansions while contractions experience local maximums. 

These pressure features arise due to the 3D currents which rotate in opposite directions at 

expansions compared to contractions. At expansions, Lorentz forces push outwards away from 

the center of the 3D circulations and so the balancing pressure gradients pinch inwards, creating 

a local pressure minimum. The reverse situation occurs at contractions. The same explanation 

accounts for high sidewall pressure (relative to the bulk) at expansions and low sidewall pressure 

at contractions.  

As seen in the axial pressure distribution shown in Fig. 7, the most significant changes in the 

pressure occur at the sudden expansion at x/b=1 because of strong 3D MHD effects associated 

with the expansion of the flow along the y-direction. The pressure drop which occurs at the sudden 

expansion is considerably larger than the pressure recovery which follows just downstream. The 

net effect is referred to as the 3D MHD pressure drop. A sketch explaining the definition of the 3D 

MHD pressure drop in a flow with a sudden expansion is shown in Fig. 11 as originally proposed 

by Bühler [21].  
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FIG. 11. The length of the vertical dashed line at the sudden expansion is defined as the 3D MHD pressure drop in the 
hydraulic scale. The two dot-dashed black lines have slopes equal to the local fully developed Shercliff pressure 
gradient. Here, r

exp
=10, Ha=5475, and Re=50. 

This large axial pressure drop across the sudden expansion has two explanations. Firstly, the 

current density of 3D circulations (and thus axial Lorentz force) is greater upstream of the 

expansion because the currents spread out into the expansion region as they close downstream. 

This is sufficient for explaining the centerline pressure distribution since ∇ × 𝐉 × 𝐁 is zero on the 

centerline (by symmetry) and so the pressure gradient is nearly entirely balanced by Lorentz 

force. A more general explanation for the 3D MHD pressure drop is that extra momentum is lost 

to the walls near the expansion due to 3D flow structures and the formation of near wall jets (e.g. 

Fig. 7c). The scaling of the 3D MHD pressure drop across sudden expansions was first proposed 

by Molokov [22] and was later confirmed numerically by Mistrangelo [25] for the IE regime and 

again numerically in the present work (section 3.4) for both the VE and IE regimes.  
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3.4 Pressure Analysis 

I now go on to discuss my numerical investigation of the 3D MHD pressure drop which is inserted 

into the flow near the sudden expansion. The 3D MHD pressure drop is numerically determined 

to scale linearly with 𝜌𝑈2𝑁2/3 and 𝜌𝑈2𝑁𝐻𝑎−1/2 for the IE and VE regimes respectively, indicating 

agreement with the predictions of Molokov [22] who based his conclusions on the scaling 

arguments made by Hunt and Leibovich [14] in their analysis of the Ludford layer in 2D. The 3D 

MHD pressure drop is also shown to have a strong dependence on rexp.  

Electrically nonconducting manifolds featuring a sudden expansion are simulated to study how 

the pressure drop changes with flow parameters and geometry. One of my hypotheses is that the 

influence of the multiple channels can be separated out of the pressure drop provided that the 

channel walls are not so thick that average velocity inside the channels is much higher than in the 

expansion region. More succinctly, disturbances caused by the entrances and exits of the multiple 

channels are expected to be small provided that the product n×sc is close to unity, where n is the 

number of channels. Furthermore, the 2D MHD pressure drops across the channels are also 

relatively small while Lchan is small and n×sc is close to unity. To test this hypothesis, I simulate 

two sets of manifolds with Ha=1000, rexp=4, and Re=50 and 500. One set of manifolds has n=3 

channels beginning at Lexp/b=1, with sc=0.3 and Lchan/b=2 while the other set of manifolds are 

simulated without multiple channels (n=1, sc=1). The resulting pressure distributions are plotted 

along the centerlines in Fig. 12 below. 
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FIG. 12. Centerline pressure of manifold simulations with either 1 or 3 channels, rexp=4. For the cases with 3 channels, 
Lexp/b=1, Lchan/b=2, and sc=0.3. The flow with Re=50 is in the VE regime and the Re=500 flow is in the IE regime. 
Sudden expansion at x/b=1. 

The local minima and maxima seen in Fig. 12 indicate locations where 3D MHD effects are 

generated. The local minima occur when the pressure gradient steepens and then abruptly 

switches directions to balance extra Lorentz forces from 3D circulations of electric current. These 

circulations appear near sudden expansions including the large expansion at x/b=1 and the 

channel exits at x/b=4. By contrast, 3D MHD effects at a sudden contraction like the entrance to 

the multiple channels at x/b=2 cause a peak in the pressure distribution. The peaks are caused 

by 3D electric currents, which circulate in the opposite direction as near sudden expansions. 3D 

MHD effects at expansions and contractions produce an extra pressure loss called the 3D MHD 

pressure drop as discussed in section 3.4. This loss is expected to be small when rexp (or n×sc) is 

close to 1. Here, n×sc is 0.9 so the 3D MHD pressure drops from the channel ends are small and 

the differences in pressure drop between cases with and without channels are less than 10%. 
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When rexp~10 as in DCLL manifolds, the 3D MHD pressure drops account for nearly half the 

pressure drop across the entire liquid metal loop (see section 3.6 for an example). Having 

demonstrated that the influences of the multiple channels are small provided that n×sc~1, ducts 

featuring a sudden expansion without multiple channels are simulated for a range of rexp, Ha, and 

N in order to study the 3D MHD pressure drop. These simulations’ results are discussed below.  

Electrically nonconducting ducts featuring a sudden expansion are simulated for a range of rexp=4, 

6, 8, 10, and 12, 1000<Ha<6570, 1918.44<N<863298 and 50<Re<2500. The 3D MHD pressure 

drop for the 96 simulations is determined by subtracting the effective 2D pressure drops 

(calculated using Shercliff’s pressure formula) from the pressure drop of each simulation. This 

data is then sorted into groups with equal rexp, and curve fitted it to linear functions of either NHa-1/2 

or N2/3. The slopes, 𝑘𝑣𝑒 , 𝑘𝑖𝑒, and offsets, 𝑑𝑣𝑒 , 𝑑𝑖𝑒, of these linear functions are then curve fitted as 

functions of expansion ratio. The resulting formulas can be used to predict the 3D MHD pressure 

drop for a wide range of parameters and are shown below. 

∆𝑃3𝐷 =
𝜌𝑈2

2
(𝑘𝑣𝑒𝑁𝐻𝑎−1/2 + 𝑑𝑣𝑒) for Ha3/2/N < 3,     (7) 

∆𝑃3𝐷 =
𝜌𝑈2

2
(𝑘𝑖𝑒𝑁2/3 + 𝑑𝑖𝑒) for Ha3/2/N > 3.      (8) 

Here, kve, dve, kie, and die are functions of the expansion ratio, rexp: 

𝑘𝑣𝑒 = 0.31𝑟𝑒𝑥𝑝 + 3.08,            (9) 

𝑑𝑣𝑒 = 342.92𝑟𝑒𝑥𝑝 − 1563.85,       (10) 

𝑘𝑖𝑒 = 0.33𝑟𝑒𝑥𝑝 + 1.19,         (11)  

𝑑𝑖𝑒 = −11.55𝑟𝑒𝑥𝑝
2 + 85.43𝑟𝑒𝑥𝑝 − 264.39.      (12) 

Equations (7-12) describe the 3D pressure drop in both the viscous-electromagnetic and 

inertial-electromagnetic regimes. Fig. 13 shows the pressure model plotted against the computed 
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results that were used in its making. The RMSD (root-mean-square deviation [not normalized]) 

and R2 (coefficient of determination) were also calculated, demonstrating good agreement of the 

proposed pressure model with the computed pressure drops. 

                  

FIG. 13. Proposed pressure model for MHD flows in a nonconducting manifold. (a) For the IE regime (Ha3/2/N > 3) the 
RMSD and R2 is 76.08 and 0.9980 respectively. (b) For the VE regime (Ha3/2/N < 3) the RMSD and R2 for the fit is 

540.9 and 0.9989 respectively. 

(b) 

(a) 
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3.5 Flow Distribution Analysis 

For the purpose of characterizing flow distribution among the parallel channels, it is useful to 

consider two parameters: one is the length of the expansion region and the second is the length 

of the parallel channels themselves.  

3.5.A Effect of the length of the Expansion Region 

Here, the effect of the length of the expansion region on flow distribution is investigated for the 

case of short, nonconducting channels for various flow parameters (Ha~103, Re~101-103) and 

expansion ratios (rexp=4-12). According to my observations, if the parallel channels begin before 

the reattachment length introduced in section 3.3, the flow distribution will be significantly biased 

towards the center channels. More flow enters central channels because the channel walls 

interrupt the redistribution of flow which occurs near the sidewalls before the reattachment length. 

Alternatively, if the expansion length is greater than the reattachment length, the flow distribution 

will be well balanced. This phenomenon is illustrated below in Fig. 14.  
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FIG. 14. Velocity streamlines are plotted with pressure contour lines on the sidewall (z/a=0.98) for two manifold 
geometries. Ha=1465, Re=50, rexp=4, Lchan/b=2, sc=0.3, and Lexp/b=0.5 or 2 for (a) and (b) respectively. 

Here, the percentage of the flow through the center channel is 41.0% and 33.3% for Lexp/b=0.5 

and 2 respectively and the reattachment length, non-dimensionalized by b, is approximately 0.8. 

Note that for three channels, 33.3% is perfectly balanced. The relationship between Lexp/b and 

flow distribution will be quantified later in this section after discussing the relative importance of 

flow parameters. 

Electrically nonconducting manifolds featuring a sudden expansion were simulated to study how 

the flow distribution produced by a manifold changes with flow parameters and geometry. The 

percentage of the flow through each channel was then determined by integrating the axial velocity 

over each channel’s cross-section using Simpson’s method and then dividing the result by the 

total flow rate. For the first batch of simulations, manifolds with rexp=4, Lchan/b=2 and n=3 channels 

were considered (as depicted in Fig. 1). These simulations included a range of Lexp/b=0.5, 1, 2, 

(a) Lexp/b=0.5 

(b) Lexp/b=2 
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and 3 and Ha~1000, 1500, and 2000. Additionally, for each combination of Lexp and Ha, between 

3 and 5 choices of Re were included over a range of 50<Re<3750.  The difference in the 

percentage of flow through each side channel was calculated to be at most on the order 10-3%, 

thus confirming the symmetry of the flow for the featured parameter space. Fig. 15 shows the 

percentage of flow through the center channel for each set of parameters.  

 

FIG. 15. Percentage of flow through the center channel of manifolds with three channels is plotted for various Ha, N, 
and Lexp. For these simulations, rexp=4, and Lchan/b=2. 

For the chosen parameter space, the variable that has the biggest impact on flow distribution is 

Lexp. Halving Ha or increasing Re by a factor of 50 produced O(1%) or smaller differences in flow 

distribution. As explained in section 3.3, a 3D flow structure attached to the sidewalls is the 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

32

34

36

38

40

42

44

N

P
e
rc

e
n
t 

o
f 

fl
o
w

 

 

L
exp

/b=0.5 Ha1465

L
exp

/b=0.5 Ha2190

L
exp

/b=1.0 Ha1000

L
exp

/b=1.0 Ha2190

L
exp

/b=2.0 Ha1465

L
exp

/b=2.0 Ha2190

L
exp

/b=3.0 Ha1000

L
exp

/b=3.0 Ha2190



38 

primary mechanism for flow redistribution and it penetrates into the expansion region a distance 

that scales with N-1/3
 [25] in the IE regime and possibly Ha-1/2

 in the VE regime based on the 

arguments in [14]. Thus, for large N and Ha, this distance becomes increasingly insensitive to N 

and Ha.  

One of my hypotheses is that the channels influence flow distribution in part by interrupting the 

redistribution of flow occurring in the expansion region near the sidewalls. In the present study, 

the channels are short enough such that the length of the channels almost does not affect the 

flow balancing and the overall MHD pressure drop. This is done mostly to observe the effects of 

the flow physics inside the expansion region on the flow balance of the manifold without being 

masked by the channel length effect. This hypothesis is tested by simulating a manifold without 

multiple channels and measuring the percentage of flow in the center third of the duct at 4 

distances L downstream of the sudden expansion equal to L/b=0.5, 1, 2, and 3 for Ha=2190, 

Re=500 and rexp=4. These values are then compared with the percentage of flow through the 

center channel in manifolds with three channels that begin a distance downstream of the sudden 

expansion equal to Lexp/b=0.5, 1, 2, and 3 for the same Ha, Re, and rexp. The results of this 

comparison are shown in Fig. 16. Note that while calculating the integrals of axial velocity, some 

values are linearly interpolated because dividing the duct into even thirds split cells for the 

manifolds without channels. 
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FIG. 16. Percentage of flow through the center channel of manifolds with three channels and manifolds without multiple 
channels is plotted for various Lexp = L. For these simulations, rexp=4 and, for simulations with channels, Lchan/b=2. 

The differences in percentage of flow for the two cases are within 5% with the manifold having 

three channels being slightly more balanced. This is the expected result because the channels 

induce a small balancing effect via 2D MHD pressure drops within the channels that are 

dependent on the local average velocity. The results shown in Fig. 16 justify using a single 

simulation of a manifold without channels to predict the flow distributions of manifolds with n>2 

short channels which begin after any desired length in the expansion region, Lexp. This method 

makes comparison of multiple manifold designs much less expensive. Electrically nonconducting 

ducts featuring a sudden expansion without multiple channels were simulated for a range of rexp, 

Ha, and Re in order to study flow distribution in manifolds with multiple channels. These 

simulations’ results are discussed below. 
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Manifold flows with Re=1000 and rexp=8 for four choices of Ha=2000, 3000, 3400, and 4380 were 

simulated to study how the flow distribution at various locations downstream of the expansion 

changes with Ha. The results are plotted in Fig. 17 as the percentage of flow through the center 

third of the duct versus L/b where L is the axial distance downstream of the sudden expansion 

where the flow distribution is calculated. 

                 

FIG. 17. Percentage of flow through the center virtual channel of manifolds with three virtual channels is plotted for 

various distances L/b into the expansion region for four choices of Ha. Here, rexp=8 and Re=1000.  

In this parameter space, the flow distribution is weakly dependent on Ha. As before, the distance 

downstream is the most important factor for determining flow distribution for this parameter space 

and now an exponential decay of flow unbalance is apparent along the axial direction.  

Manifold flows with Ha=5475 and rexp=10 were simulated for six choices of Re=50, 100, 500, 

1000, 1500, and 2000 to study how the flow distribution at various locations downstream of the 

expansion changes with Re. The results are plotted in Fig. 18 as the percentage of flow through 

the center third of the duct versus L/b.  
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FIG. 18. Percentage of flow through the center virtual channel of manifolds with three virtual channels is plotted for 
various distances L/b into the expansion region and at multiple Re. Here, rexp=10 and Ha=5475.  

The flow becomes less balanced and more flow is in the center third of the duct as Re increases. 

This behavior is also in agreement with the cases with multiple channels shown in Fig. 15. 

Electrically nonconducting manifolds with Re=2000, Ha=547.5rexp, and 4 choices of rexp=6, 8, 10, 

and 12 were simulated in order to determine the effect of expansion ratio on flow distribution. As 

with all the simulations in the present work, d is fixed so the value b changes linearly with rexp. Ha 

also varies with rexp because each simulation in this batch has the same magnetic field and fluid 

electrical conductivity. For each simulation, the flow distribution is calculated at 8 locations evenly 

spaced in the axial direction from L=0.025m to 0.2m for 3, 10, and 12 virtual channels. The 

percentage of flow through the center virtual channels are curve fitted to an exponential function 

of L as shown in Eq. 13 below: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 = 𝐴𝑒𝐵𝐿 + 𝐶,     (13) 
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where A, B, and C are dependent on rexp and n only. The RMS deviations for the exponential 

curve fits are found to be smaller than for power law fits (%=DLE+F where D, E, and F are 

dependent on rexp and n only) of the same data. The RMSD of the exponential curve fits are 

O(0.1%) indicating a good fit. The resulting values for A, B, and C determined for each expansion 

ratio are shown in Fig. 19. 

 

FIG. 19. The parameters A, B, and C plotted versus rexp for the exponential functions describing the percentage of flow 
through the center virtual channel versus L for manifolds with 3, 10, and 12 virtual channels. Ha=547.5rexp and Re=2000. 

The offset C showed no dependence on rexp which makes sense because as L increases, the flow 

distribution approaches a balanced state. Here, C~34%, 10.3%, and 8.6% for 3, 10, and 12 

channels respectively. For perfectly balanced flow, the percentage of flow in each channel would 

be 33.33%, 10%, and 8.33% respectively. Using the exponential functions determined above, I 

estimate the balancing length L*/b, defined as the non-dimensionalized axial distance 

downstream of the sudden expansion where the percentage of flow through the center virtual 
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channel equals C+0.1C. The estimations for balancing lengths for Re=2000, Ha=547.5rexp, and 

rexp=6, 8, 10, and 12 are plotted in Fig. 20. 

 

 

FIG. 20. The balancing length is plotted versus rexp for manifolds with 3, 10, and 12 virtual channels. Ha=547.5rexp and 
Re=2000. 

For rexp=12, manifold flow is estimated to be balanced within L/b=0.9 for any number of channels. 

For all the cases evaluated above, the conclusion 𝐿∗/𝑏 ≤ 1 can be drawn. 

3.5.B Effect of the Length of the Parallel Channels 

To investigate the effect of the length of the parallel channels on flow distribution, electrically 

nonconducting manifolds featuring a sudden expansion at Ha=1465, Re=100, rexp=4, Lexp/b=0.5, 

and sc=0.3 for six choices of Lchan/b=2, 10, 20, 30, 40, and 50 were simulated. In Fig. 21, the 

percentage of the total flowrate carried by each channel is plotted versus Lchan. 

6 7 8 9 10 11 12
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

r
exp

L
*/

b

 

 

3 channels

10 channels

12 channels



44 

 

FIG. 21. Percentage of the total flowrate carried by each of the three channels vs length of channels. Ha=1465, Re=100, 
rexp=4, Lexp/b=0.5, and sc=0.3 for six choices of Lchan/b=2, 10, 20, 30, 40, and 50. 

The curves for the left and right channels overlap because the flow is symmetrical for the study’s 

parameter space. The manifold flow becomes more balanced as Lchan increases, tending towards 

perfectly balanced flow where each channel carries a third of the total flowrate. The behavior of 

this effect is best described via analogy to an electrical circuit segment. In this analogy, the 

manifold geometry is simplified as a Resistor Network Model (RNM) composed of three parallel 

pairs of resistors as illustrated in Fig. 22.  
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FIG. 22. A Resistor Network Model of the prototypical manifold in Fig.1. 

Here, the three parallel channels of the manifold are represented by three identical resistors with 

variable resistance R3 which increases linearly with Lchan. The resistors labeled R1 and R2 have 

constant resistance and represent the 3D flow in the expansion region which feeds each of the 

three channels. Since Lexp is small (Lexp/b<1), it is expected that R2<R1. The flow distribution is 

then governed by the following equations:   

𝑄1(𝑅1 + 𝑅3) = 𝑃2 − 𝑃1,     (14) 

𝑄2(𝑅2 + 𝑅3) = 𝑃2 − 𝑃1,     (15) 

 𝑄2 =
(%𝑐𝑒𝑛𝑡𝑒𝑟)

100
𝑄𝑜,      (16) 

𝑄1 =
100−(%𝑐𝑒𝑛𝑡𝑒𝑟)

200
𝑄𝑜.      (17) 

Equations (14,15) are analogous to Ohm’s law such that electrical current is to flowrate Q as 

voltage is to pressure P. Eqs. (16,17) relate the total flowrate Qo and channel flowrates Q1 and Q2 

to the percentage of the total flowrate carried by the center channel (%center). 

     Assuming that the development length of the flow in the channels is small compared to Lchan, 

R3 may be defined as follows:  

𝑅3 = 𝐿𝑐ℎ𝑎𝑛𝑆.                                                            (18) 
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Here, S is the Shercliff pressure gradient in a fully developed flow [3] per flowrate. Combining 

Eqs. (14-18) yields 

(%𝑐𝑒𝑛𝑡𝑒𝑟) = 100
𝐿𝑐ℎ𝑎𝑛𝑆+𝑅1

3𝐿𝑐ℎ𝑎𝑛𝑆+2𝑅2+𝑅1
.        (19) 

The resulting Eq. (19) matches the intuition that as Lchan approaches infinity, (%center) 

approaches 33.3...%. Values for R1 and R2 cannot be determined analytically due to the 

complexity of the flow in the expansion region; however, values for R1 and R2 have been 

determined by curve fitting Eq. (19) to numerical data for (%center).  

Values of R1 and R2 were selected using a minimization algorithm to minimize the RMSD 

comparing the 3D numerical results and Eq. (19). Given the pressure gradient per flowrate in a 

fully developed flow in a channel S=8.800x106 Pa∙s/m4, Eq. (19) best fits the data when R1 and 

R2 equal 6.726x106 Pa∙s/m3 and 4.462x106 Pa∙s/m3 respectively. The resulting RNM fits the 

numerical data with an RMSD of 0.0067, indicating an excellent fit. The model is plotted along 

with the numerical data in Fig. 23. In addition to fitting the numerical data well, the RNM is shown 

to agree with the expected behavior of the manifold as Lchan increases past 2.5m. It is worth noting 

that in this case, the modelled (%center) comes within 1% of the perfectly balanced value 

(34.33…%) after Lchan exceeds 5m. 
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FIG. 23. An RNM is fit to the numerical results for (%center). The smaller plot shows the modelled behavior of the flow 
distribution for much larger channel length. The flowrate carried by the center channel approaches 1/3 of the total 
flowrate as Lchan increases. The circles are results for Ha=1465, Re=100, rexp=4, Lexp/b=0.5, and sc=0.3 for six choices 
of Lchan/b=2, 10, 20, 30, 40, and 50. 

Since there are two unknowns in the RNM, R1 and R2, it is possible to fully define the RNM using 

only two simulations or experiments. That is, if (%center) is known for each of two values of Lchan 

at a particular Ha and Re, Eq. (19) can be solved for the constants R1 and R2. Below, this is 

demonstrated by calculating R1 and R2 for each possible pair of the 6 simulations of the present 

study.  

The present study features six simulations with different channel lengths so the number of unique 

pairs of channel lengths is 15 = 
1

2
[

6!

(6−2)!
]. Thus 15 pairs of resistor values R1 and R2 can be 



48 

calculated. The computed resistor values are plotted in Fig. 24 versus the sum of the two channel 

lengths used for each calculation. 

 

FIG. 24. Resistor values are plotted against the sum of each pair of channel lengths used for the calculations. 

A slight decreasing trend is observed even though the model stipulates that R1 and R2 are 

constants that are not dependent on Lchan. Still, the calculated resistances are within 5.7% and 

7.7% of the best fit values of R1 and R2 respectively. To get an idea for how these errors affect 

the model’s applicability, the RNMs are compared using the highest and lowest calculated resistor 

values along with the numerical data in Fig. 25. 



49 

 

FIG. 25. Two RNMs, each with the highest or lowest values of resistors R1 and R2, are compared to numerical values 
of the percentage of total flowrate carried by the center channel. 

The maximum difference between the two models and the numerical data is 0.36% (at Lchan=0.1m) 

and the error is an order of magnitude smaller for Lchan>1m. Thus, all of the calculated resistor 

pairs are suitable for predicting the flow distribution as a function of Lchan with acceptably small 

error. This is an important result because it indicates that only two simulations or experiments are 

required for predicting the flow distribution for the full range of Lchan so long as the flow behaves 

according to the RNM analogy. However, it could be that this assumption breaks down at higher 

Re, in the case of electrically conducting walls, or if significant buoyancy effects are present in 

the multiple channels.  

The RNM is not limited to the particular manifold configuration of three parallel channels and can 

easily be extended to a more complex configuration, though for other configurations the RNM 
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would require validation. For instance, changing Lexp or adding a sudden contraction to the outlet 

is likely to only affect the values of R1 and R2 in Eq. (19). The model can be generalized to n 

channels, taking the form of n parallel pairs of resistors. In that case, n data points will be required 

to fully define the RNM and solve for the n unknown resistor values. If the problem is symmetric, 

as in the present work, the number of unknowns (and required data points) will be reduced to n/2 

(rounded up). 

3.6 Example of Application of the Derived Pressure Model to a Fusion Blanket 

Here, the obtained formulas for the 3D MHD pressure drop in a manifold, Eqs. (7-12), are applied 

to a DCLL blanket design. In the recent fusion nuclear science facility (FNSF) study in the US 

[59], a DCLL blanket was designed for both inboard and outboard regions (Fig. 26). The entire 

machine is subdivided into 16 toroidal sectors, such that there are 16 inboard (IB) and 16 outboard 

(OB) blankets. Each sector with the blankets can be removed via an individual port using a 

horizontal maintenance scheme. In the IB blanket, the eutectic PbLi alloy flows upwards in the 

five front ducts facing the plasma, makes a U-turn at the top of the blanket and then flows 

downwards in the five rear ducts. The flows occur in the presence of a strong plasma-confining 

magnetic field resulting in a high MHD pressure drop in the flowing liquid breeder. There are two 

manifolds at the bottom of the blanket to feed the poloidal ducts and to collect the hot PbLi at the 

exit of the blanket. The OB blanket has a similar structure, but the number of the ducts and blanket 

dimensions are different to fit into a larger space at the OB. The entire blanket, including the 

manifolds, has electrically insulating flow channel inserts made of silicon carbide ceramics [60] to 

reduce the MHD pressure drop, such that the present model that assumes electrically insulating 

walls is applicable. In this particular example, considerations of the MHD pressure drop are limited 

to that in the inlet manifold of the IB blanket. More results for manifold flows are presented in [61]. 

For the reference blanket [61], the magnetic field is 10 T, the poloidal length is 7 m and the toroidal 

width is 1.69 m. The PbLi velocity in the expansion section of the manifold is 0.076 m/s and the 
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flow absorbs 0.78 MW/m2 of heat generated by neutrons. The dimensionless flow parameters and 

the computed MHD pressure drop are summarized in Table 2. 

                    

FIG. 26. Crosscut of one of the 16 toroidal sectors in the FNSF with the IB and OB blankets. The arrows show the PbLi 
flow path in the poloidal ducts. 

Table 2. The Dimensionless Blanket Parameters and the Computed 3D MHD Pressure Drop in the Manifold. 

Ha 2.13x105 

Re 5.54x105 

N 8.21x104 

rexp  8.45 

Ha3/2/N 1.20x103>3 

ΔP3D ~0.196 MPa 
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As discussed in section 3.4, the 3D MHD pressure drop (in the MHD scale) was found to scale 

as Ha-1/2 in the VE regime and N-1/3 in the IE regime for electrically nonconducting manifolds with 

sudden expansions. Here, it was found that Ha3/2/N >3. This suggests that the flow in the manifold 

is in the inertial-electromagnetic regime. The computed MHD pressure drop of 0.196 MPa in the 

inlet manifold flow is about 20% of the overall PbLi pressure drop in the blanket. Taking into 

account that the blanket has two manifolds, the associated pressure drop due to 3D effects in the 

manifold flows approaches nearly half of the blanket pressure drop. This justifies the importance 

of the obtained pressure drop correlations. 

Chapter 4: Conclusions and Future Studies for MHD Flows 
in Manifolds 

As seen from the analyses above, the flow physics in a manifold is dominated by 3D effects. 

Formation of internal shear layers at the locations where the flow experiences expansions or 

contractions in the plane parallel to the applied magnetic field is the most important manifestation 

of the 3D effects as it affects the flow and pressure field and eventually becomes responsible for 

a high 3D MHD pressure drop. As suggested in this study, an effective way of identifying such 

internal layers, which is a place of many interesting effects, is to plot the magnitude of the curl of 

the induced Lorentz force. It also helps to distinguish between the internal shear layers and 

inviscid, irrotational core flows, where the electromagnetic force is fully balanced by the pressure 

gradients and the curl of the Lorentz force is correspondingly small. Applying this technique to the 

flow in the manifold suggests that the internal shear layers are formed at the sudden expansion 

and at the entry to and exit from the parallel channels. Of them, the internal shear layer at the 

sudden expansion is the main source of 3D MHD effects.    
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In designing manifolds for fusion applications, the 3D MHD effects which influence the pressure 

and the flow distribution cannot be ignored. These effects are caused by 3D electric currents 

which form near expansions and contractions parallel to the applied magnetic field. The Lorentz 

force field is rotational at these locations, and since pressure gradients are not rotational, 

hydrodynamic forces must develop to balance the electromagnetic force. Ultimately, 3D flow 

structures form and this results in extra pressure losses. 

A 3D MHD pressure drop resulting from 3D MHD effects is inserted into the pressure distribution 

which accounts for a significant portion of the pressure drop across the liquid metal loop. In section 

3.4, pressure correlations informed by scaling analysis were introduced and it was shown that the 

3D MHD pressure drop scales linearly with rexp and, depending on the size of N relative to Ha3/2, 

with either 𝜌𝑈2𝑁2/3 in the IE regime or 𝜌𝑈2𝑁𝐻𝑎−1/2  in the VE regime. A similar pressure drop is 

expected for an outlet manifold featuring a sudden contraction. While this claim is likely to be true 

for the VE regime, the pressure drop may change significantly for the IE regime because while 

Lorentz and viscous forces are reversible, inertial forces are not. Future studies are therefore 

necessary as fusion blankets will operate firmly inside the IE regime. 

3D MHD effects at sudden expansions are also responsible for the occurrence of a complex flow 

structure which quickly redistributes flow along the transverse direction downstream of the sudden 

expansion. In section 3.5.A, it was discussed that the flow distribution among short parallel 

channels is mostly controlled by the length of the expansion region for Ha and N>>1, particularly 

when the expansion region ends before the flow becomes fully developed. Results for rexp=12, 

Ha=6570, and N=21582 indicate that MHD manifold flows at even higher Ha and N will feature a 

balanced flow distribution so long as the channels begin after a length Lexp/b=1 downstream of 

the expansion. However, if the walls are electrically conducting, multi-channel effects such as the 

Madarame effect and electromagnetic coupling can impact the flow distribution and the MHD 

pressure drop [2, 57, 58]. These effects account for phenomena associated with electric currents 
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that connect through two or more parallel channels when the channels are stacked perpendicular 

or parallel to the magnetic field respectively. When the walls are nonconducting, as in the present 

work, multi-channel effects can obviously be neglected.  

Increasing Lchan causes flow to become more evenly distributed among the parallel channels [62]. 

Furthermore, a Resistor Network Model was introduced to model the flow distribution as a function 

of Lchan. The RNM was shown to fit the flow distribution data as well as the expected behavior of 

the flow distribution as Lchan becomes very large. In the analysis, it was shown that prohibitively 

long channels would be required to achieve a balanced flow distribution (Lchan~5m for 34.33% of 

flow passing through the center channel). However, this problem may be mitigated by increasing 

the length (Lexp) between the sudden expansion and the inlets of the parallel channels [63] or by 

electrically coupling the channels [64]. As a design tool, the proposed RNM is useful because 

only two simulations or experiments are required to determine a channel length which produces 

a desired flow distribution given a set of flow parameters and manifold geometry. By contrast, 

other methods for optimizing channel length will require more than two iterations. Thus, using an 

RNM may save blanket designers months or years of computational time and may prevent the 

need for many expensive experiments for optimizing blanket designs. However, the analysis in 

this study was based on Ha and Re values much lower compared to real LM blankets and the 

flow considered here was isothermal. And while the present case does have Ha and N>>1 which 

indicates strong MHD effects, it is not clear how applicable the main conclusions of the proposed 

RNM analysis will be in designing a blanket, which will certainly have nonlinear buoyant effects 

and perhaps significant inertial effects as well. Thus, further assessment of the RNM at fusion 

blanket conditions is required.  

It should be mentioned that the manifold model in Fig. 1 has a simpler geometry compared to a 

“real” blanket manifold where the flow may turn from the radial to poloidal direction right after the 

expansion region. This feature is not included here as the change in the flow direction from radial 
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to poloidal in the real blanket occurs in the plane perpendicular to the applied magnetic field such 

that associated changes in the MHD pressure drop are known to be small [22]. The outlet region 

at the exit of the manifold is another special feature of the proposed model. It was added to the 

model mostly because of the computational reasons to minimize the downstream effect of the 

outlet boundary condition on the flow inside the manifold. Also, in a real manifold design, the 

height of the expansion region can be different from the size of the feeding duct. A real manifold 

may also need rounded corners in the expansion region to provide smooth transition from the flow 

in the inlet pipe to that in the expansion region. This will result in a lower MHD pressure drop in 

the manifold by reducing 3D effects [29]. In spite of these simplifications, the proposed model 

preserves the most important features of a real manifold flow. Future design studies might need 

to account for such details, but this will hardly change the main conclusions of the present study 

about the fundamental flow physics associated with the 3D MHD effects.   

The analysis done in this study covers a range of flow parameters significantly lower compared 

to real blanket flows. In this range, the flow was found to be laminar while the blanket flows are 

expected to demonstrate quasi-2D (Q2D) turbulence [65]. In Q2D turbulent flows, turbulent 

vortices are big (comparable in size with the duct dimension) coherent structures stretched along 

magnetic field lines between the two Hartmann layers at the flow confining walls. Such vortices 

are known to have low Joule and negligible viscous dissipation due to their orientation with respect 

to the magnetic field [66]. Therefore, the contribution of the Q2D vortices in the MHD pressure 

drop seems to be much smaller compared to other pressure-affecting factors, first of all the 

internal shear layer at the expansion as studied here. Though Eqs. (7-12) were determined for 

steady laminar MHD flows, these formulae will likely need only small corrections to account for 

turbulence effects.    
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Part II: MHD Duct Flows with Buoyancy Effects 

In Part II, I perform 3D numerical analysis of MHD flows in a vertical, straight, square duct subject 

to applied one-sided heating and a fringing, transverse magnetic field (Fig. 27). 

 

                             

FIG. 27. A test blanket submodule geometry for numerical simulation. The origin for the coordinate system is at the 
center of the duct’s cross-section in the center of the heated region. Uniform flow enters the duct in a zero-magnetic 
field region. The flow continues into a region with a fringing, y-direction magnetic field which is uniform for 80cm along 
the duct. Inside the uniform magnetic field region, the flow encounters a 60cm region where heating is applied either 
as volumetric heating in the fluid or as surface heating on the z=-a-tw sidewall. The flow exits the duct, fully developed, 
through a region of zero-magnetic field. The final 40cm of the duct has artificially high viscosity for numerical reasons. 

Part II of this dissertation is organized as follows: Chapter 5 contains a description of the problem 

formulation and numerical methods used; Chapter 6 contains a mesh refinement study, a 
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discussion of the physics and phenomena of MHD mixed convection flows, a parametric study of 

magneto-buoyant effects, a discussion of axial forces, an analysis of non-uniformity along the 

magnetic field direction, a comparison of volumetric heating cases, which approximate nuclear 

heating, to surface heating cases, and selected results for comparison with experiments and other 

codes with a brief discussion of velocimetry theory; Chapter 7 contains a summary of conclusions 

and suggestions for future work. 

Chapter 5: Physical and Mathematical Model of MHD Duct 
Flows with Buoyancy Effects 

To study MHD mixed convection flow behavior sketched in Fig. 27, HIMAG (see Part 1, Chapter 

2) was used to simulate the flow of liquid metal of kinematic viscosity ν, electrical conductivity σ, 

density ρ, specific heat capacity Cp, thermal conductivity k, and coefficient of thermal expansion 

β, through a vertical straight square duct with thickness tw = 0.002 m, and material properties 

denoted by a subscript w, subjected to heating, a strong transverse magnetic field B, and gravity 

g = 9.81 m/s2. Such a flow is characterized by the following key dimensionless parameters: the 

Hartmann number, which when squared, represents the strength of electromagnetic forces 

relative to viscous forces, 𝐻𝑎 = 𝑏𝐵𝑜√𝜎/𝜈𝜌 ; the Reynolds number, which represents the strength 

of inertial forces relative to viscous forces, 𝑅𝑒 =
𝑎𝑈

𝜈
; the Grashof number, which represents the 

strength of buoyant force relative to viscous force, 𝐺𝑟 =
𝑔𝛽𝛥𝑇𝑎3

𝜈2  ; the wall conductance ratio, 𝑐𝑤 =

𝜎𝑤𝑡𝑤

𝜎𝑏
 ; and the Prandtl number, which is the ratio of viscous diffusion to thermal diffusion, 𝑃𝑟 =

𝜌𝜈𝐶𝑝

𝑘
 . The dimensionless parameters combined with the flow orientation with respect to gravity 

(upward or downward flow) and the distribution of the applied surface or volumetric heating define 

the flow completely. In the definition of Gr, ΔT is a characteristic temperature difference calculated 

using the following formula: 
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Δ𝑇 =
a

𝑘
∫ 𝑞′′′(𝑧)𝑑𝑧

+𝑎

−𝑎
  for volumetric heating,      (20a) 

Δ𝑇 =
𝑎

𝑘
𝑞𝑜′′ for surface heating.       (20b) 

In Eq. (20a), 𝑞′′′(𝑧) is the distribution of applied heating per unit volume inside the fluid domain. 

In Eq. (20b), 𝑞𝑜′′ is the prescribed heating per unit area in the special case that the heating mode 

is purely surface heating applied to the outside surface of the sidewall. The axial length of the 

heated region, Lh, in all cases is 0.6096 m centered at x=0 m. In the volumetric heating cases, 

the heating spans the fluid domain uniformly from y=-b to y=b and is largest at the z=-a sidewall 

and decreases exponentially or otherwise follows the trend of nuclear heating data towards the 

z=a sidewall. In surface heating cases, the heating is uniform at z=-a-tw, spanning from y=-b-tw to 

y=b+tw.  

In addition to Re, Ha, and Gr, the interaction parameter, 𝑁 =
𝐻𝑎2

𝑅𝑒
, which represents the ratio of 

electromagnetic to inertia forces, and the Richardson number 𝑅𝑖 =
𝐺𝑟

𝑅𝑒2 which represents the ratio 

of buoyant to inertial forces, are also important parameters. The total axial length is 2.4 m with 

the first 2 m representing the test blanket submodule (TBSM) of the MaPLE-U experiment, which 

is also close to the poloidal blanket length in some design studies [2]. The final 0.4 m are included 

for numerical reasons discussed later in this section. The half width of the duct in the magnetic 

field direction, b, is the length scale in the definition of Ha and cw while the half width perpendicular 

to the plane of maximum heating, a, is the length scale in the definition of Gr and Re. The 

prescribed average velocity U is the velocity scale. Physical properties of the LM were chosen to 

equal those of eutectic lead-lithium alloy (PbLi) at 300ºC (Pr=0.033) using HIMAG’s built-in 

material properties while the physical properties of the wall were chosen to be those of stainless 

steel at 300ºC (cw=0.12) or those of an insulating wall (cw=1.2x10-9) (Table 3). The applied 

magnetic field’s maximum strength Bo was varied to control Ha, U was varied to control Re, and 
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the magnitude and shape of the applied heating was varied to control Gr. All of the simulations 

feature square ducts such that  
𝑎

𝑏
= 1 for every simulation.  

Table 3: Material Properties 

LM PbLi Properties at 300oC  Wall Properties 

σ  7.89205x105 S/m σw 1.09x106 S/m or 1.09x10-2 S/m 

ρ  9486.0 kg/m3  ρw 7800 kg/m3 

Cp 200.22 J/K  Cpw 500 J/(kg*K) 

k 13.123 W/(m*K)  kw 19.0 W/(m*K) 

ν  2.15269x10-3 Pa*s    

β  1.77362x10-4 K-1    

 

The simulated magnetic field fringes to imitate the field of an electromagnet which produces a 

region of uniform field with an axial length of 0.8 m centered at x=0 m. The shape of the field is 

defined in the following way. Firstly, the domain is divided into three types of regions: 1) a 

downstream region where the magnetic field is zero, 2) a uniform region, and 3) two fringing 

regions which boarder the uniform region: 

1) If x>x
o
+ 2*(x

c
-x

o
) then B=0.         (21a) 

2) Else if x1<x<x2 then B=B0         (21b) 

3) Else if x1>x or x>x2 then B =
1

2
𝐵0 ∗ (1 − 0.1 ∗ tanh (

|𝑥−𝑥𝑐|

𝑐1
− 𝑐2))    (21c) 

Here, 𝑥𝑐 =
𝑥2+𝑥1

2
 and x1 and x2 are the boundaries of the uniform field region. xo is the location of 

the duct entrance. In the present cases, x1=-0.4 m and x2=0.4 m and so xc=0 m. B0 is the uniform 

magnetic field strength (e.g. 0.5T). c1 is set to 0.01 m in the simulations such that the argument 

inside the tanh function reads  (
|𝑥|

0.01𝑚
− 𝑐2) and here, x ranges from -1 m to 1.4 m. c2 is a constant 
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equal to 73.15. The magnetic field distribution is uniform in y and z and its magnitude along the 

axial direction is plotted in Fig. 28. 

 

FIG. 28. An example magnetic field plotted using Eq. (21) with Bo=0.5 T. The vertical dashed lines mark the bounds of 

the uniform magnetic field region. The vertical dotted line marks where the magnetic field strength goes to zero. 

The HIMAG code solves the MHD equations coupled with the thermal energy equation, shown 

below as Eqs. (22-26), in 3D using an electric potential formulation with the assumption that the 

induced magnetic field is small enough to be neglected compared to the applied one. 

Furthermore, the fluid is assumed Newtonian and incompressible, and Joule heating and heating 

from viscous dissipation are assumed to be negligibly small compared to the applied heating. 

Additionally, the Boussinesq approximation (BA) is applied such that all material properties are 

assumed constant except for inside the buoyant force term of Eq. (23), where it is as though 

density decreases linearly with increasing temperature.  

The BA is a powerful and convenient approach to making nonisothermal problems tractable for 

numerical investigation; however, the errors associated with using BA are difficult to quantify. 

Currently, no studies have analyzed the applicability of the BA in MHD flows despite the fact that 

use of BA is widespread for such problems (e.g. [32, 33, 40-47]). And though the only sure way 

to evaluate error related to BA in a particular flow is to compare results of methods which do not 

employ BA, a preliminary justification for using BA can be made using some criteria developed 

for hydrodynamic flows.  

Many criteria for the applicability of BA in hydrodynamic flows have been published [67-70], the 

simplest of these, put forth by Crapper and Bains (1977) [67], stipulates that the density should 

change by no more than 5% by thermal expansion for BA to be applicable. To achieve a 5% 
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decrease in the density of PbLi, the temperature would need to exceed 713oC [71], approximately 

160oC greater than the maximum temperature of the present simulations. Additional criteria, such 

as 
𝜈

(𝑔𝑏).5𝑏
≪ 1 (presently ~2x10-5), 

𝑈

(𝑔𝑏).5 ≪ 1 (~6x10-2), and others which ensure incompressibility 

of the fluid and negligible heating from viscous dissipation [70], are also satisfied in the present 

simulations. 

Therefore, my approach is to use the BA in the present work and to suggest that future efforts be 

made to rigorously qualify the use of BA via comparison with methods which do not rely on this 

approximation. 

Equations (22-26) include the continuity equation, momentum equation with the Lorenz force term 

and the buoyant force term on the right-hand-side, Ohm’s law to compute the induced electric 

current, the electric potential equation, and the thermal energy equation respectively:  

∇ ∙ 𝐮 = 0,         (22) 

𝜕𝐮

𝜕𝑡
+ 𝐮 ∙ ∇𝐮 = −

1

𝜌
∇p + ∇ ∙ 𝜈∇𝐮 +

1

𝜌
𝐉 × 𝐁 − 𝒈𝛽(T − 𝑇𝑜),   (23) 

𝐉 = 𝜎(−∇ϕ + 𝐮 × 𝐁),        (24) 

∇ ∙ (𝜎∇ϕ) = ∇ ∙ (𝜎𝐮 × 𝐁),        (25) 

𝜌𝑐𝑝 (
𝜕T

𝜕t
+ 𝐮 ∙ ∇T) = ∇ ∙ 𝑘∇T + 𝑞′′′.       (26) 

Here, u, J, and B, and g are the velocity, electric current density, magnetic field, and gravity 

vectors respectively and p, ϕ, and T are the pressure, electric potential, and temperature scalars. 

To is the inlet temperature which is set to 300oC for all present cases. A term equal to g is omitted 

from the right-hand-side of Eq. (23) as this term would be easily absorbed by the pressure gradient 

and simply omitting it precludes the need to subtract the static pressure distribution from the 

results. Eq. (25) is obtained by taking the divergence of Eq. (24) while stipulating that electric 
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current is continuous (∇ ∙ 𝐉 = 0). To consider both the liquid and the surrounding solid wall, which 

may have different electrical conductivity, the electrical conductivity  𝜎 is put inside the derivatives 

in Eq. (25). Similarly for the thermal conductivity in Eq. (26) and the viscosity in Eq. (23).  

Equations (22-26) were solved numerically on non-uniform rectangular meshes (Fig. 29). There 

are at least 8 nodes inside all Hartmann layers on the walls perpendicular to the magnetic field 

and 10 nodes inside each side layer on the wall parallel to the magnetic field. Lower mesh 

resolution is used throughout the central region of the duct as it is expected that the magnetic 

field damps out flow features with small length scales in the bulk of the flow. Where the magnetic 

field is small or zero, the mesh is still not refined as the small-scale flow behavior in those regions 

are not a topic of interest in this work. A mesh sensitivity study was performed, and the results 

are presented in section 6.1. 

                       

FIG. 29. An example computational mesh with 1510400 cells. Due to the large aspect ratio of x:z, only a small segment 
of the x-axis is included. 

The inlet velocity boundary condition specifies uniform flow with velocity U at x=-1 m while a fully 

developed flow outlet boundary condition in the form 
𝜕𝒖

𝜕x
= 0 is used at the outlet at x=1.4 m. The 

no slip and no flow-through conditions are enforced at fluid-wall interfaces (𝐮𝐰𝐚𝐥𝐥 = 𝟎). The 

pressure is set to zero at the outlet. The fluid-wall boundaries and the inlet have Neumann 

pressure conditions (
𝜕𝑝

𝜕𝑛
= 0 ). Normal components of electric current density are set to zero at 
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the outer domain boundary (
𝜕𝜙

𝜕𝑛
= (𝐮 × 𝐁) ∙ 𝒏̂ ). Adiabatic conditions (

𝜕T

𝜕𝑛
= 0 ) are set for all outer 

domain boundaries except for the inlet, where the temperature is prescribed as T=To=300oC, and, 

when the applied heating mode is surface heating, the outer boundary of the wall at z = −𝑎 −

𝑡𝑤, −𝑏 − 𝑡𝑤 ≤ y ≤ 𝑏 + 𝑡𝑤,  −
𝐿ℎ

2
≤ x ≤

𝐿ℎ

2
, has 

𝜕T

𝜕𝑧
= −𝑞𝑜

′′/𝑘.  

For numerical stability reasons the viscosity of the LM is linearly ramped up artificially from 1 to 

1000 times the inlet value over the last 0.4 m of the duct in what is referred to here as the high 

viscosity outlet region but is otherwise known as a viscous sponge layer [72]. The purpose of this 

is to quickly develop the flow and to damp out vortices which may otherwise make their way to 

the outlet. Without a high viscosity outlet region, vortices have been observed to approach and 

ultimately straddle the outlet, and the simulation eventually diverges. Including the high viscosity 

outlet region fixes this and ensures that the outlet boundary conditions behave properly without 

the need of an extremely long and prohibitively expensive outlet region.  

Simulations were started with initially uniform flow and uniform temperature conditions with initial 

velocity U and temperature To. A time step size of Δt=10-4 s was used for all cases. To reduce risk 

of divergence in the early development of the flow, partial up-winding (λu=0.7) was used for the 

first 200,000 timesteps in each case, after which the up-winding factor was set to λu=1.0 (central 

differencing/no up-winding) to restore the 2nd-order accuracy of the solver for the remainder of the 

simulation. Each simulation was run in parallel on 1024 cores on either the EDISON or CORI 

super computers which are owned and operated by the National Energy Research Scientific 

Computing Center (NERSC). Using 1024 cores, the computations proceeded at a rate of ~1 

million timesteps per 24 hours such that the shortest simulations were finished in ~3 days. MHD 

mixed convection flows at high Gr numbers are inherently unsteady so the stopping criteria of the 

simulations is one based on statistical steadiness. Simulations must run long enough to converge 
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(~1.5 million steps), but must also continue running to confirm statistical steadiness (~1.5 million 

steps) meaning that the time rate of change of time-averaged flow variables goes to zero.  

In total, for Part II, I computed 16 cases as listed in the simulation matrix of Table 4. Unless 

specified, the results of simulations presented in this work are the outputs of the simulations at 

their final timesteps listed in Table 4. Some of the presented data; however, is specified as 

time-averaged meaning the flow variables are averaged over all the timesteps between step 

number 1 million and the final timestep number listed in Table 4. 
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Table 4. Simulation Matrix 

# Flow 

Direction 

Wall 

Conductivity 

Heating 

Mode 

Ha Re Gr cw Final 

Timestep 

1 Down Conducting Surface 220 2027 1.44x108 0.12 3.4x106 

2 Down Insulating Surface 220 2027 1.44x108 1x10-9 3.5x106 

3 Up Conducting Surface 220 2027 1.44x108 0.12 3.5x106 

4 Up Insulating Surface 220 2027 1.44x108 1x10-9 3.15x106 

5 Down Conducting Exponential 220 2027 1.57x108 0.12 8.1x106 

6 Down Insulating Exponential 220 2027 1.57x108 1x10-9 4.65x106 

7 Up Conducting Exponential 220 2027 1.57x108 0.12 3.235x106 

8 Up Insulating Exponential 220 2027 1.57x108 1x10-9 2.95x106 

9* Down Conducting Surface 220 5068 5.04x107 0.12 3.65x106 

10* Down Conducting Surface 220 5068 5.04x107 0.12 4x106 

11* Down Conducting Surface 220 5068 5.04x107 0.12 2.65x106 

12 Up Conducting Nuclear 220 2027 1.57x108 0.12 2.7x106 

13 Up Insulating Nuclear 220 2027 1.57x108 1x10-9 2.75x106 

14 Down Conducting Nuclear 220 2027 1.57x108 0.12 4.25x106 

15 Down Insulating Nuclear 220 2027 1.57x108 1x10-9 2.9x106 

16 Down Conducting Surface 220 3041 2.88x107 0.12 4.9x106 

*cases 9-11 are part of a mesh refinement study. They feature the same parameters but three different meshes. 
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Chapter 6: Results of MHD Duct Flow Simulations with 
Buoyancy Effects and Discussion 

6.1 Mesh Refinement Study 

Prior to the main computations, a mesh sensitivity study was performed using a downward flow 

of PbLi in an electrically conducting duct with surface heating qo’’=0.07 MW/m2, Bo=0.5 T, U=0.05 

m/s, and ΔT=122.7oC (Ha=220, Re=5068, Gr=5.04x107, cw=0.12) for which more complex flow 

features (that might require higher mesh resolution) are expected compared to upward flows. In 

order to quantify the discretization error, the sensitivity study featured three computational 

meshes with approximately 106 cells each including “coarse”, “medium” and “fine” meshes. Each 

consecutive mesh featured approximately twice as many cells as the previous mesh. The number 

of cells in each mesh is shown in Table 5. 

Table 5. Mesh Refinement Details. 

The simulation results were recorded once the simulations reached a statistically steady state at 

2.65 million timesteps. The time-averaged mean temperature distributions (Fig. 30a) were 

calculated by averaging the time-averaged temperature at each cross-section along the axis of 

the duct in each of the three simulations. 

The mean outlet temperatures are 309.9oC, 310.1oC, and 310.6oC for the sparse, medium, and 

fine meshes respectively with a maximum difference of 0.2% between the sparse and fine cases. 

Similarly, the mean pressure distributions at t=265s were calculated and plotted in Fig. 30b. The 

pressure drops across the duct are found to be 1685.1 Pa, 1673.6 Pa, and 1683.7 Pa for the 

Mesh # of cells along x # of cells along y # of cells along z Total # of cells 

Coarse 188 64 65 782080 

Medium 236 80 80 1510400 

Fine 297 100 100 2970000 
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sparse, medium, and fine meshes respectively with a maximum difference of 0.6% between the 

medium and fine cases. 

 

FIG. 30. (a) Time-averaged mean temperature of fluid cross-sections along x are plotted for each computational mesh. 
(b) The instantaneous mean pressure of fluid cross-sections along x are plotted for each computational mesh. 

As a consequence of discretizing the advective terms in the governing equations, dispersion 

errors [73] appear in the solution, particularly near the beginning of the heated region where flow 

reversal causes the axial temperature gradient to be quite large (Fig. 31). These errors, which 

manifest as spurious the natural oscillations caused by flow instability.  

 

FIG. 31. (a) The instantaneous centerline temperature is plotted for each of the computational meshes. (b) 

Instantaneous centerline temperature, zoomed in on x= [-0.6 m, 0.1 m]. 

(a) (b) 

x [m] x [m] 

(b) (a) 
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For all other computations in the present work, meshes similar to the medium mesh are used.   

6.2 Characteristic Features of MHD Mixed Convection Flows in a Vertical Duct 

An overview of the behavior of MHD flow through vertical ducts with applied surface heating and 

transverse magnetic field is presented in this section to provide context for more detailed 

parametric and comparison studies in the following sections. Both upward flowing and downward 

flowing cases are presented for ducts with either electrically conducting or nonconducting walls, 

totaling to four flow scenarios. The simulations feature surface heating qo’’=0.20 MW/m2, Bo=0.5 

T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108) for all four scenarios 

presented in this section with two having cw=0.12 and the other two having cw=1x10-9. The velocity 

fields on the y=0 m center-plane are provided in Fig. 32. Even though the flow was computed in 

3D, the flow structure within the magnetic field region is mostly quasi-two-dimensional (Q2D) with 

an almost uniform core and thin Hartmann boundary layers at the duct walls perpendicular to the 

magnetic field. Such a Q2D flow structure is typical to many MHD duct flows in a strong magnetic 

field, such that plotting the data at the mid-plane is a good way to represent the entire flow. Some 

deviations of the computed flows from the idealized Q2D flow are discussed in section 6.5.   
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FIG. 32. Instantaneous axial velocity contours and profiles on the y=0 center-plane. Surface heating  qo’’=0.20 MW/m2, 
Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). (a, b) cw=0.12, (c, d) cw~0. (a, c) Downward 
flow, (b, d) upward flow. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire 
flow field. The dashed red lines space every 13.3 cm are the zero lines for the profiles which are solid red lines. The 
black dashed lines ark the bounds of the heated region. 
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The flow enters as isothermal, uniform flow from either the top or the bottom end of the vertical 

duct. One consequence of the flow entering the duct isothermally is that buoyant force is zero 

near the inlet such that the orientation of the flow relative to gravity is irrelevant until the flow 

encounters heat.  

As the flow proceeds downstream, the flow develops hydrodynamically and a viscous boundary 

layer begins to grow near the walls, smoothening out the sharp discontinuity of the velocity profile 

there. With enough space, the flow would eventually become hydrodynamically fully developed 

once the boundary layer grows to span the entire thickness of the duct; however, the 

hydrodynamic development is interrupted by the growth of the transverse magnetic field which 

ramps up quickly downstream.   

The effect of a fringing magnetic field (i.e. a magnetic field which is uniform in some region but 

decays to zero or “fringes” on the periphery of the region) on liquid metal flows has been 

thoroughly studied in the past (e.g. [12, 74, 75]). A 3D electromagnetic disturbance occurs in the 

vicinity of the fringe. This disturbance is characterized by 3D electric currents which close along 

the axial direction. Additionally, a 3D MHD pressure drop is inserted into the flow and the velocity 

profile becomes M-shaped. This effect is prominent in electrically nonconducting ducts but is 

somewhat less important in ducts with conducting walls where the 3D effects are overshadowed 

by the larger 2D circulations of electrical current which close in the conducting walls rather than 

inside the fluid. 

As the flow moves deeper into the region of uniform transverse magnetic field, the 3D disturbance 

caused by the fringe fades and the flow quickly develops towards classical Shercliff [3] or Hunt 

flow [6] for the case of electrically nonconducting and conducting ducts respectively. Both fully 

developed flows feature nearly uniform velocity in the “bulk” – a central region which includes the 

vast majority of the duct’s cross-section. The flow in the bulk is characterized by a dominance of 

electromagnetic Lorentz force (=J×B) which is balanced by the pressure gradient. The bulk is 
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framed by special layers attached to the walls inside which viscous forces are significant. Layers 

attached to walls perpendicular to the transverse magnetic field are “Hartmann layers” and have 

thickness which scales inversely with the Hartmann number. Layers attached to walls parallel to 

the magnetic field are “side layers” and have thickness which scales with the inverse of the 

square-root of Hartmann number.  

As the flow is exposed to heat from the hot wall, or when the heat is transported upstream of the 

heated region once the flow near the hot wall reverses in the case of buoyancy-opposed flows, 

the incoming flow becomes non-isothermal. The instantaneous temperature distribution is shown 

for each of the four scenarios in Fig. 33. Buoyant force acts on warm fluid in the direction opposite 

gravity, thus the orientation of the flow with respect to gravity becomes important in and around 

the heated region. In the upward flow cases, the flow remains isothermal until entering the heated 

region at x=0.3 m since the heat is advected downstream much faster than it can conduct 

upstream; however, in the downward flow cases, buoyant flow structures advect heat upstream 

of the heated region, most notably in the case of nonconducting walls where elevated 

temperatures are observed as far as ~20 cm upstream of the entrance to the heated region.  
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FIG. 33. Instantaneous temperature contours and profiles on the y=0 center-plane. Surface heating qo’’=0.20 MW/m2, 
Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). (a, b) cw=0.12, (c, d) cw~0. (a, c) Downward 
flow, (b, d) upward flow. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire 
flow field. The dashed, red lines spaced every 13.3 cm are the zero lines for the profiles which are solid red lines. The 
dashed, black lines mark the bounds of the heated region. 
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In the case of downward flow, the buoyant force opposes the forced flow while the buoyant force 

assists the forced flow in the case of upward flow. In all four of the reference scenarios, buoyant 

force causes significant changes to the velocity field. Wherever the buoyant force field has 

nonzero curl, pressure is not able to balance it and so the velocity field is forced to adapt to give 

rise to rotational electromagnetic and/or hydrodynamic forces. As such, the flow tends to 

demonstrate patterns typical to rotational flows, such as inflection points in the velocity profile, 

formation of high-velocity jets and associated internal shear layers. Furthermore, buoyant effects 

tend to destabilize the flow. As shown in Figs. 32 and 33, velocity and temperature fluctuations 

are present where the flow cross-sections are non-isothermal. These fluctuations are partially 

suppressed by toggling the wall conductivity from nonconducting to conducting due to the 

conducting wall cases having stronger Joule dissipation which tends to stabilize flow by 

dissipating kinetic energy as heat due to strong induced currents closing through the walls.  

Strongly buoyancy opposed flows are characterized by the detachment of the side layer from 

the heated sidewall, followed by a region of reverse flow that spans the length of the heated region 

near the hot sidewall. By time-averaging the velocity field (Fig. 34), it can be seen that generally, 

the flow recirculates inside the heated region, moving up on the hot side and down on the cold 

side, with maximum speeds several times larger than the forced flow mean speed.  
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FIG. 34. Instantaneous time-averaged axial velocity contours and profiles on the y=0 m center-plane. Downward flow 
with surface heating qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). (a) 
cw=0.12, (b) cw~0. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire flow 
field. The dashed, red lines spaced every 13.3 cm are the zero lines for the profiles which are solid red lines. The 
dashed, black lines mark the bounds of the heated region. 

Strongly buoyancy assisted flows are characterized by the development of a buoyant jet 

attached to the heated wall. As the flow moves further into the heated region and the temperature 

of the hot wall increases, the portion of the flow carried by the buoyant jet increases to ~100% of 

the total flowrate while the flow stagnates or recirculates weakly away from the hot sidewall. 

Significant velocity fluctuations in the jet are observed in the case of electrically nonconducting 

walls as a wavelike instability grows along the axial direction, culminating in large vortices which 

span the entire thickness of the duct. The instability mechanism is possibly Kelvin-Helmholtz 

instability as it often happens in MHD flows with an inflection point in the velocity profile [76]. This 

instability is fully suppressed or reduced in the case of conducting walls, likely due to increased 

Joule dissipation. It should be mentioned that unlike the downward flow scenario, the separation 

of the boundary layer within the heated region does not occur, obviously because of the 

accelerating effect of the buoyancy force near the hot wall.  
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Downstream of the heated region, the flow slowly tends to redevelop towards Shercliff and Hunt 

flows. This development is limited by the rate of heat transfer inside the fluid. Large scale flow 

structures born in the heated region, driven by buoyant force, die down quickly as heat is 

redistributed by advection - as the buoyant force becomes increasingly more uniform, the 

pressure gradient is increasingly able to absorb its influence and so the flow behavior becomes 

dominated by electromagnetic force which damps out velocity fluctuations. Thus, soon after the 

heated region ends, the heat is mostly transferred by conduction alone. This results in a large 

development length required for the flow to become isothermal and fully developed and so the 

velocity field remains asymmetrical. 

Near the outlet of the duct, the magnetic field ramps down, causing a 3D disturbance similar to 

the one near the entrance to the magnetic field region.  

As the magnetic field disappears, the flow transitions to turbulence. Or rather, it would be 

turbulent, but the mesh is not fine enough to properly capture the fluctuations which occur over 

very small length scales (e.g. the Kolmogorov scale). Still, strongly 3D fluctuations are present in 

this region. As a result of these fluctuations, the flow rapidly becomes isothermal. The unphysical 

nature of this region does not affect the upstream flow. Lastly, inside the high viscosity outlet, flow 

undergoes rapid laminarization and subsequent development before exiting the duct as fully 

developed hydrodynamic flow.  

6.3 Parametric Study of MHD Mixed Convection Flows in a Conducting Duct 

To test the effect of Hartmann (Ha=110-880), Reynolds (Re=2027-20270), and Grashof 

(Gr=1.44x108, 3.6x108) numbers on the behavior of MHD mixed convection flows in vertical ducts 

(Fig. 27), G. Pulugundla simulated the 17 cases shown in Table 6 below using the same methods 

described in Chapter 5.  
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Table 6. Simulation Matrix for Parametric Survey 

# Flow 

Direction 

Wall 

Conductivity 

Ha Re Gr B  

[T] 

U 

[m/s] 

qo’’ 

[MW/m2] 

cw 

1 Down Conducting 220 2027 1.44x108 0.50 0.02 0.20 0.12 

2 Up Conducting 220 2027 1.44x108 0.50 0.02 0.20 0.12 

3 Down Conducting 220 5068 1.44x108 0.50 0.05 0.20 0.12 

4 Down Conducting 220 10135 1.44x108 0.50 0.10 0.20 0.12 

5 Down Conducting 220 15203 1.44x108 0.50 0.15 0.20 0.12 

6 Down Conducting 220 20270 1.44x108 0.50 0.20 0.20 0.12 

7 Down Conducting 110 2027 1.44x108 0.25 0.02 0.20 0.12 

8 Down Conducting 440 2027 1.44x108 1.00 0.02 0.20 0.12 

9 Down Conducting 880 2027 1.44x108 2.00 0.02 0.20 0.12 

10 Down Conducting 220 2027 3.6x108 0.50 0.02 0.50 0.12 

11 Up Conducting 220 5068 1.44x108 0.50 0.05 0.20 0.12 

12 Up Conducting 220 10135 1.44x108 0.50 0.10 0.20 0.12 

13 Up Conducting 220 15201 1.44x108 0.50 0.15 0.20 0.12 

14 Up Conducting 220 20270 1.44x108 0.50 0.20 0.20 0.12 

15 Up Conducting 110 2027 1.44x108 0.25 0.02 0.20 0.12 

16 Up Conducting 880 2027 1.44x108 2.00 0.02 0.20 0.12 

17 Up Conducting 220 2027 3.6x108 0.50 0.02 0.50 0.12 

 

I describe the effect of changing Ha, Re, and Gr in the present analysis. To support the findings 

of the parametric study, the dimensionless governing equations and associated dimensionless 

numbers are first discussed. A dimensionless version of the governing equations (22-26) for the 
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particular case of constant thermophysical properties is shown below as Eqs. (27-31), using the 

MHD scale for pressure ([p]=[σUB2L]): 

∇∗ ∙ 𝐮∗ = 0,         (27) 

𝑅𝑒 (
𝜕𝐮∗

𝜕 𝑡∗ + 𝐮∗ ∙ ∇∗𝐮∗) = −𝐻𝑎2∇∗p∗ + ∇2𝐮 + 𝐻𝑎2𝐉∗ × 𝐁∗ − 𝐺𝑟𝒈̂θ,        (28) 

𝐉∗ = (−∇∗ϕ∗ + 𝐮∗ × 𝐁∗),          (29) 

∇2ϕ = ∇ ∙ (𝐮 × 𝐁),         (30) 

(
𝜕T∗

𝜕t∗ + 𝐮∗ ∙ ∇∗θ) =
1

𝑃𝑟𝑅𝑒
∇2θ + 𝑞′′′∗.       (31) 

Here, θ = (T − 𝑇𝑜)/Δ𝑇. In the previous section, it was discussed that buoyant effects cause 

changes in the velocity field which must arise due to the inability of the pressure field to balance 

rotational forces. In purely MHD flows, the most important rotational force is the electromagnetic 

Lorentz force. The imbalance between the irrotational pressure forces and the electromagnetic 

forces in the purely MHD flows lead to the well-known M-shaped velocity profiles and associated 

shear layers. In mixed convection MHD flows at high Gr numbers, even more complex flow 

behavior can be observed because the buoyancy forces, which can also be rotational, are 

comparable to or even larger than the electromagnetic forces. The parametric study presented 

below is aimed at the identification and characterization of several flow regimes and associated 

flow/temperature field patterns whose manifestation strongly depends on the rotational forces, 

which in turn are fully controlled by the dimensionless parameters Ha, Re and Gr.  

The dimensionless flow variable distributions are controlled by the nondimensional parameters 

such that if, for example, Re is increased, comparatively smaller changes to the velocity field are 

required to generate sufficient inertial force to balance the buoyant force. In a similar way, Ha2 

controls the strength of the Lorentz force relative to other terms and Gr controls the strength of 

buoyant force as indicated by Eq. (28). It is also worth noting that in Eq. (31), for a given Pr, Re-1 
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controls the strength of heat diffusion compared to heat advection. This makes sense in that 

fast-moving fluid will move heat faster by advection than by conduction. The consequence is that 

higher Re flows are likely to have thinner thermal boundary layers as the heat is swept quickly 

downstream before it can diffuse into the bulk. These are not new ideas, but they provide 

important context to the following analysis. The results reported below have been made 

dimensionless by dividing the flow variables by characteristic values (i.e. U for velocity and b for 

lengths). Temperatures are reported as dimensionless temperature increase θ = (T − 𝑇𝑜)/Δ𝑇. 

6.3.A Downward Flows 

6.3.A.i Effect of Reynolds number in downward flows 

Five downward flow simulations were performed with Ha=220, Gr=1.44x108 and various Reynolds 

numbers ranging from 2027 to 20270. Some selected results are included in Figs. 35-37 to 

illustrate the effect of increasing Re. It can be seen that as Re increases, the flow regime shifts 

into purely forced convection MHD regime where the effect of the buoyant forces are negligible 

and the velocity profiles are symmetrical (Figs. 35, 37a). Obviously, at high enough Re there 

would be no differences between the upward and downward flows. While the lower Re flows 

feature prominent flow reversal in the heated region, the reverse flow is severely diminished at 

Re=10135 and nonexistent in the higher Re flows. At low Re, the hot wall temperature becomes 

very large (θ~0.6) compared to high Re cases (θ~.15) because the flow reversal present in the 

low Re cases recirculates hot fluid near the hot wall as a buffer between the wall and the incoming 

cold fluid.  With the disappearance of the buoyant flow reversal, the temperature of the wall and 

the LM is significantly decreased as shown in Fig. 36 and Fig. 37b. However, further increase in 

Re decreases the temperature more slowly as also shown in the figures. Lastly, the flow is shown 

to be more stable as the Re increases and the buoyant effects become less influential. 
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FIG. 35. Contours of instantaneous axial velocity on the y=0 center-plane for the case of downward flow at Ha = 220, 
Gr = 1.44x108 and cw=0.12. (a) Re = 2027, (b) Re = 5067, (c) Re = 10135, (d) Re = 15201, and (e) Re = 20270. The 
z-axis is stretched relative to the x-axis by a factor of 5 to more easily show the entire flow domain. 

 

FIG. 36. Contours of instantaneous temperature on the y=0 center-plane for the case of downward flow at Ha = 220, 
Gr = 1.44x108 and cw=0.12. (a) Re = 2027, (b) Re = 5067, (c) Re = 10135, (d) Re = 15201, and (e) Re = 20270. The 
z-axis is stretched relative to the x-axis by a factor of 5 to more easily show the entire flow domain. 
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FIG. 37. Profiles of (a) time-averaged axial velocity, and (b) time-averaged temperature along the z-direction at x/b 
= -4.35 and y/b = 0 for Ha = 220, Gr = 1.44x108, cw = 0.12, Re=2027 ,5067, 10135, 15203, and 20270, and downward 

flow. 

6.3.A.ii Effect of Hartmann number in downward flows 

Four downward flow simulations were performed with Re=2027, Gr=1.44x108 and various 

Hartmann numbers ranging from 110 to 880. Some selected results are included in Figs. 38-40 

to illustrate the effect of increasing Ha. It can be seen that as Ha increases, the strength of the 

reverse flow decreases slightly, despite the growing strength of buoyant forces. The temperature 

difference between the cold and hot walls also increases with Ha. This effect is a consequence 

of the improved stability of the flow afforded by stronger electromagnetic effects. Vortices which 

would transport heat away from the hot wall are damped by the increased Joule dissipation. More 

simply, there are two competing mechanisms related to the effect of Ha on the temperature field 

in the liquid near the heated wall: one is reduction of the peak velocity in the reverse flow near 

the hot wall as Ha is increased (this is supposed to reduce the temperature), the other one is 

reduction of the transverse heat transport associated with Q2D turbulence (this is supposed to 

increase the temperature), which also happens at higher Ha. It appears that that the latter is 

stronger so that higher wall temperatures occur at higher Ha as seen in Fig. 40b. It can be 

observed that the jets attached to the sidewalls become thinner as electromagnetic force steadily 

becomes more influential compared to viscous and buoyant forces in shaping the velocity profile. 

(a) (b) 



81 

At Ha=110, the velocity profile does not feature thin jets attached to the wall because the MHD 

effects are overshadowed by comparatively larger natural convection effects.  

 

FIG. 38. Contours of instantaneous axial velocity on the y=0 center-plane for the case of downward flow at Re = 2027, 
Gr = 1.44x108 and cw = 0.12. (a) Ha = 110, (b) Ha = 220, (c) Ha = 440, (d) Ha = 880. The z-axis is stretched relative to 
the x-axis by a factor of 5 to more easily show the entire flow domain. 
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FIG. 39. Contours of instantaneous temperature on the y=0 center-plane for the case of downward flow at Re = 2027, 
Gr = 1.44x108 and cw = 0.12. (a) Ha = 110, (b) Ha = 220, (c) Ha = 440, (d) Ha = 880. The z-axis is stretched relative to 
the x-axis by a factor of 5 to more easily show the entire flow domain. 

 

FIG. 40. Profiles of (a) time-averaged axial velocity, and (b) time-averaged temperature along the z-direction at x/b 

= -4.35 and y/b = 0 for Re = 2027, Gr = 1.44x108 and cw = 0.12. Ha = 110, 220, 440, and 880. 

6.3.A.iii Effect of Grashof number in downward flows 

Two downward flow simulations were performed with Ha=220, Re=2027, and two Grashof 

numbers, 1.44x108 and 3.6x108. Some selected results are included in Figs. 41-42 to illustrate 

the effect of increasing Gr. As Gr increases, the buoyant effects grow. In the case of Gr=3.6x108, 
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the reverse flow is comparatively larger than in the case of Gr=1.4x108 and buoyant pockets of 

warm fluid even travel upstream of the heated region. By increasing Gr by a factor of 2.5, the 

dimensionless temperature increase θ of the hot wall measured at x/b=-4.35 (Fig. 42b) decreases 

by 0.14. This decrease can be explained by the decreased stability at higher Gr. As heat is 

advected away from the hot wall by vortices more strongly, the dimensionless temperature near 

the wall decreases despite having stronger flow reversal.  

 

FIG. 41. Results of the numerical simulations performed at Ha = 220, Re = 2027, and cw = 0.12 for downward flow. (a, 
c) Gr = 1.44x108, (b, d) Gr = 3.6x108. Contours on the y=0 center-plane are plotted for (a, b) instantaneous streamwise 
velocity, and (c, d) instantaneous temperature. The z-axis is stretched relative to the x-axis by a factor of 5 to more 
easily show the entire flow domain. 
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FIG. 42. Profiles of (a) time-averaged axial velocity, and (b) time-averaged temperature along the z-direction at x/b 
= -4.35 and y/b = 0 for Ha = 220, Re = 2027, and cw = 0.12 for downward flow. Gr = 1.44x108, 3.6x108. 

6.3.B Upward Flows 

6.3.B.i Effect of Reynolds number in upward flows 

Five upward flow simulations were performed with Ha = 220, Gr = 1.44x108 and various Reynolds 

numbers ranging from 2027 to 20270. Some selected results are included in Figs. 43-45 to 

illustrate the effect of increasing Re. The conclusions which can be drawn from these results are 

the same as in the downward flow case except that the non-existence of flow reversal makes the 

effect of increasing Re clearer and simpler. The most prominent effect of buoyancy here is the 

asymmetry of the velocity profiles: the hot wall features forward flow jets which are faster than the 

jets on the cold wall. As Re grows, this asymmetry fades until the jets have the same velocity and 

the regime is MHD forced flow rather than MHD mixed convection flow. Fig. 45b confirms that 

increasing Re decreases both the thermal boundary layer thickness and the maximum 

temperature by consequence of increased advection. Additionally, higher Re means inertial force 

can balance buoyant forces with smaller adjustments to the dimensionless velocity field and the 

combined result of these effects is a rapid departure from the MHD mixed convection regime.  

(a) (b) 
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FIG. 43. Contours of instantaneous axial velocity along the y=0 center-plane for the case of upward flow at Ha = 220, 
Gr = 1.44x108 and cw = 0.12. (a) Re = 2027, (b) Re = 5067, (c) Re = 10135, (d) Re = 15201, and (e) Re = 20270. The 
z-axis is stretched relative to the x-axis by a factor of 5 to more easily show the entire flow domain. 

 

FIG. 44. Contours of instantaneous temperature on the y=0 center-plane for the case of upward flow at Ha = 220, Gr = 
1.44x108 and cw = 0.12. (a) Re = 2027, (b) Re = 5067, (c) Re = 10135, (d) Re = 15201, and (e) Re = 20270. The z-axis 

is stretched relative to the x-axis by a factor of 5 to more easily show the entire flow domain. 
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FIG. 45. Profiles of (a) time-averaged axial velocity, and (b) time-averaged temperature along the z-direction at x/b 
= -4.35 and y/b = 0. Ha = 220, Gr = 1.44x108 and cw = 0.12. Re=2027, 5067, 10135, 15203, and 20270. 

6.3.B.ii Effect of Hartmann number in upward flows 

Three upward flow simulations were performed with Re=2027, Gr=1.44x108 and various 

Hartmann numbers ranging from 110 to 880. Some selected results are included in Figs. 46-48 

to illustrate the effect of increasing Ha. As in the downward flows, the effect of increasing Ha is 

mainly to improve the stability of the flow. The consequence of this is larger maximum 

temperatures at the hot wall. Additionally, as Ha increases, the jets attached to the sidewalls 

become thinner and the bulk flow becomes more uniform due to increased MHD effect.  

(a) (b) 
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FIG. 46. Contours of instantaneous axial velocity on the y=0 center-plane for the case of upward flow at Re = 2027, Gr 
= 1.44x108 and cw = 0.12. (a) Ha = 110, (b) Ha = 220, (c) Ha = 880. The z-axis is stretched relative to the x-axis by a 

factor of 5 to more easily show the entire flow domain. 

                         

FIG. 47. Contours of instantaneous temperature on the y=0 center-plane for the case of upward flow at Re = 2027, Gr 
= 1.44x108 and cw = 0.12. (a) Ha = 110, (b) Ha = 220, (c) Ha = 880. The z-axis is stretched relative to the x-axis by a 
factor of 5 to more easily show the entire flow domain. 

 

Instantaneous u/U Instantaneous u/U Instantaneous u/U 

9 

8 

7 

5 

4 

3 

2 

1 

0 

-1 

6 

9 

8 

7 

5 

4 

3 

2 

1 

0 

-1 

6 

9 

8 

7 

5 

4 

3 

2 

1 

0 

-1 

6 

Instantaneous θ  Instantaneous θ  Instantaneous θ  

0.3709 

0.3338 

0.2967 

0.2596 

0.2225 

0.1854 

0.1483 

0.1113 

0.0742 

0.0371 

0 

0.3709 

0.3338 

0.2967 

0.2596 

0.2225 

0.1854 

0.1483 

0.1113 

0.0742 

0.0371 

0 

0.3709 

0.3338 

0.2967 

0.2596 

0.2225 

0.1854 

0.1483 

0.1113 

0.0742 

0.0371 

0 



88 

 

FIG. 48. Profiles of (a) time-averaged axial velocity, and (b) time-averaged temperature along the z-direction at x/b 
= -4.35 and y/b = 0 for Ha = 220, Re = 2027, and cw = 0.12 for upward flow. Ha = 110, 220, and 880. 

6.3.B.iii Effect of Grashof number in upward flows 

Two upward flow simulations were performed with Ha=220, Re=2027, and two Grashof numbers, 

1.44x108 and 3.6x108. Some selected results are included in Figs. 49-50 to illustrate the effect of 

increasing Gr. The increased buoyant effects from increasing Gr are similar to the effects seen in 

downward flows, though they are simpler. In the case of Gr=3.6x108, flow instabilities grow more 

quickly than in the case of Gr=1.44x108 as demonstrated by the faster growth of the thermal 

boundary layer which, due to advection by large vortices which recirculate flow in the bulk, is 

smeared across the thickness of the duct all at once. As in the downward cases, increasing Gr 

causes the dimensionless temperature to decrease at the hot wall.  

(a) (b) 
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FIG. 49. Results of the numerical simulations performed at Ha = 220, Re = 2027, and cw = 0.12 for downward flow. (a, 
c) Gr = 1.44x108, (b, d) Gr = 3.6x108. Contours on the y=0 center-plane are plotted for (a, b) instantaneous streamwise 
velocity, and (c, d) instantaneous temperature. The z-axis is stretched relative to the x-axis by a factor of 5 to more 
easily show the entire flow domain. 

 

 

FIG. 50. Profiles of (a) time-averaged axial velocity, and (b) time-averaged temperature along the z-direction at x/b 
= -4.35 and y/b = 0 for Ha = 220, Re = 2027, and cw = 0.12 for upward flow. Gr = 1.44x108, 3.6x108. 
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6.4 Balance of X-direction Forces 

To provide a deeper understanding of the physics and phenomena of MHD mixed convection 

flows, the results of four simulations with surface heating qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, 

and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), both electrically conducting (cw=0.12) and 

nonconducting walls (cw~0), and both upwards and downwards flow orientations are presented 

and discussed. The discussion focuses primarily on the pressure distribution and the x-direction 

forces which shape it, including electromagnetic (EM) Lorentz force, buoyant force, and 

hydrodynamic forces which include viscosity and inertia. At every point and time in the 

simulations, the pressure gradients in each direction are perfectly balanced with the sum of all 

the forces listed here. Often, the sum of forces is dominated by one force which is much larger 

than the others. For instance, in fully developed MHD flows with N, Ha>>1, EM force alone 

balances the axial pressure gradient in the bulk region while hydrodynamic forces are negligible 

everywhere except for special layers attached to the walls. It will be shown that no such 

simplifications are applicable in the present cases due to the unsteady nature of mixed convection 

flows, despite the MHD effects. 

This discussion begins with the pressure distribution. The pressure distributions for the four cases 

are plotted together in Fig. 51. For each case, the pressure is plotted along the axis of the duct, 

x, on the y=0 center-plane for 5 values of z to span the thickness of the flow domain.  
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FIG. 51. Instantaneous pressure at y=0 for 5 values of z is plotted along the x-axis for each of 4 cases with surface 
heating and variable flow orientation (upwards or downwards) and wall conductivity (cw=0.12 or ~0). qo’’=0.20 MW/m2, 

Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). 

With the exception of the downward flow case with nonconducting walls, the variation of pressure 

along the z-direction are so small compared to the variations along x that the five spatially 

distributed curves seem to be one. The differences between cases, by contrast, are large enough 

that the four collections of curves are quite distinct from one another, though the outlet boundary 

condition specifies that they all end with p=0. There are only small deviations from the mean 

pressure distribution so the pressure field essentially balances the mean distribution of the sum 

of other axial forces. In the following analysis, the axial forces which shape the pressure 

distribution are investigated. 
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To begin, the mean axial buoyant force is integrated along the axis of the duct and compared to 

the pressure distribution (Fig. 52). For the present simulations, the majority of the pressure drop 

is shown to come from buoyancy, though there is still a significant portion of pressure loss which 

is unaccounted for in cases with conducting walls. For cases with nonconducting walls, the 

integrated buoyant force is shown to account for all but a tiny fraction of the pressure drop which 

is easily accounted for by viscous drag.  

  

FIG. 52. The instantaneous mean pressure of each fluid cross-section is plotted along x for each of 4 cases with surface 
heating and variable flow orientation (upwards or downwards) and wall conductivity (cw=0.12 or ~0). qo’’=0.20 MW/m2, 
Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). The integraded buoyant force is also plotted 
for each case. Here, "integrated buoyancy" refers to the integral from 1.4m to x of the instantaneous bouyancy 
force, -ρgβ(T-To), averaged on fluid cross-section. g>0 for downward flows and g<0 for upward flows. 

In Fig. 53, the remaining pressure losses (excluding some small viscous drag) in the cases with 

conducting walls are accounted for by adding the integral of the mean EM force to the integral of 

mean buoyant force. EM force is expected to account for the losses because, in conducting wall 

cases, electric currents reconnect through the walls such that the current in the fluid nets EM force 

which opposes the flow. By contrast, the net EM force is zero in cases with nonconducting walls 

because the currents must close entirely in the fluid, leading to an equal quantity of EM forces 

which aid and oppose the flow. 
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FIG. 53. The instantaneous mean pressure of each fluid cross-section is plotted along x for each of 4 cases with surface 
heating and variable flow orientation (upwards or downwards) and wall conductivity (cw=0.12 or ~0). qo’’=0.20 MW/m2, 
Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). The integraded EM+buoyancy is also 
plotted for each case. Here, "integrated EM+Buoyancy" refers to the integral from 1.4m to x of the sum of the 
instantaneous bouyancy force and axial Lorentz force, -ρgβ(T-To)-JzB, averaged on fluid cross-sections. g>0 for 
downward flows and g<0 for upward flows.  

Interestingly, there are regions where strong mean inertial force causes temporary deviations 

between the curves in Fig. 53, most notably in the case of downward flow with nonconducting 

walls between x=-0.5 m and 0.2 m. It is also clear that viscous drag accounts for only a very small 

portion of the total pressure drop compared to buoyancy (and EM forces in the case of conducting 

walls). By subtracting the two sets of curves from one another (mean pressure and the sum of 

mean buoyant and EM forces), the portion of the mean pressure distribution which balances 

viscous and inertial forces is revealed more clearly (Fig. 54). Interestingly, the temporary pressure 

drops of the downward cases coincide with the separation of the boundary layer and the pressure 

recovers when the boundary layer reattaches to the sidewall.  
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FIG. 54. The contribution of hydrodynamic forces to the mean pressure distribution is plotted for each of 4 cases with 
surface heating and variable flow orientation (upwards or downwards) and wall conductivity (cw=0.12 or ~0). qo’’=0.20 
MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). This contribution is the difference 
between the instantaneous mean pressure of each fluid cross-section and the sum of integrated EM+Buoyancy forces. 
Here, "integrated EM+Buoyancy" refers to the integral from 1.4m to x of the sum of the instantaneous bouyancy force 
and axial Lorentz force, -ρgβ(T-To)-JzB, averaged on fluid cross-sections. g>0 for downward flows and g<0 for upward 
flows.  

The mean pressure accounted for by hydrodynamic forces steadily decreases along the axial 

direction due to viscous losses to the walls. The larger temporary pressure losses are inertial – 

the pressure drops sharply as the kinetic energy of the fluid increases, and the pressure recovers 

when the kinetic energy decreases as the fluid stabilizes. While these temporary drops are small 

compared to the total pressure drop across the duct, it cannot be said that inertial forces are 

unimportant to the behavior of the flow as these forces are dominant in small regions and account 

for the largest pressure gradients in the flow. This point is illustrated in Figs. 55-58 where the 

mean pressure gradients are plotted along with mean buoyant force, mean EM force, and mean 

hydrodynamic forces. Below, the mean force distributions along the axis of the duct are discussed 

case by case. 
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FIG. 55. The instantaneous mean pressure gradient of each fluid cross-section is plotted along with the instantaneous 
mean values of buoyant force, axial Lorentz force, and the sum of axial hydrodynamic forces on each fluid cross-section. 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12, downward flow 

with surface heating. 

In the case of downward flow with conducting walls, hydrodynamic forces are on average the 

weakest of the forces except for a few places where they briefly exceed the net electromagnetic 

force, most notably where the boundary layer separates near the beginning of the heated region. 

Buoyant force is by far the strongest force inside the heated region. This case has the highest 

mean temperature as it features a reverse flow bubble attached to the hot sidewall and it is more 

stable than the nonconducting downward flow. 
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FIG. 56. The instantaneous mean pressure gradient of each fluid cross-section is plotted along with the instantaneous 
mean values of buoyant force, axial Lorentz force, and the sum of axial hydrodynamic forces on each fluid cross-section. 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12, upward flow 

with surface heating. 

Since the upward flow case with conducting walls is the most stable case, the mean hydrodynamic 

forces are smallest. The mean electromagnetic force dominates the mean force balance until near 

the end of the heated region where buoyancy becomes the largest contributor to the pressure 

drop. 
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FIG. 57. The instantaneous mean pressure gradient of each fluid cross-section is plotted along with the instantaneous 
mean values of buoyant force, axial Lorentz force, and the sum of axial hydrodynamic forces on each fluid cross-section. 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0, downward flow with 

surface heating. 

The downward case with nonconducting walls is the most unstable case as it has less Joule 

dissipation than the conducting wall case to stabilize the flow and because the buoyancy opposing 

the flow tends to destabilize it similarly to adverse pressure gradients in other flows. This highly 

unsteady flow has the largest hydrodynamic forces of the four cases and the mean hydrodynamic 

forces are shown to have the largest magnitude of the mean forces. The mean EM force is 

interesting here because it oscillates about zero, indicating that axial currents exist. After all, if the 

current were strictly 2D, then the mean EM force in this case would be zero throughout the axis 

of the duct. Interestingly, local minima in mean EM force often correspond to local maxima in 

mean buoyancy and vise versa (e.g. at x=0 m). This implies that mean buoyancy is partially 

balanced by mean EM force by virtue of axial currents which redistribute the EM force. This effect 

is somewhat masked by the even larger hydrodynamic forces in this case. 
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FIG. 58. The instantaneous mean pressure gradient of each fluid cross-section is plotted along with the instantaneous 
mean values of buoyant force, axial Lorentz force, and the sum of axial hydrodynamic forces on each fluid cross-section. 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0, downward flow with 

surface heating. 

In the case of upward flow with nonconducting walls, an interesting instability occurs at the 

beginning of the heated region which causes the mean x-direction forces to oscillate. As the 

instability grows, the mean hydrodynamic forces grow to dominate the force balance, reaching a 

maximum magnitude around x=-0.1 m before the mean hydrodynamic forces abruptly diminish 

and mean buoyancy becomes the largest force. This instability is very interesting as it is shaped 

by the combined effect of EM, buoyant, and hydrodynamic forces. A large vortex situated near 

the end of the heated region (x~0.25 m) brings with it a temporary dominance of mean 

hydrodynamic forces. A smaller vortex can be seen downstream (x~0.38 m) to provide the same 

effect but much diminished. As in the other case with nonconducting walls, the oscillations of 

mean EM force are indicative of axial electric currents.  

So far, the force balance has been discussed with respect to the mean values to show the 

relationship between the mean forces and the pressure distribution. However, the wealth of 

phenomenon these cases offer stems mostly from how anisotropic the flows are, particularly along 
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the z-direction due to steep z-direction temperature gradients and the tendency for EM forces to 

damp velocity gradients along the y-direction. The axial pressure gradients are not able to balance 

the entire buoyant force distribution because the buoyancy has nonzero curl and pressure 

gradients are curl-free by definition. So, while the mean buoyant force can be absorbed by the 

pressure, other forces must arise to balance the deviations from the mean. 

 

FIG. 59. The instantaneous pressure gradient is plotted along with instantaneous values of buoyant force, axial Lorentz 
force, and the sum of axial hydrodynamic forces at y=0m, x=0m. qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and 
ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), surface heating only, (a, c) downward flow, (b, d) upward flow, (a, b) 

cw=0.12, (c, d) cw~0. 

The x-direction forces are plotted at x=0 m, y=0 m, for each of the cases in Fig. 59a-d to show 

how the buoyant force is not entirely balanced by the pressure gradient. From the figures, it is 

clear that generally, hydrodynamic forces cannot be neglected outside of boundary layers as is 

(b) (a) 

(c) (d) 
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commonly assumed in MHD flows with Ha, N>>1 (here Ha=220 and N~20). It is also worth 

pointing out that while the hydrodynamic forces are not confined to thin layers attached to the 

walls, they do tend to be larger near the walls where viscous boundary layers form.  

 

FIG. 60. The instantaneous pressure gradient is plotted along with instantaneous values of buoyant force, axial Lorentz 
force, and the sum of axial hydrodynamic forces at z=0 m, x=0 m. qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and 
ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), surface heating only, (a, c) downward flow, (b, d) upward flow, (a, b) 

cw=0.12, (c, d) cw~0. 

The x-direction forces are plotted at x=0 m, z=0 m in Figs. 60a-d to show how forces vary along 

the y-axis. The traditional assumption that for large N, the flow becomes quasi-two-dimensional 

(Q2D) is perhaps not justifiable in the downward cases which feature large variations in forces 

along the y-axis. This topic of evaluating whether or not these flows are Q2D is discussed in 

section 6.5. Lastly, it is worth noting that the EM force varies sharply very near the Hartmann walls 

(b) 

(c) (d) 

(a) 
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and the hydrodynamic forces react accordingly. This is evidence that Hartmann layers are intact 

in the present flows. 

6.5 3D Flow Features 

In sufficiently strong transverse magnetic fields, turbulence in conducting fluids appears in a 

special form such that turbulent eddies are elongated parallel to the magnetic field and grow to 

length scales comparable to the duct dimension in the transverse plane. The turbulence is said 

to be quasi-two-dimensional (Q2D) when, outside of the Hartmann layers, the flow is 

two-dimensional with negligible velocity nonuniformity along the magnetic field direction due to 

Joule dissipation [77]. However, the influence of buoyant effects may diminish the Q2D quality of 

the flow as indicated by the plots (Fig. 60) of axial force along the y-direction in section 6.4. To 

investigate these effects, the results of four cases (#1-4 in Table 4) consisting of upwards and 

downwards flows in both conducting and nonconducting ducts with surface heating in the setup 

described in Chapter 5 (Fig. 27) are examined for Ha=220, Re=2027, Gr=1.44x108. In the 

following analysis, the means by which the buoyant forces diminish the Q2D quality of the flow is 

explored; however, one should note that the turbulence is still not isotropic due to the effects of 

Joule dissipation.  

The following metric is proposed for evaluating how nonuniform along the y-direction a flow’s 

velocity distribution is. The y-nonuniformity metric, sy, is evaluated at each cross-section along 

the axis as in Eq. 32: 

sy(x) =
∑ ∆𝑧i ∑ ∆𝑦j|uij(x)−Uy̅̅ ̅̅

i
(x)|ji

𝐴U̅
       (32) 

Here, Uy
̅̅̅̅

i
=

∫ udy
𝑏

−𝑏

∫ dy
𝑏

−𝑏

 is the velocity averaged across y at each z location denoted by the subscript, 

i. The subscript j corresponds to grid locations along the y direction. ∆𝑧i and ∆𝑦j are grid cell 

widths, U̅ is the mean velocity, and A is the area.  



102 

 

FIG. 61. y-nonuniformity of the instantaneous axial velocity field on fluid cross-sections for each of 4 cases with surface 
heating and variable flow orientation (upwards or downwards) and wall conductivity (cw=0.12 or ~0). qo’’=0.20 MW/m2, 
Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). The locations where y-nonuniformity is 
maximum are marked by black dotted lines (a)-(d) for (a) downward flow in a conducting duct, (b) downward flow in a 

nonconducting duct, (c) upward flow in a conducting duct, and (d) upward flow in a nonconducting duct. 

sy is plotted for upwards and downwards flows with both conducting and nonconducting walls in 

Fig. 61. From the inlet, sy increases as the initially uniform flow hydrodynamically develops viscous 

boundary layers. This is interrupted by the magnetic field ramping up which causes the flow to 

redistribute evenly along the magnetic field direction outside of very thin MHD boundary layers. 

The Shercliff and Hunt velocity profiles downstream of x=-0.8 m feature sy= 0.01 and 0.07 

respectively with the latter having a higher value due to the parabolic shape of the side-layer jets. 

The value of sy increases in the heated region, especially in the downward flow cases. The 

increase in sy can be explained by a combination of 3 proposed effects: (1) buoyancy may shape 

the velocity field to promote flow instability and inertial transfers of momentum, a competing 

mechanism to Joule dissipation that acts to restore isotropic turbulence [77]; (2) the temperature 

profile may be asymmetrical along the magnetic field direction, resulting in asymmetrical velocity 

(d) (a) (c) (b) 
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profiles necessary to balance the buoyant force; and (3) buoyancy may increase the flow rate 

inside the side layers where, in electrically conducting ducts, the velocity profile is significantly 

rounded by viscous forces. These effects will be addressed in the context of the base flow before 

examining the full unsteady flow. 

The so-called “time-averaged sy” is calculated from replacing the flow variables in Eq. 32 with the 

time-averaged flow variables. The time-averaged sy is plotted in Fig. 62. 

 

FIG. 62. y-nonuniformity of the time-averaged axial velocity field on fluid cross-sections for each of 4 cases with surface 
heating and variable flow orientation (upwards or downwards) and wall conductivity (cw=0.12 or ~0). qo’’=0.20 MW/m2, 
Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). 

Except for the upwards conducting case, the time-averaged sy is generally less than the 

instantaneous sy which indicates that the base flow is generally more uniform along the y-direction 

than any instant of the full unsteady flow. As shown in Figs. 61 and 62, inside the heated region, 

the buoyancy opposed flows have higher sy than their upward flow counterparts, and the 

conducting duct flows have higher sy than electrically nonconducting ducts with the same 
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orientation. The time-averaged flow behavior inside the heated region of each duct is illustrated 

in Figs. 63-70. 

Time-Averaged u 

Downward, conducting 

 

FIG. 63. 2D profiles of the time-averaged axial velocity field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, 

qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12.  
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Downward, nonconducting 

 

FIG. 64. 2D profiles of the time-averaged axial velocity field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 
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Upward, conducting 

 

FIG. 65. 2D profiles of the time-averaged axial velocity field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 
MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Upward, nonconducting 

 

FIG. 66. 2D profiles of the time-averaged axial velocity field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 
MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 
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Time-Averaged T 

Downward, conducting 

 

FIG. 67. 2D profiles of the time-averaged temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Downward, nonconducting 

 

FIG. 68. 2D profiles of the time-averaged temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 
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Upward, conducting 

 

FIG. 69. 2D profiles of the time-averaged temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 
MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Upward, nonconducting 

 

FIG. 70. 2D profiles of the time-averaged temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 
MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 

Interestingly, the downward cases feature lasting temperature difference between the Hartmann 

walls which has caused the base velocity profiles to slope along the y-direction. Such stable 

asymmetry is only possible in the downward scenarios because a feedback relationship exists 

between velocity and temperature which behaves oppositely in upward scenarios. In (upward) 

buoyancy assisted flows, the velocity of slightly warmer fluid increases which cools the hot spot 

and restores temperature uniformity. However, in buoyancy opposed flows, the velocity of 

relatively warmer fluid decreases which causes the temperature to increase until an asymmetric 

temperature statistical equilibrium is reached. This asymmetry is observed in the time-averaged 



112 

temperature profiles shown below in Fig. 71 which correspond to the location of maximum 

instantaneous sy in Fig. 61. 

 

FIG. 71. 2D profiles of the time-averaged temperature field on duct cross-sections where the y-nonuniformity is 
maximum for qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), surface 
heating, (a, c) cw=0.12, (b, d) cw~0, and (a, b) downward flow, (c, d) upward flow. 

The time-averaged temperature profiles reveal ~63oC and ~15oC temperature differences 

between Hartmann walls for conducting and nonconducting walls respectively for downward flows 
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despite the symmetry of the problem setup. There is no significant asymmetry in upward 

scenarios. The time-averaged velocity profiles corresponding to the same locations are plotted 

below in Fig. 72. 

 

FIG. 72. 2D profiles of the time-averaged velocity field on duct cross-sections where the y-nonuniformity is maximum 
for qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), surface heating, (a, 
c) cw=0.12, (b, d) cw~0, and (a, b) downward flow, (c, d) upward flow. 
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The velocity asymmetry due to temperature asymmetry is observed above for the downward 

cases. Thus, the fact that downward base flows have generally higher flow nonuniformity than 

upwards base flows can be attributed to this proposed feedback mechanism that promotes 

asymmetric temperature profiles. Fig. 72 also shows how the base flows in electrically conducting 

ducts have rounded velocity profiles near the sidewalls while the flows in nonconducting ducts do 

not. In locations where buoyant forces are strongest, the jets are largest which accounts for the 

increased y-nonuniformity in the heated region of electrically conducting ducts.  

The nonuniformity along the magnetic field direction is contributed to by unsteady flow features 

as observed in the oscillations of sy in the heated region (Fig. 61). The oscillations of sy have 

amplitudes of ~0.1 for downward flows and ~0.05 for upward flows indicating stronger 

y-nonuniformity associated with turbulence in buoyancy opposed flow. The axial velocity profiles 

are provided in Fig. 73 for locations where sy is largest inside the uniform magnetic field region at 

the instants shown. 
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FIG. 73. 2D profiles of the instantaneous velocity field on duct cross-sections where the y-nonuniformity is maximum 
for qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), surface heating, (a, 

c) cw=0.12, (b, d) cw~0, and (a, b) downward flow, (c, d) upward flow. 

The four axial velocity profiles in Fig. 73 show that the sources of y-nonuniformity go beyond the 

mechanisms which were introduced in the base flow analysis. As shown in the corresponding 

temperature profiles below (Fig. 74), the y-nonuniformity in temperature is even stronger than in 
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the base temperature field with ~145oC difference between Hartmann walls in the conducting 

downward case. While the unsteady temperature asymmetry certainly contributes to 

y-nonuniformity, there are y-nonuniformities in the above velocity profiles which appear 

independent of the temperature asymmetry. These fluctuations can be explained by the presence 

of flow instabilities in which inertial forces transfer momentum in all three dimensions.  
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FIG. 74. 2D profiles of the instantaneous temperature field on duct cross-sections where the y-nonuniformity is 
maximum for qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108), surface 
heating, (a, c) cw=0.12, (b, d) cw~0, and (a, b) downward flow, (c, d) upward flow. 

In downward flows where sy is largest due to strong fluctuations, there are two modes of instability 

to consider: (1) shear instability which requires an inflection point in the velocity profile and (2) 

buoyant instability which requires that the temperature increase in the direction of gravity. In the 

conducting wall reference case, the shear instability is prevalent throughout the heated region 

while the buoyant instability mode dominates the nonconducting duct flow.  
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FIG. 75. Total kinetic energy and components of kinetic energy are calculated for fluid cross-sections along the 
x-direction for downward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, 
Re=2027, Gr=1.44x108), and cw=0.12. The kinetic energy calculations do not include the mean axial flowrate. 

  



119 

                                                 

FIG. 76. Velocity streamlines on the y=0 center-plane for downward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 
T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 

In the electrically conducting downward flow case, the influence of buoyant effects causes flow 

reversal and recirculation inside the heated region as shown in Fig. 76. In transitioning between 

-30 

-20 

-10 

0 

  x [cm] 

[cm] 
10 

20 

30 



120 

the forced flow velocity profile to the MHD mixed convection profile with flow reversal, the 

boundary layer separates from the heated surface and the oncoming flow migrates to the cold 

sidewall. The transition region beginning at the boundary layer separation is ~10 cm long and 

includes a smaller region of ~3 cm where a distinct spike in z-direction kinetic energy and steep 

increase in x-direction kinetic energy (Fig. 75) occurs as the flow migrates to the cold sidewall. 

Actually, in the instant depicted, the boundary layer separates in two locations but quickly 

reattaches downstream of the first location. The disturbance caused by the second (and lasting) 

separation is shown to coincide with the location of maximum y-direction kinetic energy which, 

unsurprisingly, is the precise location where sy is largest (x=-0.2347 m). In section 6.4 it was 

shown that fluctuations in downwards flows are associated with significant inertial forces and it is 

likely that these fluctuating inertial forces contribute to y-nonuniformity. Inertial transfers of 

momentum are a competing mechanism to Joule dissipation as the inertial transfers tend to 

promote isotropic turbulence while Joule dissipation tends to promote Q2D turbulence [77]. 
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FIG. 77. Total kinetic energy and components of kinetic energy are calculated for fluid cross-sections along the 
x-direction for downward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, 
Re=2027, Gr=1.44x108), and cw~0. The kinetic energy calculations do not include the mean axial flowrate. 
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FIG. 78. Velocity streamlines on the y=0 center-plane for downward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 
T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 

In the electrically insulated downward flow case, the buoyant effects cause flow reversal which is 

most often near the hot wall but which also appears near the cold wall due to the large-scale 

-30 

 

-30 -20 

 

-20 
-10 

 

-10 0 

  x [cm] 

10 

 

10 20 

 

20 
30 



123 

mixing which is generated by buoyant instability. With less Joule dissipation than the electrically 

conducting case, the flow is more unstable and large vortices span the width of the duct for the 

entire heated region and even ~20cm upstream and downstream of the heated region. These 

large bulk vortices, hallmarks of MHD turbulence, dominate the flow. Because they alternate 

between clockwise and counterclockwise, the boundary layer tends to separate frequently and 

flow migrates to the opposite sidewall to avoid flowing counter to the circulation of the vortices. 

As in the electrically conducting scenario, the boundary layer separations coincide with spikes in 

sy, and y and z-direction kinetic energy, the largest of these occurring at x=0.0204 m in the instant 

shown. Though boundary layer separation coincides with the strongest fluctuations of kinetic 

energy and nonuniformity, fluctuations of these quantities exist throughout the turbulent heated 

region.   

In both electrically conducting and nonconducting buoyancy opposed flows, spikes in y-direction 

kinetic energy and y-direction nonuniformity were shown to coincide with boundary layer 

separation. Smaller fluctuations were shown to coincide with vortices that did not cause boundary 

layer separation. It is important to note that in both scenarios, the kinetic energy associated with 

z-direction motions is everywhere larger than kinetic energy associated with y-direction motions 

and x-direction motions have larger energy still, reinforcing the notion that Joule dissipation 

modifies turbulence in MHD flows to dampen fluctuations not perpendicular to the magnetic field. 

To get a better understanding of the extent to which the flow is Q2D, observe the velocity profiles 

in the heated region shown in Figs. 79-86 below. Then note how the temperature profiles are not 

directly influenced by the magnetic field to be uniform along the y-direction and are extremely 

asymmetric in downward flow cases while being symmetric in upward flows due to the feedback 

mechanism proposed in this section. 
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Instantaneous u 

Downward, conducting 

 

FIG. 79. 2D profiles of the instantaneous velocity field on duct cross-sections at x= -0.3m, -0.225m, -0.15m, -0.075m, 
0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, 
and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Downward, nonconducting 

 

FIG. 80. 2D profiles of the instantaneous velocity field on duct cross-sections at x= -0.3m, -0.225m, -0.15m, -0.075m, 
0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, 
and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 
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Upward, conducting 

 

FIG. 81. 2D profiles of the instantaneous velocity field on duct cross-sections at x= -0.3m, -0.225m, -0.15m, -0.075m, 
0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and 
ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Upward, nonconducting 

 

FIG. 82. 2D profiles of the instantaneous velocity field on duct cross-sections at x= -0.3m, -0.225m, -0.15m, -0.075m, 
0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and 
ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 
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Instantaneous T 

Downward, conducting 

 

FIG. 83. 2D profiles of the instantaneous temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Downward, nonconducting 

 

FIG. 84. 2D profiles of the instantaneous temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for downward flow with surface heating, 
qo’’=0.20 MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 
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Upward, conducting 

 

FIG. 85. 2D profiles of the instantaneous temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 
MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw=0.12. 
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Upward, nonconducting 

 

FIG. 86. 2D profiles of the instantaneous temperature field on duct cross-sections at 
x= -0.3m, -0.225m, -0.15m, -0.075m, 0m, 0.075m, 0.15m, 0.225m, 0.3m for upward flow with surface heating, qo’’=0.20 

MW/m2, Bo=0.5 T, U=0.02 m/s, and ΔT=350.5oC (Ha=220, Re=2027, Gr=1.44x108). cw~0. 

6.6 Volumetric Heating 

Eight simulations were performed to study the effect of volumetric heating on MHD flows in vertical 

ducts as compared to surface heating. Both upwards and downwards flows inside conducting and 

nonconducting duct walls were considered. The magnetic field Bo=0.5 T, mean velocity U=0.02 

m/s and total heating per axial length Q’=0.01 MW/m (ΔT=381oC) are the same for all 8 cases 

(Ha=220, Re=2027, Gr=1.57x108). In the first 4 cases, a volumetric heating profile similar to the 

results of a neutronics simulation performed by M. Riva was used. In the second set of 4 cases, 

an exponential heating profile was used that is much steeper than the nuclear heating profile such 
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that nearly all of the heating occurs very near to the sidewall at z=-a. In all 8 cases, the volumetric 

heating occurs inside the fluid domain only. Lastly, the volumetric heating cases are compared 

with surface heating cases with the same Q’ to qualify the use of surface heating in studying MHD 

flows with steep volumetric heating profiles. 

In fusion reactor designs, compressed and heated plasma in the reactor core fuses, producing 

neutrons which then permeate the device. As the neutrons interact with matter in the blankets 

surrounding the core, volumetric heating is generated within the material. In PbLi, neutrons 

interact with lead and gammas are emitted, causing the heating to drop off quickly with much of 

the energy being deposited near the first wall. The high photon production in lead is typical of 

heavy elements because of high inelastic and capture resonance cross-sections at neutron 

energy of the order of MeV. As the gammas have a very short mean free path, the energy is 

ultimately absorbed to become heat near the first wall. The resulting heating curve is much 

steeper than if the neutrons impinged on pure Li, for instance, which does not have high Z material 

to quickly attenuate neutrons and produce photons. In the Li, the neutrons have to bounce off of 

many Li atoms, depositing much of their energy as heat, until the neutron energy is low enough 

for the nuclear reaction n+Li6->T+He4 + 4.78 MeV (exothermic), to be likely. Furthermore, high 

energy neutrons are likely to interact with Li7 through the endothermic reaction 

n+Li7->T+n’+He4-2.5 MeV, thus affecting the shape of the heating curve. As the neutrons behave 

differently depending on the materials, the volumetric heating curve depends not only on the 

breeder material but also on the structure and cooling scheme of the blankets. Indeed, the 

geometry of the reactor and even the shape of the plasma can influence the heating curve in the 

breeding material. For the present analysis, a heating curve is constructed to resemble the 

heating produced in PbLi in a wedge piece of a 3D torus which represents a piece of tokamak 

simulated by M. Riva using MCNP6 1.0 neutron transport code with ENDFB/VII.0. The PbLi is 

situated behind a thin (5mm) first wall composed of ferritic steel which bounds the plasma region 
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in the center of the wedge. Though not including the volumetric heating inside the walls or the 

surface heating on the first wall by bremsstrahlung radiation, this configuration most closely 

corresponds to the heating inside a self-cooled blanket. The results show that heating is generally 

higher in the inboard where the magnetic field is also higher compared to the outboard blanket. 

However, the normalized heating curves for the inboard and outboard blankets were shown to 

match closely in shape. More information regarding neutronics simulation can be found elsewhere 

[78]. In Fig. 87 below, the heating profile used in the present analysis is compared with the first 5 

cm of the heating curve produced in MCNP for an outboard LM blanket with PbLi at the equator 

of a tokamak. 

 

FIG. 87. Volumetric heating profiles. Both heating distributions have the same total heating per axial length Q’=0.01 
MW/m when integrated over the fluid cross-section. The heating is uniform along the y-direction. 
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Here, the curves have been scaled such that their total heating per unit length is the same 

(Q’=0.01 MW/m), assuming that the heating is uniform along the y-direction inside the fluid. In 

Fig. 87, the dashed red curve is given by the following polynomial and parameters as implemented 

in HIMAG: 
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  p1=1.7569865669577*C,          

  p2=-1.81685787408323x101*C,           

  p3=8.08211328842193x101*C,        

  p4=-2.023006874524559x102*C,        

  p5=3.130259698018951x102*C,        

  p6=-3.100016305296208x102*C,        

  p7=1.971743300940257x102*C,        

  p8=-7.92480180180538x101*C,           

  p9=1.98526103983034x101*C,        

  p10=-3.4988089715951*C,            

  p11=9.946374499912x10-1*C.        

Here, C is the maximum heating, a is the duct half width, z= [-0.023 m, 0.023 m], and q’’’ is given 

in W/m3.  

In the present analysis, the buoyant effects produced by the nuclear heating distribution given by 

Eq. 33 are compared with the buoyant effects produced by a much steeper heating profile that is 

constructed using an exponential formulation. Then, the effect of increasing the heating gradient 
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can be explored for the same total applied heating. The present analysis’ exponential heating 

curve is plotted along with the nuclear heating curves in Fig. 88 below. 

 

FIG. 88. Volumetric heating profiles. All three heating distributions have the same total heating per axial length Q’=0.01 
MW/m when integrated over the fluid cross-section. The heating is uniform along the y-direction. 

The curves shown in Fig. 88 all have the same total heating per unit length (Q’=0.01 MW/m), 

assuming that the heating is uniform along the y-direction inside the fluid. The exponential heating 

curve above is given by: 

𝑞’’’(𝑧) = 𝐶 ∗ 𝑒𝑥𝑝(−𝑀 ∗ (𝑧/𝑎 + 1)),      (34) 

M=10,          

C=9.451795860691433x107 W/m3,      
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a=2.3x10-2 m.         

Here, C is the maximum heating, a is the duct half width, z= [-0.023 m, 0.023 m], q’’’ is given in 

W/m3, and M is the shape parameter which determines the steepness of the exponential curve. 

A shape parameter of M=1 would more closely approximate the nuclear heating curves while the 

high value of M=10 will yield buoyant effects similar to surface heating at the same Q’ as will be 

shown near the end of this analysis. Indeed, one of the motivations for using such a steep 

exponential heating was to see if such approximation could be used to mimic surface heating. 

The volumetric heating in the present simulations is applied uniformly along the y-direction in the 

fluid domain only.  

6.6.A Results of Volumetric Heating Comparison 

Both time-averaged and instantaneous results of simulations performed in HIMAG using either 

an exponential heating or a nuclear heating distribution are shown below including velocity and 

temperature fields on the y=0 midplane. 
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6.6.A.i Downward flow with conducting walls: 

Exponential 

 

FIG. 89. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw=0.12, downward flow with exponential heating. The flow enters from the top in 
the direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire 
flow field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. The 

dashed, black lines mark the bounds of the heated region. 

(a) (b) (c) (d) 
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Nuclear 

 

FIG. 90. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw=0.12, downward flow with nuclear heating. The flow enters from the top in the 
direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire flow 
field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. The dashed, 
black lines mark the bounds of the heated region. 

For downward flow in electrically conducting ducts, the exponential heating case (Fig. 89), on 

average, features a longer, thinner reverse flow bubble in the base flow compared to the nuclear 

heating case (Fig. 90), with the initial boundary layer separation occurring further upstream 

(x~-0.2 m vs. x~-0.1 m) and the final boundary layer reattachment occurring further downstream 

(x~0.3 m vs. x~0.2 m). Additionally, the base flow of the exponential heating case features faster 

reverse flow on the hot sidewall, but also slower forward flow near the cold sidewall and, in 

general, caries a higher flowrate in the bulk compared to the nuclear heating base flow. Due to 

the higher concentration of heating near the hot sidewall in the exponential heating case, the 

time-averaged temperature distribution includes generally steeper gradients and higher 

(a) (b) (c) (d) 
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temperatures near the hot wall compared to the nuclear heating case but also has a flatter 

time-averaged z-direction temperature gradient near the cold wall and is generally colder in the 

bulk. Interestingly, due to the faster forward flow at the cold wall in the nuclear heating case, the 

temperature is colder there compared to the exponential case as the competition between 

advection and diffusion terms becomes more important than the volumetric heating term near the 

cold wall. The nuclear heating case features a unique behavior near the entrance to the heated 

region where the temperature maximum is in the center of the duct instead of near the hot wall 

for ~20 cm until the location of boundary layer separation. In this region, the side layer jets from 

the M-shaped profile upstream are still strong enough to advect the heat downstream while the 

balance between conduction and the applied heating term dominates the temperature solution in 

the slower bulk flow. The applied heating is too concentrated in the exponential heating case and 

its flow is too unstable to support such a region. As instabilities in buoyancy opposed MHD mixed 

convection flows are related to both steep axial and steep transverse temperature gradients, the 

exponential heating case is more unstable than the nuclear heating case, featuring multiple 

boundary layer separations in the instant shown. And, as the convection terms associated with 

large-scale flow instability tends to dominate, there is higher temperature contrast in the 

exponential case than the nuclear case, though both cases have hotspots and coldspots advected 

into the bulk. This high contrast is also due to the absence of small-scale turbulence that would 

blend the flow and smooth out the steepest gradients.  
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6.6.A.ii Upward flow with conducting walls: 

Exponential 

 

FIG. 91. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw=0.12, upward flow with exponential heating. The flow enters from the bottom 
opposite the direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the 
entire flow field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. 
The dashed, black lines mark the bounds of the heated region. 

(a) (b) (c) (d) 
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Nuclear 

 

FIG. 92. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw=0.12, upward flow with nuclear heating. The flow enters from the bottom opposite 
the direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire 
flow field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. The 

dashed, black lines mark the bounds of the heated region. 

For upward flow in electrically conducting ducts, it is clear from the flow behavior that the buoyant 

effects are much stronger in the exponential heating case (Fig. 91) than in the nuclear heating 

case (Fig. 92). Firstly, there is significant flow asymmetry in the heated region of the exponential 

case with a large buoyant jet forming on the hot sidewall while the side layer jet on the cold wall 

shrinks to nothing near x=0.2 m. In the nuclear heating case however, the flow remains M-shaped 

with much smaller velocity asymmetry in the z-direction and more flow carried in the bulk and in 

the cold side layer than the exponential heating flow. Both flows are stable with only small 

differences between the base flow and the flow at the instants shown. The temperature profiles 

show higher temperatures in the exponential case due to the heat being concentrated at the hot 

(a) (b) (c) (d) 
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wall where advection associated with the large buoyant jet balances the volumetric heating term. 

As such, a thin thermal boundary layer exists in the heated region and the cold wall remains at 

the inlet temperature until the end of the heated region. The opposite is true in the nuclear heating 

case which features much flatter temperature and velocity profiles as the solution is dominated 

by the balance of conduction and the more evenly distributed volumetric heating term. 

Consequently, the temperature maximum is in the bulk rather than near the sidewall and there is 

only slight temperature asymmetry along the z-direction.   

6.6.A.iii Downward flow with nonconducting walls: 

Exponential 

 

FIG. 93. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw~0, downward flow with exponential heating. The flow enters from the top in the 
direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire flow 
field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. The dashed, 
black lines mark the bounds of the heated region. 

(a) (b) (c) (d) 
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Nuclear 

 

FIG. 94. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw~0, downward flow with nuclear heating. The flow enters from the top in the 
direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the entire flow 
field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. The dashed, 
black lines mark the bounds of the heated region. 

For downward flow in electrically nonconducting ducts, both the exponential heating case (Fig. 

93) and the nuclear heating case (Fig. 94) feature large scale flow instability in the heated region 

which is caused by buoyant effects via the axial temperature gradient as in Rayleigh-Taylor 

instability. In the time-averaged sense, the exponential case has higher time-averaged 

temperatures and temperature gradients than the nuclear case near the hot wall. As the buoyant 

effects are therefore stronger, the exponential case features a longer and thicker reverse flow 

region attached to the hot wall with buoyant flow propagating upstream of the heated region by 

~.13 m while in the nuclear heating case, the reverse flow begins only after the beginning of the 

heated region. This is because the higher concentration of heating in the exponential case is 

(a) (b) (c) (d) 
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sufficient for driving buoyant convection of hot pockets of fluid that propagate upstream until they 

are cooled enough by conduction to be swept downstream by the oncoming MHD flow. In the 

nuclear case, the buoyant recirculation of flow is limited to the heated region because the buoyant 

effects are weaker due to the heating being more spread out. Moreover, in the exponential heating 

case, the reverse flow and the forward flow demonstrate higher speed and the fluctuations of the 

velocity field are higher magnitude. Notably, both cases have maximum temperatures near the 

hot wall on average.   

6.6.A.iv Upward flow with nonconducting walls: 

Exponential 

 

FIG. 95. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw~0, upward flow with exponential heating. The flow enters from the bottom 
opposite the direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the 
entire flow field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. 

The dashed, black lines mark the bounds of the heated region. 

(a) (b) (c) (d) 
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Nuclear 

 

FIG. 96. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Bo=0.5 T, U=0.02 m/s, and ΔT=381oC 
(Ha=220, Re=2027, Gr=1.57x108). cw~0, upward flow with exponential heating. The flow enters from the bottom 
opposite the direction of gravity. The z-axis is stretched compared to the x-axis by a factor of 5 to more easily view the 
entire flow field. The dashed, red lines spaced every 13.3cm are the zero lines for the profiles which are solid red lines. 

The dashed, black lines mark the bounds of the heated region. 

For upward flow in electrically nonconducting ducts, the exponential heating flow (Fig. 95) is 

unstable whereas the nuclear heating flow (Fig. 96) is stable. The instability advects heat away 

from the hot wall, smearing out the thermal boundary layer. The nuclear heating flow has no 

thermal boundary layer and the temperature profile is nearly uniform though it is slightly 

asymmetric, accounting for the velocity asymmetry along the z-direction. As before, the lack of 

thermal boundary layer can be explained in part by the fact that the nuclear heating is more spread 

out than the exponential heating. Consequences of the high concentration of heating in the 

exponential case include higher temperature and temperature gradient near the hot wall, and 

lower temperature away from the hot wall where the transverse temperature gradient is very flat. 

(a) (b) (c) (d) 
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Furthermore, nearly 100% of the flow rate is carried by the buoyant jet near the hot wall in the 

exponential heating case while the flow stagnates or recirculates weakly elsewhere. Meanwhile, 

some of the nuclear heating flow is still carried inside the bulk and the cold side layer. 

6.6.B Comparison to Surface Heating Scenarios 

Now I go further to compare the results of the exponential heating and nuclear heating cases with 

the surface heating cases described in section 6.2 for the same magnetic field Bo=0.5 T, mean 

velocity U=0.02 m/s, and total heating per axial length Q’=0.01 MW/m (Ha=220, Re=2027) and 

including all four configurations of upward/downward and conducting/nonconducting ducts. 

ΔT=381oC and Gr=1.57x108 for cases with volumetric heating and ΔT=350.5oC and Gr=1.44x108 

for cases with surface heating. The differences in ΔT are due to the surface heating being applied 

over y=-b-tw to b+tw while the volumetric heating is applied from y=-b to y=b. This results in q’’surface 

being 8% smaller than q’’volume. However, both cases are directly comparable since the total 

heating applied to the system is the same.  Time-averaged velocity and temperature profiles at 

x=0 m, y=0 m are plotted in Figs. 97-100. 

 

FIG. 97. A comparison of time-averaged velocity profiles at x=y=0m for flows with exponential volumetric heating in the 
fluid domain or surface heating applied to the outside surface of the duct wall at z=-tw-a. In all cases, the total heating 
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is the same. Bo=0.5 T, U=0.02 m/s (Re=2027, Ha=220). cw=0.12 or ~0, Gr=1.57x108 for volumetric heating scenarios 
and Gr=1.44x108 for surface heating scenarios. 

 

FIG. 98. A comparison of time-averaged velocity profiles at x=y=0m for flows with nuclear volumetric heating in the fluid 
domain or surface heating applied to the outside surface of the duct wall at z=-tw-a. In all cases, the total heating is the 
same. Bo=0.5 T, U=0.02 m/s (Re=2027, Ha=220). cw=0.12 or ~0, Gr=1.57x108 for volumetric heating scenarios and 

Gr=1.44x108 for surface heating scenarios. 

 

FIG. 99. A comparison of time-averaged temperature profiles at x=y=0m for flows with exponential volumetric heating 
in the fluid domain or surface heating applied to the outside surface of the duct wall at z=-tw-a. In all cases, the total 
heating is the same. Bo=0.5 T, U=0.02 m/s (Re=2027, Ha=220). cw=0.12 or ~0, Gr=1.57x108 for volumetric heating 
scenarios and Gr=1.44x108 for surface heating scenarios. 
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FIG. 100. A comparison of time-averaged velocity profiles at x=y=0m for flows with nuclear volumetric heating in the 
fluid domain or surface heating applied to the outside surface of the duct wall at z=-tw-a. In all cases, the total heating 
is the same. Bo=0.5 T, U=0.02 m/s (Re=2027, Ha=220). cw=0.12 or ~0, Gr=1.57x108 for volumetric heating scenarios 
and Gr=1.44x108 for surface heating scenarios. 

As demonstrated in the figures above, the results of the exponential heating case are in close 

agreement with the surface heating case except for the downward nonconducting case which 

exhibits somewhat stronger buoyant effects in the surface heating case. The results of the nuclear 

heating cases then differ from the surface heating cases’ results as they did from the exponential 

heating results in the above analysis. This follows from the concept that as the heating distribution 

becomes more concentrated near the hot wall, volumetric heating eventually becomes 

indistinguishable from surface heating. Inside the hot wall, the surface heating cases show much 

higher temperatures. This is merely a consequence of the boundary conditions and has not been 

shown to have a significant effect on the flow.  

Despite significant differences between results, many of the same phenomena occur for both 

nuclear heating and the steeper exponential heating cases. For instance, reverse flow occurs in 

all the downward flows studied here, though the values and magnitude of the velocity and 

temperature fluctuations were found to depend on the heating distribution. Additionally, velocity 
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asymmetry occurs in all the upward cases, though again, the magnitude of this effect at constant 

Q’ is also dependent on the heating distribution. 

Though surface heating is more attainable in laboratory settings, future numerical efforts should 

consider using nuclear heating distributions at higher Gr to more closely model fusion reactor 

conditions. Since the nuclear heating case exhibits weaker buoyant effects than the surface 

heating case with the same Q’, perhaps the flow behavior of surface heating cases better 

approximates nuclear heating cases with much higher Q’. Consider that increasing Q’ by scaling 

up the magnitude of the nuclear heating will also increase the gradient of the heating by a 

proportional amount. Thus, it follows that the temperature gradients will be steeper and the 

buoyant effects will be stronger.  

The differences between upward and downward flows or differences between conducting and 

nonconducting ducts are associated with significant differences in the types of phenomena 

observed while the differences caused by varying the heating profiles were more a matter of 

magnitude such that surface heating has been proven to serve as a reasonable approximation 

for the volumetric heating profile in experimental settings; however, it can be expected that 

surface heating cases will have somewhat stronger buoyant effects than volumetric heating cases 

with the same Q’. Surface heating cases can be simulated using either purely surface heating 

(i.e. through the boundary conditions) or exponential volumetric heating at high M (i.e. through 

the source term on the right-hand-side of the energy equation). These conclusions were made by 

comparing instantaneous and time-averaged temperature and velocity fields.  

6.7 Results for Comparison 

Results for an MHD mixed convection flow simulation (#16 in Table 4) is presented in this section 

for the purpose of comparison to experimental and numerical results. A comparison to Y. Yan’s 
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COMSOL Multiphysics numerical results is also provided. Additionally, techniques for measuring 

velocity via electric potential measurements in an experimental setting are discussed.  

Case 16 is a benchmark case with simulation parameters that correspond with an experiment in 

the MaPLE-U facility at UCLA. The flow behavior of Case 16 is interesting in that the velocity 

decreases moving into the heated region and then reverses direction near the hot wall. This 

makes Case 16 a good case for comparison because the temperature distribution is strongly 

affected by the flow reversal so both temperature and velocity measurements can be used to 

identify this phenomenon. The simulation parameters are listed in Table 7 below. The fluid 

properties are that of PbLi at 300oC. See Chapter 5 for more simulation details including the 

geometry, magnetic field, initial and boundary conditions, and more. Some of the presented data 

is time-averaged, meaning the flow variables are averaged over all the timesteps between step 

number 1 million and the final timestep number listed in Table 7. 

Table 7. Simulation Parameters for Case 16 

 

 

 

 

 

 

 

 

Flow Direction Down 

cw 0.12 

Heating Mode Surface 

U 3 cm/s 

B 0.5 T 

qo’’ 0.04 MW/m2 

ΔT 70.11oC 

Ha 220 

Re 3041 

Gr 2.88x107 

Final Timestep 4.9x106 



151 

6.7.A Calculating Velocity Via Electric Potential Measurements 

Measuring electric potential is a convenient way to measure the velocity in MHD flow experiments, 

particularly due to the challenges posed by the opacity of the LM and the temperature gradients 

and non-hydrodynamic forces present in the fluid. The y=0 centerline velocity profile at an axial 

location x=xi, can be estimated via data from a line of multiple electric potential probes on the 

Hartmann walls at xi. However, the error associated with this measurement can theoretically be 

reduced by measuring the electric potential inside the fluid with a Levi probe on the y=0 centerline 

instead. The theory is as follows, beginning with Ohm’s law shown in Eq. 34: 

𝐉

𝜎
= −∇ϕ + 𝐔 × 𝐁       (34) 

An assumption is made that since σ is large, the left-hand-side of Eq. 34 can be neglected, and 

with 𝐁 = B𝒚̂ Ohm’s law reduces to Eq. 35. 

[
−w

0
u

] =
1

B
[

∂xϕ
∂yϕ

∂zϕ

]       (35) 

From the z-component of Eq. 35, the axial velocity can be calculated by taking the derivative of φ 

along the z-direction. Additionally, the y-component of Eq. 35 shows that the electric potential is 

uniform along the magnetic field direction since 𝜕𝑦ϕ = 0. Thus ∂z ∂yϕ = 0, and so, it can be 

concluded that the velocity profile is uniform along the magnetic field direction. However, this 

conclusion is not valid where our assumption that J/σ is negligible breaks down (i.e. inside MHD 

boundary layers and the solid walls). Fig. 101 shows axial velocity profiles at x=-0.3 m and x=0 m 

for Case 16. Note how the velocity is not uniform along the magnetic field direction inside the side 

layers (z~+/-0.02 m) and the Hartmann layers (y~+/-0.02 m) but is uniform in y inside the bulk.  
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FIG. 101. Instantaneous axial velocity profiles at (a) x=-0.3 m and (b) x=0 m. Downward flow with surface heating. 
Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12.  

However, the bulk velocity can be calculated accurately by measuring φ at the outside of the 

Hartmann walls since the conclusion that 𝜕𝑦ϕ = 0 still holds as Jy is generally close to zero outside 

of the side layers and sidewalls. Still, since Jy is nonzero in the side layers, wall measurements 

of φ will be insufficient for calculating the velocity in the side layers. Fig. 102 shows electric 

potential distribution at x=-0.3 m and x=0 m for Case 16. Note the regions where 𝜕𝑦ϕ = 0 as 

indicated by flat horizontal isolines of φ.  

(a) (b) 
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FIG. 102. Contours of instantaneous electric potential on duct cross-sections at (a) x=-0.3 m and (b) x=0 m. Downward 
flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. 

By using a Levi probe to measure 𝜕𝑧ϕ along the y=0 centerline in order to measure the y=0 

centerline velocity profile with low error, the need to rely on ∂yϕ being equal to zero is eliminated. 

The remaining source of error is the small amount of z-direction current which will generally cause 

the velocity predictions to be slightly smaller than the actual velocity.  

To illustrate the method of using electric potential probes to measure the velocity, example 

calculations are performed using the results from Case 16 at x=0 m and x=-0.3 m. To imitate both 

surface electric potential probes and Levi probes which penetrate the fluid domain at y=0, electric 

potential data are taken from the outsides of each Hartmann wall as well as from the y=0 

centerline. The results of these calculations, along with the computed velocity profiles, are shown 

in Fig. 103. 

(a) (b) 
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FIG. 103. Instantaneous axial velocity profiles at y=0m, x=-0.3m, 0m. Using Eq. 35, velocity profiles are constructed 
with electric potential data from (a) y=0.025m and (b) y=0m. Downward flow with surface heating. Bo=0.5 T, U=0.03 
m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. 

As predicted, the measured velocity features large errors in the side layers when using the surface 

electric potential due to y-direction electric currents. Such currents also exist near the velocity 

zero near z~-0.17 though they are smaller. These errors disappear when probing the electric 

potential at y=0 since the calculation does not rely on Jy = − ∂yϕ = 0. The remaining error in both 

cases is attributed to z-direction current which approaches zero near the sidewalls.   

6.7.B Simulation Results for Direct Comparison 

The results of Case 16 are presented below in Figs. 104-117 for the purposes of code-to-code 

and code-to-experiment comparison.  

The bulk temperature, which represents the average temperature of the fluid, is calculated using 

Eq. 36 below.  

𝐵𝑢𝑙𝑘 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
∬ 𝑈𝑇𝑑𝑦𝑑𝑧

∬ 𝑈𝑑𝑦𝑑𝑧
      (36) 

In a steady flow, the difference between the value of the bulk temperature at the end of the duct 

and the inlet temperature corresponds to a temperature difference, ΔTb, in the following statement 

of energy conservation in the duct: 

(b) (a) 
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𝐴𝜌𝑈𝐶𝑝Δ𝑇𝑏 = ∬ 𝑞′′𝑑𝑦𝑑𝑥       (37) 

Solving for ΔTb with Case 16’s parameters (A=0.02116m2, Lh=0.6096m, ρ=9486kg/m3, 

U=0.03m/s, Cp=200.22 J/kg K, qo’’=0.04MW/m2), the result is ΔTb=10.11K.  The bulk temperature 

of Case 16 at the final timestep is plotted in Fig. 104 and shows a temperature difference of 9.9K 

(a difference of 2.08% compared to the ΔTb computed from Eq. 37). The difference could be 

accounted for by the unsteadiness of the flow. 

                              

FIG. 104. The instantaneous bulk temperature for downward flow and surface heating for Bo=0.5 T, U=0.03 m/s, 

qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12.  

The time-averaged axial velocity profiles at six axial locations x=-0.25 m, -0.15 m, -0.05 m, 0.05 

m, 0.15 m, and 0.25 m are shown in Figs. 105 and 106 below for y=0 and z=0 respectively. 
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FIG. 105. Time-averaged velocity at y=0m, x= -0.25 m,  -0.15 m,  -0.05 m, 0.05 m, 0.15 m, and 0.25 m. Downward flow 
with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. 

 

FIG. 106. Time-averaged velocity at z=0m, x= -0.25 m,  -0.15 m,  -0.05 m, 0.05 m, 0.15 m, and 0.25 m. Downward flow 
with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. 

The time averaged temperature profiles at six axial locations x=-0.25 m, -0.15 m, -0.05 m, 0.05 

m, 0.15 m, and 0.25 m are shown in Figs. 107 and 108 below for y=0 and z=0 respectively. 
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FIG. 107. Time-averaged temperature at y=0 m, x= -0.25 m,  -0.15 m,  -0.05 m, 0.05 m, 0.15 m, and 0.25 m. Downward 
flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. 

  

FIG. 108. Time-averaged temperature at z=0 m, x= -0.25 m,  -0.15 m,  -0.05 m, 0.05 m, 0.15 m, and 0.25 m. Downward 
flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. 

The time-averaged temperature at 7 axial locations x=-0.3 m, -0.2 m, -0.1 m, 0 m, 0.1 m, 0.2 m, 

and 0.3 m on the outside surfaces of each of the four walls are shown in Figs. 109-112. 
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FIG. 109. Time-averaged temperature on the outer surface of the wall at z=-0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 0.1 
m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, 
Gr=2.88x107). cw=0.12. 

  

FIG. 110. Time-averaged temperature on the outer surface of the wall at z=0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 0.1 
m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, 
Gr=2.88x107). cw=0.12. 
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FIG. 111. Time-averaged temperature on the outer surface of the wall at y=0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 0.1 
m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, 
Gr=2.88x107). cw=0.12. 

 

  

FIG. 112. Time-averaged temperature on the outer surface of the wall at y=-0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 0.1 
m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, 

Gr=2.88x107). cw=0.12. 
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The electric potential recorded at the final timestep is plotted at 7 axial locations x=-0.3 m, -0.2 

m, -0.1 m, 0 m, 0.1 m, 0.2 m, and 0.3 m. on the outside surfaces of each of the four walls as 

shown in Figs. 113-116. 

 

FIG. 113. Instantaneous electric potential on the outer surface of the wall at z=0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 
0.1 m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, 

Re=3041, Gr=2.88x107).  cw=0.12. 
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FIG. 114. Instantaneous electric potential on the outer surface of the wall at z=-0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 
0.1 m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, 
Re=3041, Gr=2.88x107).  cw=0.12. 

  

FIG. 115. Instantaneous electric potential on the outer surface of the wall at y=0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 
0.1 m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, 
Re=3041, Gr=2.88x107).  cw=0.12. 
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FIG. 116. Instantaneous electric potential on the outer surface of the wall at y=-0.025 m, x=-0.3 m, -0.2 m, -0.1 m, 0 m, 
0.1 m, 0.2 m, and 0.3 m. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, 
Re=3041, Gr=2.88x107). cw=0.12. 

Lastly, to aid in the interpretation of the above data, 2D cross-sections at y=0 of time-averaged 

velocity and temperature are included below in Fig. 117 a and b respectively. The aspect ratio of 

the plots is scaled x:z::1:5. 1D profiles are included every 0.1 m for ease of understanding. 
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FIG. 117. (a) Time-averaged velocity contours and profiles on the y=0 center-plane. (b) Time-averaged temperature 
contours and profiles on the y=0 center-plane. Downward flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 
MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. The z-axis is stretched compared to the x-axis by a factor of 5 to 
more easily view the entire flow field. The dashed, red lines spaced every 0.1 m are the zero lines for the profiles which 
are solid red lines. The dashed, black lines mark the bounds of the heated region.   
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6.7.C Direct Comparison with Results From COMSOL 

Yi Yan provided results [79] for comparison by using a different numerical solver to simulate the 

same problem as outlined in section 6.7. Yan's COMSOL Multiphysics based solver uses a finite 

element method to solve the 3D MHD equations coupled with the energy equation. His 

dimensionless parameters, geometry, heating, magnetic field, and boundary conditions are those 

of Case 16 in the present work though his approach does not require the use of a viscous sponge 

layer at the outlet. All of Yan’s results are time-averaged over the times between 244s and 

414s.  2D cross-sections at y=0 of time-averaged velocity and temperature are included below in 

Fig. 118 a and b respectively. The aspect ratio of the plots is scaled x:z::1:5. 1D profiles are 

included for ease of understanding every 0.1 m. Based on a qualitative comparison between Figs. 

117 and 118, the results are shown to have decent agreement. One noteworthy exception is that 

the boundary layer separation occurs slightly further upstream in the results from HIMAG 

compared to the results from COMSOL. The location of the boundary separation was determined 

for both sets of results by finding where the wall shear stress is zero. This is done by averaging 

the axial velocity field along the y-direction and then evaluating the z-direction derivative of the 

result along the hot wall at z=-a. The location of the boundary layer separation is where this 

derivative is equal to zero. The location of boundary layer separation was determined to be 

x=-0.163 m for the HIMAG results and x=-0.128 m for the COMSOL results.  
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FIG. 118. COMSOL Multiphysics results. (a) Time-averaged velocity contours and profiles on the y=0 center-plane. (b) 
Time-averaged temperature contours and profiles on the y=0 center-plane. Downward flow with surface heating. Bo=0.5 
T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. The z-axis is stretched compared to the 
x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 0.1m are the zero 
lines for the profiles which are solid red lines. The dashed, black lines mark the bounds of the heated region.   
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The time-averaged axial velocity profiles at six axial locations x=-0.25m, -0.15m, -0.05m, 0.05m, 

0.15m, and 0.25m at y=0 are shown in Fig. 119, including results from both HIMAG and COMSOL. 

 

 

FIG. 119. Time-averaged velocity at y=0m, x= -0.25 m,  -0.15 m,  -0.05 m, 0.05 m, 0.15 m, and 0.25 m. Downward flow 
with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. Results from 
HIMAG are solid lines while results from COMSOL are dashed lines. 

The codes show excellent agreement at x=-0.25 m but poor agreement at x=-0.15 m which is 

upstream the boundary layer separation for the COMSOL results and downstream for the HIMAG 

results. The results for x>-0.5 m feature differences in the maximum reverse flow velocity and 

maximum forward flow velocity but otherwise have the same shape. The maximum reverse flow 

velocity varies between results by 37%, 23%, 23%, and 28% for x=-0.5 m, 0.05 m, 0.15 m and 

0.25 m respectively.  

The time-averaged temperature profiles at six axial locations x=-0.25 m, -0.15 m, -0.05 m, 0.05 

m, 0.15 m, and 0.25 m at y=0 are shown in Fig. 120, including results from both HIMAG and 

COMSOL. 
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FIG. 120. Time-averaged temperature at y=0m, x= -0.25 m,  -0.15 m,  -0.05 m, 0.05 m, 0.15 m, and 0.25 m. Downward 
flow with surface heating. Bo=0.5 T, U=0.03 m/s, qo’’=0.04 MW/m2 (Ha=220, Re=3041, Gr=2.88x107). cw=0.12. Results 
from HIMAG are solid lines while results from COMSOL are dashed lines. 

As with the time-averaged axial velocity, the two codes show excellent agreement at x=-0.25 m 

but poor agreement at x=-0.15 m which is upstream the boundary layer separation for the 

COMSOL results and downstream for the HIMAG results. The results for x>-0.5 m feature good 

agreement with only small differences in the bulk region at x=-0.5 m, z<-0.005 m, where the flow 

is generally hotter in the HIMAG results by ~4oC.  

The differences between the results from HIMAG and COMSOL mostly seem to be caused by 

differences in the location of the boundary layer separation. Still, the flow phenomena observed 

in the results of both codes are mostly the same (i.e. asymmetric velocity profiles with jets 

attached to the sidewalls, flow reversal in the heated region, and temperature increase inside the 

flow reversal). These similarities support the use of both codes in studying MHD mixed convection 

flows in vertical ducts. Future studies will address the cause of the reported differences to better 

inform on the selection of future numerical tools.  
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Chapter 7: Conclusions and Future Studies for MHD Duct 
Flows with Buoyancy Effects 

In Part II of this dissertation, HIMAG was used to simulate the 3D flow of liquid metal through 

vertical, square ducts (Fig. 27) to explore the MHD mixed convection phenomena which may 

occur in breeder blankets of fusion power reactors. A fringing, transverse magnetic field provided 

an 80 cm region of uniform field which was centered on a 60.96 cm region of applied, one-sided 

heating that the pressure driven liquid metal was made to flow through.  

MHD mixed convection phenomena were described in an overview of the flow behavior given 

PbLi with U=0.02 m/s, Bo=0.5 T, and qo’’=0.2 MW/m2 (Re=2027, Ha=220, and Gr=1.44x108) for 

the case of applied surface heating at a sidewall. The flow orientation was varied 

(upward/downward) and the electrical conductivity of the duct walls was varied (cw=1.2x10-9 or 

0.12) to provide 4 scenarios to study. The upward, buoyancy assisted flows in the overview 

featured relatively stable flows with strong jets attached to the hot wall and almost no flow carried 

by the bulk. The downward, buoyancy opposed flows featured flow reversal, higher temperatures, 

and flow instabilities in the heated region.  

A parametric study was performed for upwards and downwards flows in electrically conducting 

ducts with applied surface heating for Ha ranging from 110 to 880, Re from 2027 to 20270, and 

two choices of Gr =1.44x108, 3.6x108. As expected, increasing Re decreased buoyant effects, 

going as far as to change the flow regime from that of MHD mixed convection (Re=2027) to that 

of MHD forced flow (Re>15201). Predictably, increasing Gr increased buoyant effects while 

increasing Ha had a more subtle influence on buoyant effects: increasing Ha reduced the reverse 

flow velocity near the hot sidewall while also causing the temperature there to increase due to 

improved stability and thus reduced advection heat transfer normal to the wall. 
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The pressure distribution and balance of axial forces were analyzed for upwards and downwards 

duct flows with conducting and nonconducting walls and surface heating on one sidewall given 

PbLi with U=0.02 m/s, Bo=0.5 T, and qo’’=0.2 MW/m2 (Re=2027, Ha=220, and Gr=1.44x108). The 

pressure distribution is shown to mostly balance the mean buoyant force, though there is some 

contribution from Lorentz force in the case of electrically conducting walls. Note that the static 

pressure distribution is omitted from the presented data as the static pressure drop (∆pstatic =

186 kPa) is much larger than the pressure drop due to forces other than weight which are on the 

order of 1 kPa for the given parameters. In flows with much higher Ha, as in breeder blankets, the 

MHD pressure drop (balanced by viscous drag and net Lorentz force) may dominate instead of 

gravity based (i.e. buoyant and static) pressure drops. This is especially likely in self-cooled 

blanket concepts as a high flowrate of LM coupled with a lack of FCI would result in significant 

MHD pressure drops that scale with σUB2. The analysis of axial forces concludes with some 

indication that the core flow is not guaranteed to be inertialess nor two-dimensional in MHD mixed 

convection flows. 

A novel metric for evaluating the velocity nonuniformity along the magnetic field direction was 

presented and applied to 4 flow scenarios with either upward or downward flow through 

conducting or nonconducting ducts with applied surface heating on one sidewall given PbLi with 

U=0.02 m/s, Bo=0.5 T, and qo’’=0.2 MW/m2 (Re=2027, Ha=220, and Gr=1.44x108). The metric, 

along with plots of kinetic energy, was useful in investigating the flow’s departure from quasi-2D 

behavior in particular circumstances. The analysis yielded 3 major conclusions:  

(1) In downward flow cases, feedback between the temperature and the velocity fields promoted 

lasting asymmetry in both fields along the magnetic field direction. It was found that the 

temperature of the Hartmann walls would differ, in the time-averaged sense, by ~60oC in 

electrically conducting downward flow. In upward flows, this feedback mechanism promotes 

uniformity along the magnetic field direction instead. Interestingly, such asymmetry was not 
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observed in cases with relatively weaker buoyancy effects as in the case of downward flow in a 

conducting duct at Ha=220, Re=3041, Gr=2.88x107. This implies that a stability threshold exists 

for this effect, one that is likely characterized by the competition of buoyant effects with stabilizing 

electromagnetic effects and diffusion.  

(2) By promoting inertial transfers of momentum, the buoyancy generally erodes the velocity 

uniformity along the magnetic field direction. This effect is strongest in downward flows where 

boundary layer separation occurs. In the cases presented, the boundary layer separation 

cooccurred with significant three-dimensionality of the flow.  

(3) While the buoyant force diminishes uniformity along the magnetic field direction, Joule 

dissipation is still present, and the resulting behavior of the combined effects is a turbulent flow 

which has velocity fluctuations in 3D, though the fluctuations parallel to the magnetic field are ~1 

order of magnitude smaller, in terms of kinetic energy, than fluctuations which are perpendicular 

to the magnetic field. 

Future work should characterize the instability/feedback mechanism in (1) with respect to Ha, Re, 

Gr, and cw. Additionally, Q2D formulations remain as powerful tools for investigating MHD mixed 

convection flows at higher parameters as they significantly reduce the cost of computations 

compared to fully 3D formulations. While it is likely that buoyancy assisted flow problems will be 

tractable for Q2D codes at fusion-relevant parameters, it seems that significant deviations from 

realistic results may occur in buoyancy opposed flows. Future efforts should directly compare 

results of 3D and Q2D formulations to see exactly how these deviations may occur as it is likely 

that Q2D formulations will still be useful for buoyancy opposed flows (e.g. for estimating the 

time-averaged heat and mass transfer properties). 

8 cases consisting of 2 volumetric heating curves (nuclear heating given by a neutronics code or 

an exponential heating curve which is somewhat steeper but has the same total heat flux) for 



171 

each of 4 flow scenarios with different combinations of flow orientation (up/down) and wall 

conductivity (cw=0.12 or ~0) were simulated to explore the effect of varying the volumetric heating 

distribution in MHD mixed convection flows. Despite having the same material properties (PbLi), 

U=0.02 m/s, Bo=0.5 T, ΔT=381oC (Re=2027, Ha=220, Gr=1.57x108), and total heating Q=0.0061 

MW, the steeper exponential heating case featured markedly stronger buoyant effects compared 

to the nuclear heating case in all 4 scenarios due to higher concentration of heating near the hot 

wall. However, the same kinds of phenomena were observed in cases with the same flow 

orientation and wall conductivity despite differences in heating. This observation also applies to 

the comparison with surface heating cases of the same total heating, Ha, Re, cw, and flow 

orientation, justifying the use of surface heating as a suitable substitute for nuclear heating in 

experiments that aim to explore the MHD mixed convection phenomena in flows with steep 

gradients in volumetric heating.  

Lastly, results are presented for direct comparison with experiment, namely the MaPLE-U 

experiment at UCLA. The included results correspond to PbLi flowing with mean velocity of 3 cm/s 

downward through a 0.5 T transverse magnetic field with applied surface heating qo’’=0.04 MW/m2 

in a stainless-steel square duct (Ha=220, Re=3041, Gr=2.88x107, cw=0.12). Additionally, 

experimental velocimetry technique is briefly discussed.  

The geometry of LM blankets are bound to be more complex than the vertical, straight, square 

ducts studied here, and more complex geometry will be accompanied by additional physics. For 

example, if multiple ducts share common conducting walls, the flows in adjacent ducts will 

become electrically coupled as discussed in [64, 80]. Also, the magnetic field in fusion blankets 

is not strictly perpendicular to the duct walls and, as a consequence of the plasma confinement 

scheme, the magnetic field will be unsteady, unlike the steady, transverse field of the present 

calculations. While some studies have investigated the effect of magnetic field orientation on 

magneto-buoyant convection, no studies have been carried out for such flows in time-dependent 



172 

magnetic fields. The magnetic field in a fusion blanket will also feature special variation which has 

not been accounted for in any studies.  Flow orientation with respect to gravity will also have some 

effect on MHD mixed convection phenomena and should be investigated as the entire range of 

orientation is expected to occur in real LM blanket systems. Furthermore, the MHD mixed 

convection flows of the present work are set in a parameter space which is tractable for both 

numerical and experimental investigation; however, in fusion power reactor blankets, the Ha, Re, 

and Gr numbers will be much higher (i.e. Gr ~ 109-1012, Ha ~ 104, Re ~ 104-105 [1, 43]). Reliable 

prediction of fluid flow behavior in fusion reactor blankets with multiple field effects and 

interactions in the fusion nuclear environment requires major advances in modelling to simulate 

simultaneously high Gr and Ha. Thus, future efforts should either extrapolate the conclusions of 

studies in the current space but ultimately must work to expand our modelling capability. While it 

is undoubtably important for future work to investigate the behavior of flows in parameters relevant 

to fusion, the results presented here serve to inform on future experimental results and will be 

useful in developing improved MHD solvers. Ultimately, the conclusions of the present work 

significantly expand our understanding of the physics and phenomena of MHD flows with strong 

buoyancy effects.
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Appendix A: Dimensionless Figures 

Some select results from Part II are presented here in dimensionless form. The velocity has been 

divided by the mean velocity U, the lengths have been divided by the duct half width along the 

magnetic field direction b, and the temperatures are reported as a dimensionless temperature 

increase θ = (T − 𝑇𝑜)/Δ𝑇. ΔT is a characteristic temperature difference calculated using the 

following formula from Chapter 5: 

Δ𝑇 =
a

𝑘
∫ 𝑞′′′(𝑧)𝑑𝑧

+𝑎

−𝑎
  for volumetric heating,      (20a) 

Δ𝑇 =
𝑎

𝑘
𝑞𝑜′′ for surface heating.       (20b) 

Some of the selected results are from simulations which feature volumetric heating as specified 

in the figure captions. The details of the volumetric heating, including exponential and nuclear 

heating, can be found in section 6.6. All other simulation details are included in Chapter 5. 
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FIG. 121. Instantaneous axial velocity contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.44x108, 
surface heating only. (a, b) cw=0.12, (c, d) cw~0. (a, c) Downward flow, (b, d) upward flow. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 

bounds of the heated region. 
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FIG. 122. Instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.44x108, 
surface heating only. (a, b) cw=0.12, (c, d) cw~0. (a, c) Downward flow, (b, d) upward flow. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
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5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 

 

FIG. 123. Time-averaged axial velocity contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.44x108, 
surface heating only. (a, b) cw=0.12, (c, d) cw~0. (a, c) Downward flow, (b, d) upward flow. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
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5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 

 

FIG. 124. Time-averaged temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.44x108, 
surface heating only. (a, b) cw=0.12, (c, d) cw~0. (a, c) Downward flow, (b, d) upward flow. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
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5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 

 

  

FIG. 125. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw=0.12, 
downward flow with exponential heating. The flow enters from the top in the direction of gravity. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 
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FIG. 126. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw=0.12, 
downward flow with nuclear heating. The flow enters from the top in the direction of gravity. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 
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FIG. 127. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw=0.12, 
upward flow with exponential heating. The flow enters from the bottom opposite the direction of gravity. The z-axis is 
stretched compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced 
every 5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines 
mark the bounds of the heated region. 
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FIG. 128. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw=0.12, 
upward flow with nuclear heating. The flow enters from the bottom opposite the direction of gravity. The z-axis is 
stretched compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced 
every 5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines 

mark the bounds of the heated region. 
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FIG. 129. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw~0, 
downward flow with exponential heating. The flow enters from the top in the direction of gravity. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 
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FIG. 130. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw~0, 
downward flow with nuclear heating. The flow enters from the top in the direction of gravity. The z-axis is stretched 
compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced every 
5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines mark the 
bounds of the heated region. 
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FIG. 131. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw~0, 
upward flow with exponential heating. The flow enters from the bottom opposite the direction of gravity. The z-axis is 
stretched compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced 
every 5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines 
mark the bounds of the heated region. 
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FIG. 132. (a) Time-averaged axial velocity, (b) instantaneous axial velocity, (c) time-averaged temperature, and (d) 
instantaneous temperature contours and profiles on the y=0 center-plane. Ha=220, Re=2027, Gr=1.57x108, cw~0, 
upward flow with exponential heating. The flow enters from the bottom opposite the direction of gravity. The z-axis is 
stretched compared to the x-axis by a factor of 5 to more easily view the entire flow field. The dashed, red lines spaced 
every 5.78 characteristic lengths are the zero lines for the profiles which are solid red lines. The dashed, black lines 
mark the bounds of the heated region. 
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