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ARTICLE

Integrated single cell analysis of blood and
cerebrospinal fluid leukocytes in multiple sclerosis
David Schafflick1,7, Chenling A. Xu 2,7, Maike Hartlehnert1,7, Michael Cole 2,3,7,

Andreas Schulte-Mecklenbeck 1, Tobias Lautwein1, Jolien Wolbert1, Michael Heming 1, Sven G. Meuth 1,

Tanja Kuhlmann 4, Catharina C. Gross 1, Heinz Wiendl1, Nir Yosef 3,5,6,8* & Gerd Meyer zu Horste 1,8*

Cerebrospinal fluid (CSF) protects the central nervous system (CNS) and analyzing CSF aids

the diagnosis of CNS diseases, but our understanding of CSF leukocytes remains superficial.

Here, using single cell transcriptomics, we identify a specific location-associated composition

and transcriptome of CSF leukocytes. Multiple sclerosis (MS) – an autoimmune disease of

the CNS – increases transcriptional diversity in blood, but increases cell type diversity in CSF

including a higher abundance of cytotoxic phenotype T helper cells. An analytical approach,

named cell set enrichment analysis (CSEA) identifies a cluster-independent increase of fol-

licular (TFH) cells potentially driving the known expansion of B lineage cells in the CSF in MS.

In mice, TFH cells accordingly promote B cell infiltration into the CNS and the severity of MS

animal models. Immune mechanisms in MS are thus highly compartmentalized and indicate

ongoing local T/B cell interaction.
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Cerebrospinal fluid (CSF) is a clear liquid that envelops and
protects the central nervous system (CNS)1 and forms a
unique local immune compartment2. Under healthy con-

ditions, the noncellular fraction of CSF is mostly an ultrafiltrate of
serum3. In contrast, CSF cells that derive exclusively from the
hematopoietic lineage exhibit a tightly controlled cellular com-
position considerably different from the blood4, but the under-
lying mechanisms remain largely unexplored5. Clinically, CSF
facilitates the diagnosis of inflammatory and degenerative dis-
eases of the CNS. However, the concentration of CSF cells is
~1000-fold lower than in blood and limited volumes can be safely
sampled in every patient. Technical approaches must therefore be
compatible with low input and a comprehensive transcriptional
characterization of single CSF cells under homeostatic conditions
and in inflammatory CNS diseases is unavailable6.

Single-cell transcriptomics is a transformative and rapidly
evolving technology that has mostly been used to redefine the
heterogeneity of complex tissues from healthy rodents or
humans7,8. Diseased tissues have also been analyzed with single-
cell technologies9. Proponents of the technology posit that
insights from single-cell transcriptomics are likely to enable
precision medicine in the not-too-distant future10. However,
outside of the field of cancer, few studies have used the tech-
nology to compare tissue samples from disease-affected vs. con-
trol donors in a clinically relevant setting. This leaves many
methodological and conceptual questions unexplored.

Multiple sclerosis (MS) is a paradigmatic chronic inflamma-
tory, demyelinating disorder of the CNS causing substantial dis-
ability11. This complex disease is likely of autoimmune origin, but
many questions remain unanswered despite a vast amount of
available literature. In fact, evidence supports the involvement
of both T cells and B cells in MS, but the relative contribution of
each cell type to disease etiology is unknown. On the one hand,
production of immunoglobulins and expansion of B lineage cells4

occurs in the CSF with evidence of antigen-driven matura-
tion12,13 and B-cell-depleting therapies are effective in MS14. On
the other hand, T cells are abundant in MS lesions15 and T cells
are affected by many established MS treatments and induce an
MS-like condition named experimental autoimmune encephalo-
myelitis (EAE) in rodents16. Whether a pathological interaction
of T cell and B cell subsets may occur locally in human CSF
remains unknown.

Here, we apply single-cell transcriptomics to blood and CSF
cells from patients with MS and controls and validate key find-
ings. First, we identify a compartment-specific composition and
transcriptome, including an unknown enrichment of myeloid
dendritic cells (mDCs) in the CSF. Second, we find that MS
mainly affects the cellular composition of the CSF, but the
transcriptional phenotype of blood cells. We also identify an
expansion of CD4+ T cells with a cytotoxic phenotype and late-
stage B lineage cells in the CSF in MS. Third, we developed a
method named cell set enrichment analysis (CSEA) to identify
cluster-independent cellular changes and thereby observe an
expansion of B-cell-helping T follicular helper (TFH) cells. In a
reverse translational approach, we forth confirm that such TFH
cells promote CNS autoimmunity and local B cell infiltration in
two distinct animal models of MS. We thus demonstrate how an
unbiased approach aids our understanding of a unique human
immune compartment and identifies mechanisms locally driving
CNS disease.

Results
Single-cell transcriptomics of cells in CSF and blood. We first
aimed to identify the compartment-specific composition and
expression of CSF cells compared to blood using an unbiased

approach (Fig. 1a). We recruited patients with idiopathic intra-
cranial hypertension (IIH) as controls and treatment-naive
patients with clinically isolated syndrome (CIS) or relapsing-
remitting (RR)MS (together termed MS, Methods) donating
blood and CSF. Both cohorts were well matched and CSF para-
meters exhibited known MS-associated changes (Supplementary
Fig. 1a–d, Supplementary Tables 1 and 2). Negativity for oligo-
clonal bands (OCB) was 18% in accordance with early MS17.
Using microfluidics-based single-cell RNA sequencing (scRNA-
seq), we obtained in total 42,969 blood single-cell transcriptomes
(five control vs. five MS donors) and 22,357 corresponding CSF
single-cell transcriptomes (four control vs. four MS donors).
Genes detected per donor were 934.4 ± 379.1 s.e.m. in peripheral
blood mononuclear cells (PBMCs) and 1,021.4 ± 374.0 s.e.m. in
CSF (Supplementary Table 3). After filtering and normalization,
we performed multistep clustering of the merged 65,326 blood/
CSF cell dataset (Supplementary Fig. 2a). We thereby classified
61,051 single cells into 17 final cell clusters (Fig. 1b) after removal
of red blood cells (RBCs) and low-quality cell clusters (Methods,
Supplementary Fig. 2a). Based on the marker gene expression
(Fig. 1c, Supplementary Fig. 2d, Supplementary Dataset 1;
selected protein names in non-italic), we identified αβ T cells
(CD3E, LCK, TRAC, and TRAJ16) subsetting into CD4+ T cells
(IL7R and CD4), activated CD8+ T cells (CD8a; CD8B and
CCL5), nonactivated CD8+ T cells (CD8na; CD8B and CCR7),
regulatory T cells (FOXP3 and CTLA4), and a small cluster of γδ
T cells (TRDC). Two natural killer (NK) cell clusters (GNLY and
NKG7) most likely represented the more cytotoxic and mature
CD56dim (NK1; FCGR3A/CD16 and PRF1), and more naive
CD56bright (NK2; SELL/CD62L and XCL1) subsets. Three B
lineage clusters (CD74, CD79A, and IGH gene family) corre-
sponded to naive B cells (B1; CD37 and IGHD), activated B cells
(B2; CD27 and IGHM), and plasma blasts (plasma; IGHG, CD38,
and TNFRSF17/CD269; negative for MS4A1/CD20 and SDC1/
CD138). Myeloid lineage cells (LYZ) separated into mDC type 1
(mDC1; WDFY4, XCR1, and BATF3), mDC type 2 (mDC2;
FCER1A, CD1C, and CLEC10A), and granulocytes (granulo;
S100A8 and S100A9). Two additional monocyte cell clusters were
mostly blood-derived (Mono1; FCGR3A/CD16) or CSF-derived
(Mono2; CD14). Additional clusters represented plasmacytoid
dendritic cells (pDC; TCF4/E2-2 and TNFRSF21/DR6) and
megakaryocytes (MegaK; GNG11 and CLU). Microfluidics-based
scRNA-seq thus successfully reconstructed leukocyte lineages
from CSF and blood.

CSF leukocytes exhibit a specific composition and transcip-
tome. CSF cells have not been characterized with unbiased
approaches. We therefore next analyzed the compartment-
specific cell type composition identified by unbiased scRNA-seq
in CSF compared to blood. As expected for CSF4,18, non-
hematopoietic cells (e.g., neurons, glia, and ependymal cells),
megakaryocytes, granulocytes, and RBCs (removed from final
clustering) were absent or strongly reduced compared to blood
(Fig. 1d, e, Supplementary Fig. 3a, b). We also found CD56dim

NK1 cells reduced among CSF cells, while the NK2 cluster was
not different (Fig. 1d, e). Both the mDC1 and mDC2 clusters had
a significantly higher proportion in CSF than in blood (Fig. 1d, e).
Notably, mDC1 cells expressed markers indicating cross-
presenting capacity (XCR1 and WDFY4 (ref. 19) Fig. 1c).
Among T cells, total CD4 cells and Tregs were more abundant in
the CSF, while CD8 T cell clusters were not different (Fig. 1d, e).
Flow cytometry confirmed this unique composition of CSF leu-
kocytes (Supplementary Fig. 4a–c). Cell proportions in CSF and
blood did not correlate by either scRNA-seq or flow cytometry
supporting an independent regulation of their cell composition.
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In summary, we confirmed a highly compartment-specific com-
position of CSF cells and identified an enrichment of mDC1 and
Tregs in the CSF.

We also found a CSF-specific pattern of myeloid lineage cells.
The Mono2 cluster was almost exclusively CSF-derived (Fig. 1d,
Supplementary Fig. 2c) and canonical markers indicated an
intermediate CD14+FCGR3A/CD16int phenotype (Fig. 1c) as
described for CSF20. It also expressed a unique transcriptional
signature, including genes previously identified in classical
(CD9, CD163, EGR1 and BTG2) and in nonclassical (C1QA,

C1QB, MAF and CSF1R/CD115) monocytes21. Notably, the
CSF-derived Mono2 cluster also expressed (Supplementary
Dataset 1) markers of perivascular macrophages (LYVE1
(ref. 22)), microglia (TREM2, TMEM119 and GPR34 (ref. 23)),
and CNS border-associated macrophages (STAB1 and CH25H
(ref. 24,25)) previously identified in rodents. In a systematic
comparison (Methods), the Mono2 gene signatures resembled
homeostatic microglia described previously26 (Supplementary
Fig. 14a–d). We thus identified a distinct phenotype of CSF
monocytes.
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We next aimed to identify further compartment-specific gene
expression signatures on a per cluster level (Supplementary
Table 5). We focussed on genes identified independently as
differentially expressed (DE) by two methods (Mann–Whitney U
test, edgeR27) and supported by Bayesian model comparison in
single-cell variational inference scVI ((ref. 28) Methods). Due to
the stringency of this approach, most of such ‘triple-consistent’
genes were DE in CSF vs. blood cells in only one (18.9% of all
expressed genes) or two (5.1%) clusters (Supplementary Table 5),
although measures of differential expression were positively
correlated especially between related clusters (Supplementary
Fig. 10a), indicating coregulated gene modules in related cell
types.

Genes induced in multiple (i.e., >3) CSF clusters included
FGF9, previously implicated in inflammatory CNS tissue
damage29 and metallothionein E, potentially involved in CSF
metal ion homeostasis30. Cell cycle (e.g., CCNC/Cyclin-C) genes
were induced in CD4+ T cells in line with their activated
phenotype in CSF31,32. Genes induced in CD4+ T cells in the CSF
were also related to lipid antigen recognition (CD1E), interaction
with antigen-presenting cells (CD81, CD83, CD84, and CD209),
and adhesion and migration (CD99). In fact, CSF T cells
expressed a specific pattern of chemokine and integrin tran-
scripts, including an induction of CXCL16 and CXCR5, and
downregulation of ITGAL/VLA4 in CSF CD4+ T cells and of
ITGB7 in myeloid cells (Supplementary Fig. 3c, Supplementary
Dataset 2). Genes consistently downregulated in CSF T cells were
associated with naive cell state (SELL/CD62L) and cytokine
responses (IL2RG/common γ chain). Interestingly, CD48 pre-
viously associated with CSF translocation of bacteria33 was
upregulated in CSF T cells (Supplementary Dataset 2). In
accordance, GSEA showed enrichment of pathogen response
pathways in CSF-induced genes (e.g., KEGG pathways hsa05169
and hsa05168; Supplementary Dataset 3). B cell clusters (B1, B2,
and plasma) showed no transcriptional changes between
compartments (Supplementary Dataset 2). Genes associated with
memory formation (ID3 and CCR2) were induced in the CD8a
cluster (Supplementary Dataset 2). Single-cell transcriptomics
thus identified a location-specific transcriptional phenotype and
trafficking molecule expression of CSF leukocytes.

MS alters expression in blood and cell composition in CSF.
Next, we analysed our dataset for MS-associated changes. Blood
cells exhibited no significant differences in composition in MS
compared to control (Supplementary Fig. 5a, b), as confirmed by
flow cytometry (Supplementary Fig. 4b, c). In contrast, blood cells
exhibited diverse ‘triple-consistent’ (see above and Methods)
transcriptional changes (Supplementary Dataset 4), including an
induction of activation markers (ICOS), specific cytokine recep-
tors (IL17RA), and trafficking molecules (PECAM1/CD31,
ITGA5/α5 integrin) in T cells (Supplementary Fig. 5c).

In contrast to blood, the cell type composition of CSF was
clearly different in MS patients compared to controls (Fig. 2a, b).
Using binomial regression modelling (Methods), all B lineage cell
clusters (B1, B2, and plasma) significantly expanded in the CSF in
MS compared to controls (Fig. 2a, b) in accordance with flow
cytometry (Supplementary Fig. 4b, c) and previous studies34–36.
Heavy chain gene expression in mature B cell clusters (B2 and
plasma) was dominated by IGHG/IgG genes, although some cells
expressed IGHA/IgA genes (Supplementary Fig. 6a–d). Most B
lineage cells in the CSF are thus class-switched because heavy
chain usage in blood evolves from IGHD to IGHM to IGHG/
IGHA during maturation. The IGKC/κ-to-IGLC/λ ratio was at
2.75 in CSF and 1.92 in blood. Additional comparison with
published signatures confirmed our B cell cluster annotation and
suggested some germinal center and plasmablast phenotype cells
in the plasma cluster (Supplementary Fig. 6e, f).

Among other cell lineages, both CD56dim NK1 and CD56bri

NK2 cell clusters, and the CD8na cluster increased in the CSF in
MS compared to controls (Fig. 2a, b) as confirmed by flow
cytometry (Supplementary Fig. 4b, c) and in line with a previous
study37. In addition, we identified an increase of mDC1 cells and
Tregs in the CSF in MS, while γδ T cells (Tdg) were significantly
decreased (Fig. 2a, b). MS thus induced complex changes of the
composition of CSF leukocytes that are characterized by a
simultaneous expansion of cell types with the capacity for
antibody production (B1, B2, and plasma), cytotoxicity (CD8na
and CD56dim NK1), and with regulatory potential (Tregs and
CD56bri NK2).

We next tested for disease-associated ‘triple-consistent’ tran-
scriptional changes in CSF cell clusters (Supplementary Dataset 5).
In CSF T cells, we found an induction of genes associated with
immune activation (HLA-C and CD5), and with interferon
responses (IL12RB1 and IL18RAP) and related down-stream
signaling molecules (IRF3 and IRF8; Fig. 2c). Specific trafficking
molecules (e.g., ITGB1/integrin-β1) were also upregulated in MS.
The CD8a cluster showed signs of increased memory formation
(ID3). The Treg cluster showed induction of the transcription
factor STAT1 and some interferon-regulated genes (MUM1 and
NUCB2). The mDC2 cluster induced B-cell-related genes, (e.g.,
CD79A and CD74) and signs of IL-2 signaling (STAT5A) and a
co-inhibitory molecule (TNFRSF18/GITR). B cell clusters did not
exhibit differentially expressed genes (Supplementary Dataset 5)
potentially, indicating that MS preferentially induces numerical
rather than phenotypic differences in B lineage cells in the CSF.
The MS-associated cellular response in CSF was thus diverse and
lineage specific, and showed signs of interferon-regulated
responses (Supplementary Dataset 5).

When directly comparing effects of MS between CSF and
blood, we found that a greater proportion of genes was
differentially expressed in blood than in CSF. For example, when
performing the MS vs. control comparison, more genes (n= 354)

Fig. 1 Single-cell transcriptomics reconstructs the compartment-specific leukocyte composition of CSF and blood. a Schematic of the study design
(Methods). b Uniform Manifold Approximation and Projection (UMAP) plot representing 17 color-coded cell clusters identified in merged single-cell
transcriptomes of blood (42,969) and CSF (22,357) cells from control (n= 4) and multiple sclerosis (MS; n= 4) patients (Methods). Cluster names were
manually assigned. c Dotplot depicting selected marker genes in cell clusters. Dot size encodes percentage of cells expressing the gene, color encodes the
average per cell gene expression level. d UMAP plots comparing blood (left) and CSF (right) cell clustering. Please note that the MegaK cluster is
disregarded for higher resolution. e Volcano plot depicting differences of cluster abundance in CSF compared to blood plotting fold change (log10) against
p value (−log10) based on beta-binomial regression (Methods). Horizontal line indicates significance threshold. Cluster key: pDC, plasmacytoid dendritic
cells (DC); mDC1, myeloid DC type 1; Mono1, monocyte cluster 1 preferentially blood-derived; Mono2, monocyte cluster 2 preferentially CSF-derived; gran,
granulocytes; Tdg, γδ T cells; CD8na, non-activated CD8+ T cells; CD8a, activated CD8+ T cells; Tregs, regulatory CD4+ T cells; CD4, CD4+ T cells; NK,
natural killer cells; MegaK, megakaryocytes; B1/B2, B cell subsets; plasma, plasmablasts. Source data for (c) listing the differential expression values for all
cells merged are provided in Supplementary Dataset 1. Source data for (d, e) listing the differential expression values for CSF vs. blood are provided in
Supplementary Dataset 2.
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were differentially expressed (DE) within the CD8a cell cluster in
blood than within the same cluster in the CSF (n= 24). This
trend toward more DE genes in blood than in MS was maintained
across all cell clusters (Supplementary Datasets 4 and 5). Overall,
when plotted across all clusters and genes, the Bayes factor (a
measure of likelihood of differential expression that does not
depend on sample size) of the MS vs. control comparison showed
more extreme values in blood than in CSF (Fig. 2d). Then, we
subsampled each cluster to have the same number of cells in
blood and CSF and ran the Mann–Whitney U test and observed
that the blood case-control had more significant p values and

those p values were more extreme. In blood, MS thus
preferentially increased transcriptional diversity, while in CSF it
preferentially increased cell type diversity suggesting
compartment-specific disease mechanisms.

Cytotoxic T helper cells increase in the CSF in MS. We had
tentatively handled the CD4+ T cell cluster as one cell type,
because this population did not form clearly distinct sub-clusters
(Supplementary Fig. 2a) and because many well-established T cell
protein markers faired poorly on transcript level. We therefore
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clusters with a minimum of ten cells per tissue per disease state are included. Please note that the BF is proportional to the likelihood of differential
expression (i.e., higher BF indicates more likely DE)28. Source data for (b, c) listing the differential expression values for MS vs. controls in CSF are provided
in Supplementary Dataset 5. Source data for (d) listing the BFs for CSF vs. blood are provided in Supplementary Dataset 2.
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next aimed to better characterize the CD4+ T cells using dedi-
cated approaches.

We performed sub-clustering of the CD4+ T cell cluster
(Fig. 3a, Supplementary Fig. 7a–c, Supplementary Dataset 6). As
expected for an unsupervised clustering approach38, we found a
minor population of CD8 T cells (CD8B; CD4+ T cell sub-cluster
(CD4Tc) #8; 7.54% of all CD4+ T cells) remaining within the
tentative CD4+ T cell cluster (Fig. 3a, b). The CD4+ T cells
broadly separated into naive-like (SELL and CCR7; CD4Tc
#5,11,1,2) and memory-like (CD44; CD4Tc #9,4,0,3,6,7) clusters
based on marker gene expression (Fig. 3b). Memory cells further
separated into subsets with mostly effector memory-like (CD69;
CD4Tc #3,0,4) and central memory-like (CD27; CD4Tc #7,6,9)
phenotype. We also identified a cluster of likely Treg identity
(FOXP3 and CTLA4; CD4Tc #10, Fig. 3b) located at the intersect
between naive and memory cells (Fig. 3a). Notably, this cluster
expressed individual markers of T cell exhaustion (TIGIT;
Supplementary Fig. 7f)39 previously associated with loss of
suppressive capacity of Tregs in the tumour microenvironment40.

We next used VISION (previously named FastProject41) to
identify transcriptional signatures rather than individual marker
genes to better interpret the CD4+ T cell sub-clustering.
Transcriptional signatures identified a transcriptional gradient
ranging from naive to memory T cell state (Supplementary Fig. 7d).
This was in line with previous findings in rodents42, and potentially
indicated that CD4+ T cells generally form transcriptional gradients
rather than distinct sub-clusters also explaining the poor applic-
ability of clustering approaches alone for this cell type.

We next sought to identify compartment- and disease-specific
changes among CD4+ T cell sub-clusters. We found that several
memory-type clusters (CD4Tc #3,4,0,9) were more abundant in
CSF compared to blood while naive clusters (CD4Tc #1,11,2) and
exhausted Tregs (CD4Tc #10) were less frequent using t-test
based statistics (Fig. 3c; Supplementary Fig. 7e) in accordance
with previous studies31,32. Disease-associated changes in blood
were limited to a reduction of a single memory-like cluster
(CD4Tc #4) in MS compared to control (Supplementary Fig. 7e).
Transcriptional changes in blood and CSF did not encompass any
of the key T helper (Th) cell lineage transcripts (e.g., TBX21,
GATA3, and RORC; Supplementary Dataset 7,8). In CSF, a CD4+

T cell sub-cluster (2240 cells) of memory cells was significantly
more abundant in MS vs. control (CD4Tc #0; Fig. 3d). This
cluster expressed multiple genes associated with cytotoxic
function (GZMB, PRF1, and CCL5) despite similar levels of
CD4+ T cell marker genes (CD4 and IL7R), low doublet
probability (predicted doublet t-test p value 0.68), and absence
of CD8 or NK cell markers (CD8B and NKG7; Fig. 3e) in this
population. This gene signature showed considerable similarity
with a recently described population of cytotoxic CD4+ T cells43

that is enriched within the CD4+ T cells effector memory recently
activated (TEMRA) compartment. To independently confirm
this, we quantified CD4+CD45RA+CD27−TEMRA cells and
CD4+CD25highCD127low Tregs by flow cytometry in the CSF of
newly recruited donors (Supplementary Fig. 8). Both populations
were significantly more abundant in MS than in controls (Fig. 3f,
g). This indicates that cytotoxic CD4+ T cells and Tregs44

expanded in the CSF in MS.

CSEA identifies cluster-independent transcriptional changes.
Although the clustering analysis was informative about the gen-
eral cell states, it was not readily able to identify a stratification of
the cells into specific Th cell subsets. We therefore developed a
procedure—CSEA—which reuses the GSEA test for working on
ranked lists of cells rather than genes (Methods, Supplementary
Fig. 7). In this procedure, the cells are first ordered by a

transcriptional phenotype of interest (e.g., summed expression of
genes in a pathway). The statistical test can then detect cases in
which a subset of cells from one group (e.g., MS) exhibit unu-
sually high or low values of that transcriptional phenotype
compared to cells from the second group (e.g., control). We used
this analysis with signature scores obtained from the VISION
pipeline based on signatures obtained from databases and lit-
erature curation (Methods) to specifically analyze CD4+ T cells
from CSF and blood.

Our CSEA testing procedure returned lists of cell sets
significantly (Methods) enriched in MS and expressing a certain
gene signature (Supplementary Dataset 9). The cell sets that were
enriched in MS when compared to controls expressed signatures
of Th cell type 1 (Th1)45 and TFH cells46 (Supplementary Fig. 9b,
c). We found that the TFH signature was enriched in the CSF
(p= 0.002) but not in the blood (p= 0.889). Th1 cells are
significantly enriched in both blood (p= 0.012) and CSF (p=
0.0). The leading edge size reflects the number of cells driving the
high enrichment score (ES). In all cases, the leading edge is small
(<600 cells; Supplementary Dataset 9), indicating that a subset of
cells is driving the enrichment. We also generated a random
geneset that is matched to the original signature set in both
number of genes and the average expression of each gene
(Methods). The ES of the signature set is higher than that of the
random genesets. Similar results were also obtained with more
loose average expression matching (Supplementary Fig. 13).
Thus, CD4+ T cells expressing a Th1- and TFH-like signature
were enriched in MS in the CSF, but were spread across sub-
clusters. Our analytical approach could therefore decouple
clustering of cells from disease-state or differentiation-state
enrichment of cells, providing a framework for interpreting
complex scRNA-seq datasets. Interestingly, TFH cells are
required for B cell maturation47. This lead us to hypothesize
that TFH might be functionally related with the MS-specific B cell
expansion in the CSF.

The TFH subset expands in the CSF in MS and exacerbates
EAE. We therefore next tested whether TFH cells are in fact
altered in the CSF in MS. We identified CD3+CD4+CXCR5+

TFH cells in the CSF by flow cytometry and found a significantly
increased proportion of TFH cells in MS patients (Fig. 4a, b) in
accordance with previous studies in the blood48 and CSF49.
Activated PD-1+ and PD-1+ICOS+ TFH cells were also increased
in the CSF (Fig. 4b) while the alternative CD4+CXCR5−

PD-1+ subset50 was unchanged (Supplementary Fig. 12d). The
percentage of PD-1+ TFH cells in CSF positively correlated with
the proportion of CSF plasma cells quantified by flow cytometry
(r= 0.70, p < 0.05). Next, we performed bulk population RNA-seq
from sorted TFH cells from the CSF of MS patients (n= 7) vs.
controls (n= 6) to better characterize this cell type. Surprisingly,
no genes reached the significance threshold for differential
expression (Supplementary Fig. 12c, Supplementary Dataset 10).
This indicated that CSF-resident TFH cells increase in abundance,
but do not considerably alter their phenotype in MS. We then
performed GSEA and found an enrichment of gene sets (not
individual genes) associated with T cell memory and pathogenicity
in MS-derived TFH cells (p < 0.01, Bonferroni correction; Sup-
plementary Dataset 10). Genes recurring in these enriched gene-
sets (Supplementary Fig. 11) were associated with cytotoxicity
(e.g., GZMA, GZMK, CASP3, and CASP4) and coinhibitory
function (e.g., KLRG1, TIGIT, and CTLA4). Although statistically
less stringent, this approach indicated that pathogenic TFH cells
may expand in the CSF in MS patients.

We then tested whether TFH cells in fact promote neuro-
inflammation to a functionally relevant extent using common
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Fig. 3 Cytotoxic-like population of CD4+ T cells is induced in the CSF in MS. a UMAP plot showing sub-clustering of all CD4+ T cells combined from
blood (13,933 cells) and CSF (11,172 cells). Sub-clusters are numbered 0–11. b Heatmap depicting per cluster average expression of selected T cell subset
marker genes. Expression values were normalized per gene with 0 reflecting the lowest expression and 1 reflecting the highest expression. c Volcano plot
showing differences of CD4+ T cell cluster abundance in CSF compared to blood as fold change (log10) against p value (−log10) based on Student’s t-test.
d Volcano plot showing differences of CD4+ T cell cluster abundance in MS compared to control within CSF based on Student’s t-test. e Heatmap showing
average gene expression of selected cytotoxicity markers derived from43. Expression values were normalized per gene with 0 reflecting the lowest
expression and 1 reflecting the highest expression. f The proportion of TEMRA cells (CD45RA+CD27−) among live lymphocytes in the CSF of control (co;
n= 5) and MS (n= 12) patients was quantified by flow cytometry. g The proportion of Treg cells (CD25highCD127low) among live lymphocytes in the CSF
of donors as in f was quantified by flow cytometry. Mann–Whitney U test, *p < 0.05, **p < 0.01. The lower and upper edges of the box plots represent the
lower and the upper quartile, respectively, the horizontal line inside the box indicates the median, and the whiskers extend to the most extreme values
within the 1.5 interquartile range of the lower/upper quartile. Source data for (b, e) listing the differential expression values for all CD4+ T cells are
provided in Supplementary Dataset 6. Source data for (f, g) listing the TEMRA and TREGS frequencies are provided in the Source Data file.
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animal models of MS. We generated mice with T-cell-restricted
deficiency of Bcl6—the lineage-defining transcription factor of
TFH cells47. Such CD4CreBcl6fl/fl mice lack TFH cells and fail to
mount antigen-specific B cell responses47, while the differentia-
tion of other Th cell lineages (Supplementary Fig. 10a) and the
composition of the peripheral immune compartment after
immunization were unchanged (Supplementary Fig. 10b) as
previously described51.

We induced active EAE using myelin oligodendrocyte
glycoprotein (MOG)35–55 peptide in these mice and EAE severity
was significantly reduced in CD4CreBcl6fl/fl mice compared to
Cre-negative littermates (Fig. 4c). Accordingly, the number of
inflammatory lesions and infiltrated area in the spinal cord of
CD4CreBcl6fl/fl mice were lower than in controls (Supplementary
Fig. 10c, d). We tested how the absence of TFH cells influenced B
cells in the CNS and found a lower proportion of B cells (B220+

CD3−) infiltrating the CNS in CD4CreBcl6fl/fl mice by flow
cytometry (Fig. 4d) and in the spinal cord by histology (Fig. 4d,
Supplementary Fig. 10e).

Pan-T cell deficiency of Bcl6 in CD4CreBcl6fl/fl mice will affect
the priming phase of EAE and target both TFH cells and T
follicular regulatory (TFR) cells52. To make a contribution of
these potential confounders less likely, we next generated
2D2tgCD4CreBcl6fl/fl mice expressing a T cell receptor transgene
recognizing MOG53 to enable immunization-independent adop-
tive transfer EAE induction. After transfer of interleukin (IL)-17

producing myelin-reactive Th cells into wild-type hosts (Meth-
ods), 2D2tgBcl6fl/fl control T cells induced considerably more
severe EAE than Bcl6-deficient 2D2tgCD4CreBcl6fl/fl donor cells
(Fig. 4e). This was despite comparable pre-transfer polarization of
donor T cells (Supplementary Fig. 10f). Control recipients also
showed a higher proportion of B cells in the CNS than recipients
of Bcl6-deficient T cells (Fig. 4f). Taken together, our data
indicated that TFH cells locally drive B cell responses in the CNS
and promote MS-like autoimmunity.

Discussion
In this study, we constructed an unbiased comparative single-cell
map of blood and CSF cells. We identified a compartment-
specific leukocyte transcriptome and composition including an
enrichment of mDC1 and Tregs in the CSF. Monocytes in the
CSF were especially distinct and partly resembled CNS border-
associated macrophages. These findings emphasized the unique
immune microenvironment of the CSF.

We used MS to test how a paradigmatic autoimmune disease
would affect leukocytes in a compartment-specific manner. Sur-
prisingly, we found that MS preferentially increased transcrip-
tional diversity in blood, while it increased cell type diversity in
CSF thus providing evidence for compartmentalized mechanisms
driving human autoimmunity in the brain. In MS-derived CSF,
we found an expansion of cytotoxic phenotype CD4+ T cells43

that could be involved in local MS pathology. We also found that
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clustering-based methods alone poorly capture disease-associated
changes within CD4+ T cells and developed CSEA as a cluster-
independent analytical approach to address this. This lead us to
investigate TFH cells and these cells in fact expanded in MS
within the CSF and promoted B cell accumulation and disease
severity in MS-like animal models. Our study thereby provides a
signature case for reverse translation from unbiased single-cell
transcriptomics in humans to disease mechanisms in rodents.

Our unbiased approach considerably extended the available
flow cytometry-based characterization of CSF leukocytes4.
Notably, mDC1 cells abundant in the CSF-expressed markers of
cross-presenting capacity (XCR1 and WDFY4 (ref. 19)), while
NK2 cells in the CSF expressed the corresponding ligands (XCL1
and XCL2) indicating that cell types equipped for cross-
presentation and antiviral defence circulate the CSF. We also
replicated the known activated/memory phenotype32 of CSF-
resident T cells and identified a distinct pattern of adhesion
molecule expression in CSF leukocytes (Fig. 3e). Such a repository
of compartment-specific gene expression signatures could allow
specifically targeting CSF cells in the future (e.g., CCL3 in CSF
myloid cells (Supplementary Fig. 3c)). This also allowed us to
provide a human confirmation beyond a previous single case
study in human immunodeficiency virus (HIV)54 of the rodent
border-associated macrophage cell phenotype24,25. Our findings
thus lended further support to a species-independent ‘peri-CNS
immune system’ involved in local autoimmunity and anti-
pathogen defense.

A plethora of studies have analyzed mechanisms of neuro-
inflammation55 albeit often equating rodent models with human
MS. Unlike our CSF-focussed study, purely human transcrip-
tional studies often relied on easily accessible PBMCs56. Some
transcriptional studies of blood cells focussed on myelin antigen-
specific T cells using predefined gene sets56. However, whether
blood leukocytes actually constitute a suitable surrogate of disease
mechanisms in MS remains unknown. A single available tran-
scriptomic study of unsorted bulk CSF cells in MS returned signs
of local B cell expansion6. Invasive lumbar punctures (LPs) are
rarely justifiable in healthy individuals, which limits access to
optimal controls in any CSF-based study. Others have used
somatoform disorders with the inherent risk of misdiagnosis18.
We chose IIH controls, because they require large volume CSF
removal, are well matched with MS patients with regard to sex
and age, and because basic CSF parameters and B cells are
unchanged in IIH18. Some of the complex cellular changes we
observed in MS vs. IIH may still be biased by this specific choice
of controls. We also preferentially recruited untreated MS
patients in (first) relapse to limit clinical complexity. The phe-
notype of CSF cells in remission or under MS treatments may be
considerably different. The specificity of CSF cell changes in MS
vs. other inflammatory CNS diseases, such as neuromyelitis
optica spectrum diseases remains unknown. The transcriptomics
cohort of our study is also clearly under-powered (and is not
designed) to address the known intradisease heterogeneity of
MS57. Our study, however, provides an essential reference point
for future studies with this focus.

Specific Th cell lineages have long been associated with MS-like
pathology in rodents, while evidence in human MS is more
ambiguous58. Notably, blood T cells in our dataset showed some
induction of Th17 cell-related signaling (IL6R) although most
core Th17 transcriptional modules were not differentially
expressed59. In contrast, CSF cells showed signs of Th1 cell-
related signalling on the individual gene level (e.g., IL12RB1,
IL18RAP, and IRF8), by GSEA (Supplementary Dataset 3), and
when using CSEA (Supplementary Fig. 9d, e). We also found an
expansion of CD4+ T cells with cytotoxic phenotype (CD4 Tc
cluster #0) in MS vs. control patients in the CSF, but not in blood

(Fig. 3). One of the marker genes in this cluster was EOMES
(Fig. 3e) and notably EOMES is also a genetic risk locus for
RRMS (Relapsing-remitting multiple sclerosis)60. Previously,
EOMES+CD4+ T cells were shown to increase in the blood of
patients with secondary progressive, albeit not RRMS and in late-
stage EAE61. However, the previous study was underpowered to
detect MS vs. control differences in the CSF (five total samples).
Another set of studies defined cytotoxic CD4+ T cells by the lack
of CD28 expression and these cells expanded in EAE62 and in the
blood of RRMS patients63. A quantification of such cells in the
CSF is unavailable. Another recent study used CytOF to quantify
35 predefined chemokine and cytokine markers in blood cells
from MS patients64. A population of GM-CSF+CXCR4+ Th cells
expanded in the peripheral blood of RRMS patients and was
enriched in the CSF compared to the blood as expected for a
memory population64. But again, no MS vs. control comparison
in the CSF was provided. This highlights the unique CSF vs. blood
design of our study. It remains to be tested to what extent GM-
CSF+CXCR4+ Th cells represent a population with cytotoxic
capacity and may overlap with our CD4 Tc cluster #0. Neither
CSF2 (encoding GM-CSF) nor CXCR4 were detected in our
dataset. In summary, although cell type definitions vary con-
siderably between studies, CD4+ T cells with cytotoxic potential
may locally contribute to MS pathogenesis.

We also found that TFH cells enhanced B cell enrichment in
the CNS in EAE and correlated with B lineage cell abundance in
the CSF. We used a genetically more rigorous approach than a
previous study65 and our application of adoptive transfer EAE
makes a contribution of TFR cells52 unlikely, because effector
cells do not convert to Tregs in EAE66. We and others49 speculate
that a pathological interaction between TFH cells and B cells in
the CSF may locally drive CNS autoimmune reactions. In fact, B
cell clones have long been known to, at least partially, expand in
the CSF in MS13 together with migration from the periphery34,35.
Previous studies support both an influx of B cells that have
matured (i.e., class-switched) in the periphery and a local
maturation of B cells in the CSF67,68. Our approach is in accor-
dance with these studies and is unlikely to return false positives as
it is unbiased and corrected for multiple-hypothesis testing.
The relevance of B cells in MS is also supported by the efficacy of
B-cell-depleting therapies14. It will be exceptionally interesting to
extend our single cell study design to MS patients receiving
B-cell-depleting treatments or in later disease stages. Our study
provides an essential reference point for such future studies of
human CSF and will likely facilitate understanding of diverse
neurological diseases such as Parkinson’s and Alzheimer’s disease
in the future.

Methods
Patient recruiting and inclusion. All sample processing had to be performed with
fresh CSF cells that were processed immediately after collection, as freezing and
other preservation approaches caused severe loss of transcriptional information
and cell numbers in preliminary experiments in our hands. The latency from
bedside to bench was <1 h in most patients. Consequently, most diagnostic
information, required to diagnose MS, were unavailable at the time point of entry
into our prospective study.

A total of 54 control patients and 60 MS patients were prospectively included in
the study and were recruited from patients being treated in inpatient or outpatient
clinics of the Department of Neurology with Institute of Translational Neurology at
the University Clinic Münster. For MS patients, formal inclusion criteria for first
inclusion were: (1) treatment naive patients with an episode suggestive of MS (i.e.,
CIS) or with RRMS diagnosed based on MAGNIMS criteria69, and (2) patients
receiving LP for diagnostic purposes and consenting to participate. Both criteria
had to be met for first inclusion. Exclusion criteria for MS patients for first
inclusion were defined as: (1) questionable diagnosis of MS by clinical signs or
magnetic resonance imaging (MRI) findings, and (2) secondary chronic progressive
MS or primary progressive MS, (3) ongoing or previous immunomodulatory
treatment. IIH patients were included, if they gave informed consent. Exclusion
criteria for all patients were: (1) immunologically relevant comorbidities (e.g.,
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rheumatologic diseases), (2) severe concomitant infectious diseases (e.g., HIV,
meningitis, and encephalitis), (3) pregnancy or breastfeeding, (4) younger than
18 years, (5) mental illness impairing the ability to give informed consent, and
(6) artificial blood contamination during the LP resulting in >200 RBCs/μl.

After 4 weeks of clinical follow-up from LP, we excluded MS and control
patients whose diagnostic work-up revealed a diagnosis other than MS/IIH or who
retrospectively otherwise did not match inclusion criteria or fulfilled exclusion
criteria (Supplementary Fig. 1c). The following diagnostic tests were performed in
all MS patients to exclude differential diagnoses: polymerase chain reaction (PCR)
for cytomegaly virus, Ebstein-Barr virus, Human Herpes Virus-6, Herpes simplex
Virus (HSV)-1, HSV-2, and Varicella-Zoster Virus in CSF. Blood tests for anti-
HAV IgM, HBsAg, anti-HBc, anti-HCV, rheuma factor, Waaler-Rose Test, anti-
cyclic citrullinated peptide, antinuclear antibody, anti-double strand DNA
antibodies, antineutrophil cytoplasmic antibodies. CSF and serum were tested by
the Treponema pallidum hemagglutination assay. Borrelia burgdorferi was detected
in CSF and blood by ELISA. After this second exclusion step, a total of 45
treatment-naive patients with MS or CIS maintained in the study (Supplementary
Tables 1, 2, Supplementary Fig. 1d). The control group consisted of 27 patients
diagnosed with IIH (Supplementary Tables 1, 2).

Five to 22 months after the initial LP, we searched the local clinical database for
follow-up information on all MS patients, who had not fulfilled the diagnostic
criteria for clinically definite MS at the point of study entry (e.g., CIS patients;
Supplementary Table 2). We then excluded additional six patients from the MS
group, who were not confirmed to have developed CDMS or were lost to follow-up.
After this third exclusion step, we maintained a total of 39 patients in the MS group
and only the following types of patients were thus maintained in the MS group of
the study:

1. Clinically defined MS diagnosed at study entry by at least two relapses and
dissemination in space (DIS) in MRI after exclusion of differential
diagnoses.

2. RRMS diagnosed at study entry by at least one relapse and dissemination in
time identified by MRI or by OCB and DIS after exclusion of differential
diagnoses70.

3. CIS irrespective of DIS or presence of OCB at initial sampling after
exclusion of differential diagnoses, but with RRMS clinically defined by a
second relapse at any time point later during follow-up.

Patients were recruited in four consecutive cohorts (Supplementary Tables 1
and 2, Supplementary Fig. 1). Cohort 1: single-cell RNA-seq of unsorted CSF cells
(named scRNAseq; 6 IIH vs. 6 MS patients), cohort 2: CSF cell flow cytometry only
using a general flow cytometry staining panel (named flow only; 7 IIH vs. 12 MS
patients; gating in Supplementary Fig. 4), cohort 3: flow sorted CD3+CD4+

CXCR5+ TFH cells from CSF for bulk RNA-seq (named TFH RNA-seq; 9 IIH vs. 9
MS patients), and cohort 4: CSF cell flow cytometry using a staining panel designed
to quantify CD4+ TEMRA cells and Treg cells (named validation; 5 IIH vs. 12 MS
patients; gating in Supplementary Fig. 4).

All patients were of Caucasian ethnicity and gave written informed consent.
The study was performed in accordance with the declaration of Helsinki and was
approved and supervised by the “Ethikkommission der Ärztekammer Westfalen-
Lippe (ÄKWL) und der Westfälischen-Wilhelms-Universität” (Ethics Committee
of the Board of Physicians of the Region Westfalen-Lippe and of the Westfälische
Wilhelms-University Münster) under reference number 2015-522-f-S. R version
3.4.4 and RStudio 1.1.447 were used for the statistical analysis of clinical and
human flow cytometry data.

Sampling and flow cytometry analysis of CSF cells and blood cells. LPs were
performed under sterile conditions using 20 G Sprotte Canulae (Pajunk Medical).
Up to 5 ml of CSF and 3 ml of blood were collected in addition to diagnostic
material. Samples were pseudonymized at collection. CSF was quickly transported
to further processing and centrifuged at 300×g for 10 min. The supernatant was
removed and CSF cells were resuspended in 5 ml of X-Vivo15 media (Lonza) and
stored at 4 °C until processing. CSF flow cytometry was performed in all donors
using a Navious flow cytometer (Beckman Coulter). Blood cells were incubated in
VersaLyse buffer and blood and CSF cells were stained using the following anti-
human antibodies (Beckman Coulter; clone names indicated): CD3 (UCHT1); CD4
(13B8.2); CD8 (B9.11); CD14 (RMO52); CD16 (3G8); CD19 (J3-119); CD25
(B1.49.9); CD27 (1A4CD27); CD45 (J.33); CD45RA (ALB11); CD56 (N901,
NCAM16.2); CD127 (R34.34); CD138 (B-A38); and HLA-DR (Immu-357). For
CSF scRNA-seq, CSF cells in media were centrifuged at 400 × g for 5 min and
resuspended in 40 µl of X-Vivo15 media. A total of 5 µl of the single-cell suspen-
sion were manually counted in a Fuchs-Rosenthal chamber. The maximum of CSF
cells used for input was 10,000 cells. If total available CSF cell numbers were
<10,000 cells, all available cells were processed. On average 5917 cells ± 1505 s.d.
(control 6167 cells ± 2614 s.d. vs. MS 5667 cells ± 1506 s.d.) CSF cells were used as
input per donor. For blood scRNA-seq, blood was layered on top of Lympho-
prepTM (Stemcell) and gradient centrifugation was performed in accordance with
manufacturer’s instructions. After centrifugation, PBMCs enriched in the interface
were taken off and washed in 10 ml of X-Vivo15 media. A total of 5 µl of the single-
cell suspension were manually counted in a Fuchs-Rosenthal chamber. The max-
imum of blood cells used for input was 10,000 cells. Details on cell numbers and
gene capturing rates are provided in Supplementary Table 3.

Generation of single-cell libraries and sequencing. Single-cell suspensions were
loaded onto the Chromium Single Cell Controller using the Chromium Single Cell
3′ Library & Gel Bead Kit v2 (both from 10X Genomics) chemistry following the
manufacturer’s instructions. Sample processing and library preparation was per-
formed according to manufacturer instructions using AMPure beads (Beckman
Coulter). Sequencing was carried out on a local Illumina Nextseq 500 using the
High-Out 75 cycle kit with a 26-8-0-57 read setup.

Code reproducibility. The code for reproducing the results in this manuscript has
been deposited at https://github.com/chenlingantelope/MSscRNAseq2019.git.

Preprocessing of sequencing data. Processing of sequencing data was performed
with the cellranger pipeline v2.0.2 (10X Genomics). Raw bcl files were demulti-
plexed using cellranger mkfastq. Subsequent read alignments and transcript
counting was done individually for each sample using cellranger count with
standard parameters. Cellranger aggr was employed, to ensure that all samples had
the same number of confidently mapped reads per cell. The cellranger computa-
tions were carried out at the High Performance Computing Facility of the West-
fälische Wilhelms-University (WWU) Münster.

Single-cell sample filtering. Initial exploratory data analysis identified one MS
sample and one IIH sample whose clustering did not overlap with any of the other
samples. This suggested strong batch effects. Both samples were excluded from
further analysis, leaving four control- and four MS-derived samples from CSF, and
five control and five MS-derived samples from PBMC.

Nine barcode-level quality control (QC) metrics were computed for the
unfiltered 10x Cell Ranger output: (1) number of unique molecular identifiers
(UMIs), (2) number of reads, (3) mean reads per UMI, (4) standard deviation of
reads per UMI, (5) percent of reads confidently mapped to the gene, (6) percent of
reads mapped to the genome but not a gene, (7) percent of reads unmapped, (8)
percent of UMIs corrected by the Cell Ranger pipeline, and (9) the number of cell
barcodes corrected by the Cell Ranger pipeline. These metrics were used for
filtering and normalization. We applied the gene and sample filtering using a
scheme. involving four steps71:

1. Define common genes based on UMI counts: genes with nu or more UMIs
in at least 25% of barcodes, where nu is the upper-quartile of the non-zero
elements of the UMI matrix.

2. Filter samples based on QC metrics. Remove samples with low numbers of
reads, low proportions of mapped reads, or low numbers of detected
common genes. The threshold for each measure is defined data adaptively: a
sample may fail any criterion if the associated metric under performs by zcut
standard deviations from the mean metric value or by zcut median absolute
deviations from the median metric value. Here, we have used zcut= 2. This
function is implemented in scone::metric_sample_filter (see below).

3. Remove barcodes from donors with fewer than 100 barcodes following
sample filtering. These donors have contributed too few high-quality
samples to reliably estimate donor-specific effects. Only seven cells were
removed in this step.

4. Filter genes based on UMI counts: genes with nu or more UMIs in at least ns
barcodes, where nu is the upper-quartile of the non-zero elements of the
sample-filtered UMI matrix. We have set ns= 5 to accommodate markers of
rare populations. This sub-step ensures that included genes are detected in a
sufficient number of samples after sample filtering. For the CD4+-only
analysis this step was applied again after the data matrix was subset to
include only CD4+ clusters.

Single-cell harmonization. We utilized a Bayesian variational inference model
scVI28 to infer a shared latent space of dimension ten for all single cells from
different tissue, condition, and batches. Visualizations were generated using Uni-
form Manifold Approximation and Projection (UMAP) to further reduce the latent
space to two dimensions. scVI is a deep generative model that learns a probabilistic
representation of the transcriptional states of single cells conditional on the
sequencing batches, thus no explicit library size and batch correction is needed.

Level 1 clustering analysis. After sample filtering, we performed louvain clus-
tering on the scVI latent space as implemented in https://github.com/taynaud/
python-louvain. We first constructed a k-nearest-neighbor graph from the scVI
latent space, and then used the louvain.find_partition function with the Mod-
ularityVertexPartition method to recover a total of 25 clusters. Three of these
clusters correspond to CD4 T cells and were tentatively combined into a single
cluster for further analysis resulting in 22 first level clusters (Supplementary Fig. 2a,
b). From this, we removed one RBC cluster (2333 cells; HBA1, HBA2, and HBB),
three clusters with high doublet probability (see below), and one blood-derived
cluster with low quality (mitochondrial genes, no canonical marker genes;
361 cells) for further analysis (Supplementary Fig. 2a, b).
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Doublet detection. We computed a doublet score for each single cell using the
function scrub_doublets in the Scrublet package with all default parameters. We
then removed all clusters with >20% of cells labeled as doublets (1186, 290, and 105
cells), including one cluster of lower quality cells, one cluster expressing Monocyte
marker genes, and one cluster expressing B cell marker genes.

Level 2 clustering analysis. For cells that were classified as a single cluster but two
distinct clusters were visible on UMAP visualization (monocytes, B cells and
mDCs; Supplementary Fig. 2b, c), we performed further clustering on the scVI
latent space using Spectral Clustering from the scikit-learn package Spec-
tralClustering with number of cluster set to 2 and affinity matrix computed using
k-nearest-neighbor with k= 15 (Supplementary Fig. 2c). The clusters we visually
identified on UMAP were confirmed to be the same as the results of Spectral
Clustering. With further validation using signature genes, we included the second
level clusters into the main analysis. Monocyte cluster separated into Mono1 and
Mono2, B cell cluster separated into clusters B1 and B2, and mDC separated into
mDC1 and mDC2.

T cell clustering analysis. For all CD4 T cells (excluding regulatory T cells), we
performed Louvain clustering on the scVI latent space, excluding all other cells.
With the same parameters as the level 1 clustering analysis. We partitioned the
CD4 T cells into a total of 12 clusters.

Systematic comparison with published microglia and CSF datasets. We
obtained the key marker genes of myeloid lineage cell clusters from recent pub-
lications26,54,72,73 and plotted their expression onto our combined dataset (Sup-
plementary Fig. 14). We extracted the combined oligodendrocyte markers from a
study performing single nuclei RNA-seq of frozen brain parenchyma72 and selected
genes that are also highly variable in our dataset (genes APOE, CD74, HLA-DRA,
PTPRC, and C3). We extracted markers of five myeloid clusters from a CSF-based
study54 (genes C1QB, C1QC, APOE, C1QA, LYVE1, SEPP1, FCGBP, APOC1, C3,
A2M,MSR1, EPB41L2,MARCO, RNASE1, and F13A1). We also obtained microglia
markers (TMEM119, CCL4, P2RY13, EGR2, CX3CR1, CCL2, SLC2A5, EGR3, and
CD83) and markers of MS-associated microglia markers (CTSD, CD74, SPP1,
APOC1, HLA-DRA, PADI2, GPNMB, HLA-DRB1, ANXA2, HLA-DPB1, CPM,
LGALS1, LYZ, LIPA, APOE, and MAFB)26. We extracted marker genes from a
rodent study (NLRC5, IL12RB1, PSMB9, TAP1, TAP2, IFIH1, IRF7, and ZBP1)73.
We then plotted the combined expression level of the respective gene signatures
into our combined blood and CSF dataset.

VISION analysis. We passed raw and normalized UMI data to the VISION
pipeline (https://github.com/YosefLab/VISION)41. Mean expression per gene
symbol was calculated prior to the analysis in order to make the features relatable
to general gene signatures. The goal of FastProject analysis—on which VISION is
based—is to uncover biologically meaningful gene signatures that vary coherently
across single-cell neighborhoods41. These signatures can help assign meaning to
the dominant expression differences between clusters. In addition to raw data, we
passed QC, donor, status, and Seurat cluster covariates for exploratory analysis and
visualization. VISION quantifies the extent to which cell signature values cluster
across the cell manifold by using consistency testing. VISION scores the extent to
which neighbouring cells (similar expression profiled) are predictive of a cell’s
signature value using autocorrelation (Giri’s C) statistics, comparing against ran-
dom permutations in order to assign statistical significance with respect to a
uniform null model. We also included the Seurat t-SNE as a precomputed pro-
jection. Our signature set includes:

1. Human cell cycle genes described before7, representing sets of genes
marking G1/S, S, G2/M, M, and M/G1 phases.

2. The MSigDB C7 immunological signature collection.
3. TH signatures compiled previously45.
4. NetPath database signatures.
5. Curated T cell signatures42.
6. Curated TFH signatures46.
7. Curated Temra signatures43

Housekeeping genes were referenced from ref. 74.

Differential composition analysis. For both the initial and the CD4+-only clus-
tering, we used t-test and beta-binomial generalized linear model in package aod::
betabin to test the difference in cluster abundances (cell counts) between MS
donors and control donors. We used both methods because when cell types are
rare, the estimated proportions of a cell type in each donor might be over-
dispersed. The two methods show consistent results and thus we show the dif-
ferential composition analysis from the beta-binomial distribution comparison. For
the beta-binomial regression model unless indicated in the figure legends, we set
the count of the cell type of interest and the total count of cells of each donor to be
the response variable and the state of the donor (MS or control) or the tissue of
origin (CSF or blood) to be the independent variable. We tested for Pearson’s
correlation between the frequency of each B cell cluster and cluster 0 in CD4
T cells. We adjusted the p value threshold to 0.05/15= 0.0033, since we tested for

significant correlation using three B cell subsets in five different sample partitions
(all samples, CSF only, blood only, MS only, and control only). The abundance of
cluster 0 in CD4 T cells is not signifiantly correlated to B cell subset abundances in
any of these comparisons.

Differential expression analysis. We used three different tests for the discovery of
differentially expressed genes between two groups of cells. First, we computed
Bayes factor using the imputed counts from scVI. Bayes factor is a generalization of
the p value and is computed as λ where xa is the gene expression of the gene of
interest in group a and xa in group b. We use the generative model of scVI to
obtain the batch-corrected mean of the negative binomial distribution of transcript
counts. Second, we used the library-size corrected UMI counts for Mann–Whitney
U test. At last, we followed the methods of the best performing method in a single-
cell specific DE method assessment paper75 and we used EdgeR27 with cellular
detection rate and batch id as covariates.

GSEA. After deriving lists of differentially expressed (DE) genes (Supplementary
Datasets 2, 4, 5, 7, and 10), we applied GSEA tests76 to all cluster specific DE gene
lists DE between CSF and blood (Supplementary Dataset 3 and 8). We used the
enrichr function in gseapy v0.9.12 to find overlap between the DE genes and
function genesets. We used signed significance scores based on the Adjusted
p value provided by the enrichr function. Sets considered in this analysis include all
MSigDB C7 signature sets and all curated T cell signature sets described pre-
viously42 with ten or more genes quantified in the present study; “UP” and “DN”
signature subsets were tested separately.

CSEA. For the CD4+ T cells analysis, we developed a novel adaptation of the GSEA
method, applying the technique to cell sets: CSEA (illustrated in Supplementary
Fig. 9a, representative workflow and code in Supplementary Dataset 11). CSEA is a
hypothesis testing method for simultaneously uncovering enrichments and iden-
tifying subsets of cell sets of importance. In this procedure, a collection of cells is
first ordered by a transcriptional phenotype of interest (e.g., sum expression of
genes in a pathway). The resulting statistical test is sensitive to cases in which only
a subset of cells from one group (e.g., MS) exhibit unusually high values of the
transcriptional phenotype. The input to this method is a list of N cells, rank-
ordered by some input signal. Our analysis uses VISION signature scores, reflecting
known axes of biological variation. VISION signature scores—based on FastProject
signature scores41—are computed by first centering and scaling each normalized
log expression cell profile. Following scaling, the sum of gene expression values in
the negative signature subset are subtracted from the sum of gene expression values
in the positive signature subset. Signatures are normalized to the total number of
genes in the set. For example, a signature set that describes a dichotomy between
naive and memory T cells may be used to score individual cells, indicating that
some cells have higher expression of genes characterizing the naive state and lower
expression of genes characterizing the memory state. Using the notation76 we will
use rj to denote the cell j’s signature score; indices have been sorted so that rj > rj+1.
The test involves considering all cells up to a specific position, i. A “hit” score is
defined as the signature score optionally exponentiated by parameter p (|rj|p) for
members of cell set S, divided by the sum over all set members in the list. A “miss”
score is similarly calculated for nonmembers of S, but without weighing by sig-
nature score magnitudes.

The CSEA ES is defined as the maximum of the difference between the running
cumulative sum of hit scores and miss score with respect to index i. When p= 0,
the ES reduces to a one-sided KS test statistic for differential signature analysis
between cell sets. When p= 1, the cells in S are weighted by their signature score,
normalized by the sum of the score over all the cells in S. We apply the same
permutation scheme as described for GSEA above. For p > 0, CSEA cannot be seen
as a simple differential signature test: CSEA tests for enrichment of a cell set at the
high tail of the signature score distribution, but additionally weighs the set elements
according to their signature value. This reduces the effects of low-magnitude cells
in S, whereas all cells not in S are treated the same no matter the magnitude of their
signature score. CSEA tests if high magnitude (positive or negative) cells are
enriched at a specific tail, applying permutation tests to account for the additional
variability induced by the magnitude weights. The set of indices up to where the
objective score reaches its maximum also holds significance—in GSEA76 referred to
as the “leading edge” of the enrichment test. The intersection of the set S and the
leading edge is the leading edge subset, representing an important core subset of
cells driving an enrichment. For each VISION signature, we treated the computed
signature scores as cell signature scores rj. The sets under consideration were the
mutually exclusive sets of MS and control cells. The goal of this approach is to
identify core sets of cells that drive each biological condition’s enrichment for high
signature values (Supplementary Fig. 9).

To screen a set of gene signatures, we computed the Vision signature score for
64 gene signatures related to CD4 T cell states, cell cycle, IL expression, and T cell
subsets (Supplementary Dataset 9). To determine the p value of the CSEA ES for a
geneset, we shuffle the disease state labels for cells 100 times and compute the
probability that the maximum ES computed with the true labels is greater than the
ES computed with the shuffled labels. We also generated a random geneset that is
matched to the original signature set in both number of genes and the average
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expression of each gene. This is done by finding the top 20 gene that has the closest
mean expression to each gene in the original signature set, and then randomly
sampling one of them. We then corrected for multiple testing using the
Benjamini–Hochberg procedure to generate the corrected p values. We filtered the
result based on three criteria: the corrected p value of the true signature set is
smaller than 0.05, the corrected p value of the control signature set is >0.05, and
that the leading edge is <1000. This results in two significant signatures, TFH and
Th1. We then validated this result by computing the ES of 1000 matched control
genesets for each signature set. We then report the p value as the probability that
the true signature set’s maximum ES being greater than the maximum ES in the
matched random genesets. We also computed the ES for enrichment in control and
found that the ES is significantly larger than the control set but the leading edge is
much larger than for enrichment in CSF.

We also tested the performance of our model on varying match levels of the
randomized geneset to the original signature set (Supplementary Fig. 13). The
match levels do not affect the results significantly, showing that our conclusion is
not driven by the gene-matching procedure itself. However, when randomized
genesets are selected completely randomly, the ES become extremely variable,
showing that some degree of matching is required. We validated our method
through two simulation schemes (Supplementary Fig. 15). First, we directly
simulate a continuous distribution of cell states by drawing from a mixture of
Gaussian distributions. The control group cells is drawn from a N(5, 1) Gaussian
distribution, and the disease group is drawn mostly from the same distribution,
with a small proportion p drawn from a N(mean2, 1) Gaussian distribution. When
we set mean1 to be equal to mean2, the p value distribution is close to a uniform
distribution. We expect the detection of the outlier population to be more difficult
when the distributions are close to each other (mean2 close to 5), and when the
outlier population is small. We run CSEA on this simulated data, and show that if
the two distributions mean are 2 standard deviations apart, CSEA can correctly
detect an outlier population when the outlier population is >5% of the total
population. If we hold the outlier population frequency at 10%, we can detect the
outlier up to when the two distribution means are 1 standard deviations apart from
each other.

The second simulation scheme is through a single-cell specific simulation
software called SymSim. We also simulate a continuous variable corresponding to
cell state using the evf_type= “continuous” option in SymSim. Instead of
simulating directly the cell state, we first simulate a gene-cell matrix and compute
the score of each cell on the continuous trajectory based on their expression of
differentially expressed genes. Cells are assigned to the case or control group by
matching each cell with a cell in the previous simple simulation by their rank. The
results of this more realistic simulation is similar to the previous one: when the two
cell populations are not different from each other, CSEA p values are uniformly
distributed. CSEA detects the outlier population in most replicates if the two
distributions mean are 2 standard deviations apart, and the outlier population is
>6% of the total population. If we hold the outlier population frequency at 10%, we
can detect the outlier up to when the two distribution means are 1 standard
deviations apart from each other. A more comprehensive description and
validation of this method is being prepared for publication by Arpita Singhal and
Chenling Antelope.

Bulk RNA-seq of sorted TFH cells. TFH cells were sorted from the CSF of nine
MS donors and nine IIH donors using a BD FACS Aria III cell sorter using an 85
µm nozzle and the drop delay was determined using BD Accudrop beads. Sorting
was performed using sort precision mode “purity” for live CD3+CD4+

CXCR5+ cells. Antibodies against CD3 (UCHT1), CD4 (OKT4), CXCR5 (J252D4),
PD-1 (EH12.2H7), and ICOS (C398.4 A) were from Biolegend. Cells were sorted
directly into 1.5 ml reaction tubes containing 100 µl RNA Lysis Buffer (Zymo
Research). After sorting, tubes were vortexed, briefly centrifuged and frozen at
−80 °C until RNA isolation. Data were analyzed using FlowJo software v10.4.1
(Tree Star, Inc.). Samples for bulk RNA-seq were prepared using a modified ver-
sion of the SmartSeq2 protocol77. Briefly, unquantified purified RNA was used as
input. Reaction volumes were scaled up and the number of PCR cycles during
cDNA amplification adjusted accounting for the higher number of input cells
compared to the original protocol77. Library Preparation was done by the Next
Ultra II FS DNA Library Prep Kit (New England Biolabs) using 1–3 ng of cDNA as
input. Sequencing was carried out on a NextSeq500 using the High-Out 75 cycle kit
(Illumina).

Bulk expression quantification. RNA-seq reads were aligned to the RefSeq hg38
transcriptome (GRCh38.2) using Bowtie2. The resulting transcriptome alignments
were processed using the RNA-Seq by Expectation Maximization (RSEM) toolkit
to estimate expected counts over RefSeq transcripts. Several genes were quantified
multiple times due to alternative isoforms unrelated by RefSeq annotation. Before
expression data normalization, the gene entry with maximum counts was selected
to represent the gene in further analysis.

Bulk RNA-seq data analysis. Sample and gene filtering were similar to the
scRNA-seq filtering method above, enforcing (>107k reads, >10% read alignment
(forced), >93.3% common genes detected; corresponding to zcut= 20). Out of 18

initial samples (9 control vs. 9 MS), 5 total samples (3 control vs. 2 MS) were
removed after QC. Setting ns= 1, we analysed 11,383 genes below.

For each sample, we computed transcriptome alignment and quality metrics
using FastQC (Babraham Bioinformatics), Picard tools (Broad Institute), and
custom scripts. Computed metrics included: (1) number of reads; (2) number of
aligned reads; (3) percentage of aligned reads; (4) number of duplicate reads;
(5) primer sequence contamination; (6) average insert size; (7) variance of insert
size; (8) sequence complexity; (9) percentage of unique reads; (10) ribosomal read
fraction; (11) coding read fraction; (12) UTR read fraction; (13) intronic read
fraction; (14) intergenic read fraction; (15) mRNA read fraction; (16) median
coefficient of variation of coverage; (17) mean 5′ coverage bias; (18) mean 3′
coverage bias; and (19) mean 5′–3′ coverage bias.

Data were normalized using SCONE. 569 positive controls were derived from
MSigDB C7 entries annotated to include TFH cell types, including the most
frequently included gene symbols in those entries. Negative controls for RUVg and
evaluation were derived from the housekeeping gene list. Control lists were
sampled down to 186 genes per list so as to match mean expression of genes in
each list. The study group included two batches with 4/3 and 3/3 MS/IIH samples,
respectively. Biological condition was used only for evaluation. SCONE
recommended TMM (trimmed mean of M values) scaling and adjustment for two
factors of RUVg and batch condition.

We performed PCA on the scaled log-transformed normalized data for
visualization. DE between MMS and IIH donors was performed with limma-voom,
using RUVg factors and batch in the model to adjust for unwanted variation. Per-
gene DE significance scores were computed from log-transformed p values. No
single gene reached significance after correction for multiple hypothesis testing.
The 42 most frequent core members of the significant enrichments (Bonferroni
adjusted P < 0.01)—genes driving 7 or more of these enrichments—were selected
and their normalized log values were correlated against each-other and represented
in a sorted heatmap using pheatmap defaults.

Mice and EAE induction. CD4Cre (ref. 78), 2D2.tg (ref. 53), and B6.129 S(FVB)-
Bcl6tm1.1Dent/J (named Bcl6flox or Bcl6fl/fl) mice51 were purchased from the Jackson
laboratories. The CD4CreBcl6flox strain was maintained by breeding the Bcl6flox

allele to homozygosity (i.e., Bcl6fl/fl) and breeding the Cre alleles in heterozygous to
wild-type matings. The mice used in the experiments were littermates and were on
a pure C57BL/6 J genetic background. Genotyping was done by routine PCR from
ear punch DNA. The animal research protocols were approved and supervised by
the responsible state authorities (Landesamt für Natur, Umwelt und Ver-
braucherschutz (LANUV), English: ‘State Agency for Nature, Environment and
Consumer Protection’ of the German state North Rhine-Westphalia (NRW))
under reference number 84-02.04.2015.A319 and were performed in accordance
with local regulations from the “Tierschutzbüro der Medizinischen Fakultät der
Westfälischen Wilhelms-Universitat Münster” (English: Animal Protection Office
of the Medical Faculty of the Westfälische Wilhelms-University Münster). Mice of
both sexes (8–14 weeks old) were immunized s.c. in the flanks with an emulsion
containing the MOG peptide MOG35–55 (150 μg/mouse; GL Biochem (Shanghai)
Ltd) and Mycobacterium tuberculosis H37Ra extract (5 mg/ml, BD) in CFA
(complete Freundʼs adjuvant; 200 μl/mouse). Pertussis toxin (250 ng/mouse,
Sigma) was administered intraperitoneally on days 0 and 2.

Adoptive transfer EAE induction was performed by flow sorting naive
CD44lowCD62Lhigh CD4+ T cells from 2D2tg donor mice and culturing at 2 ×
106 per ml in the presence of irradiated antigen presenting cells, soluble anti-CD3
antibody (2.5 μg/ml), IL-6 (20 ng/ml), TGF-β1 (10 ng/ml), and anti-IFNγ antibody
(10 μg/ml) for 2 days (all cytokines were purchased from R&D). Cells were
subsequently split when necessary using IL-23 (10 ng/ml) containing media for
three additional days and then plated at 2 × 106 per ml onto plates coated with anti-
CD3 and soluble anti-CD28 (both at 2 μg/ml) in the absence of cytokines for
2 days. Cytokine production was assessed on day 5 after initial plating. Two days
later, 5 × 106 total cells were intravenously injected into C57BL/6 recipients.

Mice were monitored daily and assigned grades for clinical signs of EAE using
the following scoring system: 0, healthy; 1, paralyzed tail tip; 2, paralyzed tail; 3,
waddling; 4, hind legs drag on the ground; 5, butt on the ground; 6, one paralyzed
hind leg; 7, both paralyzed hind legs; 8, one paralyzed front leg (criterium to stop
EAE); 9, both paralyzed front legs; and 10, moribund or death. Detailed refinement
procedures were performed according to the impairments of the mice. Mice with a
score of >7 were euthanized. Additionally, adoptive transfer EAE recipient mice
were scored with an ataxia scoring system consisting of the following criteria: ledge
test, hindlimb clasping, gait, and kyphosis79. Every criteria was rated on a scale
from 0 (healthy) to 3 and all points were added up to a maximum ataxia score of
12. GraphPad Prism 5 was used for statistical analysis of all mouse-related data.

Isolation of CNS-infiltrating mononuclear cells and lymphoid tissue char-
acterization. Mice were intracardially perfused with cold phosphate-buffered
saline (PBS). The forebrain and cerebellum were dissected and spinal cords flushed
out from the spinal canal with hydrostatic pressure. CNS tissue was cut into pieces
and digested with collagenase D (2.5 mg/ml, Roche Diagnostics) and DNase I
(0.05 mg/ml, Sigma) at 37 °C for 20 min. Mononuclear cells were isolated by
passing the tissue through a 70 μm cell strainer, followed by a 70%/37% percoll
gradient centrifugation. The interphase was removed, washed, and cells were
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stained at room temperature for 30 min with anti-mouse antibodies (Biolegend,
clones indicated): CD45 (30-11 F), CD3 (17A2), CD4 (RM4-5 or GK1.5), B220
(RA3-6B2), CD19 (6D5), and live/dead staining “Zombie NIR” (Biolegend; 1:500)
in PBS. Lymph node and spleen cells were additionally stained using CD8 (53-6.7),
CD11b (M1/70), CD11c (N418), Gr1 (RB6-8C5), and NK1.1 (PK136) antibodies.
For in vitro Th cell differentiation, naive CD44lowCD62Lhigh CD4+ T cells were
FACS sorted and cultured at 106 per ml for 4 days with coated anti-CD3 antibody
(2 µg/ml), soluble anti-CD28 antibody (2 μg/ml) and (A) IL-6 (20 ng/ml), TGF-β1
(10 ng/ml), and anti-IFNγ antibody (10 μg/ml) for Th17 differentiation, (B) IL-12
(20 ng/ml) for Th1 differentiation, or (C) TGFβ1 (5 ng/ml) for Treg differentiation.
To determine cytokine production, cells were resuspended in culture medium
containing 20 ng/ml PMA, 500 ng/ml ionomycin, GolgiStop, and GolgiPlug (BD,
each 1:1000 diluted). After 4 h of incubation at 37 °C, cells were stained extra-
cellularly, fixed, and permeabilized using the Foxp3/Transcription Factor Staining
kit (eBioscience) according to the manufacturer’s protocol. Afterward, IL17A
(eBioscience, eBio17B7), IFNγ (Biolegend, XMG1.2), and FoxP3 (eBioscience, FJK-
16s) were stained intranuclearly/intracellularly. Cells were washed and analysed
using a Gallios flow cytometer (Beckman Coulter) and analysed using FlowJo V10.

Histology. For histology, mice were intracardially perfused with 20 ml cold PBS
and fixed by perfusion with 10 ml of 4 % paraformaldehyde (PFA). Spinal cords
were removed and kept in PFA for 48 h at 4 °C. The fixed spinal cords were cut into
3 mm thick transverse segments and embedded in paraffin. To evaluate demyeli-
nation, spinal cord sections were stained with Luxol Fast Blue and subsequently
incubated with Periodic acid-Schiff. Immunohistochemistry was performed using
the biotin-streptavidin peroxidase technique (K5001, Dako) in an immunostainer
(AutostainerLink 48, Dako). Sections were pretreated in a steamer (treatment
solutions pH 6.0 or pH 9.0 (Dako)) before incubation with the primary antibodies
against CD3 (clone CD3-12, BioRad, 1:100) or Mac3 (clone M3/84, BD, 1:100) or
B220 (clone RA3-6B2, BD, 1:200). DAB (3,3ʼ-Diaminobenzidin) was used as a
chromogen. For B220/Ki67 double-immunofluorescence staining, B220 (clone
RA3-6B2, BD, 1:100) and Ki67 (clone SP6, Thermo Scientific, 1:100) were used as
primary antibodies; AF488- and AF594-labeled secondary antibodies (both 1:100)
were used for visualization. Stained sections were analysed with a keyence
microscope and pictures were taken with an Axioplot camera. ImageJ v1.48 was
used to manually count infiltrated cells and measure areas.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw bulk RNA-seq data from the present study have been deposited in GEO repository
with the accession code GSE141797 and raw single-cell RNA-seq data from the present
study have been deposited in GEO repository with the accession code GSE138266. All
processed, unmodified scRNA-seq data (differential expression data, GSEA, and CSEA
data) are included as Supplementary Dataset Tables. Technical scRNA-seq information
and data tables with details of the included patients are included as Supplementary
Tables. The source data underlying Figs. 3f, g, 4b–f and Supplementary Figs. 1a–e, 4c, d,
10b–f are provided in the Source Data file.

Code availability
The code for reproducing the single-cell sequencing results in this manuscript has been
deposited at https://github.com/chenlingantelope/MSscRNAseq2019.git
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