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ABSTRACT OF THE THESIS

Transcriptomic Profiling of Sporadic Alzheimer’s Disease Patients

by

Balaji Ganesh Anantharaman

Master of Science in Bioengineering

University of California San Diego, 2020

Professor Shankar Subramaniam, Chair

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized physically by

dementia and physiologically by senile plaques and neurofibrillary tangles in the brain. Mutations

to the genes PSEN1, PSEN2 and APP result in the manifestation of the dominantly inherited form

of AD, Familial AD. Though a number of risk factors, including genetic mutations, environmental

factors, and aging, have been attributed to the sporadic form of AD, the underlying mechanistic

basis of the disease is yet to be unearthed. Analysing sporadic AD RNA-seq samples together

with non-demented controls allows us to uncover these molecular mechanisms and to this end, we

have analysed a 50-sample RNA-Seq dataset, with 40 AD samples and 10 controls, and identified

disease-associated endotypes that arise from gene expression changes between the AD cases and
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the controls. We have also described an adapted framework for analysing low-quality RNA-seq

samples (RIN > 1, < 3), and applying this framework to our data results in the categorization of

the samples into two groups which show different degrees of differential expression with respect

to the controls. Endotypes such as Dedifferentiation and Synaptic Signalling are preferentially

enriched in samples from one group, although a small subset of samples from this group exhibits

a significantly higher enrichment of said endotypes compared to other group members. We

hypothesize that these differences in endotype signatures manifest due to varying severity among

the samples, and scrutinizing the similarities and dissimilarities among the groups can provide

insights into the etiology of Sporadic AD.
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Chapter 1

Introduction

Neurodegenerative disease (ND) is a blanket term used to describe a group of neurological

disorders with diverse clinical and pathological implications that result in a steady loss of

functioning neurons [59]. Alzheimer’s Disease (AD) is a progressive ND characterized by

gradual memory impairment and loss of cognitive abilities, especially those related to learning,

behaviour, speech, visuospatial cognition, and the motor system. It is also the most common

form of dementia and was first established as a neuropathological phenotype by the Bavarian

psychiatrist, Alois Alzheimer, in 1906. [21].

1.1 Aging

Susceptibility to AD is unequivocally linked to aging, and the percentage of people with

AD increases with age - 3% of people age 65-74, 17% of people age 75-84, and 32% of people

age 85 or older have AD [38]. An estimated 5.8 million Americans aged 65 or older suffer from

AD in 2020, and as the population of Americans aged 65 or older continues to increase, so will

the number of individuals suffering from AD [2]. These numbers, estimated on the basis of

symptoms such as memory loss and cognitive impairment, could be significantly different if a

biomarker-based method is to calculate the prevalence [43].
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1.2 Classification

AD cases are classified on the basis of family history [32] and age of onset [9] for clinical

purposes. Table 1 [32] summarizes this classification.

Table 1.1: AD classification based on 1) ancestry and 2) aging

1.3 Pathology

AD is characterized by the abnormal accumulation of two aggregates [57] - Aβ, an

extracellular deposit, and Neurofibrillary Tangles (NFT), which are intracellular deposits. A

series of proteolysis events, catalysed by a family of proteases called secretases, acting upon

an intramembrane protein, APP, results in the production of Aβ fragments. Intracellular NFT

aggregates are formed when Tau, a protein that usually binds to microtubules and localizes to

axons, is phosphorylated at several sites. This causes the protein to release from the microtubules

and start binding to each other, forming axonal NFTs [36].
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Familial AD is an autosomal dominant disease characterized by mutations in genes

encoding for three proteins - APP, PSEN1,and PSEN2. The last two are homologous proteins

that can mimic the catalytic activity of γ-secretase. The formation of Aβ fragments from APP is

initiated by the cleavage of APP’s extracellular N-terminus by secretase [BACE] [17], followed

by γ-secretase/PSEN1/PSEN2 cleaving APP , twice, inside the cell, resulting in the formation of

an intracellular residue and extracellular Aβ. Two major forms of Aβ can be produced, Aβ40 and

Aβ42 [31] based on the cleavage site of γ-secretase/PSEN1/PSEN2. All three mutations result

in a higher Aβ42/Aβ40 ratio [49][45]. The DIAN study [64] confirmed that the mutation type

along with the associated Aβ42/Aβ40 ratio can predict the mean age of onset of dementia. These

Aβ42 fragments aggregate to form highly insoluble fibrils that eventually deposit as plaques [51].

However, there is evidence that soluble Aβ oligomers are also neurotoxic as they damage nearby

neurons and stimulate the formation of NFTs [29]. Called the amyloid cascade, this theory ties

together the two major AD pathologies and is backed up by experimental evidence [37].

Figure 1.1: Two APP processing pathways [23] - Sequential cleaving of APP by β-secretase
followed by γ-secretase results in amyloid formation; Sequential cleaving by α-secretase fol-
lowed by γ-secretase results in the formation of P3 peptide, a hydrophobic protein that doesn’t
form oligomers [22].
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1.4 APOE

The Apolipoprotein (APOE) gene on chromosome 19 is a strong risk factor for developing

AD. The main carrier of cholesterol in the CNS, APOE has been found to play an important

role in Aβ metabolism, aggregation and deposition [40]. Humans possess three common APOE

alleles: APOE2, APOE3, and APOE4 [56]. Population studies have found that APOE4 increases

the risk of developing AD (odds ratio ranging from 3 to 10) [24] and is also associated with

an earlier onset of the disease. APOE2, on the other hand, decreases the risk of getting AD

[18]. Increased plaque deposition has been observed in patients with the APOE4 [40] allele and

it has been shown that the variant protein’s inefficiency in Aβ clearance is the reason behind

this phenomenon [72]. There is no conclusive evidence for the involvement of APOE4 in tau

phosphorylation.

1.5 Amyloid Cascade and Sporadic AD

The amyloid cascade hypothesis is largely based on data from familial AD patients, and

hence, it’s relevance for patients with sporadic AD is questionable [16]. The accumulation of Aβ

has been suggested to be a host response to an underlying neurological condition or a stressor

such as a brain injury, and hence might even be protective in nature [41]. Studies, conducted in

cognitively healthy people, analysing the relationship between Aβ accumulation and atrophy in

AD-related brain regions have been largely incongruous in their findings [43], [54]. However,

biomarker studies show an increased risk for cognitive impairment in healthy elderly people with

signs of cerebral amyloidosis [34]. Moreover, the APOE4 allele, a familial AD risk factor, has

been confirmed to be a major risk factor for sporadic AD as well [18].

Genome-wide association studies have identified genes, that contribute to phenotypic

pathways such as innate immunity and cholesterol metabolism, as minor risk factors for sporadic

AD [46]. Non-genetic and modifiable factors such as alcohol intake and education have also been
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considered as AD risk factors [28] [60]. Clinical and pathological heterogeneity among patients

with sporadic AD makes it tougher to pinpoint associated risk factors.

1.6 Transcriptomic Profiling

A tissue’s transcriptome can give an accurate snapshot of its cellular activity at a given

point in time [69]. The process of finding an association between a genetic variant and AD

remains challenging, and alternatively, integrating gene expression analysis into this process can

help determine the effect of these risk factors at the transcriptomic level in a specific tissue or a

specific cell-type or at a particular point in time [70]. Moreover, it is this paradigm shift in the

gene regulation and expression patterns, caused by underlying genetic risks, that results in the

expression of various disease states [19]. Transcriptomic profiling is commonly performed using

either Microarray Hybridization or Next Generation RNA Sequencing, and both methods allow

for the investigation of changes in gene expression and mRNA splicing patterns between different

conditions [70]. Profiling followed by systems level analysis of these changes can help identify

misfiring regulatory mechanisms that engender disease states.

Microarray Hybridization involves the binding of cDNA libraries, reverse transcribed from

RNA samples, to a probe DNA that is immobilized to a solid surface. Despite this technology

improving leaps and bounds in recent years, it still possesses a number of limitations – microarrays

cannot identify novel transcripts as probe design is based on known genome sequences [65]; their

reliance on non-specific Hybridization reactions can make quantification results unreliable; due

to differences in probe design and number across different platforms, inter- and intra-platform

consistency is uncertain. RNA-Seq is a NGS assay that starts off with the reverse-transcription

of RNAs to give cDNAs. Adapters are subsequently ligated to these strands which are then

sequenced, unidirectionally or bidirectionally, in a massively parallel fashion, in flow cells on the

sequencing instrument. Enrichment of a specific subset of RNA, such as mRNA or miRNA, is
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done before sequencing. This usually involves the removal of highly abundant ribosomal RNAs

either by isolation and degradation using heat and/or chemicals [39], or in the case of mRNA

sequencing, preferential isolation of mRNAs using their polyA tails. Compared to microarray-

based techniques, RNA-Seq allows for the discovery of new variants - reads from a unique mRNA

will map to a different part of the reference genome. Moreover, RNA-Seq has a wider dynamic

range as compared to the microarray technology, thereby allowing for the detection of more

differentially expressed genes between two conditions [73].

For the study of neurodegenerative diseases, the main source of RNA is post-mortem

brain tissues, though this tissue is difficult to obtain and the susceptibility of post-mortem RNA

to degrade is high [53] [8]. In this study, we’ve compared the gene expression data of 40 AD

samples – 19 early onset and 21 late onset, against 10 Non-Demented Control (NDC) samples.

The patients were chosen using a rigorous vetting criteria so as to maintain clinical uniformity,

and measures were taken to account for RNA-degradation while processing the expression data.
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Chapter 2

Data Collection

Bulk RNA sequencing was performed on RNA extracted from patient brain samples

frozen and preserved at Alzheimer’s Disease Research Center (ADRC), UCSD. A total of 50

samples were sequenced - 10 controls and 40 AD cases. All samples had a RIN score between 1

and 3. All patients were followed clinically, and the 40 samples were split into two groups based

on the age of onset of AD - 19 Early Onset AD samples (Table 2.2) , with an age of onset <

60 years, and 21 Late-Onset AD samples (Table 2.3), with an age of onset between 70 and 80.

Three scores - BIMC (Blessed Memory-Information-Concentration) [12], MMSE (Mini-Mental

State Examination) [26] and Mattis’ DRS (Dementia Rating Scale) [52] were used to classify the

selected patients as AD/ NDC cases. All controls had a BIMC score (on a scale of 0 - 35; Higher

score == more extreme dementia) <= 4, MMSE (on a scale of 0 - 30; Lower score == more

extreme dementia) score between 26 and 30, and an aggregate DRS (Maximum of 144 points -

Split among Initiation/Preservation(37), Attention(37), Construction(6), Conceptualization(39)

and Memory(25); Lower score == more extreme dementia) score between 127 and 140. Each

brain sample was also staged on the basis of the concentration of Neurofibrillary Tangles(NFTs)

in different brain regions, using a modified version of the staging scheme introduced by Braak and

Braak. In this scheme, the concentration of NFTs in the hippocampal and entorhinal cortex (EC),
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two regions which are believed to be the starting point for tau pathology [20], is used as a proxy

to estimate the progression of the disease. Braak stages I and II reflect mild NFT concentration in

EC and hippocampal regions; Stages III and IV reflect the moderate concentrations of NFT in EC

and hippocampal regions; Stages V and VI are characterized by the EC and hippocampal regions

being severely entrenched by the tau pathology, and its spread to the isocortical regions. All AD

samples were at BRAAK stage 6 while the controls were at BRAAK stage 1 or BRAAK stage 2.

The APOE status of the AD samples was also determined - all samples either had the APOE3/3

or the APOE3/4 genotype.

2.1 Metadata

The following metadata were also collected for each AD sample - sex, age (at death),

age of onset, and the concentration of neuritic plaques and tangles in Mid Frontal Cortex (MF),

Inferior Parietal Cortex (IP), Superior Temporal Cortex (ST) and the hippocampus. Since AD was

ascertained to be the cause of death of all patients from this study, Disease Specific Survival(DSS)

time was estimated by subtracting the age of onset from age at death.

2.2 Reads to Counts

Each sample is split among 4 lanes in the sequencer. The lane fastq files were first

combined together using the ‘cat’ command line function. Trim Galore v0.6.5, a wrapper script

for the command-line tools Cutadapt [1] v2.9 and FastQC, was used to trim adapter sequences,

isolate all pair-end reads with a Phred score (Q) of 20 or more, and subsequently, estimate a few

metrics for quality control. The trimmed reads were then mapped to the GRCh38.p12 human

transcriptome using Kallisto [13] v 0.46.1 run with the following options -bias –rf-stranded.

MultiQC was used to collate and summarize quality metrics from the previous steps.
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Table 2.1: Metadata for controls - samples with less than 25% mapped reads are highlighted in
green.

2.3 Counts to Differentially Expressed Genes (DEGs)

The R package tximport [66] v1.16.1 was used to summarize the Kallisto transcript

abundance counts to the gene level and import the resulting count data into the R programming

environment. A DGEList object was then created from the read counts using the DGEList()

function from edgeR [62] v3.30.3, and the sample phenotype data. Only genes which had

10 counts or more in at least 5 samples were considered for further analysis. The data was

9



Table 2.2: Metadata for Early Onset Cases - samples with less than 25% mapped reads are
highlighted in green; samples with missing age on onset/age at death are highlighted in yellow.

then normalized using the TMM (Trimmed Mean of M-values) normalization method. The

Voom function from Limma [61] v3.44.1 was used to model the mean-variance trend and get

gene-specific weights, which were subsequently used to fit a linear model to the count data.

10



Table 2.3: Metadata for Late Onset Cases - samples with less than 25% mapped reads are
highlighted in green; samples with missing age of onset/age at death are highlighted in yellow.

A contrast matrix was used to compare gene expression between the AD subtypes and NDC,

and empirical Bayesian statistics for the differential expression analysis was estimated using

the eBayes function from Limma. Genes with an FDR-adjusted p-value of less than 0.05 were

11



Figure 2.1: RNA-Seq analysis pipeline flowchart - command line tools.

deemed as being differentially expressed between the conditions. Fig 2.1 and 2.2 summarize the

pipeline that was adopted to analyze the data.

2.4 Results

The two controls with low-mapping percentages were removed from the analysis. The

early onset samples have 2290 upregulated DEGs (logFC > 0, qval < 0.05) and 2165 downregu-

lated DEGs (logFC < 0, qval < 0.05), while the late onset samples have 7 upregulated DEGs

(logFC > 0, qval < 0.05) and 13 downregulated DEGs (logFC < 0, qval < 0.05) (Fig. 2.3, 2.4).

The low number of differentially expressed genes in the case of the Late Onset samples

seemed unusual. We theorized that inherent heterogeneity in the samples was confounding any

differential expression compared to the controls. We decided to explore the data further to figure

out if this was indeed the case and if yes, identify the cause(s) of this heterogeneity.
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Figure 2.2: RNA-Seq analysis pipeline - R and Bioconductor packages.

2.5 Acknowledgement

Chapter 2 is coauthored with Subramaniam, Shankar; Caldwell, Andrew; Wagner, Steven;

and Anantharaman, Balaji Ganesh. The thesis author was the primary author of this chapter.
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Figure 2.3: Downregulated DEGs - Early Onset and Late Onset samples; A FDR-adjusted
p-value cutoff of 0.05 was used to decide differential expression, and the direction of logFC was
used to determine upregulation/downregulation.
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Figure 2.4: Upregulated DEGs - Early Onset and Late Onset samples; A FDR-adjusted p-value
cutoff of 0.05 was used to decide differential expression, and the direction of logFC was used to
determine upregulation/downregulation.
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Chapter 3

Sample Clustering

3.1 Introduction

Hierarchical clustering is an unsupervised [71] learning method that partitions a given

group of objects into hierarchy-forming clusters. Dendrograms are used to visualize this hierarchy.

Hierarchical clustering algorithms come in two distinct flavours - 1) Agglomerative and 2)

Divisive. Agglomerative clustering algorithms start off with each object residing in a cluster of

its own; pairs of clusters with the highest similarity are merged sequentially until all samples

agglomerate in a single cluster. Divisive clustering algorithms start off with all objects being a

part of a single, all-including cluster which is then successively broken down by removing the

edges between pairs of clusters that have the lowest similarity [58].

A myriad of distance-based and ratio-based methods [15] have been traditionally used

to quantify the similarity between clusters and merge/split them. Single link or MIN is an

agglomerative method that uses the shortest distance between two clusters as a measure of

similarity; Complete link or MAX is an agglomerative method that uses the maximum distance

between two clusters to compute similarity; Group average is an agglomerative method that

uses the average pairwise distance between objects from different clusters to appraise similarity.
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Ward’s method is another agglomerative clustering method that, akin to K-means clustering,

produces groups that minimize the within-group dispersion at each fusion. It does so by trying to

minimize the extra sum of squares caused by the agglomeration of clusters at each step [55].

The lack of a global objective function in hierarchical clustering makes it hard to decide

on an optimal number of partitions and usually, metadata associated with the objects are used

to make a decision as to when to stop the clustering process. However, the similarity between

traditional k-means clustering and hierarchical clustering using Ward’s method allows us to use

optimization methods associated with k-means clustering to find a suitable stopping point. One

such method determines the best ‘k’ by optimizing the Silhouette coefficient, a metric that is

computed by comparing the average distance between data points in the same cluster against the

average of the distances between these points and data points from other clusters (Fig. 3.1).

Figure 3.1: Calculating silhouette coefficient [47].

3.2 Clustering - Version 1

The categorization of our 40 AD samples into 19 early-onset sporadic AD (EOSAD) and

21 late-onset sporadic AD (LOSAD) ended up obfuscating differential expression, completely in

LOSAD and partially in EOSAD, when contrasted against the Non-demented Controls (NDC).

This happens despite our best efforts to weed out the noise in the expression data by filtering
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out genes with low read counts. Inherent heterogeneity in the data caused by differences in the

mechanisms adopted could be a possible explanation for this phenomenon. Variable gene counts

caused by the degradation of the mRNA post-mortem could be another factor contributing to

the heterogeneity among the samples. The latter could be accounted for by taking a look at the

sequenced samples’ quality metrics. Based on the percentage of reads from a sample that was

mapped to a transcript, we decided to exclude one LOSAD sample, that had just 3.4% of its reads

mapped, from further analysis. The dataset’s small sample size motivated us to be conservative

and a few AD samples that had a lowly 10-20% of their reads mapped to a transcript were retained

for further analysis.

Hierarchical clustering of the 49 remaining samples, using scaled Counts Per Million

(CPM) values, and Euclidean distance to compute pairwise similarity between the samples, failed

to dichotomize the samples as EOSAD, LOSAD, and controls. Instead, we observe heterogeneous

clusters of all three sample types (Fig. 3.2).

Figure 3.2: Hierarchical clustering of all 49 samples - using filtered CPM counts, Euclidean
distance metric.

The clusters formed hint at the possibility that a few of the samples do not show a marked
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difference in gene expression as compared to the NDC. Five samples (EOL 2,6,7; COL 4,5)

that had the lowest mapped reads percentages, clustered together on the outermost arm of the

dendrogram (orange box in Fig 3.2). This clustering of AD samples still holds good upon the

removal of the controls from the clustering process (Fig. 3.3).

Figure 3.3: Hierarchical clustering of 39 AD samples - using filtered CPM counts, Euclidean
distance metric. The four branches that form the clusters of interest are highlighted using
numbers.

In order to ensure that these clusters are the result of phenotypic differences between the

samples, we converted our gene expression data into geneset enrichment scores using Singscore

[27], a single sample gene set scoring method, and the Gene Ontology Biological Process (GO:BP)

genesets from the Molecular Signatures Database (MSigDB). Given a list of genes ranked based

on their expression values, Singscore performs single-sample enrichment for a geneset and returns

a normalized enrichment score which can then be used for phenotypic comparison between

samples. Genesets of size 10 or less and/or those with less than 5 genes present in the prefiltered

AD gene expression matrix, were excluded from the analysis. A geneset enrichment matrix,

with the 39 AD samples as columns and the GO: BP genesets as rows, was created and used to
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hierarchically cluster the samples. Euclidean distance was used to quantify similarity between

pairs of samples. The dendrogram for this geneset-level clustering looks similar to the dendrogram

we get from gene-level clustering.

Using a tanglegram (Fig. 3.4) to compare the two dendrograms, we see that up until a

certain height along either dendrogram, the clusters cut from both methods are identical (indicated

using the blue line). Hence, it can be reasonably concluded that the genes that drive the expression

of specific phenotypes show identical patterns of expression in the AD samples and that samples

with such specific gene expression paradigms naturally group together to form clusters.

Figure 3.4: Tanglegram comparing gene-level hierarchical clustering and geneset-level hier-
archical clustering; Both methods use Euclidean distance to quantify similarity. The level at
which the dendrograms are cut to get identical clusters is shown using the blue line.

We decided to cut the dendrograms at a level where we get four identical clusters from

either dendrograms (blue line in Fig 3.4). One of the four clusters consists of three EOSAD

samples with low mapping percentages. The other three clusters are a mix of LOSAD and

EOSAD samples and have 4, 15 and 17 samples. Let these clusters be called Group 1 (15

samples), Group 2 (3 low-quality samples), Group 3 (17 samples) and Group 4 (4 samples).

All four clusters give us different levels of differential expression when compared to
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the 8 Non-Demented Controls (NDC). The two outlier controls with low mapping percentages

were excluded from this analysis. Samples from Group 1 show no differential expression (FDR-

adjusted p-value < 0.05) when compared to the non-demented controls. This is not surprising

since these are the 15 samples that cluster together with the 8 NDC in Figure 2.1. Group 2,

Group 3 and Group 4 have around 7500, 6500 and 8500 Differentially Expressed Genes (DEGs),

respectively, when compared to the controls. A comparison of the upregulated (Fig. 3.6) and

downregulated (Fig. 3.5) genes from each cluster indicates that all three groups have some unique

DEGs.

Figure 3.5: Downregulated genes from different clusters - samples from Group 1 have no genes
being donwregulated compared to the NDC at a FDR-adjusted p-value cut off of 0.05.

The low RIN scores of these samples lends to the possibility of RNA-degradation -

induced/-inhibited differential expression. To check for this, we used a “differential expression

quality” (DEqual) plot (Fig. 3.7) [44], a diagnostic plot that shows the correlation in differential
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Figure 3.6: Upregulated genes from different clusters - samples from Group 1 have no genes
being upregulated compared to the NDC at a FDR-adjusted p-value cut off of 0.05.

expression t-statistics between AD-induced and degradation-induced differential expression.

The DEqual plots for groups 1, 3 and 4 all show weak correlations between the t-statistics for

degradation-induced and AD-induced differential expression. On the other hand, the plot for

Group 2 (Fig. 3.7b) which is comprised of samples with low mapping percentages, shows a

strong correlation between the two differential expression statistics. Hence, it can be reasonably

concluded that samples from this cluster are severely affected by degradation. These samples

were excluded from further analysis.

3.3 Integrating Metadata and Reclustering

Mean values of the metadata associated with the AD samples were compared between

the three groups using one-way analysis of variance (ANOVA). Subsequently, Scheffe Multiple
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Figure 3.7: DEqual plot for differential expression in all four clusters - only samples from
Group 2 (b) seem to have been affected by the degradation of mRNA, post-mortem.

Comparison Test was used to compare pairs of means. Disease-Specific Survival (DSS) is the

only metadata that was found to significantly vary between the clusters (p < 0.01). Furthermore,

pairwise comparisons show that only Group 1 and Group 4 show significant differences in mean

DSS values (p < 0.01, CI - [1.561, 5.742]) (Fig. 3.8).

Pre-ranked Gene Set Enrichment Analysis (GSEA) takes a list of ranked genes and com-

putes enrichment scores for different genesets using a running-sum statistic. Using permutations

of this list, it then calculates a p-value that, after FDR-correction, quantifies the significance

of this enrichment score. Pre-ranked GSEA was run on the DEGs from our clusters using the

fgseaMultilevel function from the fgsea package v1.15.2 in R, and the MSigDB GO:BP geneset
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Figure 3.8: Box plot for Disease Specific Survival - One-way analysis of Variance followed by
Scheffe Multiple Comparison Test shows that the mean DSS between Group 1 and Group 3
vary significantly (p < 0.01).

collection. GSEA results indicate a high degree of commonality among the phenotypes enriched

in Group 3 and Group 4 (Fig. 3.9). The top 30 phenotypes enriched in Group 4, ranked by the

adjusted p-value, are also enriched, albeit to a lesser extent, in Group 3. Group 4 seemed to

consist of samples which had a more severe progression of the disease as compared to the samples

from Group 3. Nevertheless, similarities in progression sets samples from these two clusters

apart from the samples in Group 1 which have none of these shared phenotypes being enriched.

Hence, for further analysis, we decided to combine samples in Group 3 and Group 4 into a bigger

cluster, Group 3 4. Moreover, a comparison of the DSS time between Group 1 and Group 3 4

using ANOVA shows a significant difference between the mean DSS times of the two groups
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(p < 0.01) (Fig. 3.10). In addition, upon using the average silhouette, a measure of the relative

closeness of a sample from one cluster to samples from other clusters, as a metric to assess the

quality of clustering, we find out that splitting the data into 3 clusters gives us the highest average

silhouette coefficient in both the gene-based and geneset-based clustering (Fig. 3.12).

Figure 3.9: fGSEA results for samples from Group 3 and Group 4 - both groups share several
enriched phenotypes, but the level of enrichment is higher in the samples from Group 4.

A DEqual plot (Fig. 3.13) of samples from the hybrid Group 3 4 shows a weak correlation

between the degradation-induced and AD-induced differential expression t-statistic and hence,

degradation-induced expression differences between the AD samples and NDC can be ruled out.

Only samples from Group 1 and Group 3 4 were used for enrichment analysis.
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Figure 3.10: Box plot for Disease Specific Survival - One-way analysis of Variance shows that
the mean DSS between Group 1 and Group 3 4 varies significantly (p < 0.01).
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Figure 3.11: Hierarchical clustering of 39 AD samples - using filtered CPM counts, Euclidean
Distance metric. The three resultant groups are highlighted using numbers.
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Figure 3.12: Silhouette plot for geneset-level clustering - splitting the data into three clusters
gives us the highest silhouette value.
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Figure 3.13: DEqual plot for differential expression in Group 1 and Group 3 4 - samples from
both clusters seem to be unaffected by mRNA degradation.
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Chapter 4

Enrichment Analysis

Differential expression analysis between AD samples from Group 3 4 and Group 1

against NDC identified 3611 upregulated and 3531 downregulated genes, and 0 upregulated and

0 downregulated genes, respectively, at a False Discovery Rate (FDR)-adjusted p-value cutoff of

0.05.

4.1 Methods

Integrated System for Motif Activity Response Analysis (ISMARA) [11] is a web-based

tool that, given gene expression data, helps identify key Transcription Factors (TFs) and miRNAs

that drive changes in expression and also predicts their mode of regulation. It does so by modelling

gene expression data in terms of the computationally predicted regulatory motifs of said TFs and

miRNAs. Fastq files, after quality control and adapter trimming, were uploaded to ISMARA

using the command-line tool. Upon the completion of motif enrichment, sample averaging was

performed and Group 3 4 samples were compared against the NDC controls. A directional

Z-score is calculated by multiplying three metrics - 1) the Z-score of each motif, 2) the sign of the

Pearson correlation calculated between changes in a TF/miRNA’s mRNA expression and changes

in the activity of the genes regulated by said TF/miRNA, and 3) the direction of change in the
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Figure 4.1: Differentially Expressed Genes(DEGs) - log2FC vs -log10q-val.

activity of the aforementioned genes (+1 for upregulated genes, -1 for downregulated genes). The

Pearson score is also used as a proxy for determining the regulatory roles of the TFs and miRNAs

- a positive correlation score would indicate that a TF/miRNA with the given motif acts as an

activator and a negative Pearson score characterizes a TF/miRNA as a repressor.

ISMARA analysis of differential motif activity in samples from Group 3 4 compared to

the NDC controls, helps discern TFs that cause changes in gene expression. Based on known

associations with specific endotypes, the TFs were split into 5 groups - Immune/Inflammation,

Cell Cycle, Dedifferentiation, Pluripotency and Neuron Lineage. Though ISMARA classifies

TFs as activators/repressors based on the activity of their mRNAs, many TFs undergo substantial

posttranslational modification and hence, the usage of a TF’s mRNA levels to predict their mode
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of action is unreliable.

The Virtual Inference of Protein-activity by Enriched Regulon (VIPER) [5] algorithm

computationally infers protein activity using the expression of genes that directly interact with a

given protein. These include interactions between TFs and their target genes, and VIPER infers

the activity of a TF while taking into account its regulatory role(s), the confidence of the TF-target

interaction, and the pleiotropic nature of TF-gene regulation. The eponymous tool that deploys

this algorithm was used in conjunction with DoRothEA [30], a gene set resource consisting of

signed TF-target interactions where each TF-target interaction is furnished with a confidence

level based on supporting evidence, to identify key TFs that engender changes in gene expression

between the AD and NDC samples.

Minimal Significant Difference (MSD) [74], calculated as the lowest possible value of the

absolute log2 fold-change (logFC) within the 95% Confidence Interval (CI), is used as a metric

to rank the genes for enrichment analysis. We’ve adopted the use of this statistic to rank our

genes for downstream analysis. For VIPER, the MSD metric for each gene was multiplied by the

sign of the logFC and this value was used as an estimate of the change in expression of the gene

between the different sets of samples.

The regulons identified by VIPER were also stratified into 5 groups based on known

associations with specific endotypes. Subsequently, pre-ranked Gene Set Enrichment analysis

(GSEA) [67] was performed on the signed-MSD ranked genes using the fgseaMultilevel function

from the fGSEA package v 1.15.2 in R. Using an adaptive multi-level split Monte Carlo scheme,

this function allows us to swiftly and accurately calculate low GSEA p-values [48] for a given

gene set collection. The MSigDB v7.1 Gene Ontology (GO): Biological Process (BP) collection

was used for GSEA.

The endotype Immune/Inflammation response is upregulated in the AD samples from

Group 3 4. Related GO:BP genesets such as “Cytokine Production” and “Regulation of Immune

System Progress” are upregulated in group 3 4 (Fig. 4.4). Moreover, proinflammatory TFs
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such as CEBPB, STAT3, and RELA [50] (Fig. 4.2a, Fig. 4.3a) show an uptick in their activity

in samples from Group 3 4. However, the increase in mRNA levels of NFKB (Fig. 4.3a)

need not result in an increase in the concentration of NFKB-related TFs due to the extensive

posttranslational modifications the NFKB mRNA is subjected to [42].

TFs that regulate the progression of Cell Cycle, such as the E2F family of TFs [63], MYC,

MYCN [14], and MAZ [6] (Fig. 4.2b, Fig. 4.3b) all show a decrease in activity in the AD

samples.

Upregulation in the activity of ZEB1 promotes tumor progression since ZEB1 represses

regulators of epithelial polarity [4]. ISMARA results show an increase in ZEB1’s activity (Fig

4.2c) and VIPER results indicate that ZEB1’s targets are downregulated (Fig. 4.3c). Similarly,

ERG, a TF that’s linked to the malignancy of prostate cancer [3], shows an increase in activtiy

in the AD samples from Group 3 4 (Fig 4.2c). The target genes of ZBTB7A, a pleiotropic

TF which when overexpressed suppresses the growth of castration-resistant Prostate Cancer

[35], end up being downregulated in these AD samples (Fig 4.3 c). Other related TFs such as

TEAD1 [68] and TEAD3 show similar trends as well. GSEA results highlight the upregulation

of dedifferentiation related phenotypes such as ”Tube Development”, ”Cardiovascular System

Development”, and ”Epithelium Development” (Fig. 4.4). Pluripotency, a closely related

endotype, is also upregulated with GATA2 [7] and KLF4 [33], two zinc-finger proteins that play

a key role in inducing pluripotency, both showing an increase in activity (Fig. 4.2d). The target

genes of NANOG and SOX2 [25], two pleiotropic TFs commonly expressed by pluripotent cells,

are also donwregulated in the AD samples from Group 3 4(Fig. 4.3d).

REST, a key suppressor of neuronal genes in nonneuronal cells and a repressed gene

in mature neurons, shows higher activity in AD brains compared to NDC (Fig 4.2e). RCOR1

(also known as Co-Rest), a gene that selectively represses certain genes in a mature neuron,

shows lower activity in the AD brains (Fig 4.2e). Increase in REST’s activity foments a large

scale suppression of neuronal genes [10] in the brain and thereby, could cause lineage reversion
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of mature neurons to a neural precursor state. Downregulation of GSEA-identified neuronal

phenotypes such as ”Synaptic Signalling” (Fig. 4.4) and ”Synaptic Vesicle Exocytosis” (Fig. 4.4)

might hint towards a net loss in functioning neurons in the AD samples.

4.2 Conclusion and Future Directions

Transcriptomic profiling of AD patients provides evidence for the presence of two distinct

etiologies. One etiology is driven chiefly by dedifferentiation and REST-driven loss of neurons.

The other seems to be transcriptomically no different from non-demented aging. An immediate

next goal would be to build gene-protein networks using the list of enriched phenotypes and TFs,

and visualize TF-gene interactions that beget the expression of different endotypes. Another goal

would be to build a mathematical model that uses the metadata associated with a sample to predict

the etiology that the sample has adopted.
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Figure 4.2: ISMARA motif analysis - Endotypes - Group 3 4 - Differentially active Tran-
scription Factors (TFs) [ISMARA Z-score > 2 and Pearson Correlation > 0.1] in Group 3 4
AD samples related to a Immune/Inflammation Response b Cell Cycle Regulation c Dediffer-
entiation d Pluripotency e Neuron Lineage; Directional Z-score is calculated using ISMARA
Z-score, activity difference, and Pearson correlation. Also shown are the motifs to which these
TFs bind.
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Figure 4.3: DoRothEA TF analysis - Endotypes - Group 3 4 - VIPER enrichment [adj.p.val
< 0.05] for TFs related to a Immune/Inflammation Response b Cell Cycle Regulation c
Dedifferentiation d Pluripotency e Neuron Lineage; Score is calculated using the direction of
enrichment and the adjusted p-value.
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Figure 4.4: GSEA enriched phenotypes - Group 3 4 - GSEA Enrichment using MSigDB
v7.1 GO:BP Gene sets - top 10 upregulated and top 10 downregulated phenotypes; Score is
calculated using the direction of enrichment and the adjusted p-value.
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