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ABSTRACT

This paper concerns computational models in environmental economics and policy, particularly
so-called integrated assessment models.  For the most part, such models are simply extensions of
standard neoclassical growth models, extended by including the environment and pollution
generation.  We review the structure of integrated assessment models, distinguishing between
finite horizon and infinite horizon models, both deterministic and stochastic.  We present a new
solution algorithm for infinite horizon integrated assessment models, relying on a neural net
approximation of the value function within an iterative version of the Bellman equation.
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I.  Introduction

Authors in many areas of economics now use numerical methods to solve analytically intractable

problems.  This approach to economics, known broadly as computational economics, offers

attractive advantages such as the ability to solve complex problems, to provide policy results for

realistically parameterized models, and to simulate economic models.  Computational economics

has long been a part of environmental economics as well, especially in relation to energy and

climate change.

An important area of environmental policy is integrated assessment, centered around the

integrated assessment model.  An integrated assessment model combines the scientific and

economic aspects of an environmental problem in order to assess policy options (as opposed to

advancing knowledge for its own sake).  Use of integrated assessment models today is in the

context of climate change policy, but the models also have found applications in areas such as

energy modeling and ozone depletion.  See Kelly and Kolstad (1999b) or Weyant, et. al. (1996)

for surveys of integrated assessment models in climate change.  This paper focuses on the

computational issues surrounding integrated assessment models.  The primary application is

climate change; however, most of the work applies equally well to other types of integrated

assessment involving significant dynamic dimensions

The optimal growth model is the basis for many integrated assessment models of stock

pollutants.  Typically, an environmental externality of some kind is embedded in the optimal

growth model of Ramsey (1928), Koopmans (1965), or Cass (1965).  In some cases, this

framework is further embedded in a general equilibrium trade model (eg, Manne, et. al. 1995). 

Hence one might expect that the burgeoning literature on numerical solutions to optimal growth

models would apply to integrated assessment models.  Although a few standard numerical

solutions apply in general, integrated assessment models possess several unique features which

make many solution methods difficult or impossible to apply.
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The purposes of this paper are (a) to discuss methods which solve computational

integrated assessment models and (b) to present a particular algorithm for solving a class of

infinite horizon economic growth models, possibly including an environmental secton (integrated

assessment models).  In the next section of the paper, we provide background information on

solution methods for integrated assessment models, first distinguishing between single region

and multi-region methods and then finite horizon (FH) and infinite horizon methods (IH).  In the

subsequent section we present a stylized integrated assessment model and define FH and IH

solution approaches.  We then present a new solution method for solving IH problems (growth

models with or without an environmental sector).  The solution method does not rely on an

approximation around the steady state, and does not directly approximate the policy function. 

Hence the solution method overcomes many of the difficulties associated with using infinite

horizon methods for integrated assessment.  These features make our method ideal for integrated

assessment models.  However, the procedure does have a few drawbacks, including relatively

slow computation time and perhaps relative difficulty of use and programming.

II. Background

Two of the most well-known integrated assessment models are the DICE model of William

Nordhaus (1994) and the Global 2100 model of Alan Manne and Richard Richels (1992).  Both

of these models involved modified Ramsey growth models and have been the basis for a number

of other integrated assessment models (see Weyant et al, 1996).  The DICE model is a single

region model with a climate sector, endogenous emission control and climate damage.  The

Global 2100 model is a regional model but with no trade among regions and no endogenous

emission control.  Thus each region is treated as an independent Ramsey growth model.  Over the

past several years, both of these research groups have developed regional variants of their models

with explicit though simple trade (Manne et al, 1995).  In both cases, capital is allowed to freely
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flow between regions which means that the marginal productivity of capital must be the same in

every region, an additional constraint that considerably complicates the solution.1

Most integrated assessment models are deterministic, a reflection of the computational

complexity and long run nature of climate change.  Still, many aspects of climate change, such as

the assumed temperature change from a doubling of greenhouse gasses or the damage from a

three degree Celsius temperature change, are notoriously uncertain.  Further, many of the state

variables in climate change, such as the temperature or rainfall, are quite stochastic. Many

authors address uncertainty by assuming certainty equivalence.  Under certainty equivalence, the

optimal policy under uncertainty equals the mean of all policies derived from assuming each

possible realization of the uncertain parameter is known with certainty.  However, certainty

equivalence holds in few if any climate change models. Thus, certainty equivalence is at best an

approximation which ignores the risk aversion inherent in the policy debate over climate change.

 Certainty equivalence is also not easy to apply to models with stochastic state variables.  Several

models are solved under uncertainty without assuming certainty equivalence. For example, Peck

and Teisberg (1989) and Kolstad (1996) allow for simple randomness over the most uncertain

parameters, which is resolved at a fixed time in the future.  Kelly and Kolstad (1999a) allows for

stochastic temperature and randomness over parameters, which is resolved period by period

through Bayesian Learning.  As with trade, the addition of uncertain parameters without certainty

equivalence or stochastic state variables considerably complicates the solution.

In the context of the infinite horizon Ramsey optimal growth model, perhaps the most

popular solution technique is the linear-quadratic (LQ) method.  First proposed by Kydland and

Prescott (1982), papers which use or test the LQ method include Christiano (1987b, 1988),

Hansen (1985), Christiano and Eichenbaum (1988), Cooley and Hansen (1989), and Hansen and

Sargent (1988).  The LQ method makes a quadratic approximation of the utility function around

                                                
1 The basic solution technique of these models is to maximize a weighted sum of utilities

(one “utility” function for each region) with the weights endogenously adjusted so that either the
marginal productivity of capital is the same for every region (Manne et al, 1995) or so that there
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the steady state and a linear approximation of the transition equations.  The resulting Bellman

equation has a quadratic value function as a solution and linear first order conditions.  Hence the

problem can be solved by repeatedly solving a linear set of equations until the solution

converges.  The LQ method offers several attractive features: the LQ method is one of the fastest

solution methods, the LQ method generalizes well to complex problems with no curse-of-

dimensionality, and the LQ method is intuitive, easy to program, and use.  Although the LQ

method is quite robust, it does not generalize well to climate change.  For many environmental

problems, for climate change, the starting condition is not close to the steady state, hence

methods which use local approximations around the steady state (such as LQ approximations) are

particularly inaccurate, especially since the main interest is in the numerical value of the current

policy.

Other methods are also difficulty to apply.  Policy variables are not necessarily monotonic

in the state variables,2 hence fast value approximation methods are not very useful.  Most

integrated assessment models have a large number of states and controls and thus suffer from a

curse of dimensionality.  In such cases, most discrete pure grid methods do not work well (a

minimal problem, such as Kelly and Kolstad (1999a), 1998, has 7 states, 2 controls, and 2

random variables, hence even a modest grid of 100 points per variable results in 11100  grid points

for a pure grid method). Solution methods based on flexible functional forms typically use a

smaller grid.  But the Euler equations are typically difficult to specify, because there are multiple

control variables and many lagged control terms.  Hence, approximations of the conditional

expectation of the first order condition (as in parameterized expectations of Den-Haan and

Marcet, 1990) or the policy function (as in the minimum weighted residuals method of Judd,

1991) are possible but not appealing.

                                                                                                                                                   

are no net inflows or outflows of capital into any region over the horizon of the model (Nordhaus
and Yang, 1996).

2 In fact there is often a ‘U’ shaped relationship between growth and environmental policy.
 See Grossman and Krueger (1995) or Kelly (1998a).
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Given these difficulties, it is perhaps not surprising that almost all integrated assessment

models use the simplest possible solution method:  truncation of the model to a finite horizon so

that standard non-linear programming methods may be applied.  We denote this techique the

finite horizon (FH) method. Nordhaus (1994), Peck and Teisberg (1993) and Manne and Richels

(1992) are just a few examples.  In the FH method, the utility from consumption and the

environment is fixed after a finite terminal year.  Furthermore, the social planner or agent must

have a specified amount of assets at the terminal date.  Given these assumptions, the researcher

need only solve a simple constrained optimization problem with standard software. 

Although FH is easy to use, robust to almost all integrated assessment models, and has

relatively low computation time, FH does have limitations.  The FH method does not work well

on stochastic models for which certainty equivalence does not hold.  The FH method is not

recursive and thus requires specification of all possible realizations of the random variables over

time.  Hence for a stochastic problem spanning hundreds of years such as climate change, only

the simplest possible random variables are possible (for example Peck and Teisburg, 1989 allow

only a single two-state random variable realized in a single future period).  Second, inference is

difficult because the solution produces only an optimal solution path, and says nothing about the

relationship between the solution and the state variables and parameters (such as the LQ or

flexible functional form methods which give policy functions).  Because FH does not compute

the policy function, the model cannot be simulated for alternative starting conditions or

realizations of the random variables without resolving the entire model.  Finally, the solution

method can be sensitive to the specification of the terminal conditions, which makes sensitivity

analysis difficult.

III. The Structure of Integrated Assessment Models

Consider a discrete time model (many results here also extend to the continuous time case),

where t indexes time.  In keeping with the concept of integrated assessment, we divide the model
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into three sectors: a climate (or scientific) sector, an economic sector, and an emissions sector. 

The climate sector consists of equations that determine the movement of climate variables such

as temperature, ocean temperature, and rainfall over time.  In other models, the climate sector is

the equations that determine changes in the atmosphere, or other environmental system affected

by pollution.  The economic sector consists of equations which determine the evolution of the

economy, damage from climate change, as well as the costs of climate change control and

resource constraints.  The emissions sector consists of equations which govern the generation of

greenhouse gasses and related pollutants.  We can write the three sectors as:

( )
( )
( )1t,Mtt,EM1t,M

1t,Ett,Rt,EE1t,E

1t,Rt,Mt,RR1t,R

,C,SfS

,C,S,SfS

,S,SfS

++

++

++

ε=
ε=

ε=
(1)

Here iS  is a vector of states for the climate, economy, and emissions, respectively and if

are vectors of transition equations, tC  is a vector of control variables, and iε  are random

variables.  Note the linkage between the sectors.  Economic activity affects emissions, thus

linking the economic and emissions sectors, emissions affects climate, linking the climate and

emissions sectors, and climate change affects the economy through damage, thus linking the

climate and economic sectors.  However, not all sectors are linked in the same way.  For

example, control variables can reduce emissions, but do not change the climate directly.  Let 

[ ]’,,, tMtEtR SSSS =  and similarly for f; then combining the transition equations together gives:

( )11 ,,f ++ = tttt CSS ε (2)

Our model includes random shocks to the economic and climate variables, since many state

variables, such as temperature and productivity, have a stochastic component.   Epsilon can also

represent uncertain scientific parameters such as the damage from a three degree temperature
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change which are random from the point of view of the decision maker (our specification also

allows for learning to reduce the variance of the uncertainty over time).

Next we describe the behavior of the control variables.  Traditionally, there are two

possible models.  The first uses existing forecasts or proposed policies to specify the control

variables.  Following Weyant, et. al. (1996), we call such models policy evaluation models.  The

second chooses an objective function, and determines the optimal control using optimization.

Following Weyant, et. al. (1996), we  call such models policy optimization models (see Kelly and

Kolstad, 1999b, for a further discussion).  Consider first a policy optimization problem.  Suppose

there exists a time separable objective function U  and suppose that there is a set of constraints

on the choice of controls, Γ .  It is natural to think of U as a representative consumer’s utility. 

Then we may write the social planning problem as:

 
( )

( )












Ε= ∑

∞

=Γ∈ 0

,Umax
t

tt
t

SC

SCW
tt

β   Subject to: (3)

( )11 ,,f ++ = tttt SCS ε

( )tt SΩ+ ~1ε

( ) 0,ULim =⋅
∞→ ttts

t

t
SSCβ

That is, maximize expected present discounted utility subject to the transition equations and a

transversality condition. Note that policy evaluation models and deterministic are a sub case of

the above framework for a well specified choice for Γ  and Ω , respectively

There is a well-known recursive representation of the above problems which is especially

useful for computational analysis.  Let ( )Sv  denote the value function, or the value of W in Eqn.

(3).  Then problem (3) satisfies a dynamic consistency condition. We can define a sequence of

functions, {vi(S)} by using  Bellman’s principle of optimality:
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( )
( )[ ]{ }),,f(E),U(max)( 1 εβ CSvCSSv i

SC
i −Γ∈

+= (4)

Under minimal assumptions,  the sequence of functions defined by equation (4) converges to a

fixed point), ( )Sv ,   which also satisfies (3):

( )
( )[ ]{ }),,f(E),U(max)( εβ CSvCSSv

SC
+=

Γ∈
(5)

Of course there is no transversality condition as the conditions for existence of a value function

effectively rule out the same exploding solutions which the transversality condition rules out. 

Because  equation (4) is recursive, it provides the basis for a computational solution to to the

value function given in (5).  We refer to equation (4) or equation (5) as the Bellman equation.

IV. Optimization Over a Finite Horizon

Consider the problem of solving the infinite dimensional problem given in (3) numerically. 

Perhaps the most common solution method in integrated assessment is the finite horizon method

(FH).  Suppose we truncate the model (3) by assuming utility is constant after T  periods.  Then:

( )
( ) ( )TSCgSCW TT

T

t
tt

t

SC tt

,,,U
0

max += ∑
=Γ∈

β   Subject to: (6)

( )11 ,,f ++ = tttt SCS ε

( )tt SΩ+ ~1ε

This problem has a finite horizon because controls are chosen only for time periods up to T.

 What happens after T is relevant only insofar as it affects actions in the present; ie, well before

T.  Unfortunately, if the world is assumed to end at time period T, then it will be optimal to
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slowly consume capital as T approaches, distorting decision well prior to T.  There are a number

of approaches to dealing with the “terminal condition problem” in FH models (see Blitzer et al,

1975).  The simplest approach is to assume the world ends at time period T, relying on the

discount rate and a large value of T to minimize effects on the present.  Alternatively, one may

assume that the economy reaches a steady state in time period T. In such a case, the model can be

rewritten as:

( )
( ) ( )TT

TT

t
tt

t

SC

SCSCW
tt

,U
1

,U
1

0
max β

ββ
−

+= ∑
−

=Γ∈
  Subject to: (7)

( )11 ,,f ++ = tttt SCS ε

( )tt SΩ+ ~1ε

SST =+1

Assuming T  is large enough, the economy and climate can be expected to be at a steady state

well before the terminal condition nears and the discount rate effectively reduces concern about

far future utilities to zero regardless.  Hence truncation should have no effect on the optimal

decisions (but, to save computation time, set no higher than that).  However, if the terminal

period is set too low, the economy may be forced to converge to the steady state much more

quickly than would otherwise be the case.  For example, suppose the steady state temperature is 4

degrees above current levels.  The temperature changes very slowly over time; large changes

requires very large emissions.  Hence convergence to the steady state is quite slow (it takes

centuries to millenia to stabilize sea levels).  If  T  is set too low, the optimization routine may be

forced to increase emissions drastically in all periods in order reach the steady state by period T .

Another approach is to specify that g in Eqn. (6) is a discounted sum of a stream of future

utilities, but assume future utility is simply utility in time period T, growing at a fixed rate, r:
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( )
( ) ( )∑∑

∞

+=

−

=Γ∈
++=

10

,)1(,Umax
Tt

TT
Ttt

T

t
tt

t

SC

SCUrSCW
tt

ββ   Subject to: (8)

( )11 ,,f ++ = tttt SCS ε

( )tt SΩ+ ~1ε

A similar approach involves assuming the capital stock grows at some exogenous rate.

Regardless of how the terminal condition is set, the appropriate terminal period is quite

sensitive to parameters such as the discount rate and the rate of growth of population.  Hence the

terminal period must often be reset during sensitivity analysis.  Indeed, setting the terminal

period is perhaps the most difficult part of the problem.  Once the terminal condition is set

appropriately, the problem is equivalent to a standard maximization problem.  Let cη  be the

dimension of the static decision vector, then simply choose ( ) cT η1+  decisions to maximize a

somewhat complex, but finite objective function.  However, there is one complication.  The

problem is not recursive and so all decision variables are evaluated simultaneously.  Modern

optimization software is quite efficient and can handle problems with many states and controls.

Stochastic problems where certainty equivalence does not hold are particularly difficult to

solve in a finite horizon context.  Typically stochastic models involve some random variable

whose realization influences how the economic and climate system evolves.  Therefore, the

entire tree of random variables (and the expectations of the random variables) over time must be

computed.  In a recursive structure, the programmer need only look one step forward and hence

consider only the random variables associated with the next time period.  Hence for all practical

purposes, only the most simple distributions are considered with the FH method.  For example, in

Peck and Tiesburg (1989) there are only two states and a single random variable which is

resolved at a fixed point in the future.  Kolstad (1996) considers a modestly more detailed

stochastic structure which generates a significantly more complex FH model.  Infinite horizon

methods where the state of a random variable or the state of information is represented explicitly

is a much more natural way of representing stochastic problems.
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V. Solving  Infinite Horizon Models

Consider the problem of finding the value function v  numerically as the fixed point of equation

(4). Note that if one knows v , then it is easy to calculate the optimal action to take at any point in

time; simply use standard optimization to solve the right-hand-side of equation (5) for *C  (the

policy variable which is of primary interest).  But the real problem is finding a v  which is the

fixed point of equation (4).  Equation (5) is really a functional equation with, as an unknown, the

function v .

Our idea is to define a set of functions which is dense in a set of functions of which v  is a

member.  It is straightforward to show that v  is a member of the set of 1C  functions over a

compact set nA ℜ⊂ , where A  is the subset bounded by the minimum and maximum sustainable

values of the state variables.3  We next define a set of functions ( ) ℜ→ℜ×ℜΦ mnS :; χ , where

elements of the set differ according to values of the parameter vector, χ .  The function Φ  is a

flexible functional form, or a set of functions which is dense in the space of continuous functions

over a compact set.  Thus our method is similar to other methods which use flexible functional

forms, except that we approximate the value function rather than the policy function or the right

hand side of the Euler equations.  Given that Φ  is dense in the space of functions for which v  is

a member, then by definition for any 0>λ , there exists an *m  such that for  *mm >  there exists

a mℜ∈χ  such that ( ) ( ) λχ <−Φ
S

SvS; .

The algorithm uses the Bellman equation (4) to find the value function, except that we

iterate using the approximation of v , Φ , rather than the unknown v .  For simplicity, let

( ) ( )00 ; χSSv Φ=  be concave (but not necessarily strictly so).  Since we know 0v , for any value

of the state variable iS  we may compute ( )iSv1   via the equation (4):

                                                
3 If part of the state space takes on arbitrarily large or small values, the state space can be

mapped into a compact space by taking a bounded, monotonic transformation of the state
variables.



12

[ ]{ }]);,,([E),U(max)( 01 χεβ CSgCSSv ii
C

i Φ+=
Γ∈

(9)

We use a sequential quadratic programming approach (with analytic first derivatives) for

the constrained non-linear maximization in equation (9).  We evaluate the expectation operator

using a standard numerical quadrature routine (typically 12-24 points). 

We use the resulting set of points ( ) ( )pSvSv 111 K  to approximate 1v  with the flexible

functional form ( )1; χSΦ .  The most difficult part of the algorithm is obtaining a good

approximation of  1v .  Here we must define the two main features of the approximation part of

the algorithm:   (1) how to choose the data set pSS K1  and (2) how to approximate 1v  with 

( )1; χSΦ .  For (1), we follow discrete grid methods and evenly space grid points between the

minimum and maximum sustainable values of each state variable.  For each state variable, assign

n
p  grid points, evenly space between the minimum and maximum sustainable values of the

state.  The parameter p  is set as large as is computationally possible to minimize error, although

p  is much smaller than in a typical pure grid based approach.  Note that, like discrete grid

methods, the approximation improves if the algorithm places more points where the value

function has significant curvature (see Trick and Zin, 1993 and 1995).  This is often important in

integrated assessment models, where the value function is nearly constant in some state variables

(see Kelly and Kolstad, 1999a).  Next, we approximate  1v  by choosing 1χ  such that:

)();(minarg SvS kk −Φ= χχ
χ

(10)

with k=1.  An obvious norm is 2L ; that is, find the χ which minimizes the sum of squared

residuals over the set of values ( ) ( )pSvSv 111 K .  We solve the above minimization with an

unconstrained Gauss-Newton algorithm, using analytical first derivatives and second derivative



13

information (alternatively, one could use algorithms which exploit features of the Hessian matrix

common to least squares problems, see Dennis, 1977 for a survey of methods).

We use the approximation for 1v  to find a 2v  using the Bellman equation.  Or more

generally, we use the approximation for νk to find νk+1, using eqn. (4):

[ ]{ }]);,,([E),U(max)(1 kii
C

ik CSgCSSv χεβ Φ+=
Γ∈+ (11)

The idea is that since 1+kv  is closer to v  than kv , then if ( )1+Φ kχ  is sufficiently close to 1+kv , 

then ( )1+Φ kχ  is closer to v  than kv .  Hence, using ( )kχΦ  on the right hand side of the recursive

version of Bellman’s equation results in a 1+kv  which is closer to v  than kv .  We then

approximate kv  using the flexible functional form and repeat until:

( ) ( ) *1 η<− − Skk SvSv (12)

Here the norm is the sup norm and *η  is a small number (typically  10-4 or less).  The resulting

flexible functional form approximates the value function:  the parameters of Φ  form a sequence

{ },,..., 10 χχ  which converge to a χ* which defines the approximate solution, Φ(S;χ*), to the

value function v .

Finally, we must specify the flexible functional form.  There are a number of alternative

parametric families available for use as Φ . The primary requirements are that the flexible

functional form be dense in the space of continuous functions over a compact subset of nℜ  and

that the parameterization be computationally efficient.  Each extra parameter in χ adds 

computation time, so ideally we require a flexible functional form which approximates well with

relatively few parameters.  Unfortunately there is little guidance from the literature here.  Judd

(1991) argues for the use of a series of Chebycheff polynomials as more computationally

efficient.  Neural networks have a particularly compact representation, for which the number of



14

parameters does not increase exponentially with the number of state variables (as in say a

polynomial approximation).  

In our work, we use a one layer, feed forward neural network as our flexible functional

form.  Specifically, let: 

( ) 43
’
2

’
1 tanh);( χχχχχ ++=Φ

ll
SS l (13)

where χ2   is a matrix, χ1   and χ3  are vectors, and χ4  is a scaler component of the parameter

vector χ and S is the state vector.  The hyperbolic tangent function in (13) is known as the

“squashing function,” and can be any strictly increasing function ]b,a[: →ℜσ , where a and b

are finite.  There is little guidance in the literature as to which squashing function to use, and our

experience is that the more common ones (tanh  and ( )xe1/1 −+ ) work similarly.

Other versions of neural nets add additional sums of squashing functions (“layers”) or

additional weights (“connections”).  For example, one could replace S with a weighted sum of

tanh  functions which are in turn functions of S or replace χ4 with a linear function of χ2S. 

However, additional layers or connections are not needed here since it is well known that the

neural network in (13) has the denseness property described above (see for example, White

1992).

Although we refer to our neural network in terms of statistics and approximation theory,

one could also refer to the neural net in its original terms:  S is the “input,” phi is the “output,” Χ

are the “weights” which are “trained” on data S;v by minimizing sum of squared errors

(described below).  For an excellent discussion of the properties of neural networks, see White

(1992).

An important decision is the number of approximating functions to use (l), which

determines the number of parameters, since ( ) 12 ++= lnm .  When observations are subject to

independent and identically distributed noise, the statistics literature often suggests setting m  so

that the number of parameters equals the square root of the number of observations or less (see,
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for example White, 1992).  Since the value function is deterministic we can use at least the

square root of the number of observations without concern with over-fitting.  To be safe, we set

the maximum number of parameters equal to the square root of the number of observations;

hence the maximum number of approximating functions is: 2
1

−
−

=
n

p
l .  In theory, however,

the only requirement for convergence of the algorithm is that l goes to infinity as p goes to

infinity.4

Accuracy of the approximation depends primarily on the accuracy of the neural net in

approximating the value function.  Accuracy of the neural net in turn depends on two factors:  the

number of approximating functions (l) and the size of the data set p  relative to the size of the

compact set A .  As l increases, the neural net better fits the data ( λ  shrinks).  However, more

approximating functions increases computation time both because there are more parameters to

estimate and because each approximating function is evaluated repeatedly in the constrained

optimization part of the Bellman’s equation (9).  As the size of the data set p  increases, the

neural network has more observations to fit the underlying function, thus increasing accuracy. 

Without such data, the neural net may under or overestimate curvature in the value function.  Of

course, as the size of the data set increases, so does computation time both because estimating the

parameters over a larger data set requires more computation and because generating a larger data

set  requires more optimization in the Bellman equation.  In practice, most of the error tends to

come from a small data set; the neural network easily approximates the typically smooth,

concave, deterministic value function without a lot of parameters.  Hence we typically set p as

large as possible while keeping l well below the value which equates the number of parameters to

the square root of the number of observations.

Although p  is large relative to l, the accuracy of the neural net must be sufficient to insure

convergence.  If the neural net is not accurate enough, the data ( ) ( )pSvSv 111 K , generated from

                                                
4 This result plus general convergence results of the algorithm may be found in Kelly

(1998b)
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the neural network might result in 1v  which is farther from v  than 0v , and the algorithm would

cease to contract.  Furthermore, since there are two sources of error, one from iterating on the

value function and the other from the neural network approximation, the accuracy of the

approximation in general larger than *η .  Kelly (1998b) shows theoretically that if **η

accuracy is desired then set:

***

1

2 η
β

η
+

=

**

1

1 η
β
βλ

+
−=

Here λ  is with respect to the sup norm.  If the above settings are used, the algorithm converges

to a value function which differs from v  by at most **η .

Beyond the above considerations, computation time generally depends on the number of

states and random variables in the model.  The algorithm solves a simple model with one state

and one random variable in minutes.  A particularly large problem (Kelly and Kolstad, 1999a) of

seven states and two random variables with 600,57=p  and 16=l  took approximately 24 hours

when programmed in C on a 75mHz Sun Sparc 20 workstation, which is already slow by today’s

standards.  However, the time step in the model was a decade (leading to a low discount rate) and

the initial value function was a concave function which included the steady state.

This approach is essentially the same as the contraction mapping constructive proofs of

existence of solution to dynamic program (see, for example, Stokey and Lucas, 1989).  These

proofs define an operator (T) from the space of continuous functions to the space of continuous

functions.  Choosing an arbitrary continuous function (v) on the value function on the right-hand

side of equation (12), the left-hand sets of the equation defines T(v).  If T is a contraction

mapping, then multiple applications of T to v eventually converge to a fixed point, a solution to

equation (12).  In our case, we are dealing with a restricted set of functions, Φ(S,χ).  Iteration on

χ as described above is essentially the same as multiple applications of T. 

The algorithm for finding the value function is shown below.
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1. Start with an initial 0χ  and resulting flexible functional form Φ .  Let k = 0.

2. Using (11), compute ( ) ( )pkk SvSv 111 ++ K  by computing the optimal controls given the

approximate value function ( )kχΦ

3. Using (10) compute 1+kχ , the parameter vector which minimizes the sum of squared

differences between kv , and ( )1+Φ kχ

4. Repeat steps (2-3) until *1 η<− −kk vv .

 This defines the algorithm which solves the model (5).  Kelly (1998b) shows that the

algorithm converges to the true v  as k  and p  go to infinity:

( )( ) 0Lim
,

=−Φ
∞→

vpm
k

pk
χ

While the algorithm is much more computationally intensive than the finite horizon approach in

section (IV) using standard optimization software, two clear advantages of this approach are: a)

stochasticity is easily represented; and b) once solved, the solution (optimal actions) for all

values of the state vector is also known  -- no further computations are necessary for other values

of the state vector.  This is a very important advantage of dynamic programming.  It allows

straightforward comparative statics analysis as well as great flexibility in policy analysis and

simulation.  Furthermore, since the algorithm approximates the value function with a flexible

functional form across the entire state space, the model is approximated well even away from the

steady state.  Furthermore, the algorithm is capable of becoming arbitrarily accurate, unlike the

LQ method where the accuracy is bounded by the accuracy of the approximation of the return

function.  Furthermore, since the value function is in a single dimension, only one value function

needs to be computed instead of multiple policy functions or first order conditions.
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VI. Conclusions

Integrated assessment has become an important tool of applied environmental economics

analysis, particularly in the climate change area.  A number of numerical models of the

environment-economy have been developed for doing integrated assessment.  Many of these

models are based on the classic Ramsey optimal growth framework, though considerably

embellished to deal with the complexities of the economy and climate.  Computational issues

have become important in solving these empirical optimal growth models.

We shown how the finite horizon and infinite horizon optimal growth models are of similar

structure.  We have also examined solution techniques for both classes of models.   Most

integrated assessment models are finite horizon deterministic models, solved as nonlinear

optimization problems.  With stochastic elements, the infinite horizon models tend to be easier to

solve than the finite horizon models, yet solution methods are not widely available.

In this paper we have presented an algorithm for solving the infinite horizon optimal

growth model, based on the recursive version of Bellman’s equation of optimality. Future

research would likely entail comparison of the efficiency of the several approaches to solving

infinite horizon models.  The state-of-the-art is still not entirely satisfactory, with all methods

being highly computationally intensive and hampered by the curse of dimensionality.

compecon99.doc
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