
UC Irvine
ICS Technical Reports

Title
Communication software code generation

Permalink
https://escholarship.org/uc/item/3hd2m25r

Author
Gerstlauer, Andreas

Publication Date
2000-08-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3hd2m25r
https://escholarship.org
http://www.cdlib.org/

Notice; This Material

may be protected
by Copyright Law
(Title 17 U.S.G.)

Communication Software Code Generation

Andreas Gerstlauer

Technical Report ICS-00-46
August 1, 2000

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

gerstl @cecs.uci .edu
http://www.cecs.uci.edu/~gerstl

Abstract

This report describe the implementation ofsystem-level communication on a programmable processor. First, the issues are
introduced using the example ofcommunication software on a Motorola DSP. Then, the problem is generalized and defined
for the general case ofsystem-level communication on a programmable processor.

ECEIVE

APR 1 5 2002

UCI LIBRARY

Contents

1 Introduction 1

2 Low-Level Handshaking 1
2.1 Timing Constraints 2

3 High-Level Synchronization 3
3.0.1 Delay Software 4
3.0.2 Polling 4
3.0.3 Interrupt-Based 4

4 Problem Statement 5
4.1 High-Level Handshaking 6

4.1.1 Synchronization 6
4.L2 Data Transfer 6

4.2 Low-Level Handshaking , 7
4.2.1 Protocol Parameterization 7
4.2.2 Bus Transfer 7

5 Conclusions 7

References 8

List of Figures

1 Communication and handshaking levels 1
2 Timing diagram for singleMOVEM datatransfer. 2
3 Timing diagram for external write 2
4 Timing diagram for external read 2
5 Communication Code Generation 5

Communication Software Code Generation

A. Gerstlauer

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

This report describe the implementation of system-level
communication on a programmable processor. First, the
issues are introduced using the example ofcommunication
software on a Motorola DSP Then, the problem is gen
eralized and defined for the general case of system-level
communication on a programmable processor.

1 Introduction

This document describes the processor/software aspects of
communicating data items between a part of an application
running as software on a processor and a part of the appli
cation running in another component, e.g. a custom hard
ware block. After partitioning, data items are transferred
between hardware and software. The following sections
cover the issues of implementing this communication on
the processor side. For demonstrational purposes, the ex
amples show the implementation on a Motorola DSPS6600
processor core [1].

In the partitioned specification, a data transfer is initi
ated through communication primitives (e.g. send () and
receive ()). The specification contains primitives with
different semantics (blocked vs. non-blocked) and different
data types. In the following we will describe the implemen
tation of blocked, synchronous message passing primitives
for arbitrary data types. Other semantics are special ver
sions of this general case, e.g. non-blocking sends/receives
or non-typed transfers (simple event notification/wait with
out data transfer).

In the implementation on the processor side, the com
munication primitives are realized through two layers of
protocols:

1. High-level handshaking to ensure the synchronous,
blocking semantics of the communication primitives
and to implement the transfer of arbitrary data items
over the low-level protocol.

2. Low-level handshaking for performing a single trans
fer of a basic data item (as supported by the instruc-

Application

while do

datalJ =...

send(datalI \

endwhile >

High-level handshake

// SynchFonization
while ready do

WAITO

endwhile

// Data transfer

for i do

MOVEM(dalalij)

endfor

Low-level handshake

Figure I: Communication and handshaking levels.

tion set) over the actual address, data and control lines
according to the processor bus protocol.

The two protocol layers hierarchically build on each other
in the sense that the high-level layer uses the services pro
vided by the interface of the low-level layer (Figure I).
The layersare clearlyseparatedand independentfromeach
other.

2 Low-Level Handshaking

Assuming that both communication ends have been syn
chronized to agree on transferring a data item, the actual
data value has to be communicated over a bus consisting
of control, data and address lines. The bus protocol hand
shaking guarantees that the data is safely transferred to the
receiving end.

Data is transferred to other components over one of the
processor busses. On the softwareside, data transfers over
the processor busses are supported by the FO instructions
of the instructionset. Depending on the bus the component
is connected to, a transfer is performed through a normal
MOVE-type of instruction (memory-mapped FO over the
processor data bus) or a special FO instruction (port FO
over a peripheral bus). In both cases, the semantics of the
instructions are to transfer a data item between the proces
sor memory or one of the processor registers to external
memory or an external register.

The processor busses in general are assumed to support
the transfer of a single data item (e.g. a machine word) as
supported by the instruction set. In case of a long word
transfer (two machine words) a transfer might consist of
multiple bus cycles or a bus burst cycle. All transfers over
the processor busses are initiated by executing correspond
ing I/O instructions on the software side. Hence, the pro
cessor is considered the master on the bus and all other

components are slaves listening to requests at the time of a
transfer (through high-level handshaking, see Section 3).

The bus protocols are typically standard memory or
simple register file access protocols. In general, bus proto
cols are fixed and given for each processor. The hardware
has to be synthesized to conform with this bus protocol.
However, the bus protocol timing might be parameteriz-
able through certain processor control registers during pro
cessor initialization (reset).

In general, processor bus protocols support a scheme to
address different locations in the external memory or port
space. Addressing is needed in case of multiple compo
nents connected to the same bus or in case of multiple com
munication points inside the same component (e.g. multi
ple tasks communicating in parallel). Each of the com
munication endpoints is assigned an address or a range of
addresses on the bus. By decoding bus addresses the com
ponents determine the communication target.

In case of the DSP56600, the external bus protocol of
the processor is a memory-access protocol and data trans
fers over the external bus are handled via memory-mapped
I/O on the instruction side. The corresponding timing di
agram of the external bus is shown in Figure 2. On the
software side, the external address range is mapped into
the program memory space and the instruction set supports
transfers of single machine words (16-bit) via the MOVEM
instruction.

The Motorola processor allows the external data trans
fer protocol to be parameterized by the number of wait
states (WS) added during each transfer. The WS parameter
is set by programming a certain register in the processor as
part of processor initialization during reset. It influences
a number of protocol timing constraints for both read and
write accesses.

2»1 Timing Constraints

The timing diagram including the timing constraints of the
DSPS6600 processor for an external write access is shown
in Figure 3 and for an external read access in Figure 4.

The timing characteristics for the read and write ac
cesses depend on the processor clock period Tc and on the
number of programmed wait states WS:

Access time Tioo The time the address is valid on the bus

T1 I TO I T1 I TO I Tw I Tw [T1

Address

Bus

1 1 ! 1 1

X X-

\ /
(Data Sampled at)

\ /
(Data Driven at|)

\

mmr

/

Data In

(Read)

)ata Out

(Write)

Note: For detailed timing specification see the device's Technical Data sheet,

Figure 2: Timing diagram for single MOVEM data transfer.

A0-A15

D0-D23 Data In

Figure 3: Timing diagram for external write.

A0-A15.
MCS

U—@-

k:

-—@1

Figure 4: Timing diagram for external read.

(time between address and data becoming valid):

1<1V5<3: TiQo>{WS+l)xTc-4A
4<WS<7: Tioo > (W5 + 2) xrc-4.4
WS>8: rioo>(V5 +3)xrc-4.4

Write assertion time Tioi Time between address valid
and write assertion:

WS= 1:

2 < < 3 :

WS>4:

Tioi > 0.25 xTc —3.1
Tioi > 0.75 X 7c —4.4
Tioi > 1.25 X 7c-4.4

Write assertion width 7io2 Time between write assertion

and write deassertion:

iyS=l: rio2>1.5xrc-5.7

2<WS<3: Tw2>WSxTc-4A

W5>4: Tio2> {WS-0.5) xTc-4A

Data hold time 7io9 Time data is valid after write de-
assertion:

1 < 1T5 < 3 :

4<W5<7:

iyS>8:

Tio9 > 0.25 X 7c —3.8
Tio9 > 1.25 X 7c —3.8
7io9 > 2.25 X 7c —3.8

. Read assertion time Ti IS Time between address valid
and read assertion:

rii5>0.5xrc-4.0

Read assertion width Tiie Time between read assertion
and read deassertion:

Tii6>(VT5-f0.25)x 7^-3.8

Output enable time Tios Time between read assertion
and input data valid:

Tio5<{WS + 0.5)xTc-8.5

Therefore, given a certain number of wait states the con
straints for synthesizing the hardware talking to the pro
cessor can be directly derived. On the other hand, given
the timing of the synthesized hardware, the number of wait
states needed on the processor side is determined such that
all timing constraints as stated above are satisfied.

Given the timing constraints 7],„,„ of the hardware and
the piece-wise linear equations WSi{Ti) of the processor's
minimal number of wait states given a timing constraint,
the minimal number of wait states WSmin needed is calcu
lated:

WS,„in=l;
for all 7] do

ifW5i(7)„„.J<WS™„then
WS,„in = WStiTt,„,„y,

endif

endfor

Depending on the access type the following input con
straints and corresponding equations 1T5,(7}) are
needed:

• Read Access

- Access time Tioo

- Read assertion time 7) 15

- Read assertion width Tug

- Output enable time 7*105

• Write Access

- Access time 7*100

- Write assertion time Tioi

- Write assertion width rio2

- Data hold time 7*109

Note that the WS calculation (through the access time
parameter, Tioo) includes the bus cycle time supported by
the hardware, i.e. the time needed by the hardware until it
can accept the next word of a multi-cycle transfer in case of
communicating a multi-word data item (see Section 4.1.2).
Hence, no further synchronization at this level is necessary.

3 High-Level Synchronization

Based on transferring a single data item using the low-level
bus handshaking protocol, at the next level it has to be en
sured that the data processing rates at both communication
ends match when processing and transferring multiple data
items in a loop-like fashion out of the application. The
communication partners have to be synchronized such that
the slave is ready when the master is about to initiate a
transfer.

Single data transfers over the bus are initiated by the
software on the processor, i.e. the processor is the master
on the bus and the hardware reacts as a slave (see Sec

tion 2). This implies that read and write data transfers are
only performed at the request of the software on the proces
sor. Hence, the software has to be synchronized in accor
dance with the hardware processing rate to initiate trans
fers only when it is guaranteed that the hardware is ready
to supply or accept the next data time in case of a bus read
or bus write, respectively.

For every transfer there has to be a task on side waiting
to send an item and a task on the other end waiting to re
ceive it. The purpose of high-level handshaking is to make
sure that the two tasks meet to perform the aetual transfer.
In both cases (send or receive) and on each end, the flow is
to

1. Signal ready state and wait until the other end be
comes ready.

2. Perform read or write data transfer using low-level
protocols.

On the processor, while waiting for the other eommunica-
tion end, other tasks might exeeute in a multi-tasking fash
ion as determined by the operating system environment
chosen for the software part.

Due to the master/slave nature of the bus, the processor
is also in control of the handshaking process. A low-level
transfer is initiated through the processor and, in addition
to the actual transfer, constitutes an event sent to the hard

ware signaling the processor being ready. Upon reaching a
send or receive communication point, the hardware just sits
and listens for a corresponding read or write transfer on the
bus to/from the assigned address. Hence, high-level syn
chronization only has to ensure that the hardware is ready
before the processor initiates a transfer.

In the following seetions we will describe the different
possibilities for implementing high-level synchronization.

3.0.1 Delay Software

If the timing relation between hardware and software is
known (in the worst case), the software side can be arti
ficially delayed such that the hardware is guaranteed to be
ready by the time the software initiates a transfer. Software
timing is adjusted, for example, by inserting appropriate
amount of NOP instructions, sleeping the processor for the
required amount of time or executing other tasks for a cer
tain time. In contrast to the other schemes, this requires
that the timing of both the software and the hardware is
known.

Given the best-case and worst-case start times of the

corresponding communication operations on the software
and hardware side, respectively (as a result of scheduling),
the worst-case delay between software and hardware is de
termined. If the delay is negative no modifications are
necessary. If the delay is positive, the number of cycles
(and hence the number of NOP operations, for example)
required is computed by dividing the delay by the proces
sor clock period and subtracting the delay loop overhead:

do #nn,Ll

NOP

; delay loop

Ll

MOVEM a,p:(Rx) data transfer

The inputs for an implementation of delay handshaking
are:

• Communication operation start times (best case/worst
case).

• Processor clock period.

• Delay loop overhead cycles.

3.0.2 Foiling

Software on the processor is synchronized with the hard
ware by polling. The software reads a register/flag in the
hardware at regular intervals until the hardware signals its
ready state:

Ll

MOVEM $xxxx,b

TST b

JNE Ll

MOVEM a,p:(Rx)

poll reg./flag

test for zero

keep repeating

data transfer

Polling the register/flag is handled as a normal data transfer
over the external bus with a specially assigned address.

Note that in addition to the actual data processing
FSMD, this requires an additional FSMD in the hard
ware which runs concurrently to the computation FSMD
and answers polling requests from the processor while the
main computation is still running. The FSMD implements
polling register reads from the processor by listening on the
bus, waiting for a bus read cycle with the assigned address
and supplying the polling register value on such requests.

Parameters related to the polling handshaking scheme
are:

• Address for the polling register/flag read cycle.

3.0.3 Interrapt-Based

The hardware signals ready state to the software through
an interrupt. One of the processor's interrupt inputs is re
served for hardware handshaking. The corresponding in
terrupt handler sets a global variable in the processor mem
ory whenever the hardware interrupt is received:

global FIntHW_Handler

FIntHW_Handler

MOVE a,y:(r6)+ ; save reg

MOVE #l,a

MOVE a,y:FREADY ; set READY flag

MOVE y:-(r6),a ; restore reg

RTI

; set interrupt vector to point

; to interrupt handler

org p:$INTx_Vector

JSR >FIntHW_Handler

The data processing task on the processor then checks
the flag before each data transfer. If the hardware is not
ready yet, the processor is suspended until the correspond
ing interrupt has been received. Then, the interrupt flag is
reset and the data transfer is performed:

Ll

MOVE

TST

JEQ

WAIT

JMP

I

CLR

MOVE

L2

y:FREADY,b

b

L2

Ll

read READY flag

test for zero

break if flag

wait for int

test flag again

b,y:FREADY ; clear flag

MOVEM a,p:(Rx) data transfer

Since single data transfers are in itself synchronized
with the hardware and since the hardware doesn't issue the

next interrupt before the actual data transfer has been per
formed, no additional handshaking is necessary and it is
guaranteed that no interrupt is lost.

Parameters related to the polling handshaking scheme
are:

• Interrupt vector of the interrupt the hardware is con
nected to.

• Interrupt parameters like edge-sensitive vs.
sensitive, etc.

level-

4 Problem Statement

The problem to solve is, given a processor out of the IP
database and a component connected to the processor bus,
to create code for implementation of the software part of
the given specification for the processor—in this case the
DSP56600.

The communication code generation tool (see Figure 5)
in the end will generate assembly code for the communica
tion layers to be linked to the rest of the application running
on the processor. Code is generated by the tool using as
sembly code templates stored in the IP database together
with the processor data. The inputs to the code generation
tool fall into the following categories:

Communication SW Synthesis

Handshaking Protocol
High-Level

Handshaking Parameters Synchronization

Data Type Data Transfer

Data Addresses

Low-Level

Timing Constrants Protocol Parametrizatlon

Bus Transfer

Code Templates

Communication Cocle

Processor DB

Figure 5: Communication Code Generation.

• the selected high-level handshaking protocol and its.
parameters (Section 3),

• type and location of the data item to be transferred in
the processor memory.

• address of the communication partner on the proces
sor bus, and

• the external bus protocol supported by the hardware
and the associated timing constraints.

The problem consists of several subproblems at the two
different layers of the communication hierarchy. The two
subtasks of the code generation process are:

1. create low-level I/O code

• code for transferring a single data item over the
processor bus as supported by the biis and in
struction set

2. create high-level handshaking functions

• synchronization code

• code to transfer arbitrary data types using low-
level protocol functions

The two layers of code will sit on top of each other in
the generated code, i.e. the high-level functions are im
plemented during code' generation utilizing the low-level
routines generated previously by the first code generation
subtask.

Code generation produces an implementation of the
send () and receive () communication primitives on
the software side by creating corresponding send () and
receive () functions which will be called from the ap
plication. In addition, code generation can add to the run
time library that will be linked to the final application dur
ing compilation. The runtime library source code provides

designated space for inserting interrupt handlers or proces
sor initialization/reset code, for example. All in all, the
generated code becomes part of the operating system ker
nel the application will be linked against.

In the following sections the inputs and approaches for
each subproblem will be defined. In all cases, communica
tion code which became part of the operating system layer
on the processor is created.

4.1 High-Level Handshaking

Create code for implementation of the communication
primitives in the application. For each send () and
receive () communication primitive of different data
type a function is created. The communication primitives
in the specification will then be implemented as calls to the
created functions in the code generated for the processor.

In general, the communication functions consist of code
for synchronization between software and hardware fol
lowed by code for transferring of the given data item over
the processor bus using the low-level protocol. The com
munication functions are assembled from those two parts.
Hence, high-level handshaking code generation is subdi
vided into generation of synchronization code and genera
tion of data transfer code subtasks described in the follow-

I.

Img sections.

4.1.1 Synchronization

Create code for implementation of the communication
primitives synchronization and blocking semantics. Input
to code creation is the type of the desired handshaking im
plementation (Section 3). Based on that the corresponding
code template stored in the database is used. The templates
are customized using a set of parameters depending on the
type of handshaking:

• No handshaking: no parameters.

• Software delay handshaking:

- Number of delay cycles
The number of cycles is calculated from the
difference between software and hardware start

times. The number of cycles equals the delay
between software and hardware divided by the
processor clock period (minus delay loop over
head, see Section 3.0.1).

• Polling:

- Address for external polling register/flag

• Interrupt-based handshaking:

- Interrupt vector of the interrupt the hardware is
connected to

The template code is inserted at the beginning of the high-
level handshaking function body. The parameters in the
code templates are replaced with the actual values to create
the final code for the synchronization part of the commu
nication function.

Finally, in case of an interrupt-based handshaking, code
for the interrupt handler and initialization code for setting
up interrupt vectors is generated in a similar manner from
corresponding templates stored in the processor database.
This code is inserted into the interrupt handler table and
processor reset routine of the runtime library, respectively.

4.1.2 Data Transfer

Create code for transferring the given data item using the
low-level routines. The interface provided by the low-level
protocol supports transferring a single data item over the
processor bus (see Section 4.2.2).

In order transfer an arbitrary data item as specified by
the application, code is produced to split the data transfer
into multiple data transfers as supported by the low-level
protocol. Input parameters are:

• Address of data item in processor memory

• Type information of data item (symbol table entry)

• Address of data item on the external processor bus

• List of data transfers supported by the low-level pro
tocol

- datatype

- instruction/function name

The generated data transfer code becomes part of the com
munication functions following synchronization.

Code to transfer complex data types consisting of mul
tiple machine words in processor memory depends on the
data serialization convention, i.e. on the order in which the

different words of the complex data item are transmitted:

Processor Memory Layout Data words are transmitted
in the order in which they are stored in processor
memory. Code is generated that loops over all con
secutive addresses occupied by the data item (based
on the address and size of the data item). Data is trans

mitted in the largest chunks supported by the low-
level protocol.

Canonical Serialization Data is transmitted in a canon

ical, predetermined order. The processor database
contains a library of serialization functions for each

basic and complex C data type. Serialization func
tions for basic types are implemented using optimal
low-level routines according to the data type. Serial
ization functions for complex data types (arrays and
structs) recursively call the serialization function for .
the corresponding base type. Code is generated by
calling the appropriate serialization function depend
ing on the type of the data item.

Arbitrary Serialization The order of data serialization is
arbitrary as defined by external factors (e.g. the hard
ware). Inputs to code creation are:

• For each basic data type (integral and floating
point types) a definition of the number, type and
order of low-level transfers (e.g. big-endian vs.
little-endian order). For each basic data type a
sequence of low-level transfer has to be defined.

• For each complex data type (arrays and structs)
the order in which the elements of the base type
are to be transmitted (e.g. row-major or column-
major in case of arrays).

Code for custom serialization functions is then cre
ated. Each function serializes transmission of a cer

tain data type according to the definition. The func
tions are then called in the same manner as in the

canonical case.

4.2 Low-Level Handshaking

4.2.1 Protocol Parameterization

Create code for initializing the registers associated with bus
protocol parameters of the processor. Initialization code to
be inserted into the processor reset routine of the runtime
library is created from a template stored in the IP database
for the processor. The code template modifies the proces
sor control registers according to the selected parameters.

For each processor bus a hardware module is connected
to, the following information is needed:

• list of protocol parameters

• list of bus timing constraints

• list of equations for calculating a parameter as a func
tion of each timing constraint

• actual delay values of the hardware for each timing
constraint

The different protocol parameters are then computed by
evaluating the parameter functions using the given delay
values and selecting the optimal value over all constraints
(see the DSP56600 example in Section 2).

4.2.2 Bus Transfer

Create code for transferring a single data item over the pro
cessor bus. Depending on the complexity the code for
transferring a single data item is either inlined into the
high-level communication functions (see Section 4.1.2) or
becomes a separate function which is called from inside
the high-level functions.

The set of I/O instructions needed to implement a data
transfer is taken from the processor database in the form of
a code template. Usually, however, processor bus transfers
are supported by a single processor I/O instruction that will
be inlined into the communication functions. In case of

the DSP56600, for example, a data transfer is implemented
using a single MOVEM instruction.

5 Conclusions

In this report we described and defined the problem of gen
erating code for implementation of the specification's com
munication functionality for parts of an application run
ning on a processor. The problem and approach was de
scribed on the example of the Motorola DSP56600 pro
cessor. However, the general problem statement applies
equally to other processors.

The problem can be extended and generalized in a cou
ple of ways: The approach presented here assumes that
the communication is handled over the processor bus as
supported directly by the processor architecture and the
instruction set. However, the processor core might in
clude (possibly optional) I/O peripherals that implement
extended I/O functionality and more complex external pro
tocols. Depending on the protocol selected for communi
cation between the processor and other components, a pro
cessor core might be allocated that supports the required
protocol natively in such a way.

In this case the processor database would contain the
necessary driver code to implement low-level data trans
fers over using the I/O module. However, since the driver
or the hardware in the I/O module can support extended
functionality like blocking, synchronization or buffering
the semantics of the low-level interface for code genera
tion have to become more general. The high-level code
generation then has to take this additional parameter into
account when implementing the semantics as required by
the specification.

On the other hand, the I/O peripheral is itself connected
to one of the processor busses. Hence, the peripheral
driver communicates with the peripheral hardware over
the processor bus, using the processor's I/O instructions
to read/write the peripheral registers. Therefore, the pe
ripheral module can be modeled as an additional hardware

component interfacing between the processor and the other
components. At the specification level corresponding code
modeling the peripheral behavior and its communication
with the processor is inserted. Since the added code will
in turn be based on standard communication primitives it
sits one level above communication code generation as de
scribed in this report.

Finally, the processor might include a peripheral mod
ule for general I/O that allows the software direct con
trol over some of the processor core's input and output
pins. This allows implementation of any arbitrary proto
col (within the restrictions of the processor state machine)
on those processor pins. In this case, generation of the
low-level bus transfer code becomes general in the sense
that the software side is synthesized to conform with a
given hardware protocol. Given a description of the hard
ware protocol in a suitable format (e.g. Protocol Sequence
Graph, PSG), the problem is to generate low-level hand
shaking code for implementation of that protocol over the
processor pins.

References

[I] Motorola, Inc., Semiconductor Products Sector, DSP
Division, DSP56600 16-bit Digital Signal Processor
Family Manual, DSP56600FM/AD, 1996.

