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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas AIP/123-QED

Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

Chang-Chun Chen,1, a) Patrick H. Diamond,1, b) Rameswar Singh,1 and Steven M.

Tobias2

1)Department of Physics, University of California San Diego, La Jolla, CA 92093,

USA

2)Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT,

UK

(Dated: 4 March 2021)

Tangled magnetic fields, often coexisting with an ordered mean field, have a major impact

on turbulence and momentum transport in many plasmas, including those found in the so-

lar tachocline and magnetic confinement devices. We present a novel mean field theory of

potential vorticity mixing in β -plane magnetohydrodynamic (MHD) and drift wave turbu-

lence. Our results show that mean-square stochastic fields strongly reduce Reynolds stress

coherence. This decoherence of potential vorticity flux due to stochastic field scattering

leads to suppression of momentum transport and zonal flow formation. A simple calcula-

tion suggests that the breaking of the shear-eddy tilting feedback loop by stochastic fields

is the key underlying physics mechanism. A dimensionless parameter that quantifies the

increment in power threshold is identified and used to assess the impact of stochastic field

on the L-H transition. We discuss a model of stochastic fields as a resisto-elastic network.

a)Electronic mail: chc422@ucsd.edu
b)Electronic mail: pdiamond@ucsd.edu
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

I. INTRODUCTION

Momentum transport and the formation of sheared flows (i.e. zonal jets) are major research

foci in quasi two-dimensional (2D) fluids1,2 and plasmas3–7. By ‘quasi 2D’, we mean systems

with low effective Rossby number, in which dynamics in the third dimension is constrained by,

say, stratification or fast time averaging, due to small electron inertia (as in magnetically con-

fined plasmas). In such systems, Reynolds forces are equivalent to vorticity fluxes via the Taylor

Identity8. For this and other reasons—the most fundamental being the freezing-in law for fluid

vorticity9—it is natural to describe such systems in terms of potential vorticity (PV). Generally,

PV ≡ ζ = ζ
a
·∇ψ/ρ , where ζa is the absolute vorticity, ψ is a conserved scalar field , and ρ is the

fluid density. The advantage of a PV description of the dynamics is that ζ is conserved along fluid

particle trajectories, up to dissipation, much likes phase space density is conserved in the Vlasov

plasma. Examples of conserved PV are ζ = βy−∇2ψ , where β is the Rossy parameter and ψ is

stream function, for dynamics on β -plane, and PV = (1−ρ2
s ∇2)|e|φ/T + lnn0 for the Hasegawa-

Mima system10, where φ is electric potential and n0 is a background density. In such systems,

momentum transport and flow formation are determined by inhomogeneous PV mixing11,12. The

mechanism for PV mixing is closely related to the coherence and cross phase of the vorticity flux.

Mechanisms include viscous dissipation, wave-flow resonance, nonlinear mode interaction, and

beat wave-flow interaction, akin to nonlinear Landau damping13.

Recently the physics of PV transport in a disordered magnetic field has emerged as a topic

of interest in many contexts. One of these is the solar tachocline7, a weakly magnetized system,

where momentum transport (i.e. turbulent viscosity) is a candidate mechanism for determining

the penetration of this layer and the flows within it. The latter is critically important to the solar

dynamo4,14,15. In this case, the field is disordered16, and confined (magneto-hydrostatically) to a

thin layer. The disordered magnetic field is amplified by high magnetic Reynolds number (Rm)

turbulent motions4,15, pumped by convective overshoot from the convective zone17,18. There is

a weak mean toroidal field, so magnetic perturbations are large. Another application, relevant

to PV dynamics in a stochastic magnetic field, is to tokamaks (which are strongly magnetized),

specifically those with stochasticity induced by Resonant magnetic perturbations (RMPs)19. RMPs

are applied to the edge of tokamak plasma to mitigate Edge Localized Modes (ELMs)20,21, which

produce unacceptably high transient heat loads on plasma-facing components. The ‘cost’ of this
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

benefit is an increase in the Low to High confinement mode transition (L-H transition) threshold

power, as observed with RMPs22–29. Because several studies suggest that the L-H transition is

triggered by edge shear flows30–33, this implies that the transition dynamics are modified by the

effects of stochastic fields on shear flow evolution. Indeed, analysis suggests that RMPs may

“randomize" the edge layer. In this case, the magnetic field is three dimensional (3D). Stochasticity

results from k ·B = 0 resonance overlap, and field line separations diverge exponentially. Hence, a

key question is the effect of stochastic fields on self-generated shear flows.

In both cases, the central question is one of phase—i.e. the effect of the stochastic field on the

coherence of fluctuating velocities, which enters the Reynolds stress and PV. In physical terms,

the disordered field tends to couple energy from fluid motion to Alfvénic and acoustic waves,

which radiate energy away and disperse wave packets. Of course, Alfvénic radiation is more

effective in the case for low β ≡ pplasma/pmag—the ratio of the plasma pressure to the magnetic

pressure—or for incompressible dynamics. The effect of this Alfvénic coupling is to induce the

decoherence of the Reynolds stress (or vorticity flux), thus reducing momentum transport and flow

generation. In this vein, we show that sufficiently strong coupling of drift waves to a stochastic

magnetic field can break the ‘shear-eddy tilting feedback loop’, which underpins flow generation

by modulational instability. We note that the interaction of Alfvén waves with a tangled magnetic

field differs from that of Alfvén waves with an ordered field. Here, the effect is to strongly couple

the flow perturbations to an effective elastic medium threaded by the chaotic field.

In this paper, we discuss the theory of PV mixing and zonal flow generation in a disordered

magnetic field, with special focus on applications to momentum transport in the solar tachocline

and Reynolds stress decoherence in the presence of a RMP-induced stochastic field. Section II

addresses a mean field theory for a tangled ‘in-plane’ field in β -plane magnetohydrodynamic

(MHD)34,35, which is used to compute the Reynolds force and magnetic drag in this weak mean

field (B0) system. The mean-square stochastic magnetic field (B2
st) was shown to be the dominant

element, controlling the coherence in the PV flux and Reynolds force7. Of particular interest is

the finding that the Reynolds stress degrades for weak B0, at a level well below that required for

Alfvénization. It is also shown that the small-scale field defines an effective Young’s modulus for

elastic waves, rather than a turbulent dissipation7. As a second application, Section III presents the

study of Reynolds stress decoherence in tokamak edge turbulence. There, the stochastic field is

3D, and induced by external RMP. Drift-Alfvén wave propagation along stochastic fields induces

an ensemble averaged frequency shift that breaks the ‘shear-eddy tilting feedback loop’. Reynolds
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

stress decoherence occurs for a modest level of stochasticity. The ratio of the stochastic broaden-

ing effect to the natural linewidth defines a critical parameter that determines the L-H transition

power threshold concomitant increment. With intrinsic toroidal rotation in mind, we also explore

the decoherence of the parallel Reynolds stress. This is demonstrated to be weaker than for the pre-

vious case, since the signal propagation speed which enters parallel flow dynamics is acoustic (not

Alfvénic). The interplay of symmetry breaking, stochasticity, and residual stress are discussed. In

Section IV, we discuss the key finding of this study and provide suggestions for further research.

II. β -PLANE MHD AND THE SOLAR TACHOCLINE

Stochastic fields are ubiquitous. One example is the tangled field of the solar tachocline7,36—a

candidate site for the solar dynamo. The solar tachocline is a thin strongly stratified layer between

the radiation and convection zones, located at ∼ 0.7 solar radius36, where magnetic fields are per-

turbed by ‘pumping’ from the convection zone. Hence, a model for strong perturbed magnetic

fields is crucial for studying PV mixing and momentum transport in the solar tachocline. A study

by Tobias, Diamond, and Hughes 37 on β -plane MHD shows that a modest mean field suppresses

zonal flow formation and momentum transport (Fig. 1). Chen and Diamond 7 proposed that the

effects of suppression by random-fields are already substantial (even for weak B0) on account

of Reynolds stress decoherence. They discussed a β -plane (quasi-2D) MHD model for the so-

lar tachocline and studied how the zonal flow is suppressed by random fields. We note that the

dynamics of β -plane MHD are exceedingly complex. At small-scales, it resembles MHD with

a forward cascade and also supports large scale Rossby waves. Interactions of the latter tend to

generate flows, as for an inverse cascade. In view of this multi-scale complexity, we follow the

suggestion of Rechester and Rosenbluth 38 and replace the full problem by a more tractable one in

which an ambient disordered field is specified. We utilize a mean field theory which averages over

the small-scale field. Meso-scopic flow phenomena in this environment are then examined.

A. Model Setup

The β -plane MHD system at high Rm with weak mean field supports a strong disordered mag-

netic field. Hence, analyzing this problem is a daunting task, on account of the chaotic field and

strong non-linearity. Zel’dovich 39 suggested the ‘whole’ problem consists of a random mix of
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

10−4 10−3 10−2 10−1
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B2

0
/η = 0.4

λ0 = 0

λ = 1

B0

η

B0
2/η=0.4

∘ ∘+

 B0 = 0

FIG. 1. Scaling law for the transition between the forward cascades (circles) and inverse cascades (plus

signs) from Tobias, Diamond, and Hughes 37 . B0 is mean magnetic field and η is the magnetic diffusivity.

Colormaps are velocity intensity. Red indicates strong forward flows, while blue indicates strong backward

flows. They shows as mean magnetic field strong enough, zonal flow generation stops and the system is fully

Alfvénized. Reproduced with permission fromChen and Diamond 7 , by permission of the AAS. Copyright

2020 The American Astronomical Society.

two components: a weak, constant field (B0) and a random ensemble of magnetic ‘cells’ (Bst), for

which the lines are closed loops (∇ ·Bst = 0). Of course, the mean magnetic field B0 lines are

closed toroidally. Assembling these two parts gives a field configuration which may be thought of

as randomly distributed ‘cells’ of various sizes, threaded by ‘sinews’ of open lines (Fig. 2). Hence,

the magnetic fields can be decomposed to B ≡ B0+Bst, where B0 is modest (i.e. |Bst |> B0). This

system with strong, tangled field cannot be described by linear responses involving B0 only, and

so is not amenable to traditional quasilinear theory. Linear closure theory allows analysis in a

FIG. 2. The large-scale magnetic field is distorted by the small-scale fields. The system is the ‘soup’ of

cells threaded by sinews of open field lines. Reproduced with permission fromChen and Diamond 7 , by

permission of the AAS. Copyright 2020 The American Astronomical Society.
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

diffusive regime, where fluid Kubo number40 Ku f luid < 1 and magnetic Kubo number Kumag < 1.

Here, the fluid Kubo number Ku f luid ≡ δl/∆⊥, where δl is the characteristic scattering length and

∆ is the eddy size. For weak mean field, we have Kumag ≡ lac|Bst/B0|/∆ > 1, rendering stan-

dard closure method inapplicable. Here lac is magnetic auto-correlation length and ∆ is eddy size.

Hence, we employ the simplifying assumption of lac → 0 so Kumag ≃ lac|Bst/B0|/∆ < 1. This

approximation allows us to peek at the mysteries of the strong perturbation regime by assuming

fields with short correlation length. In a system with strong random fields (Bst ; such that ensemble

average of squared stochastic magnetic field B2
st > B2

0), this approximation comes at the price of

replacing the full β -plane MHD problem with a model problem. Results for this model problem,

where |Bst | > B0, are discussed in this section. Notice that in 3D MHD, as for a tokamak, there

are k ·B resonances. Stochastic fields are due to overlapping of magnetic islands near the edge of

tokamak. The QL closure works in tokamak, since we have |Bst |/B0 ≃ 10−3∼−4—the magnetic

auto-correlation length lac is proportional to Rq and Kumag has a moderate value (Kumag ≤ 1).

Thus for weak perturbation, the mean field method is still applicable. Details are discussed in Sec.

III.

B. Calculations and Results

Following the argument above, a model which circumvents the problem of simple quasi-linear

theory for this highly disordered system is presented. This is accomplished by considering the

scale ordering. In the two-scale average method proposed7, an average over an area is performed,

with a scale (1/kavg) larger than the scale of the stochastic fields (1/kst) but smaller than the

Magnetic Rhines scale41 (kMR), and Rossby wavelength (kRossby). This average is denoted as

F ≡ ∫
dR2 ∫ dBst ·P(Bst,x,Bst,y) ·F , where F is arbitrary function, dR2 denotes integration over the

region, and P(Bst,x,Bst,y) is probability distribution function for the random fields. This random-

field average allows us to replace the total field due to MHD turbulence (something difficult to

calculate) by moments of a prescribed probability distribution function (PDF) of the stochastic

magnetic field. The latter can be calculated. Another average— over zonal flow scales kzonal ,

denoted as bracket average 〈〉 ≡ 1
L

∫
dx 1

T

∫
dt—is conducted. Hence the scale ordering for β -plane

MHD is ultimately kst > kavg & kMR & kRossby > kzonal (Fig. 3). They started with the vorticity
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

equation and the induction equation:

( ∂

∂ t
+u ·∇

)
ζ −β

∂ψ

∂x
=−B ·∇(∇2A)

µ0ρ
+ν∇2ζ , (1)

∂

∂ t
A = (B ·∇)ψ +η∇2A, (2)

where A is magnetic potential, ψ is the stream function, ν is viscosity , ρ is mass density, and η

is the magnetic diffusivity. In the β -plane model, the x- and y-axes are set in the longitudinal and

latitudinal direction, respectively. They employed periodical boundary conditions—considering

the β -plane in a domain 0 ≤ x, y ≤ 2π using pseudospectral methods42. This model7, with its two-

average method, allows insights into the physics of how the evolution of zonal flows is suppressed

by disordered fields both via reduced PV flux (Γ) and by an induced magnetic drag, i.e.

∂

∂ t
〈ux〉= 〈Γ〉− 1

ηµ0ρ
〈B2

st,y〉〈ux〉+ν∇2〈ux〉. (3)

Here, 〈ux〉 is the mean velocity in the zonal direction, 〈Γ〉 is the double-average PV flux. Here

1
ηµ0ρ 〈B2

st,y〉 is the magnetic drag coefficient.

First, stochastic fields suppress PV flux by reducing the PV diffusivity (DPV ), where

Γ =−DPV

( ∂

∂y
ζ +β

)
, (4)

where β is the Rossby parameter and the PV diffusivity can be written as

DPV = ∑
k

|ũy,k|2×

νk2 +(
B2

0k2
x

µ0ρ ) ηk2

ω2+η2k4 +
B2

st,yk2

µ0ρηk2

(
ω − (

B2
0k2

x

µ0ρ ) ω
ω2+η2k4

)2

+

(
νk2 +(

B2
0k2

x

µ0ρ ) ηk2

ω2+η2k4 +
B2

st,yk2

µ0ρηk2

)2

.

(5)

Eq. (5) shows that strong mean-square stochastic field (B2
st) acts to reduce the correlation of the

vorticity flux, thus reducing PV mixing. This explains the Reynolds stress suppression observed

in simulation7 (Fig. 4). Note that this reduction in Reynolds stress sets in for values of B0 well

below that required for Alfvénization (i.e. Alfvénic equi-partition 〈ũ2〉 ≃ 〈B̃2〉/µ0ρ).

Second, magnetic drag physics is elucidated via the mean-field dispersion relation for waves in

an inertial frame (β = 0), on scales l ≫ k−1
avg,

(
ω +

iB2
st,yk2

y

µ0ρηk2
+ iνk2

)(
ω + iηk2

)
=

B2
0k2

x

µ0ρ
. (6)
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Random-field 

averaging region
Random-field Rossby Wave

Zonal flow

FIG. 3. Length scale ordering. The smallest length scale is that of the random field (lst). The random-field

averaging region is larger than the length scale of random fields but smaller than that of the Rossby waves.

Reproduced with permission fromChen and Diamond 7 , by permission of the AAS. Copyright 2020 The

American Astronomical Society.

S
tr
es
s

−

B0

Maxwell Stress hBxByi Reynolds Stress huxuyi

10−3−4 −3 −2 −1 0

6

4

2

Toroidal mean field

10−2

10−4

10−6

10−4 10−2 10−1 100

 η = 104

FIG. 4. Average Reynolds stresses (orange line) and Maxwell stresses (blue line) for β = 5, η = 10−4 from

Chen and Diamond 7 . Full Alfvénization happens when |B0| is larger than |B0|= 10−1. The yellow-shaded

area is where zonal flows cease to grow. This is where the random-field suppression on the growth of zonal

flow becomes noticeable. Reproduced with permission fromChen and Diamond 7 , by permission of the

AAS. Copyright 2020 The American Astronomical Society.

The drag coefficient χ ≡ B2
st,yk2

y

µ0ρηk2 , emerges as approximately proportional to an effective spring constant
dissipation .

The ‘dissipation’ and ‘drag’ effects suggest that mean-square stochastic fields B2
st form an effective

resisto-elastic network, in which the dynamics evolve. The fluid velocity is redistributed by the

drag of small-scale stochastic fields. Ignoring viscosity (ν → 0), we have

ω2 + i (χ +ηk2)︸ ︷︷ ︸
drag + dissipation

ω −
(

B2
st,yk2

y

µ0ρ
+

B2
0k2

x

µ0ρ

)

︸ ︷︷ ︸
effective spring constant

= 0. (7)
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Note that this is effectively the dispersion relation of dissipative Alfvén waves, where the ‘stiff-

ness’ (or magnetic tension) is determined by both the ordered and the mean-square stochastic field

(B2
st). In practice, the latter is dominant, as B2

st ≃ RmB2
0 and Rm ≫ 1. So, the ensemble of Alfvénic

loops can be viewed as an network of springs (Fig. 5). Fluid couples to network elastic elements,

thus exciting collective elastic modes. The strong elasticity, due to Alfvénic loops, increases the ef-

fective memory of the system, thus reducing mixing and transport and ultimately causes Reynolds

stress decoherence. The network is fractal and is characterized by a ‘packing factor’, which deter-

mines the effective Young’s Modulus. It is important to note that the ‘stochastic elasticized’ effect

is one of increased memory (not one of enhanced dissipation) as in the familiar cases of turbulent

viscosity or resistivity.

Alfvénic loops Site-percolation Network

bl

FIG. 5. Site-Percolation Network. Schematic of the nodes-links-blobs model (or SSdG model, see Skal and

Shklovskii 43 , De Gennes 44 , Nakayama, Yakubo, and Orbach 45). This depicts the resisto-elastic medium

formed by small-scale stochastic fields. Reproduced with permission fromChen and Diamond 7 , by permis-

sion of the AAS. Copyright 2020 The American Astronomical Society.

C. Implications for the solar tachocline

The balance between Reynolds and Maxwell stress in a fully Alfvénized system where fluid

and magnetic energy reach near equi-partition is the conventional wisdom. Simulation results (Fig.

4), however, show that Reynolds stress is suppressed by stochastic fields well before the mean field

is strong enough to fully Alfvénize the system (details are shown in Chen and Diamond 7). These

results suggest that turbulent momentum transport in the tachocline is suppressed by the enhanced

memory of stochastically induced elasticity. This leaves no viscous or mixing mechanism to op-
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

pose ‘burrowing’ of the tachocline due to meridional cells driven by baroclinic torque ∇p×∇ρ46.

This finding suggests that the Spiegel and Zahn 47 scenario of burrowing opposed by latitudinal

viscous diffusion, and the Gough and McIntyre 48 suggestion of that PV mixing opposed burrow-

ing both fail. Finally, by process of elimination, the enhanced memory-induced suppression of

momentum transport allows the Gough and McIntyre 48 suggestion that a residual fossil field in

the radiation zone is what ultimately limits tachocline burrowing.

III. DRIFT WAVE TURBULENCE IN A STOCHASTIC FILED

This section focuses on the effect of stochastic fields on zonal flow suppression, such as in

the case of RMPs at the edge of tokamak. Experimental results shows that pre-L-H transition

Reynolds stress bursts drop significantly when RMPs are applied to the edge of DIII-D49. The

stochastic magnetic fields are form The power threshold for L-H transition increases, as the nor-

malized intensity of radial RMPs (δBr/B0) increases22–29. Here we aims to shed light on these

two phenomena, and to address the more general question of Reynolds stress decoherence in a

stochastic magnetic field.

To begin, we explore the timescale ordering for the physics. We construct a model in Cartesian

(slab) coordinates—x is radial, y is poloidal, and z is the toroidal directions, in which the mean

toroidal field lies (Fig. 6). Hereafter, ⊥ represents the x- and y-direction which is perpendicular

to parallel mean filed (in z-direction). Considering a generalized diffusivity (D0) and assuming

modes are sufficiently packed (∑
k

= ( L
2π )

3 ∫ dk‖
∫

dk⊥)50, we have

D0 = Re{C

∫∫∫
dkxdkydkz

∫
dω

k2
y

B2
0

|φkω |2
i

ω − vAkz + iDk2
⊥
} (8)

where C is a parameter of integrals with dimension [L3T ], vA ≡ B0/
√

µ0ρ is Alfvén speed51, and

the D is a spatial diffusivity under the influence of stochastic field, defined as D ≡ vADM. As dis-

cussed below, vA appears as the characteristic velocity for signal propagation along the stochastic

field, since zonal flows follow from the need to maintain ∇ · J = 0, in the face of ambipolarity

breaking due to polarization fluxes. Here DM ≃ lacb2 (hearafter b2 ≡ 〈B2
st,⊥〉/B2

0) is the stochastic

magnetic diffusion, first derived by Rosenbluth et al. 52 . Here, the bracket average is a stochastic

ensemble average 〈〉 ≡ ∫ dR2 ∫ dBst ·P(Bst,x,Bst,y) ·F similar to the bar average in Sec. II B. But here

dR2 is an averaging area (at scale 1/kst) over y- and z- directions. |φkω |2 is the electric potential
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

spectrum, such that

|φ |2kω = φ 2
0 S1(k⊥)S2(kz)

i

ω −ω2
0,k − i∆ωk

, (9)

where ω0,k is the centroid of the frequency spectrum, ∆ω is the natural linewidth of potential field,

and S1 and S2 are the k-spectrum of k⊥ and parallel kz, respectively. Performing the frequency

integration, we have

D0 = Re{C
∫∫∫

dkxdkydkzφ
2
0 S1(k⊥) · (10)

S2(kz)
k2

y

B2
0

∫
dω{ i

(ω−ω0,k)−i∆ωk

i

ω−vAkz+iDk2
⊥
}}

= Re{C
∫∫

dkxdkyφ 2
0 S1(k⊥)

k2
y

B2
0

∫
dkzS2(kz)

−2πi

ω0,k−vAkz+i∆ωk+iDk2
⊥
}. (11)

Now consider a Lorentzian kz-spectrum

S2(kz) =
i

kz − kz,0 + i∆kz
, (12)

where kz,0 is the centroid and ∆kz is the width of the spectrum. So we have

D0 = Re{C
∫∫

dkxdkyφ 2
0 S1(k⊥)

k2
y

B2
0

∫
dkz

i
kz−kz,0+i∆kz

· −2πi

ω0,k−vAkz+i∆ωk+iDk2
⊥
}

= Re{C(2π)2 ∫∫ dkxdkyφ 2
0 S1(k⊥)

k2
y

B2
0

i

ω0,k−vAk0,z+i∆ωk+i∆kzvA+iDk2
⊥
}.

We do the kz integral only since k ·B0 resonance defines the critical time scale in this system—the

ordering of these broadenings (∆kzvA, ∆ωk, and Dk2
⊥) in the denominator is the key to quantifying

stochastic field effects. The first term, ∆kzvA, is the bandwidth of an Alfvén wave packet excited

by drift-Alfvén coupling. Here vA∆kz . vA/Rq, where R is major radius and q ≡ rBt/RBp is

the safety factor. The bandwidth ∆kzvA is a measure of the dispersion rate of an Alfvén wave

packet. The second term is the rate of nonlinear coupling or mixing—due to ambient electrostatic

micro-instability ∆ωk ≃ ω∗ = kθ ρsCs/Ln, where the ω∗ is drift wave turbulence frequency, ρs

is gyro-radius, Cs is sound speed, and Ln is density scale length. ∆ω is comparable to k2
⊥DGB,

where DGB ≡ ω∗/k2
⊥ ≃ ρ2

s Cs/Ln is the gyro-Bohm diffusivity (for kθ ρs ∼ 1). The third is the

stochastic field scattering rate Dk2
⊥ ≃ k2

⊥vADM. Ultimately, we will show that k2
⊥vADM & ∆ωk

(or vADM > DGB) is required for Reynolds stress decoherence (Fig. 7). In practice, this occur

for k2
⊥vADM & vA|∆k‖|, i.e. Kumag ≃ 1 is required. The condition k2

⊥vADM > ∆ωk requires that

stochastic field broadening exceeds the natural turbulence linewidth29, so that k2
⊥vADM > ∆ω .

Satisfying this requires b2 >
√

βρ2
∗ε/q ∼ 10−8, where lac ≃ Rq, ε ≡ Ln/R ∼ 10−2, β ≃ 10−2,

and normalized gyro-radius ρ∗ ≡ ρs/Ln ≃ 10−2∼−3. It is believed that b2 at the edge due to RMP
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

is ∼ 10−7 for typical parameters; hence, the stochastic broadening effect is likely sufficient to

dephase the Reynolds stress. Following from this condition, we propose a dimensionless parameter

α ≡ b2q/ρ2
∗
√

βε—defined by the ratio k2
⊥vADM/∆ωk—to quantify the broadening effect. The

increment in L-I and I-H power thresholds as α varies are explored using a modified Kim-Diamond

L-H transition model53 in Sec. III B. We also give a physical insight into stress decoherence by

showing how stochastic fields break the ‘shear-eddy tilting feedback loop’, which underpins zonal

flow growth by modulational instability.

Mean magnetic field  B0

 Bst,x

 Bst,y

 z

 x

 y

Magnetic islands overlapping forms stochastic fields

vortices

FIG. 6. Magnetic fields at the edge of tokamak. RMP-induced stochastic fields (black loops) lie in radial (x)

and poloidal (y) plane. Mean toroidal field is treading through stochastic fields perpendicular in z-direction

(blue arrows).

ω

Dk2
⊥ΔωvA |Δk∥ |kθΔx

∂

∂x
uy

Stochastic 

broadening

Natural 

linewidth

Alfvénic 

Dispersion
Shear flow rate

FIG. 7. Timescale ordering. We are interested in a regime where stochastic field effect becomes notice-

able, which requires ∆ω < Dk2
⊥. The comparison between Alfvénic dispersion rate vA|∆k‖| and stochastic

broadening rate Dk2
⊥ gives a magnetic Kubo number Kumag ≃ 1.

A. Model Setup

In this cartesian coordinate, a current flows in the toroidal direction, producing a mean poloidal

field. In contrast to the tachocline, here the magnetic field is 3D, and stochasticity results from
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

the overlap of magnetic islands located at the resonant k ·B = 0 surfaces. The stochasticity is

attributed to the external RMP field, and typically occurs in a layer around the separatrix. The

distance between neighboring magnetic field trajectories diverges exponentially, as for a positive

Lyapunov exponent. Stochastic fields due to RMPs resemble Zel’dovich ‘cells’39 (Fig. 2), lying in

the x−y plane with a mean toroidal field (on the z-axis), threading through perpendicularly. Notice

that we assume the stochastic field is static. Of course, once overlap occurs, the coherent character

of the perturbations is lost, due to finite Kolmogorov-Sinai entropy (i.e. there exists a positive

Lyapunov exponent for the field). In this case, the magnetic Kubo number is modest Kumag . 1.

We start with 4 field equations—

1. Vorticity evolution

∂

∂ t
ζz +uy

∂

∂y
ζz +uz

∂

∂ z
ζz =

1

ρ
B0

∂

∂ z
Jz +

1

ρ
Bx,st

∂

∂x
Jz +

2κ

ρ

∂

∂y
p, (13)

where ζz is the vorticity, uy is E ×B shear flow, uz is intrinsic rotation, and κ is curvature. Notice

that we only consider the vorticity in z-direction so hereafter we define ζz ≡ ζ for simplicity.

2. Induction evolution

∂

∂ t
Az +uy

∂

∂y
Az =−Bx,st

B0

∂

∂x
φ − ∂

∂ z
φ +η∇2Az, (14)

where φ is electric potential field (ζ ≡ ∇⊥×u⊥ = 1
B0

∇2
⊥φ ).

3. Pressure evolution

∂

∂ t
p+(u ·∇)p =−γ p(∇ ·u), (15)

where γ is the adiabatic index.

4. Parallel acceleration

∂

∂ t
uz +(u ·∇)uz =− 1

ρ

∂

∂ z
p, (16)

where p is pressure. Here we are interested in the simplest possible problem—interaction between

a wave spectrum and a zonal flow. We later retain the minimal diamagnetic effect in the modified

Kim-Diamond model (see Sec.III B). This is presented in pressure gradient evolution. A detailed

study of diamagnetic effects will be added in future work (PPCF in preparation).
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

B. Calculation and Results

We decompose the magnetic fields, magnetic potential, velocities, and electrical potential




magnetic fields B = (Bx,st , By,st , B0)

potential fields A = (−1
2B0y, 1

2B0x, Ã(x,y))

velocities u = (ũx, 〈uy〉+ ũy, 〈uz〉+ ũz)

electric potential φ = 〈φ〉+ φ̃ ,

(17)

where 〈uy〉 is the mean poloidal flow, 〈uz〉 is the intrinsic rotation. The tilde ˜ denotes the per-

turbations of the mean. Hence, from Eq. (13) and (14), we obtain (assume magnetic diffusivity

ignorable, i.e. η → 0)

(−iω + 〈uy〉iky)φ̃kω + vA(ikz + ikx
Bx,st

B0
+ iky

By,st

B0
)vAÃkω

=
ũx

k2

∂

∂x
∇2〈φ〉+ 2κ

ρ
iky(

B0

−k2
)p̃

(18)

(−iω + 〈uy〉iky)vAÃkω + vA(ikz + ikx
Bx,st

B0
+ iky

By,st

B0
)φ̃kω

=−ηk2vAÃkω ≃ 0,

(19)

We define an Elsässer-like variable f±,kω ≡ φ̃kω ±vAÃkω , and combine Eq. (18) and (19) to obtain

(−iω + 〈uy〉iky) f±,kω ± vA(ikz + ikx
Bx,st

B0
+ iky

By,st

B0
) f±,kω

=
ũx

k2

∂

∂x
∇2〈φ〉+ 2κ

ρ
iky(

B0

−k2
)p̃ ≡ S f ,

(20)

where S f is the source function for f±,kω . Eq. 20 is the evolution equation for the Elsässer response

to a vorticity perturbation. Note that this response is defined by

1. Propagation along the total magnetic field, i.e. ikz + ikxBx,st/B0 + ikyBy,st/B0. Note this

includes propagation along the wandering magnetic field component.

2. Advection by mean flow iky〈uy〉.
3. Finite frequency iω .

From Eq.(20) we have f±,kω = i
(ω−〈uy〉ky∓vAkz)+∓vAk jB j/B0

×S f . The propagator can be written

in integral form

i

(ω −〈uy〉ky ∓ vAkz)+∓vAk jB j/B0
=
∫

dτei(ω−〈uy〉ky∓vAkz)τ〈e∓ivA

∫
dτ ′(

Bi,st
B0

ki)〉 (21)
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

, where 〈〉 refers to an average over statistical distribution of Bst . Hence, the Elsässer response

for f±,kω is be obtained by integrating along trajectories of total magnetic field lines (including

perturbations), i.e.

f±,kω =
∫

dτei(ω−〈uy〉ky∓vAkz)τ〈e∓ivA

∫
dτ ′(kx

Bx,st
B0

+ky
By,st
B0

)〉×S f . (22)

Integration along the perturbed field trajectory can be implemented using the stochastic average

over an scale (1/kst), where the bracket denotes an average over random radial excursions δxi =

vA

∫
dτ ′Bi,st/B0 such that

〈 〉 ≡
∫∫

i=x,y

dδxi√
πDiτ

e
−δx2

i
Diτ , (23)

Here, 〈e∓ivA

∫
dτ ′(kx

Bx,st
B0

+ky
By,st
B0

)〉 is set by the diffusivity tensor D = v2
A

∫
dτ”bi,st(τ”)b j,st(τ”), where i

and j represent x or y component. So we obtain

〈e∓ivA

∫
dτ ′(kx

Bx,st
B0

+ky
By,st
B0

)〉 ≃ 1− kiDi jk jτ ≃ e−k·D·kτ , (24)

where τ is the decorrelation time due to field stochasticity, such that τ ≃ ∫
dτ” ≃ lac/vA. We

assume no correlation between x- and y-direction of stochastic field (i.e. and 〈Bx,stBy,st〉= 0) and

〈Bi,st〉= 0. Hence, only diagonal terms of D survive (i.e. Di j = δi jvAlacb2
i ).

A number of important comments are in order here. First, D ≃ vADM, indicating that vorticity

response decorrelation occurs by Alfvénic pulse diffusion along wandering magnetic fields. This

is a consequence of the fact that PV (or polarization charge) perturbations (which determine the PV

or polarization charge flux—i.e. the Reynolds force) are determined via ∇ ·J = 0, the characteristic

signal speed for which is vA. Second, vADM is actually independent of B0 and is a set only by b2.

To see this, observe that b2 ≡ 〈B2
st〉/B2

0, vA = B0/
√

µ0ρ , and lac = Rq. Thus, D ∝ b2 reflects

the physics that decorrelation occurs due to pulses traveling along stochastic fields, only. In this

respect, the result here closely resembles the 2D case (i.e. β -plane MHD) discussed in Section

II. Third, vA for the mean field enters only via the linear vorticity response—which is used to

compute the vorticity flux—and thus the Reynolds force.

Now we have the averaged Elsässer response

f±,kω =
i

(ω −〈uy〉ky ∓ vAkz)+ iDk2
×S f , (25)

where Dk2 = Dxk2
x +Dyk2

y . And φ̃kω = ( f+,kω + f−,kω)/2 yields

ζ̃ =
1

B0
∇2φ̃ = ∑

kω

Re
[
(
−k2

B0
)
1

2
( f+,kω + f−,kω)

]
(26)
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

We define M f ≡ ( f+,kω + f−,kω)/2S f is a propagator

M f =
1

2

(
i

(ωsh − vAkz)+ iDk2
+

i

(ωsh + vAkz)+ iDk2

)
, (27)

where ωsh ≡ ω −〈uy〉ky is the shear flow Doppler shifted frequency. From Eq. (20), we have the

fluctuating vorticity

ζ̃ =
1

B0
∇2φ̃ = ∑

kω

Re[M f

−k2

B0
S f ]. (28)

Hence, the response of vorticity (ζ̃ ) to the vorticity gradient and curvature term in the presence of

stochastic fields is:

ζ̃ = ∑
kω

Re
[
M f (−

ũx,kω

B0
)

∂

∂x
∇2〈φ〉

]
+Re

[
ikyM f

2κ

ρ
p̃kω

]
. (29)

The first term determines the diffusive flux of vorticity. The second sets the residual stress, that

depends on the pressure perturbation and the curvature of the mean magnetic field. Note that

the residual stress is defined as a component of poloidal stress tensor that is neither proportional

to flow nor flow shear.54–56 Here, it depends on p̃kω and hence gives non-zero vorticity flux.

We calculate the residual stress term in Eq. (29) by using another set of Elsässer-like variables

g±,kω ≡ p̃kω

ρC2
s
± ũz,kω

Cs
, derived from perturbation equations of Eq. (15) and (16):

(−iω + 〈uy〉iky)
p̃

ρC2
s

+Cs(ikz + ik j

B j,st

B0
)

ũz

Cs
=− ũx

ρC2
s

∂

∂x
〈p〉 ≡ Sg, (30)

(−iω + 〈uy〉iky)
ũz

Cs
+Cs(ikz + ik j

B j,st

B0
)

p̃

ρC2
s

= 0. (31)

Noted that Sg ≡− ũx

ρC2
s

∂
∂x
〈p〉 is the source function for g±,kω such that

g±,kω =
i

(ωsh ∓Cskz)+ iDsk2
×Sg, (32)

where Ds ≡CsDM (for pressure decorrelation rate τc = lac/Cs) is the diffusivity due to an acoustic

signal propagating along stochastic fields. To obtain p̃kω = ρC2
s (g+,kω + g+,kω)/2, we define a

propagator Mg ≡ (g+,kω +g−,kω)/2Sg

Mg =
1

2

(
i

(ωsh −Cskz)+ iDsk2
+

i

(ωsh +Cskz)+ iDsk2

)
≃ i

ωsh

. (33)

Notice that p̃ is the pressure perturbation set by the acoustic coupling. Hence, it has slower speed

Cs ≪ vA (or β ≪ 1) as compared to Alfénic coupling. An ensemble average of total vorticity flux
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

yields

〈ũxζ̃ 〉=−∑
kω

|ũx,kω |2Re(M f )
∂

∂x
〈ζ 〉

−∑
kω

[
|ũx,kω |2Re(ikyM f Mg)

2κ

ρ

∂

∂x
〈p〉
]

︸ ︷︷ ︸
Component of Residual Stress

.
(34)

Notice that Dsk
2 ≃ CsDMk2. Hence, the broadening effect of random acoustic wave propagation

itself is negligible as compared to the natural linewidth, since the plasma β ≪ 1. Now, we have

〈ũxζ̃ 〉=−DPV
∂

∂x
〈ζ 〉+Fresκ

∂

∂x
〈p〉, (35)

where DPV ≡ ∑
kω

|ũx,kω |2Re(M f ) is PV diffusivity, and Fres ≡ ∑
kω

2ky

ωshρ |ũx,kω |2Re(M f )≃ ∑
kω

2ky

ωshρ DPV,kω

is the residual stress. Notice that there is no parity issue lurking in the term 2ky/ωshρ since

2ky/ωshρ ∝ 2✓✓ky/✓✓kyρ ∝ 2/ρ (i.e. even) for ky〈uy〉 ≪ ω ≃ ω∗. By using the Taylor Identity8, we

rewrite the PV flux as a Reynolds force 〈ũxζ̃ 〉= ∂
∂x
〈ũxũy〉. In the limit of the DPV and Fres slowly

varying as compared with vorticity 〈ζ 〉 and pressure 〈p〉, respectively, the poloidal Reynolds force

is

〈ũxũy〉=−DPV
∂

∂x
〈uy〉+Fresκ〈p〉, (36)

where the effective viscosity is

DPV = ∑
kω

|ũx,kω |2
vAb2lack2

ω2
sh +(vAb2lack2)2

. (37)

This indicates that both the PV diffusivity and residual stress (and thus the Reynolds stress) are

suppressed as the stochastic field intensity b2 increases, so that vAb2lack2 exceeds ωsh. This result

is consistent with our expectations based upon scaling and with the Reynolds stress burst suppres-

sion in presence of RMPs, observed in Kriete et al. 49 . This model is built on gyro-Bohm scaling

and hence the stochastic dephasing effect is insensitive to the details of the turbulence mode (e.g.

ITG, TEM,. . . etc.), within that broad class.

We propose that physical insight into the physics of Reynolds stress decoherence can be ob-

tained by considering the effect of a stochastic magnetic field on the ‘shear-eddy tilting feedback

loop’. Recall that the Reynolds stress is given by

〈ũxũy〉=−∑
k

|φ̃k|2
B2

0

〈kykx〉. (38)
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

Thus, a non-zero stress requires 〈kykx〉 6= 0, i.e. a spectrally averaged wave vector component

correlation. This in turn requires a spectral asymmetry. In the presence of a seed shear, kx tends

to align with ky, producing correlation and hence 〈〉 6= 0 (Fig. 8). To see this, observe that Snell’s

law states
dkx

dt
=−∂ (ω0,k + kyuy)

∂x
≃ 0− ∂ (kyuy)

∂x
. (39)

So, to set a non-zero phase correlation 〈kykx〉 6= 0, we take kx ≃ k
(0)
x − ky

∂ 〈uy〉
∂x

τc, where τc is a ray

scattering time that limits ray trajectory time integration. Ignoring k
(0)
x , we then find

〈ũxũy〉 ≃ 0+∑
k

|φ̃k|2
B2

0

k2
y

∂ 〈uy〉
∂x

τc. (40)

Note that the existence of correlation is unambiguous, and the Reynolds stress is manifestly non-

zero. Here, eddy tilting (i.e. kx evolution) has aligned wave vector components. Once 〈uxuy〉 6= 0,

flow evolution occurs due to momentum transport. Then, flow shear amplification further am-

plifies the Reynolds stress, etc. This process constitutes the ‘shear-eddy tilting feedback loop’,

and underpins modulational instability amplification of zonal shears. Central to shear-eddy tilt-

ing feedback is the proportionality of stress cross-phase to shear. However, in the presence of

stochastic fields, the correlation 〈kxky〉 is altered. To see this, consider drift-Alfén turbulence, for

which

ω2 −ω∗ω − k2
‖v2

A = 0. (41)

Let ω0 be the frequency of the drift wave roots. Now, let k‖ = k
(0)
‖ + k⊥ · (Bst,⊥/B0) due to

stochastic field wandering, and δω the corresponding ensemble averaged correction to ω0—i.e.

ω = ω0 + δω . After taking an ensemble average of random fields from Eq. (41), we obtain

〈δω〉 ≃ v2
A(2k‖

〈Bst,⊥〉
B0

· k⊥+ 〈(Bst,⊥
B0

· k⊥)
2)〉/ω0, where 〈Bi,st〉 = 0 so the first term vanishes. The

ensemble averaged frequency shift is then

〈δω〉 ≃ 1

2

v2
A

ω0
b2k2

⊥. (42)

Here, 〈ω0〉 ≃ ω∗, corresponding to the drift wave. Note that δω ∝ 〈B2
st〉 is independent of B0,

except for ω0. Thus, in the presence of shear flow, the Reynolds stress becomes

〈ũxũy〉 ≃ ∑
k

|φ̃k|2
B2

0

(k2
y

∂ 〈uy〉
∂x

τc +
1

2
ky

v2
Ak2

⊥
ω0

∂b2

∂x
τc). (43)

This indicates that for
∂ 〈uy〉

∂x
<

v2
Ak2

⊥
ω0

∂b2

∂x
, the shear-eddy tilting feedback loop is broken, since the

〈kxky〉 correlation is no longer set by flow shear. In practice, this requires b2 & 10−7, as deduced

above.
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

time

eddy

shear flow

FIG. 8. Shear-eddy tilting feedback loop. The E×B shear generates the 〈kxky〉 correlation and hence support

the non-zero Reynolds stress. The Reynold stress, in turn, modifies the shear via momentum transport.

Hence, the shear flow reinforce the self-tilting.

We modify a well-known predator-prey model of the L-H transition, the Kim-Diamond model53

to include the effects of stochastic fields. The Kim-Diamond model is a zero-dimensional reduced

model, which evolves fluctuation energy, Reynolds stress-driven flow shear, and the mean pres-

sure gradient. As heat flux is increased, a transition from L-mode to Intermediate phase (I-phase)

(dotted line in Fig. 9) and to H-mode (dashed line in Fig. 9) occurs. Here, we include the princi-

pal stochastic field effect—Reynolds stress decoherence. This is quantified by the dimensionless

parameter α ≡ qb2/
√

βρ2
∗ε derived in Sec. III. The aim is to explore the changes in L-H transi-

tion evolution (i.e. power threshold increment) due to magnetic stochasticity. This dimensionless

parameter α quantifies the strength of stochastic dephasing relative to turbulent decorrelation. As

shown in the previous paragraph, the E ×B shear feedback loop that forms the zonal flow is bro-

ken by the stochastic fields. Hence, the modification enters the shear decorrelation term in the

turbulence (ξ ) evolution, the corresponding term in the zonal flow energy (v2
ZF ) evolution, and the

pressure gradient (N ) evolution. The third term is smaller by
√

β (i.e. α → α
√

β ), due to the

fact that acoustic wave scattering is what causes decoherence in the pressure evolution. A factor

1/(1+ cα) captures the modification due to the effect of stochastic suppression effect, where c is

a constant. The modified Kim-Diamond model becomes

∂ξ
∂ t

= ξN −a1ξ 2 −a2(
∂ 〈uy〉

∂x
)2ξ − a3v2

ZFξ · 1

(1+a4α)︸ ︷︷ ︸
Reynolds stress decoherence

(44)

∂v2
ZF

∂ t
= a3v2

ZFξ · 1

(1+a4α)︸ ︷︷ ︸
Reynolds stress decoherence

−b1v2
ZF (45)

∂N
∂ t

=− c1ξN · 1

(1+a4α
√

β )︸ ︷︷ ︸
turbulent diffusion of pressure

−c2N +Q, (46)
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

where ai, bi, and ci (a1 = 0.2, a2 = 0.7, a3 = 0.7, a4 = 1, b1 = 1.5, c1 = 1, c2 = 0.5,
√

β=0.05)

are model-dependent coefficients, and Q is the input power.

We fix all parameters but the α , and find the L-I and I-H power thresholds (hereafter defined

as Qth,L−I and Qth,I−H respectively) increase in ξ , v2
ZF , and N , when α increases (see Fig. 9).

Specifically, stochastic fields raise Qth,L−I and Qth,I−H , linearly in proportion to α (Fig. 10). This

is a likely candidate to explain the L-H power threshold increment in DIII-D29. Notice that in this

wave-zonal flow interaction problem, a possible effect of a mean shear would be to decorrelate

the responses of PV, and hence to reduce velocity perturbations. The mean shear flow would thus

define a time scale kθ ∆〈vE×B〉′ (∆ is the perturbation radial scale). This would need to be compared

to ∆ωk ≃ ω∗ = kθ ρsCs/Ln and k2
⊥vADM. If 〈vE×B〉′ is weak, mean shear is irrelevant, and the story

here holds. If 〈vE×B〉′ > ∆ωk, stochastic field scattering should be compared to 〈vE×B〉′, not ∆ωk.

But if the mean shear is strong, the discharge likely already is in the H-mode, and the point of this

paper is moot.

We are also interested in stochastic field effects on the toroidal Reynolds stress 〈ũxũz〉, which

determines intrinsic toroidal rotation. Consider toroidal Eq. (16) with the stochastic fields effect

∂
∂ z

= ∂
∂ z

(0)
+b ·∇⊥. We have

∂

∂ t
〈uz〉+

∂

∂x
〈ũxũz〉=− 1

ρ

∂

∂x
〈bp̃〉, (47)

The second term on the LHS is the toroidal Reynold stress 〈ũrũz〉. The RHS contains the 〈bp̃〉
the kinetic stress. Both of these terms can be dephased by stochastic fields, but the dephasing of

the former is of primary importance. In the context of intrinsic rotation, we follow the method

for the derivation of decoherence of the poloidal residual stress—i.e. using Elässer-like variables

g±,kω ≡ p̃kω

ρC2
s
± ũz,kω

Cs
from Eq. (15) and (16). The only difference from the previous residual stress

calculation is the presence term of ∂
∂x
〈uz〉, and hence the source of toroidal stress becomes Sg,± ≡

− ũx,kω

ρC2
s

∂
∂x
〈p〉 ∓ ũx

Cs

∂
∂x
〈uz〉. We find ũz,kω = CsRe(g+,kω − g−,kω)/2 and define a ‘response’ Rg ≡

(g+,kω −g−,kω)/2 such that

Rg =
i

2

( Sg,+

(ωsh −Cskz)+ iDsk2
− Sg,−

(ωsh +Cskz)+ iDsk2

)
. (48)

Noting that when ∂
∂x
〈uz〉= 0, we’ll have Sg,+ = Sg,− = Sg and hence the propagator Rg reduces to
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FIG. 9. Modified Kim-Diamond model. (a) Turbulent intensity ξ . The wiggles are the limit cycle os-

cillations prior to the transition.57,58 (b) Zonal flow energy v2
ZF . (c) Pressure gradient N evolution with

increasing input power Q. Dotted lines indicate L-I transitions (at power Qth,L−I), dashed lines indi-

cate I-H transitions (at power Qth,I−H). As we increase the mean-square stochastic field (b2), i.e. from

b2/ρ2
∗
√

β = 0 (blue) to 0.6 (green), L-I and I-H transitions power threshold increase, i.e. from L-I power

threshold Qth,L−I = 0.5 to 0.6 and from I-H power threshold Qth,I−H = 1.20 to 1.41.

MgSg (compare with Eq.(33)). Thus, the toroidal Reynold stress is

〈ũxũz〉= ∑
kω

|ũx,kω |2
[ −2Dsk

2

ω2
sh +(2Dsk2)2

∂ 〈uz〉
∂x

+
−2Dsk

2

ω2
sh +(2Dsk2)2

kz

ωshρ

∂ 〈p〉
∂x

]
.

(49)
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FIG. 10. Power threshold increments (Qth) in modified Kim-Diamond model. (a) L-I transition power

threshold increment. (b) I-H transition power threshold increment. Mean-square stochastic fields (b2) shift

L-H and I-H transition thresholds to higher power, in proportional to b2/ρ2
∗
√

β .

The first term on the RHS contains the turbulent viscosity (νturb), which we define as

νturb ≡ ∑
kω

|ũx,kω |2
2Dsk

2

ω2
sh +(2Dsk2)2

= ∑
kω

|ũx,kω |2
2Csb

2lack2

ω2
sh +(2Csb2lack2)2

.

(50)

This turbulent viscosity has a form similar to DPV in Eq. (37). However, decorrelation of νturb is

set by Cs while that of DPV is set by vA. Thus, decoherence effects here are weaker. The second

term in Eq. (49) contains the toroidal residual stress (Fz,res)

Fz,res ≡ ∑
kω

(
−kz

ωshρ
)|ũx,kω |2

(2Dsk
2)

ω2
sh +(2Dsk2)2

∼ ∑
kω

−kz

ωshρ
νturb,kω . (51)
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Potential Vorticity Transport in Weakly and Strongly Magnetized Plasmas

Notice that non-zero value of Fz,res requires symmetry breaking (i.e. 〈kzky〉 6= 0) since kz

ωshρ ∝
kz

ky
.

Thus, a symmetry breaking condition—non-zero 〈kzky〉—must be met for finite residual toroidal

residual stress (Fz,res). Here, 〈kzky〉 must now be calculated in the presence of the stochastic

field. The details of this calculation involve determining the interplay of stochastic field effects

with spectral shifts (i.e. symmetry breaking by E ×B shear) and inhomogeneities (i.e. spectral

symmetry breaking by intensity gradient). This will involve competition between the radial scale

length of stochastic fields and the scales characteristic of the spectral shift (induced by E×B shear)

and the spectral intensity gradient. This detailed technical study is left for a future publication. We

rewrite the toroidal stress as

〈ũxũz〉=−νturb

∂

∂x
〈uz〉+Fz,res

∂

∂x
〈p〉, (52)

which has similar form to that of poloidal Reynolds stress in Eq. (36). This shows that stochastic

fields reduce the toroidal stress and hence slow down the intrinsic rotation. However, from Eq.

(50) and (51), the stochastic suppression effect on toroidal stress and residual stress depends on

CsDM (not vADM), and so is weaker than for zonal flows.

IV. DISCUSSION

In general terms, we see that 42 years after the influential paper by Rechester and Rosenbluth 38 ,

the physics of plasma dynamics in a stochastic magnetic field remains theoretically challenging

and vital to both astrophysical and magnetic fusion energy (MFE) plasma physics. Transport in

a state of coexisting turbulence and stochastic magnetic field is a topic of intense interest. In

this paper, we discussed aspects of momentum transport and zonal flow generation in two systems

with low effective Rossby number, where dynamics evolve in the presence of a stochastic magnetic

field.

The first system is the solar tachocline— with weak mean magnetization, strong magnetic per-

turbation, and β -plane MHD dynamics. Here, a tangled magnetic network generated by fluid

stretching at large Rm defines an effective resisto-elastic medium in which PV transport occurs.

We show that coupling to bulk elastic waves, with frequency ω2 ≃ B2
stk

2/µ0ρ , results in deco-

herence of the PV flux and Reynolds force, thus limiting momentum transport. Moreover, this

effect sets in for seed field energies well below that required for Alfvénization. Physically, the

stress decoherence occurs via coupling of fluid energy to the elastic network of fields, where it
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is radiatively dissipated. One implication of this prediction of quenched momentum transport is

that tachocline burrowing cannot be balanced by momentum transport. This bolsters the case for

Gough and McIntyre’s suggestion48 that a fossil magnetic field in radiation zone is what ultimately

limits meridional cell burrowing.

The second system is the L-mode tokamak edge plasma, in the presence of a stochastic mag-

netic field induced by external RMP coils. Here, the system is 3D, and field lines wander due

to islands overlap. The magnetic Kubo number is modest. We showed that the ‘shear-eddy tilt-

ing feedback loop’ is broken by a critical b2 intensity, and that k2
⊥vADM characterizes the rate

of stress decoherence. Note that the Alfvén speed follows from charge balance, which deter-

mines Reynolds stress. A natural threshold condition for Reynolds stress decoherence emerges as

k2
⊥vADM/∆ω > 1. In turn, we show that this defines a dimensionless ratio α , which quantifies the

effect on zonal flow excitation, and thus power thresholds. α ≃ 1 occurs for b2 ≃ 10−7, consis-

tent with stochastic magnetic field intensities for which a significant increment in power threshold

occurs. Note that this scaling is somewhat pessimistic (i.e. ρ−2
∗ ).

This study has identified several topics for future work. These include developing a magnetic

stress—energy tensor evolution equation, for representing small-scale fields in real space. Fractal

network models of small-scale magnetic field are promising in the context of intermittency. A

better understanding of stochastic field effects on transport for Kumag ≥ 1 is necessary as a com-

plement to our Kumag ≤ 1 model-based understanding. For MFE plasmas, an 1D model for the

L-H transition evolution is required. This study will introduce a new length scale (M. Jiang & W.

Guo et al. in press), which quantifies the radial extent of the stochastic region. Finally, the bursty

character49 of pre-transition Reynolds work, suggests that a statistical approach to the transition is

required. The challenge here is to identify the physics of the noise and flow bursts, and how the

presence of stochasticity quenches them. The stochasticity-induced change in ‘shear-eddy tilting

feedback loop’ discussed herein is a likely candidate for the quenching of the noise and flow burst.
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