
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Transforming Pseudorandomness and Non-malleability with Minimal Overheads

Permalink
https://escholarship.org/uc/item/3hc568t1

Author
Soni, Pratik Pramod

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3hc568t1
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Transforming Pseudorandomness and

Non-malleability with Minimal Overheads

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Pratik Pramod Soni

Committee in charge:

Professor Stefano Tessaro, Co-Chair
Professor Huijia (Rachel) Lin, Co-Chair
Professor Subhash Suri

September 2020



The Dissertation of Pratik Pramod Soni is approved.

Professor Subhash Suri

Professor Huijia (Rachel) Lin, Committee Co-Chair

Professor Stefano Tessaro, Committee Co-Chair

September 2020



Transforming Pseudorandomness and Non-malleability with Minimal Overheads

Copyright c© 2020

by

Pratik Pramod Soni

iii



To Mumma and Papa

iv



Acknowledgements

First and foremost, I would like to express my sincere gratitude towards my wonderful

advisors Stefano Tessaro and Rachel Lin without whom this dissertation and in large

part my development as a researcher would be far from complete. In particular, I am

deeply grateful to Stefano for teaching me the rigor of cryptographic research and helping

me kick-start my research from day one, and to Rachel for her infinite patience during

the early days of our collaboration. You both have been a constant source of support,

encouragement, feedback and inspiration, and I will be proud to be even a tenth of an

advisor as you both have been to me.

I would like to extend my gratitude to Subhash Suri for agreeing to be on my dis-

sertation committee. Moreover, I am very grateful to Elette Boyle and Alon Rosen for

hosting me at IDC Herzliya over the summer of 2019, and also to Ron Rothblum. During

my time in Israel I was able to expand my research to different areas of cryptography

which was, largely, made possible by your generosity with time and ideas. I truly cherish

my time in Israel and hope to be back again soon.

I am privileged to find an amazing labmate, roommate and more importantly a trust-

worthy friend for life in Ben Terner. From sharing a lab in the early years of our PhD

at UCSB to a home when we moved to UW, I have grown as a researcher and as a

person interacting with you. Multiple times when I broke down you were always there to

listen and provide brotherly advice. From throwing Frisbee on Fridays or baking pizzas

over weekends, I can truly say my grad school journey has been better because of your

constant presence and encouragement.

I would like to acknowledge my lab mates Binyi Chen who constantly helped me nav-

igate through initial hurdles in research; Priyanka Bose and Aishwarya Thiruvengadam

for countless discussions over coffee and walks along the Pacific; Ashrujit Ghoshal, Chris-

v



tian Matt, Ji Luo, Xihu Zhang, Joseph Jaegar, Wei Dai, and Tianren Liu for nuturing a

supportive environment over the years allowing me to learn and be constantly inspired.

Thanks to Anna Kornfeld Simpson for helping us find our way at the Allen School at UW.

Sincere thanks to Alex Block for being an amazing collaborator since our overlapping

visits to IDC Herzliya in Summer 2019. I have found our discussions on Zero-knowledge,

Polynomial Commitments and Pokemon Go very insightful. A big thanks to all the

staff at the Computer Science departments of both UCSB and UW including Karen Van

Gool, Elise Dorough, Nadica Kelly, Genevieve Singer, Maya Wang and many others who

tirelessly work behind the scenes to make lives of us grad students much easier.

I had the pleasure of interacting with a number of talented and more importantly

warm people during my visit to Israel and conferences including Ran Cohen, Sophia

Koepke, Jessica Sorrell, Aarushi Goyal, Arka Rai Chaudhari, Mukul Kulkarni, Pratik

Sarkar, Shruti Sekar, Romain Guy, Divya Ravi and Yilei Chen. I would like to extend

my thanks to Justin Holmgren and Rafael Pass for being wonderful co-authors.

Every journey has its ups and downs, my PhD journey was no different but I was

fortunate to have the constant presence of wonderful people around me who made the

highs more meaningful and lows easier to move past: to Neeraj, Aditya and Nhan for

opening their home to me; to Anchal for being my amazing dance partner; to Anirudha

and Ekta for many evenings playing Exploding Kittens and Codenames; to Juili and

Chinmay for an amazing new year’s eve among other things; to Vinu for countless con-

versations over frozen yoghurt and to Rucha for just being there. To Nihit, Ashima, Raj,

Akhil and Surabhi for wonderful memories, and to my mentors Siddharth and Milind for

their constant guidance and advice

Finally, to my special one Anusha, my extended family, my little brother Chintan,

and my parents Bhavana and Pramod for their perennial support, love and belief in me,

you complete me!

vi



Curriculum Vitæ
Pratik Pramod Soni

Education

2020 Ph.D. in Computer Science, University of California, Santa Barbara.

2015 M.Sc.(Hons.) in Mathematics, Birla Institute of Technology and
Science, Goa, India.

2015 B.E.(Hons.) in Computer Science, Birla Institute of Technology
and Science, Goa, India.

Publications1

1. Alexandar Block, Justin Holmgren, Alon Rosen, Ron Rothblum and Pratik Soni.
Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time
and Space Overheads, In Theory of Cryptography Conference - TCC 2020, to
appear.

2. Pratik Soni and Stefano Tessaro. On the Query Complexity of Constructing
PRFs from Non-adaptive PRFs, In Security and Cryptography for Networks -
SCN 2020, Sep 2020.

3. Pratik Soni and Stefano Tessaro. Naor-Reingold Goes Public: The Complex-
ity of Known-key Security. In Advances in Cryptology - EUROCRYPT 2018,
May 2018.

4. Huijia Lin, Rafael Pass, and Pratik Soni. Two-Round and Non-Interactive
Concurrent Non-Malleable Commitments from Time-Lock Puzzles. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
Oct 2017.

5. Pratik Soni and Stefano Tessaro. Public-seed Pseudorandom Permutations.
In Advances in Cryptology - EUROCRYPT 2017, May 2017.

6. Pratik Soni, Enrico Budianto, and Prateek Saxena. The SICILIAN Defense:
Signature-based Whitelisting of Web JavaScript. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS), Oct
2015.

Research Employment

- Research Assistant, Department of Computer Science, UC Santa Barbara (Jan’16
- Jun’20)

- Visiting Research Student, Paul G. Allen School of Computer Science and En-
gineering, University of Washington, Seattle (Jan’19 - Present)

1Authors arranged in alphabetical order (except 6).

vii



- Gradute Fellow, FACT Center, IDC Herzliya, Israel (Jun’19 - Sep’19)

- Junior Research Assistant, School of Computing, National University of Singa-
pore (NUS), Singapore (Jun’14 - May’15)

- Research Assistant, Center for Quantum Technologies, NUS, Singapore (May’13
- Jul’13)

- Research Intern, Homi Bhabha Center for Science and Education, Tata Institute
for Fundamental Research, Mumbai, India (May’12 - Jul’12)

Awards and Achievements

- Paper 4 invited to the SIAM Journal of Computing, special issue for FOCS’17.

- FOCS Student Travel Award 2017 (600 USD).

- Merit Scholarship (equivalent to Dean’s list) from BITS Pilani, Goa for academic
excellence (2,40,000 INR).

- Selected for Microsoft India Summer Internship, 2015 (7 students selected out of
250 applicants) – (declined).

- Selected for NUS-India Research Initiative Summer Internship, 2013.

Academic Service

- External Conference Reviewer

– 2020: EUROCRYPT, ITC, CRYPTO, TCC

– 2019: EUROCRYPT, CRYPTO

– 2018: CRYPTO, TCC

– 2017: CRYPTO, ASIACRYPT, TCC

– 2016: SCN, TCC (2016-B)

- Organizational Czar, Crypto reading group at University of Washington, Seattle
(Jan’19-May’19).

- Elected Member, UC Santa Barbara CS Senate (2016-17).

- Co-organizer, Theory-meetups and Crypto reading group at UC Santa Barbara.

- Student In-Charge, International Programmes and Collaboration Division, BITS
Pilani, Goa.

Teaching Experience

- Teaching Assistant, UC Santa Barbara.

– Automata and Formal Languages (Fall’15).

- Teaching Assistant, BITS Pilani, Goa.

viii



– Graphs and Networks (Spring’14), Engineering Mathematics (Fall’13), Com-
puter Programming (Spring’13 and Spring’12).

Outreach Activities

- Member, Abhigyaan, A literacy drive which aims at ‘Education for all’ at Goa,
India.

- Guest Speaker at Outreach Program conducted by the cryptography group at UW.

ix



Abstract

Transforming Pseudorandomness and Non-malleability with Minimal Overheads

by

Pratik Pramod Soni

In this thesis, we investigate the cost of transforming “weaker” or “less-structured”

variants of a cryptographic primitive into a “stronger” or “more structured” variant of

the same primitive. We conduct the study via the lens of two fundamental security

properties:

Pseudrandomness is critical to almost all of cryptography, and pseudorandom func-

tions (PRFs) and pseudorandom permutations (PRPs) are powerful primitives enabling

simple solutions for fundamental problems in secret-key cryptography. Their existence

from general assumptions (e.g., one-way functions) is well-studied. But here we investi-

gate new ways of building them with the goal of efficiency and achieving stronger security.

First, we consider building PRFs from non-adaptive PRFs (naPRFs), i.e., PRFs

which are secure only against distinguishers issuing all of their queries at once. Known

constructions either make ω(1) calls to an underlying naPRF or incur an undesirable

super-polynomial loss in security. We provide the first evidence for this state of affairs by

showing that a large class of one-call constructions cannot be proved to be a secure PRF

under a black-box reduction to the (polynomial-time) naPRF security of the underlying

function. Second, we revisit the question of transforming PRFs to PRPs which are used

to reason about the security of block-ciphers when the underlying key is kept secret.

However, in practice block-ciphers are also used in settings where the key is known to

the adversary. To address this disparity, we introduce the first, plausible extensions of

pseudorandomness to the known-key setting and provide secure constructions of PRPs

x



which make two calls to an underlying appropriate PRF. This matches the complexity of

PRF to PRP transformations in the secret-key setting. These results are based on joint

works with Stefano Tessaro (EUROCRYPT ’17, EUROCRYPT ’18 and SCN ’20).

Non-malleability captures security of cryptographic protocols against man-in-the-

middle (MIM) attacks and non-malleable commitments (NMC) are paragon examples

of non-malleable protocols. Resolving the round complexity of NMC, a fundamental

measure of cost, has remained a fascinating open question and barriers to achieving two-

round (and non-interactive) solutions from polynomial-time assumptions were proved in

2013. We provide the first constructions of two-round and non-interactive NMC under

sub-exponential time well-studied assumptions, crucially exploiting the synergy between

different axes of hardness to circumvent the above impossibility. At heart, our result

presents a round-preserving transformation (i.e., incurring no overhead in number of

rounds) from NMC on t-bit identities to Ω(2t)-bits where the length of identities is a

measure of a protocol’s “non-malleability”. Previous such amplifications incurred addi-

tive blow-up in the round-complexity. These results are based on joint work with Huijia

Lin and Rafael Pass (FOCS ’17 and SICOMP ’20).
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Chapter 1

Introduction

Edgar Allan Poe, a cryptography enthusiast, in his 1841 essay “A Few Words on Secret

Writing” remarked

... human ingenuity cannot concoct a cipher which human ingenuity cannot

resolve.

This view perfectly captures the state of cryptography during the 1840’s where design-

ing secure cryptosystems was a never-ending game between designers and attackers –

designers found new ways to encrypt data only for the attackers to find a flaw, which

designers patched until another flaw was uncovered and so on. However, the situation

in the year 2020 has evolved significantly in the favor of designers who in some specific

sense have found a way to outsmart the hackers. This success story is attributed to the

development of framework called provable security which defines the intended behaviour

of the cryptosystem a.k.a. correctness, the adversary class and what it means to for an

adversary “break” the cryptosystem, and most importantly advocates that designs of

cryptosystems now accompany proofs of security.
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Introduction Chapter 1

Cryptographic Reductions. Most proofs of security are in fact what complexity

theorists refer to as reductions: Assuming that a primitive P exists one demonstrates

the existence of another primitive P ′ by exhibiting a construction that implements P ′

relying on any implementation of P , possibly only in a black-box manner. A central

thread of research in theoretical cryptography, therefore, has been to understand the

minimum assumption on P that is sufficient to construct a large class of cryptographic

primitives. Over the years our understanding has drastically improved. For example, a

number of fascinating cryptographic primitives like pseudorandom functions, signature

schemes, private-key encryption, cryptographic commitments, zero-knowledge proofs for

NP and many more can be based on the mild assumption of the existence of one-way

functions.

It would not be a stretch to say that this study on minimizing assumptions has

put much of theoretical and practical cryptography on strong foundations. Despite this

success, this line of research suffers from limitations. As the focus is on minimizing

assumptions, the resulting constructions turn out to be highly inefficient and hence serve

merely as evidence of feasibility. Furthermore, there are known barriers to achieving

even moderately efficient constructions of pseudorandom functions, commitments, zero-

knowledge proofs etc. from one-way functions. In contrast, the basic-building blocks

in practice are block-ciphers and hash-functions which after years of cryptanalysis are

believed to offer security stronger than one-way functions.

Finally, as our understanding of a certain cryptographic primitive develops, many

variants of the primitive get introduced, e.g., ones secure against weaker/stronger adver-

saries or exhibiting less/more structure. Understanding the minimal assumptions suffi-

cient for stronger variants immediately resolve the feasibility of weaker variants. However,

such results provides little insights into their relative strengths. An in-depth study fo-

cussing on transforming different variants of a primitive will provide a more modular

2



Introduction Chapter 1

framework to constructing cryptographic primitives.

Our goal: Transformations with minimal overheads In this thesis, we therefore

focus on studying reductions – we refer to them as transformations – where P is either

a weakly-secure variant of P ′ or variant with ”less-structure”. This is not to say that

the study of minimal assumptions must be abandoned but we believe the studying of

transformations, in fact, can lead to more efficient constructions even from minimal

assumptions.

More specifically, we are interested in understanding the minimal cost of such trans-

formations between variants of pseudorandom primitives and non-malleable primitives.

Transforming Pseudorandomness. Pseudorandomness is essential to almost all of

cryptography, and pseudorandom functions are a fundamental building block which pro-

vide direct solutions to secure private-key encryption and message authentication. We

here ask:

What is the minimum overhead in terms of number of calls required to

transform “weak” or “less-structured” pseudorandom primitives into

stronger ones?

We study the above question in two parts: (1) constructing pseudorandom functions

from pseudorandom functions secure against weaker (e.g., non-adaptive) adversaries, (2)

constructing the more structured pseudorandom permutations from pseudorandom func-

tions. We refer the read to Section 1.1 and Section 1.2 for more details.

Transforming Non-malleability. Non-malleability was introduced to capture secu-

rity of concurrently running cryptographic protocols against man-in-the-middle attacks.

3



Introduction Chapter 1

While non-malleability can be formalized for non-interactive primitives like encryption,

we here consider restrict our study to the case of interactive protocols. We ask:

What is the minimum overhead in terms of number of rounds required to

transform “weak” non-malleable protocols to stronger ones?

In this thesis, we study non-malleability for cryptographic commitments and refer the

read to Section 1.3 for more details.

1.1 Non-adaptive PRFs to PRFs

We study the problem of building a pseudorandom function (PRF) which resists adaptive

attackers from a non-adaptive PRF (naPRF), i.e., a PRF which is only secure against

adversaries choosing their inputs non-adaptively at once. This problem has attracted

substantial amounts of interest (see e.g. [1, 2, 3, 4, 5, 6, 7, 8]) – indeed, a naPRF may

initially be easier to devise than a full-fledged PRF.1 However, to date, the complexity

of the best possible transformation remains unknown,2 and natural approaches such as

sequential and parallel composition have been proved to fail. Motivated by this we ask

the following question in this thesis:

Question 1: Do there exist highly-efficient black-box naPRF-to-PRF

transformations?

In Chapter 2 we answer the above question in the negative: We rule out a large class

of one-call constructions with respect to hardness-preserving black-box security proofs.

Here, hardness preserving means that the transformation preserves security against PPT

1See [9] for a concrete example.
2Note that as naPRFs imply one-way functions and PRGs, and thus in turn also PRFs, such trans-

formations are always possible.

4



Introduction Chapter 1

adversaries. As we argue below, understanding one-call constructions is a challenging

first step towards understanding the overall problem. This in particular shows that

previous work by Berman and Haitner (BH) [7], giving a one-call construction relying on

complexity leveraging in the security proof, is best possible. Also, it is consistent with

the fact that all hardness-preserving transformations make ω(1) calls.

We also extend our result to a class of multi-call parallel constructions, and prove

that these, too, do not transform a naPRF into a PRF. This result can be seen as a gen-

eralization of Myers [1] black-box separation for the parallel composition. We elaborate

on this below, but first give some more context.

From non-adaptive to adaptive security. The problem of building PRFs from

naPRFs is well-understood in the information-theoretic case, i.e., attackers are only

bounded in query complexity (but not in their running time). Here, simple construc-

tions are sufficient (e.g., sequential and parallel composition). This was first proved by

Vaudenay [10], and also follows as the application of general composition theorems [2, 5].

However, negative results have shown that such simple approaches fail in the com-

putational regime, both with respect to black-box reductions [1], as well as without any

proof restriction, but assuming DDH holds [4]. Later, it was also shown [3] that public-

key assumptions are necessary for counter-examples. This already suggests that the

computational setting is harder, but note that these results only cover specific construc-

tions. Here, we aim for more general impossibility, and this presents several additional

challenges – in fact, already for one-call constructions, which are our main focus.

From naPRFs to PRFs: Prior works. The most efficient known transformations

can be cast in terms of the same two steps: (1) we use a naPRF H (say, in the following,

with n-bit seeds, inputs, and outputs) to build a PRF with a “small” domain, i.e., the

5



Introduction Chapter 1

strings of length ` = ω(log n); (2) the domain of the resulting PRF is extended without

extra calls by using (almost) universal hashing – this is often referred to as “Levin’s

trick”, and is also reminiscent of universal-hashing based MACs [11, 12].3

There are two ways to accomplish step (1):

- Cascading. A first, folkore approach (which is hardness-preserving) is via a variant

of the cascade construction [13]. For a fixed polynomial p = p(n), we first fix distinct

n-bit strings z1, . . . , zp. Now, let ` = d log p for some d = ω(1), and think of an

`-bit input x as a vector x = (x1, . . . , xd) ∈ [p]d. Then, the output with seed k is

yd, where

y0 = k , yi = H(yi−1, zxi) for all i = 1, . . . , d.

This is a secure PRF as long as H is a secure PRF on the domain {z1, . . . , zp},

and since p is a fixed polynomial, it is enough that H is a naPRF for p-query

distinguishers that query all of z1, . . . zp at once.

- The BH approach. The core idea of the BH construction can be cast as the fact

that every sufficiently secure naPRF secure against (t = O(2`))-time distinguish-

ers, where ` = ω(log n), is already an adaptively secure PRF for polynomial-time

distinguishers, as long as we only query a (fixed) subset of the domain of size 2`.

(This follows by a straightforward reduction which queries all of these points be-

forehand.) I.e., we can then obtain an adaptively secure PRF with `-bit domain as

F(k, x) = H(k, x‖0n−`). Note that it is necessary to fix a super-polynomial t a-priori,

since the construction depends on t and we want security for all polynomial-time

distinguishers.

3We stress that this approach inherently relies on an asymptotic view targeting PPT security, which
we take in this paper – if we are interested in concrete security, the best we can hope for is 2`/2 security,
and thus we may need even more calls to the underlying naPRF.

6
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1.1.1 Our result

This still leaves open the question whether the BH construction is secure only assum-

ing H to be secure against PPT adversaries. We show in Chapter 2 that

Theorem (Informal) There exists no (fully) black-box reduction to show PRF security

of F assuming H is a naPRF where F is of the form:

F((s, k), x) = y , where w = C(s, x) , z = H(k, w) , y = G(s, x, z) ,

where C is an arbitrary (seeded) pre-processing function from n bits to n bits.4

This class in fact includes all possible constructions which do not manipulate the

seed k of the underlying naPRF and in particular, includes the BH construction. As

our main result, we show an oracle with respect to which (1) naPRFs exist, but (2)

the above construction is insecure, provided C satisfies a mild combinatorial property

and the output length of G is lower bounded by a small constant. This implies the

impossibility of providing a fully-BB reduction of security for such a construction to the

(polynomial-time) security of H as a naPRF.

The combinatorial condition is that for some constant c = O(1), the function C

satisfies a notion we refer to as c-universal, which means that for any choice of c distinct

n-bit strings x1, . . . , xc, and a random seed s, the values C(s, x1), . . . ,C(s, xc) are unlikely

to be all equal. While this condition appears inherent using traditional security proofs

(which often requires the input to H to be “fresh”), it is not clear how to prove it is

necessary for any post-processing function G.

However, we can drop this condition for some special cases. For example, when G

simply outputs (part of) z, then we see that if C is not 2-universal, then we can break PRF

security of the construction directly, provided the output length is ω(log n). There are

4The choice of an n-bit input for C is arbitrary here, because for any domain length ` = ω(log n), we
can modify C to make the domain n bits, either by appending 0`−n to the input if ` > n, or by using
universal hashing as described above if ` < n.

7
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cases where however our result does not completely rule out construction – it is possible

that C is not 2-universal and we can achieve security nonetheless when the naPRF has a

single-bit output.

Multi-call constructions. We also extend the techniques to prove our main result on

one-call constructions to a restricted class of parallel κ-call constructions that output, on

input x,

y = G(sκ+1, x)⊕
⊕
i∈[κ]

H(ki,C(si, x))

where C is a c-universal pre-processing function, whereas G can be arbitrary. This family

includes e.g. the Cuckoo-Hashing based construction from [8]. This result can be seen

as a generalization of the work of Myers [1], which studies the special case without any

pre-processing.

Impossibility for general reductions. One may wonder whether the results claimed

in this paper can be extended to rule out general reductions, e.g., from DDH, following the

paradigm of Pietrzak [4]. This is unlikely to be true. In particular, Pietrzak [4] separation

holds even if DDH is exponentially hard – however, under such strong hardness, one can

simply use the BH construction.

A perspective. We believe the question of assessing how efficiently we can obtain a

PRF from a non-adaptive object like a naPRF to be among the most fascinating ones

in classical cryptography (although perhaps somewhat overlooked). Constructions are

easy in retrospect, and, like in many other instances, seemingly very hard to improve,

yet proving that they are indeed best possible appears to be out of reach.

This in particular justifies the perhaps limited-looking scope of our results – we hope

to provide evidence that ruling out even a subclass of one-call constructions is a chal-
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lenging problem and substantial progress. It would be of course desirable to provide

impossibility for all constant-query constructions – a statement we conjecture to be true.

However, we believe this to remain a challenging open question. Our work can be seen as

one among a large body of results that provide lower bounds on the efficiency of black-box

constructions, e.g. [14, 15, 16, 17, 18, 19, 20].

1.2 Public-seed PRFs to Public-seed PRPs

Next, we switch our focus to pseudorandom permutations (PRPs) which are a fam-

ily, indexed by a key/seed, of efficiently computable/invertible permutations E on n-bit

strings for which no efficient distinguisher can distinguish between access to (Es(·),E−1
s (·))

and (ρ(·), ρ−1(·) (for a random permutation ρ), for a randomly chosen key s. PRPs were

introduced to provide provable security guarantees for block-ciphers when used within

modes of operation under a secret key. This has motivated a large body of theoretical

works on building PRPs from weaker or less structured components, e.g., through the

Feistel construction and its variants [21, 22, 23].

Block ciphers are however also frequently used in settings where the key is fixed, or

at least known. We refer to this as the known-key setting. For instance, it is common to

rely on permutations5 or (equivalently) fixed-key ciphers to build hash functions [24, 25],

authenticated encryption [26], PRNGs [27, 28], and even more involved objects, such as

garbling schemes [29].

As there is no secret key to rely upon, it is less clear what kind of security properties

block ciphers should satisfy in this setting. Hence, security proofs typically assume the

cipher to behave like an ideal random permutation on each key. A number of design

paradigms for block ciphers (cf. e.g. [30, 31, 32, 33, 34, 35] to mention a few results)

5Permutations, as in the sponge construction, correspond to the extreme case where there is only one
possible key to choose from.
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are therefore analyzed in terms of indifferentiability [36], an ideal-model property which

implies that for single-stage security games, the cipher inherits all properties of an ideal

cipher. Still, the resulting proofs are notoriously involved, and the constructions more

complex than seemingly necessary for the applications in which they are used. This

is in sharp contrast with hash functions, where indifferentiability has helped shaping

real-world designs. To remedy this situation, we ask:

What plausible computational assumptions can we make on block-ciphers to

guarantee security in the known-key setting?

In Chapter 3, we propose the first computational assumptions to capture the se-

curity of block-ciphers in the known-key setting: More specifically, we introduce a new

framework – which we call public-seed pseudorandom permutations, or psPRPs, for short.

Public-seed PRPs. At a high-level, public-seed PRPs are an extension of the secret-

key notion of PRPs to the known-key setting but some care is required. A naive extension

to the known-key setting would be to expect Es(·) and E−1
s (·) to be indistinguishable from

ρ and ρ−1 (for a random permutation ρ), even if the seed s is known to the distinguisher.

This is obviously impossible, yet an approach to get around this borrowed from the UCE

framework [37] is to split the distinguisher into two stages. A first stage, called the source

S, gets access to either (Es,E
−1
s ) or (ρ, ρ−1), but does not know s, and then passes on

some leakage L to a second-stage PPT D, the distinguisher, which learns s, but has no

access to the oracle any more. If E is indeed secure, D will not be able to guess which

one of the two oracles S had access to. This is very similar to the security definition of a

UCE H which as we will see in Chapter 3 are equivalent to public-seed PRFs: the only

difference is that there the source accesses either Hs or a random function f .

Clearly, nothing is gained if L is unrestricted, and thus restrictions on S are necessary.

Two classes of sources were in particular considered in [38], unpredictable and reset-secure

10
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sources, inspired by analogous notions for UCEs. The former demands that when the

source S accesses ρ and ρ−1, an (unbounded)6 predictor P given the leakage L cannot then

guess any of S’s queries (and their inverses). In contrast, the latter notion demands that a

computationally unbounded distinguisher R, given L cannot tell apart whether it is given

oracle access to the same permutation ρ, or an independent one, within a polynomial

number of queries. Being a psPRP for all unpredictable sources is a potentially weaker

assumption than being a psPRP for reset-secure sources, since every unpredictable source

is reset-secure, but not vice versa.

Applications. PsPRPs for such restricted source classes are a versatile notion. For

example, a psPRP for all reset-secure sources can be used to instantiate the permuta-

tion within permutation-based hash functions admitting indifferentiability-based security

proofs, such as the sponge construction [24] (which underlies SHA-3), turning them into

a UCE-secure hash function sufficient for a number of applications, studied in multiple

works [37, 40, 41, 42, 43]. Also, [38] shows that psPRPs for unpredictable sources are

sufficient to instantiate garbling schemes obtained from fixed-key blocks ciphers [29].

Constructing psPRPs. Obviously, a central question is whether the assumption of

being a psPRP is, by itself, attainable. Given the success story of building PRPs from

PRFs where constructions making as low as two-calls to a PRF exist, it is natural to ask:

Question 2: Can we build public-seed PRPs from public-seed PRFs, if so

how many calls to public-seed PRFs are required?

6Computational versions of these notions can be defined, but the resulting notions can easily be
shown impossible under the assumption that IO exists [39], and are ignored in this paper.
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1.2.1 Our Result

We answer the above question in two parts and in the process introduce new tech-

niques and intermediate security notions which enhances our understanding of block-

cipher constructions.

Five-call construction. First, in Chapter 3, we first show that a construction that

makes only five-calls. More specifically,

Theorem (Informal) The five-round Feistel construction, with round functions instanti-

ated with a UCE H for reset-sources, is a psPRP for X-sources, where X ∈ {reset-secure,

unpredictable}.

In fact, this result follows from a general theorem which in fact establishes connections

between UCEs and psPRPs via a weaker notion of indifferentiability – CP-sequential

indifferentiability.

CP-sequential indifferentiability. The technique behind our general theorem relating

UCEs and psPRPs is inspired by Bellare, Hoang, and Keelveedhi’s work [44] on UCE

domain extension. They show that every construction that transforms a fixed-input

length random oracle into a variable-input length one in the sense of indifferentiability [36,

45] is a good domain extender for UCEs.

We extend their result along three axes. First off, we show that it applies to arbitrary

pairs of ideal primitives – e.g., a fixed-input-length or variable-input length random

function or a random permutation. For example, a construction using a permutation

which is indifferentiable from a random oracle transforms permutations which are psPRPs

for reset-sources into functions which are UCEs for reset-sources.

Second, we show that a weaker version of indifferentiability, which we call CP-

sequential indifferentiability, suffices. Recall that indifferentiability of a construction

12



Introduction Chapter 1

M transforming an ideal primitive I into an ideal primitive J means that there exists a

simulator Sim such that (MI, I) and (J, SimJ) are indistinguishable. CP-sequential in-

differentiability only demands this for distinguishers that make all of their construction

queries to MI / J before they proceed to primitive queries to I / SimJ. As we will see,

this significantly enlarges the set of constructions this result applies to. For example,

truncating the permutation output to r < n bits does not achieve indifferentiability, be-

cause a simulator on an inverse query Y needs to fix π−1(Y ) to some X such that, for

the given random function ρ : {0, 1}n → {0, 1}r, ρ(X) is consistent with Y on the first r

bits, which is infeasible. Yet, the same construction is CP-sequentially indifferentiable,

intuitively because there is no way for a distinguisher to catch an inconsistent random X,

as this would require an extra query to ρ. CP-sequential indifferentiability is dual to the

sequential indifferentiability notion of Mandal, Patarin, and Seurin [46], which considers

the opposite order of construction and primitive queries. In fact, the two notions are

incomparable, as we explain below.

Finally, we will also show that under suitable restrictions on the construction M, the

result extends from reset-secure sources to unpredictable ones. This will allow to lift our

result for truncation to unpredictable sources.

Given our general theorem and the indifferentiability result for Feistel construc-

tions [31, 47, 34, 35] imply already that the 8-round Feistel construction transforms

a function which is UCE[S?rs]-secure into a psPRP[S?rs]-secure permutation.

It is important however to assess whether simpler constructions achieve this result.

Here, we show that the five-round Feistel construction suffices. Our proof heavily exploits

our connection to CP-indifferentiability. Indeed, the six-round lower bound of [47] does

not apply for CP-indifferentiabiliy, as it requires the ability to ask construction queries

after primitive queries, and we show that CP-indifferentiability is achieved at five rounds

already. Our result is not merely a simplification of earlier ones, and our simulation
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strategy is novel. In particular, while we still follow the chain-completion approach of

previous works, due to the low number of rounds, we need to introduce new techniques

to bound the complexity of the simulator. To our rescue will come the fact that no

construction queries can be made after primitive queries, and hence only a limited number

of chain types will need to be completed. The detailed construction and its proof is

deferred to Chapter 3.

Two-call construction. The five-call construction however leaves two questions open:

(1) Whether the number of rounds/calls to the underlying UCE function can be reduced,

and (2) whether the same holds for unpredictable sources, too. Here, making progress

on these questions the approach via CP-indifferentiability does not seem to help.

In Chapter 4, we solve both questions, and even more in fact, showing that the Naor-

Reingold (NR) construction [22] solves both (1) and (2). In particular, let H be a family

of functions from n+ 1 bits to n, and let P be a family of permutations on 2n bit strings.

Then, the NR construction on seed ~s = (s, sin, sout) and input u ∈ {0, 1}2n, outputs

v ∈ {0, 1}2n, where

x0 ‖x1 ← Psin(u) , x2 ← Hs(0 ‖x1)⊕ x0 ,

x3 ← Hs(1 ‖x2)⊕ x1 , v ← P−1
sout(x3 ‖x2) .

The key point here is that P only needs to satisfy a weak non-cryptographic property,

namely that for a random s and for any distinct u 6= u′, the right halves of Ps(u) and Ps(u
′)

only collide with negligible probability. Therefore, only two calls to a “cryptographically

hard” round function H are made. Naor and Reingold [22] showed that NR is a (strong)

PRP whenever H is a pseudorandom function. Here, we show the following public-seed

counterparts:

Theorems (Informal) The NR construction, with round functions instantiated with a
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UCE H for X-sources, is a psPRP for X-sources, where X ∈ {reset-secure, unpredictable}.

Building psPRPs from simpler assumptions. Recently, some works give construc-

tions of UCEs. Brzuska and Mittelbach [48] gave constructions from auxiliary-input point

obfuscation (AIPO) and iO. In a recent paper, under the exponential DDH assumption,

Zhandry [49] built a primitive (called an AI-PRG) which is equivalent to a UCE for a

subset of Scup which is sufficient for instantiating point obfuscators. (The observation

is not made explicit in [49], but the definitions are equivalent.) None of these results is

sufficiently strong to instantiate our construction of psPRPs.

We remark here that such UCEs are of course strong, and the question of basing

psPRPs on simpler assumptions is wide open. Still, we believe our results from UCEs

to be very important: First off, they show relations among notions, and getting a UCE

(without any injectivity structure) is possibly simpler in practice than in theory (i.e.,

using the compression function of SHA-256). Second, even if we instantiate H from a

random oracle (which gives a good UCE [37]), the result is useful, as this would give us a

simple instantiation of a (seeded) permutation in applications which are not even known

to follow from full-fledged indifferentiability, as discussed by Mittelbach [50].

1.3 Upgrading Non-malleability for Commitments

Commitment schemes are one of the most fundamental cryptographic building blocks.

Often described as the “digital” analogue of sealed envelopes, commitment schemes en-

able a sender to commit itself to a value while keeping it secret from the receiver. This

property is called hiding. Furthermore, the commitment is binding, and thus in a later

stage when the commitment is opened, it is guaranteed that the “opening” can yield only
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a single value determined in the committing stage.

For many applications, however, the most basic security guarantees of commitments

are not sufficient. For instance, the basic definition of commitments does not rule out

an attack where an adversary, upon seeing a commitment to a specific value v, is able to

commit to a related value (say, v−1), even though it does not know the actual value of v.

To address this concern, Dolev, Dwork and Naor (DDN) introduced the concept of non-

malleable commitments [51]. Loosely speaking, a commitment scheme is said to be non-

malleable if it is infeasible for an adversary to “maul” a commitment to a value v into a

commitment to a related value ṽ. The notion of a concurrent non-malleable commitment

[51, 52] further requires non-malleability to hold even if the adversary receives many

commitments and can itself produce many commitments.

The first non-malleable commitment protocol was constructed in the original work

of [51] in 1991, based on the minimal assumption of one-way functions. The first concur-

rently secure construction was provided by Pass and Rosen in 2005 [52]. Since then, a

central question in the study of non-malleability has been to determine the exact number

of communication rounds needed for achieving (concurrent) non-malleable commitments.

Significant progress has been made over the years [53, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62].

The current state-of-the-art is that 4-round concurrent non-malleable commitments can

be constructed based on one-way functions [63], 3-round concurrent non-malleable com-

mitments can be constructed from subexponentially-secure one-way permutations [64,

65], and very recently can be based only on the polynomial hardness of either DDH or

Quadratic-residousity or N th-residuosity and ZAPs [66].

On the Existence of Two-Round or Non-Interactive Non-malleable Commit-

ments. The situation changes drastically when it comes to two-round or non-interactive

(i.e., one-message) protocols: Pandey, Pass and Vaikuntanathan [57] provided a con-
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struction of a non-interactive non-malleable commitment based on a new non-falsifiable

hardness assumption, namely, the existence of an adaptively-secure injective one-way

function—roughly speaking, a one-way function f that is hard to invert on a random

point y = f(x) even if you get access to an inversion oracle that inverts it on every

other point y′ 6= y. This assumption is not falsifiable since the inversion oracle cannot

be implemented in “real-life”7; additionally, note that the assumption also has a strong

non-malleability flavor—in particular, the assumption would clearly be false if one could

“maul” y = f(x) to e.g., y′ = f(x+1). As such, a question that remains open is whether

we can obtain two-round “non-malleability” from “pure scratch” (i.e., from “hardness”

alone). Indeed, a recent work by Pass [67] showed that there are some inherent limi-

tations to reducing 2-round non-malleability to falsifiable assumptions. More precisely,

Pass shows that if there exists a 2-round non-malleable commitment that can be proven

secure using a polyomial-time (or even super-polynomial, but security preserving8) black-

box reduction R to a falsifiable assumption, then the reduction R can itself be used to

break the assumption. In particular, this rules out basing 2-round non-malleability (us-

ing black-box reduction) on falsifiable hardness assumptions against polynomial time

adversaries.

Towards overcoming this barrier, a recent work by Goyal, Khurana and Sahai [68]

presents a two-message protocol in a stronger “synchronous model” of communication

(and achieving only a weaker notion of non-malleability “w.r.t. opening”). In this

work, we focus on the standard communication model (and the standard notion of non-

malleability) and explore whether super-polynomial-time hardness assumptions (and us-

7More precisely, an assumption is falsifiable if it can be modeled as a game between an efficient
challenger and an adversary. The adaptive security of injective one-way functions cannot be modeled in
such a way as no efficient challenger can implement the inversion oracle in the game with the adversary.

8Here, by security preserving, it means that the security reduction uses an adversary breaking the
security of the cryptographic scheme under analysis w.r.t. one security parameter n, to break the un-
derlying hardness assumption w.r.t. the same security parameter n′ = n. On the other hand, if n′ is
different from, in particular smaller than n, the reduction is said to be non-security preserving.
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ing non-security preserving reductions) can be used to overcome this barrier:

Question 3: Can we construct non-interactive or 2-round non-malleable

commitment from super-polynomial hardness assumptions?

1.3.1 Our Result

In this thesis, in Chapter 5, we answer the above question in positive by demonstrating

the existence of a two-round concurrent non-malleable commitment scheme based on

sub-exponential hardness assumptions—notably, assuming the existence of the following

primitives (all with subexponential security): (1) non-interactive commitments, (2) ZAPs

(i.e., 2-round witness indistinguishable proofs) [69], (3) collision-resistant hash functions,

and (4) a “weak” time-lock puzzle [70].

Primitives (1),(2),(3) are all very commonly used and can be based on e.g., the discrete

log assumption and the RSA assumption. Primitive (4) deserves some more discussion:

Time-lock puzzles—roughly speaking, puzzles that can be solved in “brute-force” in time

2t, but cannot be solved “significantly faster” even using parallel computers—were pro-

posed by Rivest, Shamir, and Wagner in 1996 [70] (following May’s work on timed-release

cryptography [71]), and have since been quite extensively used in the area of timed-release

cryptography.

A bit more precisely, a (T (·), B(·))-time-lock puzzle enables a “sender” to efficiently

generate a puzzle puzz with a designated “level” of hardness t = t(n) along with its

unique solution s, where n is the security parameter, so that: (i) the puzzle solution

can be found in (uniform) time 2t, but (ii) the puzzle solution cannot be recovered by

any attacker of size at most B(n) > 2t with (parallel) running-time (i.e., circuit depth)

at most T = T (t) (where T (t) << 2t determines the “hardness gap” of the puzzle).9

9Time-lock puzzles as defined are falsifiable as the challenger can efficiently (in time poly(n) t, n =
poly(n)n) sample a puzzle puzz together with its unique solution s.
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Typical applications of time-lock puzzles only require security against polynomial-size

attackers, thus it suffices to let B(·) be any slightly super-polynomial function; however,

they require the hardness gap to be very small—namely, T = 2δt or even T = δ2t for

some δ < 1 (i.e., the problem is inherently “sequential” and the honest puzzle solver

is essentially optimal, even if you have access to parallel computers). In this work, we

will need security against subexponential-size attackers, but in contrast, only require the

existence of a time-lock puzzle with a relatively “large” hardness gap—we only need the

puzzle to be hard to break for time T = 2t
ε

for some constant 0 < ε < 1.

Theorem 2-rnd (Informal) . Let T and B be two arbitrary subexponential functions.

Assume the existence of non-interactive commitments, a ZAP, a family of collision-

resistant hash functions, all with subexponential-security, and the existence of a (T,B)-

time-lock puzzle. Then, there exists a 2-round concurrent non-malleable commitment.

Time-lock puzzles of the above form can be instantiated naturally from the original

construction due to Rivest, Shamir and Wagner. We elaborate on this shortly but first

provide details on our construction.

1.3.2 Template of Our Construction

Our final construction is modular and can be broken down in two distinct tasks each

requiring new techniques. We formally describe these tasks first and then provide a high

level overview of our solution.

Task 1: O(1)-bit Non-malleable Commitments. We adopt the formulation of non-

malleable commitments w.r.t. identities which assumes that the players have identities

of certain length `, and that the commitment protocol depends on the identity of the

committer, which is also referred to as the tag of the interaction. Non-malleability ensures
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that, as long as the tags of the left and right commitments are different (that is, the man-

in-the-middle does not copy the identity of the left committer), no man-in-the-middle

attacker can “maul” a commitment it receives on the left into a commitment of a related

value it gives on the right. This is formalized by requiring that for any two values v1, v2,

the values the man-in-the-middle commits to after receiving left commitments to v1 or

v2 are indistinguishable.

The length ` of the tags can be viewed as a quantitative measure of how non-malleable

a scheme is: An `-bit tag non-malleable commitment gives a family of 2` commitment

schemes — each with a hardwired tag — that are “mutually non-malleable” to each

other. Full-fledged non-malleable commitments have tags of length equal to the security

parameter ` = n, and hence corresponds to a exponentially sized family. Therefore, the

shorter the tags are, the easier it is to construct such a family. However, when the number

of communication rounds is restricted to 2, Pass [67] showed that even the weakest non-

malleable commitment for just 1-bit tags, corresponding to a size 2 family, cannot be

reduced from falsifiable assumptions, via a polynomial-time black-box reduction. This

begs the following question:

Question 3.1 Can we construct `-bit non-interactive or 2-round

non-malleable commitment from super-polynomial hardness assumptions for

` = O(1) or even ` = 1?

Task 2: Upgrading Non-malleability. A positive answer to the above question

already requires circumventing the Pass’s [67] but still falls short of the eventual goal of

constructing full-fledged non-malleable commitments which supporting n-bit identities.

Previous work were able to increase the length of identities from O(1) to n by providing

a transformation that takes in a t-bit non-malleable commitment and outputs one on

2t−1-bits – we refer to this task as upgrading non-malleability. The works of Lin and
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Pass [56], later improved by Wee [59], gave such a transformation. Then, starting from

O(1)-bit non-malleable commitments, one could apply such a transformation O(log∗ n)

thereby resulting in a non-malleable commitment scheme for n-bit identities. However,

the known transformations inccur an additive, constant overhead in the round-complexity

whereas we would like to keep the round complexity to just two. Therefore,

Question 3.2 For 2 < t(n) ≤ n, given a t-bit, two-round non-malleable

commitment can we construct 2t−1-bit, two-round non-malleable

commitment from super-polynomial time assumptions?

Our Solution to Task 1 – Synergy between Multiple Hardness Axes. In cryp-

tography, the power, or resource, of attackers is usually measured by their running-

time when represented as Turing machines, or equivalently by their circuit-size when

represented as circuits. Time-lock puzzles, and more generally timed-release cryptogra-

phy [71, 72, 73, 74, 75], on the other hand, measure the resource of attackers by their

parallel running-time or equivalently by their circuit-depth. Our 2-round non-malleable

commitments crucially rely on the synergy between these two types of resources. The

key idea is, instead of measuring the hardness of commitment schemes in a single “axis”

of resource, measure the hardness in two axes, one refers to circuit-size and the other to

circuit-depth. By doing so, we can construct a pair of commitment schemes Com1,Com2

that are simultaneously harder than the other, in different axes. In particular, Com2 is

harder in the axis of circuit-size, in the sense that Com1 admits an extractor of size S

while Com2 is secure against all circuits of size S; on the other hand, Com1 is harder in

the axis of circuit-depth, in the sense that Com2 admits an extractor of depth D (and

some size S’) while Com1 is hiding against all circuits with depth D (and size S’). Such

a pair of commitment schemes that are mutually harder than each other already has a

weak flavor of non-malleability — no adversary can “maul” a Com2 commitment to v into
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a Com1 commitment to a related value, say ṽ = v + 1, as otherwise one can extract ṽ in

size S, which violates the hiding of Com2 against S-size circuits. Similarly, no adversary

can “maul” a Com1 commitment into a Com2 commitment, as otherwise, we can find ṽ in

small depth D (and size S’), which violates the hiding of Com1 against depth D circuits

(of size S’). This already gives us a non-interactive (hence also 2-round) non-malleable

commitment on 1-bit identities, thereby circumventing Pass’s [67] lower-bound.

Our Solution to Task 2 – Round-preserving Tag Amplification. Next, we

amplify this weak non-malleability to full-fledged non-malleability. More precisely, we

transform the aforementioned commitment schemes, which are non-malleable w.r.t. short

“tags” to that for much longer “tags”, while keeping two rounds. Our transformation

again crucially relies on time-lock puzzles and more specifically the ability to design mu-

tually non-malleable cryptographic primitives. We provide an elaborate discussion on

this in Chapter 5.

1.3.3 Instantiating Time-lock Puzzles and Extensions

Time-lock Puzzles. The original construction of time-lock puzzles due to Rivest,

Shamir, and Wagner [70] is based on the hardness of a very natural strengthening of

the factoring problem referred to as the repeated squaring problem: given a random

RSA-modulus N = pq, and a random (or appropriately chosen) element g, compute

g22t

mod N

Clearly, this can be done using 2t repeated squarings. The RSW assumption is that this

task cannot be significantly sped up, even using parallel resources, as long as the total

resource of the adversary does not enable factoring N . Given the current state-of the

art, the repeated squaring problem appears to be hard for strongly exponential parallel-
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time: T (t) = δ2t (that is, basically, no non-trivial speed-up over repeated squaring is

possible); indeed, this strong assumption is typically used in the literature on timed-

release cryptography (in fact, several significantly stronger versions of this assumption,

where additional leakage is given, are also typically considered—see e.g., the “generalized

Blum-Blum-Shub assumption” of Boneh-Naor [75].)

Since we only need a “weakly”-secure time-lock puzzle where the hardness gap is

large, it suffices for us to make a significantly weaker, subexponential, repeated squaring

assumption, that is,

2t repeated squarings (modulo N = pq) cannot be done in parallel-time 2t
ε

More formally:

Assumption 1 (Subexp. Repeated Squaring Assumption, Informal) There

exists subexponential functions T,B such that for every function t(n) ∈ ω(log n) ∩ nO(1),

the following holds: For every size B(·)-attacker A with (parallel) running-time (i.e,.

circuit depth) at most T (t(·)) < B(·), there exists a negligible function µ such that for

every n ∈ N, the probability that A, given g,N where N is a randomly chosen n-bit

RSA-modulus, and g is a randomly chosen (or appropriately fixed) element in Z∗N , can

compute g22t(n)

mod N is bounded by µ(n).

We note that essentially the repeated squaring assumption has two security parameters,

n and t(n), where the former decides the size of the modulus and the maximal size B(n)

of the adversaries (such that factoring the modulus remains hard), and the latter decides

the number 2t(n) of repeated squaring needed to solve the puzzle by brute force, and

the maximal depth T (t(n)) of the adversaries. The assumption says that the puzzle is

hard for adversaries of depth up to T (t(n)) and size up to B(n), even if the size of the

adversary may be larger than T (t(n)) or even 2t(n) (but still bounded by B(n)). Note
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also that the subexponential repeated squaring assumption implies the subexponential

hardness of factoring.10

We remark that comparing with other subexponential assumptions (such as e.g., the

subexponential DDH assumption), the subexponential repeated squaring assumption is

milder in the sense that it is a search assumption instead of a decisional assumption. It

also has a strong “win-win” flavor: Repeated squaring is a problem that arises naturally

in the design of algorithms (e.g., any improvement on repeated squaring would yield

improved efficiency for the verification of RSA-based signatures.) On the other hand,

the subexponential repeated squaring assumption has a non-standard form in that the

puzzle is easy to solve in depth 2t(n), but hard to solve in depth 2t(n)ε and size more than

2t(n) and below B(n).

We finally mention that the time-lock puzzle needed for our construction can also be

based on the existence of a parallel-time hard language and indistinguishability obfusca-

tion (with subexponential security) by the work of Bitansky et al. [76].

Towards Non-interactive Non-malleable Commitments. We also address the

question of whether fully non-interactive (i.e., single-message) non-malleable commit-

ments are possible. We show that if we replace the assumption of the existence of

ZAPs (i.e., two-message witness indistinguishability) with non-interactive witness indis-

tinguishable proofs (NIWI) [77, 78, 79], and the existence of families of collision-resistant

hash functions for a single, collision-resistant hash function secure against uniform adver-

saries, [80, 81], then a slightly modified non-interactive version of our protocol satisfies

concurrent non-malleability w.r.t. uniform attackers : Basically, the first message of our

two-round protocol only contains the first message of the ZAP, and the index of the hash

10The state-of-the-art factoring algorithm runs in 2n
ε

time for some constant ε. The subexponential
hardness of factoring assumes that factoring is hard for 2n

µ

time adversaries for some smaller constant
µ < ε.
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function, so by relying on a NIWI and a single hash function (secure against uniform

subexponential-time attackers), the first message can be skipped.

Theorem 1-rnd (Informal) Let T and B be two arbitrary subexponential functions. As-

sume the existence of non-interactive commitments, a NIWI, a uniform collision-resistant

function, all with subexponential-security, and the existence of a (T,B)-time-lock puzzle.

Then, there exists a one-message concurrent non-malleable commitment secure w.r.t.

uniform polynomial-time adversaries.

We leave open the question of whether we can get a non-interactive non-malleable

commitment w.r.t. non-uniform attackers.

Achieving Chosen Commitment Attack Security. Canetti, Lin, and Pass [82,

83] strengthened the notion of concurrent non-malleability to security against Chosen

Commitment Attacks (CCA) for commitments, analogous to the extensively studied

notion of security against Chosen-Ciphertext Attacks for encryption schemes. Roughly

speaking, a commitment scheme is said to be CCA-secure if commitments remain hiding

even against attackers with access to an inefficient oracle, called the committed-value

oracle, that “breaks” each commitment sent by an attacker using brute force and returns

the (unique) committed value as soon as the commitment is completed. In particular,

CCA-security implies that it is infeasible for an attacker to “maul” commitments to a

set of values into commitments to a set of related values, even with the help of the

committed-value oracle—which implies concurrent non-malleability. It was shown in

several works [82, 83, 84, 85] that CCA-secure commitments are useful for constructing

multi-party computation protocols with concurrent and composable security in the plain

model from polynomial-time hardness assumptions. Furthermore, in a recent work [86],

2-round CCA-secure commitments are further used for constructing round-optimal, 4-

round, multi-party computation protocols secure in the stand-alone setting. We show
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that our two-round, and non-interactive non-malleable commitments, in fact, satisfy the

stronger notion of CCA security.

Theorem (Informal) The two-round non-malleable commitment scheme presented in

Theorem 2-rnd satisfies CCA-security, and the non-interactive non-malleable commit-

ment scheme presented in Theorem 1-rnd satisfies CCA-security w.r.t. uniform polynomial-

time adversaries.

A Remark on “Sub-subexponential” Security. Let us finally mention that al-

though for the simplicity of notation we rely on subexponential hardness assumption,

our actual proof reveals that we only need to rely on “sub-subexponential”11 hardness

assumption for all the primitives we rely on: namely, we only require security to hold

w.r.t. attackers of size (and depth) 2n
1/log logn

(and in fact, even slightly less).

1.4 Organization of Chapters

The remainder of this dissertation is organized as follows:

1. In Chapter 2, we study the problem of constructing PRFs from non-adaptive PRFs

and present as our main result a proof that highly-efficient black-box transfor-

mations from naPRF to PRF, those making one-call, do not exist. Our result

complements existing impossibility results (Myers, EUROCRYPT ’04; Pietrzak,

CRYPTO ’05) ruling out natural specific approaches, such as parallel and sequen-

tial composition. Furthermore, we show that our techniques extend to rule out a

natural class of constructions making parallel but arbitrary number of calls which

in particular includes parallel composition and the two-call, cuckoo- hashing based

construction of Berman et al. (Journal of Cryptology, ’19).

11We refer to 2n
o(1)

as a sub-subexponential function.
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2. In Chapter 3 and Chapter 4, we study the problem of constructing public-seed

PRPs from public-seed PRFs. Here, first in Chapter 3 we introduce the notion of

public-seed pseudorandomness of which public-seed PRPs and public-seed PRFs

(equivalently Universal Computational Extractors introduced by Bellare, Hoang,

and Keelveedhi (CRYPTO ’13)) are specific instantiations. Then, we show that

the five-round Feistel construction is a public-seed PRP when its round functions

are public-seed PRFs. In Chapter 4 we improve this result by showing the two-

call construction by Naor and Reingold (STOC ’97) is a public-seed PRP when its

round functions are public-seed PRFs. This matches the complexity (in terms of

number of calls) of constructing PRPs from PRFs.

3. In Chapter 5 we study the problem of constructing non-malleable commitments and

present the first construction for two-round non-malleable commitments from sub-

exponential time well-studied cryptographic assumptions. Such commitments were

previously shown to be impossible from polynomial-time falsifiable assumptions un-

der black-box security reductions (Pass TCC’13). We achieve this in two steps: (a)

construct non-interactive non-malleable commitments for O(1)-bit identities and

(b) present a transformation that upgrades two-round non-malleable commitment

on t-bit identities to 2t−1-bit identities.

1.5 Permissions and Attributions

All results in this dissertations have either appeared in conference proceedings or

journals. More specifically,

1. The contents of Chapter 2 are based on the results appearing in [87]: Soni P.,

Tessaro S. (2020) On the Query Complexity of Constructing PRFs from Non-
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adaptive PRFs. In: Galdi C., Kolesnikov V. (eds) Security and Cryptography

for Networks - SCN 2020. SCN 2020. Lecture Notes in Computer Science, vol

12238. Springer, Cham. The final authenticated version is available online at

https://doi.org/10.1007/978-3-030-57990-6_27.

2. The contents of Chapter 3 are based on the results appearing in [38]: Soni P., Tes-

saro S. (2017) Public-Seed Pseudorandom Permutations. In: Coron JS., Nielsen J.

(eds) Advances in Cryptology – EUROCRYPT 2017. EUROCRYPT 2017. Lec-

ture Notes in Computer Science, vol 10211. Springer, Cham. c© IACR 2018,

https://doi.org/10.1007/978-3-319-56614-6_14.

3. The contents of Chapter 4 are based on the results appearing in [88]: Soni P., Tes-

saro S. (2018) Naor-Reingold Goes Public: The Complexity of Known-Key Security.

In: Nielsen J., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT 2018. EU-

ROCRYPT 2018. Lecture Notes in Computer Science, vol 10822. Springer, Cham.

c© IACR 2017, https://doi.org/10.1007/978-3-319-78372-7_21.

4. The contents of Chapter 5 are based on [89] and its extended version [90]

- H. Lin, R. Pass and P. Soni, “Two-Round and Non-Interactive Concurrent

Non-Malleable Commitments from Time-Lock Puzzles,” 2017 IEEE 58th An-

nual Symposium on Foundations of Computer Science (FOCS), Berkeley, CA,

2017, pp. 576-587. c© IEEE 2017 https://doi.org/10.1109/FOCS.2017.59.

- H. Lin, R. Pass and P. Soni, “Two-Round and Non-Interactive Concurrent

Non-Malleable Commitments from Time-Lock Puzzles,” SIAM Journal of Com-

puting (SICOMP), 2020. Copyright c© by SIAM. Unauthorized reproduction

of this article is prohibited. https://doi.org/10.1137/17M1163177.
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Chapter 2

Non-adaptive PRFs to PRFs

The main result of this chapter is a proof that highly-efficient black-box transformations

from naPRF to PRF, those making one-call, do not exist. Towards showing this we

first give an overview of our techniques in Section 2.1 then introduce some preliminary

notation in Section 2.2. Then, we describe our main theorem in Section 2.3 and provide

an overview of its proof. We dedicate Section 2.4 through Section 2.6 to give a formal

proof. Finally, we reserve Section 2.7 and Section 2.8 to discuss some special cases and

extensions of our main result.

2.1 Technical Overview

The study of black-box separations for cryptographic primitives was initiated by

the seminal paper of Impagliazzo and Rudich [91] which provided a framework (later

formalized by [92]) to provide such results. Impagliazzo and Rudich observed that fully

black-box constructions relativize w.r.t. any oracle and hence to rule out fully black-box

constructions it suffices to show the existence of an oracle relative to which there exists

a naPRF H but FH[C,G] is not a PRF. Furthermore, Gertner, Malkin and Reingold [93]
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Construction Evaluation y = F((s, k), x) Rule out for any c = O(1)

FH[C,G]

Section 2.3

y = G(s, x, z) where

w = C(s, x); z = H(k,w)

C is c-universal, any r

any m ≥ log(8ce)

FH[C, g]

Section 2.7.1

y = g(x,w, z) where

w = C(s, x); z = H(k,w)

any C, g and r

any m ≥ (n+ r)/c+ ω(log n)

FH[C]

Section 2.7.2
y = H(k,C(s, x))[1, . . . ,m]

any C

any m, r = ω(log n)

FH[κ,C,G]

Section 2.8
y = G(sκ+1, x)⊕

⊕κ
i=1 H(ki,C(si, x))

C is c-universal

any κ, r, G

Table 2.1: We rule out fully black-box constructions of PRF F from n bits to m bits of the form

described in first and second column from a naPRF H from n bits to r bits, whenever the conditions in

the third column are true for some constant c ≥ 2. C is a (keyed) function family from n bits to n bits

and g is a function from 2n+ r bits to m bits. For first row, G is a function family from n+ r bits to m

bits and G is a family from n bits to r bits for the last row.

observed that the oracle can depend on the construction F. Our result will be of this

flavor.

In the rest of this section, we give a brief overview of our main result (stated as

Theorem 25 in the body). For the sake of this overview, we will only focus on a special

case of the construction F – a composition of a pre-processing function C and the naPRF

H, and rule out F as a fully black-box construction whenever C is an almost-universal

function.

1-call pre-processing construction F(·)[C]. Let H be some function family from n

bits to m bits with n-bit keys and let C be function family from n bits to n bits with

σ-bit seeds. We consider the function family FH[C] from n bits to m bits that makes

oracle calls to H and takes the following form,

F((s, k), x) = H(k,C(s, x)) .
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Theorem (Informal). For any almost-universal C, there exists an oracle (O,R) relative

to which there exists a naPRF H such that FH[C] is not a PRF.

Although the approach of providing oracles has been the focus of many black-box

separations [94, 95, 16, 17], Myers [1] was the first to apply such techniques in the

context of ruling out fully black-box constructions of PRFs from naPRFs, albeit, for

restricted forms of constructions. We borrow ideas from Myers [1] to design our oracle,

but the general nature of our result brings in a number of challenges as we discuss below.

Following [1, 94] we will allow our oracles to make random choices (and hence we give a

distribution of oracles) and show that the theorem holds except with negligible probability

which suffices to guarantee the existence of an oracle (in the uniform setting).

Oracle (O,R) and naPRF H. For simplicity of presentation, we will present the oracle

as a pair (O,R) instead of a single oracle. The oracle O embeds a natural information-

theoretically secure PRF. More formally, for every n ∈ N and for every k ∈ [2n], O(1n, k, ·)

is implemented by a function from Funcs(n, r) sampled uniformly and independently at

random (with replacement). Relative to O there exists a natural naPRF H where for

every k ∈ {0, 1}n and x ∈ {0, 1}n,

HO(k, x) = O(k, x) .

We emphasize that H is a naPRF relative to O.

The oracle R is designed to provide a trivial way to break F. While it is easy to

come up with such an oracle, we need to ensure that only adversaries making adaptive

queries (to F) be able to use R to break the PRF-security of F. For this, we decompose R

into (R1,R2,R3) where R1 (takes no inputs and) returns sufficiently many (say l) random

challenges x1, . . . , xl (in the domain of F), R2 takes y1, . . . , yl (in the range of F) as inputs

and returns more random challenges xl+1, . . . , x2l, and R3 accepts yl+1, . . . , y2l as inputs
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and returns 1 iff there exists a key (s, k) such that yi = F((s, k), xi) for all i ∈ [2l]. Note

that like R1, R2 also provides random challenges but, additionally, forces an adversary to

commit to responses y1, . . . , yl for challenges x1, . . . , xl issued by R1. This property of R

will be crucial to show the naPRF security of H relative to both O and R.

FH[C] is not a PRF relative to (O,R). R provides a trivial way for an adaptive

adversary to break F. An adversary Af relative to (O,R) can provide yi = f(xi) to R3

for challenges xi (issued by R1 and R2) by adaptively querying f . When f = F((s, k), ·)

for some randomly sampled (s, k), R clearly outputs 1. In the random world (when

f
$← Funcs(n, r)), R outputs 1 if for the randomly chosen n-bit strings yi’s there exists

some (s, k) for which F((s, k), xi) = yi for all i. Since there are only 2σ+n such (s, k)’s in

F, the probability of this happening is upper bounded by 2σ+n/22ml, which is negligible

for sufficiently large l. Therefore, A breaks F relative to (O,R).

H remains naPRF relative to (O,R)? To conclude the theorem, we need to show

that the above construction of H remains naPRF relative to (O,R).1 Unfortunately,

despite the adaptive nature of R, this is not true in general. Consider the following

universal family C for which for some sbad we have,

C(sbad, x) =


0n lsb(x) = 0 ,

1n lsb(x) = 1 .

And for all s 6= sbad, C(s, ·) is a permutation. Now consider the following non-adaptive

adversary Ana relative to (O,R) which breaks H and makes only two non-adaptive queries

to the challenge oracle h. Ana first queries h on Q = {0n, 1n} and then computes yi =

Fh(sbad, xi) for any adaptive challenges xi’s provided by R1,R2, where the construction

1We emphasize that the non-adaptivity restriction on the adversary is only on the challenge oracle
in the naPRF-security game. It can query the oracle (O,R) adaptively.
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Fh(s, ·) replaces the calls to H in FH(s, ·) with calls to h. Recall that R3 returns 1 if it

finds any (s, k) such that yi = F((s, k), xi). In the real world h = H(k, ·) and therefore R3

returns 1 as for (sbad, k), F((sbad, k), xi) = yi. However, the probability that R3 returns 1

when h is a randomly sampled function can be upper bounded by the probability that

there exists some k ∈ {0, 1}n such that H(k, x) = h(x) for x ∈ {0n, 1n}. Since there

are at most 2n k’s and h is a random function, the above happens only with probability

2n/22n which is negligible and hence R3 returns 0, thereby breaking H. This highlights

an important bug in the design of the oracle R – it allows for a non-adaptive adversary

Ana to use it effectively in breaking the naPRF-security of H by exploiting weaknesses in

the pre-processing function family C.

Oracle R Revisited. The issue with the previous oracle was that R accepts a seed

sbad for which a non-adaptive adversary Ana can make few (polynomially many) queries

(let Q be this set of queries) to its oracle h and compute the entire function Fh(sbad, ·),

thereby provoking R3 to output 1 in the real world. We ask R3 to ignore “bad” seeds. A

seed s is β-good if for every w in the range of C(s, ·) Prx[C(s, x) = w] ≤ β. Let β be some

negligible function (we will explain how to set this later), we modify R3 to return 1 iff it

finds some (s, k) where s is β-good. A consequence of this is that for any polynomially

sized Q and any s that is β-good, it is only with negligible probability that C(s, x) ∈ Q

for a random x.

Security of H Revisited. For simplicity let us assume that R1 and R2 just output

one random challenge each (i.e., l = 1). Let x1 and x2 be those random challenges. Let

us fix some s that is β-good. Let wi = C(s, xi). We are interested in Ana that trigger

R3 to output 1 for this fixed seed. Any Ana has two choices: either (1) make its queries

to h after learning x1 but before learning x2 or (2) make queries after learning x2 (after
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committing to y1). Let Q be the set of queries Ana made to h. In case (1) since x2 is

sampled randomly and s is β-good, C(s, x2) /∈ Q. To succeed, Ana now needs to correctly

guess the y2 = h(C(s, x2)) which happens with prob. 2−m as h is random. In case (2) to

succeed, Ana can just hope that h(C(s, x1)) = y1 which also happens with prob., 2−m as h

is random. Therefore, it is only with prob. 2−m that Ana can trigger R3 to output 1 for a

fixed β-good seed s. Instead of sampling one challenges each, if Ri’s had sampled tuples

X1 = (x1, . . . , xl) and X2 = (xl+1, . . . , x2l) then in (1) we can show that, except with

probability (βq)l/2, at least l/2 of the C(s,X2[i])’s fall outside Q leading to the probability

of success of Ana to drop to 2−ml/2, and in (2) the probability of success instead drops to

2−ml. Therefore, a union bound over all β-good seeds would show Ana fails in triggering

R3 to output 1 (for l = ω(σ)). In other words, by sampling tuples X1, X2 and considering

only β-good seeds, R has now rendered itself useless to a non-adaptive adversary allowing

us to reduce the naPRF-security of H relative to (O,R) to naPRF-security of H relative to

only O. One issue that still needs to be addressed is to ensure that the new R continues

to allow to break F. This is where the universality is crucial. We show that a randomly

sampled s is indeed β-good for an appropriate β.

Comparison to [1]. Our oracles are similar to Myers [1] except that they are signif-

icantly more complicated. Myers rules out arbitrary number of parallel compositions of

H. In its simplest form (2-call case) Myers construction can be viewed in terms of our

preprocessing function FH[C] where C = H and hence C is also implemented from O.

Therefore, in the non-adaptive security proof, the adversary has very little information

about the structure of C. This is unlike our case where it was the structure of C, more

importantly, the existence of a single “bad” seed that allowed Ana to break H relative to

trivial attempts of designing R.
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Extending to our general one-call result. Although the preprocessing case captures

our core ideas, ruling it out is considerably simpler than our more general construction.

An important property that the construction enjoys is that for every x, s, y the prob-

ability that Ff (s, x) = y for a random f is 2−m. We refer to such constructions are

“unbiased”. When moving on to constructions with post-processing, such guarantees are

not readily available making the proof difficult. In addition, working with weaker notion

of c-universality for c > 2 brings in additional challenges. We detail our formal proof

in Section 2.3.

On ruling out two- or more call constructions. The main result of this work

is ruling out a large class of constructions as a PRF, that make only one call to an

underlying naPRF. A natural question is to understand whether such separations can

be proved for constructions making two calls or more generally O(1) number of calls.

We devote Section 2.8 for this. More specifically, (1) In Section 2.8.1 we show that our

techniques from the 1-call case can be lifted to rule out a specific 2-call construction (even

its generalization to arbitrary number of calls). We note that Berman et al. [8] studied a

(non-black-box2) variant to construct a PRF from a naPRF. (2) The oracle (O,R) used

to rule out one-call constructions admits natural extensions to constructions that make

more than one call, we describe in Section 2.8.2 two explicit constructions making two-

calls and four-calls respectively which also allow a non-adaptive adversary to break the

underlying naPRF relative to (O,R). With these examples we hope to highlight that a

general result that rules out all O(1)-call constructions will require new techniques or at

least new oracle designs.

2the construction depends on the security of the underlying primitives
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2.2 Preliminaries

For n,m ∈ N, Funcs(n,m) denotes the set of all functions {0, 1}n → {0, 1}m. By [n]

we denote the set {1, . . . , n}. By d
$← D we denote the process of sampling a random

element from some finite set D and assigning it to d. For l ∈ N, (d1, . . . , dl)
$← (D)l

and (d1, . . . , dl)
$← (D)[l] denote the process of sampling l elements from D where each

di is sampled independently and uniformly from D with and without replacement, re-

spectively. For l, p ∈ N and f ∈ Funcs(n,m), X = (x1, . . . , xl) denotes an ordered tuple

where x1, . . . , xl ∈ {0, 1}n and X[i] denotes the i-th element in the tuple. f(X) denotes

the ordered tuple (f(x1), . . . , f(xl)). For X = (x1, . . . , xl) and Y = (y1, . . . , yp), by X||Y

we denote (x1, . . . , xl, y1, . . . , yp). We use capital letters to denote both tuples and sets,

our usage will be clear from the context. A function α : N→ R≥0 is negligible if for every

c ∈ N, there exists n0 such that α(n) ≤ n−c for all n ≥ n0.

Function Families. For polynomially bounded functions m,σ : N → N, a function

family F = (F.Kg,F.Eval) from n bits to m bits with σ-bit keys/seeds consists of two

polynomial-time algorithms – the key (or seed) generation algorithm F.Kg and the eval-

uation algorithm F.Eval. In particular, F.Kg is a randomized algorithm that on input

the security parameter 1n returns a key k sampled uniformly from {0, 1}σ(n). F.Eval

is a deterministic algorithm that takes three inputs: 1n, key k ∈ {0, 1}σ(n) and query

x ∈ {0, 1}n and returns an m(n)-bit string y = F.Eval(1n, k, x). We generally write

F(1n, k, ·) = F.Eval(1n, k, ·) and even drop the first input (i.e., 1n) of both Kg and Eval for

ease of notation. By f
$← F we denote the process of sampling k

$← F.Kg and assigning

f = F(k, ·).

Oracle Function Families. In this work, we consider function families F where F.Kg

and F.Eval can make queries to another function family modeled as an oracle O. We
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refer to such families as oracle function families and denote it by F(·) and by FO when

the underlying oracle is O. By F(·)[C] we denote function family F having access to the

entire description of the function family C.

Universal Function Families. Below we define a generalization of the well-known

notion of almost α-universal hash function family.

Definition 1 For polynomially bounded functions m,σ, let C be a function family from

n bits to m bits with σ-bit seeds, α be some function from N to R≥0, and c ∈ N. We say

that C is (α, c)-universal family if for all n ∈ N, every X ∈ ({0, 1}n)[c],

Pr
s

$←C.Kg(1n)

[C(s,X[1]) = C(s,X[2]) = . . . = C(s,X[c])] ≤ α(n) .

We retrieve the standard notion of almost α-universal hash function family when

c = 2. Whenever α is a negligible function, we refer to C as a c-universal function family.

We emphasize that the reader should not confuse our notion of c-universality with the

notion of c-wise independent hashing.

2.2.1 (Non-) Adaptive PRFs Relative to Oracles

In this work, we consider pseudo-randomness of function families relative to an oracle

which we define next.

Definition 2 Let m be a polynomially bounded function over N and O be some oracle.

Let F(·) be an oracle function family from n bits to m bits. For probabilistic polynomial-

time (PPT) distinguisher A, let

Advrel−prfA,F,O (n) =

∣∣∣∣∣ Pr
f

$←F

[Af
O,O(1n) = 1]− Pr

g
$←Funcs(n,m(n))

[Ag,O(1n) = 1]

∣∣∣∣∣ ,
where probability is also taken over the random coins of A.
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We say that F(·) is a pseudo-random function (PRF) relative to oracle O if for all PPT

distinguishers A Advrel−prfA,F,O (1n) is negligible in n. F(·) is a non-adaptive PRF (naPRF)

relative to O if the above is true for all PPT distinguishers that only make non-adaptive

queries to the challenge oracle f/g.

In naPRF definition, we require that A only make non-adaptive queries to the chal-

lenge oracle f/g and can query O adaptively. In the absence of the oracle O we recover

the standard notions of PRFs and naPRFs. Although as stated the oracle O is deter-

ministic, in this work we will consider randomized oracles O and the above probabilities

is taken also over the random choices made by O.

2.2.2 Black-Box Separations

The study of black-box separations for cryptographic primitives was initiated by the

seminal paper of Impagliazzo and Rudich [91] which provided a framework (later formal-

ized by [92]) to provide such results. They observed that fully black-box constructions

relativize w.r.t. any oracle and hence to rule out fully black-box constructions it suffices

to show the existence of an oracle relative to which there exists a naPRF H but FH[C,G]

is not a PRF. Furthermore, Gertner, Malkin and Reingold [93] observed that the oracle

can depend on the construction F.

Theorem 1 ([93]) An oracle function family F(·) is not a fully BB construction of a

PRF from naPRF if there exists an oracle O and an oracle function family H(·) such that

HO is a naPRF relative to O but FH is not a PRF relative to O.

When restricting to uniform adversaries (which is the focus of this work) it is sufficient

to exhibit a oracle that makes random choices (or a distribution of oracles) and show

that Theorem 1 holds except with negligible probability. This is the approach adopted
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in all previous works on black-box separations. We formally state this as the following

Proposition.

Proposition 1 An oracle function family F(·) is not a fully BB construction of a PRF

from naPRF if there exists a randomized oracle O and an oracle function family H(·) such

that HO is a naPRF relative to O but FH is not a PRF.

Theorem 1 for the uniform setting follows from Proposition 1 by relying on the Borel-

Cantelli Lemma and on the countability of the family of uniform Turing machines. All

results in this work will be of the flavor of Proposition 1. Establishing Proposition 1 w.r.t.

non-uniform adversaries may not be sufficient to lift BB separations to the non-uniform

model due to the uncountability of non-uniform Turing Machines. We leave it to future

work to lift our results to the non-uniform setting, following ideas from [96, 16].

2.3 Main Result: Ruling out 1-call F’s

In Section 2.3.1 we formally describe the class of one-call constructions to which our

separation result applies. Then in Section 2.3.2 we state our main result and provide its

proof’s overview in Section 2.3.3.

2.3.1 General 1-call Construction

Let σ, r,m be any polynomially bounded functions. Let C be a function family from

n bits to n bits with σ-bit seeds, let H be a function family on n bits to r bits with n-bit

seeds and let G be a function family from n+ r bits to m bits with σ-bit seeds. Consider

the family FH[C,G] (depicted in Figure 2.1a) from n bits to m bits with σ + n-bit seeds

such that for every n ∈ N, F.Kg(1n) outputs (s, k) where s and k are randomly chosen
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- C(s, ·) - H(k, ·) -- G(s, ·) -
x yzw

(a) 1-call construction

�
�
�

- C(s1, ·) -
w1 H(k1, ·)

z1
L
L
L-x

C(s2, ·) -
w2 H(k2, ·)

z2 ⊕ -y

L
L
L

- G(s3, ·)
w3 �

�
�

(b) 2-call construction

Figure 2.1: (a) General 1-call construction FH[C,G] where C (resp., G) is a family from n bits (resp.,

n+ r bits) to n bits (resp., m bits) with σ-bit keys and H is a function family from n bits to r bits with

n-bit keys. Figure shows the evaluation of F on input x and key (s, k) where s is the key for both C

and G and k is key for H. (b) Two-call construction FH[C,G] where C (resp., G) is a family from n bits

(resp., n bits) to n bits (resp., m bits) with σ-bit keys and H is a function family from n bits to m bits

with n-bit keys. Figure shows the evaluation of F on input x and key (~s,~k) where ~s = (s1, s2, s3) and

~k = (k1, k2) is key for H.

σ(n)-bit seeds for both C and G, and n-bit key for H respectively. The evaluation of F

on x ∈ {0, 1}n proceeds as follows,

y = FH((s, k), x) = G(s, x, z) where z = H(k,C(s, x)) . (2.1)

Remark 1 Note that the function families C and G in Equation (2.1) share the same

seed s. This, in fact, is a generalization of the case when C and G have independent seeds

s1 and s2 respectively – for every such C and G we can construct families C′ and G′ which

share the same seed s = (s1, s2),

C′(s = (s1, s2), ·) = C(s1, ·) ; G′(s = (s1, s2), ·, ·) = G(s2, ·, ·) .

Furthermore, as G and C share the same seed s, G can compute w = C(s, x) from its

inputs (s, x, z) and hence w.l.o.g. we do not feed w as an input to G.

Remark 2 The choice of the input length of C is arbitrary as any C mapping l =

ω(log n)-bit strings to n-bit strings can be converted into C′ which maps n-bit strings
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to n-bit strings by padding 0l−n to the input whenever l ≥ n and pre-processing the in-

put via a universal hash family from n bits to l bits whenever l < n. Furthermore, the

resulting family C′ is c-universal hash family whenever C is c-universal for any c ≥ 2.

The construction in Equation (2.1) covers all one-call constructions which do not

modify the key of the naPRF. In particular, it also covers the Berman-Haitner [7] con-

struction – one recovers the BH construction from F[C,G] by letting C be a universal

hash family and letting G(s, (x, z)) = z.

2.3.2 Main Theorem

Below we state our main theorem which provides an oracle relative to which a naPRF

H exists but the construction FH[C,G] is not a PRF as long as C is universal function

family. This in turn implies that F cannot be a fully black-box construction of a PRF

from a naPRF.

Theorem 2 (Main Theorem) Let c = O(1) and r, σ,m be any polynomially bounded

functions such that m ≥ log(8ce). Let C be a c-universal family from n bits to n bits.

Then, for every F(·)[C,G] (as in Equation 2.1) from n bits to m bits there exists a ran-

domized oracle (O,R) such that,3

1. There exists an oracle function family H(·) from n bits to r bits with n-bit keys that

is a naPRF relative to (O,R).

2. FH[C,G] is not a PRF relative to (O,R).

Removing the c-universality assumption. Theorem 25 holds for every constant

c, allowing us to show black-box separations for increasingly weaker assumptions on C.

3For simplicity we present our oracle as a pair (O,R).
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However, to completely resolve the question, one would wish to remove the assumption

altogether. This is far from simple: The naive approach is to argue that likely collisions

in the non-universal family C can be turned into a distinguishing attack on F. But it is

not clear how to argue this generically as the post-processing family G can potentially

resolve collisions in C.

Nevertheless, we can remove the c-universality assumption on C altogether for two

important subclasses of F[C,G]: (1) A special case of F[C, g] (second row in Table 2.1),

where G consists of a single function g (i.e., independent of any seed material) and (2)

A special case of F[C] (third row in Table 2.1) where G is a family that on input (s, x, z)

just outputs z. At a very high level, note that for the construction F[C], collisions in

C lead to collisions in F, however such collisions occur for a random function only with

negligible probability when the output length satisfies m = ω(log n). Therefore, an

adversary that knows collisions in C can trivially break the PRF security of F. For the

construction F[C, g] one needs to go a step further and analyze the entropy of the output

(F(x1), . . . ,F(xc)) for inputs xi’s for which collisions under C are likely. We can show a

distinguishing attack whenever m = Ω(n). We defer the formal proofs to the full version.

Overall, we believe removing c-universality from Theorem 25 for all one-call construc-

tions is closely related to the long-standing open problem in symmetric-key cryptography

of proving security beyond the birthday barrier for the composition of a non-universal

hash family and a short-output PRF. The challenge is that collisions in the hash function

may still be less likely than actual output collisions when the range is small. We believe

removing the c-universality assumption is unlikely to happen without making progress

on this open question, and we believe that the answer depends on a more fine-grained

understanding of the combinatorics of C.
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2.3.3 Proof Overview of Theorem 25

We prove Theorem 25 in two parts: First, in Proposition 2 we provide an oracle for

constructions F[C,G] that satisfies a structural property – “unbiasedness” (define next)

and provide an oracle for “biased” constructions in Proposition 3.

(1−δ)-unbiased F(·)[C,G]. Before we formally define the structural property of “(1−δ)-

unbiasedness” of F it would be helpful to consider the following definition.

Definition 3 For the function family G, for some n ∈ N, let x ∈ {0, 1}n, s ∈ {0, 1}σ(n)

and y ∈ {0, 1}m(n), we say that y is 1/2-bad w.r.t. (s, x) if Pr
z

[y = G(s, x, z)] > 1/2 ,

otherwise y is 1/2-good w.r.t. (s, x).

If for some pair (s, x) there exists a 1/2-bad y then the output of F (on input x and

seed s) will be biased towards y even if H is a truly random function family. We call F as

unbiased if at least (1− δ) fraction of the outputs y’s will be 1/2-good for some δ < 1.

Definition 4 ((1− δ)-unbiased) For any functions r,m, σ, let C be a family from n

bits to n bits and G be a family from n + r bits to m bits. Then for δ ≤ 1 we say that

F(·)[C,G] is (1− δ)-unbiased if for all polynomials l = ω(σ)/δ there exists some negligible

function ν(·) such that

Pr
X,s,f

[|{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}}| ≥ δ · l] ≤ ν(n) ,

for every n ∈ N where Y [i] = Ff (s,X[i]), s
$← {0, 1}σ(n), f

$← Funcs(n, r(n)) and

X
$← ({0, 1}n)[l(n)]. Otherwise, we call F(·)[C,G] as δ-biased.

We state Proposition 2 (proof in Section 2.4) which handles unbiased F’s.

Proposition 2 Let c = O(1) and r,m, σ be any polynomially bounded functions. Let C

be a c-universal family from n bits to n bits with σ-bit seeds and G be a family from n+ r

43



Non-adaptive PRFs to PRFs Chapter 2

bits to m bits with σ-bit seeds such that F(·)[C,G] is
(
1− 1

4c

)
-unbiased. Then, there exists

a randomized oracle (O,R) such that there exists an oracle function family H(·) from n

bits to r bits with n-bit keys that is a naPRF relative to (O,R) but FH[C,G] is not a PRF

relative to (O,R).

Next, we state our Proposition 3 (proof in Section 2.6) which relies on F being biased.

Proposition 3 Let c = O(1) and let r, σ,m be polynomially bounded functions such that

m ≥ log(2ce). For every F(·)[C,G] from n bits to m bits, if F(·)[C,G] is 1/c-biased then

there exists a randomized oracle (O,R) such that there exists an oracle function family

H(·) from n bits to r bits with n-bit keys that is a naPRF relative to (O,R) but FH[C,G]

is not a PRF relative to (O,R).

Remark 3 Note that Proposition 2 rules out F for any output length m (even m = 1).

However, we can only prove Proposition 3 when m ≥ log(2ce) for some constant c. For

this reason Theorem 25 requires m ≥ log(2ce). It is an important open question to extend

our results for smaller m’s.

Proof of Theorem 25. Given Propositions 2 and 3, Theorem 25 follows immediately

by analyzing the following two cases: (1) If F(·)[C,G] is 1
4c

-biased then Theorem 25 follows

from Proposition 3 with parameter 4c (instead of c), and (2) If F(·)[C,G] is
(
1− 1

4c

)
-

unbiased then Theorem 25 follows from Proposition 2.

2.4 The Case of Unbiased F’s: Proof of Proposition 2

First, in Section 2.4.1 we establish some preliminary notation necessary to describe

our oracles (O,R) and the naPRF family H (which are defined in Section 2.4.2). Then,

in Section 2.4.3 we argue the insecurity of F relative to (O,R) and in Section 2.4.4 we

argue that H is a naPRF relative to (O,R).
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2.4.1 Preliminary Notation for Defining (O,R)

First, we observe an important property of c-universal function families called (β, δ)-

sparseness.

Definition 5 (s is β-sparse) Let C be a family from n bits to n bits with σ-bit seeds.

For n ∈ N, β ≤ 1, we say that s ∈ {0, 1}σ(n) is β-sparse if Pr
x

[C(s, x) = w] ≤ β for every

w ∈ {0, 1}n.

Definition 6 (C is (β, δ)-sparse) Let C be a function family from n bits to n bits. For

functions β and δ we say that C is (β, δ)-sparse if Pr[s not β(n)-sparse ] ≤ δ(n) for all

n ∈ N over the random choice of s
$← C.Kg.

Lemma 1 For any c = O(1), any (α, c)-universal function family C from n bits to n bits

is also (β, δ)-sparse for β = max(α1/2c, 2c
2n

), δ = 2c−1
√
α. Furthermore, β and δ are both

negligible for c = O(1) and negligible α.

The following lemma show that a universal family is sparse (proof in Section 2.9.1).

For the rest of this section let us fix some (α, c)-universal function family C from n

bits to n bits with σ-bit seeds, some n + r bit to m bit function family G with σ-bit

seeds such that F = F[C,G] is a (1− 1/4c)-unbiased function family (as in the statement

of Proposition 2). Furthermore, for (α, c) let β, δ be functions (as defined by Lemma 1)

such that C is (β, δ)-sparse. For C and F we define two sets of “good” seeds namely

GoodC and GoodF necessary to describe (O,R).

The set GoodC(β,X). For some tuple X ∈ ({0, 1}n)l, the set GoodC(β,X) is a set of

β-sparse seeds for which there are no c-way collisions among C(s,X[i])’s. To match the

usage of GoodC later in the proof, we define GoodC(β,X) for X = X1||X2 where each

Xi’s are l-length tuples.
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Definition 7 For n, l ∈ N, β ≤ 1, X = X1||X2 ∈ ({0, 1}n)[2l] where Xi ∈ ({0, 1}n)[l], let

GoodC(β,X) denote the set of all s ∈ {0, 1}σ such that s is β-sparse and there are no

c-way collisions in C(s,X) – for every I ⊆ [2l] fof size c there exists i, j ∈ I such that

C(s,X[i]) 6= C(s,X[j]) where we are viewing C(s,X) as a set instead of the tuples.

The set GoodF(β,X, Y ). Here we extend the definition of “good” seeds relative to the

outputs Y . Recall that F is (1 − 1/4c)-unbiased and so for some sufficiently large l we

expect at most 1/4c fraction of the Y [i]’s to be 1/2-bad. GoodF is the set of seeds that

are in GoodC for which 1/4c fraction of the Y [i]’s are 1/2-bad.

Definition 8 For X as in Def. 7 and Y ∈ ({0, 1}n)2l, let GoodF(β,X, Y ) denote the set

of seeds s ∈ {0, 1}σ such that s ∈ GoodC(β,X) and

|{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}| ≤ 2l/4c = l/2c.4

2.4.2 Oracles (O,R) and HO

Recall that we are designing (O,R) for constructions F(·)[C,G] where C is (α, c)-

universal and also (β, δ)-sparse (as observed in Lemma 1), and F(·)[C,G] is (1 − 1/4c)-

unbiased for some c = O(1) and negligible α. Let us, furthermore, fix some sufficiently

large l = ω(σ+n). Next, we describe our oracles (O,R) which will depend on the families

C,G,F and parameters β, c, l.

Oracle O and HO. Oracle O embeds an information theoretically secure PRF. That

is, for every n ∈ N and every k ∈ {0, 1}n, O(1n, k, ·) is implemented by a function from

Funcs(n, r) which is sampled uniformly and independently at random with replacement.

Relative to such an oracle there exists a naPRF HO from n bits to r bits with n-bit keys.

4Note that we have 2l/4c because our X,Y are tuples of 2l length tuples.
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Oracle R1(1n):

if Tn1 = ⊥ then Tn1
$← ({0, 1}n)[l(n)]

return Tn1

Oracle R2(1n, X, Y ):

if ¬isValid(1n, l, X, Y ) then return 1

if X 6= Tn1 then return ⊥

if Tn2 [Y ] = ⊥ then Tn2 [Y ]
$← ({0, 1}n \ Tn1 )[l(n)]

return Tn2 [Y ]

Oracle R3(1n, X = X1||X2, Y = Y1||Y2):

if ¬isValid(1n, 2l,X, Y ) then return ⊥

if X1 6= Tn1 ∨X2 6= Tn2 [Y1] then return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y )× {0, 1}n :

FHO

[C,G]((s, k), X) = Y then return 1

return ⊥

Proc. isValid(1n, t,X, Y )

if X /∈ ({0, 1}n)[t] then return 0

if Y /∈ ({0, 1}m)t then return 0

return 1

Adversary A(O,R),f (1n):

X1 ← R1(1n)

Y1 ← f(X1)

X2 ← R2(1n, X1, Y1)

Y2 ← f(X2)

if R3(1n, X1||X2, Y1||Y2) = 1 then

return 1

return 0

Figure 2.2: Description of oracle R and adaptive adversary A that breaks the security of F relative to

(O,R).

H.Kg(1n) returns a randomly chosen key k ∈ {0, 1}n and HO(k, x) = O(k, x) for every

key k ∈ {0, 1}n and input x.

Oracle R. We decompose R into three oracles (R1,R2,R3) as described in Fig 2.2.

Oracle R1: Oracle R1 for every n ∈ N samples an l(n) length tuple T n1 of n-bit strings

without replacement. It accepts as input the security parameter 1n and outputs the

corresponding T n1 .
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Oracle R2: Oracle R2 works identically to the oracle R1 except that it takes as inputs

the security parameter 1n, and tuples X ∈ ({0, 1}n)[l(n)] and Y ∈ ({0, 1}n)l(n) and returns

a random l(n)-length tuple of n-bit strings (T n2 [Y ] in Figure 2.2) iff X = T n1 . The tuple

T n2 [Y ] is sampled without replacement from {0, 1}n \ T n1 . We should think of R1 as

providing the first challenge tuple X1 = T n1 and R2 as providing the second, “adaptive”

challenge tuple X2 = T n2 [Y1] after receiving the response Y1 for the first challenge X1.

Oracle R3: R1 and R2 are just fancy random string generators and provide no way

to break the security of F as both these oracles are in fact independent of F. The

responsibility of ensuring that one can break F is on R3. More precisely, R3 accepts as

queries a tuple (X = X1||X2, Y = Y1||Y2) outputs 1 iff it finds some key (s, k) for F

which maps X to Y where k ∈ {0, 1}n and s ∈ GoodF(β,X, Y ) and it is also required

that X1 = R1(1n) = T n1 and X2 = R2(1n, X1, Y1) = T n2 [Y1].

This completes the description of R. Note that R depends on the entire description

of oracle O in addition to the function families C and G and the parameters l, β. For

notational convenience, we will drop the superscript n from T ni and the input 1n from

all oracles. Next, in Section 2.4.3 we establish the insecurity of F as a PRF and in Sec-

tion 2.4.4 the security of H as a naPRF relative to (O,R) which put together will conclude

the proof of Proposition 2.

2.4.3 F is not a PRF relative to (O,R)

Relative to the oracle (O,R) there exists a trivial uniform adversary A(O,R),f which

uses adaptive access to the challenge oracle f to compute Yi = f(Xi) for X1, X2 provided

by R. In Lemma 2 we show that A indeed breaks the PRF security of F. The proof is

detailed in Section 2.9.2.

Lemma 2 (F is insecure relative to (O,R)) For A described in Figure 2.2 there ex-
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ists a non-negligible function ε such that, Advrel−prfA,F,(O,R)(n) ≥ ε(n).

2.4.4 H is a naPRF relative to (O,R)

In this section, we establish the non-adaptive security of H relative to (O,R) by

reducing it to the non-adaptive security of H relative to only O. That is, for every A

relative to (O,R) making only non-adaptive queries to its challenge oracle f but adaptive

queries to O and R, we construct an adversary B relative to only O that also only makes

non-adaptive queries to its challenge oracle f and is just as successful as A in the non-

adaptive security game of H. The adversary BO,f internally runs A(O,R),f and answers

all of its queries to O and f by forwarding to its own oracles. For the queries to R, B

attempts to simulate the oracle R internally for A. Recall that R is decomposed into

three oracles (R1,R2,R3) where R1 and R2 just output random l-length tuples of n-bit

strings and hence are easy to simulate. The challenge is to simulate the oracle R3, which

depends on the entire description of O, with only oracle access to O. Nevertheless, we

show that B can still simulate R3 queries correctly. We emphasize that the non-adaptive

query restriction on A is only w.r.t. querying f . It can query (O,R) adaptively.

Lemma 3 (H is a naPRF relative to (O,R)) For any non-adaptive adversary A that

makes at most q ≤ 2n/2 to its oracles we have for every n ∈ N, Advrel−naprfA,H,(O,R)(n) ≤ 2q ·ε+ 2q
2n

where

ε =
(q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2 ; t =

l

2c(c− 1)
.

Note that since l = ω(σ+n) and β is negligible, the advantage of A for any polynomial

q is negligible. This, with Lemma 2 concludes Proposition 2’s proof.
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Remark 4 Although for concreteness we state A’s advantage for q ≤ 2n/2, note that for

the advantage to be negligible we require q < 1/2β. Therefore, we can only prove non-

adaptive security of H (in an asymptotic sense) only when q < 1/2β. We note that an

adversary A making q ≥ 1/β queries can, indeed, break the non-adaptive security of H.

This is because, the range of function C(s, ·) for any β-sparse s has at least 1
β

elements

and hence an A can just query the challenge oracle f on the entire range of C(s, ·) and

force R3 to return 1 when f
$← H(this is the same attack as described in Section 2.1).

This is how we avoid the 1-call non-security preserving proof of Berman and Haitner [7].

More precisely, they establish PRF security of their construction assuming the naPRF is

secure against q = β−1-queries for some negligible β.

Proof of Lemma 3. Fix some computationally unbounded adversary A making q

queries and also some n ∈ N. Let us assume w.l.o.g. that A makes q distinct queries

to its oracles and is deterministic. We will proceed via a sequence of games and then

appropriately describe the adversary B relative to O.

Game G0 is identical to the real-world of the non-adaptive game for H except that

G0 maintains a set Q of all keys k for which A had issued an O-query on (k, x) for some

x. The code for G0 is shown in Figure 2.3. This is just a syntactic change, therefore

Pr[G0] = Pr
O,R,f

$←F

[A(O,R),f = 1].

Recall that any R3 query (X = X1||X2, Y = Y1||Y2) in G0 returns 1 iff it finds a key

(s, k) for F such that F((s, k), X) = Y where k ∈ {0, 1}n and s ∈ GoodF(β,X, Y ). Such

an R3 seems too generous in providing help to A. This is because it also considers k’s for

which A has not made an (k, ·) query to O, or equivalently k /∈ Q, to determine its answer.

Since for each k, Ok (implemented by the function πk in Fig 2.3) behaves as a random

function independent of other k′’s it is unlikely that A has any information about Ok for

any k /∈ Q. Hence A’s queries to R3 should only depend on k ∈ Q. Carrying this intuition
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Game G0,G1:

foreach k ∈ {0, 1}n do

πk
$← Funcs(n,m)

k∗
$← {0, 1}n

b
$← A(O,R),f

return b

Oracle R3(X = X1||X2, Y = Y1||Y2): //Game G0

if ¬isValid(2l,X, Y ) then return ⊥

if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y )× {0, 1}n :

FH[C,G]((s, k), X) = Y then return 1

return ⊥

Oracle R3(X = X1||X2, Y = Y1||Y2): //Game G1

if ¬isValid(2l,X, Y ) then return ⊥

if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y )×Q :

FH[C,G]((s, k), X) = Y then return 1

return ⊥

Oracle R1():

if T1 = ⊥ then T1
$← ({0, 1}n)[l]

return T1

Oracle R2(X,Y ):

if ¬isValid(1n, l, X, Y ) then return 1

if X 6= T1 then return ⊥

if T2[Y ] = ⊥ then

T2[Y ]
$← ({0, 1}n \ T1)[l(n)]

return T2[Y ]

Oracle O(k, x):

Q← Q ∪ {k}

return πk(x)

Oracle f(x):

y ← πk∗(x)

return y

Figure 2.3: Games G0 and G1 used in the proof of naPRF security of H relative to (O,R). The

only difference is the implementation of the R3 oracle – in G0 the R3 oracle while answering its queries

considers all k ∈ {0, 1}n while in G1 it only considers k ∈ Q. The isValid procedure (omitted here) is as

described in Fig. 2.2.

we move to the game G1 where R3 only considers k ∈ Q as opposed to k ∈ {0, 1}n.

Games G0 and G1 are close: To give an intuition of why G0 and G1 are close, let

us assume that A only makes one R3 query and furthermore is its last query. It is
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easy to see that the games remain identical until the R3 query. Let the query be on

some (X = X1||X2, Y = Y1||Y2). Furthermore, let us assume that X1 = R1(1n) and

X2 = R2(X1, Y1) as otherwise R3 outputs ⊥ in both G0 and G1, hence identical responses.

Now, the output of the R3 query in G0 differs from that in G1 if there exists some k /∈ Q

and some s ∈ GoodF(β,X, Y ) such that F((s, k), X) = Y . Fix one such k /∈ Q and some

s ∈ GoodF(β,X, Y ). The probability that R3 in G1 errs by ignoring this (s, k) can be

upper bounded by the probability that over the choice of Ok (a random function) that

for each i ∈ [l], we have Y1[i] = FOk(s,X1[i]). Let W1[i] = C(s,X1[i]) for all i ∈ [l]. Since,

s ∈ GoodF(β,X, Y ) (Definition 8) we know that there exists at least l/(c − 1) distinct

W1[i]’s as |C(s,X1)| > l/(c− 1). Furthermore, we know that for Y = Y1||Y2 at most l/2c

of the Y [i]’s are 1/2-bad w.r.t. (s,X[i]). Therefore, we can safely conclude that there

exists a subset Is ⊆ [l] of size at least l/(c− 1)− l/2c such that for every i 6= j ∈ Is, we

have

1. W1[i] 6= W1[j], where recall that W1 = C(s,X1)

2. Y1[i] is 1/2-good w.r.t. (s,X1[i]).5

Furthermore, none of the W1[i] have been queried before and hence Z1[i] = O(k,W1[i])

are random independent strings. Therefore, the probability that

Pr
Ok

[∀i ∈ Is : FOk(s,X1[i]) = Y1[i]] ≤ Pr
Ok

[∀i ∈ Is : G(s,X1[i], Z1[i]) = Y1[i]] ≤ 1

2t
,

where t = |Is| ≥ (c+1)·l
2c(c−1)

= Ω(l) as c = O(1). Taking the union bound over all σ-bit

s’s and n-bit k’s we can show that the probability that G1 errs on the first R3 query is

negligible. In other words, G1 can safely ignore k /∈ Q and this is because if for some

X and Y and some s if A has not already determined that F((s, k), X) = Y then the

5Recall that y is 1/2-good w.r.t. (s, x) if Pr
z

[G(s, x, z) = y] ≤ 1/2.
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probability that it is indeed the case is small. We will use this fact a number of times in

the proof. Let us make this formal.

Definition 9 We say that a set Q ⊆ {0, 1}n × {0, 1}m is a (n,m)-query-set if for every

w there exists at most one y such that (w, y) ∈ Q. Furthermore, let Query(Q) define the

set of queries, that is, Query(Q) = {w : ∃y s.t. (w, y) ∈ Q}.

Lemma 4 For n, l, t ∈ N, consider X ∈ ({0, 1}n)[l], Y ∈ ({0, 1}m)l and let Q ⊆ {0, 1}n×

{0, 1}m be an (n,m)-query set. Let s be such that there exists Is ⊆ [l] of size t such that

∀i 6= j ∈ Is the following holds: (1) C(s,X[i]) 6= C(s,X[j]), (2) C(s,X[i]) /∈ Query(Q),

and (3) Y [i] are 1/2-good w.r.t. (s,X[i]). Then,

Pr
g

$←Funcs(n,m)|Q
[Fg(s,X) = Y ] ≤ 2−t ,

where g
$← Funcs(n,m)|Q is the process of sampling a function uniformly at random from

Funcs(n,m) such that for every (w, y) ∈ Q we have g(w) = y.

But is bounding the above probability for k /∈ Q enough to show that G0 and G1

close? Recall that A has access to the oracle f which internally calls Ok∗ (where k∗ is

the random key sampled by the games to implement f . That is, f = Ok∗) . It could

very well be that k∗ /∈ Q but that hardly ensures that A has made no queries to O on

(k∗, ·). In fact if A manages to find some s such that Ff (s,X) = Y then R3 queries

answered in G1 are necessarily incorrect. For this to happen, A needs to find some s

such that Ff (s,X1) = Y1 and Ff (s,X2) = Y2. This is where the iterative nature of R1,R2

is supremely crucial which ensures that A learns X2 after committing to Y1 (i.e., after

querying R2 on (X1, Y1)). Since A only makes non-adaptive queries to f it is either in

one of the following cases: (1) Issues all f queries after committing to Y1 or (2) Issues all

f queries before learning X2. In (1) A succeeds only if the challenge oracle f agrees with
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Y1 on all of X1 (for some s ∈ GoodC(β,X)) which is unlikely by a discussion we made in

the context of handling k /∈ Q and in (2) A succeeds only if C(s,X2) falls inside the set of

f queries it had issued. Fortunately, such an event is also unlikely for s that is β-sparse

and randomly sampled X2. In both cases, for every s ∈ GoodC(β,X) the conditions of

Lemma 4 are satisfied for some t = Θ(l). The full proof is in Section 2.5.

Lemma 5 For t = l/(2c(c− 1)),

|Pr[G0]− Pr[G1]| < q ·
(

(q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2

)
.

Next, we consider a similar transition from the game H0 (identical to the random world

of the naPRF security game of H) to a game H1 where R3 queries are answered only by

considering k ∈ Q as done in G1. By a similar analysis(more details in Section 2.5.3),

Lemma 6 For t = l/(2c(c− 1)),

|Pr[H0]− Pr[H1]| < q ·
(

(q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2

)
.

Now, we are set to describe our adversary B relative to O. Note that in both G1 and

H1 the R3 queries only depend on k ∈ Q. Consider the following adversary B which is

relative to O and has non-adaptive access to the challenge oracle f . It internally runs A

and answers its queries to O and f by forwarding them to its own oracles. It internally

simulates R1 and R2 and to simulate R3 we allow B to learn the entire description of Ok

whenever the first query to Ok is made by A. Such a B can then perfectly simulate the

game G1 (resp., H1) for A. Therefore, we have argued that,

Pr[G1] = Pr
O,k∗

$←{0,1}n
[BO,f=HO

k∗ = 1] ;Pr[H1] = Pr
O,f

$←Funcs(n,m)

[BO,f = 1] . (2.2)
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The final step is to invoke the security of H relative to O. For this, we consider an

extended version of the security game of H relative to O where for every (k, x) query to

O instead of just getting O(k, x) the adversary B gets the entire description of Ok – we

refer to such queries as “advanced” queries. Note that B makes exactly q “advanced”

queries and also only makes non-adaptive queries to f . Then, we claim the following

whose proof follows from standard techniques,∣∣∣∣∣ Pr
O,k∗

$←{0,1}n
[BO,f=HO

k∗ = 1]− Pr
O,f

$←Funcs(n,r)

[BO,f = 1]

∣∣∣∣∣ ≤ 2q

2n
. (2.3)

Combining Lemmas 5, 6 with Equations 2.2,2.3 concludes the proof of Lemma 3.

Next, we discuss the proofs of Lemma 5 and Lemma 6 in Section 2.5.

2.5 Proofs of Lemma 5 and Lemma 6

We will first focus on showing Lemma 5. The proof of Lemma 6 is similar and we

discuss it in Section 2.5.3.

Proof of Lemma 5. To show the indistinguishability of G0 and G1 we consider for

every i ∈ {0, . . . , q} an intermediate game Gi where any queries to R3 within the first

i queries are answered as in G1 (i.e., by just considering k ∈ Q), while the rest of the

R3 queries are answered as done in G0 (which consider all k ∈ {0, 1}n). Note that G0 is

identical to G0 and Gq to G1. Therefore,

|Pr[G0]− Pr[G1]| ≤
∑

i∈{0,...,q−1}

|Pr[Gi]− Pr[Gi+1]| . (2.4)

Let us fix some i ∈ {0, . . . , q − 1} and consider Gi and Gi+1. The first point of

difference between Gi and Gi+1 is the i+ 1-st query. Furthermore, if the i+ 1-st query is

to any oracle other than R3 then both games remain identical as queries to oracles other
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than R3 are handled identically throughout both games. Therefore, w.l.o.g. we assume

that the i + 1-st query in both games is to R3. Given this, we introduce two games Ĝ
i

and Ĝ
i+1

for Gi and Gi+1 respectively (Figure 2.4).

Description of Game Ĝ
i
: Game Ĝ

i
is identical to the game Gi except that the oracles

O and f are implemented via lazy sampling until the i+ 1-st query.

More precisely, for the first i queries: (1) For any query to O on (k, x) which is the first

query to Ok (i.e., k /∈ Q), a random function is sampled from Funcs(n,m) and assigned

to πk. The game also inserts k in the set Q. The response for this query and any future

query x on Ok is replied with πk(x). (2) For any query to f on x, if k∗ /∈ Q the response

is a uniformly random value y
$← {0, 1}m otherwise the response is y = πk∗(x).

The oracles f and Ok∗ are correlated and hence the function πk∗ in (1) is sampled

to be consistent with the set Qf . We denote this by πk∗
$← Funcs(n,m)|Qf in Fig-

ure 2.4. Furthermore, the game maintains the queries/responses to Ok∗ in the set Qk∗

and queries/responses to f in a different set Qf .

By the assumption on A’s behavior, we know that the i+1-st query is to R3. Since this

query to R3 (in Gi) depends on all k ∈ {0, 1}n (even the ones not in the set Q) the game

at the beginning of this call to R3 completes the description of the oracles O and f . That

is, it first samples functions πk for all k /∈ Q∪ {k∗} inside the subroutine CompleteO and

completes the description of f (equivalently, Ok∗) inside Completef. Now, the response

for this i + 1-st query is 1 if there exists some k ∈ {0, 1}n and some s ∈ GoodF(β,X, Y )

such that F((s, k), X) = Y . Otherwise, R3 returns ⊥. It is clear that this R3 query is

computed as in Gi. In the process, Ĝ
i

sets two bad flags bad1 and bad2 where bad1 is set

if there exists some k /∈ Q for which F((s, k), X) = Y , and bad2 is set if the same is true

for k = k∗. The game Ĝ
i

is only syntactically different from Gi, therefore

Pr[Gi] = Pr[Ĝ
i
] . (2.5)
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Game Ĝ
i
, Ĝ

i+1
:

bad1, bad2, done← false; c← 0

k∗
$← {0, 1}n

b
$← AO,R,f

return b

Proc. R2(X,Y ):

c← c+ 1

if ¬isValid(1n, l, X, Y ) then return 1

if X 6= T1 then return ⊥

if T2[Y ] = ⊥ then

T2[Y ]
$← ({0, 1}n \ T1)[l(n)]

return T2[Y ]

Proc. O(k, x):

c← c+ 1

if ¬done ∧ k /∈ Q then

if k = k∗ then πk∗
$← Funcs(n,m)|Qf

else πk
$← Funcs(n,m)

Q← Q ∪ {k}

return πk(x)

Proc. R1(1):

c← c+ 1

if T1 = ⊥ then T1
$← ({0, 1}n)[l]

return T1

Proc. CompleteO():

foreach k /∈ Q ∪ {k∗} do

πk
$← Funcs(n,m)

return 1

Proc. Completef():

if k∗ /∈ Q then πk∗
$← Funcs(n,m)|Qf

return 1

Proc. f(x):

c← c+ 1

if ¬done ∧ k∗ /∈ Q then y
$← {0, 1}m

else y ← πk∗(x)

Qf ← Qf ∪ {(x, y)}

return y

Figure 2.4: Intermediate Games used in the proof of non-adaptive security of H relative to (O,R).
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Proc. R3(X = X1||X2, Y = Y1||Y2):

c← c+ 1; b← 0

if c ≤ i then

if ¬isValid(2l,X, Y ) ∨X1 6= T1 ∨X2 6= T2[Y1] then return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y )×Q : F((s, k), X) = Y then return 1

elseif c = i+ 1 then

if ¬isValid(2l,X, Y ) ∨X1 6= T1 ∨X2 6= T2[Y1] then

CompleteO();Completef()

done← true

return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y )×Q : F((s, k), X) = Y then b← 1

CompleteO()

if ∃(s, k) ∈ GoodF(β,X, Y )× (Qc \ {k∗}) : F((s, k), X) = Y then

bad1 ← true; b← 1

Completef()

if ∃s ∈ GoodF(β,X, Y ) : Ff (s,X) = Y then

bad2 ← true; b← 1

done← true

if b = 1 then return 1

else

if ¬isValid(2l,X, Y ) then return ⊥

if X1 6= T1 ∨X2 6= T2[Y1] then return ⊥

if ∃(s, k) ∈ GoodF(β,X, Y )× {0, 1}n :

F((s, k), X) = Y then return 1

return ⊥

Figure 2.4: (continued) Intermediate Games used in the proof of non-adaptive security of H relative

to (O,R).
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Description of Game Ĝ
i+1

: Game Ĝ
i+1

is identical to that of Ĝ
i

except that in the

i+ 1-st query, R3 responds with 1 iff there exists some k ∈ Q such that F((s, k), X) = Y .

This is identical to how this query to R3 is handled in Gi+1. The game Ĝ
i+1

is also a

syntactic variant of Gi+1, therefore

Pr[Gi+1] = Pr[Ĝ
i+1

] , (2.6)

Furthermore, the games Ĝ
i

and Ĝ
i+1

are identical until either of the bad flags are set

in Ĝ
i
. By the fundamental lemma of game playing we have,

|Pr[Ĝi]− Pr[Ĝ
i+1

]| ≤ Pr[bad in Ĝ
i
] . (2.7)

Next, we bound the probability of bad being set in Ĝ
i

in Lemma 7.

Lemma 7 For every i ∈ {0, . . . , q},

Pr[bad is set in Ĝ
i
] ≤ (q + 1)2σ

2t
+

2σ+n

2t(c+1)
+

6q

2n
+ q 2σ

(
l

l/2

)
(2βq)l/2 .

Before we prove Lemma 7, we note that Lemma 5 follows directly by

combining Lemma 7 and Equation (2.5), Equation (2.6) and Equation (2.7).

The rest of this section is devoted to proving Lemma 7: Let us fix some i ∈ {0, . . . , q}.

Note that bad is set in Ĝ
i

if either of bad1 or bad2 is set. While the analysis of bad1 is

straightforward, some care needs to be taken while bounding bad2. In Section 2.5.1 we

define some bad events on which we will condition on to bound the probability of setting

bad = bad1 ∨ bad2 in Section 2.5.2.

2.5.1 Bad Events in Ĝ
i

In this section we define bad events and bound the probability of these events occur-

ring in Ĝ
i
.
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The first event is BadO which captures the event that A makes a direct query to

O(k∗, ·) within its first i queries. Conditioned on ¬BadO the queries/responses to f and

O are independent.

Definition 10 The event BadO occurs in Ĝ
i

if within the first i queries, there exists an

O(k, ·) query such that f = Ok. In other words, BadO occurs if there exists a O(k∗, ·)

query within the first i queries.

The second event is BadR which captures the event that after all parallel queries to

f have been made, a future R2 query results in an X2 for which more than l/2 of the

C(s,X2[i])’s fall inside the set queried Qf , enabling A to compute the Ff (s,X2[i]).

Definition 11 The event BadR occurs in Ĝ
i

if within the first i queries, immediately

after an assignment T2[Y1]
$← ({0, 1}n \ T1)[l] there exists some s such that the following

holds for Q = Qk∗ ∪Qf ,

1. s is β-sparse.

2. there exists some Is ⊆ [l] of size at least l/2 such that for every i ∈ Is,

C(s, T2[Y1][i]) ∈ Query(Q) ,

where by Query(Q) = {w : (w, y) ∈ Q}.

Informally, Badf captures the event that after all parallel queries to f have been

made, for a prior R2 query on (X1, Y1) there exists some seed s (e.g., for which no c-way

collisions occur) for which more than l/2 of the C(s,X1[i])’s fall inside the query set

Qf and furthermore for all such i’s we have Ff (s,X1[i]) = Y1[i]. A direct consequence of

showing that Badf doesn’t occur allows us to focus on seeds s for which at least l/2 of the

C(s,X1[i])’s do not belong to Qf . This will be helpful in later bounding the probability

of setting bad2.
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Definition 12 The event Badf occurs in Ĝ
i

within the first i queries, if immediately

after all parallel queries to f there exist some Y1 such that T2[Y1] 6= ⊥ and s such that

the following hold for Q = Qf ∪Qk∗,

1. there are no c-way collisions in C(s, T1).6

2. for Is = {i ∈ [l] : C(s,X1[i]) ∈ Query(Q)}, we have |Is| ≥ l/2.

3. |{i : Y1[i] is 1/2-bad w.r.t. (s, T1[i])}| ≤ l/2c. 7

4. for every i ∈ Is,

G(s, T1[i], z) = Y1[i] , (2.8)

where (C(s, T1[i]), z) ∈ Q.

Definition 13 The event Bad happens in Ĝ
i

if the event BadO ∨ BadR ∨ Badf happens.

Next, we bound the probability of the event Bad happening.

Claim 1

Pr[Bad] ≤ 6q

2n
+ q · 2σ

2t
+ q 2σ

(
l

l/2

)
(2β · q)l/2 where t =

l

2c(c− 1)
.

At a high level the proof of Claim 1 proceeds in two steps – (1) bounding the proba-

bility of each of the three bad events BadO, Badf and BadR happening, and (2) doing a

simple union bound. The formal proof can be found in Section 2.5.4.

6Recall that R3 ignores seeds s for which there are c-way collisions in C(s, T1).
7Recall that R3 ignores pairs (s, Y = Y1||·) for which there are more than l/2c bad Y1[i]’s.
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2.5.2 Bounding bad in Ĝ
i

In this section, we bound the probability of flags bad1 and bad2 getting set in the

game Ĝ
i

(see Lemma 7). We will be conditioning on ¬Bad event (Definition 13). Recall

that each of bad1 and bad2 are set only when the i+ 1-st query is made, furthermore this

query is to R3. Let us assume that this i + 1-st query is on (X = X1||X2, Y = Y1||Y2).

If isValid(X1, Y1, X2, Y2) is false then conditioned on this the probability of setting bad

is zero. So, w.l.o.g. assume that isValid(X1, Y1, X2, Y2) is indeed true. This means that

X1 = T1 and T2[Y1] 6= ⊥. In fact, T2[Y1] = X2. Since, T2[Y1] 6= ⊥, this means that prior

to this query to R3 there was a query to R2 on (X1, Y1) which is when the value T2[Y1]

was defined. Let us assume that this was some j-th query where j < i. Using the above

notation we next bound the probability of bad1 being set.

Claim 2 Pr[bad1] ≤ 2σ+n

2t·(c+1) , where t = l
2c(c−1)

.

Proof: By the description of Game Ĝ
i
, we note that bad1 is set only if for the query

(X = X1||X2, Y = Y1||Y2) to R3, the set Q and k∗, there exists some s ∈ GoodF(β,X, Y )

and k ∈ Qc \ {k∗}, such that F((s, k), X) = Y where Qc is the set complement of Q.

That is,

Pr[bad1] ≤ Pr[∃s ∈ GoodF(β,X, Y ), k ∈ Qc \ {k∗} : F((s, k), X) = Y ]

≤ Pr[∃s ∈ GoodF(β,X, Y ), k ∈ Qc \ {k∗} : F((s, k), X1) = Y1] ,

(2.9)

where we use the fact that probability that F((s, k), X1) = Y1 upperbounds the probabil-

ity of F((s, k), X) = Y .

Let us fix some such k ∈ Qc \ {k∗} and some s ∈ GoodF(β,X, Y ). Since for such k,

the CompleteO subroutine sampled a uniform function πk,

Pr
πk

[Fπk(s,X1) = Y1] ≤ Pr
πk

[∀i ∈ [l] : Fπk(s,X1[i]) = Y1[i]] , (2.10)
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Since s ∈ GoodF(β,X, Y ) we know that there exists some subset Is ⊆ [l] of size l/(c −

1)− l/2c where for every i 6= j ∈ Is, we have

1. C(s,X1[i]) 6= C(s,X1[j])

2. Y1[i] is 1/2-good w.r.t. (s,X1[i])

Furthermore, no queries to Ok have been made, therefore none of the C(s,X1[i]) have

been queried yet. Therefore, we can bound the probability in Equation 2.10 by a simple

application of Lemma 4 by 1
2t

where t = l
2c(c−1)

· (c + 1). The final bound follows by a

union bound over all such 2n k’s and 2σ s’s.

Next, we bound the probability of bad2 being set conditioned ¬Bad.

Claim 3 Pr[bad2|¬Bad] ≤ 2σ

2t
, where t = l

2c(c−1)
.

Proof: By the description of Game Ĝ
i
, we note that bad2 is set only if for the

query (X = X1||X2, Y = Y1||Y2) there exists some s ∈ GoodF(β,X, Y ) and such that

Ff ((s, k), X) = Y . Here, we will condition on ¬Bad. Since BadO doesn’t happen, the

responses to the oracle f and O are independent.

Recall that the R2 query corresponding to this R3 query was for some j ≤ i. Let

us assume that A makes exactly p distinct queries to f . Since A only has non-adaptive

access to f , it makes all its queries to f at once. Let us assume the p distinct queries are

the t-th, t + 1-th, . . . , (t + p − 1)-th queries. Now there are two cases to consider here

depending on the ordering of R2 and f queries. The first case is when j < t, that is, the

R2 query was made earlier than the first f query and the second case is that j > t+p−1.

- Case (a) j < t: We condition on ¬Badf. Since the event Badf doesn’t happen we

only need to focus on s ∈ GoodF(β,X, Y ) for which at most l/2 of all the l many

C(s,X1[i]) were queried to f . Fix one such s. We make three observations for this
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s (1) at least l/2 of the l many C(s,X1[i]) are not yet queried to f , (2) since there

are no c way collisions in C(s,X1), at least l/2(c − 1) of the l many C(s,X1[i])’s

are distinct, and (3) there are at most l/2c Y1[i]’s that are 1/2-bad w.r.t. (s,X1[i])

(by definition of s). Combining (1), (2) and (3), we have that there exists Is ⊆ [l]

of size at least l/2(c− 1)− l/2c such that for all i 6= j ∈ Is,

1. C(s,X1[i]) 6= C(s,X1[j])

2. C(s,X1[i]) /∈ Query(Qf )

3. Y1[i]’s are 1/2-good w.r.t. (s,X1[i]).

Then the bound follows from a simple application of Lemma 4 with parameter

t = l
2c(c−1)

. Taking union bound over all such s, we have that,

Pr[bad2 ∧ j < t|¬Bad] ≤ 2σ

2t
, (2.11)

where t = l
2c(c−1)

.

- Case (b) j > t+ p− 1: We now condition on ¬BadR. Let us fix some

s ∈ GoodF(β,X, Y ). Since the event BadR didn’t happen we know that for every

β-sparse s (and hence every s ∈ GoodF(β,X, Y )) at least l/2 of the C(s,X2[i])’s are

not in the set Query(Qf ). Then by the same argument as done in Case (a) when

j < t, we note that there exists a set Is of size l/2(c − 1) − l/2c such that for all

i 6= j ∈ Is,

1. C(s,X2[i]) 6= C(s,X2[j])

2. C(s,X2[i]) /∈ Query(Qf )

3. Y2[i]’s are 1/2-good w.r.t. (s,X2[i]).

Then the bound follows from a simple application of Lemma 4 with parameter

t = l
2c(c−1)

.
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Taking union bound over all such s, we have that,

Pr[bad2 ∧ j > t+ p− 1|¬Bad] ≤ 2σ

2t
, (2.12)

where t = l
2c(c−1)

.

Since Case (a) and Case (b) are exclusive, from Equation (2.11) and Equation (2.12)

we have,

Pr[bad2|¬Bad] ≤ 2σ

2t
, (2.13)

where t = l
2c(c−1)

.

Finally, we arrive at the probability of bad being set by combining Claim 1,Claim 2

and Claim 3,

Pr[bad] ≤ Pr[bad1] + Pr[bad2] ≤ Pr[bad1] + Pr[bad2|¬Bad] + Pr[Bad]

≤ 2σ+n

2t(c+1)
+

2σ

2t
+

6q

2n
+ q · 2σ

2t
+ q

(
l

l/2

)
(2β · q)l/2 ,

where t = l
2c(c−1)

. This concludes the proof of Lemma 7.

2.5.3 Proof of Lemma 6

The proof is identical to the proof of Lemma 5. More precisely we consider a sequence

of hybrids Hi except that there is no dependence between the oracles f and O as in

case of Gi. The indistinguishability of neighboring games Hi and Hi+1 by bounding the

probability of bad flag being set in Hi computed identically to the probability of bad being

set in Gi (discussed in Lemma 7). The only difference is that in the case of Hi the event

BadO happens with probability zero as there is no k∗ such that f = O(k∗, ·). The rest of

the analysis is identical to Lemma 7. We skip the formal proof.
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2.5.4 Proof of Claim 1

We bound the probability of the event Bad by first individually bounding the prob-

abilities of each of the three bad events BadO, Badf and BadR defined in Section 2.5.1,

and then applying a simple union bound.

Claim 4 Pr[BadO] ≤ 2q
2n

.

Proof: First note that R1 and R2 are independent of oracles f and O, and responses

by R3 within the first i queries only depend on k ∈ Q. Therefore querying the oracle

R = (R1,R2,R3) gives no more information to A about k∗ than it already has from its

queries to (f,O). Therefore, the probability of querying the oracle O on key k∗ in the

j + 1-st query is no better than 1
2n−j . Using this, the probability of the event BadO

happening can be upper bounded by
∑i−1

j=0
1

2n−j (i.e., union bound over all q queries).

Finally note that as i ≤ q << 2n/2, the later can be upper bounded by 2i/2n.

Next, we proceed to bound the probabilities of events BadR and Badf. Here we

will be conditioning on ¬BadO which ensures that no queries to O on key k∗ are made,

that is, Qk∗ = φ. This, furthermore ensures that (a) responses by oracles f and O are

independent of each other, and (2) allows us to view Q = Qf in the definitions of BadR

(Definition 11) and Badf (Definition 12).

Claim 5 Pr[BadR|¬BadO] ≤ q 2σ
(
l
l/2

)
(2β · q)l/2 .

Proof: Recall that the event BadR occurs in Ĝ
i

if within the first i queries, immedi-

ately after an assignment T2[Y1]
$← ({0, 1}n \ T1)[l] (happens during an R2(T1, Y1) query),

there exists some s such that the following holds for Q = Qk∗ ∪Qf ,

1. s is β-sparse.
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2. there exists some Is ⊆ [l] of size at least l/2 such that for every i ∈ Is,

C(s, T2[Y1][i]) ∈ Query(Q) ,

where by Query(Q) = {w : (w, y) ∈ Q}.

To bound BadR, we will condition on ¬BadO which ensures that Qk∗ = φ and hence

Q = Qf in the definition of BadR. If Qf = φ within the first i queries then the set Q is

also empty, conditioned on which the probability of BadR occurring is 0. So, w.l.o.g. let

us assume that Q = Qf 6= φ. This means some queries to f were made within the first i

queries. In fact, since A has only non-adaptive access and the i+ 1-st query is to R3, A

must then have made all its queries to f within the first i queries. Let j-th query be the

first query to f for some 0 < j ≤ i. Let us assume that there are p ≤ q distinct queries

to f . Then j + p− 1-th query is the last query to f . We denote the set of queries made

to f with Query(Qf ).

Now, let us consider some R2 query made after these f queries. Let the query be on

some (X1, Y1). Let us furthermore assume that X2 is the response of this R2 query, that

is, X2 = R2(X1, Y1). If X1 6= T1 or if isValid(X1, Y1) 6= 1 then X2 = ⊥ and conditioned

on the probability of BadR occurring is zero. Let us, w.l.o.g. assume that X1 and Y1 are

indeed as necessary then X2 = T2[Y1] is a l-length tuple of n-bit strings. Since A only

makes distinct queries, it must be that X2 = T2[Y1] was freshly sampled at random. The

event BadR occurs for such an R2 query if for the freshly chosen, random tuple X2 there

exists some seed s that is β-sparse for which there exists Is ⊆ [l] of size l/2 such that for

all i ∈ Is, we have

C(s,X2[i]) ∈ Query(Q) .

Let us fix one such s that is β-sparse. We are interested in the following,

Pr
X2

[
∃Is⊆[l]
|Is|=l/2 : ∀i ∈ Is,Cs(X2[i]) ∈ Query(Q)

]
.
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Let us furthermore fix some arbitrary subset Is = [l] of size l/2.

By definition of β-sparseness, we know that for every w ∈ Query(Qf ) the number of

pre-images under s is at most β · 2n. Therefore, the number of pre-images of Query(Qf )

under s is at most β · p · 2n. Therefore, for the above fixed Is,

Pr
X2

[∀i ∈ Is : Cs(X2[i]) ∈ Query(Q)] ≤
l/2−1∏
i=0

β · p2n − i
2n − (3l/2 + i)

,

where recall that X2 is sampled with replacement from {0, 1}n \ T1. Since 2l < 2n/2,

l/2−1∏
i=0

β · p2n − i
2n − (3l/2 + i)

≤
(

β · p2n

2n − (2l − 1)

)l/2
≤ (2βp)l/2 .

Therefore,

Pr
X2

[∀i ∈ Is : Cs(X2[i]) ∈ Query(Q)] ≤ (2βp)l/2 .

The final bound follows by taking a union bound over all
(
l
l/2

)
number of subsets of

[l] of size l/2, over all 2σ s’s and over all q queries to R2.

Claim 6 Pr[Badf|¬BadO] ≤ q·2σ
2t

, where t = l
2c(c−1)

.

The idea of the proof is pretty similar to the Proof of Lemma 4 presented in the discussion.

Proof: Throughout the proof we will condition on BadO not happening which

implies Qk∗ = φ. We divide the proof into two cases depending on when queries f were

made.

- Case A: No queries to f were made within the first i queries (i.e., Qf = φ). Then,

the probability of Badf is 0 (by Definition 12).

- Case B: Let us now consider the case f was queried within the first i queries. Since

A has only non-adaptive access to f it must make all its queries to f before this

i + 1-th query to R3. Let us assume that A makes p ≤ q distinct queries to f and

denote this set of queries by Query(Qf ).
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Let us fix some query to R2 on Y1 that occurs before the first query to f and fix

some s that satisfies the following conditions:

1. T2[Y1] 6= ⊥.

2. there are no c-way collisions in C(s, T1).

3. for Is = {i ∈ [l] : C(s,X1[i]) ∈ Query(Qf )}, we have |Is| ≥ l/2.

4. |{i : Y1[i] is 1/2-bad w.r.t. (s, T1[i])}| ≤ l/2c.

Badf occurs for the pair (Y1, s) iff for all i ∈ Is the responses Z1[i] = f(W1[i]) were

such that G(s, T1[i], Z1[i]) = Y1[i]. We are interested in computing the probability

of this happening. Recall that, since there are no c-way collisions in C(s, T1[i]) it

must be that are at least l/(c− 1) distinct elements in C(s, T1[i]). Furthermore, it

must be that there are at least l/2(c− 1) distinct elements among W1’s restricted

to the set Is. That is,

|{W1[i] : ∀i ∈ Is}| > l/2(c− 1) .

Next, there are at most l/2c i’s in [l] for which Y1[i] is 1/2-bad (by assumption on

Y1 and s). Therefore, we can safely conclude that there exists a subset Js ⊆ [l] of

size at least l/2(c− 1)− l/2c such that for every i 6= j ∈ Js, we have

1. W1[i] 6= W1[j] .

2. Y1[i] is 1/2-good w.r.t. (s, T1[i]).

Since we are conditioning on ¬BadO, we know that no queries to f (or O∗k) have be

made earlier. Therefore, Z1[i] = f(C(s, T1[i])) for all i ∈ Js are sampled at random.

So the probability of Badf happening for the fixed (s, Y1) can be upper bounded by

the probability that over the random choice of Z1[i]’s, we have Ff (s,X1[i]) = Y1[i].

This can be upper bounded by 1
2t

where t = |Js| ≥ l/2(c− 1)− l/2c = l
2c(c−1)

.
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Now, for every such Y1 there exists some R2 query on (·, Y1). Therefore, there are at

most q such Y1’s. Final bound follows by taking union bound over all 2σ s’s’ and q such

Y1’s.

Proof of Claim 1. Finally, we are ready to bound the probability of Bad. Note that,

Pr[Bad] ≤ Pr[BadO ∨ BadR ∨ Badf] ,

≤ 3 · Pr[BadO] + Pr[Badf|¬BadO] + Pr[BadR|¬BadO] ,

≤ 6q

2n
+ q · 2σ

2t
+ q 2σ

(
l

l/2

)
(2β · q)l/2 , where t =

l

2c(c− 1)
,

where inequalities follow from Claim 4,Claim 5,Claim 6.

2.6 The Case of Biased F’s: Proof of Proposition 3

Let us fix some functions r,m, σ and some 1/c-biased function family F[C,G] (as in

the statement of Proposition 3). Since, F is 1/c-biased, we know by Definition 4 that

there exists some sufficiently large polynomial l = ω(σ) and some non-negligible function

εl such that for all n ∈ N,

Pr
X,s,f

[|{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}}| ≥ l/c] ≥ εl(n) . (2.14)

Let us fix one such l and εl. In the rest of this section we prove Proposition 3 as

follows: First in Section 2.6.1 we provide our oracles (O,R) (that depends on F[C,G] and

parameters l, c) and function family HO. Then in Section 2.6.2 we show that F is not

a PRF relative to (O,R) and finally in Section 2.6.3 we discuss the non-adaptive PRF

security of H relative to (O,R).

2.6.1 Oracle (O,R) and HO

Oracle O and the function family HO are identical to the ones defined in Section 2.4.2.
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Oracle R1():

X
$← ({0, 1}n)[l]

return X

Oracle R2(X,Y ):

if ∃s s.t. |{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}| ≥ l/c then

return 1

return ⊥

Figure 2.5: The oracle R for Section 2.6.

The oracle R is decomposed into (R1,R2), where R1 returns X
$← ({0, 1}n)[l]. The

oracle R2 accepts an l-length tuple (X[i], Y [i]) where X[i]’s are distinct n-bit strings and

Y [i]’s are m-bit strings (possibly not distinct). R2 returns 1 iff it finds some seed s and

set Is ⊆ [l] of size l/c such that Y [i]’s are 1/2-bad w.r.t. (s,X[i]) for all i ∈ Is. We give

the formal description of R in Fig. 2.5. This completes the description of our oracles.

Remark 5 On first look it might seem that the oracle R1 is not necessary. Indeed, an

adversary that can receive the parameter l as non-uniform advice should be able to sim-

ulate R1 perfectly. However, we are in the regime of uniform security where adversaries

cannot receive non-uniform advice. We solve this issue by designing an oracle R1 that

provides l to a uniform adversary upon query.

2.6.2 F is not a PRF relative to (O,R)

First let us prove the following useful claim that captures the probability that R’s

outputs 1 when Y [i]’s are outputs of a random function.

Claim 7 For any n, l ∈ N, any X ∈ ({0, 1}n)[l],

Pr
Y

[∃s : |{i : Y [i] is 1/2-bad w.r.t. (s,X[i])}| > l/c] ≤
(
l

l/c

)
· 2σ

2ml/c
,

where Y
$← ({0, 1}m)l.
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Proof: Let us fix some s and some Is ⊆ [l] of size l/c. We are interested in the

probability that,

Pr
Y [1],...,Y [l]

[∀i ∈ Is : Y [i] is 1/2-bad w.r.t. (s,X[i]) ] ,

For any (s,X[i]) there can be at most one ys,X[i] which is 1/2-bad. That is, there is

at most one ys,X[i] for which,

Pr
z

[G(s,X[i], z) = ys,X[i]] > 1/2 .

Now the probability that a randomly sampled Y [i] equals ys,X[i] is at most 1/2m. There-

fore,

Pr
Y [1],...,Y [l]

[∀i ∈ Is : Y [i] is 1/2-bad w.r.t. (s,X[i]) ] ≤
(

1

2m

)l/c
.

The proof follows from a union bound over all 2σ seeds s and
(
l
l/c

)
subsets Is.

Next, we show that relative to (O,R) the construction FH[C,G] is not secure.

Lemma 8 (F is insecure relative to (O,R)) There exists a PPT adversary A relative

to (O,R) and a non-negligible function ε such that for every n ∈ N,

Advrel−prfA,F,(O,R)(n) ≥ ε(n) .

Proof: First, we define the adversary A and then argue that it achieves a non-

negligible advantage. A relative to (O,R) proceeds by querying R1 to receive X
$←

({0, 1}n)[l] and then queries its challenge oracle f to compute Y = f(X). A then queries

R2(X, Y ) and outputs whatever R2 outputs.

Now, let us first consider the case when A is interacting with f = FH((s, k), ·) for

some randomly chosen s and k. Recall that Hk(·) = O(k, ·) is sampled randomly from
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Funcs(n, r) and hence has the same distribution as the f
$← Funcs(n, r). Since, F is 1/c-

biased there exists some s with probability εl (this was defined at the begining of Sec-

tion 2.6) for which at least l/c of the Y [i]’s are 1/2-bad w.r.t. (s,X[i]). Therefore, R2

returns 1 with probability at least εl in this case.

Now consider the case when A is interacting with f
$← Funcs(n,m). Since X[i]’s are

distinct, the corresponding Y [1] = f(X[1]), . . . , Y [l] = f(X[l]) are l randomly chosen

n-bit strings. Then by Claim 7 the probability that R2 returns 1 is at most
(
l
l/c

)
· 2σ

2ml/c
.

Since,
(
n
c

)
≤ (en/c)c, we can upperbound

(
l
l/c

)
by cel/c. Therefore, probability that R2

outputs 1 in this case can be upper bounded by 2σ · (ce/2m)l/c. Since 2m ≥ 2ce and

l = ω(σ) and c = O(1), R2 returns 1 in this case only with negligible probability.

Therefore, combining both cases we conclude that A achieves a non-negligible advan-

tage in breaking F relative to (O,R).

2.6.3 H is naPRF relative to (O,R).

Next we show that relative to (O,R), H remains a naPRF. Note that the oracle R is

completely independent of the oracle O, and hence also independent of H. This allows us

to reduce the non-adaptive security of H relative to (O,R) to the non-adaptive security

of H relative to O. That is, for every non-adaptive PPT adversary A relative to (O,R)

participating in the naPRF-security of H, we can construct a non-adaptive computation-

ally unbounded adversary B relative to only O. B, with l hardwired, internally runs A

and answers A’s queries to oracles O and h by forwarding to its own oracle (O, h) while

perfectly simulating the oracle R for A. This is possible because R can be computed

by an unbounded adversary. Next, note that if A makes q queries to its oracles then

B also makes only q queries to its oracles. We claim (without proof) that adversary B

making at most q queries to its oracle achieves advantage at most 2q/2n in the naPRF
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security game of H relative to only O, which clearly upperbounds the advantage of A in

the naPRF security of H relative to (O,R).

Lemma 9 For any adversary A making q polynomially bounded queries to its oracles

where it only makes non-adaptive queries to h, for every n ∈ N,

Advrel−naprfA,H,(O,R) ≤
2q(n)

2n
.

Combining Lemma 9 and Lemma 8 concludes the proof of Proposition 3.

2.7 Removing c-universality Assumption on C

In this section we study two special cases of the construction F(·)[C,G] and rule out

F(·) as a fully black-box construction of a PRF from a naPRF for any C.

2.7.1 1-call Constructions with Fixed Post-processing Function

In this section, we study the first special case of the construction F(·)[C,G]. We begin

by describing the construction formally and then provide the black-box separation.

Construction FH[C, g]. Let σ, r,m be any polynomially bounded functions. Let C be

a function family from n bits to n bits with σ-bit seeds, let H be a function family on n

bits to r bits with n-bit seeds and let g be a function from 2n + r bits to m bits with

σ-bit seeds. Consider the family FH[C, g] from n bits to m bits with σ + n-bit seeds such

that F.Kg outputs (s, k) where s is a random σ-bit seed for C. And the evaluation for F

on x proceeds as follows,

y = FH((s, k), x) = g(x,w, z) where w = C(s, x) ; z = H(k, w) . (2.15)
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Note that FH[C, g] is a special case of the construction FH[C,G] from Section 2.3 as for

every g there exists a family G where G(s, x, z) can simulate g(x,w, z) as G can compute

w = C(s, x) with its seed.

Theorem 3 rules out F[C, g] as a fully black-box construction of a PRF from a naPRF

for every C and g.

Theorem 3 Let r, σ,m be any polynomially bounded functions such that m = Ω(n+ r).

Then for every oracle function family F(·)[C, g] (defined in Equation 2.15) there exists an

oracle (O,R) relative to which naPRF H exists but FH[C, g] is not a PRF.

Proof: Towards proving Theorem 3, let c ≥ 2 be the smallest constant such that

m ≥ (n+ r)/c+ω(log n). Note that such a c exists as m = Ω(n+ r). Theorem 3 follows

from the following two cases,

- Case (a) C is c-universal: Here, Theorem 25 provides us with the relevant oracles

(note that m ≥ log(8ce) as m = Ω(n+ r)) implying Theorem 3 for c-universal C’s.

- Case (b) C is not c-universal: In Lemma 10 we present the necessary oracles to

handle this case. This concludes the proof of Theorem 3.

Lemma 10 Let c = O(1) and r, σ,m be any polynomially bounded functions such that

m ≥ (n + r)/c + ω(log n). Then for every function family F(·)[C, g] (defined in Equa-

tion 2.15) where C is not c-universal there exists an oracle (O,R) relative to which naPRF

H exists but FH[C, g] is not a PRF.

Proof: Since C is not c-universal, there exists some non-negligible function ε such

that for every n ∈ N there exists distinct x1, . . . , xc ∈ {0, 1}n,

Pr
s

[C(s, x1) = . . . = C(s, xc)] ≥ ε(n) .
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Let us fix some n. Let x1, . . . , xc be the corresponding distinct inputs for which collisions

are likely. Now, under a random s not only do they share the same w = C(s, xi) but for

any function H and any k, they also share the same z = H(k, w) = H(k,C(s, xi)). Now,

we consider the set Yg of all possible outputs (y1, . . . , yl)

Yg = {(y1, . . . , yk) : ∃(w, z) s.t. g(xi, w, z) = yi∀i ∈ [3]} .

Clearly, |Yg| ≤ 2n+r. However, the (y1, . . . , yk) where yi = f(xi) when f is a random

function from n-bits to m-bits come from a set of size 2mc. We exploit this fact to build

an oracle (O,R) relative to which a secure naPRF H exists but FH[C, g] is not a PRF.

Oracle R. The oracle R is decomposed into two oracles (R1,R2) such that R1 on input

1n provides strings (x1, . . . , xc) which collide under C with non-negligible probability ε.

The oracle R2 just accepts a tuple of c inputs (x1, . . . , xc) and c outputs (y1, . . . , yc) and

returns 1 iff there exist some (w, z) such that g(xi, w, z) = yi for all i ∈ [c].

Oracle O and HO. The oracle O and HO are identical to the ones described in Sec-

tion 2.4.2.

F is not a PRF relative to (O,R). Consider a uniform adversary A that first queries

R1 to receive likely collisions x1, . . . , xc of C. Then, it computes yi = f(xi) by making

queries to its challenge oracle f and outputs whatever R2 for ((x1, . . . , xc), (y1, . . . , yc)).

When A is interacting with f
$← F, oracle R2 outputs 1 with probability ε. But, as

discussed above, R2 outputs 1 with probability at most 2n+r/2mc when f
$← Funcs(n,m).

Since, m ≥ (n + r)/c + ω(log n), we know R2 outputs 1 when f is random only with

negligible probability. Hence, A achieves non-negligible advantage in breaking F.

H is naPRF relative to (O,R). Recall that R is independent of O and furthermore

can be computed by a computationally unbounded adversary. Therefore, as done in the
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Proof of Proposition 3 we can reduce the naPRF security of H relative to (O,R) to naPRF

security of H relative to O. This concludes the proof of Lemma 10.

2.7.2 1-call Constructions with Only Pre-processing

In this section, we study the most basic one-call construction which is a composition

of preprocessing function C with the naPRF H. We begin by describing the construction

formally and then provide the black-box separation.

Construction FH[C]. Let σ, r,m be any polynomially bounded functions. Let C be a

function family from n bits to n bits with σ-bit seeds, let H be a function family on n

bits to m bits with n-bit keys. Consider the family FH[C] from n bits to m bits with

σ + n-bit seeds such that F.Kg outputs (s, k) where s is a random σ-bit seed for C. And

the evaluation for F on x proceeds as follows,

y = F((s, k), x) = H(k,C(s, x))[1, . . . ,m] . (2.16)

Theorem 4 rules out F[C, g] as a fully black-box construction of a PRF from a naPRF

for every C and g.

Theorem 4 Let σ,m be any polynomially bounded functions such that m = ω(log n).

Then for every oracle function family F(·)[C, g] (defined in Equation 2.15) there exists an

oracle (O,R) relative to which naPRF H exists but FH[C, g] is not a PRF.

Proof: Theorem 4 follows from the following two cases –

- Case (a) - C is 2-universal: Here, Theorem 25 provides us with the relevant oracles

(note that m ≥ log(16e) as m = ω(log n)) implying Theorem 4 for C’s which are

2-universal.
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- Case (b) - C is not 2-universal: Here, it is clear that collisions in C lead to collisions

in F[C]. That is, if for inputs x1 6= x2 and some non-negligible function ε, C(s, x1) =

C(s, x2) with probability ε then F((s, k), x1) = F((s, k), x2) also with probability ε

over the choice of (s, k). However, such collisions happen only with negligible

probability for a random function whenever m = ω(log n). Therefore, an adversary

that receives collisions in C (as non-uniform advice) can break the PRF security of

F. But, to show the separation in our case (uniform security), one needs to exhibit

a uniform adversary that breaks F. We make the adversary uniform by designing

an oracle that provides collisions in C. We handle this case explicitly in Lemma 11.

This concludes the proof of Theorem 4.

Lemma 11 Let σ,m be polynomially bounded functions such that m = ω(log n). Then

for every oracle function family F(·)[C] (defined in Equation 2.16) where C is not 2-

universal there exists an oracle (O,R) relative to which naPRF H exists but FH[C, g] is

not a PRF.

Proof: Since C is not 2-universal, there exists some non-negligible function ε such

that for every n ∈ N there exists x1 6= x2 ∈ {0, 1}n,

Pr
s

[C(s, x1) = C(s, x2)] ≥ ε(n) .

We exploit this fact to build an oracle (O,R) relative to which naPRF H exists while F[C]

is not a PRF.

Oracle R. The oracle R on input 1n provides strings (x1, x2) which collide under C with

non-negligible probability ε.

Oracle O and HO. The oracle O and HO are identical to the ones described in Sec-

tion 2.4.2.
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F is not a PRF relative to (O,R). Consider a uniform adversary A that first queries

R to receive likely collisions x1, x2 of C. Then, it computes yi = f(xi) by making queries

to its challenge oracle f and outputs 1 iff y1 = y2. When f
$← F, A outputs 1 with

probability ε but A outputs 1 only with negligible probability when f
$← Funcs(n,m),

thereby achieving a non-negligible advantage in breaking the PRF-security of F.

H is naPRF relative to (O,R). Recall that R is independent of O and furthermore

can be computed by a computationally unbounded adversary. Therefore, as done in the

Proof of Proposition 3 we can reduce the naPRF security of H relative to (O,R) to naPRF

security of H relative to O. This concludes the proof of Lemma 11.

2.8 Multiple-call Constructions

We devote this section to study multiple call constructions. First, in Section 2.8.1,

we lift our techniques from Section 2.3 to a specific 2-call construction (and its gener-

alization to arbitrary calls). This result is a generalization of [1] which only rules our

arbitrary parallel composition of naPRFs as a PRF. In Section 2.8.2 we provide examples

of constructions making two- and four-calls which cannot be ruled out using our tech-

niques. While it is unlikely that these constructions will admit a security proof, we want

to highlight that ruling them out will require new techniques (or at least new designs of

separation oracles).

2.8.1 Ruling out Two-call Cuckoo-hashing based Construction

Let σ,m be polynomially bounded functions, C (resp., G) be a function family from

n bits to n bits (resp., m bits) with σ-bit seeds, and let H be a function family on n

bits to m bits with n-bit seeds. Consider the family FH[C,G] (Figure 2.1b) from n bits
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to m bits with (3σ + 2n)-bit seeds such that for every n ∈ N, F.Kg(1n) outputs (~s,~k)

where ~s
$←
(
{0, 1}σ(n)

)3
and ~k

$← ({0, 1}n)2. The evaluation of F on x ∈ {0, 1}n with

~s = (s1, s2, s3) and ~k = (k1, k2) is,

y = FH((~s,~k), x) = H(k1,C(s1, x))⊕ H(k2,C(s2, x))⊕ G(s3, x) . (2.17)

We note that the construction in Equation (2.17) covers the cuckoo-hashing based

naPRF to PRF construction [8] – one recovers their construction by letting C and G

be hash function family with sufficient independence. Informally, they showed that for

every polynomial time computable function t, if C and G are O(log t(n))-wise independent

and H is a naPRF secure for adversaries making at most t queries, then F is a PRF for

adversaries making at most t/4 queries.8

Below we state our result which provides an oracle relative to which there exists an

naPRF H such that F (in Equation (2.17)) is not a PRF as long as C is a 2-universal hash

function family. This in turn implies that F cannot be a fully black-box construction of

a PRF from a naPRF.

Theorem 5 Let σ,m be polynomially bounded functions, C be a 2-universal family from

n bits to n bits and G be a function family from n bits to m bits. Then, for F(·)[C,G]

(Equation (2.17)) from n bits to m bits there exists a randomized oracle (O,R) and an

oracle function family H(·) from n bits to m bits with n-bit keys such that H(·) is a naPRF

relative to (O,R) but FH[C,G] is not a PRF.

Before we move on to proving Theorem 5, some remarks are in order. First, we

emphasize that our result rules out any output length m (even m = 1). Secondly, the

proof of security from [8] requires C to be a O(log n)-wise independent function family, the

later implies our notion of 2-universality. However, we here rule out F as a construction of

8they require the range of C to be restricted to the first 4t(n) elements of {0, 1}n
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a PRF which, at first, seems to be contradictory to [8]. Here, we emphasize that our focus

is on fully-black-box constructions (which are meant to work for any secure naPRF H)

whereas the construction [8] depends on the purported security of the underlying naPRF

H and hence is not fully-black-box. Thirdly, we emphasize that Theorem 5 readily extends

to the case when C is assumed to only be c-universal for some constant c > 2 - making

much weaker assumptions on C and hence resulting in a stronger negative result. We

here choose to focus on the case of c = 2 for simplicity.

Finally, the construction in Section 2.8.1 is a specific case of the following κ(n)-

call function family F
(·)
κ [C,G] which takes as seed (~s,~k) where ~s ∈ ({0, 1}σ)[κ+1] and

~k ∈ ({0, 1}n)[κ] and on input x ∈ {0, 1}n evaluates to y ∈ {0, 1}m where

y = FH
κ ((~s,~k), x) = G(sκ+1, x)⊕

⊕
i∈[κ(n)]

H(ki,C(si, x)) . (2.18)

We note that Theorem 5 also extends to rule out F
(·)
κ for every polynomially bounded,

polynomial-time computable function κ. We state the theorem but only prove the case

for κ = 2 for simplicitly or equivalently Theorem 5.

Theorem 6 Let σ,m, κ be polynomially bounded functions and c ≥ 2. Let C be a c-

universal family from n bits to n bits with σ-bit seeds, and G be any function family from

n bits to m bits with σ-bit seeds. Then, for F(·)[C,G] (as in Equation 2.18) from n bits

to m bits there exists a randomized oracle (O,R) and an oracle function family H(·) from

n bits to m bits with n-bit keys such that H(·) is a naPRF relative to (O,R) but FH[C,G]

is not a PRF relative to (O,R).

On proofs of Theorem 5 and Theorem 6. The proof of Theorem 5 closely follows

that of Proposition 2. At a high level the main challenge in proving Theorem 5 is to show

that O remains a secure naPRF relative to (O,R). Recall that a non-adaptive adversary

A can break naPRF challenge oracle f relative (O,R) if it can predict the output of F
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on challenges X = X1||X2 issued by R under some (~s,~k) where either (a) ~k = (·, f) or

(b) ~k = (f, ·). Because of non-adaptive access to f and iterative nature of R, A is forced

to make all its queries to f either after committing to Y1 (potential outputs for X1) or

before learning X2. Irrespective of which is the case, A (to trigger case (a)) needs to

hope that for sufficiently large set I ⊆ [|X|]: ∀i ∈ I where X[i] is a fresh query to f we

have

f(C(s1, X[i])) = G(s3, X[i])⊕ H(k,C(s2, X[i]))⊕ Y [i] .

Restricting R to only consider “good” seeds s1 ensures that enough of C(s1, X[i])’s are

distinct and since f is randomly sampled for fresh queries, the above happens with

exponentially small probability. Case (b) is symmetrical. The proof of Theorem 5 is

detailed in ??.

The general case of κ-calls (Theorem 6) is a syntactic generalization of the proof

of Theorem 5: the oracle (O,R) is a straightforward extension of the ones used to

show Theorem 5. Here as well it is crucial to show that it is hard for an adversary

A having only non-adaptive access to the challenge oracle f in the naPRF game to find

some (~s,~k) such that F((~s,~k), X) = Y where for ~k = (k1, . . . , kκ) there exists some i ∈ [κ]

for which ki = f for. This requires us to union bound over κ many cases instead of just

two cases (case (a) and (b)) for the two-call case. Setting l = |X| large enough suffices

to cover the union bound.

2.8.2 Challenges to Ruling out General O(1)-call Constructions

In this section, we describe two constructions which make more than one call to the

underlying naPRF, for which natural extensions of the oracle from Section 2.4.2 allow

to break both PRF- and naPRF-security. While it is unlikely that these constructions

will admit a security proof, we want to highlight that ruling them out will require new
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techniques (or at least new designs of separation oracles). This also provides some justi-

fication to the limited-looking scope of our results. We provide a two-call and a four-call

construction in this section.

Two-call Combiner Construction

Let H be a function family on n-bit seeds mapping n bits to n bits. Consider the

following two-call construction F2[H] on 2n-bit seeds mapping n-bits to n-bits: For every

(k1, k2) ∈ {0, 1}n × {0, 1}n and every x ∈ {0, 1}n,

F2((k1, k2), x) = H(k1, x)⊕ H(k2, b
n) ,

where b = x[0]. This construction can be seen as the parallel (i.e., xor) composition of the

one-call, pre-processing-only construction (Section 2.1) with itself, albeit with different

pre-processing functions for each call. A peculiar property of the construction F2 is that

the second call to H (on key k2) is either on input 0n or 1n even when the inputs x for

F2 are n-bit strings. We show how a non-adaptive adversary can exploit this property to

break the naPRF-security of H relative to a natural extension of (O,R) from Section 2.4.2.

Oracle (O,R). Recall the oracle (O,R) from Section 2.4.2 where O embeds an information-

theoretically secure naPRF, and R1 and R2 provide adaptive challenges (inputs in the

domain of F). The idea behind having R1 and R2 was to disallow non-adaptive adver-

saries from being able to successfully use R3 to break pseudo-randomness. The oracle R3

on inputs tuple of challenges X = X1||X2 (issued by R1 and R2) and tuple Y = Y1||Y2

returns 1 iff there exist some key for the construction that maps X to Y . We extend the

oracle (O,R) in the most natural way to the above two-call construction F2 (formal code

in Figure 2.6). We claim that relative to (O,R) there exists a natural adaptive adversary

that breaks the PRF-security of F2. We just focus on showing that naPRF-security of H

breaks down relative to (O,R).

83



Non-adaptive PRFs to PRFs Chapter 2

Oracle R1(1n):

if Tn1 = ⊥ then Tn1
$← ({0, 1}n)[l(n)]

return Tn1

Oracle R3(1n, X = X1||X2, Y = Y1||Y2):

if ¬isValid(1n, 2l,X, Y ) then return ⊥

if X1 6= Tn1 ∨X2 6= Tn2 [Y1] then return ⊥

if ∃(k1, k2) ∈ {0, 1}n × {0, 1}n :

FHO

2 ((k1, k2), X) = Y then return 1

return ⊥

Oracle R2(1n, X, Y ):

if ¬isValid(1n, l, X, Y ) then return 1

if X 6= Tn1 then return ⊥

if Tn2 [Y ] = ⊥ then

Tn2 [Y ]
$← ({0, 1}n \ Tn1 )[l(n)]

return Tn2 [Y ]

Proc. isValid(1n, t,X, Y )

if X /∈ ({0, 1}n)[t] then return 0

if Y /∈ ({0, 1}n)t then return 0

return 1

Figure 2.6: Description of oracle R for the two-call construction F2 in Section 2.8.2. Oracles R1 and R2

samples random n-bit tuples without replacement from {0, 1}n, the subroutine isValid performs sanity

checks on the lengths of its inputs X and Y and the oracle R3 returns 1 if it finds a pair (k1, k2) that

maps X to Y under F. T1 and T2 are internal data-structures maintained by R for book-keeping.

naPRF-security of H relative to (O,R). Recall that in the naPRF-security-game

for H relative to (O,R), an adversary A(O,R,h) can make adaptive queries to (O,R) but

only non-adaptive queries to the challenge oracle h where h is sampled uniformly from

either Funcs(n, n) or HO. Consider the case when h
$← H, that is, there exists some

k∗ ∈ {0, 1}n such that h(·) = H(k∗, ·). To be able to use R successfully, A would need to

compute the outputs Y = Y1||Y2 (under F2) for adaptive challenges X = X1||X2 (issued

by R) by mimicking one of the two calls in F2 using h, while only having non-adaptive

access to h. This, in fact, is possible due to the peculiar property of the construction F2

described above, let us explain. A can obtain h(0n) and h(1n) (non-adaptive queries are

sufficient). Then for some k1 of its choice, A can compute the outputs Y = F2((k1, k
∗), X)

for adaptively chosen challenges X. For this it requires adaptive access to O(k1, ·) but
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only non-adaptive access to h. The oracle R3 always returns 1 for such Y computed

by A. However, note that when h
$← Funcs(n, n) the above strategy of computing Y

would result in R3 outputting 1 only when h(bn) = O(k, bn) for both b ∈ {0, 1} and some

k ∈ {0, 1}n. For a particular k, this happens with probability 1/22n (over the randomness

of sampling Ok), by a union bound over 2n possible k’s we can show that R3 returns 1

with only 1/2n probability, ensuring A can break the non-adaptive security of H.

We note that the non-adaptive attack described above is very similar to the one

mentioned in Section 2.1 for the one-call pre-processing-only construction F[C,H] =

H(k,C(s, x)). The major difference is that for pre-processing-only construction, the at-

tack was possible because of the existence of negligible fraction of “bad seeds” in an

actually universal hash family C. But, here the second call can be viewed as being pre-

processed by a non-universal family C∗(s, x) = x[0], for which all seeds are “bad”. We

note that the one-call construction with C∗ can trivially be ruled out but for the two-call

case such trivial approach does not seem to help.

Four-call Construction

In this section, we present a general family of constructions for which our natural

extensions of (O,R) from Section 2.4.2 would fail to provide separations. At a high

level, take any (q ≥ 2)-call construction F where all the q calls to H are on independent

and uniform chosen keys (k1, . . . , kq), sampled as part of the key for the construction.

Now, construct a family F̃ that makes 2q-calls where the additional q calls are used to

first generate the q keys (k1, . . . , kq) from a short key k on some a-priori fixed inputs,

e.g., ki = H(k, i). We show that this allows a non-adaptive adversary to break the non-

adaptive security of H relative to a natural extension of the oracle from Section 2.4.2 to

the 2q-call construction. For simplicitly we only describe the construction for q = 2, i.e.,

a four-call construction.
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Let H be a function family on n-bit seeds mapping n bits to n bits. Let F[H] be any

two-call construction on σ + 2n-bit seeds mapping n bits to n bits, where the two calls

to H are on independent keys (k1, k2) sampled during key generation.

Consider the following four-call construction F̃[H] on σ + n-bit seeds mapping n bits

to n bits such that for all (s, k) ∈ {0, 1}σ × {0, 1}n and x ∈ {0, 1}n,

F̃((s, k), x) = F((s, k1, k2), x) ,

where ki = H(k, i).

As in the two-call case, we show that a certain property of the construction F̃ allows

a non-adaptive adversary to break H relative to natural generalizations of the oracle

(O,R) from Section 2.4.2. At a high level, a non-adaptive adversary A(O,R,h) can use its

challenge oracle h to compute k1 = h(1) and k2 = h(2) using only non-adaptive queries.

Then for some randomly chosen s, A can compute Y = F((s, k1, k2), X) for any adaptive

challenges X using adaptive access to O(k1, ·) and O(k2, ·). When h
$← H, A outputs 1

with probability 1 as there exists some k∗ such that H(k∗, ·) = h for which Y computed by

A equals F̃(s, k∗)(X). However, when h
$← Funcs(n, n) the probability that A outputs 1

can be upper bounded by the probability that there exists some k for which h(i) = O(k, i)

for i ∈ [2]. As seen in the two-call case this probability can be upper bounded by 1/2n

which implies that A breaks the naPRF-security of H. The main ideas are similar to the

two-call case and we skip describing the oracles and the non-adaptive adversary more

formally here.

In conclusion, the constructions described in this section highlight that the natural

class of oracles R that break the adaptive security of the construction (e.g., F2 or F̃) by

finding keys consistent to some tuple (X, Y ) of input and output pairs, in some cases

allow even non-adaptive adversaries to, additionally, break the underlying naPRF H.
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This provides some insight into why ruling out constructions that make more than one

call construction is significantly more challenging. We believe tackling the general case of

ruling out all O(1) calls constructions will, at the minimum, require a new approach for

designing separations oracles which perhaps will need to be significantly different from

natural approaches known in the literature.

2.9 Proofs from Section 2.4

2.9.1 Proof of Lemma 1

Clearly, β and δ are negligible whenever α is negligible and c = O(1). Now suppose

for contradiction that for the above defined β and δ,

Pr
s

[s is not β-sparse] > δ .

That is, with probability at least δ for the randomly sampled s there exists some ws

with more than β · 2n pre-images under Cs. We sample c inputs xi at random without

replacement and compute the probability that all map to C(s, xi) = ws.

With probability at least β the first input x1 will be mapped to ws, with probability

at least β·2n−1
2n−1

the second input x2 will be mapped to ws and so on. That is,

Pr
x1,...,xc,s

[∀i ∈ [c] : C(s, xi) = ws] > δ ·
c∏
i=1

β · 2n − (i− 1)

2n − (i− 1)

Since, β = max(α1/2c, 2c/2n), each of the numerator β2n − (i − 1) is lower bounded by

β2n/2. The denominators 2n − (i− 1) are upper bounded by 2n. Therefore,

Pr
x1,...,xc,s

[∀i ∈ [c] : C(s, xi) = ws] > δ ·
(
β · 2n

2 · 2n

)c
≥ δ · β

c

2c−1
,

We know that δ βc

2c−1 ≥ α. Therefore what we have shown is that,

Pr
x1,...,xc,s

[C(s, x1), . . . ,C(s, xc)] > α ,
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then by averaging we know that there must exist some distinct x1, . . . , xc for which,

Pr
s

[C(s, x1), . . . ,C(s, xc)] > α ,

which contradicts the (α, c)-universality of C.

2.9.2 Proof of Lemma 2

Before we describe the proof of Lemma 2, we write down the following simple but

useful claim. Informally, it states that for every tuple X, most seeds s of C are “good”

in the sense of Definition 7.

Claim 8 For n, l ∈ N and any X = X1||X2 ∈ ({0, 1}n)[2l] where each Xi are of l-length

tuples,

Pr
s

[s /∈ GoodC(β,X)] ≤ δ + α ·
(

2l

c

)
,

where β, δ are as defined in Lemma 1.

Remark 6 We remark that the right hand side in Claim 8 is negligible only when c =

O(1) and this is why our results are restricted to c = O(1).

Proof sketch of Claim 8. From Definition 7, we know that s /∈ GoodC(β,X) if either

s is not β-sparse or s leads to c-way collisions among X. The probability of former

was analyzed in Lemma 1 and the later follows directly from union bound and (α, c)-

universality of C.

Now we are set to prove Lemma 2.

Proof of Lemma 2. Let us fix some n ∈ N. Let the inputs received by A from R1

and R2 be X1 and X2 respectively and let Y1 = f(X1) and Y2 = f(X2) where f is the

challenge oracle given to A.
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First, consider the real world where A is interacting with f
$← F (or implicitly f =

F((s∗, k∗), ·) for randomly chosen (s∗, k∗)). Here, A will output 1 whenever R3 outputs

1. For any X = X1||X2 and Y = Y1||Y2, R3 outputs 1 if there exists (s, k) such that (1)

F((s, k), X) = Y and (2) s ∈ GoodF(β,X, Y ). Clearly, (s∗, k∗) satisfies the condition (1).

Now, let us upper bound the probability that s∗ /∈ GoodF(β,X, Y ). From Definition 8

we know that s∗ /∈ GoodF(β,X, Y ) if either (a) s∗ /∈ GoodC(β,X) or if (b) the number

of Y [i]’s that are 1/2-bad w.r.t. (s,X[i]) are more than l/2c. We first analyze (a). We

can clearly bound the probability that s∗ /∈ GoodC(β,X) using Claim 8. However, note

that X in Claim 8 needs to be fixed before sampling s∗ but in our case X = X1||X2

are adaptively sampled. This is not an issue because our Xi’s are random and sampled

independently which allows us to alternatively view the experiment as first sampling

X1, X2 and then sampling s∗ independently of them. Next, we analyze part (b). Recall

that F is (1− 1/4c)-unbiased. Therefore for l (which is set to be ω(σ+n)) we know that

there exist some negligible function α′ such that the probability that for Y = F((s∗, k), X)

there are more than l/2c Y [i]’s that are 1/2-bad w.r.t. (s,X[i]) is at most α′ (note that

it is l/2c because |X| = 2l). Therefore, combining cases (a) and (b) (and Claim 8),

Pr[s∗ /∈ GoodF(β,X, Y )] ≤ 2c−1
√
α(n) + α ·

(
2l(n)

c

)
+ α′ . (2.19)

Now, we consider the case that A is interacting with f
$← Funcs(n,m). The proba-

bility that R3 outputs 1 on (X = X1||X2, Y = Y1||Y2) is clearly upper bounded by the

probability that there exists some (s, k) such that F((s, k), X1) = Y1. For X1, consider

the set Y = {F((s, k), X1) : (s, k) ∈ {0, 1}σ+κ}. Clearly, size of Y is upper bounded by

2σ+n. Since X1 is sampled without replacement (hence all X1[i]’s are distinct) and hence

for Y1 = f(X1), we can view each of the Y1[i]’s to be sampled independently at random.
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Therefore, we can bound the required probability as the probability as

Pr
Y

$←({0,1}n)l
[Y ∈ Y ] <

2σ+n

2ml
. (2.20)

Combining Equation 2.19 and 2.20, we have

Advrel−prfA,F,(O,R)(n) ≥ 1− 2c−1
√
α(n)− α ·

(
2l(n)

c

)
− α′ − 2σ+n

2ml
.

Since, c = O(1), l = ω(σ + n) is a polynomial, and α and α′ are negligible functions,

we can conclude that Advrel−prfA,F,(O,R)(n) as stated above is non-negligible.
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Chapter 3

Public-seed PRFs to Public-seed

PRPs via Feistel

The main result of this chapter builds a public-seed pseudorandom permutation (psPRP)

from a public-seed pseudorandom function (psPRF) (also known as UCE in the litera-

ture). Towards this Section 3.1 first proposes a general framework for public-seed pseudo-

random notions, and Section 3.2 puts this to use to provide general reduction theorems

between pairs of such primitives, and defines in particular CP-sequential indifferentiabil-

ity. Section 3.3 describes the main result on the public-seed pseudorandomness of 5-round

Feistel followed by the proof of its CP-sequential indifferentiability in Section 3.4 upon

which the main result is based on.

Notational preliminaries. Throughout this chapter, we denote by Funcs(X, Y ) the

set of functions X → Y , and in particular use the shorthand Funcs(m,n) whenever

X = {0, 1}m and Y = {0, 1}n. We also denote by Perms(X) the set of permutations on

the set X, and analogously, Perms(n) denotes the special case where X = {0, 1}n. We

say that a function f : N→ R≥0 is negligible if for all c ∈ N, there exists a λ0 such that
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f(λ) ≤ λ−c for all λ ≥ λ0.

Our security definitions and proofs will often use games, as formalized by Bellare and

Rogaway [97]. Typically, our games will have boolean outputs – that is, either true or

false – and we use the shorthand Pr [G] to denote the probability that a certain game

outputs the value true, or occasionally 1 (when the output is binary, rather than boolean).

3.1 Public-seed Pseudorandomness

We present a generalization of the UCE notion [37], which we term public-seed pseu-

dorandomness. We apply this notion to define psPRPs as a special case, but the general

treatment will be useful to capture transformations between UCEs and psPRPs in Sec-

tion 3.2 via one single set of theorems.

3.1.1 Ideal Primitives and their Implementations

We begin by formally defining ideal primitives using notation inspired by [98, 99].

Ideal primitives. An ideal primitive is a pair I = (Σ, T ), where Σ = {Σλ}λ∈N is a

family of sets of functions (such that all functions in Σλ have the same domain and

range), and T = {Tλ}λ∈N is a family of probability distributions, where Tλ’s range is a

subset of Σλ for all λ ∈ N. The ideal primitive I, once the security parameter λ is fixed,

should be thought of as an oracle that initially samples a function I as its initial state

according to Tλ from Σλ. We denote this sampling as I
$← Iλ. Then, I provides access

to I via queries, that is, on input x it returns I(x).1

1The reader may wonder whether defining Σ is necessary, but this will allow us to enforce a specific
format on valid implementations below.
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Examples. We give a few examples of ideal primitives using the above notation. In

particular, let κ,m, n : N→ N be functions.

Example 1 The random function Rm,n = (ΣR, T R) is such that for λ ∈ N, ΣR
λ =

Funcs(m(λ), n(λ)), and T R
λ is the uniform distribution on ΣR

λ . We also define R∗,n to

be the same for Funcs(∗, n(λ)), that is, when the domain is extended to arbitrary length

input strings.2

Example 2 The random permutation Pn = (ΣP, T P) is such that for all λ ∈ N,

ΣP
λ =

{
P : {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∃π ∈ Perms(n(λ)) : P (+, x) = π(x), P (-, x) = π−1(x)
}
,

and moreover, T P
λ is the uniform distribution on ΣP

λ .

Example 3 The ideal cipher ICκ,n = (ΣIC, T IC) is such that

ΣIC
λ =

{
E : {0, 1}κ(λ) × {+, -} × {0, 1}n(λ) → {0, 1}n(λ) |

∀k ∈ {0, 1}κ(λ)∃πk ∈ Perms(n(λ)) : E(k, +, x) = πk(x), E(k, -, x) = π−1
k (x)

}
,

and T IC
λ is the uniform distribution on ΣIC

λ .

Efficiency considerations. Usually, for an ideal primitive I = (Σ, T ), the bit-size

of the elements of Σλ grows exponentially in λ, and thus one would not implement a

primitive I by sampling I from Σλ, but rather using techniques such as lazy sampling.

An implementation of a primitive I is a stateful randomized PPT algorithm A such that

A(1λ, ·) behaves as I
$← Iλ for all λ ∈ N. We say that I is efficiently implementable if

such an A exists. All the above examples – Rm,n,R∗,n,Pn, and ICκ,n – are efficiently

implementable as long as m,n, κ are polynomially bounded functions.

2Note that this requires some care, because Σλ is now uncountable, and thus sampling from it requires
a precise definition. We will not go into formal details, similar to many other papers, but it is clear that
this can easily be done.
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MAIN psPRS,DF,I (λ):

(1n, t)
$← S(1λ, ε)

b
$← {0, 1}

k1, . . . , kn
$← F.Kg(1λ)

f1, . . . , fn
$← Iλ

L
$← SO(1λ, t)

b′
$← D(1λ, k1, . . . , kn, L)

return b′ = b

ORACLE O(i,x):

if b = 1 then

return F.Eval(1λ, ki,x)

else

return fi(x)

Figure 3.1: Game psPR used to define pspr-security for a primitive F that is Σ-compatible

with I. Here, S is the source and D is the distinguisher. Recall that the notation f
$← Iλ

indicates picking a function from Σλ using Tλ.

Σ-compatible function families. A function family F = (Kg,Eval) consists of a key

(or seed) generation algorithm F.Kg and an evaluation algorithm F.Eval. In particular,

F.Kg is a randomized algorithm that on input the unary representation of the security

parameter λ returns a key k, and we let [F.Kg(1λ)] denote the set of all possible outputs

of F.Kg(1λ). Moreover, F.Eval is a deterministic algorithm that takes three inputs; the

security parameter in unary form 1λ, a key k ∈ [F.Kg(1λ)] and a query x such that

F.Eval(1λ, k, ·) implements a function that maps queries x to F.Eval(1λ, k,x). We say

that F is efficient if both Kg and Eval are polynomial-time algorithms.

Definition 1 (Σ-compatibility) A function family F is Σ-compatible with I = (Σ, T )

if F.Eval(1λ, k, ·) ∈ Σλ for all λ ∈ N and k ∈ [F.Kg(1λ)].

3.1.2 Public-seed Pseudorandomness, psPRPs, and Sources

We now define a general notion of public-seed pseudorandom implementations of ideal

primitives.
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The general definition. Let F = (Kg,Eval) be a function family that is Σ-compatible

with an ideal primitive I = (Σ, T ). Let S be an adversary called the source and D an

adversary called the distinguisher. We associate to them, F and I, the game psPRS,DF,I (λ)

depicted in Fig. 3.1. The source initially chooses the number of keys n. Then, in the

second stage, it is given access to an oracle O and we require any query (i,x) made to this

oracle be valid, that is, x is a valid query for any fi ∈ Σλ and i ∈ [n], for n output by the

first stage of the source. When the challenge bit b = 1 (“real”) the oracle responds via

F.Eval under the key ki (F.Eval(1λ, ki, ·)) that is chosen by the game and not given to the

source. When b = 0 (“ideal”) it responds via fi where fi
$← Iλ. After its interaction with

the oracle O, the source S communicates the leakage L ∈ {0, 1}∗ to D. The distinguisher

is given access to the keys k1, . . . , kn and must now guess b′ ∈ {0, 1} for b. The game

returns true iff b′ = b and we describe the pspr-advantage of (S,D) for λ ∈ N as

Adv
pspr[I]
F,S,D (λ) = 2 Pr

[
psPRS,DF,I (λ)

]
− 1 . (3.1)

In the following, we are going to use the shorthands UCE[m,n] for pspr[Rm,n], UCE[n] for

pspr[R∗,n], and psPRP[n] for pspr[Pn].

Note that our security game captures the multi-key version of the security notions,

also considered in past works on UCE, as it is not known to be implied by the single-key

version, which is recovered by having the source initially output n = 1.

Restricting sources. One would want to define F as secure if Adv
pspr[I]
F,S,D (λ) is negligible

in λ for all polynomial time sources S and distinguishers D. However, as shown already

in the special case of UCEs [37], this is impossible, as one can always easily construct

(at least for non-trivial I’s) a simple source S which leaks the evaluation of O on a given

point, and D can check consistency given k.

Therefore to obtain meaningful and non-empty security definitions we restrict the
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MAIN PredPI,S(λ):

done← false;Q← ∅; (1n, t)
$← S(1λ, ε)

f1, . . . , fn
$← Iλ

L
$← SO(1λ, t); done← true

Q′
$← PO(1λ, 1n, L)

return (Q ∩Q′ 6= ∅)

ORACLE O(i,x):

if ¬done then Q← Q ∪ {x}

return fi(x)

MAIN ResetRI,S(λ):

done← false; (1n, t)
$← S(1λ, ε)

f01 , f
1
1 , . . . , f

0
n, f

1
n

$← Iλ

L
$← SO(1λ, t); done← true

b
$← {0, 1}; b′ $← RO(1λ, 1n, L)

return b′ = b

ORACLE O(i,x):

if ¬done then return f0i (x)

else return f bi (x)

Figure 3.2: Games Pred and Reset are used to define the unpredictability and reset-security of the

source S respectively against the ideal primitive I. Here, S is the source, P is the predictor and R is the

reset adversary.

considered sources to some class S, without restricting the distinguisher class. Conse-

quently, we denote by psPR[I,S] the security notion that asks Adv
pspr[I]
F,S,D (λ) to be negligible

for all polynomial time distinguishers D and all sources S ∈ S. Following [37], we also

use psPR[I,S] to denote the set of F’s which are psPR[I,S]-secure. Note that obviously,

if S1 ⊆ S2, then psPR[I,S2] ⊆ psPR[I,S1] where S1 and S2 are source classes for the ideal

primitive I. We will use the shorthands psPRP[n,S] for psPR[Pn,S] and UCE[m,n,S]

for psPR[Rm,n,S], where m = ∗ if the domain is unbounded.

Below, we discuss two important classes of restrictions, which are fundamental for

the remainder of this paper – unpredictable and reset-secure sources.

Unpredictable sources. Let S be a source. Consider the game PredPI,S(λ) of Fig. 3.2

associated to S and an adversary P called the predictor. Given the leakage, the latter
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outputs a set Q′. It wins if this set contains any O-query of the source. For λ ∈ N we let

Adv
pred[I]
S,P (λ) = Pr

[
PredPI,S(λ)

]
. (3.2)

We say that P is a computational predictor if it is polynomial time, and it is a statistical

predictor if there exists polynomials q, q′ such that for all λ ∈ N, predictor P makes at

most q(λ) oracle queries and outputs a set Q′ of size at most q′(λ) in game PredPI,S(λ). We

stress that in this case the predictor need not be polynomial time, even though it makes a

polynomial number of queries. We say S is computationally unpredictable if Adv
pred[I]
S,P (λ)

is negligible for all computational predictors P . We say S is statistically unpredictable if

Adv
pred[I]
S,P (λ) is negligible for all statistical predictors P . We let Scup be the class of all

polynomial time, computationally unpredictable sources and Ssup ⊆ Scup be the class of

all polynomial time statistically unpredictable sources.3

Reset-secure sources. Let S be a source. Consider the game ResetRI,S(λ) of Fig. 3.2

associated to S and an adversary R called the reset adversary. The latter wins if given

the leakage L it can distinguish between f 0 used by the source S and an independent f 1

where f 0, f 1 $← Iλ. For λ ∈ N we let

Adv
reset[I]
S,R (λ) = 2 Pr

[
ResetRI,S(λ)

]
− 1 . (3.3)

We say that R is a computational reset adversary if it is polynomial time, and it is a

statistical reset adversary if there exists a polynomial q such that for all λ ∈ N, reset

adversary R makes at most q(λ) oracle queries in game ResetRI,S(λ). We stress that in

this case the reset adversary need not be polynomial time. We say S is computationally

reset-secure if Adv
reset[I]
S,R (λ) is negligible for all computational reset adversaries R. We say

S is statistically reset-secure if Adv
reset[I]
S,R (λ) is negligible for all statistical reset adversaries

3We note that computational unpredictability is only meaningful for sufficiently restricted classes
of sources or in ideal models, as otherwise security against Scup is not achievable assuming IO, using
essentially the same attack as [39].
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MAIN CP[I→ J]AM,Sim(λ):

b
$← {0, 1}; f $← Iλ; g

$← Jλ

st
$← AFunc

1 (1λ)

b′
$← APrim

2 (1λ, st)

return b′ = b

ORACLE Func(x):

if b = 1 then

return Mf (x)

else

return g(x)

ORACLE Prim(u):

if b = 1 then

return f(u)

else

return Simg(u)

Figure 3.3: Game CP used to define cpi-security for a construction M implementing the primitive J

using primitive I. Here, Sim is the simulator and A = (A1, A2) is the two-stage distinguisher.

R. We let Scrs be the class of all polynomial time, computationally reset-secure sources

and Ssrs ⊆ Scrs the class of all polynomial time statistically reset-secure sources.

Relationships. For the case of psPRPs, we mention the following fact, which is some-

what less obvious than in the UCE case, and in particular only holds if the permutation’s

domain grows with the security parameter.

Proposition 4 For all n ∈ ω(log λ), we have psPRP[n,S?rs] ⊆ psPRP[n,S?up] where

? ∈ {c, s}.

Proof: [Sketch] In the reset secure game, consider the event that R queries its oracle

O on input (i, σ, x) which was queried by S already as an O(i, σ, x) query, or it was the

answer to a query O(i, σ, y). Here (like elsewhere in the paper), we use the notational

convention + = - and - = +. The key point here is proving that as long as this bad event

does not happen, the b = 0 and b = 1 case are hard to distinguish. A difference with

the UCE case is that due to the permutation property, they will not be perfectly indis-

tinguishable, but a fairly standard (yet somewhat tedious) birthday argument suffices to

show that indistinguishability still holds as long as the overall number of O queries (of

S and R) is below 2n(λ)/2, which is super-polynomial for n(λ) = ω(log λ).
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3.2 Reductions and Indifferentiability

We present general theorems that we will use to obtain reductions between psPRPs

and UCEs. Our general notation for public-seed pseudorandom primitives allows us to

capture the reductions through two general theorems.

3.2.1 CP-sequential indifferentiability

Indifferentiability was introduced in [36] by Maurer, Renner, and Holenstein to for-

malize reductions between ideal primitives. Following their general treatment, it captures

the fact that a (key-less) construction M using primitive I (which can be queried by the

adversary directly) is as good as another primitive J by requiring the existence of a

simulator that can simulate I consistently by querying J.

Central to this paper is a weakening of indifferentiability that we refer to as CP-

sequential indifferentiability, where the distinguisher A makes all of its construction

queries to MI (or J) before moving to making primitive queries to I (or SimJ, where

Sim is the simulator). Note that this remains a non-trivial security goal, since Sim does

not learn the construction queries made by A, but needs to simulate correctly nonethe-

less. However, the hope is that because A has committed to its queries before starting

its interaction with Sim, the simulation task will be significantly easier. (We will see that

this is indeed the case.)

More concretely, the notion is concerned with constructions which implement J from

I, and need to at least satisfy the following syntactical requirement.

Definition 2 ((I→ J)-compatibility) Let I = (I.Σ, I.T ) and J = (J.Σ,J.T ) be ideal

primitives. A construction M is called (I→ J)-compatible if for every λ ∈ N, and every

f ∈ I.Σλ, the construction M implements a function x 7→ Mf (1λ, x) which is in J.Σλ.
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The game CP is described in Fig. 3.3. For ideal primitives I,J, a two-stage adversary

A = (A1, A2), an (I → J)-compatible construction M, and simulator Sim, as well as

security parameter λ ∈ N, we define

Adv
cpi[I→J]
M,Sim,A(λ) = 2 · Pr

[
CP[I→ J]AM,Sim(λ)

]
− 1 . (3.4)

We remark that the CP-sequential indifferentiability notion is the exact dual of se-

quential indifferentiability as introduced by Mandal, Patarin, and Seurin [46], which

postpones construction queries to the end. As we will show below in Section ??, there

are CP-indifferentiable constructions which are not sequentially indifferentiable in the

sense of [46].

Multi-user Indifferentiability. It will also be notationally convenient, for our proofs

below, to define a multi-user version of the CP-indifferentiability game, where an ad-

ditional stage A0 first chooses the number of instances it intends to attack. This is

formalized by the game muCP at the bottom of Fig. 3.4, for which we define analogously

the quantity Adv
m−cpi[I→J]
M,Sim,A (λ). Then, the following lemma follows by a simple hybrid

argument, and its proof is omitted.

Lemma 12 (Single-user to multi-user CP-indifferentiability) Let M be a (I →

J)-compatible construction. For all distinguishers A = (A0, A1, A2), such that on input

1λ the output of A0 is bounded by N(λ), there exists a distinguisher A′ = (A′1, A
′
2) (given

explicitly in the proof) such that for all λ ∈ N,

Adv
m−cpi[I→J]
M,Sim,A (λ) ≤ N(λ) · Advcpi[I→J]

M,Sim,A′(λ) , (3.5)

In particular, if A is PPT, I, J are efficiently implementable, and M is also polynomial-

time, then A′ is polynomial time.
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MAIN muCP[I→ J]AM,Sim(λ):

(1n, st0)
$← A0(1λ); b

$← {0, 1}

f1, . . . , fn
$← Iλ

g1, . . . , gn
$← Jλ

st1
$← AFunc

1 (1λ, st0)

b′
$← APrim

2 (1λ, st1)

return b′ = b

ORACLE Func(i,x):

if b = 1 then

return Mfi(x)

else

return gi(x)

ORACLE Prim(i,u):

if b = 1 then

return fi(u)

else

return Simgi(u)

Figure 3.4: Game muCP used to define the m−cpi-security for M. Here, Sim is the simulator and

A = (A0, A1, A2) is the two-stage distinguisher with an additional A0 stage to choose the number of

instances.

3.2.2 Reductions

We show that CP-sequential indifferentiability yields a reduction between public-seed

pseudorandomness notions. A special case was shown in [44] by Bellare, Hoang, and

Keelvedhi for domain extension of UCEs. Our result goes beyond in that: (1) It is more

general, as it deals with arbitrary ideal primitives, (2) It only relies on CP-sequential

indifferentiability, as opposed to full indifferentiability, and (3) The reduction of [44] only

considered reset-secure sources, whereas we show that under certain conditions on the

construction, the reduction also applies to unpredictable sources. Nonetheless, our proofs

follow the same approach of [44], and the main contribution is conceptual.

We let F = (F.Kg,F.Eval) be a function family which is Σ-compatible with an ideal

primitive I. Further, let M be an (I → J)-compatible construction. Then, overloading

notation, we define the new function family M[F] = (M.Kg,M.Eval), where M.Kg = F.Kg,

and for every k ∈ [M.Kg(1λ)], we let

M.Eval(1λ, k, x) = MO(1λ, x) , (3.6)

where O(z) = F.Eval(1λ, k, z).
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Reset-secure sources.

The following is our general reduction theorem for the case of reset-secure sources.

Theorem 7 (Composition theorem, reset-secure case) Let M, F, I, and J be as

above. Fix any simulator Sim. Then, for every source-distinguisher pair (S,D), where S

requests at most N(λ) keys, there exists a source-distinguisher pair (S,D), and a further

distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) . (3.7)

Here, in particular: The complexities of D and D are the same. Moreover, if S, D, and

M are polynomial time, and I, J are efficiently implementable, then A, S and D are also

polynomial-time.

Moreover, for every reset adversary R, there exists a reset adversary R′ and a distin-

guisher B such that

Adv
reset[I]

S,R
(λ) ≤ Adv

reset[J]
S,R′ (λ) + 3N(λ) · Advcpi[I→J]

M,Sim,B(λ) , (3.8)

where R′ makes a polynomial number of query / runs in polynomial time if R and Sim

make a polynomial number of queries / run in polynomial time, and I,J are efficiently

implementable.

Proof: The proof follows the lines of [44]. Consider a source-distinguisher pair S,D

using at most N(λ) keys in the game psPRS,DM[F],J(λ) for M[F].

As the first step, we construct a new source-distinguisher pair (S,D) for the game

psPRS,DF,I (λ). In particular, we first let D = D (note that the seed for M[F] is a seed for

F, so this is a syntactically correct distinguisher). Moreover, S, is described on the left

of Fig. 3.5, and works as follows: given access to its oracle O, S simply runs S with a

simulated oracle O′. A query (i,x) for i ∈ [n] made by S to O′ is answered by running
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SOURCE S(1λ, ε):

(1n, st)
$← S(1λ, ε)

return (1n, st)

SOURCE S
O

(1λ, st):

// st 6= ε

L
$← SO

′
(1λ, st)

return L

ORACLE O′(i, x):

y ← MO(i,·)(x)

return y

ADV. A′0(1λ):

(1n, st)
$← S(1λ, ε)

return (1n, (1n, st))

ADV. A′1(1λ, (1n, st)):

L
$← SFunc(1λ, st)

return (1n, L)

ADV. A′2(1λ, (1n, L)):

k1, . . . , kn
$← F.Kg(1λ)

b′
$← D(1λ, L, k1, . . . , kn)

return b′

ADV. R′O(1λ, 1n, L):

b′
$← RO

′
(1λ, 1n, L)

return (1n, (1n, st))

ORACLE O′(i, x):

y
$← Sim

O(i,·)
i (x)

return y

Figure 3.5: Pseudocode descriptions for the proof of Theorem 7. ORACLE Func is as described in

Fig. 3.4 for the muCP game of M. Due to space constraints we use ADV. instead of ADVERSARY.

construction M, where each oracle query z made by M is in turn answered by O(i, z).

Finally, when S outputs leakage L ∈ {0, 1}∗, S simply makes L its own output.

We can then fairly easily show that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) + Adv

m−cpi[I→J]
M,Sim,A′ (λ) ,

for an adversary A′ we specify in Figure 3.5 (and explain shortly) and any simulator Sim.

Indeed, note that the only difference between psPRS,DF,I (λ) and psPRS,DM[F],J(λ) is that in the

ideal case, S accesses independent instances of J, whereas in the former S (simulated

within S) has access to independent instances of MI, i.e., each instance has M query

an independent instance of I. Therefore, it is sufficient to consider the multi-user CP-

indifferentiability adversary A′ as described in Figure 3.5.

Further, using Lemma 12, we can build from A′ an adversary A such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) ,
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ADV. C
(1)
0 (1λ):

(1n, st)
$← S(1λ, ε)

return (1n, (1n, st))

ADV. C
(1)
1 (1λ, (1n, st)):

L
$← SFunc(1λ, st)

return (1n, L)

ADV. C
(1)
2 (1λ, (1n, L)):

f1, . . . , fn
$← Iλ

b′ ← RO
′
(1n, L)

return b′

ORACLE O′(i, x):

y
$← fi(x)

return y

ADV. C
(2)
0 (1λ):

(1n, st)
$← S(1λ, ε)

return (1n, (1n, st))

ADV. C
(2)
1 (1λ, (1n, st)):

g1, . . . , gn
$← Jλ

L
$← SO

′′
(1λ, st)

return (1n, L)

ADV. C
(2)
2 (1λ, (1n, L)):

b′ ← RPrim(1n, L)

return b′

ORACLE O′′(i, x):

y
$← gi(x)

return y

ADV. C
(2)
0 (1λ):

(1n, st)
$← S(1λ, ε)

return (1n, (1n, st))

ADV. C
(2)
1 (1λ, (1n, st)):

L
$← SFunc(1λ, st)

return (1n, L)

ADV. C
(2)
2 (1λ, (1n, L)):

b′ ← RPrim(1n, L)

return 1− b′

Figure 3.6: Pseudocode descriptions for the proof of Theorem 7. ORACLES Func and Prim are as

described in Figure 3.4 for the muCP game of M. Due to space constraints we use ADV. instead of

ADVERSARY.

given A′ always outputs (in its first stage) n such that n ≤ N(λ) on input 1λ.

Relating reset-security. It remains to relate the reset-security of S and S, which is

the core of the proof. In particular, fix an arbitrary R for the game ResetR
I,S

(λ). Then,

we are going to build R′ for ResetR
′

J,S(λ) as follows. (A more formal description is on the

right of Figure 3.5.) R′ runs R with the given leakage L, however rather than giving R

direct access to its oracle O, R is run with a simulated oracle O′. To do this, R′ runs

N(λ) independent instances of the simulator Sim – call them Sim1, . . . , SimN(λ). A query

O′(i, x) is then answered by querying x to Simi, where each of Sim’s queries y is answered
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as O(i, y).

To continue with our analysis, we denote as ResetR
I,S

(λ, c) and ResetR
′

J,S(λ, c) for c ∈

{0, 1}, the games obtained from the original games by fixing the challenge b to c, and the

game output is the adversary’s output bit b′. Then, by a standard argument,

Adv
reset[I]

S,R
(λ) = Pr

[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

I,S
(λ, 0)

]
= Pr

[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

′

J,S(λ, 1)
]

+ Pr
[
ResetR

′

J,S(λ, 1)
]
− Pr

[
ResetR

′

J,S(λ, 0)
]

+ Pr
[
ResetR

′

J,S(λ, 0)
]
− Pr

[
ResetR

I,S
(λ, 0)

]
= Pr

[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

′

J,S(λ, 1)
]

+ Adv
reset[J]
S,R′ (λ) + Pr

[
ResetR

′

J,S(λ, 0)
]
− Pr

[
ResetR

I,S
(λ, 0)

]

(3.9)

We are now going to build a new (multi-user) CP-sequential indifferentiability adversary

C such that

Adv
m−cpi[I→J]

M,Sim,C
(λ) =

1

3

[
Pr
[
ResetR

I,S
(λ, 1)

]
− Pr

[
ResetR

′

J,S(λ, 1)
]

+ Pr
[
ResetR

′

J,S(λ, 0)
]
− Pr

[
ResetR

I,S
(λ, 0)

]]
. (3.10)

The adversary C ′ proceeds as follows. Initially, it selects i
$← {1, 2, 3} uniformly at ran-

dom, and then runs C(i). The adversaries C(1), C(2), and C(3) are described in Figure 3.6.

Then, clearly

Adv
m−cpi[I→J]
M,Sim,C′ (λ) =

1

3

3∑
i=1

Adv
m−cpi[I→J]

M,Sim,C(i) (λ)

To expand this expression, let us first introduce a hybrid experiment Reset
R

I,S(λ) where

in the first stage, S interacts with independent copies of J, and in the second stage, R

interacts with independent copies of I. Then,

Adv
m−cpi[I→J]

M,Sim,C(1) (λ) = Pr
[
ResetR

I,S
(λ, 1)

]
− Pr

[
Reset

R

I,S(λ)
]
.
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GAME EXTS,PM,I,Ext(λ) :

done← false

QI, QM ← ∅

(1n, st)
$← S(1λ, ε)

f1, . . . , fn
$← Iλ

L
$← SOM(1λ, 1n, st)

done← true

Q
$← PO(1λ, 1n, L); Q∗ ← ExtO(Q)

return ((Q ∩QI 6= ∅) ∧ (Q∗ ∩QM = ∅))

ORACLE O(i, x) :

if ¬done then QI
∪← {x}

return fi(x)

ORACLE OM(i, x) :

if ¬done then QM
∪← {x}

y ← MO(i,·)(x)

return y

Figure 3.7: Game EXTS,PM,I,Ext(λ) in the definition of query extractability.

Further,

Adv
m−cpi[I→J]

M,Sim,C(2) (λ) = Pr
[
Reset

R

I,S(λ)
]
− Pr

[
ResetR

′

J,S(λ, 1)
]
.

Finally, it is not hard to see that

Adv
m−cpi[I→J]

M,Sim,C(3) (λ) = Pr
[
ResetR

′

J,S(λ, 0)
]
− Pr

[
ResetR

I,S
(λ, 0)

]
.

Note that in C(3) the flipping of the bits is necessary because the execution of ResetR
′

J,S(λ, 0)

corresponds to the ideal world in the indifferentiability experiment, whereas ResetR
I,S

(λ, 0)

corresponds to the real world, and thus we have to switch signs. To conclude the proof,

we can apply Lemma 12 to obtain, from C ′, an attacker against the single-user CP-

indifferentiability of C.

Query extractable constructions.

Next, we show that under strong conditions on the construction M, Theorem 7 extends

to the case of unpredictability.

In particular, we consider constructions which we term query extractable. Roughly,

what such constructions guarantee is that every query made by M to an underlying ideal
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primitive I can be assigned to a (small) set of possible inputs to M that would result

in this query during evaluation. Possibly, this set of inputs may be found by making

some additional queries to I. We define this formally through the game EXTS,PM,I,Ext(λ) in

Fig. 3.7. It involves a source S and a predictor P , as well as an extractor Ext. Here,

S selects an integer n, which results in n instances f1, . . . , fn of I being spawned, and

then makes queries to n instances of Mfi , gives some leakage to the predictor P , and

the predictor makes further query to the I-instances, until it outputs a set Q. Then, we

run the extractor Ext on Q, and the extractor can also make additional queries to the

I-instances, and outputs an additional set Q∗. We are interested in the event that Q

contains one of queries made to the fi’s by M in the first stage of the game, yet Q∗ does

not contain any of S’s queries to Mfi for some i. In particular, we are interested in

Adv
ext[I]
M,S,P,Ext(λ) = Pr

[
EXTS,PM,I,Ext(λ)

]
.

We say that M is query extractable with respect to I if there exists a polynomial time Ext

such that Adv
ext[I]
M,S,P,Ext(λ) is negligible for all PPT P and S. We say it is perfectly query

extractable if the advantage is 0, rather than simply negligible.

The next theorem provides an alternative to Theorem 7 for the case of unpredictable

sources whenever M guarantees query extractability.

Theorem 8 (Composition theorem, unpredictable case) Let M, F, I, and J be as

before. Fix any simulator Sim. Then, for every source-distinguisher pair (S,D), where S

requests at most N(λ) keys, there exists a source-distinguisher pair (S,D), and a further

distinguisher A, such that

Adv
pspr[J]
M[F],S,D(λ) ≤ Adv

pspr[I]

F,S,D
(λ) +N(λ) · Advcpi[I→J]

M,Sim,A(λ) . (3.11)

Here, in particular: The complexities of D and D are the same. Moreover, if S, D, and

M are polynomial time, and I, J are efficiently implementable, then A, S and D are also

polynomial-time.
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MAIN G0(λ),G1(λ):

done← false

QI ← ∅

(1n, t)
$← S(1λ, ε)

f1, . . . , fn
$← Iλ

g1, . . . , gn
$← Jλ

L
$← SFunc(1λ, t)

done← true

Q
$← PPrim(1λ, 1n, L)

Q∗
$← ExtPrim(Q)

return (QM ∩Q∗ 6= ∅)

ORACLE Func(i, x): // G0

QM
∪← {x}

y ← MPrim(i,·)(x)

return y

ORACLE Prim(i, x): // G0

if ¬done then QI
∪← {x}

return fi(x)

ORACLE Func(i, x): // G1

QM
∪← {x}

y ← gi(x)

return y

ORACLE Prim(i, x): // G1

if ¬done then QI
∪← {x}

return Simgi
i (x)

Figure 3.8: Games used in the proof of Theorem 8.

Moreover, for every predictor P and extractor Ext, there exists a predictor adversary

P ′ and a distinguisher B such that

Adv
pred[I]

S,P
(λ) ≤ Adv

pred[J]
S,P ′ (λ) + Adv

ext[I]
M,S,P,Ext(λ) +N(λ) · Advcpi[I→J]

M,Sim,B(λ) , (3.12)

where P ′ makes a polynomial number of query / runs in polynomial time if P , Sim and

Ext make a polynomial number of queries / run in polynomial time, and I,J are efficiently

implementable.

Proof: Note that (3.11) is established exactly as in the proof of Theorem 7; the

definitions of S and D are identical, and the statement is independent of the specific

properties of the source.

Therefore, the rest of this proof relates the unpredictability of S with that of S.

In particular, given P , we construct P ′ as follows. On input 1λ, 1n and L, P ′ runs

P (1λ, 1n, L), but answers its oracle calls (i, x) with SimO(i,·)(x), i.e., using the simulator

Sim. When finally P outputs Q, P ′ runs ExtO(Q), and outputs its output Q∗.

To establish (3.12), we consider two games, G0 and G1, as depicted in Figure 3.8.
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Game G0 is the same as game PredP
I,S

(λ), except that the winning condition is set when

Q∗ extracted by Ext contains one of the queries to Func made by S, rather than one

of the Prim queries made by M while evaluating S’s queries. Therefore, the fact that

Pr [A] ≤ Pr [B] + Pr [A ∧ ¬B] for all events A,B yields

Adv
pred[I]

S,P
(λ) = Pr [QI ∩Q 6= ∅]

≤ Pr [QM ∩Q∗ 6= ∅] + Pr [(QI ∩Q 6= ∅) ∧ (QM ∩Q∗ = ∅)]

≤ Pr [G0] + Adv
ext[I]
M,S,P,Ext(λ) .

Game G1 simply modifies oracle Func to reply to queries (i, x) using gi, where g1, . . . , gn
$←

Jλ. Similarly, it runs n copies of the simulator Sim – call them Sim1, . . . , Simn – and

queries Prim(i, x) are answered by Simgi
i . it is now straightforward to build a distinguisher

B′ for the multi-user CP-sequential indifferentiability game such that

Adv
m−cpi[I→J]
M,Sim,B′ (λ) = Pr [G0]− Pr [G1] .

This is because B′ can easily keep track of all sets QM and QI and simulate the rest of G0

or G1 using the given oracles Func and Prim. The final distinguisher B can be obtained

from B′ by applying Lemma 12.

3.3 Public-seed Pseudorandomness of Feistel

This section presents the main result of this chapter which builds psPRPs from UCEs,

namely that the five-round Feistel construction, when its round functions are instanti-

ated from a UCE[S?rs]-secure function family (for ? ∈ {c, s}), yields a psPRP[S?rs]-secure

permutation family.

CP-indifferentiability of Feistel. Let n : N → N be a (polynomially bounded)

function. We define the following construction Ψ5, which, for security parameter λ,
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implements an invertible permutation on 2n(λ)-bit strings, and makes calls to an oracle

f : [5] × {0, 1}n(λ) → {0, 1}n(λ). In particular, on input 1λ and X = X0 ‖X1, where

X0, X1 ∈ {0, 1}n(λ), running Ψf
5(1λ, (+, X)) outputs X5 ‖X6, where

Xi+1 ← Xi−1 ⊕ f(i,Xi) for all i = 1, . . . , 5 . (3.13)

Symmetrically, upon an inverse query, Ψf
5(1λ, (-, Y = X5 ‖X6)) simply computes the

values backwards, and outputs X0 ‖X1. Construction Ψ5 is clearly (R5
n,n → P2n)-

compatible, where we use the notation Rk
n,n to denote the k-fold combination of in-

dependent random functions which takes queries of the form (i, x) that are answered by

evaluating on x the i-th function.

The following theorem establishes CP-indifferentiability for Ψ5. We discuss below

its consequences, and give a detailed description of our simulation strategy and the full

analysis of the simulation strategy – which employes the randomness-mapping technique

of [31] in Section 3.4

Theorem 9 (CP-indifferentiability of Feistel) Let R = R5
n,n and P = P2n. Then,

there exists a simulator Sim (described in Fig. 3.9) such that for all distinguisher A

making at most q(λ) queries,

Adv
cpi[R→P]
Ψ5,Sim,A

(λ) ≤ 360q(λ)6

2n(λ)
. (3.14)

Here, Sim makes at most 2q(λ)2 queries, and otherwise runs in time polynomial in the

number of queries answered, and n.

This, together with Theorem 7, gives us immediately the following corollary: Given

a keyed function family F = (F.Kg,F.Eval), where for all λ ∈ N, k ∈ [F.Kg(1λ)],

F.Eval(1λ, k, ·) is a function from n(λ) + 3 bits to n(λ) bits, interpreted as a function

[5]×{0, 1}n(λ) → {0, 1}n(λ), then define the keyed function family Ψ5[F] = (Ψ.Kg,Ψ.Eval)

obtained by instantiating the round function using F.

110



Public-seed PRFs to Public-seed PRPs via Feistel Chapter 3

Corollary 1 For any polynomially bounded n = ω(log λ), if F ∈ UCE[n + 3,S?rs], then

Ψ5[F] ∈ psPRP[2n,S?rs], where ? ∈ {c, s}.

Remarks. Theorem 9 is interesting in its own right, as part of the line of works on (full-

fledged) indifferentiability of Feistel constructions. Coron et al. [47] show that six rounds

are necessary for achieving indifferentiability, and proofs of indifferentiability have been

given for 14, 10, and 8 rounds, respectively [31, 47, 34, 35]. Thus, our result shows that

CP-indifferentiability is a strictly weaker goal in terms of round-complexity of the Feistel

construction. (Also for sequential indifferentiability as in [46], six rounds are necessary.)

As we will see in the next paragraph, our simulation strategy departs substantially from

earlier proofs.

Two obvious problems remain open. (1) First off, we know four rounds are nec-

essary (as they are needed for indistinguishability alone [21]), but we were unable to

make any progress on whether CP-sequential indifferentiability (or psPRP security) is

achievable. (2) The second is the case of unpredictable sources. We note that a heavily

unbalanced Feistel construction (where each round function outputs one bit) would be

query extractable, as the input of the round function leaves little uncertainty on the inner

state, and the extractor can evaluate the round functions for other rounds to infer the

input/output of the construction. Thus, if we could prove CP-indifferentiabilty, we could

combine this with Theorem 8. Unfortunately, such a proof appears beyond our current

understanding.

In Chapter 4, we solve both questions, and even more in fact, showing that the Naor-

Reingold (NR) construction [22] solves both (1) and (2) which furthermore requires only

two-calls to the underlying UCE hash function. We direct the reader to Chapter 4 for

full details.
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3.4 Sequential Indifferentiability of 5-round Feistel

In this section, we provide the proof of sequential indifferentiability of the 5-round

Feistel network Ψ5. In Section 3.4.1 we provide a high level overview of our simulator.

Then, in Section 3.4.2 we develop some formal notation for the proof and describe the

hybrids used. Finally, we provide a detailed analysis of the indistinguishability of the

hybrids in Section 3.4.3 through Section 3.4.5 which completes the full proof.

3.4.1 Indifferentiability Simulator Overview

We explain now our simulation strategy, which is described formally in Fig. 3.9. We

note that our approach inherits the chain-completion technique from previous proofs, but

it will differ substantially in how and when chains are completed.

Recall that in the ideal case, in the first stage of the CP-indifferentiability game, A1

makes queries to Func implementing a random permutation, and then passes the control

of the game to A2 which interacts with Sim. Our Sim maintains tables Gk for k ∈ [5]

to simulate the round functions. We denote by Gk[X] = ⊥ that the table entry for X

is undefined, and we assume all values are initially undefined. Also, we refer to a tuple

(Xk, Xk+1, k) as a partial chain where Gk[Xk] 6= ⊥ and Gk+1[Xk+1] 6= ⊥ for k ∈ {1, 4},

Xk, Xk+1 ∈ {0, 1}n.

For any query (k,X) by A2, Sim checks if Gk[X] = ⊥. If not then the image Gk[X]

is returned. Otherwise, depending on the value of k, Sim takes specific steps as shown

in Fig. 3.9. If k ∈ {2, 4} then Sim sets Gk[X] to a uniformly random n-bit string by

calling the procedure Finner. At this point, Sim considers newly formed tuples (X1, X2) ∈

G1×{X} (when k = 2) and detects partial chains C = (X1, X2, 1). The notation X1 ∈ G1

is equivalent to G1[X1] 6= ⊥. For every partial chain C that Sim detects, it queries Func

on (X0, X1) and gets (X5, X6) where X0 = G1[X1]⊕X2 . If (X0, X1) does not appear in
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PROCEDURE Sim(k,X):

1: if Gk[X] = ⊥ then

2: if k = 2 then

3: Finner(k,X)

4: foreach (X1, X2) ∈ G1 × {X} do

5: if (X1, X2, 1) /∈ CompletedChains then

6: X0 ← Finner(1, X1)⊕X2

7: (X5, X6)← Func(+, X0||X1)

8: C ← (X1, X2, 1)

9: if G5[X5] 6= ⊥ then // Immediate Completion

10: Complete(C, (X5, X6))

11: else // Completion is delayed

12: X3 ← Finner(2, X2)⊕X1

13: Chains[3, X3]← (5, X5), Chains[5, X5]
∪← {(C, (X5, X6))}

14: elseif k = 4 then

15: Finner(k,X)

16: foreach (X4, X5) ∈ {X} ×G5 do

17: if (X4, X5, 4) /∈ CompletedChains then

18: X6 ← Finner(4, X4)⊕X5

19: (X0, X1)← Func(-, X5||X6)

20: C ← (X4, X5, 4)

21: if G1[X1] 6= ⊥ then // Immediate Completion

22: Complete(C, (X0, X1))

23: else // Completion is delayed

24: X3 ← Finner(4, X4)⊕X5

25: Chains[3, X3]← (1, X1), Chains[1, X1]
∪← {(C, (X0, X1))}

Figure 3.9: The code for simulator Sim. Sim has access to the Func oracle and maintains data structures

Gk, Chains and CompletedChains as global variables.
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26: elseif k ∈ {1, 5} then

27: Finner(k,X)

28: foreach (C, (U, V )) ∈ Chains[k,X] do

29: if C /∈ CompletedChains then // Delayed Completion

30: Complete(C, (U, V ))

31: elseif Chains[3, X] 6= ⊥ then

32: Sim(Chains[k,X])

33: return Finner(k,X)

PROCEDURE Finner(i,Xi):

34: if Gi[Xi] = ⊥ then

35: Gi[Xi]
$← {0, 1}n

36: return Gi[Xi]

PROCEDURE ForceVal(X,Y, l):

37: Gl[X]← Y

Figure 3.9: (continued) The code for subroutines used by simulator Sim.

one of the queries/responses by/to A1 then it is unlikely for A2 to guess the corresponding

(X5, X6) pair. Therefore, if G5[X5] 6= ⊥ then Sim assumes that C is a chain that most

likely corresponds to a query by A1. We refer to partial chains that correspond to the

queries by A1 as relevant chains. In this case, Sim immediately completes C by calling

the procedure Complete. C is completed by forcing the values of G3[X3] and G4[X4] to

be consistent with the Func query where X3 ← G2[X2]⊕X1 and X4 ← G5[X5]⊕X6.

If G5[X5] = ⊥ then either C is not a relevant chain or C is a relevant chain but A2

has not queried (5, X5) yet. An aggressive strategy would be to complete C, thereby

asking Sim to complete every partial chain ever detected. The resulting simulation strat-
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PROCEDURE Complete(C, (U, V )):

38: (X,Y, i)← C

39: if i = 1 then

40: X1 ← X,X2 ← Y , X3 ← Finner(2, X2)⊕X1

41: (X5, X6)← (U, V )

42: X4 ← Finner(5, X5)⊕X6

43: ForceVal(X3, X4 ⊕X2, 3), ForceVal(X4, X5 ⊕X3, 4)

44: elseif i = 4 then

45: X4 ← X,X5 ← Y , X3 ← Finner(4, X4)⊕X5

46: (X0, X1)← (U, V )

47: X2 ← Finner(1, X1)⊕X0

48: ForceVal(X3, X4 ⊕X2, 3), ForceVal(X2, X1 ⊕X3, 2)

49: CompletedChains
∪← {(X1, X2, 1), (X4, X5, 4)}

Figure 3.9: (continued) The code for subroutines used by simulator Sim.

egy will however end up potentially managing an exponential number of partial chains,

contradicting our goal of efficient simulation. Hence, Sim delays the completion and only

completes C on A2’s query to either (3, X3) or (5, X5) where X3 = G2[X2] ⊕ X1. The

completion is delayed by storing information about X3 and X5, that fall on the chain

C, in the table Chains. In particular, Sim stores a pointer to (5, X5) at Chains[3, X3].

The inputs ((X1, X2, 1), (X5, X6)) to the Complete call on C are stored in Chains[5, X5].

As many chains can share the same X5, we allow Chains[5, X5] to be a set. The idea

of delaying the chain completions is unique to our simulation strategy and it translates

to an efficient Sim which consistently completes chains in the eyes of A. Sim works

symmetrically when k = 4.

For queries of the form (k,X) where k ∈ {1, 5}, Sim always assigns Gk[X] to a

uniform random n-bit string by calling Finner. Moreover as discussed earlier, X could
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be on previously detected partial chains whose completion was delayed. Therefore after

the assignment, Sim picks up all partial chains C ′ (if any) stored in Chains[k,X] and

completes them. This is where Sim captures a relevant partial chain which was delayed

for completion. Finally for queries (3, X), Sim checks if this X was on a partial chain that

was detected but not completed. If Chains[3, X] = ⊥ then Sim assigns G3[X] a uniform

random n-bit string otherwise it follows the pointer to Chains[3, X] to complete the chain

X was on. Since Chains[3, X] just stores a tuple (instead of a set) there can be at most

one chain C that Chains[3, X] can point to at any time. In the execution, Chains[3, X]

can get overwritten which may lead to inconsistencies in chain completions. However,

we show that there are no overwrites in either tables Gk or the data-structure Chains,

except with negligible probability. This allows Sim to Complete chains consistently in

the eyes of A. Furthermore, to avoid completing the same chains again, Sim maintains a

set of all CompletedChains and completes any chain if it is not in CompletedChains. A

pictorial description of Sim is found in Fig. 3.10.

3.4.2 Notation and Description of Hybrids

For the entire proof we will let n denote the security parameter and we omit it from

definitions of games for ease of notation. To prove our claim, we fix a deterministic

distinguisher A = (A1, A2) that makes at most q queries overall, i.e., we sum the number

of queries in its first and second stage. 4 For ease of description, we further assume

that A1 makes qc ≤ q (construction) queries and denote its queries as (σ,X i
k, X

i
k+1) for

(σ, k) ∈ {(+, 0), (-, 5)} and i ∈ [qc]. We refer to these queries as relevant queries. From

now on, any query described with superscript i must be understood as either the query

by A1 or its response. We also assume that A2 issues primitive queries corresponding to

4We may assume A is deterministic without loss of generality, as the advantage of any probabilistic
distinguisher is at most the advantage of the corresponding deterministic distinguisher obtained by
optimally fixing its random tape.
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X1G1

X2G2

X3G3

X4G4

X5G5

X0

X6

forceVal

forceVal

set uniform

set uniform

X2 detect

X4 detect

Figure 3.10: The 5-round Feistel where Sim sets G1[X1] and G5[X5] uniformly at random (green). Sim

detects chains at either (X1, X2) or (X4, X5) (blue) and adapts at (X3, X4) and (X2, X3) respectively

(red).

all construction queries by A1. This can be achieved by allowing A2 run the procedure

AllPrimitive described in Figure 3.11 at the end and blowing up the number of queries

only by a factor of 5.

Our proof considers four games denoted as Gi for i ∈ [4] which are described in

Figures 3.11, 3.14. Furthermore we define the quantity ∆(Gi,Gi+1),

∆(Gi,Gi+1) = |Pr [Gi]− Pr [Gi+1]| . (3.15)

We describe our games next.

Game G1: G1 described in Figure 3.11 is exactly the case when b = 0 in the CP-

sequential indifferentiability game of Ψ5. The Func oracle implements a permutation via

lazy sampling and Prim oracle invokes the procedure Sim(k,X) on queries (k,X). In

addition, Sim inherits oracle access to Func from Prim.
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Game G2: replacing permutation with a two-sided random function: In this

game, we modify the oracle Func such that now instead of a permutation it acts like

a two-sided random function working with pre-sampled randomness ρ. The description

of Func for game G2 is given in Figure 3.11. Func maintains a table P to simulate the

permutation. For a (forward) query (+, X0||X1) to Func, if P [+, X0, X1] is already defined

then the image P [+, X0, X1] is returned as the response. Otherwise, Func gets a 2n-bit

string (X5, X6) from ρ[+, X0, X1] and maps (X0, X1) to (X5, X6) and vice versa. This is

shown in Figure 3.11. Similarly for a (backward) query (-, X5||X6) to Func such that

P [-, X5, X6] is not defined Func gets a 2n-bit string from ρ[-, X5, X6] and updates P

accordingly. The random table ρ, therefore, contains a 2n-bit string for all (+, X0, X1)

and (-, X5, X6).

Moreover, we also sample the randomness f used by Sim at the beginning of the

game G2. The table f contains an n-bit string for all indices (k,X) where k ∈ [5]

and X ∈ {0, 1}n. We refer to the simulator with presampled randomness f as Sim(f).

Whenever Sim lazily samples randomness to assign Gk[X] (line 37 of Figure 3.9), Sim(f)

instead accesses f [k,X]. Sampling f at the beginning does not change the distribution

of the simulation. This is because Sim considers an entry of f at most once. The code

for Sim(f) is shown in Figure 3.9 alongside the code of Sim.

After A2 has output its guess b′, we allow Sim to run an additional procedure called

AllComplete (described in Figure 3.11). We refer to the execution of G2 until the point

when A2 outputs its guess as Phase 1 and the remaining execution as Phase 2. The output

guess of A2 is independent of Phase 2 as A2 learns nothing about it. Note that in Phase

2, Sim does not make any calls to Func, it just completes incomplete chains that were

delayed. This extension to Phase 2 is necessary to argue about the indistinguishability

of G2 with G3 (defined next).

By F , R we denote the set of all tables f and ρ respectively as described above. We
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consider an alternative game Gf,ρ2 where the first step of sampling random tables from

game G2 is omitted and instead we use (f, ρ) as the tables. In other words, game Gf,ρ2

can be thought of as running G2 with the fixed (f, ρ).

Game G3: replacing two-sided random function with Ψ5(h): In G3, we replace

the two-sided random function with the Feistel construction Ψ5(h) i.e. Func now evaluates

the Feistel construction to reply to its queries. Like in the previous game, we again sample

the randomness h ∈ F at the beginning of the game. One major difference between G2

and G3 is that in G3 the randomness h is shared between Prim (and hence Sim) and

Func oracles. The game G3 maintains tables Hk which have the same semantics as Gk.

As shown in Figure 3.14, whenever Func needs to access the value of the kth round

function on X it accesses Hk[X] if it is defined. Otherwise, it sets Hk[X] ← h[k,X]

and then accesses Hk[X]. Sim does the same when it needs to set Gk[X]. The entire

working of Sim is the same as in G2 (and G1) except the procedure Finner which is shown

in Figure 3.14. Like in G2, we allow Sim to run the procedure AllComplete after A2 has

output its guess.

We consider an alternative game Gh3 where the first step of the sampling random table

h is omitted from game G3 and instead we use h as the table. In other words, game Gh3

can be thought of as running G3 with the fixed h.

Game G4: removing the simulator Sim: In this game, we modify Prim such that it

behaves like a random function as in the case of b = 1 in the CP-sequential indifferen-

tiability game of the five-round Feistel construction. The Func oracle which implements

the Feistel five-round construction has access to Prim for round functions.

From the choice of our games, it follows that Adv
cpi[R→P]
Ψ5,Sim,A

(n) ≤ ∆(G1,G4). Our focus

from now on will be to derive ∆(Gi,Gi+1) for i ∈ [3] and then by the triangle inequality
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we derive a bound on ∆(G1,G4).

Next, we prove that each of the adjacent hybrids Gj and Gj+1 are indistinguishable,

thereby concluding the proof of Theorem 9.

3.4.3 Indistinguishability of G1 and G2

In this section, we derive a bound for ∆(G1,G2) by invoking a standard argument

about replacing a permutation with a two-sided random function. We will consider

(Sim, A) as a coupled distinguisher D that makes q′ queries to the permutation/two-

sided random function and therefore has advantage q′2/22n in distinguishing the random

permutation from the two-sided random function. In Lemma 13, we will prove Sim’s

query complexity and thereby establish ∆(G1,G2) in Lemma 14.

Lemma 13 At any point in G2, |Gk| ≤ q + 2q2 and |P | ≤ qc + 2q2 where k ∈ [5] and

|Gk| and |P | is the size of the respective tables.

Proof: In Phase 1 of the game G2, for every element that gets added to G1 and G5

there exists a query by A2 to Prim. This is because elements get added to G1 (in Phase

1) either due to a query (1, X1) by A2 such that G1[X1] = ⊥ or due to a query (3, X3)

by A2 such that Chains[3, X3] = (1, X1) and G3[X3] = ⊥ (lines 31-32 in Figure 3.9).

Therefore, |G1| ≤ q and |G5| ≤ q at any point in Phase 1.

Now, we bound the size of the table P . Sim issues queries to Func only when A2

queries Prim(k,X) where k ∈ {2, 4} and Gk[X] = ⊥. Since queries to Func are only

issued in Phase 1 and |G1| ≤ q, then for every query (2, X) by A2 there are at most

q queries to Func. Over q queries by A2, there are at most q2 queries to Func by Sim.

Following the same analysis for Prim queries of the form (4, ·), Sim issues at most 2q2

queries to Func in G2.

Therefore, |P | ≤ qc + 2q2 ≤ 3q2 where the inequality is due to qc ≤ q.
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Next we bound |Gk| and |Chains[j]| where k ∈ [5] and j ∈ {1, 3, 5} where

Chains[l] =
⋃

(l,X):Chains[l,X]6=⊥

Chains[l, X] where l ∈ {1, 5} ,

Chains[3] =
⋃

(3,X):Chains[3,X]

{Chains[3, X]} .
(3.16)

At any point in G2 elements get added to Chains[l] only after a Func query and a

Func query can add at most one element in Chains[j]. Hence it is easy to see that

|Chains[j]| ≤ 2q2. In G2, for any call to Complete (immediate or delayed) there is exactly

one Func query by Sim. As proved earlier, there are at most 2q2 calls to Complete and

each call adds (via ForceVal) at most one element in |Gk|. In Phase 1, elements get

added to Gk either due to a query to Prim by A2 or due to ForceVal calls inside Complete.

Moreover in Phase 2, elements also get added to Gk due to ForceVal inside Complete or

due to Finner calls just before calling Complete. Therefore, we have that |Gk| ≤ q + 2q2

because there are at most 2q2 calls to Complete.

By Lemma 13 we have the following lemma.

Lemma 14 ∆(G1,G2) ≤ 9q4/22n.

Proof: Let D = (Sim, A) be a distinguisher that makes at most 3q2 (≥ qc + 2q2) to

the oracle Func. By a standard argument, the lemma holds.

3.4.4 Indistinguishability of G2 and G3

In this section, we prove the indistinguishability of games G2 and G3 by defining a map

τ that maps (f, ρ) to h such that the output distribution of A in G2 is not very different

from that in G3. Infact, we prove that for certain pairs (f, ρ) the image h = τ(f, ρ) is

such that the output distributions of both games are identical. We refer to such pairs as

good and the absence of certain bad events in Gf,ρ2 makes (f, ρ) a good pair. We define

these events next and later in Lemma 21 show that most pairs (f, ρ) are good.
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Definition of good pairs

For the following definitions, consider the game G2 using a pair (f, ρ) ∈ F ×R. i.e. Gf,ρ2 .

We are going to define a few bad events that occur when executing G2 with randomness

fixed to such a pair (f, ρ). We say that a pair (f, ρ) is good if no such event occurs in an

execution, and otherwise it is bad.

Definition 3 The event BadP occurs in an execution of Gf,ρ2 if one the following holds,

1. Right after a call (X5, X6)← ρ[+, X0, X1] either G5[X5] 6= ⊥ or P [-, X5, X6] 6= ⊥.

2. Right after a call (X0, X1)← ρ[-, X5, X6] either G1[X1] 6= ⊥ or P [+, X0, X1] 6= ⊥.

Definition 4 The event BadOutside5 occurs in an execution of Gf,ρ2 if one of the following

holds,

1. Right after an assignment G1[X]← f [1, X] there exist X2 and (+, X0, X1) such that

G2[X2] 6= ⊥, P [+, X0, X1] 6= ⊥ and G1[X] = X2 ⊕X0.

2. Right after an assignment G5[X]← f [5, X] there exist X4 and (-, X5, X6) such that

G4[X4] 6= ⊥, P [-, X5, X6] 6= ⊥ and G5[X] = X4 ⊕X6.

Definition 5 The event BadGutShot occurs in an execution of Gf,ρ2 if one of the following

holds,

1. Right after an assignment G2[X] ← f [2, X] there exist X1 and X3 such that

G1[X1] 6= ⊥, G3[X3] 6= ⊥ and G2[X] = X1 ⊕X3.

2. Right after an assignment G2[X] ← f [2, X] there exist X1 and X3 such that

G1[X1] 6= ⊥,Chains[3, X3] 6= ⊥ and G2[X] = X1 ⊕X3.

5The names of the events BadOutside and BadGutShot are adopted from straight draws in the card
game of Poker.
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3. Right after an assignment G4[X] ← f [4, X] there exist X5 and X3 such that

G5[X5] 6= ⊥, G3[X3] 6= ⊥ and G4[X] = X5 ⊕X3.

4. Right after an assignment G4[X] ← f [4, X] there exist X5 and X3 such that

G5[X5] 6= ⊥,Chains[3, X3] 6= ⊥ and G4[X] = X5 ⊕X3.

Let the i-th query issued by A1 be (σ,X i
k, X

i
k+1) where (σ, k) ∈ {(+, 0), (-, 5)}. Before

the control of G2 is passed to A2, the tuples (X i
0, X

i
1, X

i
5, X

i
6) corresponding to the the ith

query by A1 are defined. Since (f, ρ) is sampled at the beginning of G2 and Sim always

replies to queries (1, X) and (5, X) using the values f [1, X] and f [5, X], respectively, we

can further define

X i
2 = f [1, X i

1]⊕X i
0 ; X i

4 = f [5, X i
5]⊕X i

6 . (3.17)

The following events are assuming (X i
0, X

i
1, X

i
2, X

i
4, X

i
5, X

i
6) are defined for i ∈ [qc]. We

call such tuples relevant chains or relevant tuples.

Definition 6 The event BadlyCollide occurs in an execution of Gf,ρ2 if one of the following

holds,

1. X i1
2 = X i2

2 for i1 6= i2 ∈ [qc].

2. X i1
4 = X i2

4 for i1 6= i2 ∈ [qc].

Definition 7 The event BadP2 occurs in an execution of Gf,ρ2 if one the following holds,

1. Right after a call (X5, X6)← ρ[+, X0, X1] where (X0, X1) 6= (X i
0, X

i
1) for all i ∈ [qc]

there exists i1 ∈ [qc] such that X5 = X i1
5 .

2. Right after a call (X0, X1)← ρ[-, X5, X6] where (X5, X6) 6= (X i
5, X

i
6) for all i ∈ [qc]

there exists i1 ∈ [qc] such that X1 = X i1
1 .
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Definition 8 The event BadOutside2 occurs in an execution of Gf,ρ2 if one of the following

holds,

1. Right after an assignment G1[X]← f [1, X] where X 6= X i
1 for all i ∈ [qc] there exist

((X4, X5, 4), (X0, X)) ∈ Chains[1, X] and i1 ∈ [qc] such that X i1
2 = G1[X]⊕X0.

2. Right after an assignment G5[X]← f [5, X] where X 6= X i
5 for all i ∈ [qc] there exist

((X1, X2, 1), (X,X6)) ∈ Chains[5, X] and i1 ∈ [qc] such that X i1
4 = G5[X]⊕X6.

Most pairs (f, ρ) are good

We next show that most pairs (f, ρ) ∈ F × R are good, i.e., that a randomly sampled

(f, ρ) pair is good except with small probability.

For all the following proofs we consider the occurrence of any of the bad events defined

above at any point in the execution of G2. Also, in order to simplify the calculation of the

probability that (f, ρ) is not good, we will often alternate viewing G2 as lazily sampling

(f, ρ) (occasionally only partially), rather than pre-sampling it. (This will obviously not

affect the probability, as the experiments are equivalent.) For the following calculations, it

will be convenient to first observe the following: from Lemma 13 we know that |P | ≤ t(q),

|Gi| ≤ t(q) for all i ∈ [5] and |Chains[l]| ≤ t(q) where l ∈ {1, 3, 5} and t(q) = 3q2. (We

will occasionally write t rather than t(q).)

Lemma 15 Pr [BadP] ≤ 2t2/2n.

Proof: For any query to (X5, X6)← ρ[+, X0, X1], BadP occurs if either P [-, X5, X6] 6=

⊥ which happens with probability t/22n or if G5[X5] 6= ⊥ which happens with probability

t/2n. Since |P | ≤ t at any point in G2, there can be at most t such calls and hence by

the union bound we have the lemma.

Lemma 16 Pr [BadOutside] ≤ 2t3/2n.
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Proof: For any assignment of the form G1[X] ← f [1, X], BadOutside occurs if

there exists X2 and (+, X0, X1) such that G2[X2] 6= ⊥, P [+, X0, X1] 6= ⊥ and G1[X] =

X2⊕X0. Since |P | ≤ t and |G2| ≤ t, there are at most t2 such pairs for which BadOutside

happens with probability 1/2n. The symmetric argument holds for assignments of the

form G5[X]← f [5, X].

Since |G1|, |G5| ≤ t at any point in G2, there can be at most 2t such assignments and

hence by the union bound we have the lemma.

Lemma 17 Pr [BadGutShot] ≤ 4t3/2n.

Proof: For any assignment of the form G2[X] ← f [2, X], BadGutShot occurs if

there exists X1 and X3 such that G1[X1] 6= ⊥, G3[X3] 6= ⊥ (Chains[3, X3] 6= ⊥) and

G1[X] = X2 ⊕ X0. Since |Chains[3]| ≤ t, |G3| ≤ t and |G1| ≤ t, there are at most 2t2

such pairs for which BadGutShot happens with probability 1/2n. Since |G2|, |G4| ≤ t at

any point in G2, there can be at most 2t such assignments and hence by the union bound

we have the lemma.

Lemma 18 Pr [BadlyCollide] ≤ 2q2/2n.

Proof: To find the probability of BadlyCollide, we visualize the game G2 in the

following way. At the beginning of the game, we just sample ρ
$← R and run the game

with A1. After A1 is done with all its qc queries, we define X i
2 and X i

4 as follows:

X i
2 ← ri ⊕X i

0 ; X i
4 ← si ⊕X i

6 , (3.18)

where ri, si
$← {0, 1}n for i ∈ [qc]. Note that the distribution of X i

2 as defined above is

the same as defined in Equation 3.17.

It is easy to see that the probability of collision among the X i
2 values is at most q2/2n.

Similarly, probability of collision among the X i
4 values is at most q2/2n. Hence by the

union bound the lemma holds.
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For the following proofs, we will visualize G2 as sampling randomness lazily until

A1 is done with its queries. At this point, we can define the respective relevant tuples

(X i
0, X

i
1, X

i
2, X

i
4, X

i
5, X

i
6). Now the control is passed to A2 where we sample randomness

lazily again. Note that BadP2 and BadOutside2 are defined for calls/assignments not

involving the relevant tuples. Hence resorting to lazy sampling in the second stage of the

game does not change the output distribution in this variant of G2.

Lemma 19 Pr [BadP2] ≤ tq/2n.

Proof: For any query to (X5, X6)← ρ[+, X0, X1] where (X0, X1) 6= (X i
0, X

i
1) for all

i ∈ [qc], BadP2 occurs if there exists i1 ∈ [qc] such that X5 = X i1
5 . This happens with

probability at most q/2n. Since |P | ≤ t at any point in G2, there can be at most t such

calls to ρ and hence by the union bound we have the lemma.

Lemma 20 Pr [BadOutside2] ≤ 2qt2/2n.

Proof: For any assignment of the form G1[X] ← f [1, X] where X 6= X i
1 for all

i ∈ [qc], BadOutside2 occurs if there exists ((X4, X5, 4), (X0, X)) ∈ Chains[1, X] and

i1 ∈ [qc] such that G1[X] = X i1
2 ⊕ X0. Since |Chains[1]| ≤ t at any point in G2, the

above happens with probability tq/2n. Similar reasoning holds for assignment of the

form G5[X]← f [5, X] where X 6= X i1
5 .

Since |G1|, |G5| ≤ t at any point in G2, there can be at most 2t such assignments and

hence by the union bound we have the lemma.

Using the union bound with all the above lemmas, and combining this with Lemma 13,

we obtain the following final lemma giving us an overall bound on the probability that

(f, ρ) is bad.

Lemma 21 Pr
[
(f, ρ)

$← F ×R : (f, ρ) is bad
]
≤ 13t3/2n ≤ 351q6/2n.
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Properties of good executions

By Lemma 21, we know that most pairs (f, ρ) are good, and now we want to focus on

executions in Gf,ρ2 for such good pairs (so-called “good executions”). This then allows

us to define a map τ that maps (f, ρ) to h such that the executions of Gf,ρ2 and Gh3 are

identical. To formalize this, we first define a notion of a transcript of such an execution.

Transcript of Game Gi: We define the transcripts of an execution of Gi as a se-

quence of tuples T1, T2, . . . recording each access to the tables P and G made during this

execution. In particular, each Tj is one of the following:

1. Tj = (Yj, kj, Xj) where kj ∈ [5] such that Finner was called on input (kj, Xj) and Yj

was the value returned by Finner.

2. Tj = (Yj, kj, Xj) where kj ∈ {2, 3, 4} such that ForceVal was called on input

(Xj, Yj, kj).

3. Tj = (σ,Xj
k, X

j
k+1, X

j
k′ , X

j
k′+1), where (σ, k, k′) ∈ {(+, 0, 5), (-, 5, 0)} such that Func

was called on input (σ,Xj
k||X

j
k+1) and (Xj

k′ , X
j
k′+1) was the value returned by Func.

The subtranscript T [1 : j] which is the sequence T1, . . . , Tj. Next we describe a few

properties of the execution and its transcript corresponding to a good pair (f, ρ).

Some notational conventions. In the following proofs we make references to line

numbers. If not specified then it must be assumed that the line numbers are w.r.t. the

Sim’s pseduocode shown in Figure 3.9. Also, for ease of notation, we use x ∈ T and

T [x] 6= ⊥ interchangeably but both denote that the key x is in the table T . For eg:

X ∈ Gk implies Gk[X] 6= ⊥.
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No Chains overwrites. Our first case is going to deal entering values in Chains[3, X]

for some X. We show that this value is never overwritten during a good execution.

Lemma 22 For any assignment of the form Chains[3, X]← (k,Xk) in Gf,ρ2 (lines 13,25

in Figure 3.9), Chains[3, X] = ⊥ just before the assignment.

Proof: Consider an assignment Chains[3, X] ← (5, X5). This occurs only on a

query (2, X2) by A2 such that G2[X2] = ⊥ just before the query. To reply to (2, X2), Sim

assigns G2[X2]← f [2, X2] and considers all tuples in G1×{X2}. For each of these tuples

(X1, X2) it either schedules the partial chain (X1, X2, 1) for immediate completion (line

9-10) or delays its completion (lines 11-13). The assignment to Chains[3, X] can only

occur when the chain’s completion gets delayed (lines 11,23).

Now consider X = G2[X2]⊕X1, since (f, ρ) is a good pair and the event BadGutShot

does not occur Chains[3, X] = ⊥. Otherwise on assignment G2[X2] ← f [2, X2] there

would exist X1 and X such that G1[X1] 6= ⊥, Chains[3, X] 6= ⊥ where X = G2[X2]⊕X1.

The other assignment Chains[3, X]← (1, X1) is symmetrically handled. Hence the lemma

holds.

No overwrites in Gk. Next we prove that in Gf,ρ2 where (f, ρ) is a good pair, there

are no overwrites in Gk. In particular, this will mean that whenever Sim is attempting

to force a value (via ForceVal) it can do so without making anything inconsistent.

Lemma 23 For any call to ForceVal(X, ·, l) in Gf,ρ2 , we have Gl[X] = ⊥ just before the

call.

Proof: A call to ForceVal is triggered only from inside Complete (lines 43,48).

Moreover, Sim calls the procedure Complete only when it is attempting to complete a

partial chain which was not completed before. If the lemma fails to hold then there
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exists a call to Complete during which it fails. Consider such a call to Complete and

let C be the corresponding partial chain that is being completed. Furthermore, note

that C /∈ CompletedChains just before the Complete call. We analyse the case when the

partial chain C is of the form (X1, X2, 1). The other instance when C = (X4, X5, 4) can

be handled symmetrically, and is omitted.

Therefore, let us assume that during the completion of C = (X1, X2, 1), the lemma

fails to hold for one of the ForceVal calls. There are two cases in which Complete can get

called on C = (X1, X2, 1) and we analyse them next.

- Case A: Complete(C = (X1, X2, 1), ·) was called from line 10 of Figure 3.9. We re-

fer to such call to Complete as an immediate chain completion. Immediate chain

completions happen only in Phase 1 (before Sim runs AllComplete), as they are

triggered due to a Prim query by A2.

Note that just before the call to Complete((X1, X2, 1), ·) there must have been a

query (2, X2) to Prim by A2 such that G2[X2] = ⊥ before the query. To respond

to (2, X2) query of A2, Sim assigns G2[X2] ← f [2, X2]. After the assignment, Sim

iterates through every tuple in G1 × {X2} (line 4 of Figure 3.9) to either schedule

an immediate completion of C (lines 9-10) or delay its completion (lines 11-13).

Since this call to Complete was made from line 10, we must have G1[X1] 6= ⊥,

G5[X5] 6= ⊥ where (X5, X6) = P [+, X0, X1], X0 = G2[X2] ⊕ X1. Furthermore, let

X3 = G2[X2] ⊕ X1 and X4 = G5[X5] ⊕ X6 where G2[X2] is assigned to f [2, X2]

just before this call to Complete. To complete the chain C, Complete will force

G3[X3] and G4[X4] through ForceVal(X3, ·, 3) and ForceVal(X4, ·, 4) respectively. If

the lemma fails to hold for C then either G3[X3] 6= ⊥ or G4[X4] 6= ⊥ before their

respective ForceVal calls.

First, we argue that G3[X3] = ⊥ before the call ForceVal(X3, ·, 3). This is because
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the pair (f, ρ) is good and the event BadGutShot does not occur on assignment

G2[X2] ← f [2, X2]. Furthermore, Chains[3, X3] = ⊥ by the same argument. This

ensures that by forcing G3[X3] to a value (inside ForceVal) we are not making any

previously completed chains inconsistent (G3[X3] = ⊥) nor running into the risk of

making this chain completion inconsistent due to a future delayed chain completion

(Chains[3, X3] = ⊥).

Therefore, if the lemma fails to hold for C, then it must be that G4[X4] 6= ⊥ before

the call to ForceVal(X4, ·, 4). Note that in order to complete the chain C, Sim queries

Func with (+, X0||X1) (line 7). It can either be that (+, X0||X1) was a fresh query,

that is, P [+, X0, X1] = ⊥ before Sim’s query to Func or that it was already in the

table P before Sim’s query. Furthermore, a tuple gets added to the table P either

when Sim makes a query to Func or A1 makes a query to Func. Assuming, G4[X4] 6=

⊥, we are going to analyse when/how the tuple (+, X0, X1), corresponding to query

by Sim (to Func in line 7), was added to the table P and arrive at a contradiction

to either the goodness of the pair (f, ρ) or that (X1, X2, 1) /∈ CompletedChains.

– Case A.1: (+, X0, X1) gets added to P due to the Func query in line 7. In this

case, the query (+, X0||X1) to Func is such that P [+, X0, X1] = ⊥. Therefore,

to reply to (+, X0||X1), Func accesses ρ[+, X0, X1] (as P [+, X0, X1] = ⊥) to get

(X5, X6) and returns it. However, since we are considering an immediate chain

completion, we know that G5[X5] 6= ⊥. This means the event BadP occurs

when ρ[+, X0, X1] is accessed, which is a contradiction as (f, ρ) is a good pair.

Therefore, (+, X0, X1) ∈ P even before Func was called in line 7.

– Case A.2: (+, X0, X1) was added to P due to an earlier query to Func by Sim.

Sim’s queries to Func are distinct therefore if (+, X0, X1) got added to P due

to a Sim query then Sim must have previously queried Func(-, X5||X6). This
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could only happen on a query (4, X4) by A2 where X4 = G5[X5] ⊕ X6. Sim

assigns G4[X4] ← f [4, X4]. After the assignment, Sim would have iterated

through all tuples in {X4}×G5 (line 16). It would also consider (X4, X5) and

make the Func(-, X5, X6) query.

If X1 ∈ G1 at this point, this chain (X4, X5, 4) would have been immedi-

ately completed (line 21-22) and hence C = (X1, X2, 1) would already be

completed even before the query (2, X2) by A2 which is a contradiction as

C /∈ CompletedChains.

If X1 /∈ G1 at this point then (X4, X5, 4)’s completion is delayed (line 23-

25) where Chains[3, X3]← (1, X1) and ((X4, X5, 4), (X0, X1)) gets inserted in

Chains[1, X1]. But as G1[X1] 6= ⊥ before the A2’s query (2, X2) and we are

still in Phase 1, it can only be the case that A2 queried (1, X1) to Prim or

(3, X ′3) to Prim such that Chains[3, X ′3] = (1, X1) and G3[X ′3] = ⊥ whichever

earlier. Here, X ′3 corresponds to one of the chains C ′ such that (C ′, (U ′, V ′)) ∈

Chains[1, X1] 6. In either case, Complete gets called on (X4, X5, 4) and hence

(X1, X2, 1) would be completed even before the query (2, X2) by A2 which is

again contradiction to C /∈ CompletedChains. Therefore, the tuple (+, X0, X1)

corresponding to the query by Sim (to Func) can only get added to P due to

a query (to Func) by A1.

Infact, recall that a (2, X2) query by A2 can trigger more than one immediate

chain completions as Sim loops over all newly formed partial chains C ′ =

(X ′1, X2, 1) where X ′1 ∈ G1. It follows from the arguments made in cases A.1

and A.2 that all of Sim’s queries (+, X ′0||X ′1) are such that the tuple (+, X ′0, X
′
1)

was added to P due to a query by A1.

6By Lemma 22 there are no overwrites in Chains[3, X]. This ensures that a Prim query to (3, X ′3)
such that G3[X ′3] = ⊥ will lead to a call to Sim(5, X5) (line 32). We will use this argument in the future
without repeating this explanation.
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– Case A.3: (+, X0, X1) was added to P due to a query by A1. The only remain-

ing case for the tuple (+, X0, X1) is that it was added to P due to a query by

A1. Therefore, the tuple (X0, X1, X3, X4, X5, X6) falls on a relevant chain,

that is, there exists i ∈ [qc] such that Xj = X i
j for j ∈ {0, 1, 2, 4, 5, 6}, thereby

making C a relevant partial chain. As stated above, a (2, X2) query by A2 can

trigger immediate completion of more than one partial chains. As discussed

at the end of the case A.2, all these partial chains are relevant chains.

Recall that if the lemma fails to hold for C, then G4[X i
4] 6= ⊥ before the

ForceVal(X i
4, ·, 4) call. Note that an element X gets added to a table G4 either

due to ForceVal call (issued by Sim from inside a call to Complete) or due to a

direct query (4, X) by A2. Assuming that G4[X i
4] 6= ⊥ before the ForceVal call

(i.e., X i
4 is in the table P ), we are going to analyse when/how X i

4 was added

to G4 and arrive at a contradiction to either the goodness of the pair (f, ρ) or

that (X1, X2, 1) /∈ CompletedChains.

∗ Case A.3.1: X i
4 was added due to one of the Complete calls due to (2, X2).

A query to (2, X2) by A2 may trigger multiple calls to Complete. However,

we just observed that all these calls must correspond to relevant chains.

Therefore, if X i
4 gets added to G4 due to a Complete call triggered by the

query (2, X2) on some chain C ′ 6= C, this would imply that two relevant

chains C and C ′ share their X4s and the event BadlyCollide occurs. This

contradicts the fact that (f, ρ) is a good pair.

∗ Case A.3.2: X i
4 was added due to a Complete call before A2’s query (2, X2).

Let us assume that it was due to a call to Complete on some (X ′1, X
′
2, 1) 6=

(X1, X2, 1). Again as (f, ρ) is a good pair, (X ′1, X
′
2, 1) cannot be a rele-

vant chain (relevant chains donot share X2s). Hence, when Sim queries
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(+, X ′0||X ′1) where X ′0 = G1[X ′1] ⊕ X ′2, Func replies to (+, X ′0||X ′1) by ac-

cessing ρ[+, X ′0, X
′
1]. Then, (f, ρ) being good, the events BadP and BadP2

do not occur. This ensures that X ′5 /∈ G5 and also that X ′5 6= X i1
5 for

all i1 ∈ [qc]. Since X ′5 /∈ G5, chain (X ′1, X
′
2, 1)’s completion gets delayed

(lines 11-13). We are inside the call to Complete on (X ′1, X
′
2, 1) and Sim

must be executing lines 27-30 for (5, X ′5). G5[X ′5] is assigned to f [5, X ′5]

and then Complete is called on C ′ where (C ′, (X ′5, X
′
6)) ∈ Chains[5, X ′5].

If G5[X ′5] ⊕ X ′6 = X i
4 (as we have assumed) then BadOutside2 will occur

on assignment G5[X ′5] where X5 6= X i1
5 , which is a contradiction as (f, ρ)

is a good pair.

∗ Case A.3.3: X i
4 gets added to G4 due to a query (4, X i

4) by A2. The only

remaining case in which X i
4 can get added to G4 is if A2 makes a Prim

query (4, X i
4). Note that such a query (4, X i

4) (if at all) must occur before

(2, X2). Furthermore, when A2 queries (4, X i
4), X i

5 must already be in

G5. Otherwise, BadOutside occurs on the assignment G5[X i
5] ← f [5, X i

5].

This leaves us with the state that X i
5 ∈ G5 when A2 queries (4, X i

4) and

G4[X i
4] = ⊥ just before A2’s query (4, X i

4). We have already argued for a

similar case in Case A.2 where we derive a contradiction to (X1, X2, 1) /∈

CompletedChains before the query (2, X2) by A2.

Therefore, in all the cases where G4[X i
4] 6= ⊥ before the ForceVal(X i

4, ·, 4) leads

to a contradiction.

Therefore, if the lemma fails to hold for C then it must be the case that the Complete

called on C is from line 30. We analyse this case next.

- Case B: Complete(C = (X1, X2, 1), ·) was called from line 30 of Figure 3.9. We re-

fer such a call to Complete as delayed chain completion. Delayed chain completions
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can happen in either of the Phases in G2.

When C’s completion was delayed (lines 11-13), Chains[3, X3] = (5, X5) and

(X1, X2, 1) ∈ Chains[5, X5] where X3 = G2[X2] ⊕X1 and (X5, X6) = P [+, X0, X1]

and X0 = G1[X1]⊕X2.

To complete the chain C, Complete will force G3[X3] and G4[X4] (X4 is not yet

defined) through ForceVal(X3, ·, 3) and ForceVal(X4, ·, 4) respectively. If the lemma

fails to hold for C then either G3[X3] 6= ⊥ or G4[X4] 6= ⊥ before their respective

ForceVal calls.

First, we argue that before the call ForceVal(X3, ·, 3), G3[X3] = ⊥. Prior to this

(delayed) call to Complete, Chains[3, X3] = (5, X5) (because there are no overwrites

in Chains[3, ·] by Lemma 22). Such a (delayed) call to Complete is triggered on an

A2 query to either (5, X5) or (3, X ′3) or within AllComplete procedure in the Phase

2 such that Chains[3, X ′3] = (5, X5), whichever earlier. Here X ′3 corresponds to any

chain C ′ such that (C ′, ·) ∈ Chains[5, X5]. Let us consider the earliest point in the

execution when either A2 queries (5, X5) or (3, X ′3) or there is a call to AllComplete

such that Chains[3, X ′3] = (5, X5). We assume that Chains[3, X ′3] was assigned to

(5, X5) due to a Func query on some (X ′0, X
′
1) where G1[X ′1] 6= ⊥, G2[X ′2] 6= ⊥,

X ′0 = G1[X ′1]⊕X ′2 and X ′3 = G2[X ′2]⊕X ′1. The other case when Func query is on

some (X ′5, X
′
6) is symmetrically handled.

We claim that for all X ′3 such that Chains[3, X ′3] = (5, X5), G3[X ′3] 6= ⊥. The claim

may not hold because X ′3 got added to G3 during a Complete call on some chain C ′′

by Sim. Note that C ′′ can be of the form (X ′′1 , X
′′
2 , 1) or (X ′′4 , X

′′
5 , 4) as Complete calls

on either can lead to ForceVal(X ′3, ·, 3). We refute the case when C ′′ = (X ′′1 , X
′′
2 , 1)

and the other case can be similarly handled. More concretely for C ′′ it is the case
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that G2[X ′′2 ]⊕X ′′1 = X ′3. The chain C ′′ could be considered for completion only on a

query (2, X ′′2 ) by A2. At this pointG1[X ′′1 ] 6= ⊥ andG2[X ′′2 ] was assigned to f [2, X ′′2 ].

If A2 issues (2, X ′′2 ) after (2, X ′2) and G2[X ′′2 ] ⊕X ′′1 = G2[X ′2] ⊕X ′1 = X ′3 then the

event BadGutShot is triggered on assignment G2[X ′′2 ] ← f [2, X ′′2 ]. Similarly, if A2

issues (2, X ′′2 ) earlier then BadGutShot is triggered on the assignment G2[X ′2] ←

f [1, X ′2]. Since (f, ρ) is a good pair, our claim holds for all X ′3. Hence G3[X3] = ⊥

before its ForceVal call.

Now, the partial chain C can either be a relevant chain or a non-relevant chain.

Below, we analyse both cases separately.

– Case B.1: C = (X1, X2, 1) is a non-relevant chain. If C is not a relevant chain

then X5 6= X i
5 for all i ∈ [qc]. Otherwise the event BadP2 would have occured

on the Func query (+, X0||X1) made by Sim to schedule the delayed completion

of C, where X0 = G1[X1] ⊕ X2. Since this is a non-relevant chain’s delayed

completion, G5[X5] gets assigned to f [5, X5] (line 27) just before the Complete

call. Then for all (C ′, (X5, X
′
6)) ∈ Chains[5, X5] we must have G4[X ′4] =

⊥ where X ′4 = G5[X5] ⊕ X ′6. Otherwise there would exist (-, X5, X
′
6) ∈ P

and X5 ∈ G5 immediately after the assignment G5[X5] ← f [5, X5] such that

G4[X ′4] 6= ⊥, which contradicts the goodness of the pair (f, ρ). Since for every

X ′4, G4[X ′4] = ⊥, therefore G4[X4] = ⊥ as well.

Therefore, if the lemma fails to hold for C, then it can only be that the

Complete call (for the lemma does not hold) was a delayed completion of a

relevant chain C. We analyse this case next.

– Case B.2: C = (X1, X2, 1) is a relevant chain. If C is a relevant chain then

(X5 = X i
5 ∃ i ∈ [qc]) Chains[5, X i

5] only consists of tuples (C ′, (X i
5, X

′
6)) such

that the partial chain C ′ is relevant. Otherwise, if there exist a non-relevant

135



Public-seed PRFs to Public-seed PRPs via Feistel Chapter 3

partial chain C ′ then the event BadP2 would have occured on the Func query

made by Sim to schedule the completion of C ′. Now, since all C ′ are relevant

chains then X ′4 = G5[X i
5] ⊕X ′6 (G5[X i

5] is defined before the control is trans-

ferred to A2) for every chain C ′ in Chains[5, X i
5] are distinct, as BadlyCollide

does not occur.

Therefore, if the lemma fails to hold for C, then G4[X i
4] 6= ⊥ before the

ForceVal(X i
4, ·, 4) call where X i

4 = G5[X i
5] ⊕X i

6. We, infact, argue something

stronger, that is, for all (C ′, (X i
5, X

′
6)) ∈ Chains[5, X i

5], that G4[X ′4] = ⊥ where

X ′4 = G5[X i
5]⊕X ′6. Let us assume that G4[X ′4] 6= ⊥ before the corresponding

call to Complete on C ′. As seen in case A.3, X ′4 can get added to G4 either

during a chain completion performed by Sim or a direct query (4.X ′4) by A2.

Similar to the argument presented in case A.3.3. (for direct query) and the

fact that (f, ρ) is a good pair (relevant chains cannot share X4s), if G4[X ′4] 6= ⊥

then X ′4 got added to G4 during the completion of some non-relevant chain

C ′′ = (X ′′1 , X
′′
2 , 1). Furthermore, the corresponding X ′′5 (of chain C ′′) is such

that X ′′5 6= X i
5 as the event BadP2 does not occur in a good execution. There-

fore during the completion of chain C ′′, G5[X ′′5 ] is assigned to f [5, X ′′5 ] and

if G5[X ′′5 ] ⊕X ′′6 = X ′4 then the event BadOutside2 would occur, contradicting

that (f, ρ) is a good pair. Therefore, we conclude that G4[X ′4] = ⊥ for every

X ′4 (as described above). Hence, G4[X4] = ⊥ before the call ForceVal(X4, ·, 4)

during the delayed completion of C = (X1, X2, 1).

Therefore even for a delayed chain completion of C = (X1, X2, 1), the calls to

ForceVal(Xl, ·, l) are such that Gl[Xl] = ⊥ before the call.

We have now analysed all the cases for that call to Complete on C for which we

assumed the lemma fails to hold. Since, we have arrived at a contradiction in each of
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these cases, the lemma indeed holds.

Next, we define a predicate isTrue on the transcript (described in Figure 3.15) which

captures that all queries made to Func (σ,Xk, Xk+1, Xk′ , Xk′+1) are such that (Xk′ , Xk′+1)

look like the result of a Feistel Ψ5 evaluation on (σ,Xk, Xk+1) given the transcript T of

the execution. We prove that the isTrue returns true on a transcript T corresponding to

an execution with a good pair (f, ρ).

Lemma 24 For all (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T that correspond to Func queries by A1,

Check(σ,Xk, Xk+1, Xk′ , Xk′+1) returns true at the end of the execution for (σ, k, k′) ∈

{(+, 0, 5), (-, 5, 0)}.

Proof: Consider any tuple (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T which corresponds to the

query by A1. We prove the lemma for (σ, k, k′) = (+, 0, 5), that is, tuples of the form

(+, X0, X1, X5, X6). The other case of (σ, k, k′) = (+, 0, 5) can be handled symmetrically,

and is omitted.

Since A2 makes all primitive queries corresponding to the construction queries by A1,

then there exists at least one occurence of (Y1, 1, X1) and (Y5, 5, X5) in T . Consider the

first occurrences of both the tuples, furthermore consider the earliest of the two.

Let us w.l.o.g. assume that the earlier tuple in the sequence T is (Y1, 1, X1). Since

this is the earliest call to Finner(1, X1), inside Finner, G1[X1] gets assigned to f [1, X1].

This defines X2 = G1[X1] ⊕ X0 such that G2[X2] = ⊥ (otherwise on the assignment

G1[X1]← f [1, X1] the event BadOutside occurs in an execution with a good pair (f, ρ)).

Hence the tuple (Y2, 2, X2) hasn’t occured in T at this point. Since A2 makes all primitive

queries there is at least one occurrence of (Y2, 2, X2) in T .

At this point there are two cases possible: one where (Y5, 5, X5) is the earliest tuple

after (Y1, 1, X1) in T and the other where (Y2, 2, X2) is the earliest tuple after (Y1, 1, X1)

in T . We consider both these cases and show that Check returns true.
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- Case A: (Y5, 5, X5) is earlier. Since this is also the earliest call to Finner(5, X5), we

have the assignment G5[X5]← f [5, X5]. This defines X4 = G5[X5]⊕X6 such that

G4[X4] = ⊥ (otherwise on the assignment G5[X5]← f [5, X5] the event BadOutside

would occur (in an execution with a good pair (f, ρ))). Hence the tuple (·, 4, X4)

hasn’t occured in T yet. Since A2 makes all primitive queries, there exists at least

one ocurrence of (Y4, 4, X4) in T . Finally, we consider the earlier of (Y2, 2, X2) and

(Y4, 4, X4). We analyse the case when (Y2, 2, X2) is the earlier tuple in T . The other

case when (Y4, 4, X2) occurs earlier than (Y2, 2, X2) is symmetrical, and is omitted.

We claim (prove below) that the tuple (·, 2, X2) corresponds to a call to Finner on

(2, X2). Moreover it was due to a query (2, X2) by A2 to Prim. And since this is the

earliest occurrence of (·, 2, X2), G2[X2] = ⊥ before the call to Finner. To respond

to A2’s query, Sim (lines 3-7 in Figure 3.9) issues a call to Finner where G2[X2]

is assigned to f [2, X2]. After the call to Finner, Sim considers all possible tuples

in G1 × {X2} (line 4) and makes appropriate Func queries. Therefore, it issues

Func(+, X0||X1) and gets (X5, X6). Since G5[X5] 6= ⊥ (as the tuple (Y5, 5, X5)

has already occurred in T ), Complete is called on input ((X1, X2, 1), (X5, X6))

(lines 9-10 in Figure 3.9). It is easy to see that after Complete returns, Check

on (+, X0, X1, X5, X6) is returns true. From Lemma 23 we know that there are no

overwrites in Gk. Hence, Check will return true even at the end of the execution.

Now, we get back to proving our claim that (·, 2, X2) corresponds to a call to

Finner. Moreover this was because A2 queries (2, X2). Let us assume that (·, 2, X2)

does not correspond to a call to Finner. Therefore, it corresponds to a call to

ForceVal(X2, ·, 2). Since ForceVal is called only from inside Complete, there exists

a partial chain C ′ = (X ′4, X
′
5, 4) during whose completion the ForceVal call was

made. Since (f, ρ) is a good pair, all relevant chains have distinct X2s (as the event
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BadlyCollide does not occur). Since (X1, X2, 1) is a relevant chain (because we are

only concerned with relevant chains in this proof) then C ′ cannot be a relevant

chain.

Since C ′ is not a relevant chain, Sim at some point must have queried Func(-, X ′5, X
′
6)

to get (X ′0, X
′
1). The query is answered by Func using ρ. Since (f, ρ) is a good

pair it is the case that G1[X ′1] = ⊥ (BadP) and X ′1 6= X i
1 for i ∈ [qc] (BadP2).

Moreover G1[X ′1] = ⊥ ensures that (X ′4, X
′
5, 4) is delayed for completion. Cur-

rently we are inside the call to Complete on (X ′4, X
′
5, 4). Hence, G1[X ′1]← f [1, X ′1]

and if G1[X ′1] ⊕ X ′0 = X2 we would trigger the event BadOutside2 which contra-

dicts that the pair (f, ρ) is good. Hence (Y2, 2, X2) cannot correspond to a call to

ForceVal(X2, ·, 2).

Therefore for Case A, we have proved that the lemma holds.

- Case B: (Y2, 2, X2) is earlier. By the exact same argument as above, we know that

(Y2, 2, X2) corresponds to a call to Finner and this was due to the query (2, X2) by

A2. Since this is the earliest call Finner(2, X2), inside the call to Finner, G2[X2] is

assigned to f [2, X2] and then Sim considers all tuples (lines 4-7) in G1 × {X2} and

makes appropriate queries to Func. Since (Y2, 2, X2) is the earlier query we know

that G5[X5] = ⊥ at this point. Therefore (X1, X2, 1) is delayed for completion

(lines 11-13). Moreover, Chains[3, X3] = (5, X5) where X3 = G2[X2] ⊕ X1 and

((X1, X2, 1)), (X5, X6)) ∈ Chains[5, X5]. Since A2 issues all primitive queries then

there exists at least one occurence of (Y3, 3, X3) in T . Like before, we will consider

the earlier of the two (Y3, 3, X3) and (Y5, 5, X5). Unlike before, the cases here are

not symmetrically and hence we explicitly consider them in the following:

– Case B.1: (Y5, 5, X5) is earlier. Since this is the earliest occurence of (Y5, 5, X5)

in T or equivalently the earliest call to Finner on (5, X5), G5[X5] = ⊥. This
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call to Finner could be because of a direct query (5, X5) by A2 to Prim or due

to a direct query (3, X ′3) by A2 to Prim such that Chains[3, X ′3] = (5, X5). It

cannot be the case that (Y5, 5, X5) was due to a call to Finner by Sim from

inside AllComplete. This is because A2 makes all primitives queries and hence

it would query (5, X5) before Sim gets to run AllComplete. In either case,

Sim is going to execute lines 27-30 on (5, X5). Hence, Complete is called on

((X1, X2, 1), (X5, X6)) in Chains[5, X5]. It is easy to see that after Complete

returns, Check on (+, X0, X1, X5, X6) returns true. From Lemma 23 we know

that there are no overwrites in Gk. Hence, Check will return true even at the

end of the execution.

– Case B.2: (Y3, 3, X3) is earlier. The tuple (Y3, 3, X3) occurs in T either due to

a Finner query (3, X3) or due to a ForceVal call. We consider these two cases

separately below:

∗ Case B.2.1: (Y3, 3, X3) corresponds to a ForceVal call. A call to ForceVal

occurs only from inside Complete. Let us assume that Complete was

called on (C ′, (U, V )). Furthermore, we let C ′ = (X ′1, X
′
2, 1) and (U, V ) =

(X ′5, X
′
6) (the other case is symmterical). Therefore, the chain C ′ would

have been considered by Sim for completion on a query (2, X ′2) by A2.

Infact this must correspond to an Finner call to (2, X ′2) and hence the tuple

(Y ′2 , 2, X
′
2) occurs in T .

If (Y ′2 , 2, X
′
2) occurs later in the sequence T than (Y2, 2, X2) and G2[X ′2]⊕

X ′1 = X3 then on assignment G2[X ′2] ← f [2, X ′2] there exists X ′1 ∈ G1

and (3, X3) ∈ Chains such that X3 = G2[X ′2] ⊕ X ′1. Since this (f, ρ) is

a good pair, the event BadGutShot does not occur. Therefore, (Y ′2 , 2, X
′
2)

occurs before (Y2, 2, X2) in T . If (Y ′2 , 2, X
′
2) occurs earlier then depending
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on whether X ′5 ∈ G5, either X ′3 gets added to G3 or Chains[3, X ′3] ←

(5, X5) 6= ⊥ where X ′3 ← G2[X ′2] ⊕ X ′1. Finally, moving ahead in the T

to the point where (Y2, 2, X2) occurs and G2[X2] ← f [2, X2] if X3 = X ′3

where X3 ← G2[X2]⊕X1 we would trigger BadGutShot.

Since the pair (f, ρ), the tuple (Y3, 3, X3) in T cannot correspond to a

call to ForceVal. The only other case, that is, (Y3, 3, X3) corresponding to

Finner call is discussed next.

∗ Case B.2.2: (Y3, 3, X3) corresponds to Finner query. The only case where

the tuple (Y3, 3, X3) may correspond to an Finner query is due to a direct

query (3, X3) by A2. However, as Chains[3, X3] = (5, X5), on a direct

query (3, X3) Sim executes lines 31-32 and ends up calling itself on (5, X5).

Therefore, the tuple (Y5, 5, X5) occurs earlier than (Y3, 3, X3) which is a

contradiction. Hence, the tuple (Y3, 3, X3) cannot correspond to Finner

query as well.

Therefore, the tuple (Y3, 3, X3) (in an execution with a good pair (f, ρ)) cannot

occur in T before (Y5, 5, X5). And the other case is already analysed in case

B.1.

Therefore for case B, we have proved that the lemma holds.

Lemma 25 For all (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T , Check(σ,Xk, Xk+1, Xk′ , Xk′+1) returns

true at the end of the execution where (σ, k, k′) ∈ {(+, 0, 5), (-, 5, 0)}. Moreover, isTrue(T ) =

true.

Proof: In Lemma 24 we have already argued about the tuple (σ,Xk, Xk+1, Xk′ , Xk′+1)

that correspond to queries by A1. Therefore, we will focus only on tuples that correspond
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to queries by Sim to Func. Moreover, when proving Lemma 24 we have seen that for every

tuple corresponding to A1 there is a tuple in T corresponding to the Func query made

by Sim.

Therefore, we focus on tuples (σ,Xk, Xk+1, Xk′ , Xk′+1) which correspond to non-

relevant chains. We prove the lemma for (σ, k, k′) = (+, 0, 5), that is, tuples of the

form (+, X0, X1, X5, X6). Since this tuple corresponds to a non-relevant chain, there ex-

ists a direct query (2, X2) by A2 (such that G2[X2] = ⊥) which lead to Sim query Func on

(+, X0||X1). Since G2[X2] = ⊥, G2[X2] is assigned to f [2, X2] on A2 and then Sim would

have considered all tuples in G1 × {X2} and issued appropriate queries to Func. Since

(X1, X2, 1) is not a relevant chain, Func replies to (+, X0||X1) using ρ and hence G5[X5] =

⊥. This chain is then delayed for completion. Moreover, Chains[3, X3] = (5, X5) and

((X1, X2, 1), (X5, X6)) is added to the set Chains[5, X5] and G3[X3] = ⊥.

Since Sim runs AllComplete in Phase 2, we know that at the end of the execution,

G3[X3] 6= ⊥ and G5[X5] 6= ⊥. However, X3 (resp., X5) might get added to the table G3

(resp. G5) in Phase 1 as well. We analyse each of these possibilities below and show that

there is a call to Complete on (X1, X2, 1).

- Case A: Either G3[X3] 6= ⊥ or G5[X5] 6= ⊥ at the end of Phase 1. If at the end of

Phase 1 either X3 ∈ G3 or X5 ∈ G5 then there must occur a tuple (Y3, 3, X3)

or (Y5, 5, X5) in T . Consider the first occurrences of the two tuple and moreover

consider the earlier among them.

– Case A.1: (Y5, 5, X5) is earlier. This tuple corresponds to a call to Finner on

(5, X5). This could either be due to a direct query (5, X5) by A2 or due

to a direct query (3, X ′3) by A2 such that Chains[3, X ′3] ← (5, X5). In any

case, Sim will be executing lines 27-30 and there is a call to Complete on

((X1, X2, 1), (X5, X6)).
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– Case A.2: (Y3, 3, X3) is earlier. This tuple may correspond to an Finner call to

(3, X3) which is a result of a query (3, X3) by A2. In this case, Sim executes

lines 31-32 and ends up calling itself on (5, X5). We know by Lemma 22

that there are no overwrites in Chains[3, X3] and hence it calls to precisely

this (5, X5). Therefore by the above argument there is a call to Complete.

This tuple cannot correspond to a call to ForceVal(X3, Y3, 3) (an earlier ar-

gument made in Case B.2.1 of Lemma 24 suffices, we will trigger the event

BadGutShot).

- Case B: G3[X3] = ⊥ and G5[X5] = ⊥ at the end of Phase 1. If at the end of Phase

1, G3[X3] = ⊥ and G5[X5] = ⊥. Then in Phase 2, Sim runs AllComplete and

hence there occurs a call to Complete on (X1, X2, 1) as ((X1, X2, 1), (X5, X6)) ∈

Chains[5, X5].

Therefore in all cases, we have proved that there is a call to Complete. It is easy to see

that after Complete returns, Check on (+, X0, X1, X5, X6) is going to return true. From

Lemma 23 we know that there are no overwrites in Gk. Hence, Check will return true

even at the end of the execution.

The randomness-mapping argument

After proving the properties of good executions, that is, executions of Gf,ρ2 with a good

pair (f, ρ), we are ready to define the map τ that maps (f, ρ) to h such that the executions

Gf,ρ2 and Gh3 are identical. This allows us to show the indistinguishability of G2 and G3

(proved in Lemma 28).

Definition 9 (The map τ) For (f, ρ) ∈ F ×R, h← τ(f, ρ) is defined as follows:

1. Set h = f and run Gf,ρ2 with A = (A1, A2).
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2. If for some (k,X) there is a ForceVal(X, Y, k) call then set h[k,X] ← Y for the

first such call.

In the following lemma we finally prove that for a good pair (f, ρ) the transcript of

Gf,ρ2 is identical to the transcript of Gh3 where h = τ(f, ρ).

Lemma 26 T (Gf,ρ2 ) = T (G
h=τ(f,ρ)
3 ). Hence Pr

[
Gf,ρ2

]
= Pr

[
Gh3
]
.

Proof: Let for ease of notation T2 = T (Gf,ρ2 ) and T3 = T (Gh3) and let T2j (T3j)

denote the jth tuple in the sequence T2 (T3).

The first tuple in both transcripts is going to correspond to the query by A1. We

analyse when T21 = (+, X0, X1, X5, X6) and the other case is symmetric. A1 queries

Func(+, X0||X1) which returns (X5, X6) by accesing ρ[+, X0, X1]. Since (f, ρ) is good and

isTrue(T2) is true (Lemma 25), we know that (X5, X6, X0, X1) obey the following relation:

X2 = G1[X1]⊕X0; X3 = G2[X2]⊕X1; X4 = G3[X3]⊕X2;

X5 = G4[X4]⊕X3; X6 = G5[X5]⊕X4;

Since A is deterministic, it must be the case that T31 = (+, X0, X1, X
′
5, X

′
6). Func

performs the following computations on (X0, X1) to return (X ′5, X
′
6).

X ′2 = H1[X1]⊕X0; X ′3 = H2[X ′2]⊕X1; X4 = H ′3[X ′3]⊕X ′2;

X ′5 = H4[X ′4]⊕X ′3; X ′6 = H5[X ′5]⊕X ′4;

Since (f, ρ) is good and by Lemma 23 there are no overwrites in the tables Gk (in

G2), the image h of the map is such that Gk[X] = h[k,X]. Since there are no overwrites

in Hk, it is also the case that Hk[X] = h[k,X]. Therefore, (X ′5, X
′
6) = (X5, X6) and

T21 = T31.

Let us assume that T2i = T3i for i ∈ [j − 1]. We next argue about the equality of the

jth tuple. Since the transcripts are identical till (j− 1), it must be the case that the jth
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tuple in both transcripts have the same format i.e. both of them correspond to either

Finner,Func or ForceVal.

- Case A: T2j = (Y, k,X) and it corresponds to ForceVal(X, Y, k). As transcripts are

equivalent till (j − 1), and the view of Sim is identical till now it must be the case

that if T2j corresponds to a ForceVal call then T2j = T3j.

- Case B: T2j = (Y, k,X) and it corresponds to an Finner call on (k,X). If this is not

the first occurrence of the tuple (·, k,X) then the state of tables Gk is identical in

both games (as transcripts are identical until this point). Therefore, T2j = T3j.

Hence, let us consider that this is the first occurrence of the tuple (Y, k,X) in

T2. Since the transcripts are identical until this point so is the view of Sim, then

T3j = (Y ′, k,X). As this is the first occurrence of (Y, k,X) in T2 we have Y =

f [k,X] = Gk[X]. Similarly in T3 we have Y ′ = h[k,X]. By definition of the map

τ , Y = Y ′.

- Case C: T2j = (σ,Xk, Xk+1, Xk′ , Xk′+1). If Func replies to (σ,Xk, Xk+1) without ac-

cessing ρ then it must be the case that T2j = T3j. If Func replies using ρ, then by

the same argument of the equality of T21 and T31, we have that T2j = T3j.

Therefore, T2 = T3. Consider the last tuple in T2 after which A2 outputs the bit b′.

Let it be the mth tuple. Since T2[1 . . .m] = T3[1 . . .m], A2 in Gh3 necessarily outputs the

same guess b′. Hence the output distributions of Gf,ρ2 and Gh3 are identical.

Next, we consider a key combinatorial property of the map τ restricted to the set

GOOD ⊆ F ×R.

GOOD = {(f, ρ) ∈ F ×R : (f, ρ) is a good pair} .

Lemma 27 τ : GOOD→ F is |R|-regular.
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Proof: Let h ∈ F have at least one good pre-image (fh, ρh). In the game Gfh,ρh2 ,

both A1 and Sim issue queries to Func. Some of these calls to Func may access the

randomness ρh. Let α be the number of such calls to Func that access ρh. Therefore,

from the entire table ρh only α indices are accessed during the entire execution. Let these

α indices be {I1, . . . , Iα}.

For every chain completed by Sim there exists a unique query to Func which accesses

the randomness ρh. If the completed chain is relevant then Func query (that accesses ρh)

is by A1. For non-relevant chains that are completed the Func query (that accesses ρh) is

by Sim. Moreover, because the Sim at the end executes the AllComplete function and the

predicate isTrue on the transcript T of the execution is true (Lemma 25), Sim completes

chains corresponding to all its Func queries. This implies that there are exactly α chains

that are completed during the execution of Gfh,ρh2 . Therefore, there were exactly 2α calls

to ForceVal. Since there are no overwrites in an execution (Lemma 23) with a good pair,

there are 2α indices in f that are not carried over to h (in the definition of τ). These

correspond to all the ForceVal(X, ·, k) calls. Let these 2α indices be {J1, . . . , J2α}.

Consider a FRh ⊆ F ×R such that every element (f, ρ) ∈ FRh are as follows:

f [x] = fh[x] ∀x ∈ [5]× {0, 1}n \ {J1, . . . , J2α}

ρ[X] = ρh[X] ∀X ∈ {I1, . . . , Iα}.
(3.19)

We claim that |FRh| = |R|. To show that τ is |R|-regular, we need to show that

FRh ⊆ GOOD and that τ(f, ρ) 6= h where (f, ρ) /∈ FR. Since (f, ρ) ∈ FRh agree with

(fh, ρh) on all indices that are accessed (which define the goodness of the pair), therefore

if (fh, ρh) is a good pair then so is (f, ρ). Consider (f, ρ) /∈ FR, then either f disagrees

with fh on an index other than Ji or ρ disagrees with ρh on an index Ij. It is easy to see

that in either case there exists an index L such that h[L] 6= τ(f, ρ)[L].
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We are now ready to consider ∆(G2,G3).

Pr [G2] = Pr
[
(f, ρ)

$← F ×R : Gf,ρ2

]
=

∑
(f,ρ)∈GOOD

Pr [(f, ρ)] · Pr
[
Gf,ρ2

]
+

∑
(f,ρ)∈GOOD

Pr [(f, ρ)] · Pr
[
Gf,ρ2

]
≤

∑
(f,ρ)∈GOOD

Pr[(f, ρ)] · Pr
[
Gf,ρ2

]
+ Pr

[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]

=
∑

(f,ρ)∈GOOD

Pr[(f, ρ)] · Pr
[
G
h=τ(f,ρ)
3

]
+ Pr

[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]
,

(3.20)

where the last equality is due to Lemma 26.

Pr [G2] ≤ 1

|F| × |R|
∑

(f,ρ)∈GOOD

Pr
[
G
h=τ(f,ρ)
3

]
+ Pr

[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]

=
1

|F| × |R|
· |R| ·

∑
h∈τ(GOOD)

Pr
[
Gh3
]

+ Pr
[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]
,

(3.21)

where the last equality is due to Lemma 27.

Pr [G2] ≤ 1

|F|
·

∑
h∈τ(GOOD)

Pr
[
Gh3
]

+ Pr
[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]

=
∑

h∈τ(GOOD)

Pr[h ] · Pr
[
Gh3
]

+ Pr
[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]

≤ Pr[G3 ] + Pr
[
(f, ρ)

$← F ×R : (f, ρ) ∈ GOOD
]

(3.22)

Lemma 28 ∆(G2,G3) ≤ 351q6/2n.

Proof: From Equation 3.22 and Lemma 21 the lemma holds.
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3.4.5 Indistinguishability of G3 and G4

Lemma 29 In G3, Prim always replies with h[k,X] for any query (k,X).

Proof: Sim in Gh3 responds to (k,X) with Gk[X]. During the execution, Sim sets

Gk[X] ← Hk[X] for all k ∈ {1, 5}. Therefore for such assignments the lemma holds

as Hk[X] = h[k,X] throughout the execution of G3. For k ∈ {2, 3, 4} there are two

cases: (a) Gk[X] is assigned to Hk[X] or (b) Gk[X] is forced to a value Y in a call to

ForceVal(X, Y, k). For the case (a) the lemma holds by the same argument as k ∈ {1, 5}.

For case (b) some analysis is in order. A call to ForceVal occurs only when Complete gets

called on some partial chain C. This is true for both type of calls to Complete i.e. direct

or immediate. We will consider the case when C = (X1, X2, 1) and hence argue about

k ∈ {3, 4}. The other case C = (X4, X5, 4) can be symmetrically handled.

For Complete(X1, X2, 1) there was a query to Func i.e. Func(+, X0||X1) where X0 =

G1[X1] ⊕ X2. To answer this query Func evalutes the Feistel construction forward by

accessing H (hence h). Then it must be the case that both calls to ForceVal(X, Y, k) it

holds that Y = h[k,X]. Therefore Gk[X] = Hk[X] = h[k,X] for all (k,X) such that

Gk[X] 6= ⊥. Hence the lemma holds.

Lemma 30 ∆(G3,G4) = 0.

Proof: Due to Lemma 29 the lemma holds.

From Lemmas 14,28,30 we have that ∆(G1,G4) ≤ 360q6/2n where Sim makes at most

2q2 queries.
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MAIN GA1 (n):

P +, P - ← φ

st
$← AFunc

1 (1n)

b′
$← APrim

2 (1n, st)

return b′

ORACLE Prim(k,X):

Y
$← Sim(k,X)

return Y

ORACLE Func(+, X0||X1):

if P [+, X0, X1] = ⊥ then

(X5, X6)
$← {0, 1}n × {0, 1}n \ P -

P - ∪← {(X5, X6)}, P + ∪← {(X0, X1)}

P [+, X0, X1]← (X5, X6)

P [-, X5, X6]← (X0, X1)

return P [+, X0, X1]

ORACLE Func(-, X5||X6)

if P [-, X5, X6] = ⊥ then

(X0, X1)
$← {0, 1}n × {0, 1}n \ P +

P - ∪← {(X5, X6)}, P + ∪← {(X0, X1)}

P [+, X0, X1]← (X5, X6)

P [-, X5, X6]← (X0, X1)

return P [-, X5, X6]

MAIN GA2 (n):

(f, ρ)
$← F ×R

st← AFunc
1 (1n)

b′ ← APrim
2 (1n, st)

AllComplete()

return b′

ORACLE Prim(k,X):

Y ← Sim(f)(k,X)

return Y

ORACLE Func(+, X0||X1)

if P [+, X0, X1] = ⊥ then

(X5, X6)← ρ[+, X0, X1]

P [+, X0, X1]← (X5, X6)

P [-, X5, X6]← (X0, X1)

return P [+, X0, X1]

ORACLE Func(-, X5||X6)

if P [-, X5, X6] = ⊥ then

(X0, X1)← ρ[-, X5, X6]

P [-, X5, X6]← (X0, X1)

P [+, X0, X1]← (X5, X6)

return P [-, X5, X6]

Figure 3.11: Game G1 is described on the left along with the Prim and Func oracles. Game G2 is defined

on the right along with the Prim and Func oracles where the randomness f, ρ is sampled uniformly at

the beginning of the game.
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PROCEDURE AllPrimitive():

foreach i ∈ [qc] do

V ← Xi
1, U ← Xi

0

foreach i ∈ [5] do

Y ← Prim(i, V )⊕ U

U ← V , V ← Y

PROCEDURE AllComplete():

foreach (k,X) ∈ Chains.keys() do

if k ∈ {1, 5} then

Finner(k,X)

foreach (C, (U, V )) ∈ Chains[k,X] do

if C /∈ CompletedChains then

Complete(C, (U, V ))

Figure 3.12: The procedure AllPrimitive (run by A2) making primitive queries corresponding to all

construction queries by A1. Here, (Xi
0, X

i
1) (passed to A2 through st) is either the ith query by A1 or its

response by Func. The procedure AllComplete (run by Sim) at the end of G2 issues calls to Complete for

all incomplete chains whose completion was delayed. T.keys() returns the set of all keys in the hashtable

T .
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MAIN GA3 (n):

h
$← F

st← AFunc
1 (1n)

b′ ← APrim
2 (1n, st)

AllComplete()

return b′

ORACLE Func(+, X0||X1):

if P [+, X0, X1] = ⊥ then

U ← X0, V ← X1

foreach i ∈ [1, 2, 3, 4, 5] do

if Hi[V ] = ⊥ then

Hi[V ]← h[i,X]

X ← Hi[V ]⊕ U

U ← V , V ← X

P [+, X0, X1]← (U, V )

P [-, U, V ]← (X0, X1)

return P [+, X0, X1]

ORACLE Prim(k,X):

Y ← Sim(k,X)

return Y

PROCEDURE Finner(k,X):

if Gk[X] = ⊥ then

if Hk[X] = ⊥ then

Hk[X]← h[k,X]

Gk[X]← Hk[X]

return Gk[X]

ORACLE Func(-, X5||X6):

if P [-, X5, X6] = ⊥ then

V ← X5, U ← X6

foreach i ∈ [5, 4, 3, 2, 1] do

if Hi[V ] = ⊥ then

Hi[V ]← h[i,X]

A← Hi[V ]⊕ U

U ← V , V ← A

P [-, X5, X6]← (U, V )

P [+, U, V ]← (X5, X6)

return P [-, X5, X6]

Figure 3.13: Game G3 with its oracles Prim and Func. The Prim oracle behaves exactly like Sim as

described in Figure 3.9 except the Finner procedure which is shown here.
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MAIN GA4 (n):

st
$← AFunc

1 (1n)

b′
$← APrim

2 (1n, st)

return b′

ORACLE Func(+, X0||X1):

if P [+, X0, X1] = ⊥ then

U ← X0, V ← X1

foreach i ∈ [1, 2, 3, 4, 5] do

X
$← Prim(i, V )⊕ U

U ← V , V ← X

P [+, X0, X1]← (U, V )

P [-, U, V ]← (X0, X1)

return P [+, X0, X1]

ORACLE Prim(k,X):

if Gk[X] = ⊥ then

Gk[X]
$← {0, 1}n

return Gk[X]

ORACLE Func(-, X5||X6):

if P [-, X5, X6] = ⊥ then

V ← X5, U ← X6

foreach i ∈ [5, 4, 3, 2, 1] do

X
$← Prim(i, V )⊕ U

U ← V , V ← X

P [-, X5, X6]← (U, V )

P [+, U, V ]← (X5, X6)

return P [-, X5, X6]

Figure 3.14: Game G4 with its oracle Prim and Func.
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PROCEDURE isTrue(T ):

foreach (σ,Xk, Xk+1, Xk′ , Xk′+1) ∈ T do

if ¬Check(σ,Xk, Xk+1, Xk′ , Xk′+1) then return false

return true

PROCEDURE Check(σ,Xk, Xk+1, Xk′ , Xk′+1)

if σ = + then

U ← Xk, V ← Xk+1

for i ∈ [1, 2, 3, 4, 5] do

if (Y, i, V ) /∈ T then return false

A← Y ⊕ U , U ← V , V ← A

if (U, V ) 6= (Xk′ , Xk′+1) then return false

else

V ← Xk, U ← Xk+1

for i ∈ [5, 4, 3, 2, 1] do

if (Y, i, V ) /∈ T then return false

A← Y ⊕ U , U ← V , V ← A

if (U, V ) 6= (Xk′ , Xk′+1) then return false

return true

Figure 3.15: The predicate isTrue defined on the transcript T .
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Chapter 4

Public-seed PRFs to Public-seed

PRPs via Naor-Reingold

The main result of this chapter show that psPRP security as introduced in Chapter 3 can

be achieved in just two-calls, thereby improving the five-call result from Chapter 3. To

show this result we first provide an overview of our techniques in Section 4.1. Then intro-

duce some preliminary notation in Section 4.2 then formally define the NR construction

and argue its indistinguishability in Section 4.3. Then, we prove that it transforms a UCE

into a psPRP, for both unpredictable (Section 4.4) and reset-secure sources (Section 4.5).

4.1 Overview of Techniques

Let us briefly recall the setting: For some PPT source S, which queries a permutation

oracle on 2n-bit strings to produce a leakage L, we need to show that any PPT distin-

guisher D which learns L and ~s = (s, sin, sout) cannot tell apart whether S was accessing

NR using a UCE H (with seed ~s) or a truly random permutation. We assume S is either

(statistically) unpredictable or reset-secure.
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The source S. The natural approach we follow is to build another source, S from S,

for which H should be a secure UCE. This source thus accesses an oracle O implementing

a function from n + 1 to n bits. It first samples seeds sin, sout for P, and then simulates

an execution of S. The oracle calls by the latter are processed by evaluating the NR

construction using sin, sout, and the oracle O(·) in lieu of H(s, ·). Finally, when S produces

its output L, S outputs (L, sin, sout). We will show the following two facts:

- Fact 1. If S is unpredictable (w.r.t. the psPRP notion), then S is unpredictable

(w.r.t. the UCE notion).

- Fact 2. If S is reset-secure (w.r.t. the psPRP notion), then S is reset-secure (w.r.t.

the UCE notion).

The Theorem follows from Facts 1 and 2, respectively, by a fairly straightforward appli-

cation of the (classical) indistinguishability of the NR construction with random round

functions.1

The unpredictable case. Our approach to establish Fact 1 is inspired by an elegant

proof of secure domain extension for UCEs via Wegman-Carter MACs [44]. (The case of

reset-secure sources will be more involved and use new techniques.)

Assume, towards a contradiction, that S is not unpredictable; then there exists a

strategy (not necessarily efficient) that given L and sin and sout, guesses one of the

inner oracle queries of S with non-negligible probability ε, when S’s oracle is a random

function from n+1 to n bits. Imagine now that given (L, sin, sout) from S, we resample an

execution of S (which in particular means re-sampling the oracle used by it) consistent

with outputting (L, sin, sout), and look at the inner oracle queries in this virtual, re-

sampled execution. Then, one can show that the real and the virtual executions are

1A minor caveat is that we need indistinguishability even when sin and sout are revealed at the end
of the interaction. We will show this to be true.

155



Public-seed PRFs to Public-seed PRPs via Naor-Reingold Chapter 4

likely to share an oracle query, with probability roughly at least ε2, for our strategy to

guess a query must be equally successful on the virtual execution.

We exploit this idea to build a predictor for the original source S, contradicting our

hypothesis it is unpredictable. Note that S runs with a random permutation as its oracle,

and produces leakage L. Imagine now we sample fresh seeds sin, sout for P, and for each

permutation query by S defining an input-output pair (u, v), we define “fake” inputs

x0, x1 from x0 ‖x1 = Psin(u) and x3 ‖x2 = Psout(v). Then, the indistinguishability of the

NR construction from a random permutation, and the construction of S, implies that if

we resample a virtual execution of S consistent with leakage L, and compute the resulting

fake inputs using sin and sout, then the real and the re-sampled execution will share a fake

input with probability approx. ε2. The properties imposed on P then imply that with

probability roughly ε2 the real and the re-sampled execution must share the input (or

output) of a permutation query. This leads naturally to a predictor that just re-samples

an execution consistent with the leakage, and picks them as its prediction.

Reset-security. The case of reset-security is somewhat harder. Here we start from the

premise that S is not reset-secure: Hence, there exists an adversary R which receives

L, sin, sout from S, and can distinguish (with non-negligible advantage ε) being given

access to the same random f : {0, 1}n+1 → {0, 1}n used by S from being given access

to an independent f ′. From this, we would like to build an adversary R which receives

L from S, and can distinguish the setting where R and S are given access to the same

random permutation ρ, from a setting where they access independent permutations ρ, ρ′.

The challenge here is that we want to simulate R correctly, by using a permutation

oracle ρ/ρ′ rather than f/f ′. To better see why this is tricky, say S is the source that

queries its permutation oracle on a random 2n-bit string u, obtaining output v, and leaks
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L = (u, v). (This defines the corresponding S.)2 A clever R on input (L = (u, v), sin, sout)

could do the following: It computes x0 ‖x1 ← P(sin, u) and x3 ‖x2 ← P(sout, v). Then, it

queries x1 to its oracle, and outputs 1 iff the output equals x0 ⊕ x2. This should always

be true when R accesses f , and almost never when it accesses f ′.

The natural proof approach would now attempt to build R which runs R accessing a

simulated oracle consistent with the NR construction on the permutation queries made by

S. However, the problem is that generically R does not know which queries S has made.

Previous work [38] handled this by requiring the construction to satisfy a weaker notion of

indifferentiability, called CP-sequential indifferentiability, which essentially implies that

there exists a simulator that can simulate f consistently by accessing ρ and ρ−1 only,

and only needs to know the queries R makes to f . This would not work with NR and

our R, as the query x1 is actually uniformly random, and the simulator would likely fail

to set x0 ⊕ x2 as the right output. This is why the approach of [38] ends up using the

5-round Feistel construction, as here R’s attempt to evaluate the construction are readily

detected, and answered consistently.

Our proof strategy via heavy-query sampling. Our main observation is that indif-

ferentiability is an overkill in this setting. There is no reason R should act adversarially

to the simulator. Even more so, we can use everything R knows, namely L, to our

advantage! To do this, we use techniques borrowed from impossibility proofs in the ran-

dom oracle model [95, 100]. Namely, R, on input L from S, first performs a number of

permutation queries which are meant to include all of S’s likely queries to its oracle, at

least when R and S are run with the same permutation oracle ρ. To do this, R samples

executions of S consistent with L, and the partial knowledge of the oracle ρ acquired

so far. Each time such a partial execution is sampled, all queries contained in it are

2The reader should not be confused: S is clearly not reset-secure, but remember we are in the setting
of a proof by contradiction, so the reduction must work here, too.
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made to ρ, and the process is repeated a number of times polynomial in 1/ε. Then, R

samples sin, sout, and internally defines an oracle f : {0, 1}n+1 → {0, 1}n that will be used

to simulate an execution of R
f
(L, sin, sout). To do this, R goes through all input-output

pairs (u, v) for queries to ρ it has done while simulating executions of S,3 and defines

f(0 ‖x1)← x0 ⊕ x2 , f(1 ‖x2)← x1 ⊕ x3 ,

where x0 ‖x1 ← Psin(u) and x3 ‖x2 ← Psout(v). Then, f is defined to be random on every

other input (this can be simulated via lazy sampling). The final output of the simulated

R is then R’s final output.

The core of our proof will show that when S and R share access to ρ, then the

probability that R’s output is one is similar to that of R outputting one when it accesses

the same oracle as S. This will combine properties of the NR construction (allowing us

to switch between f and ρ), and similar arguments as those used in [95] to prove that

R ensures consistency on all queries that matter.4

4.2 Preliminaries

Notational preliminaries. Results in this section will be concrete, but natural asymp-

totic statements can be made by allowing all parameters to be functions of the security

parameter.

A function family with input set X and output set Y is a pair of algorithms F =

(F.Kg,F.Eval), where the randomized key (or seed) generation algorithm F.Kg outputs a

seed s, and the deterministic evaluation algorithm F.Eval takes as inputs a valid seed s

and an input x ∈ X, and returns F.Eval(s, x) ∈ Y . If X = {0, 1}m and Y = {0, 1}n,

3The actual simulation will be slightly more involved, for the benefit of simplifying the analysis.
4We believe we could adapt our proof to use the better strategy of [100] to get slightly better concrete

parameters, yet we found adapting it to our setting not immediate.
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we say that F is a family of functions from m-bits to n-bits. We usually write F(s, ·) =

F.Eval(s, ·). A permutation family P = (P.Kg,P.Eval) on n bits is the special case where

X = {+, -} × {0, 1}n and Y = {0, 1}n, and for every s, there exists a permutation

πs such that P.Eval(s, (+, x)) = πs(x) and P.Eval(s, (-, y)) = π−1
s (y). We usually write

P(s, ·) = P(s, (+, ·)) and P−1(s, ·) = P(s, (-, ·)).

4.2.1 UCEs and psPRPs

In Chapter 3 we presented the general paradigm of public-seed pseudorandomness

pspr[I] for an ideal primitive I and saw UCE and psPRPs as specific instantiations of

it corresponding to random functions and random permutations as the underlying ideal

primitives. For better readibility we will describe UCE and psPRPs directly in this

chapter.

Concretely, let H be function family from m-bits to n-bits and let (S,D) be a source-

distinguisher pair. We associate with them the game UCES,Dm,n,H depicted in Figure 4.1

obtained by plugging I = Rm,n in the psPR game defined in Figure 3.1. Similarly, for

a family E of permutations on n-bits, the psPRP-security game psPRPS,Dn,E is defined

in Figure 4.1 obtained by plugging I = Pn in the psPR game defined in Figure 3.1. The

only difference from UCES,D game is in O which here allows for inverse queries, and the

ideal object is a random permutation. The corresponding advantage metrics for an (S,D)

are defined as

Advucem,n,H(S,D) = 2 Pr
[
UCES,Dm,n,H

]
− 1 ; Advpsprpn,E (S,D) = 2 Pr

[
psPRPS,Dn,E

]
− 1 . (4.1)

Recall we adopt the multi-key versions of UCE and psPRP security, as they are the

most general, and they are not known to follow from the single-key case. Our treatment

scales down to the single-key version by forcing the source to always choose r = 1.

As before, H is UCE-secure for a class of sources S if Advucem,n,H(S,D) is negligible for
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MAIN UCES,Dm,n,H ,

�
�

�
�psPRPS,Dn,E :

(1r, t)
$← S(ε), b

$← {0, 1}

s1, . . . , sr
$← H.Kg

�� ��E.Kg

f1, . . . , fr
$← Funcs(m,n)�� ��ρ1, . . . , ρr
$← Perms(n)

L
$← SO(t)

b′
$← D(s1, . . . , sr, L)

return b′ = b

ORACLE O(i, x): // UCES,Dm,n,H

if b = 1 then return H(si, x)

else return fi(x)

ORACLE O(i, (σ, x)): // psPRPS,Dn,E

if b = 1 then

if σ = + then return E(si, x)

else return E−1(si, x)

else

if σ = + then return ρi(x)

else return ρ−1i (x)

Figure 4.1: Games to define UCE and psPRP security. Here, S is the source and D is the distinguisher.

Boxed statements are only executed in the corresponding game.

all PPT D and all sources S ∈ S. Similarly, E is psPRP secure for S if Advpsprpn,E (S,D) is

negligible for all PPT D and all sources S ∈ S.

Restricting Sources. As noted in Chapter 3 we restrict our attention to unpredictable

and reset-secure sources. The reset-security notion here is identical to the one in Chap-

ter 3 where it was defined for a general ideal primitive I. For unpredictability we next

introduce an equivalent but semantically different variant called – simple unpredictability.

Futhermore, we only consider the statistical versions of both these source classes – UCE

and psPRP for the computationally secure sources (defined in Chapter 3) are impossible

if IO exists [39] and furthermore are not relevant for applications. For concreteness, we

define both simple-unpredictability and reset-security for random function and random

permutation respectively.
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Simple Unpredictability. Let S be a source and P be an adversary called the predic-

tor. We associate with them games f-PredPm,n,S and p-PredPn,S of Fig. 4.2 which capture

the fact that P cannot predict any of the queries of S (or their inverses), when the lat-

ter interacts with a random function from m bits to n bits, or respectively a random

permutation on n-bit strings. The corresponding advantage metrics are

Advf-predm,n,S(P ) = Pr
[
f-PredPm,n,S

]
,Advp-pred

n,S (P ) = Pr
[
p-PredPn,S

]
. (4.2)

We say S is statistically simple-unpredictable or unpredictable if Advf-predm,n,S(P ) (respectively,

Advp-pred
n,S (P )) is negligible for all predictors P outputting a set Q′ of polynomial size. The

simple unpredictability notion differs from unpredictability as defined in Chapter 3 in

that the predictor P is not permitted to query the underlying primitive. The notion was

proved equivalent (asymptotically) for UCEs [37] to a version where we give P access to

the primitive. A similar proof follows for psPRPs.

Reset-secure Sources. Let S be a source and R be an adversary called the reset-

adversary. We associate to them the games f-ResetRm,n,S and p-ResetRn,S of Fig. 4.2 which

formalize the reset-security of S against a random function and a random permutation,

respectively. The idea here is that R should not be able to tell apart whether S is

accessing the same set of oracles it accesses, or not. This is captured via the advantage

metrics

Advf-resetm,n,S(R) = 2 Pr
[
f-ResetRm,n,S

]
− 1 , Advp-reset

n,S (R) = 2 Pr
[
p-ResetRn,S

]
− 1 .

We say S is statistically reset-secure if the corresponding advantage is negligible for all

reset-adversaries R making a polynomial number of queries to their oracle, but which are

otherwise computationally unrestricted. It is known that a (statistically) unpredictable

source is (statistically) reset-secure, for both UCEs [37] and psPRPs [38]. The converse
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MAIN f-PredPm,n,S ,
�� ��p-PredPn,S :

Q← ∅

(1r, t)
$← S(ε)

f1, . . . , fr
$← Funcs(m,n)�� ��ρ1, . . . , ρr
$← Perms(n)

L
$← SO(t)

Q′
$← P (1r, L)

return (Q ∩Q′ 6= ∅)

ORACLE O(i, x): // f-PredPm,n,S

Q← Q ∪ {(i, x)}

return fi(x)

ORACLE O(i, (σ, x)): // p-PredPn,S

if σ = + then y ← ρi(x)

else y ← ρ−1i (x)

Q← Q ∪ {(i, x), (i, y)}

return y

MAIN f-ResetRm,n,S ,
�� ��p-ResetRn,S :

done← false; (1r, t)
$← S(ε)

f01 , f
1
1 , . . . , f

0
r , f

1
r

$← Funcs(m,n)�� ��ρ01, ρ
1
1, . . . , ρ

0
r, ρ

1
r

$← Perms(n)

L
$← SO(t); done← true

b
$← {0, 1}; b′ $← RO(1r, L)

return b′ = b

ORACLE O(i, x): // f-ResetRm,n,S

if ¬done then return f0i (x)

else return f bi (x)

ORACLE O(i, (σ, x)): // p-ResetRn,S

if ¬done then

if σ = + then return ρ0i (x)

else return ρ0i
−1

(x)

else

if σ = + then return ρbi (x)

else return ρbi
−1

(x)

Figure 4.2: Games to define unpredictability (left) and reset-security (right) of sources. Here, S is

the source, P is the predictor and R is the reset-adversary. Boxed statements are only executed in the

corresponding game.

is not true – S may query a fixed known input, and let L be the empty string. S is

reset-secure in the strongest sense, while being easily predictable.
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4.3 The NR Construction and its Indistinguishabil-

ity

This section reviews the NR construction [22] in the public-seed setting and proves a

strong statement about its indistinguishability.

Notation. Let P be a permutation family on the 2n-bit strings. We say that P is α-

right-universal if Pr
s

$←P.Kg
[P1(s, u) = P1(s, u′)] ≤ α for all distinct u, u′ ∈ {0, 1}2n, where

P1 denote the second n-bit half of the output of P. Note that a pairwise-independent

permutation is a good candidate of P, but a simpler approach is to employ one-round

of Feistel with a pairwise independent hash function H as the round function, i.e.,

P(s, (u0, u1)) = (u1,H(s, u1)⊕ u0).

The Naor-Reingold (NR) Construction. Let H be a function family from n + 1

bits to n bits. We define the permutation family NR = NR[P,H] on the 2n-bit strings,

where NR.Kg outputs (s, sin, sout) such that s
$← H.Kg and sin, sout

$← P.Kg. Further,

forward evaluation proceeds as follows (the inverse is obvious):

Proc. NR((s, sin, sout), U):

x0 ‖x1 ← P(sin, U), x2 ← H(s, 0 ‖x1)⊕ x0,

x3 ← H(s, 1 ‖x2)⊕ x1, V ← P−1(sout, x3 ‖x2), return V

Naor and Reingold [22] proved that the NR construction with random round functions

is indistinguishable from a random permutation under chosen ciphertext attacks. We

will need a stronger result, which we prove here, that this is true even when the seed of

P is given to the adversary after it stops making queries, and when the adversary can

make queries to multiple instances of the construction. It will be convenient to re-use the

notation already in place for the psPRP framework, and we denote by Advpsprp
+

2n,NR[P,F](S,D)
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the advantage obtained by (S,D) in the psPRPS,D2n,NR[P,F] game, with the modification that

D is not given the seed for F, only the seeds used by the permutation P.

Proposition 5 (Indistinguishability of the NR construction) Let F = F[n+ 1, n]

be the family of all functions from n + 1 to n bits, equipped with the uniform distri-

bution. Further, let P be α-right-universal. For all S,D, where S makes q queries,

Advpsprp
+

2n,NR[P,F](S,D) ≤ q2 ·
(
2α + 1

22n

)
.

Proof: The proof follows from a simple application of the H-coefficient tech-

nique [101, 102]. In particular, we describe the interaction of S,D in both cases b = 0

and b = 1 using a transcript τ which contains:

- The sequence of queries made by S to the permutation, in either direction, which

consists of tuples (i, U, V ), indicating that either O(i, (+, U)) was queried, and re-

turned V , or O(i, (-, V )) was queried, returning U .

- The keys sin1 , s
out
1 , . . . , sinr , s

out
r given to D. Recall that in the “real-world”, where

S interacts with the NR construction, these are the actual keys. In the “ideal

world”, these keys are generated by running P.Kg 2r times, independently of the

permutation.

We also say that the transcript τ is bad if there exist two entries (i, U, V ) and (i, U ′, V ′)

for U ′ 6= U, V 6= V ′ such that P1(sini , U) = P1(sini , U
′) or P1(souti , V ) = P1(souti , V ′).

Fix a good transcript τ . Let p1(τ) be the interpolation probability of the transcript τ

when interacting with NR construction (using random round functions sampled from F),

i.e., this is the probability that (S,D) obtains the answer in the transcript when asking

the corresponding queries. Let p0(τ) be the probability in the ideal world, where the

oracle queries are answered by independent permutations. Also, let qi be the number
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distinct entries of form (i, U, V ), and assume wlog i ∈ [r]. Then,

p0(τ) = p(sin1 , s
out
1 , . . . , sinr , s

out
r ) ·

r∏
i=1

qi−1∏
j=0

1

22n − j
,

where p(sin1 , s
out
1 , . . . , sinr , s

out
r ) is the probability that these 2r keys are sampled by P.Kg.

Let us compare this with p1(τ). To this end, fix i ∈ [r], then for every entry (i, U j, V j)

in τ , j ∈ {1, . . . , qi}, define the corresponding values xj0 ‖x
j
1 = P(sini , U

j) and xj3 ‖x
j
2 =

P(souti , V j). If τ is good, then the values xj1 are distinct, and so are xj2. This in particular

means that we are interested in the probability, over the choice of a random fi, that

fi(0 ‖xj1) = xj0 ⊕ x
j
2 and fi(1 ‖xj2) = xj3 ⊕ x

j
1 for all j, which is exactly 2−2nqi . Overall,

thus, taking a product over all i = 1, . . . , r,

p1(τ) = p(sin1 , s
out
1 , . . . , sinr , s

out
r ) ·

r∏
i=1

2−2nqi = p(sin1 , s
out
1 , . . . , sinr , s

out
r ) · 2−2nq ,

which in particular means that

p1(τ)

p0(τ)
≥

r∏
i=1

qi−1∏
j=0

(
1− j

22n

)
≥ 1−

r∑
i=1

q2
i /2

2n ≥ 1− q2

22n
= 1− ε ,

where we have used that (1−a)(1−b) ≥ 1−a−b for all a, b ≥ 0, and we let ε = q2

22n . Also,

using α-right universality, and the union bound, it is not hard to see that the probability

that an ideal transcript is bad is at most

δ :=
r∑
i=1

2q2
i α ≤ 2q2α .

Then, using the H coefficient method, we can conclude that the bound is at most ε+ δ.

This concludes the proof.

4.4 The Case of Unpredictable Sources

We first prove that the NR construction transforms a UCE function family for statis-

tically unpredictable sources into a psPRP for statistically unpredictable sources. Our
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proof uses a technique inspired from that of Bellare, Hoang, and Keelveedhi [44], given

originally in the setting of UCE domain extension. Concretely, we prove the following.

Theorem 10 (NR security for unpredictable sources) Let P be a α-right univer-

sal family of permutations on 2n-bit strings. Let H be a family of functions from n + 1

bits to n bits. Then, for all distinguishers D and sources S making overall q queries to

their oracle, there exists D and S such that

Advpsprp2n,NR[P,H](S,D) ≤ Advucen+1,n,H(S,D) + q2

(
2α +

1

22n

)
. (4.3)

Here, D and D are roughly as efficient, and S and S are similarly as efficient. In

particular, S makes 2q queries. Moreover, for every predictor P , there exists a predictor

P such that

Advf-pred
n+1,n,S

(P ) ≤ q2 ·
(

2α +
1

22n

)
+ p ·

√
2q2α + Advp-pred2n,S (P ) , (4.4)

where p is a bound on the size of the set output by P .

The asymptotic interpretation is that if n = ω(log(λ)) and α is negligible, if S is (statis-

tically) unpredictable, then so is S. Further, if H is a UCE for all unpredictable sources,

then NR is a psPRP for all statistically unpredictable sources.

We stress that the predictor P built in the proof does not preserve the efficiency of

P , which is not a problem, as we only consider statistical notions. While we do not

elaborate in the proof, it turns out that the running time of P is exponential in the

length of S’s leakage, thus the statement carries over to computational unpredictability

if L = O(log λ).

Proof: We first consider three games, G0,G1, and G2. Game G0 is the game

psPRPS,D2n,NR[P,F] in the case b = 1, and modified to return true if b′ = 1. Game G2 is

the game psPRPS,D2n,NR[P,F] in the case b = 0, and modified to return true if b′ = 1. The
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Proc. S(ε):

(1r, t)
$← S(ε)

return (1r, (1r, t))

Proc. S
O

(1r, t):

sin1 , s
out
1 , . . . , sinr , s

out
r

$← P.Kg

L
$← SO(t)

return (L, sin1 , s
out
1 , . . . , sinr , s

out
r )

Proc. O(i, (σ, U)):

if σ = + then

x0 ‖x1 ← P(sini , U)

x2 ← O(i, 0 ‖x1)⊕ x0, x3 ← O(i, 1 ‖x2)⊕ x1

V ← P−1(souti , x3 ‖x2)

else

x3 ‖x2 ← P(souti , U)

x1 ← O(i, 1 ‖x2)⊕ x3, x0 ← O(i, 0 ‖x1)⊕ x2

V ← P−1(sini , x0 ‖x1)

return V

Figure 4.3: The source S in the proof of Theorems 10 and 11.

intermediate game G1 is obtained by modifying G0 as follows: Initially, r random func-

tions f1, . . . , fr
$← Funcs(n+ 1, n) are sampled, and when evaluating the NR construction

within O queries, the evaluation of H(si, b ‖x) is replaced by an evaluation of the random

function fi(b ‖x). Then,

Advpsprp2n,NR[P,H](S,D) = (Pr [G0]− Pr [G1]) + (Pr [G1]− Pr [G2]) .

We can directly get Pr [G1]−Pr [G2] ≤ q2
(
2α + 1

22n

)
as a corollary of Proposition 5, since

neither of G1 and G2 uses the seeds generated by H.Kg.

Going on, let us consider the new source S which simulates an execution of S, and

uses access to an oracle O(i,X), implementing for each i a function from n + 1 bits to

n bits, to internally simulate the round functions NR construction used to answer S’s

queries. A formal description is in Figure 4.3. Also consider the distinguisher D such

that

D(L′ = (L,~sin, ~sout), ~s) = D(L, (~s, ~sin, ~sout)) ,

where ~s = (s1, . . . , sr), ~s
in = (sin1 , . . . , s

in
r ), and ~sout = (sout1 , . . . , soutr ) Therefore, G0 and
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G1 behave exactly as UCES,Dn+1,n,H with challenge bits b = 1 and b = 0, respectively, with

the only difference of outputting true whenever the distinguisher’s output is b′ = 1.

Consequently, Advucen+1,n,H(S,D) = Pr [G0]− Pr [G1].

The remainder of the proof relates the unpredictability of S and that of S, establishing

(4.4) in the theorem statement. We detail the unpredictability argument next.

Unpredictability Argument in the Proof of Theorem 10. Assume wlog in the

following that P is deterministic. We consider three games G11, G12, and G13.

Game G11 is a small syntactical alteration of Game f-PredP
n+1,n,S

. It keeps track in a

set QP of the queries issued to O by the simulated S within S, i.e., an entry (i, U, V ) is

added to QP wheneverO(i, (+, U)) is queried, returning V , or (symmetrically)O(i, (-, V ))

is queried, returning U . Then, at the end of S’s execution, we define

Q←
{

(i, 0 ‖P1(sini , U)), (i, 1 ‖P1(souti , V )) : (i, U, V ) ∈ QP

}
,

where P1 denotes the second n-bit half of the output of P. We also let Q′ ← P (L,~s) be

the output of P given the leakage made by L and the seeds ~s = (sin1 , s
out
1 , . . . , sinr , s

out
r ).

Finally, G11 returns true iff Q′∩Q 6= ∅. Clearly, as Q exactly captures the set of queries S

makes to its oracle, the game returns true iff P predicts correctly, and we thus conclude

that Advf-pred
n+1,n,S

(P ) = Pr [G11].

The definition of G11 however allows to easily introduce G12, which answers S’s O-

queries via r randomly sampled permutations π1, . . . , πr, i.e., O(i, (+, U)) = πi(U) and

O(i, (-, V )) = π−1
i (V ). This is the only difference. In particular, we still keep track of

these queries in QP, compute Q, and set the winning condition as in G11. It is not hard

to see that Proposition 5 directly bounds Pr [G11]− Pr [G12], and thus

Advf-pred
n+1,n,S

(P ) ≤ q2 ·
(

2α +
1

22n

)
+ Pr [G12] .
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We are now going to construct a predictor P for S, whose advantage is related to Pr [G12].

This P will generally be inefficient and (interestingly enough) will in fact not make any

usage of the predictor P . To this end, we first introduce a new predictor P
′

which on

input L,~s outputs a singleton set consisting of the most likely element from P (L,~s) to

be in Q. We let G13 be G12 with P
′

instead of P . Clearly, Pr [G12] ≤ p · Pr [G13].

In the following, in G13, let us consider the conditional distribution QL of QP given

some fixed L. Also, let p(L) be the probability that a particular L is output by S in

G12, and let q(~s) be the probability that the seed-vector ~s is chosen, where recall that

~s = (sin1 , s
out
1 , . . . , sinr , s

out
r ) contains the seeds for P. Finally, we let Q(~s,QP) is the set

Q computed from QP using the keys ~s. Then, we can re-arrange the execution of G13

so that: (1) We first sample L according to the probability distribution p(·), (2) Then

sample QP according to QL, (3) Sample ~s according to q(·), and (4) Check whether

P
′
(L,~s) ∈ Q(~s,QP). Then,

Pr [G13] =
∑
L,~s

p(L) · q(~s) · Pr
QP

$←QL

[
P
′
(L,~s) ∈ Q(~s,QP)

]
.

Note now that for any fixed L and ~s,

Pr
QP

$←QL

[
P
′
(L,~s) ∈ Q(~s,QP)

]2

= Pr
QP,Q

′
P

$←QL

[
P
′
(L,~s) ∈ Q(~s,QP) ∩Q(~s,Q′P)

]
≤ Pr

QP,Q
′
P

$←QL
[Q(~s,QP) ∩Q(~s,Q′P) 6= ∅] .

Therefore,

Pr [G13] ≤
∑
~s,L

p(L) · q(~s) ·
√

Pr
QP,Q

′
P

$←QL
[Q(~s,QP) ∩Q(~s,Q′P) 6= ∅]

≤
√∑

~s,L

p(L) · q(~s) · Pr
QP,Q

′
P

$←QL
[Q(~s,QP) ∩Q(~s,Q′P) 6= ∅]

where the last inequality follows by Jensen’s inequality.

Now, in the following, assume L is fixed such that p(L) > 0, and we sample ~s from

q(·), as well as QP, Q
′
P

$← QL. We also define UP and VP such that (i, U) ∈ UP and

169



Public-seed PRFs to Public-seed PRPs via Naor-Reingold Chapter 4

(i, V ) ∈ VP if and only if (i, U, V ) ∈ QP. Define U ′P and V ′P analogously with respect to

Q′P. Then, let Good = Good(QP, Q
′
P) be the event that UP ∩ U ′P 6= ∅ or VP ∩ V ′P 6= ∅.

Accordingly,

Pr [Q(~s,QP) ∩Q(~s,Q′P) 6= ∅] ≤ Pr [Good] + Pr
[
Q(~s,QP) ∩Q(~s,Q′P) 6= ∅

∣∣Good] .
The latter probability is the probability that there exist (i, U) ∈ UP, (i, U ′) ∈ U ′P such

that P1(sini , U) = P1(sini , U
′) and U 6= U ′, or there exist (i, V ) ∈ VP, (i, V ′) ∈ V ′P such

that P1(souti , V ) = P1(souti , V ′) and V 6= V ′. Note that for any such pairs the probability

of such a collision is at most α by α-right universality, and thus the overall probability

is 2q2α by the union bound. Therefore, combining this with the above, we get

Pr [G13] ≤
√

2q2α +
∑
L

p(L) · Pr
QP,Q

′
P

$←QL
[Good(QP, Q′P)] (4.5)

To conclude the proof, we consider the predictor P against S which simply, given L,

samples Q′P from QL, and then compute U ′P, V
′
P, and outputs them. Since the original

queries QP are also distributed according to QL, we can rewrite (4.5) as

Pr [G13] ≤
√

2q2α + Advp-pred
2n,S (P ) , (4.6)

which concludes the proof.

4.5 The Case of Reset-Secure Sources

Theorem 10’s importance stems mostly from the fact that it establishes the equiva-

lence of psPRPs and UCEs for the case of (statistically) unpredictable sources. The ques-

tion was left open in [38]. Many applications (e.g., instantiating the permutation within

sponges, or any other indifferentiable hash construction) however require the stronger

notion of reset-security. For this, [38] show that the five-round Feistel construction suf-
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fices, using a weaker variant of indifferentiability, and left open the question of whether

four-rounds suffice.

We do better here: we prove that the NR construction transforms a UCE for statis-

tically reset-secure sources into a psPRP for the same class of sources. The proof starts

as the one of Theorem 10, but then shows that the source S built therein is in fact sta-

tistically reset-secure whenever S is. This step will resort to a variant of the heavy-query

sampling method of Impagliazzo and Rudich [95] to simulate a random oracle from the

leakage which captures “relevant correlations” with what is learnt by the source.

Theorem 11 (NR security for reset-secure sources) Let P be a α-right universal

family of permutations on 2n-bit strings, and let H be a function family from n + 1 bits

to n bits. Then, for all distinguishers D and sources S making overall q queries to their

oracle, there exists D and S such that

Advpsprp2n,NR[P,H](S,D) ≤ Advucen+1,n,H(S,D) + q2

(
2α +

1

22n

)
. (4.7)

Here, D and D are roughly as efficient, and S and S are similarly as efficient. In

particular, S makes 2q queries. Moreover, for every reset-adversary R making p queries,

there exists a reset-adversary R such that

Advf-reset
n+1,n,S

(R) ≤ 2Advp-reset2n,S (R) + 4

(
q +

8qp2

ε
ln(4p/ε)

)2(
2α +

1

22n

)
, (4.8)

where ε := Advf-reset
n+1,n,S

(R). In particular, R makes 4qp2/ε · ln(4p/ε) queries to its oracle.

Asymptotically, (4.8) implies that if R exists making p = poly(λ) queries, and achieving

non-negligible advantage ε, then R makes also a polynomial number of queries, and

achieves non-negligible advantage, as long as α is negligible, and n = ω(log λ). Thus,

reset-security of R yields reset-security of R.
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We also believe that the technique of Barak and Mahmoody [100] can be used to

reduce the 8qp2/ε term to O(qp)/ε. We did not explore this avenue here, as the proof

approach of [95] is somewhat easier to adapt to our setting.

Proof: The setup of the proof is identical to that in Theorem 10, in particular

the construction of S from S (and of D from D.) The difference is in relating the

reset-security of S and S. In particular, let

ε := Advf-reset
n+1,n,S

(R) = Pr
[
f-ResetR

n+1,n,S

∣∣ b = 0
]
− Pr

[
¬f-ResetR

n+1,n,S

∣∣ b = 1
]
.

The RHS is the difference of the probabilities of R outputting 0 in the cases b = 0 and

b = 1 respectively. We are going to build a new adversary R against S which satisfies

(4.8). We assume without loss of generality that R is deterministic, and makes exactly p

distinct queries to its oracle.

We start the proof with some game transitions that will lead naturally to the definition

of the adversary R. Formal descriptions are found in Figures 4.6 and 4.7 in the Appendix

– our description here is self-contained.

The initial game G1 is simply f-ResetR
S

with the bit b = 0, i.e., S and R access

the same functions f1, . . . , fr here. Further, G1 returns true iff R returns 0. Thus,

Pr [G1] = Pr
[
f-ResetR

S

∣∣ b = 0
]
. Game G2 slightly changes G1: It keeps track (in a set QP)

of the triples (i, U, V ) describing O queries made by the simulated S within S; i.e., either

S queried (i, (+, U)), and obtained V , or queries (i, (-, V )), and obtained U . After S

terminates with leakage (L,~s), where ~s = (sin1 , s
out
1 , . . . , sinr , s

out
r ), for every (i, U, V ) ∈ QP

we compute x0 ‖x1 ← P(sini , U) and x3 ‖x2 ← P(souti , V ), and define table entries

T [i, 0 ‖x1]← x0 ⊕ x2 , T [i, 1 ‖x2]← x1 ⊕ x3 .

For later reference, we denote by X the set of pairs (i, x) for which we set T [i, x] using

QP and ~s. We then run R(L,~s), and answer its oracle queries (i, x) using T [i, x]. If the
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entry is undefined, then we return a random value. (As we assumed all of R’s queries

are distinct, we do not need to remember the output.) As before, G2 outputs true iff R

outputs 0.

Note that we always have T [i, x] = fi(x) for very (i, x) such that fi(x) was queried

by S, and re-sampling values un-queried by S upon R’s queries does not change the

distribution of R’s output, and hence Pr [G1] = Pr [G2].

The intersection sampler. The game G3 generates a surrogate for QP. This is the

output of an algorithm Sam which, after S terminates with output (L,~s), takes as input

the leakage L (crucially, not ~s!) and an iteration parameter η = 4p/ε ln(4p/ε) (we let

also τ = p · η). Sam queries the very same O implemented by S to answer S’s queries

(which internally simulates the NR construction using S’s own oracle), and returns a set

Q̃P of 4-tuples (i, U, V, j) such that j ∈ [p], and (i, U, V ) is such that O(i, (+, U)) would

return V (or equivalently O(i, (-, V )) would return U). Internally, Sam will make calls

to another (randomized) sub-procedure Q which takes as input the leakage L, as well as

a set Q of tuples (i, U, V, j) consistent with O, and returns a set ∆ of at most q tuples

(i, U, V ), which are not necessarily consistent with O. We will specify in detail later below

what Q exactly does, as some further game transitions will come handy to set up proper

notation. For now, a generic understanding will suffice. In particular, given such Q, Sam

operates as in Figure 4.4. As we can see, for each (i, U, V, j) ∈ Q̃P, j indicates the outer

iteration in which this query was added to Q̃P. Using this information, for every j ∈ [p],

and every 4-tuple (i, U, V, j) we compute x0 ‖x1 ← P(sini , U) and x3 ‖x2 ← P(souti , V ),

define

T̃ [i, 0 ‖x1]← x0 ⊕ x2 , T̃ [i, 1 ‖x2]← x1 ⊕ x3 ,
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ALGORITHM SamO(L, τ) :

Q̃P ← ∅

for j = 1 to p do

for k = 1 to η do

∆j,k ← Q(L, Q̃P)

for all (i, U, V ) ∈ ∆j,k do

V ′ ← O(i, (+, U)), U ′ ← O(i, (-, V )), Q̃P
∪← {(i, U, V ′, j), (i, U ′, V, j)}

return Q̃P

Figure 4.4: Description of algorithm Sam.

and add (i, 0 ‖x1), (i, 1 ‖x2) to the set X̃j. A for now irrelevant caveat is that if one of

the entries in T̃ is already set, then we do not overwrite it.5

Then, after all of this, G3 resumes by executing R(L,~s). For R’s j-th query (i, x) we

do the following:

1. If (i, x) ∈ X̃j′ for some j′ ≤ j, then we respond with T̃ [i, x].

2. Otherwise, if (i, x) ∈ X, but the first condition was not met, we respond with

T [i, x].

3. Finally, if neither of the above is true, we respond randomly.

As before, G3 outputs true iff R outputs 0. For now, all modifications are syntactical.

Indeed, up to the point we start R, we satisfy the invariant that T [i, x] = fi(x) or

T̃ [i, x] = fi(x) whenever these are defined, because O behaves according to the NR

construction using ~s. On the other hand, if during the execution R(L,~s) we respond

5This does not matter here, as an entry can only be overwritten with the same value; below, we will
change the experiment in a way that overwrites may be inconsistent, and we want to ensure we agree to
keep the first value.
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randomly, we know for sure fi(x) was not queried by S, and thus we can re-sample it.

Thus, Pr [G3] = Pr [G2] = Pr [G1].

Moving to G4, we now answer O queries by S (within S) and by Sam using random

permutations π1, . . . πr, instead of simulating the NR construction using f1, . . . , fr, i.e.,

O(i, (+, U)) = πi(U) and O(i, (-, V )) = π−1
i (V ). The seeds ~s are now independent of

O. We do not change anything else. We note that the indistinguishability of G3 and G4

directly reduces to a suitable distinguisher for Proposition 5, as only Sam and S (within

S) make queries to O, but they do not get the keys ~s, which are used only after all queries

to O have been made to define X and X̃. Therefore,

Pr [G1] = Pr [G3] ≤ Pr [G4] + (q + 2qτ)2

(
2α +

1

22n

)
, (4.9)

where we have used the fact that Sam makes 2qτ = 2pqη queries.

The final game is G5 is identical to G4, except that in the process of answering R’s queries,

if case 2 happens, we also set answer randomly. However, should such situation occur, a

bad flag is set in G5, and since up to the point this flag is set, the behavior of G4 and G5

is identical,

Pr [G4]− Pr [G5] ≤ Pr [G5 sets bad] .

To analyze the probability on the RHS, we need to specify Q(L, Q̃) used by Sam here.

(Note all statements so far were independent of it.) For a given L which appears with

positive probability in G5, consider the distribution of the input-output pairs QP defined

by the interaction of S with O, conditioned on the leakage being L, and π1, . . . , πr being

consistent with the triples defined by Q̃. Then, Q(L, Q̃) outputs a sample of QP according

to this distribution. Using this, we prove the following lemma in Appendix 4.5.1, which

uses ideas similar to those from [95], with some modifications due to the setting (and the

fact that R makes p queries).
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ADVERSARY RO(1r, L) :

c← 0, X̃ ← ∅

~s = (sin1 , s
out
1 , . . . , sinr , s

out
r )

$← P.Kg

Q̃P
$← SamO(L)

for j = 1 to p do

for all (i, U, V, j) ∈ Q̃ do

x0 ‖x1 ← P(sini , U), x3 ‖x2 ← P(souti , V )

X̃j ← X̃j ∪ {(i, 0 ‖x1), (i, 1 ‖x2)}

if T̃ [i, 0 ‖x1] = ⊥ then T̃ [i, 0 ‖x1]← x0 ⊕ x2

if T̃ [i, 1 ‖x2] = ⊥ then T̃ [i, 1 ‖x2]← x1 ⊕ x3

b′ ← R
O′

(L,~s)

return b′

Proc. O′(i, x):

c← c+ 1, X̃ ← X̃ ∪ X̃c

if T [i, x] = ⊥ then

if (i, x) ∈ X̃ then

T [i, x]← T̃ [i, x]

else T [i, x]
$← {0, 1}n

return T [i, x]

Figure 4.5: Adversary R in the proof of Theorem 11.

Lemma 31 Pr [G5 sets bad] ≤ ε/2

Given this, we are now ready to give our adversary R, which we build from R and

Sam as described in Figure 4.5. By a purely syntactical argument,

Pr [G5] = Pr
[
p-ResetRS

∣∣ b = 0
]
, (4.10)

recalling that the case b = 0 is the one where both S and R access the same permutations

π1, . . . , πr. Therefore, we have established, combining (4.10), (4.9), Lemma 31,

Pr
[
p-ResetRS

∣∣ b = 0
]
≥ Pr

[
f-ResetR

S

∣∣ b = 0
]
− ε

2
− (q + 2qτ)2

(
2α +

1

22n

)
. (4.11)

In Appendix 4.5.2 we also prove formally that in the case b = 1, R in the game p-ResetRS

almost perfectly simulates an execution of f-ResetR
S

, or more formally,

Pr
[
¬p-ResetRS

∣∣ b = 1
]
≤ Pr

[
¬f-ResetR

S

∣∣ b = 1
]

+ (q + 2qτ)2

(
2α +

1

22n

)
. (4.12)
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We can combine (4.12) and (4.11) to obtain, with ∆ = 2(q + 2qτ)2
(
2α + 1

22n

)
,

Advp-reset
2n,S (R) = Pr

[
p-ResetRS

∣∣ b = 0
]
− Pr

[
¬p-ResetRS

∣∣ b = 1
]

≥ Pr
[
f-ResetR

S

∣∣ b = 0
]
− Pr

[
¬f-ResetR

S
)
∣∣ b = 1

]
− ε

2
−∆

≥ ε/2−∆ .

This concludes the proof.

4.5.1 Proof of Lemma 31

Proof: [Of Lemma 31] Recall that R makes exactly p distinct queries, and is deter-

ministic. Also, recall that Sam goes through p outer iterations, and η = 4p/ε ln(4p/ε)

inner iterations, and consequently we denote an iteration of Sam with a pair (j, k), where

j ∈ [p] and k ∈ [η].

Also, in the following, let us fix the leakage L, the keys ~s for P, and the values

Y1, . . . , Yp, where Yi is the uniformly sampled value used to answer R’s i-th query in G5

if the query is not in X̃. (We can think of the values Y1, . . . , Yp as being pre-sampled,

and then used as needed.) We will prove an upper bound on bad being set, even given

these are fixed. The final bound then follows by averaging.

Some more notation. For every (j, k) ∈ [p] × [η], we denote by Q̃P,j,k the contents

of Q̃P within Sam at the end of iteration (j, k). Further, we let Q̃P,1,0 = ∅, and Q̃P,j,0 =

Q̃P,j−1,η for all j ≥ 2. Note that the final output is Q̃P = Q̃P,p,η. Also, for ~s defined as

in the games, and any set Q of triples (i, U, V ), we define for convenience X(~s,Q) as the

set

X(~s,Q) =
{

(i, 0 ‖x1) : ∃(i, U, V, j) ∈ Q : P1(sini , U) = x1

}
∪ {(i, 1 ‖x2) : ∃(i, U, V, j) ∈ Q : P1(souti , V ) = x2} .
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MAIN G1:

QP ← ∅, (r, t)
$← S(ε)

f1, . . . , fr
$← Funcs(n+ 1, n)

~s = (sin1 , s
out
1 , . . . , sinr , s

out
r )

$← P.Kg

L
$← SO(t)

b′ ← R
O′

(L,~s)

return (b′ = 0)

MAIN G2:

QP ← ∅, (r, t)
$← S(ε)

f1, . . . , fr
$← Funcs(n+ 1, n)

~s = (sin1 , s
out
1 , . . . , sinr , s

out
r )

$← P.Kg

L
$← SO(t)

for all (i, U, V ) ∈ QP do

x0 ‖x1 ← P(sini , U)

x2 ‖x2 ← P(souti , V )

T [i, 0 ‖x1]← x0 ⊕ x2

T [i, 1 ‖x2]← x1 ⊕ x3

X
∪← {(i, 0 ‖x1), (i, 1 ‖x2)}

b′ ← R
O′

(L,~s)

return (b′ = 0)

Proc. O(i, (σ, U)): // G1, G2, G3

if σ = + then

x0 ‖x1 ← P(sini , U)

x2 ← fi(0 ‖x1)⊕ x0

x3 ← fi(1 ‖x2)⊕ x1

V ← P−1(souti , x3 ‖x2)

QP ← QP ∪ {(i, U, V )}

else

x3 ‖x2 ← P(souti , U)

x1 ← fi(1 ‖x2)⊕ x3

x0 ← fi(0 ‖x1)⊕ x2

V ← P−1(sini , x0 ‖x1)

QP ← QP ∪ {(i, V, U)}

return V

Proc. O′(i, x): // G2

if T [i, x] 6= ⊥ then y ← T [i, x]

else y
$← {0, 1}n

return y

Proc. O′(i, x): // G1

return fi(X).

Figure 4.6: Games to prove reset-security of the source S. Here, R is deterministic and assumed to

make p distinct queries, and thus it is not necessary for the oracle O′ to keep state.

In particular, X(~s, Q̃P,j,η) = X̃1 ∪ · · · ∪ X̃j. For this reason, we note in particular that

for every j ∈ [p], the j-th query qj of R is uniquely determined by L, ~s, Y1, . . . , Yj−1 and

Q̃P,j,0. This fact relies on R being deterministic, and somewhat more subtly, the fact

that the values T̃ are never overwritten.
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MAIN G3,G4,G5:

c← 0

QP ← ∅, (r, t)
$← S(ε)

π1, . . . , πr
$← Perms(2n)

f1, . . . , fr
$← Funcs(n+ 1, n)

~s = (sin1 , s
out
1 , . . . , sinr , s

out
r )

$← P.Kg

L
$← SO(t)

Q̃P
$← SamO(L)

for all (i, U, V ) ∈ QP do

x0 ‖x1 ← P(sini , U)

x2 ‖x2 ← P(souti , V )

T [i, 0 ‖x1]← x0 ⊕ x2

T [i, 1 ‖x2]← x1 ⊕ x3

X
∪← {(i, 0 ‖x1), (i, 1 ‖x2)}

for j = 1 to p do

for all (i, U, V, j) ∈ Q̃P do

x0 ‖x1 ← P(sini , U)

x3 ‖x2 ← P(souti , V )

X̃j ∪← X̃j ∪ {(i, 0 ‖x1), (i, 1 ‖x2)}

if T̃ [i, 0 ‖x1] = ⊥ then

T̃ [i, 0 ‖x1]← x0 ⊕ x2

if T̃ [i, 1 ‖x2] = ⊥ then

T̃ [i, 1 ‖x2]← x1 ⊕ x3

b′ ← R
O′

(L,~s)

return (b′ = 0)

Proc. O′(i, x): // G3, G4

c← c+ 1, X̃
∪← X̃c

if (i, x) ∈ X̃ then y ← T̃ [i, x]

elseif (i, x) ∈ X then

bad← true, y ← T [i,X]

elseif y
$← {0, 1}n

return y

Proc. O′(i, x): // G5

c← c+ 1, X̃
∪← X̃c

if (i, x) ∈ X̃ then y ← T̃ [i, x]

elseif (i, x) ∈ X then

bad← true, y
$← {0, 1}n

elseif y
$← {0, 1}n

return y

Proc. O(i, (σ, U)): // G4,G5

if σ = + then

V
$← πi(U)

QP ← QP ∪ {(i, U, V )}

else

V
$← π−1i (U)

QP ← QP ∪ {(i, V, U)}

return V

Figure 4.7: Games to prove reset-security of the source S. (Continued) Here, R is deterministic and

assumed to make p distinct queries, and thus it is not necessary for the oracle O′ to keep state.
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The bad events. For j ∈ [p], we also define the event badj that for the j-th query of R

we have qj /∈ X̃1 ∪ · · · ∪ X̃j, and qj ∈ XP, which is exactly the event that bad is set when

answering the j-th query of R. We will show that Pr [badj] ≤ ε/2p, and consequently

Pr [bad] ≤
p∑
j=1

Pr [badj] ≤ p · ε/2p = ε/2 . (4.13)

To bound Pr [badj] for any fixed j ∈ [p], assume that we further fix Q̃P,j,0 to some possible

value which can occur with positive probability. This also (by the above argument)

uniquely fixed the j-th query qj.

Now, if qj ∈ X(~s, Q̃P,j,0), then Pr [badj] is 0 conditioned on this. Therefore, let us assume

that qj /∈ X(~s, Q̃P,j,0). Then, define for every k ∈ [η],

αj,k = Pr
[
∆j

$← Q(L, Q̃P,j,k−1) : qj ∈ X(~s,∆j)
]
.

Now, either there exists k ∈ [η] such that αj,k ≤ ε/4p, in which case the probability that

qj ∈ X is at most ε/4p, and thus the probability of badj conditioned on this is at most

ε/4p. This follows from the following fact (made explicit in [95]): αj,k is exactly the

conditional probability, given the acquired information so far, that qj ∈ X in the actual

execution, and thus, conditioned on αj,k = p, the probability that qj ∈ X is indeed p.

The other case is that no such k exists, i.e., αj,k >
ε
4p

for all k ∈ [η]. In this case, we are

going to necessarily have qj ∈ X(Q̃P,j,η), except with probability

(1− ε/4p)η ≤ e−(ε/4p)η = ε/4p

using the fact that η = 4p/ε ln(4p/ε). Therefore, the probability that badj is set is at

most 2× ε/4p = ε/2p.

This concludes the proof of Lemma 31.
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4.5.2 Analysis of the b = 1 case

To conclude the proof, we still need to analyze the b = 1 case, i.e., the case where the

source and the reset adversary are given independent oracles. To this end, we introduce

two games G11,G12 which simulate an execution of R against S where in the former game,

R and S access independent sets of permutations, whereas in G12 these permutations are

instantiated using the NR construction, sharing however the underlying keys ~s for P.

Clearly,

Pr
[
¬p-ResetRS

∣∣ b = 1
]

= Pr [G11] . (4.14)

To transition from G11 to G12, we can use Proposition 5 twice, first with respect to S’s q

queries to replace π0
1, π

0
2, . . . with their counterparts obtained from the NR construction,

and then another time to do the same π1
1, π

1
1, . . . (this time there are 2qτ queries being

made by Sam to take into account). So overall,

Pr [G11] ≤ Pr [G12] + (q2 + (2qτ)2)

(
2α +

1

22n

)
≤ Pr [G12] + (q + 2qτ)2

(
2α +

1

22n

)
.

(4.15)

Now, looking at G12, we observe that T [i, x] = f 1
i (x) always holds by construction.

Therefore, when running R, the values returned by O′(i, x) are always either equal f bi (x)

or freshly random, and thus in both case random and independent than the values of

f 0
1 , . . . , f

0
r . In other words, this perfectly simulates an execution of R against S in the

b = 1 case, i.e.

Pr [G12] = Pr
[
¬f-ResetR

S

∣∣ b = 1
]
, (4.16)

and thus combining (4.14), (4.15), and (4.16), we get

Pr
[
¬p-ResetRS

∣∣ b = 1
]
≤ Pr

[
¬f-ResetR

S

∣∣ b = 1
]

+ (q + 2qτ)2

(
2α +

1

22n

)
, (4.17)

as we wanted to show.
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MAIN G11,G12:

c← 0

QP ← ∅, (r, t)
$← S(ε)

π0
1 , π

1
1 , , . . . , π

0
r , π

1
r

$← Perms(2n)

f01 , f
1
1 , . . . , f

0
r , f

1
r

$← Funcs(n+ 1, n)

~s = (sin1 , s
out
1 , . . . , sinr , s

out
r )

$← P.Kg

L
$← SO

0

(t)

Q̃P
$← SamO

1

(L)

for j = 1 to p do

for all (i, U, V, j) ∈ Q̃P do

x0 ‖x1 ← P(sini , U)

x3 ‖x2 ← P(souti , V )

X̃j ∪← X̃j ∪ {(i, 0 ‖x1), (i, 1 ‖x2)}

if T̃ [i, 0 ‖x1] = ⊥ then

T̃ [i, 0 ‖x1]← x0 ⊕ x2

if T̃ [i, 1 ‖x2] = ⊥ then

T̃ [i, 1 ‖x2]← x1 ⊕ x3

b′ ← R
O′

(L,~s)

return (b′ = 0)

Proc. Ob(i, (σ, U)): // G11

if σ = + then V
$← πi(U)

else V
$← π−1i (U)

return V

Proc. Ob(i, (σ, U)): // G12

if σ = + then

x0 ‖x1 ← P(sini , U)

x2 ← f bi (0 ‖x1)⊕ x0

x3 ← f bi (1 ‖x2)⊕ x1

V ← P−1(souti , x3 ‖x2)

else

x3 ‖x2 ← P(souti , U)

x1 ← f bi (1 ‖x2)⊕ x3

x0 ← f bi (0 ‖x1)⊕ x2

V ← P−1(sini , x0 ‖x1)

return V

Proc. O′(i, x): // G11, G12

c← c+ 1, X̃
∪← X̃c

if (i, x) ∈ X̃ then y ← T̃ [i, x]

elseif y
$← {0, 1}n

return y

Figure 4.8: Games to prove reset-security of the source S. (Continued) Case b = 1. Here, R is

deterministic and assumed to make p distinct queries, and thus it is not necessary for the oracle O′ to

keep state.
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Chapter 5

Two-round and Non-interactive

Non-malleable Commitments

The main result of this chapter is a construction of two-round and non-interactive non-

malleable commitments from sub-exponential-time well-studied assumptions. Towards

this, we provide a detailed overview of our techniques in Section 5.1. In Section 5.2, we

provide preliminaries and definitions. Section 5.3 presents a family of basic commitment

schemes that are mutually harder than each other at different axis, we call them size-

robust, depth-robust and size-and-depth robust commitments. Using these basic commit-

ment schemes, in Section 5.4, we construct a commitment scheme for short identities that

satisfy a weaker notion of non-malleability that we formalize as non-malleability w.r.t.

extraction. In Section 5.5, we present a non-malleability strengthening technique that

increases the length of identities exponentially, and lifts non-malleability w.r.t. extraction

in the stand-alone setting to both non-malleability w.r.t. extraction and standard non-

malleability in the concurrent setting. In Section 5.7, we construct 2-round non-malleable

commitment scheme for n-bit identities, by iteratively applying the amplification tech-

nique in Section 5.5 to the basic scheme in Section 5.4. Then in Section 5.8 we discuss
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the robust CCA-security of the 2-round non-malleable commitment scheme described

in Section 5.7. Finally in Section 5.9, we show how to remove the first-message in our

2-round non-malleable and robust-CCA secure commitment from Section 5.7 when the

attackers are restricted to be uniform Turing machines.

5.1 Overview

Every secure statistically binding commitment scheme is hiding against polynomial-

sized circuits, while extractable by some exponential-sized circuit (such an extractor is

guaranteed to exist since one can always find the committed value by brute force). In

this work, we pay special attention to the gap between the “resources” of attackers and

that of extractors. Moreover, we crucially rely on the synergy between different resources

— in particular, circuit-size and circuit-depth, which are captured by the following two

basic types of commitment schemes:

Size-Robust Commitments are parametrized versions of classical commitments: An

(S, S ′)-size-robust commitment is hiding against any size-poly(S) attackers, and ex-

tractable by some size-S ′ extractor, for an S ′ = Sω(1) denoted as S ′ >> S, of

shallow polynomial depth where S and S ′ are some function of the security param-

eter. For instance, such extractors can be implemented using the näıve brute force

strategy of enumerating all possible decommitments, which is a time-consuming

but highly-parallelizable task.

Depth-Robust Commitments are natural analogues of size-robust commitments, but

with respect to the resource of circuit-depth. A (D,D′)-depth-robust commitment

is hiding against any depth-poly(D) circuits with size up to a large upper bound B,

and extractable by some size-D′ extractor for B > D′ >> D that necessarily has a
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depth super-polynomially larger than D. In this work, we consider a subexponential

size upper bound B = 2n
ε

for some constant ε > 0; for simplicity of exposition,

we ignore this upper bound in the rest of this overview (see Section 5.3 for more

detail).

Size-Robust Commitments from Subexponential Injective OWFs. The size-

robust commitments we need (for specific relations between S and S ′) can essentially

be instantiated using any off-the-shelf commitment schemes that are subexponentially

secure, by appropriately scaling the security parameter to control the levels of security

and hardness for extraction. Take the standard non-interactive commitment scheme

from any injective one-way function f as an example: A commitment to a bit b is of

the form (f(r), h(r) ⊕ b), consisting of the image f(r) of a random string r of length

n, and the committed bit b XORed with the hard-core bit h(r). Assuming that f is

subexponentially hard to invert, the commitment is hiding against all size-2n
ε

circuits

for some constant ε > 0, while extractable in size 2n (ignoring polynomial factors in n)

and polynomial depth. By setting the security parameter n to (logS)1/ε, we immediately

obtain a (S, S ′)-size robust commitment for S ′ = 2logS1/ε
.

Depth-Robust Commitments from Time-Lock Puzzles. Depth-robust commit-

ments are naturally connected with cryptographic objects that consider parallel-time

complexity, which corresponds to circuit-depth. When replacing subexponentially-hard

one-way functions in the above construction with time-lock puzzles, we immediately ob-

tain depth-robust commitments:

- To commit to a bit b, generate a puzzle puzz with a random solution s and a

designated level of hardness t, and hide b using the Goldreich-Levin hard-core bit,

producing C = (puzz, r, 〈r, s〉 ⊕ b) as the commitment.
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- To decommit, the committer can simply reveal the puzzle solution s together with

the random coins ρ used for generating the puzzle. The receiver verifies that the

puzzle is honestly generated with solution s, and uses s to recover the committed

bit b.

Since the time-lock puzzle solution s is hidden against adversaries in parallel-time T (t)

(and overall time B(n)), the commitments are hiding against depth-T (t) adversaries

(with size up to B(n)). Moreover, since the puzzles can be “forcefully” solved in time

2t, the committed values can be extracted in size 2t. This gives a (T, 2t)-depth-robust

commitment.1

Next, we show how to compose the basic size-robust and depth-robust commitment

schemes to overcome Pass’s impossibility result on 2-round non-malleable commitments.

5.1.1 Towards Overcoming the Impossibility Result

One-Sided Non-Malleability via Complexity Leveraging. It is well known that

one-sided non-malleability can be achieved easily via complexity leveraging. One-sided

non-malleability only prevents mauling attacks when the tag of the left commitment is

“larger than” the tag of the right commitment.2 In the simple case of 1-bit tags, this

requires the commitment for tag 1 (on the left) to be non-malleable w.r.t. the commitment

for tag 0 (on the right), which holds if the tag-1 commitment is “harder” than the tag-

0 commitment. For example, if the tag-1 commitment is (S1, S
′
1)-size-robust while the

tag-0 commitment is (S0, S
′
0)-size-robust for some S0 << S ′0 << S1 << S ′1, then one can

extract the right committed value using a size-S ′0 extractor, while the left committed value

still remains hidden. Therefore, the right committed value must be (computationally)

1Binding follows from the injectivity of time-lock puzzles.
2The choice that the left tag is smaller than the right tag is not important. One could also require

the opposite, that is, the left tag is larger than the right tag. The limitation is that the design of the
commitments depends on this arbitrary decision.
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D0

S1

D′0

S′1

D1

S0

D′1

S′0

D0

Sl−1

D′0

S′l−1

Di

Sl−1−i

D′i

S′l−1−i

Dl−1

S0

D′l−1

S′0

Figure 5.1: (left) A 1-bit tag based commitment scheme: The tag-0 (resp., tag-1) commitment

scheme is hiding for circuits of depth below D0 (resp., D1) OR size below S1 (resp., S0),

represented by the solid line joining D0 (resp., D1) and S1 (resp., S0). The tag-0 (resp., tag-1)

commitment scheme admits an extractor of depth at most D′0 (resp., D′1) and size at most S′1

(resp., S′0). (right) This is a generalization of the 1-bit tag commitment scheme to log l-bits

tags, where for tag-i the commitment scheme is hiding for circuits of depth below Di OR size

below Sl−1−i and exhibits an extractor of depth at most D′i and size at most S′l−1−i.

independent of the left. Similarly, we can also achieve one-sided non-malleability using

depth-robust commitments, by using a (D1, D
′
1)-depth robust commitment scheme for tag

1 and a (D0, D
′
0)-depth robust commitment scheme for tag 0, for some D0 << D′0 <<

D1 << D′1.

However, simple complexity leveraging is inherently limited to one-sided

non-malleability, since when only one resource is considered, the tag-1 commitment can-

not be both harder and easier than the tag-0 commitment.

Two Resources for (Two-Sided) Non-Malleability. Therefore, our key idea is

using two resources to create two “axes”, such that, the tag-1 commitment and tag-0

commitment are simultaneously “harder” than the other, but, with respect to differ-
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ent resources. This is enough to circumvent the lowerbound due to Pass [67]. This is

achieved by combining the basic size-robust and depth-robust commitment schemes in

the following simple way.

Basic 1-bit Tag Non-Malleable Commitment:

For some D0 << D′0 << D1 << D′1 << S0 << S ′0 << S1 << S ′1,

- a tag-0 commitment to a value v consists of commitments to two random, xor secret

shares α, β of v, such that, v = α + β, where the first share is committed under

a (D0, D
′
0)-depth-robust commitment scheme and the second under a (S1, S

′
1)-size-

robust commitment scheme, and

- a tag-1 commitment to v, on the other hand, uses a (D1, D
′
1)-depth-robust commit-

ment scheme to commit to the first share and a (S0, S
′
0)-size-robust commitment

scheme to commit to the second share.

Thus, the tag-1 commitment is harder w.r.t. circuit-depth, while the tag-0 commitment

is harder w.r.t. circuit-size. Leveraging this difference, one can extract from a tag-0

commitment (on the right) without violating the hiding property of a tag-1 commitment

(on the left), and vice versa — leading to two-sided non-malleability. More specifically,

the committed values in a tag-0 commitment can be extracted in depth D′0 and size S ′1

by extracting both secret shares from the size- and depth-robust commitments contained

in it. Yet, adversaries with such depth and size cannot break the (D1, D
′
1)-depth-robust

commitment contained in a tag-1 commitment; thus, the value committed to in the

tag-1 commitment remains hidden. On the flip side, the committed value in a tag-1

commitment can be extracted in depth D′1 and size S ′0, and, similarly, adversaries with

such depth and size do not violate the hiding of a tag-0 commitment, due to the fact

that the size-robust commitment contained in it is hiding against size-S1 adversaries.
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In summary, combining the two types of commitment schemes gives us depth-and-size

robust commitment schemes: A (D ∨ S,D′ ∧ S ′)-robust commitment is hiding against

circuits with depth below D or size below S, while extractable by some circuit with depth

D′ and size S ′, as illustrated in Figure 5.1 (left). In this language, a tag-0 commitment is

(D0∨S1, D
′
0∧S ′1)-robust while a tag-1 commitment is (D1∨S0, D

′
1∧S ′0)-robust. They are

mutually non-malleable, because the extractor for one falls into the class of adversaries

that the other is hiding against.

The Subtle Issue of Over-Extraction. The above argument captures our key idea,

but is overly-simplified. It implicitly assumes that the size- and depth-robust commit-

ments are extractable in the perfect manner: 1) Whenever a commitment is valid, in

the sense that there exists an accepting decommitment, the extractor outputs exactly

the committed value, otherwise, 2) when the commitment is invalid, it outputs ⊥. Such

strong extractability ensures that to show non-malleability – the right committed value is

independent of the left committed value, it suffices to show that the right extracted value

is independent of the left committed value, as argued above. On the other hand, suppose

that property 2) does not hold, that is, when the commitment is invalid, the extractor

may output arbitrary values – this is known as over-extraction. In this case, we can no

longer argue the independence of the right committed value based on the independence

of the right extracted value. For instance, the extracted value ṽ may not change as the

left committed value changes, but the right committed value may have switched from ṽ

to ⊥.

However, our depth-robust commitments from time-lock puzzles do not satisfy such

strong extractability.3 In particular, they are subject to over-extraction. Over-extraction

traces back to the fact that only honestly generated time-lock puzzles (i.e., in the domain

3Our size-robust commitments from injective one-way functions do satisfy such strong extractability.
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of the puzzle generation algorithm) are guaranteed to be solvable in certain time. There

is no guarantee for ill-generated puzzles, and no efficient procedure for deciding whether a

puzzle is honestly generated or not. Observe that this is the case for the time-lock puzzles

proposed by Rivest, Shamir, and Wagner [70], since given a puzzle (s+ g22t

mod N, N)

one can extract s using 2t squaring modular N , but cannot obtain a proof that N is

a valid RSA-modulus; this is also the case for the other puzzle construction [76]. As a

result, the extractor of our depth-robust commitments that extracts committed values

via solving time-lock puzzles, provides no guarantees when commitments are invalid.

This means that our basic 1-bit tag commitment scheme is over-extractable, and

the argument above that reasons about the right extracted value fails to establish non-

malleability. Nevertheless, the basic scheme does satisfy a variant of non-malleability

that we call non-malleability w.r.t. extraction, which ensures that the value extracted from

the right commitment is independent of the left committed value.4 When a commitment

scheme is perfectly-extractable, this new notion is equivalent to standard non-malleability

(w.r.t. commitment), but with over-extraction, it becomes incomparable. The issue of

over-extraction has appeared in the literature (e.g., [59, 84]), standard methods for deal-

ing with over-extraction requires the committer to additionally prove the validity of the

commitment it sends, using for instance zero-knowledge protocols or cut-and-choose tech-

niques. However, these methods take more than 2 rounds of interaction, and do not apply

here.

4Our notion of non-malleability w.r.t. extraction is inspired from the notion of non-malleability w.r.t.
extraction defined by Wee [59]. Furthermore, our notion can be viewed as a special case of the notion
of non-malleability w.r.t. replacement defined by Goyal [60], in the sense that the replacer in Goyal’s
definition is fixed to the over-extractor of the commitment scheme. The benefit of doing so is that we
know exactly the complexity of the extractor, which is useful in the rest of the construction.
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5.1.2 Full-Fledged Non-Malleable Commitments

At this point, we face two challenges towards constructing full-fledged non-malleable

commitments:

- Challenge 1: We need to go from non-malleability w.r.t. extraction to non-malleability

w.r.t. commitment in 2 rounds. Resolving this challenge would give a 2-round 1-bit

tag non-malleable commitment scheme.

- Challenge 2: The next challenge is going beyond two tags, towards supporting an

exponential 2n number of tags.

It is easy to generalize our basic 1-bit tag commitment scheme to handle arbitrary

l tags, if there exists a “ladder” of l commitment schemes with increasing levels of

depth-robustness, and another “ladder” of l schemes with increasing levels of size-

robustness. Concretely, the i’th schemes are respectively (Di, D
′
i)-depth robust and

(Si, S
′
i)-size robust, for some

· · · << Di << D′i << · · · << Dl−1 << D′l−1

<< S0 << S ′0 << · · · << Si << S ′i << · · · .

A commitment with tag i ∈ {0, · · · , l− 1} combines the i’th (Di, D
′
i)-depth-robust

scheme and the (l − i − 1)’th (Sl−i−1, S
′
l−i−1)-size-robust scheme to commit to a

pair of secret shares of the committed value. This gives a family of l mutually

non-malleable commitment schemes, as illustrated in Figure 5.1 (right).

To directly obtain full-fledged non-malleable commitments, we need an exponential

number of levels l = 2n of depth- and size-robustness, which is, however, impossible

from the underlying assumptions. From generic subexponentially hard, say 2n
ε

hard, injective one-way functions, we can instantiate at most O(log log n) levels of

size-robustness. (This is because if we instantiate the i’th size-robust commitment
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using the one-way functions with security parameter ni, the commitment is hiding

for adversaries of size Si = poly(2n
ε
i ), and can be broken by adversaries of size

S ′i = poly(2ni). Then, ensuring S ′i−1 << Si entails that n
1/ε
i−1 < ni, and hence

n
1/εi

0 < ni. Since ni also needs to be polynomial in the global securty parameter n,

we have i = O(log log n).) Similarly, from subexponentially parallel-time hard time-

lock puzzles, we can instantiate O(log log n) levels of depth-robustness. Therefore,

we need to amplify the number of tags.

We address both challenges using a single transformation.

2-Round Tag Amplification Technique: We present a transformation that converts

a 2-round l-tag commitment scheme that is non-malleable w.r.t. extraction, into a

2-round 2l−1-tag commitment scheme that is both non-malleable w.r.t. extraction

and w.r.t. commitment. The output protocol can be further transformed to achieve

concurrent non-malleability.

With the above transformation, we can now construct full-fledged non-malleable com-

mitment. Start from our basic scheme for a constant l0 = O(1) number of tags that

is non-malleable w.r.t. extraction; apply the tag-amplification technique iteratively for

m = O(log∗ n) times to obtain a scheme for lm = 2n tags that is both non-malleable

w.r.t. extraction and w.r.t. commitment.

Previously, similar tag-amplification techniques were presented by Lin and Pass in [56]

and by Wee in [59]. Our transformation follows the same blueprint, but differ at two

important aspects. First, our transformation starts with and preserves non-malleability

w.r.t. extraction, which is not considered in their work. Second, their amplification

techniques incur a constant additive overhead in the round complexity of the protocol,

whereas our transformation keeps the number of rounds invariant at 2. To do so, our

amplification step combines ideas from previous works with the new idea of using our
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depth-and-size robust commitments to create different 2-round sub-protocols that are

mutually “non-malleable” when executed in parallel, in the sense that the security of one

sub-protocol remains intact even when the security of another is violated by force.

Our 2-Round Tag-Amplification Technique in More Detail. Similar to [56, 59],

the transformation proceeds in two steps:

- First, amplify the security of a scheme from (one-one) non-malleability w.r.t. ex-

traction to one-many non-malleability w.r.t. extraction and commitment, which,

following a proof in [55], implies concurrent (or many-many) non-malleability w.r.t.

extraction and commitment. (This is why our final protocol can be made con-

currently non-malleable.) Here, one-many and concurrent non-malleability w.r.t.

extraction or commitment naturally generalize standard non-malleability to the

setting where the man-in-the-middle concurrently receives one or many commit-

ments on the left and gives many commitments on the right, and ensures that the

joint distribution of the values extracted from or committed in right commitments

is independent of the value(s) committed in the left commitments.

- Next, apply the “log-n trick” by Dolev, Dwork and Naor [69] to amplify the number

of tags supported from l to 2l−1 at the price of losing concurrent security, yielding

a protocol that is (one-one) non-malleable w.r.t. extraction and commitment.

The main technical challenges lie in the first step. We briefly review the LP [56] ap-

proach. At a high-level, they construct one-many non-malleable commitment following

the Fiege-Lapidot-Shamir paradigm [103]: The receiver starts by setting up a hidden

“trapdoor” t. The sender commits to a value v using an arbitrary (potentially mal-

leable) 2-message commitment scheme, followed by committing to 0n using a (one-one)

non-malleable commitment and proving using many witness-indistinguishable proofs of
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knowledge (WIPOK) that either it knows a decommitment to v or it knows a decommit-

ment of the non-malleable commitment to the trapdoor t; the former, called the honest

witness, is used by the honest committer, while the latter, called the fake witness, is used

for simulation.

The LP protocol arranges all components — the trapdoor-setup, commitment to

v, non-malleable commitment (for trapdoor), and every WIPOK — sequentially. To

compress the protocol into 2 rounds, we run all components in parallel, and replace

multiple WIPOK proofs with a single 2-round ZAP proof.

Unfortunately, arranging all components in parallel renders the proof of one-many

non-malleability in LP invalid. They designed a sequence of hybrids in which different

components in the (single) left interaction are gradually switched from being honestly

generated to simulated, while maintaining two invariants regarding the (many) right

interactions. First, the soundness condition states that the man-in-the-middle never

commits to a trapdoor in any right interaction. Second, in every right interaction, there

is always a WIPOK that can be rewound to extract the value committed to in this

interaction, without rewinding the left component being changed; the value extracted

must be a valid decommitment since the fake witness does not exist by the soundness

invariant — this establishes strong extractability. The second invariant is true because the

LP protocol contains sufficiently many sequential WIPOKs so that there is always a proof

that does not interleave with the left-component being changed. The first invariant, on

the other hand, relies not only on the non-malleability of the input commitment scheme,

but also on its “robustness” to other components that have a small fixed k number of

rounds (such as 2-message commitment and WIPOK). The robustness captures “non-

malleability” w.r.t. other protocols, and is achieved by embedding more than k rewinding

slots in the input commitment scheme.

In our 2-round protocol, we cannot afford to have many rewinding slots for extraction,
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nor for establishing non-malleability between different components. Naturally, we resort

to our size-and-depth robust commitments, which can be made mutually non-malleable

w.r.t. extraction by setting the appropriate profiles of size-and-depth robustness. We

embed a family of 4 such commitments in different components of the protocol, and mimic

the LP proof in the following (overly-simplified) manner: In every hybrid, in the left

interaction, either a size-and-depth robust commitment or the non-malleable commitment

is changed, while on the right, committed values are extracted from a different size-and-

depth robust commitment or from the non-malleable commitment. (Note that since we

now extract values from commitments instead of from WI proofs, we no longer need

many WIPOKs and a single ZAP suffices.)

To show that the left interaction remains indistinguishable despite the extraction,

we rely on the mutual non-malleability of the size-and-depth robust schemes, but also

need the non-malleable commitment and the size-and-depth robust commitments to be

mutually non-malleable, which unfortunately does not hold.

Let us explain. It turns out that our basic non-malleable commitment schemes for

short tags, and all intermediate schemes produced by the tag-amplification technique are

only secure against circuits with both bounded-size and bounded-depth. In contrast, the

depth-and-size robust commitments are secure against circuits with either bounded-size

or bounded-depth. This qualitative difference in adversarial circuit classes prevents them

from being mutually non-malleable. To get around this, we instead rely on a “cycle of

non-malleability” that consists of the non-malleable commitment scheme and two depth-

and-size robust commitment schemes, satisfying that the first scheme is non-malleable

to the second, the second non-malleable to the third, and the third to the first. Such a

cycle turns out to be sufficient for our proof to go through.

One final technicality is that in order to create the cycle of non-malleability, the hard-

ness of the two size-and-depth robust commitments must be set appropriately according
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to that of the non-malleable commitment scheme. Furthermore, the non-malleable com-

mitment scheme produced by the above transformation has weaker security than the input

scheme. As a result, to iteratively apply the tag-amplification technique for O(log∗ n)

times, we need O(log∗ n) levels of depth- and size-robustness. This can be easily instan-

tiated using subexponentially secure non-interactive commitment schemes and time-lock

puzzles as stated in Theorem 2-rnd in Section 1.3. See Section 5.5 for more details on

our tag amplification and its security proof.

5.1.3 Extensions

Finally, we briefly mention two extensions. First, our two-round non-malleable com-

mitment scheme can be made non-interactive, at the price of becoming only concurrent

non-malleable against attackers that are uniform Turing machines. Second, we show

that our two-round non-malleable commitment scheme (and its non-interactive version

resp.) in fact satisfies the stronger notion of Chosen Commitment Attack (CCA) security

(against uniform Turing machines resp.).

Non-Interactive Non-Malleable Commitments w.r.t. Uniform Attackers. For

the first extension, observe that the only step in our construction that requires 2 rounds

is the non-malleability strengthening step in the tag-amplification technique. (The basic

non-malleable scheme for a constant number of tags are non-interactive and the log-n trick

in the tag-amplification technique is round-preserving.) The non-malleability strength-

ening step produces 2-round protocols, where the first message is from the receiver and

consists of i) the first message of a 2-round WI proof, ii) a randomly sampled function

from a family of collision resistant hash functions secure against non-uniform attackers,

and iii) the first message of the input (one-one) non-malleable commitment scheme if it

has 2 rounds. To remove the first message we can simply replace 2-round WI proofs with
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non-interactive WI proofs (NIWIs), and fix a single hash function (instead of a family).

However, since a single hash function can only be collision resistant to attackers that

are uniform Turing machines, the resulting non-interactive commitment scheme is only

concurrent non-malleable against uniform adversaries. See Section 5.9 for more details.

CCA-secure Commitments. CCA-security strengthens the notion of concurrent non-

malleability in ways similar to how Chosen Ciphertext Attack secure encryption strength-

ens non-malleable encryption. Roughly speaking, CCA-security requires that no man-

in-the-middle attacker can distinguish commitments to different values on the left, even

if it has access to a committed-value oracle, which breaks every commitment the at-

tacker sends on the right (except the left commitment), and returns the unique commit-

ted value as soon as the right interaction ends. Our 2-round concurrent non-malleable

commitments are in fact CCA-secure. To see this, it suffices to argue that the non-

malleability strengthening step in the tag-amplification technique produces CCA-secure

commitments, as the final 2-round protocol is produced by this procedure. Recall that

to show the concurrent non-malleability of the resulting 2-round protocol, we built a

sequence of hybrids, where different components in the left commitment are changed one

by one, while the right committed values are extracted by breaking different components

in right commitments. The indistinguishability of neighboring hybrids follows from the

mutual non-malleability of the component being broken on the right, and the component

being changed on the left. We observe that this argument can be easily changed to prove

CCA security. The only modification to the hybrids is simulating the committed-value

oracle for the attacker by sending it the values extracted from the right commitments.

The mutual non-malleability of different components still guarantees the indistinguisha-

bility of the hybrids, now with committed-value oracles. There are still some subtleties

in the proof; see Section 5.8 for more details.
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5.1.4 Concurrent and Independent Work

A concurrent and independent, beautiful, work by Khurana and Sahai (KS) [104]

also presents a construction of 2-round non-malleable commitments from subexponen-

tial hardness assumptions. The results, however, are incomparable, both in terms of

assumptions, and also in terms of the achieved results (and use significantly different

techniques).

In terms of results, our protocols satisfy full concurrent non-malleability, whereas the

KS protocol only satisfies “bounded-concurrent” non-malleability—which is a weaker no-

tion of concurrent non-malleability where the number of sessions is a-priori bounded by

some pre-determined polynomial in the security parameter; in particular, the communi-

cation complexity of their protocol grows super linearly with the bound on the number

of sessions, and the complexity assumptions they rely on need to be parametrized by it.

Additionally, we also present a fully non-interactive protocol, whereas their technique

appears to be inherently limited to two-round protocols.

In terms of assumptions, the key difference is that KS does not rely on time-lock puz-

zles but rather on the existence of certain 2-round secure two-party computation proto-

cols (with super-polynomial-time simulation security); they also claim that such protocols

can be constructed based on the subexponential DDH assumption, or the subexponential

QR assumption. These assumptions are incomparable to the subexponential repeated

squaring assumption, which as we mentioned above is also a very natural computational

problem that has been extensively studied over the years. On a qualitative level, it is

also a search assumption (and thus our construction of non-malleable commitments can

be based on search assumptions), whereas the KS construction (due to the above DDH,

or QR, assumption) relies on “decisional assumptions”.
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5.1.5 A Perspective: Non-Malleability from Hardness in Dif-

ferent Axes

In this work, our foremost idea is deriving non-malleability from hardness in dif-

ferent axes. While our particular instantiation uses commitments hard in the axis of

circuit-size (or time) and commitments hard in the axis of circuit-depth (or parallel

time), these are many other types of resources one can consider. For instance, the con-

current work by Khurana and Sahai [104] uses commitments extractable in certain time

without rewinding, and rewinding does not help extraction (e.g. any non-interative com-

mitments), and commitments extractable using rewinding, and is extremely hard to break

without rewinding (they constructed such commitments using special 2-round two-party

computation protocols). We can view the hardness axes involved in their work as 1)

time for extraction without rewinding, and 2) time for extraction with rewinding. In

a follow-up work by Bitansky and Lin [105] on constructing one-message zero-knowlege

arguments and non-malleable commitments from keyless multi-collision resistant hash

functions and other assumptions, they considered two axes: 1) time for extraction with

probability 1 and 2) the probability of successful extraction in polynomial time. More

precisely, they build Com1,Com2 such that the values committed using Com2 can be ex-

tracted with probability 1 in time T , while Com1 remains hiding in time T , whereas the

probability that a polynomial-time extractor succeeds in extracting values from Com2

is much smaller than that from Com1. In another follow-up work [106] on constructing

non-malleable codes against bounded polynomial time tampering, they considered the

axis of “BP-time” corresponding to time for extraction by probablistic Turing machine,

and the axis of non-deterministic “(ND)-size” corresponding to time for extraction by

NP circuits. We believe that there are more hardness axes and considering their synergy

may lead to new applications.
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5.2 Preliminaries

5.2.1 Basic Notation

We denote the security parameter by n. For n ∈ N, by [n] we denote the set {1, . . . , n}.

If v is a binary string then |v| denotes the length of the string and v[i] is the ith bit of v,

for 0 ≤ i ≤ |v| − 1. We use || as the string concatenation operator. We identify strings

p ∈ {0, 1}t with an index in [2t]. For any probability distribution D, x ← D denotes

sampling an element from the distribution D and assigning it to x. However, for a finite

set Q, x← Q denotes sampling an element from the set Q uniformly and randomly, and

assigning it to x. We model algorithms as uniform TMs. We use the abbreviation PPT

to denote probabilistic-polynomial time. P/poly is the set of all non-uniform polynomial

size circuits. We say that a function ν : N → R is negligible, if for every constant c > 0

and for all sufficiently large n ∈ N we have ν(n) < n−c. For functions d, S defined over

N, we say that d < S (resp. d ≤ S) if for all sufficiently large n ∈ N, d(n) < S(n)

(resp. d(n) ≤ S(n)). Furthermore, we say that d << S if for every polynomial poly,

poly(d) < S.

5.2.2 Circuit Classes

We define the following circuit classes which are going to be used throughout this

work. For the following definitions, consider n ∈ N and let d, S and S∗ be some non-

decreasing functions defined on N such that d ≤ S << S∗.

Definition 14 (Depth ∧ size-restricted circuits) C∧d,S is the set of all non-uniform

circuits C = {Cn}n∈N such that there exists a polynomial poly such that for all sufficiently
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large n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S(n)) ,

where dep(Cn) and size(Cn) denote the depth and the size of the circuit Cn respectively.

Throughout this work, we only consider circuits of sub-exponential size. In particular,

all such circuits have size significantly lesser than 2n
ε

for some 0 < ε < 1. For generality,

we let S∗ to denote some pre-defined upper bound on the size of any circuits considered

in this work. Furthermore, when we are only concerned with restricting the depth of the

circuits, whose size can be as large as the upperbound poly(S∗) for any polynomial poly,

we simply refer to the circuit class C∧d,S∗ as Cd.

Definition 15 (Depth-restricted circuits) Cd is the set of all non-uniform circuits

C = {Cn}n∈N such that there exists a polynomial poly such that for all sufficiently large

n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S∗(n)) .

Definition 16 (Depth ∨ size-restricted circuits) C∨d,S is the set of all non-uniform

circuits C = {Cn}n∈N such that either C ∈ Cd or C ∈ CS.

Remark 7 The classes of circuits C (namely, Cd,C∨d,S and C∧d,S) considered in this work

are such that S ≥ d >> n, that is, all d’s and S’s are super-polynomials. For such classes

C, composing any circuit C ∈ C with a circuit P ∈ P/poly results in a circuit C ′ which is

also in the class C. Therefore, we say that the circuit class C is closed under composition

with P/poly. This fact is going to be important in the rest of this work.
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Below, we define standard cryptographic primitives w.r.t. a general circuit class C,

requiring that any adversary in C has negligible advantage in breaking the security of the

primitive. When C = P/poly, we say that the primitive is computationally secure and

when C is the set of non-uniform circuits whose size is bounded by 2n
ε

for some constant

ε < 1, we say that the primitive is subexponentially secure.

5.2.3 Indistinguishability and One-wayness

Definition 17 (C-indistinguishability) Two distribution ensembles {An}n∈N and

{Bn}n∈N are said to be C-indistinguishable, if for every non-uniform circuit

D = {Dn}n∈N ∈ C, there exists a negligible function ν(·) such that for every n ∈ N:

|Pr [a← An : Dn(a) = 1]− Pr [b← Bn : Dn(b) = 1]| ≤ ν(n) .

Definition 18 (C-unpredictability) Let X = {Xn}n∈N and Y = {Yn}n∈N be two en-

sembles of countable sets. Let D = {Dn}n∈N be a distribution ensemble such that for every

n ∈ N, Dn is a distribution over pairs (x, y) ∈ Xn×Yn. We say that D is C-unpredictable

w.r.t. (X, Y ) if for every non-uniform circuit A = {An}n∈N ∈ C there exists a negligible

function ν(·) such that for every n ∈ N,

Pr[(x, y)
$← Dn, x

′ ← An(y) : x = x′] ≤ ν(n) .

Definition 19 (One-way functions) A function f : {0, 1}∗ → {0, 1}∗ is called a C∧S,S-

secure one-way function (OWF) if the following hold:

1. There exists a deterministic polynomial-time algorithm that on input s in the do-

main of f outputs f(s).

2. For every A = {An}n∈N ∈ C∧S,S there exists a negligible function ν(·) such that for

every n ∈ N,

Pr [s← {0, 1}n, s′ ← An(f(s)) : f(s′) = f(s)] ≤ ν(S(n)) .
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As a short-hand, we will sometimes refer to C∧S,S-secure one-way function as S-secure

one-way function. In this work, we will use a one-way function that is injective and

is subexponentially secure. That is, we assume the existence of a C∧S,S-secure injective

one-way function where S = 2n
ε

for some 0 < ε < 1.

Definition 20 (Hardcore functions) Let D be a distribution ensemble over pair (X, Y )

of ensembles of countable sets. A function h : X → {0, 1} is a C-hardcore predicate of D

if the following hold:

1. There exists a deterministic polynomial-time algorithm that on input x ∈ X outputs

h(x).

2. For every A = {An}n∈N ∈ C there exists a negligible function ν(·) such that for

every n ∈ N,

Pr [(x, y)← Dn, b← An(y) : b = h(x)] ≤ 1

2
+ ν(n) .

Theorem 12 (Golreich-Levin Hardcore Bit) Let D be a C-unpredictable distribu-

tion ensemble over (X, Y ) such that there exists a polynomially bounded function r such

that for every n ∈ N, Xn ⊆ {0, 1}r(n). Let D′ be the following distribution ensemble,

{((x, z), (y, z)) : (x, y)← Dn, z ← {0, 1}r(n)}n∈N .

And let h : X × {0, 1}r → {0, 1} be the function such that for every (x, z) ∈ X × {0, 1}r,

h((x, z)) = 〈x · z〉. Then, D′ is C-unpredictable over (X × {0, 1}r, Y × {0, 1}r) and h is

a C-hardcore predicate of D′.

Remark 8 Goldreich and Levin [107] show that for any adversary A ∈ C that breaks the

hardcoreness of h w.r.t. D′ with probability 1/2 + ε(n) there exists an adversary B that

breaks unpredictability of D where

size(B) ≤ poly(n/ε2) · size(A) ; dep(B) ≤ poly(n/ε2) · dep(A) .
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Since, ε = 1/p(n) for some polynomial p the reduction blows up the size/depth of B over

size/depth of A by only a poly(n) factor. Therefore, if A ∈ C then B ∈ C which then

contradicts the C-unpredictability of D.

5.2.4 Witness Relation, ZAP and NIWI

Definition 21 (Witness Relation) A witness relation or relation (for short) for a lan-

guage L ∈ NP is a binary relation RL that is polynomially bounded, polynomial time

recognizable and characterizes L by L = {x : ∃w s.t. (x,w) ∈ RL}.

We say that w is a witness for the membership of x ∈ L if (x,w) ∈ RL. We

will also let RL(x) denote the set of witnesses for the membership of x ∈ L; that is,

RL(x) = {w : (x,w) ∈ RL}.

ZAPs are two-message public coin witness indistinguishable proofs defined as follows.

Definition 22 (ZAP [69]) A pair of algorithms (P ,V), where P is PPT and V is (de-

terministic) polytime, is a C-ZAP for an NP relation RL if it satisfies:

1. Completeness: There exists a polynomial l(·) such that for every (x,w) ∈ RL,

Pr
[
r ← {0, 1}l(|x|), π ← P(x,w, r) : V(x, π, r) = 1

]
= 1 .

2. Adaptive soundness: There exists a negligible function ν(·) such that for every ma-

licious (potentially unbounded) prover P∗ and every n ∈ N,

Pr
[
r ← {0, 1}l(n), (x, π)← P∗(r) : x ∈ {0, 1}n \ L ∧ V(x, π, r) = 1

]
≤ ν(n).

3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n, rn)}n∈N such that for

every n ∈ N, xn ∈ L ∩ {0, 1}n, w1
n, w

2
n ∈ RL(xn) and rn ∈ {0, 1}l(n), the following
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ensembles are C-indistinguishable:

{π1 ← P(xn, w
1
n, rn) : (xn, w

1
n, w

2
n, π1, rn)}n∈N ,

{π2 ← P(xn, w
2
n, rn) : (xn, w

1
n, w

2
n, π2, rn)}n∈N .

Throughout this work, we will refer to the first message r of ZAP as aZAP and the second

message together with the statement (π, x) as bZAP.

Dwork and Naor [69] were the first to construct a ZAP from certified trapdoor per-

mutations [108]. They also showed that ZAP for L ∈ NP can be based on the weaker

assumption of the existence of NIZKs for L.

Theorem 13 If there exists a C-secure family of certified trapdoor permutations then

there exists a C-ZAP.

Furthermore, Bitansky and Paneth [79] construct ZAP based on the existence of

indistinguishability obfuscation (iO) for a certain family of polysize circuits and one-way

functions.

NIWIs are non-interactive witness-indistinguishable proofs.

Definition 23 (NIWI [77]) A pair of algorithms (P ,V) where P is PPT and V is

(deterministic) polytime, is a C-NIWI for an NP relation RL if it satisfies:

1. Completeness: For every (x,w) ∈ RL,

Pr [π ← P(x,w) : V(x, π) = 1] = 1 .

2. Soundness: For every x /∈ L and π ∈ {0, 1}poly(|x|):

Pr [V(x, π) = 1] = 0 .
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3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n)}n∈N such that for ev-

ery n ∈ N, xn ∈ L ∩ {0, 1}n, w1
n, w

2
n ∈ RL(xn), the following ensembles are C-

indistinguishable:

{π1 ← P(xn, w
1
n) : (xn, w

1
n, w

2
n, π1)}n∈N ,

{π2 ← P(xn, w
2
n) : (xn, w

1
n, w

2
n, π2)}n∈N .

Dwork and Naor [69] showed the existence of a non-uniform non-constructive NIWI which

can be based on their ZAP construction by fixing the first message non-uniformly. Build-

ing on their work, Barak, Ong and Vadhan [77] de-randomize the ZAP verifier in [69]

to give the first NIWI construction. They base their de-randomization technique on the

existence of a function in Dtime(2O(n)) with non-deterministic circuit complexity 2Ω(n).

The ZAP construction from [79] can also be de-randomized under the same assumption.

Furthermore, Groth, Ostrovsky and Sahai [78] construct a NIWI based on the decisional

linear assumption for bilinear groups.

Theorem 14 We base the existence of NIWI on either of the following assumptions:

1. If decisional linear assumption holds for the elliptic curve based bilinear groups

in [109] against all circuits in class C then there exists a C-NIWI.

2. If C-ZAPs exist and there exists a function in the class Dtime(2O(n)) with non-

deterministic circuit complexity 2Ω(n) then there exists a C-NIWI.

5.2.5 Commitment Schemes

Definition 24 (Commitment scheme) A commitment scheme 〈C,R〉 consists of a

pair of interactive PPT TMs C and R with the following properties:

1. The commitment scheme has two stages: a commit stage and a reveal stage. In

both stages, C and R receive as common inputs 1n and 1α(n) and C additionally
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receives a private input v ∈ {0, 1}α(n) where n ∈ N is the security parameter and

α(·) is some polynomially bounded function.5

2. The commit stage results in a joint output c, called the commitment, a private

output for C, d, called the decommitment string. Without loss of generality, c can

be the full transcript of the interaction between C and R including the common input

1n and 1α(n). Let nc = nc(n, α(n)) denote the maximal length of the commitment

generated by 〈C,R〉 while committing to an α(n)-bit value on security parameter n.

3. In the reveal stage, committer C sends the pair (v, d) to the receiver R, and R

decides to accept or reject the decommitment (v, d) deterministically according to

an efficiently computable function Open; that is, R accepts iff Open(c, v, d) = 1.

4. If C and R do not deviate from the protocol, then R should accept with probability

1 in the reveal stage.

Furthermore, we say that a commitment c is valid, if there exists a string v ∈ {0, 1}α(n)

and a decommitment string d such that Open(c, v, d) = 1.

Next we define the binding and hiding property of a commitment scheme.

Definition 25 (Statistical binding) A commitment scheme 〈C,R〉 is statistically bind-

ing if for every polynomially bounded function α(·) and for any committer C∗ possibly

unbounded, there exists a negligible function ν(·) such that C∗ succeeds in the following

game with probability at most ν(n):

On security parameter 1n, C∗ first interacts with R in the commit stage to produce a

commitment c. Then C∗ outputs two decommitments (v0, d0) and (v1, d1), and succeeds

if v0, v1 ∈ {0, 1}α(n), v0 6= v1 and R accepts both as decommitments of c.

5For notational convenience we will usually drop the length of the value v being committer, that is,
1α(n) from the common input.
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Furthermore, a commitment scheme is perfectly binding if the probability that C∗

succeeds in the above game is 0.

We define the value of any commitment through a function val, that takes as input

an arbitrary commitment c and outputs v if c is valid and there exists exactly one value

v ∈ {0, 1}α such that Open(c, v, d) = 1 for some d, otherwise it outputs ⊥. Note that

such a function val may not be efficiently computable.

Definition 26 (C-hiding) A commitment scheme 〈C,R〉 is C-hiding if for every poly-

nomially bounded function α(·) and for every non-uniform circuit A = {An}n∈N ∈ C

there exists a negligible function ν(·) such that A succeeds in the following game with

probability at most 1
2

+ ν(n):

For security parameter 1n, An outputs a pair of values v0, v1 ∈ {0, 1}α(n). C on input

vb, where b is a randomly chosen bit, interacts with An to produce a commitment of vb.

An outputs a bit b′ and wins the game if b′ = b.

Additionally, we consider commitment schemes that are “tag-based”.

Definition 27 (Tag-based commitment scheme) A commitment scheme 〈C,R〉 is

a tag-based scheme with t(n)-bit identities if, in addition to the security parameter 1n, the

committer and receiver also receive a “tag” – a.k.a. identity– id ∈ {0, 1}t(n) as common

input.

When the length t(n) of identities is n, we refer to 〈C,R〉 as a tag-based commitment

scheme. We say that a tag-based scheme with t(n)-bit identities is perfectly binding

(resp., C-hiding) if binding (resp., C-hiding) holds for every id ∈ {0, 1}t(n).

Definition 28 (Over-extractable commitment scheme) A perfectly binding com-

mitment scheme 〈C,R〉 is over-extractable w.r.t. extractor oE = {oEn}n∈N if for every

polynomially bounded α(·) and any n ∈ N,

208



Two-round and Non-interactive Non-malleable Commitments Chapter 5

Pr [v′ ← oEn(c) : c is valid ∧ val(c) 6= v′] = 0 , (5.1)

where nc = nc(n, α(n)) is the maximal length of the commitment generated by 〈C,R〉 with

security parameter n and committing to α(n)-bit values. Furthermore, we say 〈C,R〉 is

(d, S)-over-extractable if the extractor oE belongs to the circuit class C∧d,S.

Remark 9 Note that the extractor oE must successfully (with probability 1) extract the

correct value for any valid commitment (i.e., for which there exists a decommitment),

even if the valid commitment is generated by a malicious committer.

Remark 10 In general, extractors oE = {oEn}n∈N (as in Definition 28) can be ran-

domized and one can relax Equation 5.1 allowing extractors to fail with some negligible

probability. As all extractors considered in this work are deterministic, we choose to state

the stronger definition. We also note that our notion of (over)-extraction, commitment

scheme differs from the notion of extractable commitments [59] where the extractors can

additionally interact with a malicious committer to extract the value of the commitment.

In the rest of the paper whenever we say a commitment scheme, we mean a perfectly

binding commitment scheme.

The man-in-the-middle (MIM) execution Let 〈C,R〉 be a tag-based commitment

scheme. Consider a non-uniform circuit family A = {An}n∈N. For security parameter

n and challenge bit b ∈ {0, 1} we refer to MIMA
〈C,R〉(1

n, b) as the man-in-the-middle

execution where An participates inm-left andm-right concurrent interactions committing

to values of length α.6 We allow An complete control over scheduling of messages in all

6In standard definitions of non-malleability [51, 55], the man-in-the-middle adversary is also given
some auxiliary information z. In this work, we consider non-malleability against non-uniform circuits,
which can be thought of as having z hard-wired in them. This is why we ignore z in our definitions.
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interactions. For every left interaction i ∈ [m], An adaptively chooses a pair of values

(v0
i , v

1
i ) ∈ {0, 1}α and an identity idi at the start of this interaction, interacts with C

to receive a commitment to the value vbi using the identity idi. In right interactions

An interacts with R attempting to commit to related values ṽ1, . . . , ṽm, using identities

ĩd1, ĩd2, . . . , ĩdm of its choice. We define the values ṽi committed on the right as ṽi = val(c̃i)

where c̃i is the commitment in the ith right interaction. Recall that val(c) = ⊥, if c is

not valid or that it can be opened to more than one value. Otherwise, val(c) equals the

unique value v it can be opened to. Furthermore, if for any right interaction i, ĩdi = idj

for some j, we set ṽi = ⊥.

We define two different flavours of non-malleability. First we recall the standard

notion of non-malleability – a.k.a non-malleability w.r.t. commitment, for (tag-based)

commitment schemes. Then, we introduce a new notion called non-malleability w.r.t.

extraction for over-extractable commitment schemes.

Non-malleability w.r.t. commitment. Consider a MIM execution with A. For se-

curity parameter n ∈ N and bit b ∈ {0, 1}, let mimA
〈C,R〉(1

n, b) denote the random variable

that describes the values ṽ1, . . . , ṽm that A commits to on the right and the view of A

in MIMA
〈C,R〉(1

n, b) where view consists of the set of all messages A sends/receives in the

MIM execution.

Definition 29 (Non-malleability) A tag-based commitment scheme 〈C,R〉 is said to

be concurrent C-non-malleable if for every circuit family A = {An}n∈N ∈ C participating

in m = poly(n) concurrent interactions, receiving/sending commitments to α = poly(n)-

bit values, the following ensembles are computationally indistinguishable:

{
mimA

〈C,R〉(1
n, 0)

}
n∈N

;
{
mimA

〈C,R〉(1
n, 1)

}
n∈N

.
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Non-malleability w.r.t. extraction. Let 〈C,R〉 be a tag-based commitment scheme

which is over-extractable w.r.t. extractor oE . We say that 〈C,R〉 is non-malleable w.r.t.

extraction if the distributions of the random variable emim defined below are indistin-

guishable. Recall that mim describes the view of A and the values ṽi that A commits to

on the right. However, the random variable emimA
〈C,R〉,oE(1

n, b)7, instead, describes the

view of A and the values ṽi
′ which are obtained by running the extractor oE on input c̃i

(the ith right commitment); that is, ṽi
′ ← oEn(c̃i). Note that, if for any right interaction

i, ˜idi = idj, for some j, then we set ṽi
′ = ⊥.

Definition 30 (Non-malleability w.r.t. extraction) A tag-based commitment

scheme 〈C,R〉 is said to be concurrent C-non-malleable w.r.t. extraction by oE if the

following hold:

1. 〈C,R〉 is over-extractable by oE.

2. For every circuit A = {An}n∈N ∈ C participating in m = poly(n) concurrent in-

teractions receiving/sending commitments to α = poly(n)-bit values, the following

ensembles are computationally indistinguishable:

{
emimA

〈C,R〉,oE(1
n, 0)

}
n∈N

;
{
emimA

〈C,R〉,oE(1
n, 1)

}
n∈N

.

At first glance, it may seem that the new notion — non-malleability w.r.t. extraction,

is no more interesting than the standard notion of non-malleability (w.r.t. commitment).

After all, an extractor that agrees with the function val establishes that the two notions

are equivalent. Most constructions of non-malleable commitment schemes in the liter-

ature, in fact, establish non-malleability by building such an extractor in their security

7Note that in general the random variable emim should be parametrized by the extractor oE . But in
rest of this work we will drop it from the subscript for notational convenience as the underlying extractor
will be clear from the context
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proofs. In this work, however, we consider extractors that may not always agree with val

and have some over-extraction.

Relationship between Non-malleability w.r.t. Commitment and Extraction

Over-extractability guarantees that for valid commitments, the extractor extracts out

the committed value. However, given an invalid commitment, the value extracted by

the extractor can be arbitrary. This inept behaviour of the extractor, on invalid com-

mitments, is what makes the two notions incomparable (in general). For instance, there

might exist an adversary A which depending on the value committed on the left may

choose to send invalid transcripts on the right with different probabilities. Such an A

certainly breaks the non-malleability of the scheme (w.r.t commitment) but depending on

the extractor, A may not violate non-malleability w.r.t. extraction because the extracted

values may still be indistinguishable. Furthermore, there might exist an adversary that

irrespective of the value on the left always sends invalid commitments on the right. Such

an A does not break the non-malleability w.r.t. commitment. But A may violate non-

malleability w.r.t. extraction by establishing a co-relation between the value committed

on the left and the value that will be over-extracted by the extractor on the right. Hence,

the two notions are incomparable. However, if one sets up the decommitment condition

(which defines the random variable mim) appropriately then we show that it is possible

to base non-malleability w.r.t. commitment on non-malleability w.r.t. extraction. We

believe this reduction as one of the main contributions of this work.

We also consider relaxed versions of both non-malleability and non-malleability w.r.t.

extraction: one-one, one-many and many-one secure commitment schemes. In one-one

(a.k.a. standalone), we consider an adversary A that participates in one left and one right

interaction; in one-many A participates in one left and many right; and in many-one, A

participates in many left and one right interaction.
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Relationship between Non-malleability and Hiding We note that any commit-

ment scheme that is C-non-malleable w.r.t. extraction (by extractor oE) is also C-hiding.

This is because any adversary A ∈ C that breaks hiding (say w.r.t. v0, v1 ∈ {0, 1}α) can

send valid commitments to bα on the right when receiving a commitment to vb on the left.

Then, due to the over-extraction of oE , A also breaks non-malleability w.r.t. extraction.

In fact, this holds irrespective of the complexity of the extractor oE and also holds for

the extractor that computes the function val(c) – the value of the commitment c.

Theorem 15 Let 〈C,R〉 be a commitment scheme and C be a class of circuits that is

closed under composition with P/poly.

1. If 〈C,R〉 is one-one C-non-malleable w.r.t. commitment then it is C-hiding.

2. If 〈C,R〉 is one-one C-non-malleable w.r.t. extractor oE then it is C-hiding (irre-

spective of the complexity of the extractor oE).

5.2.6 Time-Lock Puzzles

Definition 31 (Time-lock puzzles [76]) A (T,B)-time-lock (TL) puzzle is a tuple

(Gen, Sol) satisfying the following requirements:

1. Syntax:

- Z ← Gen(1n, 1t, s) is a probabilistic algorithm that takes as input a security

parameter n, a solution s ∈ {0, 1}n and a difficulty parameter t and outputs a

puzzle Z.

- s ← Sol(Z) is a deterministic algorithm that takes as input a puzzle Z and

outputs a solution s.
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2. Completeness: For every security parameter n, difficulty parameter t, solution s ∈

{0, 1}n and puzzle Z in the support of Gen(1n, 1t, s), Sol(Z) outputs s.

3. Efficiency:

- Z ← Gen(1n, 1t, s) is a poly-time algorithm, that is, it runs in time poly(t, n).

- s← Sol(Z) runs in time poly(2t) for Z in the support of Gen(1n, 1t, ·).

4. (T,B)-hardness: (Gen, Sol) is a (T,B)-hard TL puzzle if for every t(n) ∈ ω(log n)∩

nO(1) and every adversary A = {An}n∈N where,

dep(An) ≤ T (t) ; size(An) ≤ B(n) ,

there exists a negligible function ν, such that for every n ∈ N,

Pr
[
s← {0, 1}n; Z ← Gen(1n, 1t(n), s); s′ ← An(Z) : s′ = s

]
≤ ν(n) .

The first candidate construction of TL puzzles was proposed by Rivest, Shamir and

Wagner [70] and is based on the “inherently sequential” nature of exponentiation modulo

an RSA integer. Twenty years after their proposal, there still does not exist a (paralleliz-

able) strategy that can solve the puzzle (of difficulty parameter t) in parallel-time T (t)

which is significantly less than 2t. Apart from the variants of RSW puzzles [75, 110], the

only other construction of TL puzzles was given by Bitansky et al. [76] based on succinct

randomized encodings for Turing machines (which in turn can be built from indistin-

guishability obfuscation and one-way functions) and the existence of non-parallelizing

languages. These previous works have considered puzzles with strong parameters, that

is, puzzles that are parallel-time hard for exponential T = 2δt ([76]) and even strongly

exponential T = δ2t ([75, 110]).

However, for our task of constructing 2-round non-malleable commitments, much

weaker TL puzzles are sufficient, that is, puzzles that remain hard for only subexponential
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T = 2t
δ

parallel-time. More precisely, we need a (T (t) = 2t
δ
, B(n) = 2n

ε
)-TL puzzle for

some 0 < ε, δ < 1. We present the RSW TL puzzles RSW = (Gen, Sol) as a candidate.

- Algorithm Gen(1n, 1t, s):

1. Select an n-bit RSA modulous N = pq.

2. Compute the mask y = g22t

mod N for some element g ∈ Z∗N . Note that

since the factorization of N is known, Gen can first compute the exponent

e = 22t mod φ(N) and then efficiently compute the mask y = ge mod N .

3. Mask the solution s with y, that is, z = (s+ y) mod N .

4. Return the tuple Z = (z,N) as the puzzle.

- Solver Sol(Z = (z,N)):

1. By 2t repeated squarings, compute y = g22t

mod N .

2. Output (z − y) mod N as the solution.

As discussed in [70], the element g above can either be a fixed element such as 2, or

sampled at random.

Next, we discuss that RSW = (Gen, Sol) is a TL puzzle in the sense of Definition 31.

It is easy to see that for security parameter n and difficulty parameter t, Gen runs in

time poly(t, n) and Sol runs in time poly(2t). Futhermore, we base the (T,B)-hardness

of the RSW puzzle on the subexponential repeated squaring assumption as stated in

Assumption ??. Informally, it says that for some subexponential functions T and B, and

any function t ∈ ω(log n)∩nO(1), B(n)-sized adversaries with depth T (t) cannot compute

g22t

mod N . We define the assumption more formally below.
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Assumption 1 (Subexponential Repeated Squaring Assumption) There exists

subexponential functions T,B such that for every function t(·) ∈ ω(log n) ∩ nO(1), the

following holds: For every adversary A = {An}n∈N such that

dep(An) ≤ T (t(n)); size(An) ≤ B(n) ,

there exists a negligible function µ such that for every n ∈ N, 8

Pr
[
N ← RSA(n); g ← Z∗N ; y ← An(g,N) : y = g22t

mod N
]
≤ µ(n) ,

where RSA(n) is the set of all n-bit RSA moduli.

Then, it is easy to see that if the subexponential repeated squaring assumption holds,

then the RSW puzzle as defined above is a (T,B)-hard TL puzzle for some subexponential

functions T and B.

Lemma 32 If the subexponential repeated squaring assumption holds, then there exists

subexponential functions T and B, such that, RSW = (Gen, Sol) is a (T,B)-hard TL

puzzle.

5.2.7 Collision-resistant Hash Functions

Definition 32 A family of C∧S,S-collision-resistant hash functions (CRH) H = {Hn}n∈N

is a function family ensemble such that for every n ∈ N, Hn = {h : {0, 1}m(n) → {0, 1}n}

such that n < m(n) satisfying,

1. Efficient Sampling: There exists a poly-time TM S such that for every n ∈ N, S(1n)

outputs a uniform element of Hn.

2. Efficient Computation: There exists a poly-time TM M such that for every n ∈ N,

h ∈ Hn and x ∈ {0, 1}m(n), M(h, x) = h(x).

8g can also be fixed appropriately instead of sampling it randomly.
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3. S(n)-Collision-resistance: For every non-uniform circuit A = {An}n∈N ∈ C∧S,S there

exists a negligible function ν such that for every n ∈ N,

Pr [h← Hn, (x1, x2)← A(h) : x1 6= x2 ∧ h(x1) = h(x2)] ≤ ν(S(n)) . (5.2)

We will sometimes refer to C∧S,S-collision resistant hash family as S-collision resistant

hash family. Moreover, a family of uniform collision resistant hash function (CRH) is as

defined above, except that i) the family Hn only consists of a single function hn, and ii)

S(n)-collision resistence only holds against attackers that are poly(S(n))-time uniform

Turing machines. We denote such a family as {hn}n∈N.

In this work, we will use subexp-secure, uniform or non-uniform, collision-resistant

hash functions. For n ∈ N and any h ∈ Hn, a collision can be found by a uniform Turing

machine in time 2n/2 with high probability and in time poly(n) · 2n with probability 1.

Furthermore, for some 0 < ε < 1/2, we require that it be hard for any poly(2n
ε
)-sized

circuit (or a poly(2n
ε
)-time uniform Turing machine) to find collisons for a randomly

chosen hash function h← Hn (or for hn in the uniform case) for 0 < ε < 1/2.

5.3 Basic Commitment Schemes

In this section we construct three basic over-extractable commitment schemes, each

one of them enjoys hiding against different circuit classes. Firstly, we construct a depth-

robust commitment scheme which is (S ′, S ′)-over-extractable and hiding against any cir-

cuit whose depth is sufficiently smaller than S ′. Next, we construct a size-robust commit-

ment scheme which is hiding against any circuit whose size is at most poly(S) but there

exists an extractor of polynomial depth and size larger than S. Finally, we construct

a commitment scheme which is hiding against both depth-restricted and size-restricted

circuits.
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5.3.1 Depth-robust Over-extractable Commitment Scheme from

a TL-puzzle

For some subexponential functions T and B, assume the existence of a (T,B)-TL

puzzle (Gen, Sol). For any difficulty parameter t(n) ∈ ω(log n) ∩ nO(1), these puzzles are

solvable in time poly(2t) but hard forB(n)-sized circuits having depth at most poly(T (t)).9

Furthermore, consider a difficulty parameter t(n) that admits the following hierarchy of

non-decreasing functions, n << d = T (t) << S ′ = 2t << S∗ << B. Using the (T,B)-TL

puzzles, we construct a commitment scheme which is over-extractable in time poly(S ′)

and is hiding against any circuit in Cd (hence the name depth-robust commitment scheme).

We refer to the commitment scheme as (EComd,EOpend) which is described below. 10

On input a security parameter 1n, the honest committer C runs the algorithm EComd

described below to commit to a value v ∈ {0, 1}α. After the commit stage, the honest

receiver R decides whether to accept the commitment by running the function EOpend

as described in the reveal stage.

- Commit stage - Algorithm EComd:

1. On input security parameter 1n and value v ∈ {0, 1}α, for every 0 ≤ i ≤ α−1,

EComd samples random strings si, ri ∈ {0, 1}n and computes the commitment

ci to v[i], the ith bit of v, as follows,

ci = (Zi = Gen(1n, 1t(n), si ; r), ri, 〈ri · si〉 ⊕ v[i]) ,

9The definition of TL puzzles presented in Definition 31 defines hardness against circuits with depth
at most T but for ease of description we assume hardness for poly(T ) depth. This is without loss of

generality for subexponential T = 2t
δ′

, that is, hardness against 2t
δ′

implies hardness against poly(2t
δ

)
for any δ < δ′ < 1.

10From now on, for notational convenience, we represent a non-interactive commitment scheme by the
tuple of commit and open algorithms; that is (ECom,EOpen), instead of a pair of interactive TMs C and
R.

218



Two-round and Non-interactive Non-malleable Commitments Chapter 5

where r is the random tape used by Gen and t is the difficulty parameter such

that d = T (t).

2. EComd sets the vector c = {ci}0≤i≤α−1 as the commitment and sets

(v, {si}0≤i≤α−1, r) as the decommitment.

- Reveal stage - Function EOpend:

On input commitment c = {ci}0≤i≤α−1 and decommitment (v, {si}0≤i≤α−1, r),

EOpend returns 1 if ci = (Gen(1n, 1t, si ; r), ri, 〈ri ·si〉⊕v[i]) for every 0 ≤ i ≤ α−1.

Otherwise, outputs 0.

Furthermore, the extractor oEd of the scheme proceeds as follows:

- Extraction - Extractor oEd:

On input any commitment c = {ci = (Zi, ri, zi)}0≤i≤α−1, the extractor oEd computes

the solution si of Zi by running Sol(Zi). Then, oEd extracts bit v[i] committed in

ci by computing v[i] = zi ⊕ 〈ri · si〉. oEd returns the string v[0]|| . . . ||v[α− 1] as its

output.

Theorem 16 Assume the existence of (T,B)-TL puzzles (Gen, Sol) for some subpexpo-

nential functions T and B. Then, for any t(n) ∈ ω(log n)∩nO(1) and any non-decreasing

function S∗ satisfying n << d = T (t) << S ′ = 2t << S∗ << B, (EComd,EOpend)

is a non-interactive, perfectly binding, Cd-hiding, (S ′, S ′)-over-extractable commitment

scheme w.r.t. extractor oEd.

Proof:

We discuss each of the properties in the following:

- Efficiency: For any n ∈ N, difficulty parameter t = t(n) and length α = α(n) which

are upper-bounded by some polynomial, and 0 ≤ i ≤ α − 1, EComd runs Gen to
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sample puzzles Zi’s and rest of computation (i.e., sampling n-bit strings, computing

inner-product) takes poly(n) time. In fact for difficulty parameter t(n), Gen runs in

time poly(t, n) which is upper-bounded by some poly(n) as t is upper-bounded by a

polynomial. Hence, EComd runs in time poly(n) for each 0 ≤ i ≤ α − 1. Furthermore,

since α is also upper-bounded by a polynomial, EComd is efficient.

- Perfect binding: Note that TL-puzzles are injective, that is, any (even arbitrarily gen-

erated) Z belongs to the support of Gen(1n, 1t, s) for at most one solution s ∈ {0, 1}n.

Assume towards a contradiction that there exists a Z that belongs to the support of

both Gen(1n, 1t, s0) and Gen(1n, 1t, s1) for some s0 6= s1. Let s = Sol(Z) be the out-

put of the deterministic algorithm Sol on input Z. If s 6= s0 then this contradicts

the completeness of Sol w.r.t. puzzles in the support of Gen(1n, 1t, s0). If s = s0 then

it contradicts the completeness of Sol w.r.t. puzzles in the support of Gen(1n, 1t, s1).

Therefore, for any puzzle Z there exists at most one solution s and in the case when a

solution s exists we know s = Sol(Z).11

Now, let c = {ci = (Zi, ri, zi)}0≤i≤α(n)−1 be any commitment. From the above obser-

vation, we know that every Zi falls in the support of at most one si. Therefore, for c

there exists at most one sequence (v, {si}0≤i≤α(n)−1) for which EOpend returns 1. This

implies perfect binding of (EComd,EOpend).

- Over-extractable: First, the extractor oEd belongs to the class C∧S′,S′ since Sol runs in

time poly(S ′) = poly(2t) and the rest of the computation takes poly(n) time.

Note that for any valid commitment c = {ci = (Zi, ri, zi)}0≤i≤α(n)−1, Zi’s are honestly

generated puzzles and furthermore each Zi belongs to the support of Gen(1n, 1t, si) for

exactly one si. These si’s along with the ri’s (from c) uniquely define val(c), the value

11It can be possible that some Z does not belong to the support of any Gen(1n, 1t, s) for any s, in
which case we say that Z has no solution.
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of the commitment. Moreover given (si, ri)’s val(c) is efficiently computable.

Then on any valid commitment c as input, the extractor oEd first runs Sol on each of

the Zi’s. Due to the perfect correctness of Sol, the extractor oEd always extracts the

corresponding si’s and hence also the correct unique committed value, val(c). Therefore,

(EComd,EOpend) is (S ′, S ′)-over-extractable.

- Hiding: Let t(n) = ω(log n) be some polynomially bounded difficulty parameter. Then

by the definition of (T,B)-hardness of the TL puzzle we know that any adversary

A = {An}n∈N, with dep(An) ≤ poly(T (t)) and size(An) ≤ poly(S∗) < B, solves the

puzzle Z ← Gen(1n, 1t, s) only with negligible probability for some randomly chosen s.

Therefore, the distribution

{s← {0, 1}n, Z ← Gen(1n, 1t, s) : (s, Z)} , (5.3)

is unpredictable for any such adversary A. In our construction of (EComd,EOpend),

we sample the TL puzzles with difficulty t such that T (t) = d. Therefore, the above

distribution is Cd-unpredictable. Then, by a standard argument (see Theorem 12) about

the hardcoreness of the Goldreich Levin bit [107] extracted from an Cd-unpredictable

distribution, we can conclude that the function that on input (s, r) outputs 〈s · r〉

is hardcore for circuits in the class Cd.12 This then implies that (EComd,EOpend) is

Cd-hiding.

12Here we rely crucially on the fact that the GL reduction only blows up the depth of the adversary
by a polynomial factor (Remark 8). Therefore, allowing us to base the Cd-hardcoreness of the GL-bit
〈s · r〉 on the Cd-hardness of the TL puzzles.
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5.3.2 Size-robust Over-extractable Commitment Scheme from

Injective OWFs

For a non-decreasing function S(n) (<< S∗(n)), assume that there exists an injective

one-way function (OWF) f that is hard to invert for any poly(S)-sized circuit (for any

polynomial poly(·)), but there exists a non-decreasing function S ′′(n) (S << S ′′ << S∗)

such that a circuit of poly(n) depth and S ′′ size can invert it. Such an injective OWF

can be instantiated from a subexponentially secure injective OWF by setting the input

length k appropriately. More concretely, consider a subexponentially secure injective

OWF that is hard for circuits of size poly(2k
ε
) (for any polynomial poly() and some

0 < ε < 1). For any S, we can design the required f which is hard to invert for

poly(S)-sized circuits by setting k = (logS)1/ε, thereby achieving security against circuits

of size poly(2k
ε
) = poly(2(logS)). Furthermore, there exists a circuit which can invert

(with probability 1) by enumerating all the 2k pre-images. Such a circuit has size S ′′ =

poly(2k) = poly(2(logS)1/ε
) >> S and polynomial depth.

Using such an injective OWF f , we construct (EComS,EOpenS) – a commitment

scheme which is hiding against circuits of size poly(S) (hence the name size-robust com-

mitment scheme) and (poly(n), S ′′)-over-extractable. (EComS,EOpenS) is simply the non-

interactive commitment scheme based on injective OWFs where the hard-core predicate

is the Golreich-Levin bit [107]. For completeness, we describe the scheme below.

As before, on input a security parameter 1n, the honest committer C runs the algo-

rithm EComS described below to commit to a value v ∈ {0, 1}α. After the commit stage,

the honest receiver R decides whether to accept the commitment by running the function

EOpenS as described in the reveal stage.

- Commit stage - Algorithm EComS:
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1. On input security parameter 1n and value v ∈ {0, 1}α, for every 0 ≤ i ≤ α−1,

EComS samples random strings si in the domain of f , random strings ri
$←

{0, 1}|si| and computes the commitment ci to v[i], the ith bit of v, as follows,

ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) .

2. EComS sets the vector c = {ci}0≤i≤α−1 as the commitment and sets

(v, {si}0≤i≤α−1) as the decommitment.

- Reveal stage - Function EOpenS:

On input commitment c = {ci}0≤i≤α−1 and decommitment (v, {si}0≤i≤α−1), EOpenS

returns 1 if ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) for every 0 ≤ i ≤ α − 1. Otherwise,

outputs 0.

The extractor oES for the scheme proceeds as follows:

- Extraction - Extractor oES:

On input any commitment c = {ci = (yi, ri, zi)}0≤i≤α−1, the extractor oES computes

the pre-image si of yi under f (by assumption, f can be inverted using a circuit of

polynomial depth and S ′′ size). oES extracts bit v[i] committed in ci by computing

v[i] = zi ⊕ 〈ri · si〉. oES returns the string v[0]|| . . . ||v[α− 1] as its output.

Theorem 17 If f is a C∧S,S-secure injective OWF which is invertible by a circuit in

C∧poly(n),S′′ for non-decreasing functions S, S ′′ such that n << S << S ′′ << S∗ then

(EComS,EOpenS) is a non-interactive, perfectly binding, C∧S,S-hiding and (poly(n), S ′′)-

over-extractable commitment scheme w.r.t. extractor oES.

Proof: We discuss all the properties in the following:

- Binding and Hiding: The proof of perfect binding follows from the injectivity of f

and proof of C∧S,S-hiding follows from the hard-coreness of the Goldreich-Levin bit

with f being C∧S,S one-way (hence the scheme is C∧S,S-hiding).
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- Over-extractable: First, the extractor oES belongs to the class C∧poly(n),S′′ since f

can be inverted by a circuit in C∧poly(n),S′′ and the rest of the computation takes

poly(n) time. Furthermore, since oES always inverts OWF images yi’s correctly, it

always extracts the correct unique committed value. Therefore, (EComS,EOpenS)

is (poly(n), S ′′)-over-extractable.

5.3.3 Strong Over-extractable Commitment Scheme

For non-decreasing functions,

n << d(n) << S ′(n), S(n) << S ′′(n) << S∗(n) << 2n
ε

,

we construct a non-interactive perfectly binding commitment (EComd,S,EOpend,S) which

is C∨d,S-hiding and (S ′, S ′′)-over-extractable w.r.t an extractor oEd,S. Note that, unlike

the commitment schemes described in Sections 5.3.1 and 5.3.2 which were either hid-

ing against depth-restricted circuits Cd or hiding against size-restricted circuits C∧S,S,

(EComd,S,EOpend,S) enjoys a stronger security property of being hiding against circuits

in both depth-restricted and size-restricted circuit classes (i.e., C∨d,S). We describe the

construction of the scheme (EComd,S,EOpend,S) for an honest committer C and an honest

receiver R below. The idea is to commit to a random 2-out-of-2 secret share of the value

v using each of the schemes described in Sections 5.3.1 and 5.3.2.

As before, on input a security parameter 1n, the honest committer C runs the al-

gorithm EComd,S described below to commit to a value v ∈ {0, 1}α. After the commit

stage, the honest receiver R decides whether to accept the commitment by running the

function EOpend,S as described in the reveal stage.

- Commit stage - Algorithm EComd,S:
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1. On input security parameter 1n and value v ∈ {0, 1}α, EComd,S samples a

random α-bit string r0.

2. EComd,S computes a commitment c1 to r0 using EComd. Let d1 be the corre-

sponding decommitment string.

3. EComd,S computes a commitment c2 to v ⊕ r0 using EComS. Let d2 be the

corresponding decommitment string.

4. EComd,S sets (c1, c2) as the commitment c and sets (v, r0, d1, d2) as the decom-

mitment.

- Reveal stage - Function EOpend,S:

On input a commitment c = (c1, c2) and the decommitment (v, r0, d1, d2), EOpend,S

accepts it if both EOpend and EOpenS accept the corresponding decommitments;

that is,

EOpend(c1, r0, d1) = 1 ∧ EOpenS(c2, v ⊕ r0, d2) = 1 .

Otherwise, EOpend,S rejects.

The extractor oEd,S of the scheme proceeds as follows:

- Extraction - Extractor oEd,S:

The extractor oEd,S on input c = (c1, c2) runs the extractors oEd and oES with

inputs c1 and c2, obtaining outputs r′0 and r′1 respectively. If either r′0 or r′1 is ⊥

then oEd,S outputs ⊥. Otherwise, oEd,S outputs r′0 ⊕ r′1.

Theorem 18 For the following hierarchy of non-decreasing functions on N

n << d << S ′ << S << S ′′ << S∗ << B ,

let (EComd,EOpend) be a non-interactive, perfectly binding, Cd-hiding and (S ′, S ′)-over-

extractable commitment scheme w.r.t. extractor oEd and let (EComS,EOpenS) be a non-

interactive, perfectly binding, C∧S,S-hiding and (poly(n), S ′′)-over-extractable commitment
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scheme w.r.t. extractor oES. Then, (EComd,S,EOpend,S) is non-interactive, perfectly bind-

ing, C∨d,S-hiding and (S ′, S ′′)-over-extractable commitment scheme w.r.t. extractor oEd,S.

Remark 11 For our final construction of concurrent non-malleable commitment, we re-

quire the existence of (EComd,EOpend) and (EComS,EOpenS) for some specific functions

d, S ′, S, S ′′. Such schemes can be based on the existence of subexponentially secure injec-

tive OWFs and (T,B)-TL puzzles for some subexponential functions T,B. We provide

concrete instantiations of such depth- and size-robust schemes in Section 5.7.2.

Proof: We discuss each of the properties in the following:

- Perfect binding: The perfect binding follows from the perfect binding of EComd

and EComS.

- Over-extractable: A valid commitment c = (c1, c2) is such that both c1 and c2 are

valid commitments for EComd and EComS respectively. Since EComd and EComS

are over-extractable w.r.t. extractors oEd and oES respectively, oEd,S which runs

oEd(c1) and oES(c2) extracts out the unique committed values and hence outputs

val(c) with probability 1. Furthermore, oEd ∈ C∧S′,S′ and oES ∈ C∧poly(n),S′′ implies

that oEd,S belongs to the circuit class C∧S′,S′′ .

- Hiding: Assume towards a contradiction that there exists a polynomially bounded

function α(·), a non-uniform circuit family A = {An}n∈N ∈ C∨d,S and for some

polynomial p(·) and infinitely many n ∈ N, a pair of values v0, v1 ∈ {0, 1}α,

Pr [b← {0, 1}, c← EComd,S(1n, vb) : b = An(c)] ≥ 1

2
+

1

p(n)
. (5.4)

Using A, we construct a non-uniform circuit family B = {Bn}n∈N that breaks the

hiding of either EComd or EComS depending on the depth and size of A. Since
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A ∈ C∨d,S, it could either be that A ∈ Cd or A ∈ C∧S,S. We will consider the two cases

separately below.

Case 1 - A ∈ C∧S,S: In this case, we construct a B that violates the hiding of EComS

as follows: Bn with v0 and v1 hard-wired in it, samples a random α(n)-bit string

r0 and computes a commitment c1 to string r0 using EComd. It sends (v0⊕ r0) and

(v1 ⊕ r0) as challenges in the hiding game of EComS and receives a commitment

c2 to (vb ⊕ r0), for a randomly chosen bit b. Finally, Bn sends the tuple (c1, c2) as

the commitment to An and forwards the output of An as its output. B perfectly

simulates the hiding game of EComd,S for A while itself participating in the hiding

game of EComS and hence succeeds with probability at least 1
2

+ 1
p(n)

. Furthermore,

since B incurs only polynomial blow-up in size over A (while simulating the game

for A), we have B ∈ C∧S,S. Therefore, B ∈ C∧S,S succeeds in the hiding game of

EComS with non-negligible probability away from 1
2
, which is a contradiction.

Case 2 - A ∈ Cd: The proof for Case 2 is similar to Case 1 but here we, instead,

construct B ∈ Cd which succeeds in the hiding game of EComd with non-negligible

probability away from 1
2
. The only difference from the previous case is that B

commits to r0 using the scheme EComS and forwards (v0 ⊕ r0) and (v1 ⊕ r0) as

challenges in the hiding game of EComd. Since the marginal distribution of both

random shares of v (i.e., r and v⊕ r for a random r) are identical, B still perfectly

simulates the hiding game of EComd,S for A.
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5.4 Non-malleable Commitment Scheme w.r.t. Ex-

traction for Short Identities

For l = O(1) which is a power of 2, assume that we have the following hierarchy of

non-decreasing functions on N,

n << d0 << d1 << . . . << dl−1 << dl <<

S0 << S1 << . . . << Sl−1 << Sl << S∗ << 2n
ε

,

(5.5)

such that for every 0 ≤ id ≤ l − 1,

- there exists a depth-robust commitment scheme (EComdid ,EOpendid) that is Cdid-

hiding and (did+1, did+1)-over-extractable w.r.t. an extractor oEdid .

- there exists a size-robust commitment scheme (EComSid
,EOpenSid

) that is C∧Sid,Sid
-

hiding and (poly(n), Sid+1)-over-extractable w.r.t. an extractor oESid
.

By Section 5.3.3, we can construct a family of l commitments {(EComid,EOpenid)}id

such that for every 0 ≤ id ≤ l − 1,

(EComid,EOpenid) = (EComdid,Sl−id−1
,EOpendid,Sl−id−1

) ,

and by Theorem 18 we have that (EComid,EOpenid) is a non-interactive, perfectly binding,

C∨did,Sl−id−1
-hiding and also (did+1, Sl−id)-over-extractable commitment scheme w.r.t. an ex-

tractor oEid (described in Section 5.3.3). We use this family of l commitment schemes to

construct a tag-based commitment scheme (ENMCom,ENMOpen) for identities of length

log l-bits which is one-one non-malleable w.r.t. extraction by an extractor oENM. We

describe the scheme (ENMCom,ENMOpen) and the extractor oENM below.

On input a security parameter 1n, the honest committer C runs the algorithm ENMCom

described below to commit to a value v ∈ {0, 1}α. After the commit stage, the honest
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receiver R decides whether to accept the commitment by running the function ENMOpen

as described in the reveal stage.

- Commit stage - Algorithm ENMCom:

1. On input security parameter 1n, identity 0 ≤ id ≤ l − 1 and a value v ∈

{0, 1}α, ENMCom computes a commitment c to v using EComid. Let d be the

corresponding decommitment string.

- Reveal stage - Function ENMOpen:

On input a commitment c and the decommitment (v, d) and identity id, ENMOpen

computes ENMOpen(id, c, v, d) which returns 1 if EOpenid(c, v, d) returns 1. Other-

wise, returns 0.

The extractor oENM proceeds as follows,

- Extraction - Extractor oENM:

The extractor oENM on input c and identity id outputs the value extracted by oEid

from c.

Remark 12 We want ENMCom and ENMOpen to be computable by uniform TMs. This

mandates that {EComid}0≤id≤l−1 and {EOpenid}0≤id≤l−1 be uniformly and efficiently com-

putable; that is, there must exist uniform PPT TMs Mcom and Mopen that on input id can

compute EComid and EOpenid respectively. If l = O(1) then one can simply hard-code

all the algorithms {EComid}0≤id≤l−1 and {EOpenid}0≤id≤l−1 in Mcom and Mopen respec-

tively. As will see later, l = O(1) is sufficient for constructing non-malleable commitment

scheme for n-bit identities. When l = ω(1) the hard-coding approach, in fact, does not

work. Nevertheless, we note that the algorithms EComid and EOpenid described in Sec-

tion 5.3.3 are still efficiently and uniformly computable. Since, this case does not occur

in our construction, we omit details here.
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Theorem 19 (ENMCom,ENMOpen) is a non-interactive, perfectly binding, C∧d0,S0
-hiding

and (dl, Sl)-over-extractable tag-based commitment scheme for identities of length log l.

(ENMCom,ENMOpen) is also one-one C∧d0,S0
-non-malleable w.r.t. extraction by extractor

oENM.

We note that both hiding and non-malleability hold only against circuits in the re-

strictive class C∧d0,S0
; that is, circuits A whose depth and size are bounded by poly(d0)

and poly(S0) respectively, even though the building blocks EComid’s have the stronger

security of being hiding against circuits in C∨did,Sl−id−1
⊃ C∧d0,S0

; that is, circuits A which

are either restricted in their depths or their size but not both.

Proof: The perfect binding follows readily from the perfect binding of each of the

EComid’s. We discuss over-extractability and non-malleability in the following:

- Over-extractable: A valid commitment c with identity id is a valid commitment for

EComid. Therefore, the extractor oENM which runs oEid on c extracts the correct

unique committed value due to the over-extractability of EComid w.r.t. oEid. Fur-

thermore, EComid’s are (did+1, Sl−id)-over-extractable and hence the depth of oEid is

at most poly(did+1) and size of oEid is at most poly(Sl−id). Therefore, oENM (which

runs oEid) is a circuit with depth bounded by poly(dl) and size bounded by poly(Sl)

(see Inequality (5.5)). Hence, (ENMCom,ENMOpen) is (dl, Sl)-over-extractable.

- Non-malleability and Hiding: By Theorem 15 hiding will follow from the proof

of non-malleability which we describe next. For proving one-one non-malleability

w.r.t. extraction by oENM, let us assume for contradiction that there exists a non-

uniform attacker A = {An}n∈N ∈ C∧d0,S0
sending/receiving commitments to values

of length α = poly(n), a non-uniform distinguisher D = {Dn}n∈N ∈ P/poly, and a

polynomial p(·), such that, for infinitely many n ∈ N,
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∣∣∣Pr[Dn(emimAn
ENMCom(1n, 0)) = 1]− Pr[Dn(emimAn

ENMCom(1n, 1)) = 1]
∣∣∣ ≥ 1/p(n).

(5.6)

Let id and ĩd be the identities chosen by A in the left and right interactions re-

spectively. Let v0, v1 ∈ {0, 1}α be the two challenge values chosen by A for the left

interaction. Note that since the only message A receives in the execution is the left

commitment and identity and the values for the left interaction needs to be chosen

before that, we can assume that the left side identity id and the challenge values

v0, v1 are fixed.

Using A and D, we will construct a non-uniform circuit B = {Bn}n∈N ∈ C∨did,Sl−id−1

that breaks the hiding of EComid with advantage at least 1
p(n)

. More concretely,

B internally runs A and acts as an honest committer in the left interaction with

A while acts as an honest receiver in the right interaction. In the hiding game

of EComid, B sends (v0, v1) as challenges and receives a commitment c to vb, for a

randomly chosen bit b. B forwards c to A as the commitment in the left interaction.

A sends a commitment c̃ to the honest right receiver (simulated by B). Then, B

runs the extractor oEĩd on c̃ obtaining an extracted value ṽ′. Depending on the

value of b, the over-extracted value ṽ′ along with the view of A is identical to

emimA
ENMCom(1n, b). B runs the distinguisher D with inputs ṽ′ and the view of A.

Finally, B returns the output of D as its output.

By our hypothesis, B succeeds in breaking the hiding of EComid with advantage at

least 1
p(n)

. Now to arrive at a contradiction it remains to show that B ∈ C∨did,Sl−id−1
.

B runs the extractor oEĩd ∈ C∧dĩd+1,Sl−ĩd
and A ∈ C∧d0,S0

, while the rest of the simulation
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takes poly(n) time. Therefore the depth of B is such that,

dep(B) = dep(A) + dep(oEĩd) + poly(n)

≤ poly(d0) + poly(dĩd+1) + poly(n) < poly(dĩd+1) .

(5.7)

Similarly, the size of B is such that,

size(B) = size(A) + size(oEĩd) + poly(n)

≤ poly(S0) + poly(Sl−ĩd) + poly(n)

< poly(Sl−ĩd) << S∗ .

(5.8)

We consider two cases for the identities id and ĩd as follows:13

Case 1 - id > ĩd: In this case, did ≥ dĩd+1, we have that dep(B) < poly(did) for some

polynomial poly(·). Therefore, B ∈ Cdid and hence B ∈ C∨did,Sl−id−1
.

Case 2 - id < ĩd: In this case, Sl−ĩd ≤ Sl−id−1 and we have that size(B) < poly(Sl−id−1)

for some polynomial poly(·). Therefore B ∈ C∨did,Sl−id−1
.

Thus, irrespective of the identity ĩd chosen by A for the right interaction, we can

construct B ∈ C∨did,Sl−id−1
which breaks hiding of EComid with non-negligible advan-

tage, which is a contradiction.

Remark 13 In the above proof, the reduction B which bases the one-one non-malleability

w.r.t. extraction on the hiding of EComid, runs both A and the extractor oEĩd of the

commitment scheme EComĩd. Therefore, B has depth at most dep(A) + poly(dĩd+1) and

has size at most size(A) + poly(Sl−ĩd) respectively. To reach a contradiction, one must

argue that the reduction B belongs to C∨did,Sl−id
. In other words, either dep(A)+poly(dĩd+1)

13Note that the case id = ĩd is an invalid execution and hence not considered.
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is at most poly(did) or size(A) + poly(Sl−ĩd) is at most poly(Sl−id−1). Since A chooses

both id and ĩd, this can only hold if dep(A) and size(A) are both small; that is, o(d1) and

o(S1) respectively. As a result, we only show non-malleability of (ENMCom,ENMOpen)

against weak adversaries whose depth and size both are bounded by poly(d0) = o(d1) and

poly(S0) = o(S1) respectively.

Remark 14 Furthermore, we note that even though (ENMCom,ENMOpen) is

non-malleable w.r.t. extraction, we cannot prove that it is non-malleable (w.r.t. com-

mitment). This is because the underlying commitment schemes EComid’s are only over-

extractable. Over-extractability guarantees that for a valid commitment, the value ex-

tracted by the extractor is indeed the value committed. However, when a commitment is

invalid, the extracted value can be arbitrary – hence the name over-extractable. Therefore,

there might exist an adversary A that depending on the value committed on the left sends

invalid commitments with different probabilities on the right. Such an adversary clearly

violates the non-malleability (w.r.t. commitment) but may not violate non-malleability

w.r.t. extraction. This is because the over-extracted values may still be indistinguishable.

Hence, we cannot base non-malleability (w.r.t. commitment) on non-malleability w.r.t.

extraction of (ENMCom,ENMOpen).

5.5 Strengthening Non-malleability

The scheme (ENMCom,ENMOpen) described in Section 5.4 is only stand-alone (one-

one) non-malleable w.r.t. extraction. However, our final goal is to construct a scheme

that is concurrent non-malleable (w.r.t. commitment). In this section, we describe a

transformation that transforms any 2-round commitment scheme 〈C,R〉 which is one-

one non-malleable w.r.t. extraction (against adversaries of some bounded depth and

size) into a 2-round commitment scheme 〈Ĉ, R̂〉 which is concurrent non-malleable w.r.t.
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extraction as well as concurrent non-malleable (w.r.t. commitment) (against adversaries

of some other bounded depth and size), while preserving the length of the identities.

We present the transformed protocol 〈Ĉ, R̂〉 in Section 5.5.3. Before that, we list

the building blocks used in the transformation in Section 5.5.2, and we give high-level

intuition on the design of the protocol 〈Ĉ, R̂〉 in Section 5.5.1. In particular, in a step

by step fashion, we explain the purpose of different components in the protocol. If the

reader prefers to read the actual protocol directly, please skip Section 5.5.1 and start

from Section 5.5.2.

5.5.1 A Bare-Bone Protocol and Challenges

As discussed in the overview in Section 5.1, our construction of 〈Ĉ, R̂〉 is inspired by

the non-malleability amplification technique in [56]. As a starting point, their technique

suggests the following bare-bone protocol:

A Bare-Bone Protocol 〈Ĉ, R̂〉. The receiver sends a puzzle puzz. Here by puzzle we

mean a computationally problem that i) is hard to solve when generated honestly, and ii)

has a unique solution even when generated maliciously. For instance, a puzzle could be a

random image f(x) of an injective one-way function whose solution is the preimage, or a

randomly sampled hash function whose solution is a collision. (In particular, this puzzle

does not refer to time-lock puzzles.) In addition, the receiver also sends the first message

aNM of 〈C,R〉 and the first message aZAP of ZAP. The committer computes a commitment

c1 to v using a non-interactive commitment scheme Com and sends the second message

bNM of 〈C,R〉 committing to a random string r1, and the second message bZAP of ZAP

proving that either i) c1 commits to v or ii) (aNM, bNM) commits to a solution s of the

puzzle puzz (which is efficiently verifiable).
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Ĉ R̂puzz, aNM, aZAP

Com(v), bNM, bZAP

As discussed before, to show the security of such a bare-bone protocol, ideally, we

would like different components — puzz, 〈C,R〉, Com, and ZAP — to be mutually non-

malleable. Informally speaking, we say that a primitive P is more secure than a primitive

Q, denoted as P � Q, if the security of P holds even when security of Q is broken

by force; P and Q are mutually non-malleable if P ≺� Q. The ideal configuration is

illustrated in Figure 5.2 (i). Towards realizing as many constraints in the ideal configura-

tion as possible, the first idea is using three size-and-depth robust commitment schemes

ECom1,ECom4,ECom3
14 to implement Com and puzz, and augment ZAP so that they

become mutually non-malleable. But, we run into problems with respect to the input

non-malleable commitment 〈C,R〉.

Challenge 1: 〈C,R〉 is only secure against adversaries which have both bounded depth

AND bounded size. (Technically, it is secure against C∧dNM,SNM
, for some dNM and

SNM; this is the case for the basic schemes constructed in Section 5.4, as well

as the schemes produced by the transformation in this section.) This type of

AND security means either a primitive P is more secure than 〈C,R〉 or less, but

cannot be mutually non-malleable. Though through a more careful analysis, we

can remove some constraints w.r.t. the non-malleable commitment, it still requires

〈C,R〉 ≺� puzz, in order to show the security of the bare-bone protocol.

Challenge 2: In addition, constructing a puzzle from size-and-depth robust commit-

ment ECom4 is not straightforward. If we naively use puzz = ECom4(s) as a puzzle,

a malicious man-in-the-middle can send an invalid commitment, which has no solu-

14The indexes are as such in order to match the protocol description later.
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(i) Ideal Configuration (ii) Assume NIWI (iii) Assume CRH

Figure 5.2: The relation between different primitives. (i): The ideal configuration where all

primitives are mutually non-malleable to each other; however, it cannot be instantiated. (ii) A

sufficient configuration; it can be instantiated assuming NIWI. (iii): A sufficient configuration,

which can be instantiated assuming collision resistant hash functions or one-way permutations.

(The dashed line is by transitivity.)

tion; this would make the security proof stuck. To prevent this, one straightforward

approach is asking the receiver to send two puzzles and prove using NIWI that at

least one of them is well-formed. However, this requires relying on the existence of

NIWI.

To resolve Challenge 1, we modify the bare bone protocol using an additional size-

and-depth robust commitment ECom2. The key idea is creating a “buffer” between

〈C,R〉 and puzz, by setting the following relation: ECom2 � 〈C,R〉, 〈C,R〉 � puzz,

and ECom2 ≺� puzz, as illustrated in Figure 5.2 (ii). Note that now the non-malleable

commitment does not need to satisfy mutual non-malleability with either ECom2 or puzz.

On the other hand, the mutual non-malleability of ECom2 and puzz helps the security

proof to go through.

However, to fulfill the relation ECom2 ≺� puzz, it seems necessary to instantiate
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puzz using a size-and-depth robust commitment scheme, which however as mentioned

in Challenge 2 above would involve using NIWI to prevent a malicious receiver from

sending an invalid commitment as a puzzle which has no solution. To avoid this, we

would like to set puzz to be, for example, a randomly chosen collision resistant hash

(CRH) function h, or a randomly chosen image y = f(s) of a one-way permutation

(OWP), whose corresponding solutions are respectively a collision of h and a preimage of

y. These puzzles have the advantage that their validity are efficiently verifiable and hence

NIWI can be disposed. But, a problem with using, say, h as the puzzle is that, it cannot

be mutually non-malleable with ECom2. To resolve this, we use a h � ECom2, and to

compensate for the fact that h 6≺ ECom2, we use non-uniformity in the proof as follows:

When reducing to the security of ECom2, the reduction instead of finding a collision of h

by force, receives a collision as a non-uniform advice. This can be done since the puzzle

h is sent in the first message completely before the ECom2 commitment.

Unfortunately, instantiating the puzzles using CRH or OWP creates another problem:

Given that 〈C,R〉 � puzz = h and h � ECom2, it actually implies that 〈C,R〉 � ECom2.

This transitivity holds because h is only secure against attackers with bounded size. (If h

were replaced with another size-and-depth robust commitment ECom′, then transitivity

does not hold in general.) But this means 〈C,R〉 needs to be mutually non-malleable with

ECom2 again. To solve this problem, we again use the idea of creating “buffers”. More

specifically, we set the following relation: ECom4 � 〈C,R〉, 〈C,R〉 � puzz, puzz � ECom2,

and ECom2 ≺� ECom4, as illustrated in Figure 5.2 (iii). Now transitivity implies that

〈C,R〉 � ECom2, but 〈C,R〉 no longer need to be simultanously weaker than ECom2,

and only needs to be weaker than the new “buffer” ECom4. Moreover, the mutual non-

malleability between ECom2 and ECom4 helps the proof to go through.
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5.5.2 Building Blocks

Our transformation will make use of the following building blocks. We note that the

parameters associated with these building blocks are set so as to satisfy the relations as

depicted in Figure 5.2 (iii), where an arrow from primitive X to primitive Y , denoted as

X � Y , means that X is harder than Y .

For some hierarchy of non-decreasing functions on N satisfying,

n << d4 << d3 << d1 << d2 << S2 << S1 << SCRH <<

S ′CRH << SNM << S ′NM << S3 << S4 << S ′4 << S∗ ,

(5.9)

the transformation relies on the following building blocks,

1. 〈C,R〉 is a 2-round, tag-based commitment scheme for t(n)-bit identities that is

(S ′NM, S
′
NM)-over-extractable by extractor oENM. Furthermore, 〈C,R〉 is one-one

C∧SNM,SNM
-non-malleable w.r.t. extraction by oENM.15

2. (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨d1,S1
-hiding

and (d2, SCRH)-over-extractable w.r.t. extractor oE1.

3. (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨d2,S2
-hiding

and (S2, S1)-over-extractable w.r.t. extractor oE2.

4. (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨d3,S3
-hiding

and (d1, S4)-over-extractable w.r.t. extractor oE3.

5. (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨d4,S4
-hiding

and (d3, S
′
4)-over-extractable w.r.t. extractor oE4.

15The non-interactive scheme (ENMCom,ENMOpen) of Section 5.4 can be viewed as a 2-round scheme
〈C,R〉 where the first round message from R is the null string. Also, note that (ENMCom,ENMOpen)
is stronger than what we require here – it is non-malleable against circuits in C∧d,S and (S′, S′′) over-

extractable for d << S << S′ << S′′ while here 〈Ĉ, R̂〉 is only required to be non-malleable for circuits
in C∧d,d and be (S, S)-over-extractable for d << S.
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6. ZAP is a 2-round C∧S∗,S∗-witness-indistinguishable proof.

7. H = {Hn}n∈N is a family of non-uniform C∧SCRH,SCRH
-collision resistant hash func-

tions such that there exists a circuit in C∧S′CRH,S′CRH which finds collisions for H with

probability 1.16

5.5.3 Commitment Scheme 〈Ĉ, R̂〉

Using building blocks described in the previous subsection, we now describe our con-

struction of a 2-round, tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities that

is (d2, SCRH)-over-extractable w.r.t. an extractor ôENM, and show that it is both concur-

rent C∧d4,d4
-non-malleable w.r.t. extraction by ôENM and concurrent C∧d4,d4

-non-malleable

(w.r.t. commitment).

The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity

id ∈ {0, 1}t(n) as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}α which

is the value to be committed.

- Commit stage - First round:

1. R̂ samples a hash function h from Hn uniformly at random.

2. R̂ samples the first message aZAP of ZAP.

3. R̂ generates the first message aNM of 〈C,R〉 using the honest receiver R with

identity id.

4. R̂ sends (h, aZAP, aNM) as the first round message to Ĉ.

- Commit stage - Second round:

16We obtain the C∧SCRH,SCRH
-collision resistant family H = {Dn}n∈N from the S(λ) = 2λ

ε

-secure CRH

family (for some 0 < ε < 1/2) H′ = {H ′λ}λ∈N (defined in Section 5.2.7) by setting λ = (logSCRH(n))
1
ε

and letting Hn = H ′λ where λ and n are the security parameters of H′ and H respectively. See Section 5.7
for a rigorous discussion on instantiations of the basic building blocks required in this Section.
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1. (a) Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the

corresponding decommitment string.

(b) Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using

ECom3.

2. (a) Ĉ computes a commitment c2 to a random string r1 using ECom2.

(b) Given aNM, Ĉ computes the second message bNM of 〈C,R〉 using the honest

committer C with identity id to commit to a random string r2.

(c) Ĉ computes a commitment c4 to a random string r3 using ECom4.

3. Given aZAP, Ĉ computes the second message bZAP of ZAP to prove the following

OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3

commits to a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2) such that c2 is a commitment to s̄

and c4 commits to a decommitment of c2 and (aNM, bNM) commit to a

decommitment of c4 and h(x1) = h(x2).

Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — de-

commitment of c1 to v — as the witness.

4. Ĉ sends (c1, c2, c3, c4, bNM, bZAP) as the second message to R̂ and keeps the

decommitment (v, d1) private.

- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the ZAP proof is

accepting and if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

We refer to the entire transcript of the interaction as the commitment c. Moreover,

we say that an interaction (with transcript c) is accepting if the ZAP proof contained in
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the commitment c is accepting. According to the reveal stage, the value of a commitment

c, val(c) is the value committed under c1 (contained in c) if c is accepting. Otherwise,

val(c) is ⊥.

Next, we describe the extractor ôENM of the scheme below.

- Extraction - Extractor ôENM:

On receiving a commitment c and identity id, ôENM first verifies the ZAP proof and

outputs ⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1

and outputs the extracted value v′.

Theorem 20 〈Ĉ, R̂〉 is a 2-round, perfectly binding, C∧d4,d4
-hiding,

(d2, SCRH)-over-extractable commitment scheme for identities of length t(n).

Proof: The perfectly binding property follows from that of the non-interactive

commitment scheme (ECom1,EOpen1). The proof of hiding will follow from the proof of

Theorem 21, which we present later.

- Over-extractability: A valid commitment c to a value v, from the definition of

reveal stage of 〈Ĉ, R̂〉, is such that the ZAP proof contained in c is accepting and

c1 (contained in c) is a valid commitment to v using ECom1. In this case, the

extractor ôENM runs oE1 on c1, which by the over-extractability of ECom1 w.r.t.

oE1, outputs v with . Thus, ôENM extracts outputs val(c) for any valid commitment

c. Moreover, ôENM belongs to the class C∧d2,SCRH
, since oE1 ∈ C∧d2,SCRH

and the rest of

computation by ôENM takes poly(n) time. Hence, the scheme 〈Ĉ, R̂〉 is (d2, SCRH)-

over-extractable.

Next, we establish the non-malleability of the scheme 〈Ĉ, R̂〉.
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Theorem 21 〈Ĉ, R̂〉 is concurrent C∧d4,d4
-non-malleable w.r.t. extraction by extractor

ôENM.

Theorem 22 〈Ĉ, R̂〉 is concurrent C∧d4,d4
-non-malleable (w.r.t. commitment).

In order to prove concurrent non-malleability w.r.t. commitment, Lin, Pass and Venki-

tasubramaniam [55] showed that it is sufficient to prove non-malleability against adver-

saries participating in one left interaction and many right interactions. We refer to such

an adversary as a one-many adversary. More precisely, they presented a reduction that,

given an adversary A and a distinguisher D that break concurrent non-malleability, builds

a one-many adversary Ã and a distinguisher D̃ that violate one-many non-malleability.

Their reduction blows up the size and the depth of the adversary Ã and the distinguisher

D̃ (over A and D respectively) by a poly(n) factor and thereby incurs a polynomial loss in

security. We claim that the same reduction applies to the new notion of non-malleability

w.r.t. extraction, therefore establishing that one-many non-malleability w.r.t. extrac-

tion implies concurrent non-malleability w.r.t. extraction. Moreover, we consider non-

malleability (w.r.t. commitment and extraction) against circuit classes C which are closed

under composition with P/poly, hence their reduction preserves security in terms of the

circuit class against which (concurrent and one-many) non-malleability is considered — a

C-one-many non-malleable commitment scheme is C-concurrent non-malleable. We state

the extended version of their theorem below. The proof follows syntactically from the

proof of Proposition 1 in [55] but for completeness we also include the formal proof in

Appendix 5.10.

Theorem 23 (one-many to concurrent [55]) Let 〈Ĉ, R̂〉 be a commitment scheme

and C be a class of circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is one-many C-non-malleable then it is concurrent C-non-malleable.
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2. If 〈Ĉ, R̂〉 is one-many C-non-malleable w.r.t. extraction (by extractor ôENM) then

it is concurrent C-non-malleable w.r.t. extraction (by ôENM).

Proof of Theorem 21,22. We now proceed to prove Theorem 21, 22. Let us consider a

fixed family of circuits A = {An}n∈N belonging to the class C∧d4,d4
which participates in one

left interaction and m = poly(n) right interactions while sending/receiving commitments

to values of length α = poly(n)-bits. By Theorem 23, to show Theorems 21, 22, it suffices

to prove the the following:{
emimA

〈Ĉ,R̂〉(1
n, 0)

}
n
≈c
{
emimA

〈Ĉ,R̂〉(1
n, 1)

}
n

(5.10){
mimA

〈Ĉ,R̂〉(1
n, 0)

}
n
≈c
{
mimA

〈Ĉ,R̂〉(1
n, 1)

}
n

(5.11)

We prove the above indistinguishability via a sequence of hybrids {Hj(b)}0≤j≤6 for

b ∈ {0, 1}, where H0(b) is identical to an honest man-in-the-middle execution MIM(1n, b)

with A, and Hj(b) for each 1 ≤ j ≤ 6 runs a man-in-the-middle execution with A

where the left interaction is gradually simulated. For notational convenience, we use the

convention x to denote a random variable in the left interaction, and convention x̃i to

denote the corresponding random variable in the i’th right interaction. For example, h

denotes the hash function sent by A in the left interaction, while h̃i denotes that sent

by the honest receiver in the i’th right interaction. Moreover, for each hybrid Hj(b), we

denote by mimA
Hj

(b) (and respectively, emimA
Hj

(b)) the random variables that describe the

view of A and the values {ṽi}i∈[m] committed to in (or respectively, {ṽ′i}i∈[m] extracted

from) the right interactions. Again, for every right interaction i, if the interaction is not

accepting or its identity ĩdi equals to the left identity id, then ṽ′i = ṽi = ⊥; we say that a

right interaction is successful if this case does not happen.

To show indistinguishability as described in Equation (5.11) and (5.10), we prove in

Lemma 33 that the view of A and the values extracted from right interactions are indis-
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tinguishable in neighboring hybrids Hj(b) and Hj+1(b) for the same b, and statistically

close in H6(1) and H5(0) — this establishes Equation (5.10). Furthermore, we show

that in every hybrid Hj(b), values extracted from right interactions are actually identical

to the actual values committed in right interactions, except with negligible probability.

This shows that the emim and mim random variables are statistically close (as stated in

Lemma 34) and hence establishes Equation (5.11).

Lemma 33 For b ∈ {0, 1} and 0 ≤ j ≤ 5, the following are computationally indistin-

guishable,

emimA
Hj

(b) ; emimA
Hj+1

(b) ,

and emimA
H0

(b) = emimA
〈Ĉ,R̂〉(b) and emimA

H6
(b) ≈s emimA

H5
(0).

Lemma 34 For b ∈ {0, 1} and 0 ≤ j ≤ 6, the following are statistically close,

emimA
Hj

(b) ; mimA
Hj

(b).

Towards proving the above two lemmas, we will maintain a soundness invariant

throughout all hybrids. Recall that the protocol requires a committer to prove using

ZAP that one of the following two statements is true; we refer to the first as the honest

statement and the second as the fake statement.

The honest statement: either it has committed to v in c1 (of ECom1) and to a de-

commitment (v, d1) of c1 in c3 (of ECom3),

The fake statement: or it has committed to a collision s = (x1, x2) of the hash function

h in c2 (of ECom2), to a decommitment (s, d2) of c2 in c4 (of ECom4), and to a

decommitment ((s, d2), d4) of c4 in (aNM, bNM) (of 〈C,R〉).
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No-fake-witness Invariant. We say that A commits to a fake witness in a right

interaction i, if the value committed by A in the non-malleable commitment (ãNMi, b̃NMi)

(i.e., val((ãNMi, b̃NMi))) is a decommitment ((s̃i, d̃2i), d̃4i) of c̃4i such that s̃i is a collision

of h̃i and (s̃i, d̃2i) is a decommitment of c̃2i.

Invariant 1 (No-fake-witness invariant) In Hj(b), the probability that there exists a

right interaction i that is successful and A commits to a fake witness in it is negligible.

We show below that this invariant holds in all hybrids. The reason that we maintain

Invariant 1 is that it enforces the man-in-the-middle attacker to always prove the honest

statement in every successful right interaction. When this is the case, we show that the

values extracted from the right interactions are identical to the values committed to in

the right interactions except from negligible probability. Formally,

Claim 9 In every hybrid Hj(b), if Invariant 1 holds, then emimA
Hj

(b) and mimA
Hj

(b) are

statistically close.

At a high level, Claim 9 follows from the soundness of ZAP and over-extractability of

the commitment scheme (ECom1,EOpen1). Since, Invariant 1, holds, A does not commit

to a fake witness in any successful right interaction. This by the soundness of ZAP implies

that A proves the honest statement which inturn, implies that commitment c̃1i is valid.

By over-extractability of ECom1 it follows that the value extracted from c̃1i (corresponds

to emim) is indeed identical to the val(c̃1i) which, by definition, is the value of the i-th

right commitment (corresponds to mim). We detail a more formal proof in Section 5.5.4.

Moving ahead, by Claim 9 it is clear that showing Lemma 34 boils down to establishing

Invariant 1. Towards this goal we further observe that Invariant 1 follows from the

following invariant which will be easier to prove. Instead of reasoning about A committing

to a fake witness, we keep the invariant that the value extracted from (ãNMi, b̃NMi) is NOT

a fake witness.
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Invariant 2 In Hj(b), the probability that there exists a right interaction i that is suc-

cessful and the value extracted from the non-malleable commitment (ãNMi, b̃NMi) in this

interaction is a fake witness is negligible.

Claim 10 In every hybrid Hj(b), if Invariant 2 holds, then Invariant 1 also holds except

with negligible probability.

Proof: For every right interaction k, consider two cases:

- If the non-malleable commitment (ãNMk, b̃NMk) in this right interaction is valid, by

the over-extractability property of 〈C,R〉 w.r.t. extractor oENM the value extracted

from it is exactly equal to the value committed, . Therefore, if the value extracted

is not a fake witness, neither is the value committed.

- If the non-malleable commitment (ãNMk, b̃NMk) is not valid, the value committed is

⊥ and cannot be a fake witness.

Hence, Invariant 2 implies Invariant 1.

Combining the above two claims, we have,

Lemma 35 For b ∈ {0, 1} and 0 ≤ j ≤ 6, if Invariant 2 holds in hybrid Hj(b) then

emimA
Hj

(b) and mimA
Hj

(b) are statistically close.

Therefore, to show Theorem 21 and Theorem 22, it boils down to prove Lemma 33

and that Invariant 2 holds in all hybrids. Next, we describe our hybrids {Hj(b)}0≤j≤6

and show that Lemma 33 and Invariant 2 indeed hold. In this Section, we only give high

level proofs of the Claims and direct the reader to Section 5.5.4 for formal proofs.

Hybrid H0(b) : Hybrid H0(b) emulates an honest MIM execution MIMA
〈Ĉ,R̂〉(b) with

A on the challenge bit b by honestly committing to the value vb on the left and
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simulating honest receivers on the right.17 Therefore,

emimA
H0

(b) = emimA
〈Ĉ,R̂〉(b) .

Next, we show that Invariant 2 holds in H0(b). In fact we show that the value

extracted from the ECom2 commitment c̃2k in any right interaction k is not a

collision of the hash function h̃k, which implies Invariant 2. At a high level this

readily follows from the fact that the collision-resistance of the hash function is

more secure than ECom2, h � ECom2 (see Figure 5.2 (iii)). This is because if in

some right interaction k, the attack commits to a collision of h̃k using ECom2, then

we can construct a non-uniform circuit that violates the collision-resistance of h̃k

by extracting from c̃2k. A formal proof can be found in Section 5.5.4.

Claim 11 For b ∈ {0, 1} and for every right interaction i in H0(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.

Hybrid H1(b) : Hybrid H1(b) proceeds identically to H0(b) except that the ECom2

commitment c2 sent to A in the left interaction is generated differently. In H0(b),

c2 is a commitment to a random string r1 whereas in H1(b) c2 is a commitment to

the lexicographically first collision s of the hash function h (received as non-uniform

advice). The rest of the execution is simulated identically to H0(b).

First, we show that Invariant 2 holds in H1(b). In fact we show that the value

extracted from the ECom4 commitment c̃4k in any right interaction k is not a de-

commitment of c̃2k to a collision of the hash function h̃k, which implies Invariant 2.

At a high level this follows from the fact that ECom2 is more secure than ECom4,

17Recall that A in the MIM execution MIMA
〈Ĉ,R̂〉(b) sends (v0, v1) on the left and receives a commitment

to vb.
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ECom2 � ECom4 (see Figure 5.2 (iii)), and the trick that the reduction can receive

a collision of h as a non-uniform advice. Suppose that in H1(b), the value extracted

from c̃4k in some right interaction k satisfies the condition above with 1/poly(n)

probability. By Claim 11, this happens with only negligible probability in H0(b).

Then we can construct a non-uniform circuit that violates the hiding of ECom2 by

extracting from c̃4k. We give a formal proof in Section 5.5.4.

Claim 12 For b ∈ {0, 1} and for every right interaction i in H1(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.

Next we show that emimA
H0

(b) and emimA
H1

(b) are indistinguishable, that is, view

of A and the values extracted from ECom1 commitments in every successful right

interaction are indistinguishable in H0(b) and H1(b). This essentially follows from

the same proof as Claim 12, but now relying on the fact that ECom2 is more secure

than ECom1, ECom2 � ECom1 (see Figure 5.2 (iii)). We give a formal proof in

Section 5.5.4.

Claim 13 For b ∈ {0, 1}, the following are indistinguishable,

emimA
H0

(b); emimA
H1

(b) .

Hybrid H2(b): Hybrid H2(b) proceeds identically to H1(b) except that the ECom4

commitment c4 sent to A in the left interaction is generated differently. In H1(b),

c4 is a commitment to a random string r3 whereas in H2(b) c4 is a commitment

to a decommitment of c2 to a collision s of the hash function h. More precisely,
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H2(b) first finds a collision s for the function h and then commits to s using ECom2

under c2. Then it commits to the decommitment of c2 under c4. The rest of the

execution is simulated identically to H1(b).

First, we show that Invariant 2 holds in H2(b). At a high level this follows from

the fact that ECom4 is more secure than 〈C,R〉, ECom4 � 〈C,R〉 (see Figure 5.2

(iii)). Suppose that Invariant 2 does not hold in H2(b). This means that the value

extracted from the non-malleable commitment in some right interaction k is a fake

witness with probability 1/poly(n) in H2(b), but negligible in H1(b) by Claim 12.

Then, we can construct a non-uniform circuit B that violates the hiding of ECom4

by extracting from the non-malleable commitment. One slight difference from the

proof of Claim 12 is that since ECom4 is also more secure than h, ECom4 � h (see

Figure 5.2 (iii)), the reduction B can afford to find collision of h internally, instead

of receiving it as a non-uniform advice. We give a formal proof in Section 5.5.4.

Claim 14 For b ∈ {0, 1} and for every right interaction i in H2(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.

Next we show that emimA
H1

(b) and emimA
H2

(b) are indistinguishable, that is, view

of A and the values extracted from ECom1 commitments in every successful right

interactions are indistinguishable in H1(b) and H2(b). The proof is essentially the

same as that for Claim 14, except it now relies on the fact that ECom4 � ECom1

(and ECom4 � h; see Figure 5.2 (iii)). We give a formal proof in Section 5.5.4.

Claim 15 For b ∈ {0, 1}, the following are indistinguishable,

emimA
H1

(b); emimA
H2

(b) .
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Hybrid H3(b) : Hybrid H3(b) proceeds identically to H2(b) except that the second

message bNM of 〈C,R〉 sent to A in the left interaction is generated differently. In

H2(b), bNM is such that (aNM, bNM) commits to a random string r2 whereas in H3(b)

bNM is such that (aNM, bNM) commits to a decommitment of c4 to a decommitment

of c2 to a collision s of the hash function h. More precisely, H3(b) generates a

commitment c2 to the collision s (obtained by brute-force search). Let d2 be the

corresponding decommitment string. Then, H3(b) computes the commitment c4

to the decommitment (s, d2) of c2. Let d4 be the corresponding decommitment

string. Then, given aNM, H3(b) computes the second message bNM to commit to

((s, d2), d4). The rest of the execution is simulated identically to H2(b).

First, we show that Invariant 2 holds in H3(b). At a high-level, this follows from

the one-one non-malleability w.r.t. extraction of 〈C,R〉. Suppose that Invariant 2

does not hold in H3(b) then there exists a right interaction k such that the proba-

bility that it is successful and the value extracted the non-malleable commitment

contained in this interaction is a fake witness is 1/poly(n) in H3(b) and is negligible

in H2(b) (by Claim 14). This violates the one-one non-malleability w.r.t. extraction

of 〈C,R〉 as we formally show below. We give a formal proof in Section 5.5.4.

Claim 16 For b ∈ {0, 1} and for every right interaction i in H3(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.

Next we show that emimA
H2

(b) and emimA
H3

(b) are indistinguishable, that is, view of

A and the values extracted from ECom1 commitments in every successful right in-

teractions are indistinguishable in H2(b) and H3(b). This follows from the fact that

〈C,R〉 is more secure than ECom1, 〈C,R〉 � ECom1 (see Figure 5.2 (iii)). Therefore,
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if the distribution of values extracted from the ECom1 commitments in the right

interactions are distinguishable in H2(b) and H3(b), one can construct reduction

that violates the hiding of 〈C,R〉 by extracting from the ECom1 commitments on

the right. We give a formal proof in Section 5.5.4.

Claim 17 For b ∈ {0, 1}, the following are indistinguishable,

emimA
H2

(b); emimA
H3

(b) .

Hybrid H4(b): Hybrid H4(b) proceeds identically to H3(b) except that the second

message bZAP of ZAP sent to A in the left interaction is generated differently. In

H3(b), bZAP is computed by proving that c3 commits to a decommitment (vb, d1)

of c1 whereas in H4(b) bZAP is computed by proving that (aNM, bNM) commits to

((s, d2), d4) which is a decommitment of c4 to a decommitment (s, d2) of c2 to the

collision s of the hash function h.

First, we show that Invariant 2 holds in H4(b). At a high-level, this follows from

the witness indistinguishability of ZAP, which holds against subexp-sized attackers.

Since 〈C,R〉 can be broken in the time that ZAP is secure against, changing the

ZAP proof on the left should not change the distribution of values extracted from

the right non-malleable commitments. As the values extracted from right non-

malleable commitments are not fake witnesses in H3(b) (by Claim 16), the same

holds for these values in H4(b). We give a formal proof in Section 5.5.4.

Claim 18 For b ∈ {0, 1} and for every right interaction i in H4(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.
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Next we show that emimA
H3

(b) and emimA
H4

(b) are indistinguishable, that is, view

of A and the values extracted from ECom1 commitments in every successful right

interactions are indistinguishable in H3(b) and H4(b). This follows from essentially

the same proof of Claim 18, except that now we use the fact that ZAP is more

secure than ECom1. We give a formal proof in Section 5.5.4.

Claim 19 For b ∈ {0, 1}, the following are indistinguishable,

emimA
H3

(b); emimA
H4

(b) .

Hybrid H5(b) : Hybrid H5(b) proceeds identically to H4(b) except that the ECom3

commitment c3 sent to A in the left interaction is generated differently. In H4(b) c3

is committing to the decommitment (vb, d1) of c1 whereas in H5(b) c3 is committing

to 0l where l is the length of the decommitment of c1. More precisely, H5(b)

computes (c1, c2, c4, bNM) identically to H4(b). Then, H5(b) computes the ECom3

commitment c3 to commit to 0l. The rest of the execution is simulated identically

to H4(b).

First, we show that Invariant 2 holds in H5(b). This follows from the fact that

ECom3 � 〈C,R〉, (see Figure 5.2 (iii)). Suppose that Invariant 2 does not hold

in H5(b) but holds in H4(b) by Claim 18, then there exists a right interaction k

such that the probability that it is successful and the value extracted from the

non-malleable commitment in it is a fake witness jumps from negligible in H4(b)

to 1/poly(n) in H5(b). Then, we can construct a reduction that violates the hid-

ing of ECom3 by extracting from the non-malleable commitment in the kth right

interaction. We give a formal proof in Section 5.5.4.
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Claim 20 For b ∈ {0, 1} and for every right interaction i in H5(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.

Next we show that emimA
H4

(b) and emimA
H5

(b) are indistinguishable, that is, view

of A and the values extracted from ECom1 commitments in every successful right

interactions are indistinguishable in H4(b) and H5(b). This follows from the same

proof as that of Claim 20, except that now it relies on the fact that ECom3 � ECom1.

We give a formal proof in Section 5.5.4.

Claim 21 For b ∈ {0, 1}, the following are indistinguishable,

emimA
H4

(b); emimA
H5

(b) .

Hybrid H6(b) : Hybrid H6(b) proceeds identically to H5(b) except that the ECom1

commitment c1 sent to A in the left interaction is generated differently. In H5(b),

c1 is committing to the value vb whereas in H6(b) c1 is committing to the value v0

instead where (v0, v1) are the values sent by A in the left interaction. The rest of

the execution is simulated identically to H5(v).

First, note that for b ∈ {0, 1} H6(b) is in fact identical to H5(0). Therefore by

Claim 20 that Invariant 2 holds in H5(0), we directly have that it holds also in

H6(b).

Claim 22 For b ∈ {0, 1} and for every right interaction i in H6(b), the probability

that i is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is

negligible.
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Next we show that emimA
H5

(b) and emimA
H6

(b) are indistinguishable. This follows

from the fact that ECom1 is more secure than ECom3, ECom1 � ECom3 (see Fig-

ure 5.2 (iii)), and the fact that Invariant 2 holds in both H5(b) and H6(b). The

latter ensures that in every successful right interaction k, the attacker must prove

the honest statement using ZAP that ˜c3k is valid committing to a valid decommit-

ment of ˜c1k in that right interaction. Therefore, in every successful right interaction

k, the value extracted from ˜c3k and c̃1k are identical. This implies that if the emim

random variables are distinguishable in H5(b) and H6(b), the values extracted from

the right ECom3 commitments are also distinguishable. Then, we can construct a

reduction that violates the hiding of ECom1 by extracting from the right ECom3

commitments. We give a formal proof in Section 5.5.4.

Claim 23 For b ∈ {0, 1}, the following are indistinguishable,

emimA
H5

(b); emimA
H6

(b) .

This concludes the proof of Theorem 21 and Theorem 22. We direct the reader to

Section 5.5.4 for the formal proofs of Claims in this Section.

5.5.4 Proofs of Claims from Section 5.5.3

In this Section, we provide formal proofs of Claims from Section 5.5.3.

Proof of Claim 9 To show that emimA
Hj

(b) and mimA
Hj

(b) are statistically close, it

suffices to argue that in Hj(b), in every right interaction i, the values ṽ′i extracted from

this right interaction is identical to the value ṽi committed in this right interaction,
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except with negligible probability. Then the claim follows by taking a union bound over

all m = poly(n) right interactions.

Firstly, note that if a right interaction i is not successful, then clearly ṽ′i = ṽi = ⊥.

For a successful right interaction i, by the definition of extractor ôENM, ṽ′i is the value

extracted by oE1 from the ECom1 commitment c̃1i. Next, since Invariant 1 holds, we

claim (proof presented shortly) that A proves the honest statement in successful right

interactions except with negligible probability. That is,

Claim 24 In Hj(b) if Invariant 1 holds then the probability that there exists a right

interaction i that is successful and A proves the fake statement in it is negligible.

Since the honest statement is true in this right interaction i except with negligible proba-

bility, this implies that the ECom1 commitment c̃1i is valid. By the over-extractability of

ECom1 w.r.t. extractor oE1, the value extracted from c̃1i (i.e., ṽ′i in this case) is identical

to the committed value ṽi . Or equivalently, ṽ′i = ṽi. Therefore, under Invariant 1, the

random variable emimA
Hj

(b) is identical to mimA
Hj

(b), except with negligible probability.

To conclude the proof of Claim 9, we now discuss the proof of Claim 24 below.

Proof of Claim 24 Let us assume that for Hj(b) there exists a polynomial p(·) such

that for infinitely many n ∈ N there exists some right interaction k that is successful and

A proves the fake statement in this interaction with probability 1/p(n). Since Invariant 1

holds, A does not commit to the fake witness in this right interaction, except with

negligible probability, which implies that the fake statement is false. Therefore, it must

be that with probability at least 1/2p(n), the fake statement is false yet A proves the fake

statement in this successful right interaction k. Given this we construct a cheating prover

P∗ = {P∗n}n∈N that breaks the soundness of ZAP with probability at least 1/2p(n).

P∗n has k hardwired in it, participates in an interaction with the honest verifier of V of

ZAP, internally runs A and simulates the left interaction with A as a honest committer
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and all right interactions except the k-th interaction as a honest receiver. For the k-th

interaction, P∗ samples a random h̃k and the first message ãNMk. It sets ãZAPk = a where

a is the first message received by P∗ from the honest verifier. It sends (h̃k, ãNMk, ãZAPk)

as the first message to A for its k-th right interaction. On receiving the second message

from A in the k-th right interaction, P∗ forwards the second message b̃ZAPk of ZAP in

the k-th right interaction as its second message b = b̃ZAPk to the honest verifer. Then,

with probability at least 1/2p(n) the ZAP proof (a, b) is accepting and A proves the

fake statement while not committing to the fake witness. This contradicts the adaptive

soundness of ZAP. �

Proof of Claim 11 We show that in H0(b) the probability that there exists a right

interaction k that is successful and the value extracted from c̃2k is a collision of the hash

function h̃k in this right interaction — refer to this event as bad — is negligible. Then the

claim follows, since whenever the value extracted from the non-malleable commitment in

a successful right interaction k is indeed a fake witness (refer to this event as bad1) then

the commitment c̃2k is valid and furthermore c̃2k commits to a collision s̃k of the hash

function h̃k. By the over-extractability of ECom2 the value extracted from c̃2k is indeed

s̃k. In other words, the claim follows because conditioned on event bad1 occuring, the

event bad occurs.

Now suppose for contradiction that there exists b ∈ {0, 1} and a polynomial p such

that for infinitely many n ∈ N event bad occurs with probability 1/p(n) in H0(b). Or

equivalently, for all such n’s there exists some right interaction k for which k is successful

and the value extracted from c̃2k is a collision of hash function h̃k with probability at

least 1/p(n).

Then, using A, we construct a non-uniform circuit B = {Bn}n∈N ∈ CSCRH
that outputs

a collision for a hash function sampled from honestly from H (using Dn) with probability
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at least 1/p(n). More concretely, B with k hard-wired in it, on receiving an honestly

sampled hash function h∗, emulates H0(b) for A except for the kth right interaction.

In the kth right interaction, B honestly computes the first message ãNMk of 〈C,R〉 and

the first message ãZAPk of ZAP (as in H0(b)) and sends the tuple (h̃k = h∗, ãZAPk, ãNMk)

as its first round message to A. On receiving the second round message from A in the

kth interaction, B runs the extractor oE2 on c̃2k and returns the extracted value as its

output (irrespective of whether the right interaction k is successful or not). Note that

B perfectly emulates H0(b) for A as the distribution of hash function received by B is

identical to the distribution of the hash function sent by the honest receiver R̂ of 〈Ĉ, R̂〉.

Then by our hypothesis, the extracted value is a collision of the function h̃k = h∗ with

probability at least 1/p(n).

Furthermore, we argue that B belongs to the circuit class CSCRH
: B internally runs A

and oE2, and the rest of computation performed by B for emulating H0(b) takes poly(n)

time. Since oE2 ∈ C∧S2,S1
and A ∈ C∧d4,d4

we have,

size(B) = size(A) + size(oE2) + poly(n)

≤ poly(d4) + poly(S1)

< poly(SCRH) (since, SCRH >> d4, S1 from Equation (5.9))

Thus, B belongs to the class C∧SCRH,SCRH
which contradicts collision-resistance of H. �

Proof of Claim 12 We show that in H1(b) the probability that there exists a right

interaction k that is successful and the value extracted from c̃4k is a decommitment

of c̃2k to a collision of the hash function h̃k in this right interaction — refer to this

event as bad — is negligible. Then the claim follows, since whenever the value extracted

from the non-malleable commitment in a successful right interaction k is indeed a fake

witness (refer to this event as bad1) then the commitment c̃4k is valid and furthermore

c̃4k commits to a decommitment of c̃2i to a collision s̃k of the hash function h̃k. Then,
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by the over-extractability of ECom4 we know that the value extracted from c̃4k is indeed

a decommitment of c̃2k to a collision s̃k of hash function h̃k. In other words, the claim

follows because conditioned on event bad1 occuring, the event bad occurs.

Towards bounding the probability of bad, first observe that by if bad occurs then for

some right interaction k, c̃2k must be a valid commitment and therefore extractor oE2

finds a collision s̃k. Then, by Claim 11 we can conclude that the bad occurs in H0(b)

only with negligible probability.

Now suppose for contradiction that there exists b ∈ {0, 1} and a polynomial p such

that for infinitely many n ∈ N the event bad occurs with probability 1/p(n) in H1(b). Or

equivalently, for all such n’s there exists some right interaction k such that k is successful

and the value extracted from c̃4k is a decommitment of c̃2k to a collision of hash function

h̃k with probability at least 1/p(n). Consider the set Γ of prefixes of transcripts up to

the point where the first message in the left interaction is sent. By a standard averaging

argument, there must exist a 1/2p(n) fraction of prefixes ρ in Γ, such that, conditioned

on ρ occurring in H1(b), the probability that bad occurs is at least 1/2p(n). Therefore,

there exist at least a 1/3p(n) fraction of prefixes ρ in Γ, such that, conditioned on ρ

occurring in both H0(b) and H1(b), the probability that bad occurs increases by at least

1/3p(n) across hybrids. Fix one such prefix ρ; let h be the hash function contained in

the first message in the left interaction in ρ and s = (x1, x2) be the lexicographically first

collision of h.

Then, using A, the prefix ρ and its collision s, we construct a non-uniform circuit

B ∈ C∨d2,S2
that violates the hiding of (ECom2,EOpen2) with advantage at least 1/3p(n).

The circuit B with k, ρ, and s hard-wired in it, participates in the hiding game of

(ECom2,EOpen2) and internally emulates an execution of H1(b) with A as follows: 18

18For right interactions whose messages are not in ρ, B sends the first-round message by running the
honest receiver R̂.
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- Step 1: Feed A with messages in ρ; let (h, aZAP, aNM) be the left first message.

- Step 2: It samples a random string r1, sends r1 and s = (x1, x2) as challenges in

the hiding game of (ECom2,EOpen2), and receives a commitment c∗ to either r1 or

s.

- Step 3: B generates the second message of the left interaction identically to H1(b)

except that it embeds c∗ as the ECom2 commitment in the message. That is, B

computes (c1, c3, c4, bNM) as in H1(b) (and H0(b)) and then computes the second

message of ZAP (bZAP) by setting c2 = c∗ using the honest witness as done in

H1(b). It then sends (c1, c2, c3, c4, bNM, bZAP) as the second round message in the

left interaction to A.

- Step 4: Once, B receives the second round message in the kth right interaction, if

the interaction is not successful then B outputs 0. Otherwise, it runs the extractor

oE4 on c̃4k and outputs 1 iff the extracted value is a decommitment of c̃2k to a

collision of the function h̃k in right interaction k.

It is easy to see that if B receives a commitment to the random string r1, then it is

perfectly emulates H0(b) conditioned on ρ occurring for A and if it receives a commitment

to the solution s which is a collision of h then it perfectly emulates H1(b) conditioned

on ρ occurring for A. As argued before, the probability that bad occurs increases by at

least 1/3p(n). Therefore, B has advantage at least 1/3p(n) in violating the hiding of

(ECom2,EOpen2).

Moreover, we show that B ∈ C∨d2,S2
: B internally runs A ∈ C∧d4,d4

, oE4 ∈ C∧d3,S′4
, and
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the rest of the computation done by B takes poly(n) time. Thus,

dep(B) ≤ dep(A) + dep(oE4) + poly(n)

≤ poly(d4) + poly(d3)

< poly(d2) (since, d2 >> d4, d3 from Equation (5.9))

and size(B) = poly(S ′4) < poly(S∗). Therefore, B belongs to the circuit class Cd2 (resp.,

B ∈ C∨d2,S2
) which contradicts the C∨d2,S2

-hiding of the scheme (ECom2,EOpen2). Hence,

the claim holds. �

Proof of Claim 13 Let us assume for contradiction that there exists b ∈ {0, 1}, a

polynomial p and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D

distinguishes emimA
H0

(b) from emimA
H1

(b) with probability 1/p(n).

Now, consider the set Γ of prefixes of transcripts up to the point where the first

message in the left interaction is sent. By a standard averaging argument, there must

exist a 1/2p(n) fraction of prefixes ρ in Γ, such that, conditioned on ρ occurring in both

H0(b) and H1(b), the probability that D distinguishes the distributions is at least 1/2p(n).

Fix one such prefix ρ; let h be the hash function contained in the first message in the

left interaction in ρ and s = (x1, x2) be lexicographically first collision of h. Then, using

A, the prefix ρ and its collision s, we construct a non-uniform circuit B ∈ C∨d2,S2
that

violates the hiding of (ECom2,EOpen2) with advantage at least 1/2p(n).

The circuit B is similar in spirit to the circuit described in the proof of Claim 12.

B with ρ and s hard-wired in it, participates in (ECom2,EOpen2)’s hiding game and

internally emulates an execution of H1(b) with A as follows:

- Steps 1,2 and 3 are identical to the adversarial circuit described in Claim 12.

- Step 4: After A terminates, for every successful right interaction i, B runs the

extractor oE1 on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i,
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B sets ṽ′i = ⊥.

- Step 5: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and

returns the output of D as its output.

It is easy to see that if B receives a commitment to the random string r1, then it

perfectly emulates H0(b) conditioned on ρ occurring for A and if it receives a commitment

to the solution s which is a collision of h then it perfectly emulates H1(b) conditioned

on ρ occurring for A. Moreover, for every successful interaction i, B sets ṽ′i to the value

extracted by oE1 from c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore,

the input to D (by B) is identical to emimA
H0

(b) in the former case and it is identical to

emimA
H1

(b) in the latter case. Since D distinguishes the distributions with probability

1/2p(n), B wins the hiding game with advantage at least 1/2p(n).

Next, we argue that B ∈ C∨d2,S2
: Apart from running A, B runs oE1 on m = poly(n)

commitments c̃1i, and the rest of the computation takes polynomial time (includes run-

ning D). Since, A ∈ C∧d4,d4
and oE1 ∈ C∧d2,SCRH

, we have,

dep(B) = dep(A) +m · dep(oE1) + poly(n)

≤ poly(d4) + poly(n) · poly(d2)

< poly(d2) (since, d2 >> d4 from Equation (5.9))

and size(B) = poly(SCRH) < poly(S∗). Therefore, B belongs to the circuit class Cd2

(resp., B ∈ C∨d2,S2
) which contradicts the C∨d2,S2

-hiding of (ECom2,EOpen2). Hence, the

claim holds. �

Proof of Claim 14 Let us assume for contradiction that there exists b ∈ {0, 1} and a

polynomial p such that for infinitely many n ∈ N there exists a right interaction k such

that k is successful and the value extracted from (ãNMk, b̃NMk), is a fake witness with
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probability at least 1/p(n). Then, using A we construct a non-uniform circuit B ∈ C∨d4,S4

that violates the hiding of (ECom4,EOpen4) with advantage at least 1/2p(n).

The circuit B with k hard-wired in it, participates (ECom4,EOpen4)’s hiding game

and internally emulates an execution of H2(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains the lexico-

graphically first collision s for the hash function h via brute-force.19

- Step 2: It computes commitment c2 to the collision s. Let d2 be the corresponding

decommitment string.

- Step 3: It samples a random string r3 and sends r3 and (s, d2) (decommitment

of c2 to s) as challenges in the hiding game of (ECom4,EOpen4), and receives a

commitment c∗ to either r3 or (s, d2).

- Step 4: B generates the second message of the left interaction identically to H2(b)

except that it embeds c∗ as the ECom4 commitment in the message. That is,

B computes (c1, c3, bNM) as in H2(b) (and H1(b)) and then computes the second

message of ZAP (bZAP) by setting c4 = c∗ and using the honest witness. It then

sends (c1, c2, c3, c4, bNM, bZAP) as the second round message in the left interaction

to A.

- Step 5: Once, B receives the second round message in the kth right interaction, if

the interaction is not successful then B outputs 0. Otherwise, it runs the extractor

oENM on (ãNMk, b̃NMk) and outputs 1 iff the extracted value is a fake witness (i.e.,

B outputs 1 iff the extracted value is a decommitment of c̃4k to a decommitment

of c̃2k to a collision s̃k of h̃k).

19From now onwards we will, unless specified otherwise, refer to the collision s for the hash function
h in the left interaction as the lexicographically first such collision. We avoid writing it explicitly from
now on.
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It is easy to see that if B receives a commitment to the random string r3, then it

perfectly emulates H1(b) for A and if it receives a commitment to the decommitment of

c2 to a collision s of h then it perfectly emulates H2(b) for A. By Claim 12, in the former

case, the extracted value is a fake witness with only negligible probability. Therefore,

B outputs 1 with negligible probability. In the latter case, by our assumption that the

right interaction k is successful and the value extracted is a fake witness with probability

1/p(n); B outputs 1 with probability at least 1/p(n). Therefore, B has advantage at

least 1/2p(n) in violating the hiding of (ECom4,EOpen4).

Moreover, we show that B ∈ C∨d4,S4
: B internally runs A ∈ C∧d4,d4

, oENM ∈ C∧S′NM,S
′
NM

,

finds a collision for h using a circuit in C∧S′CRH,S′CRH the rest of the computation done by B

takes poly(n) time. Thus, we have,

size(B) = size(A) + size(oENM) + poly(S ′CRH) + poly(n)

≤ poly(d4) + poly(S ′NM) + poly(S ′CRH)

< poly(S4) (since, S4 >> S ′NM, S
′
CRH, d4 from Equation (5.9))

Therefore, B belongs to the circuit class C∧S4,S4
(resp., B ∈ C∨d4,S4

) which contradicts the

C∨d4,S4
-hiding of (ECom4,EOpen4). Hence, the claim holds. �

Proof of Claim 15 Let us assume for contradiction that there exists b ∈ {0, 1}, a

polynomial p and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D

distinguishes emimA
H1

(b) from emimA
H2

(b) with probability 1/p(n). Then using A and D,

we construct a non-uniform circuit B ∈ C∨d4,S4
that violates the hiding of (ECom4,EOpen4)

with non-negligible advantage 1/p(n). B is similar in spirit to the circuit described in

the proof of Claim 14.

B participates in the hiding game of ECom4 and internally emulates an execution of

H2(b) with A as follows:

- Steps 1, 2, 3 and 4 are identical to the adversarial circuit described in Claim 14.
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- Step 5: After A terminates, for every successful right interaction i, B runs the

extractor oE1 on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i,

B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and

returns the output of D as its output.

It is easy to see that if B receives a commitment to the random string r3, then it

perfectly emulates H1(b) for A and if it receives a commitment to the decommitment

of c2 to a collision s of h then it perfectly emulates H2(b) for A. Moreover, for every

successful interaction i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every

unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to

emimA
H1

(b) in the former case and it is identical to emimA
H2

(b) in the latter case. Since

D distinguishes the distributions with probability 1/p(n), B wins the hiding game with

advantage at least 1/p(n).

Next, we argue that B ∈ C∨d4,S4
: Apart from running A and finding a collision for

h, B runs oE1 on m = poly(n) commitments c̃1i, and the rest of the computation takes

polynomial time (includes running D). Since, A ∈ C∧d4,d4
, oE1 ∈ C∧d2,SCRH

and a collision

for h can be found by a circuit in C∧S′CRH,S′CRH , we have,

size(B) = size(A) +m · size(oE1) + poly(S ′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S ′CRH)

< poly(S4) (since, S4 >> SCRH, S
′
CRH, d4 from Equation (5.9))

Therefore, B belongs to the circuit class CS4 (resp., B ∈ C∨d4,S4
) which contradicts the

C∨d4,S4
-hiding of (ECom4,EOpen4). Hence, the claim holds. �

Proof of Claim 16 Let us assume for contradiction that there exists b ∈ {0, 1} and

a polynomial p such that for infinitely many n ∈ N there exists a right interaction k
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such that k is successful and the value ((s̃′k, d̃2
′
k), d̃4

′
k), extracted from (ãNMk, b̃NMk), is a

fake witness with probability at least 1/p(n). Then, using A we construct a non-uniform

circuit ANM ∈ C∧SNM,SNM
, that participates in one left interaction with C and one right

interaction with R, and a distinguisher DNM that violate the one-one non-malleability of

〈C,R〉 w.r.t. extraction with advantage at least 1/2p(n). We detail the circuits ANM and

DNM below.

The circuit ANM with k hard-wired in it, participates in one left interaction with C

and one right interaction with R and internally emulates an execution of H3(b) with A

as follows:

- Step 1: ANM waits for A to select identities for the left interaction with Ĉ and the

kth right interaction with R̂ while emulating R̂ for all other right interactions. Let

id and ĩdk be the respective identities.

- Step 2: ANM selects identity idl = id for its left interaction and identity idr = ĩdk

for its right interaction r. On receiving the first-round message aNMr from R, ANM

samples a hash function h̃k and the first message of ZAP, ãZAPk. It sends the

tuple (h̃k, ãNMk = aNMr, ãZAPk) as the first-round message to A in the kth right

interaction.

- Step 3: On receiving the first message (h, aZAP, aNM) from A, ANM obtains a collision

s for h via brute-force search.

- Step 4: ANM computes commitments (c1, c2, c3, c4) as in H3(b). Let d2 be the de-

commitment string of the commitment c2, which commits to the collison s. Further-

more, let d4 be the decommitment string of c4 which commits to a decommitment

of c2.

- Step 5: ANM samples a random string r2 and sends aNMl = aNM as the first message
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to C along with the values r2 and ((s, d2), d4) as challenges and receives the second

message bNMl such that (aNMl, bNMl) either commit to r2 or ((s, d2), d4).

- Step 6: ANM computes the second message of ZAP (bZAP) by setting bNM = bNMl

using the honest witness. Then, it sends (c1, c2, c3, c4, bNM, bZAP) as the second

round message to A in the left interaction.

- Step 7: On receiving the second message (c̃1k, c̃2k, c̃3k, c̃4k, b̃NMk, b̃ZAPk) from A in

the kth right interaction, B forwards bNMr = b̃NMk as the second message to R.

The distinguisher DNM with input the view of ANM and the value v′r, extracted from

(aNMr, bNMr) by oENM, runs as follows:

- DNM reconstructs the entire transcript of the kth right interaction of ANM with A

from the view.

- If the ZAP proof (ãZAPk, b̃ZAPk) in the kth interaction is not accepting then DNM

outputs 0.

- Otherwise, DNM outputs 1 iff the extracted value v′r is such that it is a decommit-

ment of c̃4k to a decommitment of c̃2k to a collision of the hash h̃k.

It is easy to see that if ANM receives bNMl such that (aNMl, bNMl) commit to a random

string r2 then it perfectly emulates H2(v) for A and if bNMl is such that (aNMl, bNMl)

commit to ((s, d2), d4) then it perfectly emulates H3(b) for A. By Claim 14, in the former

case, the extracted value v′r is a fake witness with only negligible probability. Therefore,

DNM outputs 1 with negligible probability. In the latter case, by our assumption that the

right interaction k is successful and the value extracted is a fake witness with probability

1/p(n); DNM outputs 1 with probability at least 1/p(n). Therefore, DNM has advantage

at least 1/2p(n) in distinguishing the two cases, implying (ANM, DNM) break the one-one

non-malleability w.r.t. extraction of 〈C,R〉.
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Moreover, we argue that ANM ∈ C∧SNM,SNM
and DNM ∈ P/poly: Firstly, note that

DNM ∈ P/poly as all the computation done by DNM only takes polynomial time.

Next, for ANM: ANM internally runs A ∈ C∧d4,d4
, finds a collision for h using a circuit

in CS′CRH and the rest of the computation done by ANM takes poly(n) time. Therefore, the

size size(ANM) of ANM satisfies the following,

size(ANM) = size(A) + poly(S ′CRH) + poly(n)

≤ poly(d4) + poly(S ′CRH)

< poly(SNM) (since, SNM >> d4, S
′
CRH from Equation (5.9))

(5.12)

Thus, ANM belongs to the circuit class C∧SNM,SNM
which contradicts the C∧SNM,SNM

-one-one

non-malleability w.r.t. extraction of 〈C,R〉. Hence, the claim holds. �

Proof of Claim 17 Let us assume for contradiction that there exists b ∈ {0, 1}, a

distinguisher D ∈ P/poly and a polynomial p such that D distinguishes emimA
H2

(b) from

emimA
H3

(b) with probability 1/p(n). Then using A and D, we construct a non-uniform

circuit B ∈ C∧SNM,SNM
that violates the hiding of 〈C,R〉 with non-negligible advantage

1/p(n). B is similar in spirit to the circuit ANM described in the proof of Claim 16.

B participates in the hiding game of 〈C,R〉 and internally emulates an execution of

H3(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision

s for the hash function h via brute-force.

- Step 2: B computes commitments (c1, c2, c3, c4) as in H3(b). Let d2 be the decom-

mitment string of the commitment c2, which commits to the collision s. Further-

more, let d4 be the decommitment string of the commitment c4 to the decommit-

ment c2.
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- Step 3: B samples a random string r2 and sends aNM as the first message to C along

with the values r2 and ((s, d2), d4) as challenges and receives the second message

bNM such that (aNM, bNM) either commit to r2 or ((s, d2), d4).

- Step 4: B computes the ZAP proof using the honest witness and sends

(c1, c2, c3, c4, bNM, bZAP) as the second round message to A in the left interaction.

- Step 5: After A terminates, for every successful right interaction i, B runs the

extractor oE1 on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i,

B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and

returns the output of D as its output.

It is easy to see that if second message bNM received by B is such that (aNM, bNM)

commit to a random string r2, then B is perfectly emulating H2(b) for A and if bNM is

such that (aNM, bNM) commits to ((s, d2), d4), then it perfectly emulating H3(b) for A.

Moreover, for every successful interaction i, B sets ṽ′i to the value extracted by oE1 from

c̃1i and for every unsuccessful interaction B sets ṽ′i = ⊥. Therefore, the input to D (by

B) is identical to emimA
H2

(b) in the former case and it is identical to emimA
H3

(b) in the

latter case. Since D distinguishes the distributions with probability 1/p(n), B wins the

hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∧SNM,SNM
: Apart from running A and using a circuit in CS′CRH

to find the collision s, B runs oE1 on m = poly(n) commitments c̃1i, and the rest of

the computation takes polynomial time (including running D). Since, A ∈ C∧d4,d4
and
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oE1 ∈ C∧d2,SCRH
, the size of B satisfies the following,

size(B) = size(A) +m · size(oE1) + poly(S ′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S ′CRH)

< poly(SNM) (since, SNM >> d4, SCRH, S
′
CRH from Equation (5.9))

(5.13)

Therefore, B belongs to the circuit class C∧SNM,SNM
which contradicts C∧SNM,SNM

-hiding

of 〈C,R〉. Hence, the claim holds. �

Proof of Claim 18 Let us assume for contradiction that there exists b ∈ {0, 1} and a

polynomial p such that for infinitely many n ∈ N there exists a right interaction k such

that k is successful and the value extracted from (ãNMk, b̃NMk), is a fake witness with

probability at least 1/p(n). Then, using A we construct a non-uniform circuit B ∈ CS∗

that violates the CS∗-WI of ZAP with advantage at least 1/2p(n).

The circuit B with k hard-wired in it, participates in the WI game of ZAP and

internally emulates an execution of H4(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision s

to the hash function h. Let (v0, v1) be the values chosen by A for the left interaction.

- Step 2: B computes commitments (c1, c2, c3, c4, bNM) (as in H4(b)). Let d1 be the

decommitment string of the commitment c1, which commits to the value vb, d4 be

the decommitment of c4 which commits to (s, d2) where d2 is the decommitment

string of the commitment c2, which commits to the collison s. Furthermore, let d3

and d be the decommitments of c3 and (aNM, bNM).

- Step 3: B sends aZAP as the first message in the WI game of ZAP with the state-

ment x = (h, c1, c2, c3, c4, aNM, bNM) and witnesses w0 = (vb, d1, d3) and w1 =

(((s, d2), d4), d). B receives the second message bZAP of ZAP that is either com-

puted by using the witness w0 or w1.
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- Step 4: B sends (c1, c2, c3, c4, bNM, bZAP) as the second message to A on the left.

- Step 5: Once, B receives the second round message in the kth right interaction, if

the interaction is not successful then B outputs 0. Otherwise, it runs the extractor

oENM on (ãNMk, b̃NMk) and outputs 1 iff the extracted value is a fake witness.

It is easy to see that if the second message bZAP of ZAP is computed using the witness

w0 = (vb, d1, d3) then B perfectly emulates H3(b) for A and if the second message bZAP

of ZAP is computed using the witness w1 = (((s, d2), d4), d) then B perfectly emulates

H4(b) for A. By Claim 16, in the former case, the extracted value is a fake witness

with only negligible probability. Therefore, B outputs 1 with negligible probability. In

the latter case, by our assumption that k is successful and the value extracted is a fake

witness with probability 1/p(n); B outputs 1 with probability at least 1/p(n). Therefore,

B has advantage at least 1/2p(n) in violating the WI of ZAP.

Moreover, we show that B ∈ CS∗ : B internally runs A ∈ C∧d4,d4
, oENM ∈ C∧S′NM,S′NM

,

obtains a collision for h by using a circuit in CS′CRH and the rest of the computation done

by B takes poly(n) time. Thus, we have,

size(B) = size(A) + poly(S ′CRH) + size(oENM) + poly(n)

≤ poly(d4) + poly(S ′CRH) + poly(S ′NM)

< poly(S∗) (since, S∗ >> d4, S
′
CRH, S

′
NM from Equation (5.9))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-witness

indistinguishability of ZAP. Hence, the claim holds. �

Proof of Claim 19 Let us assume for contradiction that there exists b ∈ {0, 1}, a

polynomial p and a distinguisher D such that for infinitely many n ∈ N D distinguishes

emimA
H3

(b) from emimA
H4

(b) with probability 1
p(n)

. Then using A and D, we construct a
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non-uniform circuit B ∈ CS∗ that violates the CS∗-WI of ZAP with advantage at least

1/p(n). B is similar in spirit to the circuit described in the proof of Claim 18.

B with participates in the WI game of ZAP and internally emulates an execution of

H4(b) with A as follows:

- Steps 1,2,3 and 4 are identical to the circuit described in Claim 18.

- Step 5: After A terminates, for every successful right interaction i, B runs the

extractor oE1 on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i,

B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and

returns the output of D as its output.

It is easy to see that if the second message bZAP of ZAP is computed using the witness

w0 = (vb, d1, d3) then B perfectly emulates H3(b) for A and if the second message bZAP

of ZAP is computed using the witness w1 = (((s, d2), d4), d) then B perfectly emulates

H4(b) for A. Moreover, for every successful interaction i, B sets ṽ′i to the value extracted

by oE1 from c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the

input to D (by B) is identical to emimA
H3

(b) in the former case and it is identical to

emimA
H4

(b) in the latter case. Since D distinguishes the distributions with probability

1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ CS∗ : Apart from running A and finding a collision for h,

B runs oE1 on m = poly(n) commitments c̃1i, and the rest of the computation takes

polynomial time (includes running D). Since, A ∈ C∧d4,d4
and oE1 ∈ C∧d2,SCRH

, we have,

size(B) = size(A) + poly(S ′CRH) +m · size(oE1) + poly(n)

≤ poly(d4) + poly(S ′CRH) + poly(n) · poly(SCRH)

< poly(S∗) (since, S∗ >> d4, SCRH, S
′
CRH from Equation (5.9))
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Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-WI of ZAP.

Hence, the claim holds. �

Proof of Claim 20 Let us assume for contradiction that there exists b ∈ {0, 1} and a

polynomial p such that for infinitely many n ∈ N there exists a right interaction k such

that k is successful and the value extracted from (ãNMk, b̃NMk), is a fake witness with

probability at least 1/p(n). Then, using A we construct a non-uniform circuit B ∈ C∨d3,S3

that violates the hiding of (ECom3,EOpen3) with advantage at least 1/2p(n).

The circuit B with k hard-wired in it, participates in (ECom3,EOpen3)’s hiding game,

and internally emulates an execution of H5(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collison s

to the hash function h. Let (v0, v1) be the values chosen by A for the left interaction.

- Step 2: It computes (c1, c2, c4, bNM) as in H5(b). Let d1 be the decommitment

string of the commitment c1 which is a commitment to vb.

- Step 3: Then in the hiding game of (ECom3,EOpen3), B sends (vb, d1) and 0l as

challenges and receives a commitment c∗ to either (vb, d1) or 0l.

- Step 4: B generates the second message of ZAP (bZAP) by setting c3 = c∗. It then

sends (c1, c2, c3, c4, bNM, bZAP) as the second round message in the left interaction

to A.

- Step 5: Once, B receives the second round message in the kth right interaction, if

the interaction is not successful then B outputs 0. Otherwise, it runs the extractor

oENM on (ãNMk, b̃NMk) and outputs 1 iff the extracted value is a fake witness.

It is easy to see that if B receives a commitment to (vb, d1), then it perfectly emulates

H4(b) for A and if it receives a commitment to 0l then it perfectly emulates H5(b) for A.
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By Claim 18, in the former case, the extracted value is a fake witness with only negligible

probability. Therefore, B outputs 1 with negligible probability. In the latter case, by

our assumption that the right interaction k is successful and the value extracted is a fake

witness with probability 1/p(n); B outputs 1 with probability at least 1/p(n). Therefore,

B has advantage at least 1/2p(n) in violating the hiding of ECom3.

Next, we argue that B ∈ C∨d3,S3
: B internally runs A ∈ C∧d4,d4

, oENM ∈ C∧S′NM,S
′
NM

, obtains

a collision for h using a circuit in CS′CRH and the rest of the computation done by B takes

poly(n) time. Thus, we have,

size(B) = size(A) + size(oENM) + poly(S ′CRH) + poly(n)

≤ poly(d4) + poly(S ′NM) + poly(S ′CRH)

< poly(S3) (since, S3 >> d4, S
′
NM, S

′
CRH from Equation (5.9))

Therefore, B belongs to the circuit class C∧S3,S3
(resp., B ∈ C∨d3,S3

) which contradicts the

C∨d3,S3
-hiding of (ECom3,EOpen3). Hence, the claim holds. �

Proof of Claim 21 Let us assume for contradiction that there exists b ∈ {0, 1}, a

polynomial p and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D

distinguishes emimA
H4

(b) from emimA
H5

(b) with probability 1/p(n). Then using A and D,

we construct a non-uniform circuit B ∈ C∨d3,S3
that violates the hiding of (ECom3,EOpen3)

with non-negligible advantage 1/p(n). B is similar in spirit to the circuit described in

the proof of Claim 18.

B participates in the hiding game of the scheme (ECom3,EOpen3) and internally

emulates an execution of H5(b) with A as follows:

- Steps 1-4 are identical to the adversarial circuit described in Claim 20.

- Step 5: After A terminates, for every successful right interaction i, B runs the

extractor oE1 on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i,
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B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and

returns the output of D as its output.

It is easy to see that if B receives a commitment to (vb, d1), then it perfectly emulates

H4(b) for A and if it receives a commitment to 0l then it perfectly emulates H5(b) for A.

Moreover, B for every successful interaction i, sets ṽ′i to the value extracted by oE1 from

c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by

B) is identical to emimA
H4

(b) in the former case and it is identical to emimA
H5

(b) in the

latter case. Since D distinguishes the distributions with probability 1/p(n), B wins the

hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∨d3,S3
: Apart from running A and finding a collision for

h using a circuit in CS′CRH , B runs oE1 on m = poly(n) commitments c̃1i, and the rest

of the computation takes polynomial time (includes running D). Since, A ∈ C∧d4,d4
and

oE1 ∈ C∧d2,SCRH
, we have,

size(B) = size(A) +m · size(oE1) + poly(S ′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S ′CRH)

< poly(S3) (since, S3 >> SCRH, d4, S
′
CRH from Equation (5.9))

Therefore, B belongs to the circuit class CS3 (resp., B ∈ C∨d3,S3
) which contradicts the

C∨d3,S3
-hiding of (ECom3,EOpen3). Hence, the claim holds. �

Proof of Claim 23 Let us assume for contradiction that there exists b ∈ {0, 1}, a

polynomial p and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D

distinguishes emimA
H5

(b) from emimA
H6

(b) with probability 1/p(n).

Now, consider the set Γ of prefixes of transcripts up to the point where the first

message in the left interaction is sent. By a standard averaging argument, there must
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exist a 1/2p(n) fraction of prefixes ρ in Γ, such that, conditioned on ρ occurring in both

H5(b) and H6(b), the probability that D distinguishes the distributions is at least 1/2p(n).

Fix one such prefix ρ; let h be the hash function contained in the first message in the

left interaction in ρ and s = (x1, x2) be the lexicographically first collision of h. Then,

using A, the prefix ρ and its collision s, we construct a non-uniform circuit B ∈ Cd1 that

violates the hiding of (ECom1,EOpen1) with advantage at least 1/3p(n).

B with ρ and s hard-wired in it, participates in (ECom1,EOpen1)’s hiding game and

internally emulates an execution of H6(b) with A as follows:

- Step 1: Feed A with messages in ρ; let (h, aZAP, aNM) be the left first message. Let

(v0, v1) be the values sent by A in the left interaction.

- Step 2: B sends vb and v0 as challenges in the hiding game of the scheme

(ECom1,EOpen1) and receives a commitment c∗ to either vb or v0.

- Step 3: B generates the second message of the left interaction identically to H6(b)

except that it embeds c∗ as the ECom1 commitment in the message. That is,

B computes (c2, c3, c4, bNM) as in H6(b) (using the collision s received as non-

uniform advice) and then computes the second message of ZAP (bZAP) by setting

c1 = c∗. It then sends (c1, c2, c3, c4, bNM, bZAP) as the second round message in the

left interaction to A.

- Step 4: After A terminates, for every successful right interaction i, B runs the ex-

tractor oE3 on c̃3i to extract values (ṽ′i, d̃1
′
i). For every unsuccessful right interaction

i, B sets ṽ′i = ⊥.

- Step 4: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and

returns the output of D as its output.
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It is easy to see that if B receives a commitment to vb, then it perfectly emulates

H5(b) conditioned on ρ occurring for A and if it receives a commitment to v0 then it

perfectly emulates H6(b) conditioned on ρ occurring for A. Moreover, for every successful

interaction i, B sets ṽ′i to the value extracted by oE3 from c̃3i and for every unsuccessful

interaction, it sets ṽ′i = ⊥. We claim that the input to D (by B) is statistically close to

emimA
H5

(b) in the former case and it is statistically close to emimA
H6

(b) in the latter case;

the proof of claim is presented shortly. Since D distinguishes emimA
H5

(b) from emimA
H5

(b)

with probability 1/2p(n), we conclude that B wins the hiding game with advantage at

least 1/3p(n).

Next, we argue that B ∈ Cd1 : Apart from running A, B runs oE3 on m = poly(n) com-

mitments c̃3i, and the rest of the computation takes polynomial time (includes running

D). Since, A ∈ C∧d4,d4
and oE3 ∈ C∧d1,S4

,

dep(B) = dep(A) +m · dep(oE3) + poly(n)

≤ poly(d4) + poly(n) · poly(d1)

< poly(d1) (since, d1 >> d4 from Equation (5.9))

Furthermore, size(B) < poly(S∗). Therefore, B belongs to the circuit class Cd1 (resp.,

B ∈ C∨d1,S1
) which contradicts the C∨d1,S1

-hiding of (ECom1,EOpen1).

It remains to show our claim that the input to distinguisher D by adversary B (i.e.,

view of A and the values {ṽi′}i∈[m]) is indeed (1) statistically close to emimA
H5

(b) when

B receives a commitment to vb and (2) statistically close to emimA
H6

(0) when it receives

a commitment to v0. We will argue (1) and the proof of (2) follows similarly. Recall

that for every successful right interaction i, B runs oE3 on c̃3i to obtain (ṽ′i, d̃1
′
i). We

claim that the value ṽ′i is identical to the value extracted by oE1 from c̃1i, except with

negligible probability. Since i is successful, by Claim 22 we know that with overwhelming

probability the value extracted from (ãNMi, b̃NMi) is not a fake witness with overwhelming
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probability. Then by the over-extractability 〈C,R〉 we know that the value committed in

(ãNMi, b̃NMi) is not a fake witness. Furthermore, due to soundness of ZAP, it must be that

with overwhelming probability the commitments c̃1i and c̃3i are valid and c̃3i commits to

a decommitment of c̃1i. Then, by the over-extractability of (ECom3,EOpen3) the value

(ṽ′i, d̃1
′
i) extracted from c̃3i is identical to val(c̃3i) with over-whelming probability, where

val(c̃3i) is a decommitment of c̃1i — (ṽi, d̃1i). Next, due to the over-extractability of

ECom1, the value extracted by oE1 from c̃1i is identical to val(c̃1i) = ṽi with overwhelming

probability. Therefore, the value ṽi obtained by B is identical to the value that oE1

extracts from c̃1i with overwhelming probability. This is now sufficient to conclude that

the input to D is statistically close to emimA
H5

(b) when B receives a commitment to

vb except with negligible probability. This establishes (1) and (2) follows by the same

argument. Hence the claim holds. �

5.6 Amplifying Length of Identities – Log n trick

The Non-malleability strengthening technique (Section 5.5.3) applied to the scheme

(ENMCom,ENMOpen) of Section 5.4, that supports identities of length t(n) = O(1), re-

sults in a concurrent non-malleable commitment scheme but still only supports identities

of length t(n) = O(1). However, our final goal is to construct a scheme that supports

identities of length n. In this section, we provide a transformation that amplifies the

length of identities exponentially.

Given a tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities which is con-

current non-malleable w.r.t. commitment, Dolev, Dwork and Naor [51] construct a tag-

based commitment scheme 〈C̃, R̃〉 for exponentially larger identities, namely identities

of length 2t(n)−1-bits. In their work [51], they show that their transformation results in

a commitment scheme that can accomodate significantly larger length of identities but
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degrades concurrent non-malleability w.r.t. commitment to stand-alone non-malleability

w.r.t. commitment. Furthermore, their reduction also incurs a polynomial security loss.

The commitment schemes considered in this work are non-malleable w.r.t. extraction

and we claim that their transformation also works for such schemes. That is, we show

that if 〈Ĉ, R̂〉 is concurrent non-malleable w.r.t. extraction then commitment scheme

〈C̃, R̃〉 is standalone non-malleable w.r.t. extraction. The key idea towards amplifying

the length of identities is embedding a 2t(n)−1-bit identity into 2t(n)−1 number of t(n)-bit

identities — we, thereby, refer to this idea as the “log-n” trick. The protocol from [51]

is based on the log-n trick and is described below.

The committer C̃ and receiver R̃ receive the security parameter 1n and identity id ∈

{0, 1}t′(n) as common input where t′(n) = 2t(n)−1. Furthermore, C̃ gets a private input

v ∈ {0, 1}α which is the value to be committed.

- Commit stage:

1. To commit to a value v ∈ {0, 1}α, C̃ chooses t′ random shares r0, r1, . . . , rt′−1 ∈

{0, 1}α such that v = r0 ⊕ r1 ⊕ . . .⊕ rt′−1.

2. For each 0 ≤ i ≤ t′−1, C̃ and R̃ run 〈Ĉ, R̂〉 to commit to ri (in parallel) using

identity (i, id[i]) where id[i] is the ith bit of id. Let di be the corresponding

decommitment string.

Let ci be the transcript of 〈Ĉ, R̂〉 committing to ri with identity (i, id[i]). Then we

denote by c = {ci}0≤i≤t′−1 the entire transcript of the interaction.

- Reveal stage:

On receiving the decommitment (v, {ri}i, {di}i), R̃ verifies (1) for each 0 ≤ i ≤ t′−1,
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ci is a commitment to ri using 〈Ĉ, R̂〉 and identity (i, id[i]), and (2) v = r0 ⊕ r1 ⊕

. . .⊕ rt′−1. R̃ accepts the decommitment iff (1) and (2) hold.

Furthermore, let us assume that 〈Ĉ, R̂〉 is over-extractable w.r.t. extractor ôENM then

we construct an extractor õENM for 〈C̃, R̃〉 as follows,

- Extraction - Algorithm õENM:

On receiving id ∈ {0, 1}t′ and commitment c = {ci}0≤i≤t′−1, õENM runs ôENM on

each ci obtaining output r′i. If any of the r′i is ⊥ then õENM outputs ⊥. Otherwise,

it outputs v′ = r′0 ⊕ r′2 ⊕ . . .⊕ r′t′−1 as the extracted value.

Theorem 24 (Log-n trick [51]) Let t be such that t′(n) = 2t(n)−1 is a polynomial.

Let 〈Ĉ, R̂〉 be a commitment scheme and C be a class of circuits that is closed under

composition with P/poly.

1. If 〈Ĉ, R̂〉 is a tag based perfectly binding commitment scheme for t(n)-bit identities

then 〈C̃, R̃〉 is a tag based perfectly binding commitment scheme for identities of

length t′(n) = 2t(n)−1 bits.

2. If 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. commitment then 〈C̃, R̃〉 is one-one

C-non-malleable w.r.t. commitment.

3. If 〈Ĉ, R̂〉 is (d, S)-over-extractable by ôENM then 〈C̃, R̃〉 is (d, S)-over-extractable

by õENM. Furthermore, if 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. extraction by

ôENM then 〈C̃, R̃〉 is standalone C-non-malleable w.r.t. extraction by õENM.

Proof: We prove each of the above in the following:

- Perfect binding and tag lengths: The perfect binding of 〈C̃, R̃〉 follows from the

statistical binding of 〈Ĉ, R̂〉. Furthermore, 〈C̃, R̃〉 as defined above accomodates

identities of length t′ = 2t(n)−1-bits.
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- Non-malleability w.r.t. extraction: Assume for contradiction that there exists a

non-uniform attacker A = {An}n∈N ∈ C that participates in one left with C̃ and

one right interaction with R̃ sending/receiving commitments to values of length

α = poly(n)-bits, a non-uniform distinguisher D = {Dn}n∈N ∈ P/poly and a

polynomial p(·) such that for infinitely many n ∈ N,∣∣∣Pr[Dn(emimAn
〈C̃,R̃〉

(1n, 0)) = 1]− Pr[Dn(emimAn
〈C̃,R̃〉

(1n, 1)) = 1]
∣∣∣ ≥ 1/p(n) ,

where emimA
〈C̃,R̃〉(1

n, b) describes the view of A, and value ṽ′ extracted from the

right commitment c̃ = {c̃i}0≤i≤t′−1 by extractor õENM. Recall that ṽ′ is set to ⊥

when id = ĩd for A’s choice of left and right identities id and ĩd respectively. When

id 6= ĩd, by the definition of extractor õENM, ṽ′ = ṽ′0 ⊕ . . . ⊕ ṽ′t′−1 where ṽ′i are the

values extracted from c̃i by extractor ôENM.

Next, we construct a one-many non-uniform adversary A′ = {A′n}n∈N, and a non-

uniform distinguisher D′ = {D′n}n∈N such that for infinitely many n ∈ N∣∣∣Pr[D′n(emimA′

〈Ĉ,R̂〉(1
n, 0)) = 1]− Pr[D′n(emimA′

〈Ĉ,R̂〉(1
n, 1)) = 1]

∣∣∣ ≥ 1/(p(n) · t′).

The adversary A′ internally runs A, participates in one left interaction with Ĉ

and m = t′(n) right interactions with R̂ and internally emulates an execution of

INDA
〈C̃,R̃〉(b) for A as follows:

– Step 1: For the right interaction with A, A′ emulates the honest receiver

R̃ using its t′(n) right interactions with R̂, by simply forwarding messages

between A and R̂. A′ waits for A to select identity for its left interaction.

Let id be the t′(n)-bit identity and v0, v1 be the values sent by A for the left

interaction. Let si = (i, id[i]) for 0 ≤ i ≤ t′ − 1.

– Step 2: To continue with the left interaction, A′ samples a random j
$←

{0, . . . , t′ − 1}. Let I = {0, . . . , t′ − 1} \ {j}. A′ samples random shares
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ri
$← {0, 1}α for i ∈ I and sets ub = vb⊕ r where r = ⊕i∈I ri. Then, A′ begins

its left interaction with Ĉ with identity s = sj and challenges values u0, u1.

– Step 3: A′ interacts with A acting as a honest committer C̃ to compute the

commitment c = {ci}0≤i≤t′−1. More precisely, for all i ∈ I, A acts as the

honest committer Ĉ to generate the commitment ci to value ri under identity

si. The commitment cj is the commitment to value ub under identity s = sj

generated by forwarding messages between A and the external committer Ĉ.

It is easy to see that if Ĉ commits to ub then c is a commitment to vb under

〈C̃, R̃〉 with identity id.

The distinguisher D′ with input the view of A′ and the values (ṽ′1, . . . , ṽ
′
t′) extracted

by extractor ôENM from the t′ right commitments of A′, runs as follows:

– Step 1: D′ reconstructs the view of A in emulation by A′. Furthermore, let

id,ĩd be the identities chosen by A for its left and right interactions (defined

by the view of A) respectively and let s = (j, id[j]) be the identity chosen by

A′ for some 0 ≤ j ≤ t′ − 1. And let s̃i = (i, ĩd[i]) for all 0 ≤ i ≤ t′ − 1.

– Step 2: If id 6= ĩd but s = s̃j for some j ∈ {0, . . . , t′ − 1} then D′ aborts.20

Otherwise, D′ sets ṽ′ = ⊕0≤i≤t′−1 v
′
i.

– Step 2: D′ then runs D on the above reconstructed view of A and ṽ′ and

returns whatever D′ returns.

First, observe that whenever Ĉ commits to ub, A
′ perfectly simulates the MIM

experiment MIMA
〈C̃,R̃〉(b) for A. Conditioned on D′ not aborting, we know that

A′ choice of left identity s is distinct from all right identities s̃j. Therefore, by

20This is because, the value ṽ′j given as input toD′ will be replaced with⊥ disallowingD′ to reconstruct

the input to D.

281



Two-round and Non-interactive Non-malleable Commitments Chapter 5

definition of emimA′

〈Ĉ,R̂〉, D
′’s inputs ṽ′i are the values extracted by the extractor

ôENM from the i-th right commitment c̃i. Therefore, the value ṽ′ reconstructed

by D′ is identical to the value extracted by õENM from A’s right commitment

c̃ = {c̃i}0≤i≤t′−1. Therefore, conditioned on not aborting, D′ perfectly reconstructs

emimA
〈C̃,R̃〉(b) from its input emimA′

〈Ĉ,R̂〉(b). Since D distinguishes emimA
〈C̃,R̃〉(0) from

emimA
〈C̃,R̃〉(1) with advantage at least 1/p(n) and D′ does not abort with probability

1/t′(n), we have (A′, D′) break the one-many non-malleability w.r.t. extraction of

〈Ĉ, R̂〉 with advantage 1/p(n) · t′(n). Furthermore, note that A′ internally runs A

and the rest of the computation takes poly(n)-time. Also, D′ internally runs D and

the rest of its computation also takes poly(n)-time. Therefore, since A ∈ C and C is

closed under composition with P/poly, we have A′ ∈ C. Also, D ∈ P/poly implies

that D′ ∈ P/poly. This contradicts the one-many non-malleability of 〈Ĉ, R̂〉 w.r.t.

extraction by ôENM.

Remark 15 We note that the 1/t′ loss in the advantage of the reduction can be

avoided if A sends the identity of the right interaction ĩd before sending id. In this

case, whenenver id 6= ĩd there exists at least one index 0 ≤ j ≤ t′ − 1 such that

id[j] 6= ĩd[j] and hence sj = (j, id[j]) is distinct from all s̃i = (i, ĩd[i]). This ensures

D′ never aborts. However, since we allow our MIM adversary A total control over

the scheduling of messages (even choosing identities), given the left identity id we

can only guess the special index j thereby inccurring a 1/t′ loss in the advantage

where t′ = |id|.

- Non-malleability w.r.t. commitment: This follows syntactically from the same proof

as Non-malleability w.r.t. extraction by replacing emim random variables with their

respective mim random variables. We skip the formal proof.
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- Over-extractability: A valid commitment c = {ci}0≤i≤t′−1 is such that every ci

is a valid commitment for 〈Ĉ, R̂〉. Due to the over-extractability of 〈Ĉ, R̂〉 w.r.t.

ôENM, for every 0 ≤ i ≤ t′ − 1, the extractor õENM always extracts the correct

value r′i. Therefore, õENM always extracts the correct value from c. Since, t′ is

a polynomial, õENM fails with negligible probability. Moreover, õENM runs ôENM

on t′ commitments and rest of the computation takes poly(n) time. Therefore, if

ôENM ∈ C∧d,S then õENM ∈ C∧d,S. Therefore, 〈C̃, R̃〉 is (d, S)-over-extractable w.r.t.

õENM.

5.7 Concurrent Non-malleable Commitment for n-

bit Identities

In this section, we construct a concurrent non-malleable commitment scheme 〈C∗, R∗〉

that can accomodate n-bit identities. This then concludes the proof of Theorem 25.

The idea is to start with the basic commitment scheme from Section 5.4 that is one-

one non-malleable w.r.t. extraction for short identities, say t(n)-bits. Then apply the

non-malleability strengthening technique described in Section 5.5.3 followed by the log-n

trick [51] described in Section 5.6 repeatedly until the length of the identities reaches n-

bits. The resulting commitment scheme is the commitment scheme 〈C∗, R∗〉. We detail

the construction of 〈C∗, R∗〉 more formally in Section 5.7.1, provide instantiations in

Section 5.7.2, discuss the efficiency of the scheme 〈C∗, R∗〉 in Section 5.7.3 and argue

about the security 〈C∗, R∗〉 in Section 5.7.4.

Theorem 25 For some sub-exponential functions T,B assume the existence of C∧B,B-

secure injective one-way functions, C∧B,B-WI ZAP, C∧B,B-collison-resistant hash function
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family and (T,B)-secure Time-lock puzzles. Then, 〈C∗, R∗〉 is a 2-round, perfectly bind-

ing concurrent non-malleable w.r.t. extraction and w.r.t. commitment against poly-size

adversaries.

5.7.1 Commitment Scheme 〈C∗, R∗〉

We formally describe the construction of 〈C∗, R∗〉 that is concurrent non-malleable

w.r.t. commitment (and extraction) for n-bit identities. As mentioned above we initially

start with a commitment scheme 〈C0, R0〉 for t(n)-bit identities and apply the non-

malleability strengthening and log-n trick repeatedly, for say r(n) times, until we reach

identities of length n-bits.

- Initial Scheme 〈C0, R0〉:

The initial scheme 〈C0, R0〉 is the basic scheme (ENMCom,ENMOpen), as con-

structed in Section 5.4, that is one-one non-malleable w.r.t. extraction for identities

of length id0(n) = t(n)-bits. Furthermore, let 〈C0, R0〉 be non-malleable against cir-

cuits of depth at most poly(S0) and size at most poly(S0) and extractable by an

extractor of depth poly(S ′0) and size poly(S ′0).21

- Identity Amplification Step for r(n) Times:

Next, we repeatedly apply the following two steps r(n) number of times. Let

〈Cj−1, Rj−1〉 be the commitment scheme at the end of the j − 1-st iteration for

j ∈ [r(n)]. We describe below the j-th iteration below. Let 〈Cj−1, Rj−1〉 be one-one

non-malleable w.r.t. commitment (and extraction) for identities of length idj−1(n)-

bits. Furthermore, let 〈Cj−1, Rj−1〉 be non-malleable against circuits of depth at

21Note that the initial scheme as presented in Section 5.4 is non-malleable against circuits of depth
at most poly(d0) and size at most poly(S0) where d0 << S0. However, note that such a scheme is still
non-malleable against circuits of depth at most poly(d0) and size at most poly(d0).
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most poly(Sj−1) and size at most poly(Sj−1) and extractable by an extractor of

depth poly(S ′j−1) and size poly(S ′j−1).

1. Non-malleability Strengthening Technique:

First, using an appropriate hierarchy of functions as described in Eq (5.9), we

apply the non-malleability strengthening technique to the scheme 〈Cj−1, Rj−1〉

to boost its one-one non-malleability to concurrent non-malleability. The re-

sulting scheme 〈Ĉj, R̂j〉 is concurrent non-malleable w.r.t. commitment (and

extraction) for identities of length idj−1(n)-bits.

2. Log-n Trick:

Second, we apply the log-n trick to the concurrent non-malleable scheme

〈Ĉj, R̂j〉 to construct a one-one non-malleable commitment 〈Cj, Rj〉 for iden-

tities of length idj(n) such that idj(n) = 2idj−1(n)−1.

- Final Scheme 〈C∗, R∗〉:

The commitment scheme 〈Cr(n), Rr(n)〉 constructed at the end of r(n) iterations is

one-one non-malleable for identities of length idr(n). We apply the non-malleability

strengthening technique one more time to 〈Cr(n), Rr(n)〉 to boost its one-one non-

malleability to concurrent non-malleability. The resulting scheme 〈C∗, R∗〉 is con-

current non-malleable for identities of length idr(n)(n)-bits.

Note that we begin we identities of length id0 = t(n) and identities in successive

iterations satisfy the following,

idj(n) = 2idj−1(n)−1 .

Then it is easy to see that for idr(n)(n) ≥ n and t(n) > 2, we need to apply the identity

amplification step r(n) = O(log∗ n− log∗ t(n)) times.
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5.7.2 Instantiations

The initial scheme constructed in Section 5.4 and the identity amplification step de-

scribed in Sections 5.5.3,5.6 require a family of depth-robust and size-robust commitment

schemes, and a family of non-uniform collision resistant hash functions which are based

on some hierarchy of non-decreasing functions. Below we detail the size of this hierarchy

required for constructing 〈C∗, R∗〉 from the initial scheme 〈C0, R0〉 for t(n)-bit identities

and r(n) iterations of the identity amplification step. Then we give instantiations of

this hierarchy firstly from sub-exponential security and then from the strictly weaker

sub-subexponential security.

Initial Scheme 〈C0, R0〉. We start with the basic scheme (ENMCom,ENMOpen) for

t(n)-bit identities. As described in Section 5.4, the construction of the scheme

(ENMCom,ENMOpen) for t(n)-bit identities requires a family of 2t(n) size-robust and

depth-robust commitment schemes w.r.t. the following hierarchy of non-decreasing func-

tions,

n << d0 << d1 << . . . << dl−1 << dl << S0 << S1 << . . . << Sl−1 << Sl ,

where l = 2t(n) such that for every i ∈ {0, 1}t(n),

- there exists a depth-robust commitment scheme (EComdi ,EOpendi) that is Cdi-

hiding and (di+1, di+1)-over-extractable w.r.t. an extractor oEdi .

- there exists a size-robust commitment scheme (EComSi ,EOpenSi) that is C∧Si,Si-

hiding and (poly(n), Si+1)-over-extractable w.r.t. an extractor oESi .

Therefore, to construct the initial commitment scheme we need a hierarchy of 2(l+ 1) =

2(2t(n) + 1) non-decreasing functions.
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Identity Amplification Step. Consider the j + 1-st iteration of the identity ampli-

fication step described in the construction of 〈C∗, R∗〉. In the j + 1-st iteration, we are

applying the strengthening technique to the commitment scheme 〈Cj, Rj〉 which is C∧Sj ,Sj -

non-malleable and extractable by a circuit of size poly(S ′j). The strengthening technique

requries a family of four depth-robust 22 and four size-robust commitment schemes. Fur-

thermore, it also requires a family of non-uniform collision-resistant hash functions w.r.t.

the following hierarchy of non-decreasing functions,

n << dj4 << dj3 << dj1 << dj2 << Sj2 << Sj1 << SjCRH <<

S ′jCRH << Sj << S ′j << Sj3 << Sj4 << S ′j4 << S∗ ,

(5.14)

such that,

- (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨
dj1,S

j
1

-hiding

and (dj2, S
j
CRH)-over-extractable w.r.t. extractor oE1.

- (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨
dj2,S

j
2

-hiding

and (Sj2, S
j
1)-over-extractable w.r.t. extractor oE2.

- (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨
dj3,S

j
3

-hiding

and (dj1, S
′j
4 )-over-extractable w.r.t. extractor oE3.

- (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨
dj4,S

j
4

-hiding

and (dj3, S
′j
4 )-over-extractable w.r.t. extractor oE4.

- H = {Hn}n∈N is a C∧
SjCRH,S

j
CRH

-collision-resistant family of hash functions such that a

collision can be found by a circuit of size poly(S ′jCRH).

Furthermore, we apply the log-n trick to the resulting commitment scheme. Note that

the log-n trick does not rely on any additional tools. Therefore, in an iteration of the

22Note that the transformation actually requires four depth-and-size robust commitment schemes but
as described in Section 5.3.3 depth-and-size robust commitment scheme can be constructed from a single
depth-robust and a size-robust commitment scheme.
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identity amplification step, we need four depth-robust22, four size-robust commitment

schemes and a hash function family. In other words, we need an additional at most

eleven23 non-decreasing functions per iteration. Therefore, over r(n) iterations, we will

need a hierarchy of 11r(n) + 11 functions.24

Therefore, to construct the commitment scheme 〈C∗, R∗〉 from 〈C0, R0〉 for t(n)-bit

identities, we need a hierarchy of L = 2t(n)+1+11r(n)+13 non-decreasing functions, where

r(n) = O(log∗ n − log∗ t(n)). Furthermore, L is minimized when t(n) = O(1), implying

r(n) = O(log∗ n) and L = O(log∗ n). Next, we show two approaches to instantiate a

hierarchy of L = O(log∗ n) non-decreasing functions, one from sub-exponential security

and another from sub-subexponential security.

Instantiation from Sub-exponential Security. As mentioned above, we need to

instantiate a hierarchy of L non-decreasing functions for constructing 〈C∗, R∗〉. Let the

required hierarchy be the following,

p1 << p2 << . . . << pL . (5.15)

Let F(λ) be some non-decreasing, invertible function defined on N such that F(λ) =

ω(log λ) but F(λ) = o(λ). It is easy to see that F(λ) = λε satisfies the requirements

for any 0 < ε < 1. First we will instantiate the hierarchy (Equation 5.15) based on the

existence of 2F(λ)-secure primitives and then provide concrete parameters for the special

case of sub-exponential security, that is, for F(λ) = λε for some ε < 1.

Towards this, first assume the existence of (T (t) = 2F(t), B(n) = 2F(n))-secure TL puz-

zle, 2F(k)-secure injective OWF, 2F(θ)-collision-resistant hash family where (n, t), k, θ are

23nine levels are required for the four depth-and size-robust commitment schemes (see Equation 5.14)
namely d1, . . . , d4, S1, . . . , S4, S

′
4 and additional two levels namely SCRH and S′CRH for the collision-

resistant hash function.
24The additional eleven functions is due an extra application of the non-malleability strengthening to

boost the non-malleability of 〈Cr(n), Rr(n)〉.
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security parameters for the underlying TL puzzle, injective OWF and collision-resistant

hash respectively. We instantiate the above hierarchy, that is, p1 through pL from 2F(λ)-

security by varying the security parameter λ. Let n be the security parameter of the

non-malleable commitment scheme we want to construct. Then, consider the following

sequence of security parameters

n0 , n1 , . . . , nL ,

where each ni is some function of n (we specify these shortly). We set i-th level (i.e., pi)

in the required hierarchy as,

pi = 2F(ni) .

We expect the functions in the hierarchy to satisfy certain constraints in order for

us to be able to instantiate the required depth-robust, size-robust commitment schemes,

and collision-resistant hash function from them. We list the properties below.

1. Since we expect all our primitives to be secure against any poly-sized circuit, we

require that the first security parameter n0 be such that 2F(n0) ≥ 2ω(logn) that is,

F(n0) = ω(log n) ,

n0 = F−1(ω(log n)) .

2. For any i, we need to be able to instantiate the following primitives,

(a) (pi, pi+1)-depth-robust commitment scheme: Commitment scheme that is Cpi-

hiding but (pi+1, pi+1)-over-extractable. We instantiate such a scheme from

TL puzzles with security parameter t(n) = ni(n).25 Then by the 2F(t)-security

of TL puzzles combined with t(n) = ni(n) (or equivalently 2F(t) = 2F(ni) = pi),

25Recall that TL puzzles have two security parameters n and t. The security parameter n is the
security parameter of the non-malleable commitment scheme. Therefore, we sample puzzles from the
support of Gen(1n, 1ni , ·) in the depth-robust commitment scheme in Section 5.3.1.
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the resulting puzzles are hard for adversaries in Cpi. To guarantee that the

puzzles can be solved by some circuit of size poly(pi+1), we require that

2t(n) = 2ni(n) ≤ pi+1 . (5.16)

If Equation 5.16 holds then by Theorem 16, we have a (pi, pi+1)-depth-robust-

commitment scheme.

(b) (pi, pi+1)-size-robust commitment scheme: A commitment scheme that is C∧pi,pi-

hiding but (poly(n), pi+1)-over-extractable. We instantiate such a scheme from

2F(k)-secure injective OWF on input-length k(n) = ni(n). Then, the 2F(k)-

security guarantees that the resulting OWF (one with security parameter

k = ni) is hard to invert for adversaries in C∧pi,pi . Furthermore, such a function

can be inverted by a circuit of size poly(ni) ·2ni and depth poly(ni). Therefore,

to guarantee that function can be inverted by a circuit of size C∧poly(n),pi+1
, we

require that,

ni ≤ poly(n) ; 2ni ≤ pi+1 . (5.17)

If Equation 5.17 holds then by Theorem 17, we have a (pi, pi+1)-size-robust-

commitment scheme.

(c) (pi, pi+1)-collision-resistant hash function family: A (pi, pi+1)-collision-resistant

hash function family is a family of hash functions that is C∧pi,pi-collision resis-

tant and for which there exists a circuit of size poly(pi+1) that finds collisions

with probability 1. We instantiate such a family by setting the security pa-

rameter θ of H as θ(n) = ni(n), where H is a family of 2F(θ)-collision-resistant

hash functions. As discussed above, the 2F(θ)-collision resistance of H implies

that the resulting function is C∧pi,pi-collision resistant. To guarantee that a
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circuit of size poly(pi+1) finds collisions, we require that

2ni ≤ pi+1 . (5.18)

Setting ni+1 = F−1(ni) implies pi+1 = 2F(ni+1) = 2ni which guarantees that Equa-

tions 5.16, 5.17, 5.18 hold. This entails a sequence n1, . . . , nL where the i-th security

parameter ni is,

ni =
(
F−1

)i+1
(ω(log n)) .

3. Finally we require that the last security parameter nL be upper-bounded by some

poly(n),

nL =
(
F−1

)L+1
(ω(log n)) ≤ poly(n) . (5.19)

Now let us consider the case of sub-exponential security, that is, let F = λε for some

0 < ε < 1/2. Then, F−1(y) = y1/ε be the inverse of F . For the last security level nL to

be polynomially bounded, we require that,

(ω(log n))(1/ε)L+1

≤ poly(n) .

It is easy to see that from subexponential security, we can derive L = Θ(log log n)

levels. Recall that to construct 〈C∗, R∗〉 we need O(log∗ n) levels in the hierarchy, hence

the above hierarchy finds an instantiation from subexponential security.

However, for our transformation, we require only L = O(log∗ n) levels which is signif-

icantly less than Θ(log log n) levels that can be extracted from sub-exponential security.

Hence, there is hope to instantiate the hierarchy from weaker than sub-exponential secu-

rity. In fact, such a hierarchy can, indeed, be instantiated from strictly weaker security

— sub-subexponential security — which we show below.
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Instantiation from Sub-subexponential Security. First we define the notion of

sub-subexponential security and then provide an instantiation of the hierarchy. Infor-

mally, a 2F(λ)-secure primitive is sub-subexponential -secure if

F(λ) ∈ λo(1) .

A candidate for F for sub-subexponential security is the following,

F(λ) = λ
1
X (λ) ,

where X (λ) = ω(1) be some non-decreasing function on N.

We ask how large (if at all) such an X (λ) = ω(1) can be so that we can still instantiate

the above hierarchy. The only point of concern is bounding the security parameter nL

of the last level, that is, we ask how large X (λ) be such that for F(λ) = λ
1
X (λ) and

L = O(log∗ n) the following holds,

nL =
(
F−1

)L
(ω(log n)) ≤ poly(n) .

However the above closed form is hard to analyse so we restrict the right hand side

to be n instead of a generic poly(n), that is,(
F−1

)L
(ω(log n)) ≤ n (5.20)

Applying F on both sides we get,(
F−1

)L−1
(ω(log n)) ≤ F(n) , (5.21)

Let n′ = F(n) = n
1
X (n) < n. We have,

F(n′) = (n′)
1

X (n′) = (F(n))
1

X (n′) .

Since X is a non-decreasing function we have,

F(n′) = (F(n))
1

X (n′) > (F(n))
1
X (n) ,

(5.22)
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Applying again F on both sides of Equation (5.21),

(
F−1

)L−2
(ω(log n)) ≤ F(n′) , (5.23)

Therefore by Equation (5.22) we know that as long as the following holds, Equa-

tion (5.23) holds. (
F−1

)L−2
(ω(log n)) ≤ F(n)

1
X (n) = n

1
X (n)

2

.

After repeatedly applying F , it is easy to see that as long as the following holds,

Equation (5.20) holds.

ω(log n) ≤ n
1

X (n)L .

Furthermore, the if the following holds then the above Equation holds,

X (n)L ≤ log n

ω(log log n)

X (n) ≤
(

log n

ω(log log n)

) 1
O(log∗ n)

Finally, as long as the following holds for some c > 0 then Equation (5.20) holds.

X (n) ≤ (logc n)
1

O(log∗ n)

X (n) ≤ (log n)
1

Θ(log∗ n) (5.24)

For X (n) = log log n, it is easy to see that Equation (5.24) holds and hence Equa-

tion (5.20) holds. Therefore we can instantiate the above hierarchy from 2n
1

log logn
-secure

OWPs, TL puzzles and CRHs which is strictly weaker than assuming 2n
ε
-security.

5.7.3 Efficiency of 〈C∗, R∗〉

As described in Section 5.7.1, to construct the scheme 〈C∗, R∗〉 we apply the identity

amplification step — non-malleability strengthening technique followed by the log-n trick
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— O(log∗ n) times. Suppose that the identity amplification step incurrs a polynomial

overhead, that is, on input a scheme with computational complexity τ(n), it outputs a

scheme with computational complexity p(τ(n)) for some fixed polynomial p. Applying

this step for a super-constant number of times leads to a scheme 〈C∗, R∗〉 with super-

polynomial computational complexity.

Unfortunately, our non-malleability strengthening technique presented in Section 5.5

indeed incurrs polynomial overhead. Recall that on input a non-malleable commitment

〈C,R〉, the technique produces an output scheme 〈Ĉ, R̂〉 which uses ZAP to prove a state-

ment that involves verifying the decommitment to a commitment of 〈C,R〉. Therefore,

if the decommiment function Open(c, v, d) of 〈C,R〉 has complexity τOpen(n), the output

scheme has complexity at least pZAP(τOpen(n)), where pZAP is the polynomial overhead

induced by ZAP.

We show below that a simple modification can fix the problem. (We chose to present

the strengthening technique in simpler terms earlier for ease of exposition.) Towards this,

we introduce a new property called open-decomposability for commtiment schemes. We

say that a scheme 〈C,R〉 is g-open-decomposable, if it is the case that, its decommitment

function Open(c, v, d) can be decomposed into two functions of the following form:

- a “public” function PubOpen(c) that can be verified without the decommitment

(v, d), and

- a “private” function PrivOpen(c∗, v, d) that depends on the decommitment and only

a small part c∗ = π(c) of the commitment c, and takes polynomial time g(n).

Open accepts iff both PubOpen and PrivOpen accept. Consider applying the

non-malleability strengthening technique on such a g-open-decomposable commitment

scheme. Instead of using ZAP to verify whether Open accepts, it is equivalent to verify

whether PubOpen accepts in the clear (outside ZAP) and only verifies whether PrivOpen
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accepts using ZAP. This simple change reduces the overhead induced by the ZAP proof

from pZAP(τOpen(n)) to pZAP(g(n)). Our key observation is that the initial non-malleable

schemes, as well as all intermediate schemes produced throughout the iterations, are

all open-decomposable w.r.t. small polynomials. Based on this, we can show that the

complexity of the final scheme is polynomially bounded.

Open-decomposability. We formally define the notion of open-decomposability be-

low.

Definition 33 (g-open-decomposability) Let g be a polynomial. We say that a com-

mitment scheme 〈C,R〉 is g-open-decomposable if there exist efficiently computable func-

tions PubOpen, PrivOpen, and π, such that, for all n ∈ N, c ∈ {0, 1}m(n), v ∈ {0, 1}α(n),

d ∈ {0, 1}l(n) and c∗ = π(c),

(Open(c, v, d) = 1 ⇐⇒ PubOpen(c) = 1) ∧ (PrivOpen(c∗, v, d) = 1) ,

where PrivOpen runs in time g(n). Above, m(n) and l(n) are respectively the maximal

lengths of commitments and decommitments generated using 〈C,R〉 for values of length

α(n) with security parameter n.

Using the above notion, we next describe the modified non-malleability strengthening

technique and log-n trick. We analyze the open-decomposability property of the schemes

produced by iteratively applying these two transformations to the initial schemes con-

structed in Section 5.4, and show that the growth of the complexity of these schemes is

polynomially bounded.

More specifically, let g be a sufficiently large polynomial that, in particular, is larger

than the complexity of all depth-and-size robust commtiment schemes, ECom’s, used

for constructing the initial schemes and in the transformations. By the analysis in Sec-
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tion 5.7.2, all the ECom’s used have polynomial complexity. This implies that the ini-

tial non-malleable commitment schemes (consisting of invokation of two ECom schemes)

does satisfy g-open-decomposability (by simply setting PubOpen to the constant func-

tion outputting 1 and PrivOpen = Open itself). Then, we show that the non-malleability

stengthening technique always outputs a scheme that is g-open-decomposable, and on

input such a scheme, the log-n trick produces a scheme that is h(n)-open-decomposable

for h(n) = ng(n).

Modification to the strengthening technique described in Section 5.5.3. Let

〈C,R〉 be one-one non-malleable w.r.t. extraction and satisfy h-open-decomposable w.r.t.

(PubOpen,PrivOpen, π). We describe the changes (highlighted in red) to the

non-malleability strengthening technique.

- Commit stage - First round: Same as before.

- Commit stage - Second round: Steps 1, 2 and 4 are same as before.

3. Given aZAP and for c∗ = π(aNM, bNM), Ĉ computes the second message bZAP of

ZAP to prove the following OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3

commits to a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2), such that,

– h(x1) = h(x2),

– c2 is a commitment to s̄,

– c4 commits to a decommitment of c2,

– PrivOpen accepts (c∗, d4, v4), and (d4, v4) is a valid decommitment to

c4.
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Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — de-

commitment of c1 to v — as the witness.

Denote by (âNM, b̂NM) the produced commitment.

- Reveal stage - Function Ôpen(((âNM, b̂NM)), d1, v):

Parse (âNM, b̂NM) and let (aZAP, bZAP), (aNM, bNM), and c1 be the ZAP proof, the

commitment of 〈C,R〉, and the ECom1 commitment contained in it. Accept if and

only if the following functions both accept.

– ̂PubOpen(âNM, b̂NM) accepts iff the ZAP proof (aZAP, bZAP) is accepting and

PubOpen((aNM, bNM)) = 1.

– π̂(âNM, b̂NM) = c1 and ̂PrivOpen(c1, v, d1) accepts iff EOpen1(c1, v, d1) = 1.

The scheme 〈Ĉ, R̂〉 is open-decomposable w.r.t. ( ̂PubOpen, ̂PrivOpen, π̂).

Since ̂PrivOpen only checks the decommitment of the ECom1 commitment, its runtime

is bounded by g(n). Thus, 〈Ĉ, R̂〉 is g(n)-open-decomposable. On the other hand, since

PrivOpen has complexity h(n), the ZAP proof incurrs an additive poly(n, g(n), h(n)) over-

head. Then,

ĉc(n) = cc(n) + poly(n, g(n), h(n)) ,

where cc(n) and ĉc(n) are the computational complexities of 〈C,R〉 and 〈Ĉ, R̂〉 respec-

tively.

Modification to log-n trick described in Section 5.6. Let 〈Ĉ, R̂〉 be concurrent

non-malleable (w.r.t. commitment and extraction) for l(n)-bit identities, and be g(n)-

open-decomposable w.r.t. ( ̂PubOpen, ̂PrivOpen, π̂). The log-n trick results in a commit-

ment scheme 〈C̃, R̃〉 which is one-one non-malleable (w.r.t. commitment and extrac-
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tion) for identities of length l′(n) = 2l(n)−1 < n. We show that 〈C̃, R̃〉 is h(n)-open-

decomposable w.r.t. ( ˜PubOpen, ˜PrivOpen, π̃) described below.

- Commit stage: Same as before.

Let ãNM, b̃NM be the produced commitment, which contains l′ commitments of

〈Ĉ, R̂〉, denoted as
{
âiNM, b̂

i
NM

}
i∈[l′]

.

- Reveal stage - Function Õpen(((ãNM, b̃NM)), d, v): Accept if and only if the following

functions both accept.

– ˜PubOpen accepts iff for every i, ̂PubOpen(âiNM, b̂
i
NM) accepts.

– π̃(ãNM, b̃NM) =
{
c∗i = π̂(âiNM, b̂

i
NM)

}
i

and ˜PrivOpen accepts iff for every i,

̂PrivOpen accepts c∗i w.r.t. d, v.

Note that the running time of ˜PrivOpen is at most l′(n)·g(n) ≤ h(n), and hence 〈C̃, R̃〉

is h(n)-open-decomposable. Furthermore, if the computational complexity of 〈Ĉ, R̂〉 is

ĉc(n), the computational complexity of 〈C̃, R̃〉 is bounded by l′(n)ĉc(n).

Putting Pieces Together. Every iteration, say the j’th iteration, starts with a com-

mitment scheme 〈Cj, Rj〉 supporting idj(n) length identities, that is

h(n)-open-decomposable (the inital schemes are g-open-decomposable). Applying the

non-malleability strengthening technique produces a scheme 〈Ĉj, R̂j〉 that is g(n)-open-

decomposable. Following that, the log-n trick produces a scheme 〈Cj+1, Rj+1〉, supporting

idj+1(n) = 2idj(n)−1 length identities, that is h(n)-open-decomposable for h(n) = ng(n).

Furthermore, Let cc(j) denote the computational complexity of the scheme 〈Cj, Rj〉.
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Then we have:

cc(j + 1) = idj+1(n) (cc(j) + poly(n, g(n), h(n)))

= idj+1(n)
(
idj(n)(cc(j − 1) + poly(n)) + poly(n)

)
≤ idj+1(n)idj(n)cc(j − 1) + idj+1(n)idj(n)poly(n) + idj+1(n)poly(n)

Then,

cc(j + 1) ≤ idj+1(n)idj(n)cc(j − 1) + 2idj+1(n)idj(n)poly(n)

≤
∏

1≤k≤j+1

idk(n)cc(0) + (j + 1)

( ∏
1≤k≤j+1

idk(n)

)
poly(n)

Since the total number of iterations is O(log∗ n) and the lengths of identities grow ex-

ponentially fast, we have that the running time of the final scheme 〈C∗, R∗〉 is upper-

bounded by a polynomial.

5.7.4 Security of 〈C∗, R∗〉

Recall from Section 5.7.1 〈C∗, R∗〉 is the commitment scheme obtained by applying

the non-malleability strengthening step to the commitment scheme 〈Cr(n), Rr(n)〉 which

inturn was constructed by recursively applying, for r(n) iterations, the non-malleability

strengthening step followed by the log-n trick starting from the basic commitment scheme

〈C0, R0〉. Since, the number of iterations r(n) = O(log∗ n) (i.e., r(n) = w(1))26, it is

not apriori clear whether 〈C∗, R∗〉 is concurrent non-malleable for poly-size adversaries.

Towards establishing the security of 〈C∗, R∗〉, we first focus on showing 〈Cr(n), Rr(n)〉 is

one-one non-malleable against poly-size adversaries. Then the security of 〈C∗, R∗〉 would

follow from Theorem 21.

Recall the j-th step of the iteration: Starting from 〈Cj, Rj〉 commitment scheme on

idj(n)-bit identities, first the non-malleability strengthening step is applied to 〈Cj, Rj〉
26Both non-malleability strengthening (Theorem 21) and log-n trick (Theorem 24) incur O(m) =

poly(n) loss in the security where m is the number of concurrent interactions A participates in. Applying
the transformation r(n) = O(1) would have trivially implied security of 〈C∗, R∗〉.
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resulting in a scheme 〈Ĉj+1, R̂j+1〉 on idj(n)-bit identities. Then, the logn trick applied to

〈Ĉj+1, R̂j+1〉 resulting in the commitment scheme 〈Cj+1, Rj+1〉 on idj+1(n)-bit identities.

By Theorems 21, 24 we know that if 〈Cj, Rj〉 is one-one non-malleable then 〈Cj+1, Rj+1〉.

First, let us establish some notation for the ”advantage” of a certain adversary in breaking

the non-malleability of the intermediate commitment schemes.

Notation For j ∈ [r(n)] consider the commitment scheme 〈Cj, Rj〉. Consider some

(A,D) where A ∈ C∧Sj ,Sj and D ∈ P/poly let εjA,D(n) be a function N→ [0, 1] such that

for all n ∈ N,

εjA,D(n) = |Pr[Dn(emimA
〈Cj ,Rj〉(1

n, 0))]−Dn(emimA
〈Cj ,Rj〉(1

n, 1))| .

Let εjA(n) be the maximum of εjA,D(n) over all D ∈ P/poly. We refer to εjA(n) as

A’s advantage in breaking one-one non-malleability w.r.t. extraction of 〈Cj+1, Rj+1〉.

Furthermore, let εj(n) be the maximum of εjA(n) over all one-one adversary A ∈ C∧Sj ,Sj .

Similarly, we define such an advantage function for the commitment scheme 〈Ĉj, R̂j〉:

For A ∈ C∧Sj ,Sj participating in one left interaction with Ĉj and mj(n) = idj(n) right

interactions with R̂j, let ε̂jA(n) be the advantage of A in breaking the one-many non-

malleability of 〈Ĉj, R̂j〉.

We are interested in showing that εr(n)(n) is negligible. That is, the scheme

〈Cr(n), Rr(n)〉 is C∧
Sr(n),Sr(n)-one-one non-malleable commitment scheme on idr(n)(n) ≥ n-

bit identites. Since P/poly ⊆ C∧
Sr(n),Sr(n) , this also establishes the security of 〈Cr(n), Rr(n)〉

against poly-size adversaries. Towards bounding εr(n), we first bound εj+1(n) as a func-

tion of εj(n).

First, recall that by Theorem 24, for any A ∈ C∧Sj+1,Sj+1 that breaks the one-one

non-malleability of 〈Cj+1, Rj+1〉 with probability δ, there exists A′ ∈ C∧Sj+1,Sj+1 that

participates in one left and idj+1(n) right interactions and breaks the one-many non-
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malleability of 〈Ĉj+1, R̂j+1〉 with probability δ′ such that

δ ≤ idj+1(n) · δ′ . (5.25)

Therefore, we can upperbound εj+1(n) by,

εj+1(n) ≤ idj+1(n) · ε̂j+1(n) , (5.26)

Next, recall that in the proof of Theorem 21, we reduce to the security of primitives

inccuring a multiplicative loss in the advantage proportional to m – number of right

interactions that the one-many adversary takes part in. While relating ε̂j+1(n) with εj(n)

it suffices to restrict ourselves to adversaries that participate in one left and mj+1(n) right

interactions (like the adversary A′ above). Therefore,

ε̂j+1(n) ≤ c ·mj+1(n) · εj(n) , (5.27)

for some constant c = O(1) dictated by proof of Theorem 21. More importantly, we note

that ε̂j+1(n) blows up by only a factor of mj+1(n) = idj+1(n) over εj(n).

Combining Equations 5.27 and 5.26, we get

εj+1(n) ≤ c ·
(
mj+1(n)

)2 · εj(n) ≤ c ·
(
idj+1(n)

)2 · εj(n) ,

Therefore,

εj+1(n) ≤ cj ·
∏

0≤k≤j+1

(
idk(n)

)2 · ε0(n)

Plugging in j + 1 = r(n), we get

εr(n)(n) ≤ cr(n) ·
∏

0≤k≤r(n)

(
idk(n)

)2 · ε0(n)

Since, r(n) = O(log∗ n), c = O(1) and ε0(n) are negligible functions we conclude that

εr(n)(n) is negligible. This then establishes the security of 〈Ĉ∗, R̂∗〉. This now concludes

the proof of Theorem 25.
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5.8 Two-round Robust CCA-secure Commitment

In this section we consider a stronger notion of security for commitments – security

against adaptive chosen commitment attacks (CCA-security). CCA-security for commit-

ment schemes was defined in [82, 83] and is analogous to the extensively studied notion

of security under chosen-ciphertext attacks for encryption schemes. Roughly speaking,

a tag based commitment scheme is CCA-secure if the value committed using an tag id

remains hidden even if the receiver has access to an oracle that “breaks” any commitment

using any tag id′ 6= id, and returns the (unique) value committed inside the commitment.

We call such an oracle the committed-value oracle. CCA-security can be viewed as a

natural strengthening of concurrent non-malleability – roughly speaking, a commitment

scheme is concurrently non-malleable if it is CCA-secure with respect to restricted classes

of adversaries that only make a single parallel (non-adaptive) query to the oracle after

completing all interactions with the honest committer.

In this section, we show that the 2-round concurrent non-malleable commitment

scheme described in Section 5.7 is in fact also CCA-secure. Recall that the 2-round

scheme is constructed by iteratively applying the amplification transformation in Sec-

tion 5.5 to the basic schemes for short identities in Section 5.4. The basic schemes for

short identities are only one-one non-malleable which is amplified to concurrent non-

malleability for n-bit identities by a two-step amplification procedure: first by applying

the 2-round strengthening technique in Section 5.5.3 which strengthens the one-one non-

malleability to concurrent non-malleability while preserving the length of identities; then

applying the DDN log n trick (Section 5.6) to increase the length of identities while

loosing concurrent non-malleability. The above two-step amplification step is iteratively

applied for O(log∗ n) times resulting in a scheme for n-bit identities but is only one-one

non-malleable. To restore concurrent non-malleability the 2-round strengthening tech-
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nique is applied once more. Since the strengthening technique is the final step in the

construction, to show that the resulting scheme 〈C∗, R∗〉 is also CCA-secure, it is suf-

ficient to show that the strengthening technique described in Section 5.5.3 produces a

CCA-secure commitment scheme.

Below we first formally define the notion of CCA-secure commitments and then prove

that the strengthening technique of Section 5.5.3 produces a CCA-secure scheme.

5.8.1 CCA-secure Commitment w.r.t. Committed-Value Oracle

Committed-value Oracle. Let 〈C,R〉 be a tag-based perfectly binding commitment

scheme with t(n)-bit identities. Consider a non-uniform circuit family A = {An}n∈N. A

committed-value oracle O of 〈C,R〉 acts as follows in interaction with A: For security

parameter n, it participates with A in m-interactions acting as a honest receiver, using

identities of length t(n) which are adaptively chosen by A. At the end of each interaction,

O returns the unique value committed in the interaction if it exists, otherwise it returns

⊥. More precisely, O at the end of an interaction say with transcript c, computes the

function val on c and returns val(c) to A. Recall that val(c) equals the (unique) value

committed in c when c is a valid commitment, else val(c) is ⊥.

A tag-based commitment scheme 〈C,R〉 is CCA-secure w.r.t. committed-value oracle,

if the hiding property of the commitment scheme holds even with respect to adversaries

that have access to the committed-value oracle O. More precisely, let AO denote the

adversary A having access to the committed-value oracle O. Consider the following

probabilistic experiment IND(1n, b), where b ∈ {0, 1}: For security parameter n, AO

adaptively27 chooses a pair of challenge values (v0, v1) ∈ {0, 1}α – the values to be com-

mitted to – and an identity id of length t(n), and interacts with the honest committer

27the choice of values v0, v1 and the identity id can depend on the right interactions of A with the
committed value oracle.
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C to receive a commitment to vb using identity id. Finally, the experiment outputs the

output y of AO where y is replaced with ⊥ if A queries the oracle O on a commitment

using an identity which is same as the identity id of the commitment it receives. We will

denote the output of the above experiment by INDA
〈C,R〉(1

n, b).

Definition 34 (CCA-secure Commitments [83]) Let 〈C,R〉 be a tag-based commit-

ment scheme for t(n)-bit identities, and C a class of circuits. We say that 〈C,R〉 is C-

CCA-secure w.r.t. the committed-value oracle, if for every circuit family A = {An}n∈N ∈

C participating in m = poly(n) interactions with the oracle while sending/receiving com-

mitments to α = poly(n)-bit values, the following ensembles are computationally indis-

tinguishable: {
INDA

〈C,R〉(1
n, 0)

}
n∈N

;
{
INDA

〈C,R〉(1
n, 1)

}
n∈N

. (5.28)

As stated before and observed in [82, 83], CCA-security can be viewed as a natural

strengthening of concurrent non-malleability. The proof is standard and is omitted but

for completeness we state the theorem below.

Theorem 26 Let 〈C,R〉 be a commitment scheme and C be a class of circuits that

is closed under composition with P/poly. Then if 〈C,R〉 is C-CCA-secure w.r.t. the

committed-value oracle then it is C-concurrent non-malleable w.r.t. commitment.

5.8.2 k-Robustness w.r.t. Committed-value Oracle

In the literature, CCA-security is usually used together with another property – ro-

bustness which captures security against a man-in-the-middle adversary that participates

in an arbitrary left interaction with a limited number of rounds, while having access to

the committed-value oracle. Roughly speaking, 〈C,R〉 is k-robust if the joint outputs of
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every k-round interaction, with an adversary having access to O, can be simulated with-

out the oracle. In other words, having access to the oracle does not help the adversary

in participating in any k-round protocol much.

Definition 35 (Robustness) Let 〈C,R〉 be a tag based commitment scheme with t(n)-

bit identities, and C and C ′ two classes of circuits. We say that 〈C,R〉 is (C, C ′, k)-robust

w.r.t. the committed-value oracle, if there exists a simulator S ∈ C ′, such that, for every

adversary A ∈ C that participates with O in m = poly(n) interactions and for every

B ∈ C that participates in a k-round interaction with A the following ensembles are

computationally indistinguishable,

{
outputB,AO [B,AO(1n)]

}
n∈N

;
{
outputB,SA [B, SA

OS (1n)]
}
n∈N

, (5.29)

where outputB,AO [B,AO(1n)] denote the joint outputs of A and B in an interaction be-

tween them with uniformly and independently chosen random inputs to each machine and

OS is the oracle simulated by S for A.

Remark 16 In the standard definition of robustness [83], the probabilistic poly-time ad-

versaries A and B are given auxiliary inputs – private inputs y and z respectively and

common input x. Since, our adversaries our non-uniform we can assume that the values

x, y, z are instead hardcoded in A and B.

5.8.3 Proof of Robust CCA-security of 〈Ĉ, R̂〉

The commitment scheme 〈Ĉ, R̂〉 is a result of applying the strengthening technique

described in Section 5.5.3 to a 2-round over-extractable C∧SNM,SNM
one-one non-malleable

(w.r.t. extraction) commitment scheme 〈C,R〉. The strengthening technique addition-

ally relies on other basic building blocks described in Section 5.5.2. It was shown in
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Theorems 20,21,22 that 〈Ĉ, R̂〉 is over-extractable w.r.t. extractor ôENM and is C∧d4,d4
con-

current non-malleable w.r.t. extraction and commitment. Next, we will show that 〈Ĉ, R̂〉

is also C∧d4,d4
-CCA-secure and (C∧d4,d4

, C∧d2,SCRH
, κ)-robust for any polynomial κ.

Theorem 27 〈Ĉ, R̂〉 is C∧d4,d4
-CCA-secure and is (C∧d4,d4

, C∧d2,SCRH
, κ(n))-robust

w.r.t. committed-value oracle for any polynomial κ.

The proof of Theorem 27 consists of two parts: in Section 5.8.3 we first show that

〈Ĉ, R̂〉 is CCA-secure and in Section 5.8.3 we show that it is also robust.

Proof of CCA-security

Let us consider a fixed family of circuits A = {An}n∈N belonging to the circuit class

C∧d4,d4
that in the CCA-experiment IND(1n, b) interacts with a honest receiver C and has

oracle access to the committed-value oracle to which it makes m = poly(n) number of

queries. For convenience, we will refer to A’s interaction with C as the left interaction

and its interactions with O as right interactions. Then, to prove CCA-security, we need

to show that

{INDA
〈Ĉ,R̂〉(1

n, 0)}n∈N ≈c {INDA
〈Ĉ,R̂〉(1

n, 1)}n∈N . (5.30)

Proof Overview. At a very high level: the above indistinguishability follows from sim-

ilar proof as that of one-many non-malleability in Section 5.5.3. The proof goes through

similar hybrids {Hj}j as that for proving non-malleabilty in the proof of Theorems 21

and 22, with the following slight modification. In the definition of non-malleability, the

man-in-the-middle A interacts with the honest receivers on the right, whereas in that

for CCA security, A interacts with the committed-value oracle O on the right, who ad-

ditionally returns the value val committed in every right interaction as soon as it ends.

Therefore, in the hybrids for proving CCA-security, we need to simulate O for A. To

306



Two-round and Non-interactive Non-malleable Commitments Chapter 5

do so, we rely on the over-extractability of 〈Ĉ, R̂〉 by an extractor ôENM, and simulate

the committed-value oracle for A using the following extracted-value oracle — OE works

identically to the committed-value oracle except that at the end of an interaction, it runs

ôENM to extract a value from the commitment and returns it to A.

With the modified hybrids, to show CCA-security, we need to establish that i) OE

indeed simulates the committed-value oracle correctly, and ii) the indistinguishability of

the hybrids remains. For i), recall that the over-extractability of 〈Ĉ, R̂〉 only guarantees

that the value OE extracts is the correct committed value when a commitment is valid,

otherwise, ôENM might return an arbitrary value, instead of ⊥. To show that the latter

does not happen, (similar to the proof of non-malleability in Theorem 21 and 22,) we

maintain throughout all hybrids a “no-fake-witness” invariant, which would guarantee

that ôENM indeed returns ⊥ when a right commitment is invalid, except with negligible

probability. Hence, OE perfectly simulates the committed-value oracle with overwhelm-

ing probability.

Next, to show ii) the indistinguishability of the hybrids, recall that the extractor

ôENM on a commitment c works as follows: It returns ⊥ if the ZAP proof (in c) is not

accepting, and otherwise, it return the value v′ extracted from c1 using the extractor

oE1 of ECom1 — the complexity of ôENM is roughly the same as that of oE1. Observe

that running the extractor oE1 of ECom1, and hence ôENM, in the hybrids does not hurt

the security of any other components, namely, CRH, 〈C,R〉 and EComi’s for i > 1, since

ECom1 ≺ CRH, 〈C,R〉,ECom2,ECom4,ECom3, as depicted in Figure 5.2 (iii). Therefore,

if the indistinguishability of a pair of neighboring hybrids reduces to the security of

components other than ECom1, this indistinguishability remains intact even when running

ôENM inside. This is the case for all but the last two hybrids, whose indistinguishability

reduces to the hiding of ECom1 itself. To show their indistinguishability, (again similar

to the proof of non-malleability,) we simulate ôENM by extracting from the commitment
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c3 using the extractor oE3 for ECom3, and rely on the hiding of ECom1 against oE3. This

concludes the overview of the proof of CCA-security. Next, we provide a more formal

analysis.

Proof Sketch We consider a sequence of hybrids {Gj(b)}0≤j≤6 for b ∈ {0, 1} where

for every 0 ≤ j ≤ 6 and b ∈ {0, 1} the hybrid Gj(b) is identical to the hybrid Hj(b)

described in the Proof of Theorem 21 in Section 5.5.3 except one slight difference. For

its right interactions A in Gj(b) interacts with the extracted-value oracle OE instead of

the honest receiver as in Hj(b). Note that the hybrid G0(b) as described above emulates

an execution which is identical to the CCA-experiment IND(b)28 with A except A is

given access to the extracted-value oracle OE instead of the committed-value oracle. As

before, for notational convenience, we use font style x to denote a random variable in

the left interaction, and font style x̃i the corresponding random variable in the i’th right

interaction. Moreover, by INDA
Gj

(1n, b) we will denote the output of the hybrid Gj(b).

Then to show indistinguishability as described in Equation (5.30), we prove in Lemma 36

that the output of the neighbouring hybrids Gj(b) and Gj+1(b) are indistinguishable for

the same b. Furthermore, we show the output is statistically close in G6(1) and G5(0)

and the output of G0(b) is also statistically close to INDA
〈Ĉ,R̂〉(b), this then establishes

Equation (5.30).

Lemma 36 For b ∈ {0, 1} and 0 ≤ j ≤ 5, the following are computationally indistin-

guishable,

INDA
Gj

(b) ; INDA
Gj+1

(b) ,

and INDA
G0

(b) ≈s INDA
〈Ĉ,R̂〉(b) and INDA

G6
(b) ≈s INDA

G5
(0).

Towards proving the above lemma, we will also maintain the following “no-fake-

witness” invariant (similar to Invariant 1 in Section 5.5.3).

28We ignore the security parameter for notational convenience
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Invariant 3 (No-fake-witness invariant) In Gj(b), the probability that there exists a

right interaction i that is accepting and A commits to a fake witness in it is negligible.

Showing the no-fake-witness invariant in every hybrid enforces A to prove the honest

statement in every accepting right interaction k. That is, for every accepting right

interaction k, A proves that the underlying commitment c̃1k is valid. Then, due to the

over-extraction property of the extractor oE1, it follows that A in its interaction with

the extracted-value oracle in fact receives the value actually committed inside the right

commitment c̃k. Therefore A’s interaction with the extracted-value oracle is identical to

its interaction with the committed-value oracle, except with negligible probability. This

fact will come in handy to show Lemma 36.

In fact, as in the proof of Theorems 21 and 22, we maintain the following, easier to

prove, invariant which from an argument similar to the one made in the proof of Claim 10,

implies Invariant 3.

Invariant 4 In Gj(b), the probability that there exists a right interaction i that is ac-

cepting and the value extracted from the non-malleable commitment (ãNMi, b̃NMi) in this

interaction is a fake witness is negligible.

Therefore to establish the proof of CCA-security, we will prove Lemma 36 and show

that Invariant 4 holds in all hybrids.

First, we show that Invariant 4 holds in G0(b). In fact, as in Claim 11, we show that

the value extracted from the ECom2 commitment c̃2k in any right interaction k is not

a collision of the hash function h̃k where A interacts with OE for its right interactions.

This then implies Invariant 4 holds. At a high level this readily follows from the fact that

the collision-resistance of the hash function is more secure than both ECom2 and ECom1,

h � ECom2,ECom1 (see Figure 5.2 (iii)). This is because if in some right interaction k,

A commits to a collision of h̃k using ECom2, then we can construct a non-uniform circuit
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B′ that violates the collision-resistance of h̃k by extracting from c̃2k. More precisely, B′

behaves identically to the adversary B in the proof of Claim 11 except that for all its

m = poly(n) right interactions with A, B′ internally simulates the oracle OE by running

the extractor oE1 whereas B just acts as a honest receiver. Therefore, the size of B′ blows

up by an additive factor of m · size(oE1) over the size of B. Since size of B is at most

poly(SCRH) and the size of oE1 is also at most poly(SCRH), we have that B′ also has size

poly(SCRH), that is,

size(B′) ≤ size(B) +m · size(oE1)

≤ size(A) + size(oE2) + poly(n) +m · size(oE1)

≤ poly(d4) + poly(S1) + poly(SCRH)

< poly(SCRH) (since, SCRH >> S1, d4 from Equation (5.9)).

Therefore, B ∈ C∧SCRH,SCRH
and then due to the CSCRH

-collision-resistance of H we have that

Invariant 4 holds in G0(b) as formalized in the following claim,

Claim 25 For b ∈ {0, 1} and for every right interaction i in G0(b), the probability that

i is accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

We recall that the only difference between showing Invariant 4 holds in G0(b) from

the proof of Claim 11 was that the adversary B′ (defined similarly to adversary B from

Claim 11) additionally runs the extractor oE1 to simulate the extracted value oracle

for A for its right interactions. In fact one can show Invariant 4 holds in hybrids

G1(b) through G5(b) via the same modification to adversary constructed in the proof

of Claims 12, 14, 16, 18 and 20 respectively. Since, ECom1 ≺ 〈C,R〉,ZAP,EComi (i > 1),

it can be observed that running the extractor oE1 of (ECom1,EOpen1) does not blow up

the size or depth of the modified adversary much still allowing us to reach a contradic-

tion as in the above Claims from Section 5.5.3. Furthermore, G6(b) is in fact identical to
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G5(0) (as H5(0) identical to H6(b)), therefore Invariant 4 also holds in G6(b). Therefore

essentially by the same proofs in Section 5.5.3, we conclude that Invariant 4 does hold in

all hybrids Gj(b). This is captured in the following Claim and we skip a formal proof.

Claim 26 For b ∈ {0, 1}, 0 ≤ j ≤ 6 and for every right interaction i in Gj(b), the

probability that i is accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness,

is negligible.

Next we move onto showing Lemma 36. First, given Claim 25 holds, we show that

the output of hybrid G0(b) is statistically close to the CCA-experiment IND(b) for any

b ∈ {0, 1}.

Claim 27 For b ∈ {0, 1}, the following holds

INDA
G0

(b) ≈s INDA
〈Ĉ,R̂〉(b) .

Note that due to Claim 25 and also because Invariant 4 implies Invariant 3, we know that

A in each of its (accepting) right interactions, with the oracle OE, does not commit to a

fake witness, except with negligible probability. Then by the soundness of ZAP, in every

accepting right interaction k, A proves with overwhelming probability that the underlying

commitment c̃1k is well-formed . Therefore by the over-extractability of ECom1 w.r.t.

oE1, we know that the extracted value oracle OE (implemented using oE1) in fact returns

val(c̃1k) = val(c̃k). For interactions k that are not accepting, both val and OE return

⊥. Therefore for every right interaction k, the values returned by the extracted-value

oracle OE agree with val(ck), the values returned by the committed-value oracle O except

with negligible probability. Therefore, interaction of A with the extracted-value oracle

OE is statistically close to its interaction with the committed-value oracle O implying

Claim 27.
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Next we show that the output of G0(b) is indistinguishable from the output of G1(b),

that is, INDA
G0

(b) and INDA
G1

(b) are indistinguishable. As in Claim 13, we construct

an adversary B′ that violates the hiding of ECom2, that is, B′ works identically to the

adversary B in the proof of Claim 13 except Step 4 and 5. The adversary B (in Claim 13)

waits for A to terminate and then in its Step 4 runs oE1 to obtain ṽi
′ for every successful

right interaction i and sets ṽi
′ = ⊥ for every unsuccessful right interaction i. Then

in Step 5, B runs the distinguisher D on the view of A and right extracted values ṽi
′

and returns the output of D. However, here in the CCA case, A expects to receive

the extracted values and that too as soon as a right interaction ends. Therefore, B′

runs the extractor oE1 to obtain ṽi
′ as soon as the i-th interaction ends and returns ṽi

′

to A if i is an accepting right interaction. Otherwise, it returns ⊥. Then it runs the

distinguisher D on the output y of A which is carefully replaced with ⊥ if any of A’s right

interactions uses the same identity as its left interaction. The former change of running

the extractor oE1 to obtain ṽi
′ is similar to the modification made while proving that

Invariant 4 holds in Gj(b) (Claim 26) and the later change is merely a syntactic change

required to be consistent with the IND experiment. Note that this change in the code of

B′ does not blow up its depth significantly (over B). Since depth of B is at most poly(d2)

and oE1 ∈ C∧d2,SCRH
, we have that dep(B′) is at most poly(d2). Then the C∨d2,S2

-hiding of

ECom2 implies that the output of G0(b) and G1(b) are indistinguishable as formalized in

the following claim,

Claim 28 For b ∈ {0, 1}, the following are indistinguishable,

INDA
G0

(b); INDA
G1

(b) .

We recall that the only difference in showing indistinguishability of INDG0(b) and

INDG1(b) from the proof of Claim 13 was that the adversary B′ (defined similarly to

adversary B from Claim 13) additionally runs the extractor oE1 to simulate the extracted
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value oracle for A for its right interactions and runs the distinguisher D on the output of A

instead of running D on the view of A and the values extracted from its right interactions.

In fact one can show that INDG1(b) through INDG5(b) are all indistinguishable via the same

modification to adversary constructed in the proof of Claims 15, 17, 19, 21 respectively.

Since, ECom1 ≺ 〈C,R〉,ZAP,EComi (i > 1), it can be observed that running the extractor

oE1 of (ECom1,EOpen1) does not blow up the size or depth of the modified adversary

much still allowing us to reach a contradiction as in the above Claims from Section 5.5.3.

Claim 29 For j ∈ [4], b ∈ {0, 1} the following holds

INDA
Gi

(b) ≈c INDA
Gi+1

(b) .

One would like to extend the above arugment to even argue the indistinguishability

of INDG5(b) and INDG6(b) based on the proof of Claim 23 which reduces to the hiding of

ECom1. However, running oE1 ∈ C∧d2,SCRH
on the right blow up the size and depth of B′

significantly, that is, size(B′) ≥ size(oE1) = poly(SCRH) >> S1 and similarly dep(B′) >>

d1. Since B′ /∈ C∨d1,S1
, it does not violate the C∨d1,S1

-hiding of ECom1. To fix this issue we

consider two intermediate hybrids G′5(b) and G′6(b) which are statistically close to G5(b)

and G6(b) respectively and then argue how proof of Claim 23 can be extended to argue

the indistinguishability of INDG5(b) and INDG6(b).

Hybrid G′j(b) for 5 ≤ j ≤ 6: The hybrids G′j(b) are identical to Gj(b) for 5 ≤ j ≤ 6

except the implementation of the extracted-value oracle. Here, the extracted-value oracle

behaves as before except that for an accepting right interaction i, the extractor oE3 is

run on the underlying c̃3i commitment to extract the value (ṽi
′, d̃1i

′
) and the value ṽi

′ is

returned.

Given that Invariant 4 holds in Gj(b) (Claim 26), A in each of its (accepting) inter-

action with the oracle OE does not commit to the fake witness, except with negligible
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probability. Therefore, by the soundness of ZAP, in every accepting right interaction k,

A proves that the underlying commitments c̃1k and c̃3k are well-formed and c̃3k commits

to a decommitment of c̃1k . Then due to the over-extractability of ECom3 w.r.t. oE3 we

know that the value (ṽk
′, d̃1k

′
) extracted by oE3 is in fact the decommitment of c̃1k which

implies that ṽk
′ is in fact the value committed inside ˜c1k. Since the commitment ˜c1k is

also well-formed (as described above), the over-extractability of ECom1 w.r.t. oE1 implies

that the value extracted from ˜c1k is also equal to val ˜c1k except with negligible probabilty.

Therefore, the value ṽk
′ (extracted by oE3) is equal to the value extracted by oE1 in every

right interaction which implies that the view of A in hybrids Gj(b) and G′j(b) remains

identical except with negligible probability. Therefore the following follow,

Claim 30 For b ∈ {0, 1} and 5 ≤ j ≤ 6, the following holds,

INDA
Gj

(b) ≈s INDA
G′j

(b) .

Next we show that INDA
G′5

(b) and INDA
G′6

(b) are indistinguishable. This follows from

the fact that ECom1 is more secure than ECom3, ECom1 � ECom3 (see Figure 5.2 (iii)).

More precisely we construct an adversary B′ that violates the hiding of ECom1 where B′

works identically to the adversary B in the proof of Claim 23 except a slight difference.

Here, B′ to simulate the extracted-value oracle runs the extractor oE3 to obtain ṽi
′ as

soon as the i-th interaction ends unlike B which runs the extractor oE3 after all the

right interactions end. This change in the code of B′ does not blow up its size and

depth significantly (over B) and therefore B′ (like B) falls in the class C∨d1,S1
. Then the

C∨d1,S1
-hiding of ECom1 implies that the output of G′5(b) and G′6(b) are indistinguishable.

Claim 31 For b ∈ {0, 1}, the following are indistinguishable,

INDA
G′5

(b); INDA
G′6

(b) .
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Then combining Claims 27, 28,29,30 and 31 and observing that INDG5(0) is identical

to INDG6(b) (as G5(0) is identical to G6(b) concludes the proof of Lemma 36 and hence

the proof of CCA-security of 〈Ĉ, R̂〉.

Proof of Robustness

To show that 〈Ĉ, R̂〉 is (C∧d4,d4
, C∧d2,SCRH

, κ(n))-robust, we need to show that for every

k ≤ κ(n) there exists a simulator S ∈ C∧d2,SCRH
such that for any A ∈ C∧d4,d4

and for any

B ∈ C∧d4,d4
that participates in a k-round interaction, interaction between B and A where

A has access to the committed value oracle O is indistinguishable from that between

B and S. In other words, S is able to simulate the committed value oracle O for A

when its interacting with an arbitrary B. The construction of the simulator S is very

similar to the hybrid G0(b) as described in the proof of CCA-security in Section 5.8.3.

More precisely, given k and a circuit A ∈ C∧d4,d4
, S externally interacts with an arbitrary

k-round circuit B and internally simulates an execution between B and A by forwarding

messages from B to A. For the right interactions, S internally simulates the extracted

value oracle OE for A as described in Section 5.8.3.

To conclude the proof of robustness we need to show two things: (1) S ∈ C∧d2,SCRH
and

(2) S indeed is able to simulate the committed-value oracle O for A. First, it is easy to

see that S runs A ∈ C∧d4,d4
and simulates the extracted-value oracle OE for poly(m) right

interactions. As OE can be simulated by a circuit in C∧d2,SCRH
we have that S ∈ C∧d2,SCRH

.

Second, by an argument simular to the one made in the Proof of Claim 25 one can show

that due to collision resistance of H A does not commit to a fake witness in any of its

right interactions. Then, as in Claim 27 we can conclude that the view of A with the

committed-value oracle is statistically close to the view of A with the extracted-value
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oracle (as simulated by S). This then concludes the proof of robustness and the proof of

Theorem 27.

On the robustness of the scheme 〈C∗, R∗〉. We claim that the final commitment

scheme 〈C∗, R∗〉 is (P/poly, C ′, κ(n))-robust w.r.t the committed-value oracle where C ′ is

the set of all non-uniform circuits whose size is upperbounded by poly(2(logn)c) for a suf-

ficiently large constant c. In other words, 〈C∗, R∗〉 is robust w.r.t. quasi-polynomial time

simulation. Recall that the commitment 〈C∗, R∗〉 is constructed by repeatedly applying

the transformations presented in Sections 5.5.3 and 5.6 relying on a L = O(log∗ n) hier-

archy p1 << . . . << pL of non-decreasing functions as discussed in Section 5.7.2 where

each level pi = 2n
ε
i for an appropriate security parameter ni. Furthermore recall that the

final step in the construction of 〈C∗, R∗〉 is applying the strengthening technique which

relies on a hierarchy of functions as described in Equation (5.9). For this last step the

corresponding functions d4, . . . , d2, . . . , SCRH are instantiated from the first few functions

in the hierarchy namely p1, . . . , p4, . . . , p7. Setting nis as discussed in Section 5.7.2 will

ensure that d2 and SCRH are both than poly(2(logn)c)29 for some sufficiently large constant

c. Hence, the simulator for 〈C∗, R∗〉 belongs to the class C ′ as described above.

5.9 Non-interactive Concurrent Non-Malleable and

CCA-secure Commitment against Uniform Ad-

versaries

In this section, we show that when restricting attention to uniform attackers, the

first message in our 2-round concurrent non-malleable commitment scheme constructed

29Setting n0 to, say, (log n)2 in Section 5.7.2.
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in Section 5.7 can be removed (Theorem ??). Recall that these 2-round protocols are

obtained by iteratively applying the amplification transformation in Section 5.5 to the

basic schemes for short identities in Section 5.4. While the basic schemes are in fact

non-interactive, the amplification technique, however, produces schemes with 2 rounds.

Our amplification technique involves two steps: Applying the DDN log n trick, which

is actually round preserving, and the security strengthening step that lifts one-one non-

malleability w.r.t. extraction to concurrent non-malleability w.r.t. extraction and com-

mitment, while preserving the length of identities. In the security strengthening step, the

output scheme has two rounds, where the first message is sent by the receiver and con-

tains the index of a randomly sampled function h from a family of non-uniform CRHFs,

the first message of a ZAP proof, and the first message of the input non-malleable com-

mitment scheme (if there is any). Therefore, to remove the first message, our idea is to

simply replace h for a fixed uniform CRHF, and replace ZAP with a NIWI, so that the

transformation when applied to a non-interactive input commitment scheme, produces

a non-interactive output scheme. The only drawback is that with the use of uniform

CRHF, the output scheme is only secure against uniform adversaries. We also show that

the output scheme of the modified strengthening technique also satisfies stronger notions

of CCA-security and robustness when adversaries are restricted to be uniform Turning

machines.

Below, we first adapt the notions of non-malleability w.r.t. extraction and commit-

ment, and robust CCA-security to the setting of uniform attackers, and then describe

the new amplification step.
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5.9.1 Non-malleability against Uniform Adversaries

The notion of non-malleability w.r.t. commitment (or w.r.t. extraction) against uni-

form attackers is defined identically to that against non-uniform attackers as in Def-

inition 29 (or Definition 30 resp.) in Section 5.2.5. To make the distinction explict

between uniform and non-uniform we let uMIMA
〈C,R〉(1

n, b) represent the MIM experi-

ment with a uniform adversary A (hence uMIM). We further denote by umimA
〈C,R〉(1

n, b)

(or uemimA
〈C,R〉(1

n, b) resp.) the random variable describing the view of A together with

the values committed in (or extracted from resp.) the right interactions.

Definition 36 (Non-malleability) A tag-based commitment scheme 〈C,R〉 is said to

be concurrent T -non-malleable against uniform attackers if for every poly(T )-time uni-

form Turing machine A participating in m = poly(n) while sending/receiving commit-

ments to α = poly(n)-bit values, concurrent interactions, the following ensembles are

computationally indistinguishable:

{
umimA

〈C,R〉(1
n, 0)

}
n∈N

;
{
umimA

〈C,R〉(1
n, 1)

}
n∈N

.

Moreover, it is said to be concurrent T -non-malleable w.r.t. extraction against uniform

attackers, if the above indistinguishability holds between uemimA
〈C,R〉(1

n, 0) and

uemimA
〈C,R〉(1

n, 1).

5.9.2 Robust CCA-security against Uniform Adversaries

Next we define the notions of CCA-security and Robustness against uniform ad-

vesaries. The definition are identical to the non-uniform case as defined in Definitions 34

and 35 except that A in the CCA definition is a uniform Turing machine and all A, B

and S in the robustness definition are uniform Turing machines. For completness we

define them below.
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Definition 37 We say that 〈C,R〉 is T -CCA-secure w.r.t. the committed-value oracle

against uniform attackers if Equation (5.28) holds for all poly(T )-time uniform Turing

machines A that participate in m = poly(n) queries to the oracle O.

Definition 38 We say that 〈C,R〉 is (T, T ′, k)-robust w.r.t. the committed-value oracle

against uniform attackers if there exists poly(T ′)-time uniform Turing machine S such

that Equation (5.29) holds for all poly(T )-time uniform Turning machines A and B which

participates in a k-round interaction.

5.9.3 1-Message Security Strengthening Technique

We now present our one-message transformation for security strengthening. For some

hierarchy of non-decreasing functions on N satisfying,

n << d4 << d3 << d1 << d2 << S2 << S1 << SCRH <<

S ′CRH << SNM << S ′NM << S3 << S4 << S ′4 << S∗ ,

(5.31)

the transformation relies on the following building blocks:

1. (oNICom, oNIOpen) is a non-interactive, tag-based commitment scheme for t(n)-bit

identities that is S ′NM-over-extractable by extractor oENI. Furthermore, 〈C,R〉 is

one-one SNM-non-malleable w.r.t. extraction by oENI against uniform adversaries.

2. {(EComi,EOpeni)}1≤i≤4 are identical to that in Section 5.5.3.

3. NIWI is a non-interactive CS∗-witness-indistinguishable proof.

4. H = {hn}n is a SCRH-uniform-collision resistant hash function such that there exists

a poly(S ′CRH)-time TM which finds collisions for H with probability 1.

Using the above mentioned building blocks, the transformation produces the scheme

(cNICom, cNIOpen) which is non-interactive, tag-based commitment scheme for t(n)-bit
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identities that is SCRH-over-extractable w.r.t. an extractor ôENI. Furthermore,

(cNICom, cNIOpen) is concurrent d4-non-malleable w.r.t. extraction by ôENI and concur-

rent d4-non-malleable (w.r.t. commitment) against uniform attackers.

The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity

id ∈ {0, 1}t(n) as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}n which

is the value to be committed.

- Commit stage:

1. Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the

corresponding decommitment string.

2. Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using ECom3.

3. Ĉ computes a commitment c2 to a random string r1 using ECom2.

4. Ĉ computes a commitment cNM to a random string r3 using oNICom using

identity id.

5. Ĉ computes a commitment c4 to a random string r3 using ECom4.

6. Ĉ computes the NIWI proof π to prove the following OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3

commits to a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2) such that c2 is a commitment to s̄, c4

commits to a decommitment of c2, cNM commits to a decommitment of

c4 and Hn(x1) = Hn(x2).

Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — de-

commitment of c1 to v — as the witness.

7. Ĉ sends (c1, c2, c3, c4, cNM, π) as commitment to R̂ and keeps the decommit-

ment (v, d1) private.
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- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the NIWI proof is

accepting and if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

- Extraction - Extractor ôENI:

On receiving a commitment c and identity id, ôENI first verifies the NIWI proof and

outputs ⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1

and outputs the extracted value v′.

Theorem 28 〈Ĉ, R̂〉 is a non-interactive, (d2, SCRH)-over-extractable, perfectly

binding commitment scheme for identities of length t(n). Furthermore, it is concurrent

d4-non-malleable (w.r.t. commitment) and non-malleable w.r.t. extraction by extractor

ôENM against uniform adversaries.

It is easy to see that 〈Ĉ, R̂〉 is perfectly binding and (d2, SCRH)-over-extractable. The non-

malleability properties follow syntactically from the same proof as that of Theorem 21

and 22 w.r.t. the 2-round security strengthening technique in Section 5.5.3. The only

slight difference is that when reducing to the collision resistance of the hash function,

and the non-malleability w.r.t. extraction of the input commitment scheme, we need to

ensure that the reduction is a uniform Turing machine, which can be done easily. More

specifically, in Section 5.5.3,

- we rely on the collision resistance of hash functions in order to show that Invariant 2

holds in hybrid H0(b) (Claim 11), and

- we rely on the non-malleability w.r.t. extraction of the input commitment scheme

in order to show that Invariant 2 holds in H3(b) (Claim 16) and that the emim

random variable is indistinguishable in H2(b) and H3(b) (Claim 17).

321



Two-round and Non-interactive Non-malleable Commitments Chapter 5

We now observe that the reductions presented in the proof of Claim 11, 16 and 17 can

be made uniform. First, these reductions run internally 1) the adversary, 2) the extractors

for different commitment schemes, 3) possibly a strategy for finding collisions (for the

second bullet point), and some other computations, all of which can be implemented

using uniform Turing machines. Furthermore, these reductions have one value hardwired

in — the index k of a “special” right interaction. When adapting to the uniform setting,

since there are only m = poly(n) number of right interactions, instead of hard-wiring

k, the reduction can simply guess k at random, at the cost of losing a factor of m in

its advantage. Therefore, by essentially the same proof, we can show the same in the

uniform setting. We hence omit the complete proof.

Robust CCA-security. We next show that the commitment scheme 〈Ĉ, R̂〉 is also

robust-CCA secure against uniform adversaries.

Theorem 29 〈Ĉ, R̂〉 is d4-CCA-secure and (d4, SCRH, κ(n))-robust w.r.t. committed value

oracle against uniform adversaries.

The proof of d4-CCA security is identical to the proof of the CCA-security w.r.t. the

2-round strengthening technique as described in Section 5.8.3, except a slight difference.

The difference is identical as in the above proof of non-malleability against uniform

adversaries, that is, to deal with the uniform collision resistance of hash function and

uniform one-one non-malleability w.r.t. extraction of the input commitment scheme As

observed earlier, we need to ensure that the reductions are uniform Turning machines

which can be easily done as described above. The proof of (d4, SCRH, κ(n))-robustness also

follows from the proof of robustness described in Section 5.8.3 except that the simulator

S also needs to be a uniform Turing machine which also by the same argument can be
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made uniform. Therefore, by essentially the same proof as of Theorem 27, we can show

that 〈Ĉ, R̂〉 is robust-CCA secure and omit a full proof.

5.10 Proof of Theorem 23

Proof: Recall that we want to show the following,

1. If 〈Ĉ, R̂〉 is C-one-many non-malleable then it is C-concurrent non-malleable.

2. If 〈Ĉ, R̂〉 is C-one-many non-malleable w.r.t. extraction (by extractor ôENM) then

it is C-concurrent non-malleable w.r.t. extraction (by ôENM).

We begin by proving the second implication, that is, C-one-many non-malleability

w.r.t. extraction implies C-concurrent non-malleability w.r.t. extraction. Let us assume

for contradiction that there exists a non-uniform adversary A = {An}n∈N ∈ C that

participates in m = poly(n) concurrent interactions while sending/receiving commitments

to α = poly(n)-bit values, a non-uniform distinugisher D = {Dn}n∈N ∈ P/poly, and a

polynomial p(·) such that for infinitely many n ∈ N,

∣∣∣Pr[Dn(emimA
〈Ĉ,R̂〉(1

n, 0))]− Pr[Dn(emimA
〈Ĉ,R̂〉(1

n, 1))]
∣∣∣ > 1

p(n)
. (5.32)

Fix some generic n for which this happens. We next consider a sequence of hybrid

MIM experiments {Hi}0≤i≤m−1. In the honest MIM experiment MIMA
〈Ĉ,R̂〉(b) (for b ∈

{0, 1}), A participates in m right interactions with R̂ and m left interactions with Ĉ.

Recall that in all left interactions i ∈ [m], A first chooses the identity idi and challenge

values (v0
i , v

1
i ), and interacts with Ĉ to receive a commitment to value vbi with identity idi.

The hybrids Hi’s we consider are identical to the MIM experiment MIMA
〈Ĉ,R̂〉(0) except

that for all the left interactions j ≤ i in Hi, A receives a commitment to the value v1
j

instead of commitments to v0
j . We let emimA

Hi
denote the random variable that describes
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the view of A and the values extracted from the right interactions in Hi by extractor

ôENM. It is easy to see that H0 is identical to MIM experiment MIMA
〈Ĉ,R̂〉(0) (hence

emimA
〈Ĉ,R̂〉(0) = emimA

H0
) and Hm is identical to the MIM experiment MIMA

〈Ĉ,R̂〉(1) (hence

emimA
〈Ĉ,R̂〉(1) = emimA

Hm). By a standard hybrid argument, following Equation 5.32, there

exists some i ∈ {0, . . . ,m− 1} such that,∣∣∣Pr[Dn(emimA
Hi

)]− Pr[Dn(emimA
Hi+1

)]
∣∣∣ > 1

p(n) ·m
. (5.33)

Given this, we construct a one-many non-uniform adversary Ã = {Ãn}n∈N for 〈Ĉ, R̂〉

and a distinguisher D̃ = {D̃n}n∈N that violate one-many non-malleability w.r.t. extrac-

tion of 〈Ĉ, R̂〉 with advantage 1/(p(n) ·m(n)). For n ∈ N, Ãn with index i (as defined

above) hard-wired in it, participates in one left interaction with Ĉ and m right inter-

actions with R̂ and internally emulates an execution of Hi for An as follows: all right

interactions of An are externally forwarded to R̂, the i-th left interaction of An is exter-

nally forwarded to Ĉ, and for all remaining left interactions Ã internally acts as a honest

committer emulating hybrid Hi. More precisely, for the i-th left interaction, An forwards

the identity idi and values (v0
i , v

1
i ) sent by An to Ĉ and receives a commitment to either

v0
i or v1

i , which Ãn forwards to An as its i-th left commitment. The distinguisher D̃n

on input emimÃ
〈Ĉ,R̂〉(b), that is, the view view of Ãn and the values u′1, . . . , u

′
m extracted

from the right interactions, runs the function reconstruct that reconstructs the view view′

of A in emulation by Ã and sets ũk = u′k iff A did not copy the identity of any of the

m left interactions, and ⊥ otherwise. reconstruct finally outputs ũ1, . . . , ũm, view
′. By

construction it follows that,

reconstruct(emimÃ
〈Ĉ,R̂〉(0)) = emimA

Hi
; reconstruct(emimÃ

〈Ĉ,R̂〉(1)) = emimA
Hi+1

.

The distinguisher D̃n runs the distinguisherDn on ũ1, . . . , ũm, view
′ and outputs whatever

Dn outputs. Then by Equation 5.33 it follows that the pair (Ã, D̃) breaks the one-many
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non-malleability of 〈Ĉ, R̂〉 w.r.t. extraction with advantage 1/(p(n) · m(n)). To arrive

at a contradiction, we need to show that Ã and D̃ belong to appropriate circuit classes.

Firstly, note that Ã internally runs A and the rest of the computation can be done in

poly(n)-time. Therefore, the size/depth of Ã blows up only by an additive poly(n) factor

over the size/depth of A. Secondly, D̃ computes the reconstruct function, runs D and

the rest of the computation can be done in poly-time. Note that the reconstruct function

is in fact computable in poly-time. Therefore, the size/depth of Ã blows up only by an

additive poly(n) factor over the size/depth of A. Since A ∈ C and D ∈ P/poly and both

C and P/poly are closed under composition with P/poly, we conclude that Ã ∈ C and

D̃ ∈ P/poly. This contradicts the one-many non-malleability w.r.t. extraction of 〈Ĉ, R̂〉.

The proof of concurrent non-malleability w.r.t. commitment follows syntactically from

the proof of non-malleability w.r.t. extraction except that we consider the random variable

mimA
〈Ĉ,R̂〉 instead of emimA

〈Ĉ,R̂〉. We skip the formal proof.
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