
Lawrence Berkeley National Laboratory
LBL Publications

Title
Tuning the Coarse Space Construction in a Spectral AMG Solver

Permalink
https://escholarship.org/uc/item/3hb1k6wt

Authors
Marques, Osni
Druinsky, Alex
Li, Xiaoye S
et al.

Publication Date
2016

DOI
10.1016/j.procs.2016.05.311

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3hb1k6wt
https://escholarship.org/uc/item/3hb1k6wt#author
https://escholarship.org
http://www.cdlib.org/

doi: 10.1016/j.procs.2016.05.311

Tuning the Coarse Space Construction

in a Spectral AMG Solver∗

Osni Marques1, Alex Druinsky1, Xiaoye S. Li1, Andrew T. Barker2, Panayot
Vassilevski2, and Delyan Kalchev3

1 Lawrence Berkeley National Laboratory, [oamarques,adruinsky,xsli]@lbl.gov
2 Lawrence Livermore National Laboratory, [barker29,vassilevski1]@llnl.gov

3 University of Colorado Boulder, delyank@gmail.com

Abstract
In this paper, we discuss strategies for computing subsets of eigenvectors of matrices correspond-
ing to subdomains of finite element meshes achieving compromise between two contradicting
goals. The subset of eigenvectors is required in the construction of coarse spaces used in al-
gebraic multigrid methods (AMG) as well as in certain domain decomposition (DD) methods.
The quality of the coarse spaces depends on the number of eigenvectors, which improves the
approximation properties of the coarse space and impacts the overall performance and con-
vergence of the associated AMG or DD algorithms. However, a large number of eigenvectors
affects negatively the sparsity of the corresponding coarse matrices, which can become fairly
dense. The sparsity of the coarse matrices can be controlled to a certain extent by the size
of the subdomains (union of finite elements) referred to as agglomerates. If the size of the
agglomerates is too large, then the cost of the eigensolvers increases and eventually can become
unacceptable for the purpose of constructing the AMG or DD solvers. This paper investigates
strategies to optimize the solution of the partial eigenproblems of interest. In particular, we
examine direct and iterative eigensolvers for computing those subsets. Our experiments with a
well-known model of an oil-reservoir simulation benchmark indicate that iterative eigensolvers
can lead to significant improvements in the overall performance of an AMG solver that exploits
such spectral construction of coarse spaces.

Keywords: spectral algebraic multigrid, interpolator, eigenvectors

∗This material is based upon work supported by the US Department of Energy (DOE), Office of Science, Office
of Advanced Scientific Computing Research (ASCR), Applied Mathematics program under contract number
DE-AC02-05CH11231. This work was performed under the auspices of the DOE under Contract DE-AC52-
07NA27344, and used resources of the National Energy Research Scientific Computing Center, which is supported
by ASCR under contract DE-AC02-05CH11231.

Procedia Computer Science

Volume 80, 2016, Pages 212–221

ICCS 2016. The International Conference on Computational
Science

212 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.311&domain=pdf

1 Introduction

Multigrid is probably the only class of algorithms suitable for solving extreme-scale problems
thanks to its potential for optimal computational complexity. This is certainly the case when
we consider problems arising from the discretization of elliptic partial differential equations
(PDEs) with some extensions to Darcy and Maxwell equations. When targeting unstructured
meshes, i.e., problems for which we do not have access to a hierarchy of discretizations, the
choice is to consider algebraic versions of multigrid, such as classical AMG and aggregation-
based AMG, which rely only on the matrix problem to generate the hierarchy needed in the
multilevel algorithm.

To make the methods more robust and handle problems with high variation and anisotropy
of the PDE coefficients, one may use AMG methods that utilize additional (fine-grid only)
problem information, such as the topology of the mesh; for finite element problems one may
utilize the local element matrices. These AMG methods are referred to as element-based AMG,
or AMGe for short. In this paper, we are concerned with the Smoothed Aggregation Spectral
Element Agglomeration Algebraic Multigrid algorithm, in the form introduced in Brezina and
Vassilevski [5], for solving difficult elliptic PDEs with variable coefficients that can be resolved
only using a fine-grained discretization. We focus on the two-level variant of the method,
implemented in the serial C++ code SAAMGe [11, 12]. The method requires the computation of
subsets of eigenvectors on subdomains (union of fine-grid elements) of the fine discretization
that are then used for constructing the coarse-grid. More specifically, we are interested in a
portion of the lower part of the spectrum of these local subproblems. The computed eigenvectors
are used to form the coarse-to-fine interpolation matrix (prolongator). In many cases, these
preliminary computations are very time consuming, in part because the dimensions of the
subsets are difficult to determine a priori. Therefore, speeding up these computations can have
a significant impact in the overall performance of the multigrid solver. (The impact of the
coarse-grid solver on the performance of the algorithm has been studied in [8].)

Our main contributions are the following. First, we examine different strategies for com-
puting eigenvectors in the context of SAAMGe, using direct and iterative algorithms. Second,
we examine alternatives to determine appropriate dimensions for the subsets of eigenvectors in
iterative algorithms which is needed to provide guidance for optimizing the setup while main-
taining the quality of the coarse spaces. The rest of the paper is organized as follows. We start
by explaining how the SAAMGe algorithm works, and the mechanism for building a prolongator
operator from subsets of eigenvectors on subdomains of a fine mesh (Section 2). We discuss
the characteristics of the eigenvalue problems to be solved, algorithms that can be used for
that purpose, and observations that motivated our quest for a strategy to adaptively compute
eigenvectors of those subdomains (Section 3). We then discuss the experiments that we have
performed, and the results for the different eigensolution strategies (Section 4). Finally, we
summarize our conclusions and potential future work (Section 5).

2 Smoothed Aggregation Spectral Element-Based Alge-
braic Multigrid

In this section, we outline briefly the AMG method that we consider. We are given a symmetric
positive definite matrix A that is assembled from local element matrices {Aτ}, where τ runs
over the elements from a finite element mesh Th. The local matrices are symmetric but can
be semi-definite. We have vTAv =

∑
τ∈Th

vT
τ Aτvτ , for any vector v, and vτ = v|τ is the

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

213

restriction of v to the element τ viewed as a set of degrees of freedom (DOF). For example,
if τ is a triangle, then vτ can be the restriction of v to the set of vertices of τ . A main step
in AMG is the construction of an interpolation matrix P . It is a rectangular matrix whose
number of columns equals the dimension of the coarse vector space. The coarse matrix Ac

is obtained via the triple-matrix product PTAP . There are several requirements on P to
have an efficient two-level (or two-grid, TG) algorithm. They relate the coarse space and the
smoothing process, which is defined from a stationary iteration such as Jacobi or Gauss-Seidel.
For a parallel multigrid, the smoother has to be well-parallelizable, which is ensured if the
respective smoothing matrix M is diagonal, or the smoothing iteration can be represented as a
sequence of sparse matrix vector products. This is the case of polynomial smoothers, i.e., when
M−1 = (I − pν(D

−1A))A−1, where pν(t) is a polynomial (pν(0) = 1) and D is diagonal. Once
the matrices P and Ac are constructed, to solve Ax = b, the TG-solver iterates by alternating
between the fine and coarse spaces. Specifically, cycle k transforms the current iterate xk into
xk+1 using the following steps:

1. Pre-smoothing: yk ← xk +M−1(b−Axk)

2. Restriction: rc ← PT (b−Ayk)

3. Coarse solution: xc ← A−1
c rc

4. Interpolation: zk ← yk + Pxc

5. Post-smoothing: xk+1 ← zk +M−1(b−Azk)

In a convergent TG method, the matrix D and the interpolation matrix are related via an
important weak approximation property, ‖v−Pvc‖D ≤ ηw‖v‖A, which says that every fine-grid
vector v can be approximated well from the coarse space, i.e., there is a coarse vector vc such
that its interpolant Pvc is close to v in the norm defined from the smoother (D). The constant
ηw is related to the convergence factor of the TG iteration.

In the element-based AMG, we build P by solving local eigenproblems using the locally
assembled matrices AT and the restriction of the smoothing matrix D, DT , to the set of fine
DOFs associated with T . T is a subdomain formed of fine-grid elements. The computational
domain is covered by the sets {T}, which form a non-overlapping partition of the fine-grid
element mesh. However, as sets of DOF of two neighboring elements have shared DOFs, the
sets {T} are overlapping in terms of DOFs. The shared DOFs are assigned uniquely to one
set called aggregate A, and an aggregate is contained in a unique agglomerate T . The set of
aggregates {A} forms a non-overlapping partition of the fine DOFs.

To build P , we select a set of eigenvectors that we compute on each T , a rectangular matrix
from each aggregate, and build first the so-called tentative prolongation operator P̄ . More
specifically, P̄ is obtained from the eigenvectors associated with the smallest eigenvalues of the
local stiffness matrices of the agglomerates. They are chosen, so that a local version of the above
weak approximation property holds. We set P̄ = diag(P̄1 P̄2 . . . P̄na) where the columns
of P̄i contain a subset of eigenvectors of agglomerate i, and na is the number of agglomerates.
To obtain the ultimate prolongator P , in smoothed aggregation (SA) methods, we premultiply
P̄ by a matrix polynomial smoother S: P = SP̄ . The composite smoother S is of the form
S = s(D−1A), where s(·) is a polynomial that is defined by its roots and D is a diagonal
matrix that comes from A. To premultiply P̄ by S, we explicitly form the sparse matrices
that represent the polynomial factors of S and premultiply P̄ with each of these matrices. The
resulting P is a tall-and-skinny sparse matrix. Therefore, the column dimension of P is a
function of the number of agglomerates and the number of eigenvectors that are selected from
each agglomerate, both determined by parameters of the algorithm. Finally, the coarse-space

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

214

matrix is computed as Ac = PTAP , where A is the fine-grid sparse matrix. Details are given
in [5, 12].

The performance of the algorithm is strongly influenced by how we choose its parameters.
To solve the local eigenvalue problems, we use a tolerance θ. This spectral tolerance determines
the number of eigenvectors we select from each agglomerate: we select the eigenvectors whose
corresponding eigenvalues are smaller than θ. Larger θ implies more eigenvectors in each P̄i,
a larger coarse problem and an improved convergence rate. The downside is greater operator
complexity and lower computational performance. In turn, a small number of elements per
agglomerate leads to a larger number of agglomerates of smaller size, a larger coarse problem,
and a potentially higher operator complexity, all without guaranteeing improvements in the
convergence rate. The other relevant parameters are the polynomial degrees of the smoother
S and of the relaxation operator M . The former is related to the number of elements per
agglomerate. It should increase with the number of elements per agglomerate to guarantee the
necessary approximation properties of the coarse space. The latter should also increase with
the number of elements per agglomerate, but large values imply more relaxation and therefore a
higher computational cost for each AMG iteration. A small degree (2 or 3) for both polynomials
is sufficient in most cases. In the present paper, we focus on optimizing the way we solve the
local eigenvalue problems depending on their size and the imposed spectral tolerance.

3 The Eigenvalue Problems in SAAMGe

For each agglomerated element T we form a non-overlapping subset of its degrees of free-
dom, and call this non-overlapping subset A. That is, we partition each agglomerate T into
degrees of freedom that it owns and degrees of freedom that it shares with its neighbors,
so we can write the stiffness matrix of the agglomerated element T as (in Matlab notation)
AT = [AA AAφ; AφA Aφ] . The local eigenvalue problems we want to solve are of the form

SAq = λDAq (1)

where DA is a diagonal matrix (a weighted smoother obtained from AA) and SA is the Schur
complement of the agglomerate stiffness matrix AT with respect to its subset A, i.e., SA =
AA −AAφA

−1
φ AφA.

3.1 Direct eigensolvers

To avoid explicitly forming SA (which is dense), the original approach used in SAAMGe for
solving (1) is to define

AT q = λDT,0q (2)

where DT,0 is just DA extended with zeros to be the size of AT . This form has the advantage
that all the matrices involved are sparse and easy to compute, but the potential disadvantage
that the right-hand side matrix DT,0 is singular. For simplicity, from now on we drop the
subindexes of A and D. We then rewrite (2) as

Dq =
1

1 + λ
(A+D)q, (3)

such that the eigenvalues λ̂ = 1
(1+λ) lay in the interval [0.5, 1] and small λ’s correspond to

large λ̂’s. Problem (3) can be transformed from sparse to dense and solved with LAPACK’s

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

215

dsygvx, which computes selected eigenvalues and, optionally, eigenvectors of a real generalized
symmetric-eigenvalue problem Âx = λB̂x, where B̂ is assumed to be positive definite1. A direct
eigensolver first transforms Âx = λB̂x into the standard form (L−1ÂL−T)y = λy, where L is
obtained from the Cholesky factorization B̂ = LLT and y = LTx. Then, (L−1ÂL−T)y = λy is
mapped into a tridiagonal eigenvalue problem, where the tridiagonalization of (L−1ÂL−T) is
typically the most time consuming part of the eigensolution.

In dsygvx, eigenvalues (and corresponding eigenvectors) to be computed can be specified
through a range of values, i.e., an interval (VL,VU], or a range of indexes (i.e., IL-th through
IU-th eigenvalues). We use the interval option, setting VL to 1

(1+θ) and VU to a number

slightly bigger than 1. With the transformation in (3), the eigenvalues become closer to each
other, potentially in tight clusters. dsygvx uses bisection to compute eigenvalues and inverse
iteration to compute eigenvectors [3]; it may may require additional work to reorthogonalize
the computed eigenvectors associated with tight clusters of eigenvalues.

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ag
gl
om

er
at
es

w
ith

nu
m
be

ro
fe

ig
en

va
lu
es

=
ei
ge
nv
al
ue

co
un

t

eigenvalue count (<)

I, =0.001

I, =0.005

A, =0.001

A, =0.005

Figure 1: Number of eigenvectors per agglom-
erate for the isotropic (I) and anisotropic (A)
models of the spe10 benchmark, with 400 finite
elements per agglomerate, and θ equal to 0.001
and 0.005. More than 90% of the agglomerates
require less than 5 eigenvectors if θ = 0.001.

For large fine grids, problem (2) needs
to be solved thousands of times by calling
dsygvx to compute from a few to tens of
eigenvectors depending on the spectral toler-
ance θ. To illustrate, Fig. 1 shows a his-
togram of the number of eigenvectors (x-axis)
versus the number of agglomerates that re-
quire that number of eigenvectors (y-axis),
for isotropic (I) and anisotropic (A) models
of the spe10 benchmark (see Section 4), us-
ing 400 finite elements per agglomerate, and
θ equal to 0.001 and 0.005. A very large frac-
tion of the agglomerates requires just a few
eigenvectors; some agglomerates require sev-
eral, and ten or more, depending on θ. Ad-
ditional experiments (not shown) with larger
agglomerates (e.g. 1000 finite elements per
agglomerate) revealed that some agglomer-
ates required more than 20 eigenvalues for the
θ’s used in the Fig. 1.

3.2 Iterative eigensolvers

Alternatively to the mapping (3), one can solve (2) through a projection-based method, e.g.
through Arnoldi, Lanczos or Jacobi-Davidson type algorithms [7]. In this case, a shift-and-invert
is needed, i.e., (2) needs to be rewritten as

(A− σD)−1Dq = μq, (4)

where μ = 1
λ−σ . If σ is near the origin, small λ’s become large and better separated in μ’s,

which favors the convergence of projection methods. With Lanczos or Arnoldi, the effect of
(A− σD)−1 can be realized through a LU or LDLT factorization of (A− σD) and subsequent
solutions of systems of equations. With Jacobi-Davidson, the effect of (A − σD)−1 can be
realized with iterative solvers and preconditioners [15].

1For solving (3), we invoke dsygvx with Â = D and B̂ = A+D.

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

216

3.3 Direct versus iterative eigensolvers at a glance

Iterative eigensolvers can take advantage of the sparsity of the matrices in Equation (2). Given
the size of the eigenproblems that need to be solved in SAAMGe, the question is whether an
iterative solver could outperform a direct solver. To help finding the answer, we took two ag-
glomerates of dimensions 612 and 1373 from the spe10 benchmark, and computed an increasing
number of eigenvalues and eigenvectors using Matlab’s eigs and LAPACK’s dsygvx (through
a Matlab’s MEX file). We recall that eigs is an interface for ARPACK, with provides an imple-
mentation of the Arnoldi Algorithm with implicit restarts [13]. Although not shown here, the
timings for these experiments revealed that for the small problem the break-even point is about
13, while for the large problem ARPACK is consistently faster. (The timings for ARPACK include
the transformation discussed in the previous subsection.) This simple experiment encouraged
us to investigate the potential impact of an iterative eigensolver in the overall performance of
SAAMGe. Hence, we started by adding an interface for JADAMILU in SAAMGe. JADAMILU pro-
vides an implementation of the Jacobi-Davidson method that uses a general preconditioner or
a multilevel incomplete LU preconditioner [4]2. Given a preconditioner, JADAMILU requires only
matrix-vector multiplications with A and D. We then added an interface for ARPACK, using
SuperLU [14] to factor and solve systems of equations involving the shifted operator in (4).

3.4 Early termination for iterative eigensolvers

While dsygvx allows us to use a cutoff (the spectral tolerance θ) for the number of eigenvectors
to be taken into account in each agglomerate, a similar feature is not available in JADAMILU and
ARPACK, which take as input a fixed number of eigenpairs, neig, to be computed. In fact, this
is the case of most implementations of projection-based methods. However, in our interface for
ARPACK, we added a mechanism that mimics a cutoff, by monitoring the convergence externally
to ARPACK. We recall that for symmetric matrices Arnoldi behaves like Lanczos: it projects the
original eigenvalue problem into a smaller one, involving a symmetric tridiagonal matrix T .
The accuracy of approximate solutions for the original problem can be measured through the
bottom entries of the normalized eigenvectors of T [17]. In other words, for an approximate

solution (λ̂, q̂) of (2) by means of (4), at the j-the step of the Lanczos algorithm we have
Tjs = μs, q̂ = Pjs, P

T
j DLPj = I, where Pj = [p1, p2, . . . pj] contains the vectors generated

by the Lanczos algorithm. It can be shown that ‖ALq̂ − λ̂DLq̂‖ = βj+1|s(j)|, where βj+1 is a
normalization factor related to pj+1 (the vector that would expand Pj) and s(j) is the bottom

entry of s. This means that at step j we can check the accuracy of j pairs (λ̂, q̂). It is also
possible to use more sophisticated ways of monitoring convergence in the Lanczos algorithm [18]
but in our implementation we have adopted a modified version of the implicit QL method for
tridiagonals implemented in [9], as also discussed in [10], to compute only the bottom entries of
the eigenvectors s of Tj . (The plane rotations used in the implicit QL method can be rearranged
to compute only those entries.) We have incorporated this strategy externally to ARPACK to
monitor Tj , check whether there are eigenvalues below the cutoff (θ), whether the corresponding
eigenpairs have converged, and then trigger an early termination of ARPACK. This also allows us
to use a tolerance for convergence different than the one set for ARPACK at the beginning.

The caveat of the early termination strategy is that neig (the fixed number of eigenpairs)
may conflict with θ, i.e., we may set neig to be smaller than the number of eigenvalues below
θ. Based on our experiments and the results shown in Fig. 1, we estimate that neig = 10
should suffice for most cases. A more robust strategy could consist of allowing for restarts of

2The version of JADAMILU prepared to solve generalized eigenvalue problems is available only in binary form.

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

217

eigensolver problem and approach
dsygvx (3)): (λi, qi), λi < θ; bisection plus inverse iteration [3]
JADAMILU (diag) (4): (λi, qi), i = 1, 2, . . . neig, λi ≤ λi+1; JADAMILU with diag. precond.
JADAMILU (ILU) (4): (λi, qi), i = 1, 2, . . . neig, λi ≤ λi+1; JADAMILU with ILU precond.
ARPACK (1) (4): (λi, qi), i = 1, 2, . . . neig, λi ≤ λi+1; ARPACK+SuperLU
ARPACK (2) (4): (λi, qi), i = 1, 2, . . . neig, λi ≤ λi+1 < θ; ARPACK+SuperLU

Table 1: Summary of eigensolvers used in the tests; ARPACK (1)-(2) in shift-invert mode.

the eigensolver, to compute additional eigenvectors, if neig is determined not to be enough.

4 Numerical experiments

In this section, we show performance results using the eigensolvers summarized in Table 1:
dsygvx, JADAMILU with a diagonal preconditioner, JADAMILU with incomplete LU precondi-
tioner, ARPACK in shift-invert mode, and ARPACK in shift-invert mode with the early termination
strategy discussed in section 3.4 We show results related to a real problem3, on a Cray XC
system, a parallel system based on 2.3 GHz 16-core Haswell processors per node, and 128 GB
of memory per node. On this system we use the Intel compiler suite, and -O2 as the level of
optimization for the compiler. We use LAPACK 3.5.0, SuperLU 4.3, and the most recent version
of ARPACK. We use σ = −0.0001 and SuperLU in symmetric mode to perform the factorization
(A− σD) = LU in problem (4).

SPE10 benchmark

This is an oil reservoir simulation benchmark from the SPE Comparative Solution Project [2].
The benchmark is related to fluid flow in porous media described by the Darcy equation (in
primal form), −∇ · (κ(x)∇p(x)) = f(x), where p(x) is the pressure field and κ(x) is the
permeability of the medium. The challenge arises when the coefficient κ(x) admits a wide
range of variation. The particular test case we use is the spe10 (model 2) [6], which is a
3D waterflood of a 1.1-million-cell geostatistical model. At the fine geological model scale,
the model is described on a regular Cartesian grid, with dimensions 1200 × 2200 × 170 cubic
feet. The top 70 feet (35 layers) represent the Tarbert formation, and the bottom 100 feet (50
layers) represent Upper Ness. The fine-scale cell size is 20 × 10 × 2 cubic feet, with a total of
60× 220× 85 cells. The porosity of the model is shown in Fig. 2a. The model admits jumps of
several orders of magnitude between distinct horizontal layers of the medium. Using the finite-
element discretization library MFEM [1], we obtained a fine-grid matrix with dimension 1.16M
and 30.6M nonzero entries. The model has an isotropic variant, in which the permeability is a
scalar, and an anisotropic one, in which it is a tensor. The matrix A has the same structure
in both cases, with an average of 26.4 nonzero entries per row (see Fig. 2(b). The dimensions
and the sparsity pattern of the coarse-space matrix depend on the SAAMGe parameters (see
Section 2). An example of a coarse-grid matrix is shown in Fig. 2(c).

Figure 3 shows timings for the eigensolvers in Table 1 for 6 configurations of the algorithm
SAAMGe for spe10. For configurations 1-3 we used 300, 400, and 500 finite elements per agglom-
erate, respectively; similarly for configurations 4-6. These values lead to 3740 agglomerates of
average size 483 for configuration 1, 2805 agglomerates of average size 619 for configuration

3The results are also representative for a variety of meshes that we have experimented with.

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

218

(a) porosity model (b) fine-grid matrix (c) coarse-grid matrix

Figure 2: (a) porosity of model 2 in spe10 (source: http://www.spe.org); (b) sparsity pattern
of the fine-grid matrix; (c) example of a coarse-grid matrix.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

n
o

rm
al

iz
ed

 t
im

e

configuration

DSYGVX JADAMILU (diag) JADAMILU (ILU) ARPACK (1) ARPACK (2)

(a) isotropic model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

n
o

rm
al

iz
ed

 t
im

e

configuration

DSYGVX JADAMILU (diag) JADAMILU (ILU) ARPACK (1) ARPACK (2)

(b) anisotropic model

Figure 3: Timings for eigenvalue calculations for 6 configurations of spe10: dsygvx (blue),
JADAMILU (diag) (red), JADAMILU (ILU) (yellow), ARPACK (1) (green), and ARPACK (2) (pur-
ple). The timings are normalized with respect to dsygvx in each configuration.

2, and 2244 agglomerates of average size 752 for configuration 3. For configurations 1-3 we
used θ = 0.001 and for configurations 4-6 we used θ = 0.005. For these θ’s, dsygvx computes
between 2.3 to 3 eigenvectors (in average) per agglomerate for configurations 1-3, and 7.5 to
10.5 for configurations 4-6. Given these numbers, we set neig to 5 for the iterative solvers in
configurations 1-3, and to 10 for configurations 4-6. The maximum number of matrix vector
multiplications for JADAMILU was set to 10 times the number of DOFs of the agglomerate, with
a tolerance for the eigenvector residual (tolerance for convergence) equal to 10−10. The maxi-
mum basis size to be computed by ARPACK before an eventual restart was set to (neig+10)×2,
and the tolerance for convergence to machine epsilon, ε ≈ 1.11× 10−16. As can be seen in the
figure, the reduction in time ranges from 50% to almost 80% for the iterative solvers, depending
on the size of the agglomerates.

Finally, Table 2 shows the total time to solution (setup phase, eigenvalue calculations plus
AMG cycles) for the anisotropic model of spe10 using the eigensolvers listed in Table 1. For
some configurations, the use of dsygvx leads to a smaller time to solution than JADAMILU

(diag,ILU) and ARPACK (1). This is because the coarse grids obtained with these iterative
eigensolvers are bigger, since they compute a fixed number of eigenvectors per agglomerate,
without necessarily reducing the number of AMG cycles. In contrast, ARPACK (2) consistently
leads to the smaller time to solution, from 26% to 58% gains, with coarse grid sizes and number

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

219

config. dsygvx JADAMILU (diag) JADAMILU (ILU) ARPACK (1) ARPACK (2)

1 655 820 531 467 365
2 790 507 607 563 395
3 838 422 725 452 359
4 1219 1810 1135 780 512
5 998 952 1354 1297 739
6 1203 762 1769 883 623

Table 2: Total time to solution (seconds) for the six configurations of spe10, anisotropic model.
The largest times in each configuration is in red; the smallest is in blue, i.e., ARPACK (2).

of AMG cycles (not shown) that are similar to the ones obtained with dsygvx.

5 Conclusions

In this paper we showed that iterative eigensolvers can lead to significant time savings in the
computation of subsets of eigenvectors that are needed for the computation of the prolongator in
a TG algebraic multigrid solver. Given the size of the eigenvalue problems to be solved, a shift-
and-invert strategy for a Krylov-based eigensolver outperformed a preconditioned eigensolver
for all cases examined. We showed that additional savings can be obtained with a strategy that
allows for an earlier stop of the Krylov-based eigensolver. Overall, the eigenvalue calculation
phase has been sped up more than 4x in comparison with the original baseline implementation,
depending on the problem and configuration. This speed up has been reflected in the total time
to solution in the TG solver, i.e., setup phase, eigenvalue calculations plus AMG cycles: the
total time to solution can be up to 2x faster.

Although not shown in this paper, preliminary experiments with a parallel multi-level AMG
have also shown very promising savings when using a Krylov-based eigensolver. However, in
this version of the solver the agglomerates become denser and potentially larger as we compute
a sequence of denser and smaller coarse grids (i.e., as a consequence of Ac = PTAP , as discussed
in Section 2). Our experiments have revealed that some of the larger agglomerates may require
a disproportionate large number of eigenvectors (a trend that can be observed in Fig. 1 if
we increase θ), without significantly improving the convergence of the multi-level solver, but
with a negative effect in terms of load balancing. As future work, we plan to investigate a
strategy for obtaining agglomerates of similar sizes (in each level), which in turn will lead to a
better distribution of the time required for the computation of eigenvectors and a better overall
performance of the multi-level solver.

Also as future work, we plan to investigate how the tolerance for convergence in iterative
eigensolvers might affect the number of AMG cycles. In [16, 19], the authors propose the use
of alternative sets of vectors (Ritz or Lanczos), cheaper to compute than eigenvectors, for the
dynamic analysis of structures. In these approaches, a “participation factor”, based on the
loading the structures are subject to, is used to determine how many vectors to be taken into
consideration in the analyses. Although such a factor may not make sense in AMG, it may
still be possible to use alternative sets of vectors, not so strongly dependent on a fixed spectral
tolerance, in the construction of the prolongator.

References

[1] MFEM. http://mfem.org.

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

220

[2] SPE comparative solution project. http://www.spe.org/web/csp.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ Guide (Third
Ed.). SIAM, Philadelphia, PA, USA, 1999.

[4] Matthias Bollhöfer and Yvan Notay. JADAMILU: a software code for computing selected eigen-
values of large sparse symmetric matrices. Computer Physics Communications, 177:951–964, 2007.

[5] Marian Brezina and Panayot S. Vassilevski. Smoothed aggregation spectral element agglomeration
AMG: SA-ρAMGe. In Ivan Lirkov, Svetozar Margenov, and Jerzy Waśniewski, editors, Large-Scale
Scientific Computing, volume 7116 of LNCS, pages 3–15. Springer Berlin Heidelberg, 2012.

[6] M. A. Christie and M. J. Blunt. Tenth SPE comparative solution project: Comparison of upscaling
techniques. SPE Reserv. Eval. Eng., 4(4):308–317, 2001.

[7] James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA, USA, 2000.

[8] Alex Druinsky, Peter Ghyels, Xiaoye Li, Osni Marques, Samuel Williams, Andrrew Barker, Delyan
Kalchev, and Panayot Vassilevski. Comparative performance analysis of coarse solvers for algebraic
multigrid on leading multicore architectures. pages 1–2, 2015.

[9] Burton Garbow, James Boyle, Jack Dongarra, and Cleve Moler. Matrix Eigensystem Routines -
EISPACK Guide Extension, volume 51 of Lecture Notes in Computer Science, Volume 6. Springer
Verlag, 1977.

[10] R. G. Grimes, J. G. Lewis, and H. D. Simon. A shifted block Lanczos algorithm for solving sparse
symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl., 15:228–272, 1994.

[11] D. Kalchev, C. Ketelsen, and P. S. Vassilevski. Two-level adaptive algebraic multigrid for a
sequence of problems with slowly varying random coefficients. SIAM J. Sci Comput., 35(6):B1215–
B1234, 2013.

[12] Delyan Kalchev. Adaptive algebraic multigrid for finite element elliptic equations with random
coefficients. Master’s thesis, Sofia University, Bulgaria, 2012.

[13] Richard Lehoucq, Danny Sorensen, and Chao Yang. ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[14] Xiaoye Li, Jim Demmel, John Gilbert, Laura Grigori, Meiyue Shao, and Ichitaro Yamazaki. Su-
perLU Users’ Guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory,
September 1999. http://crd.lbl.gov/~xiaoye/SuperLU/. Last update: August 2011.

[15] Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric
eigenproblem. Numerical Linear Algebra with Applications, 9:21–44, 2002.

[16] Bahram Nour-Omid and Ray W. Clough. Dynamic analysis of structures using Lanczos co-
ordinates. Earthquake Engineering & Structural Dynamics, 12:565–577, 1984.

[17] Beresford Parlett. The Symmetric Eigenvalue Problem. SIAM (Classics in Applied Mathematics),
Philadelphia, USA, 1998.

[18] Beresford Parlett and Bahram Nour-Omid. The use of a refined error bound when updating
eigenvalues of tridiagonals. Linear Algebra and its Applications, 68:179–219, 1985.

[19] Edward L. Wilson, Ming-Wu Yuan, and John M. Dickens. Dynamic analysis by direct superposition
of Ritz vectors. Earthquake Engineering & Structural Dynamics, 10:813–821, 1982.

Tuning components of spectral AMG Marques, Druinsky, Li, Barker, Kalchev and Vassilevski

221

