
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Point‐biserial correlation: Interval estimation, hypothesis testing, meta‐
analysis, and sample size determination

Permalink
https://escholarship.org/uc/item/3h82b18b

Journal
British Journal of Mathematical and Statistical Psychology, 73(S1)

ISSN
0007-1102

Author
Bonett, Douglas G

Publication Date
2020-11-01

DOI
10.1111/bmsp.12189
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3h82b18b
https://escholarship.org
http://www.cdlib.org/


British Journal of Mathematical and Statistical Psychology (2019)

© 2019 The British Psychological Society

www.wileyonlinelibrary.com

Point-biserial correlation: Interval estimation,
hypothesis testing, meta-analysis, and sample size
determination

Douglas G. Bonett*
Department of Psychology, University of California, Santa Cruz, California, USA

The point-biserial correlation is a commonly used measure of effect size in two-group

designs.Newestimators of point-biserial correlation are derived fromdifferent formsof a

standardized mean difference. Point-biserial correlations are defined for designs with

either fixed or random group sample sizes and can accommodate unequal variances.

Confidence intervals and standard errors for the point-biserial correlation estimators are

derived from the sampling distributions for pooled-variance and separate-variance

versions of a standardized mean difference. The proposed point-biserial confidence

intervals can be used to conduct directional two-sided tests, equivalence tests, directional

non-equivalence tests, and non-inferiority tests. A confidence interval for an average

point-biserial correlation in meta-analysis applications performs substantially better than

the currently used methods. Sample size formulas for estimating a point-biserial

correlation with desired precision and testing a point-biserial correlation with desired

power are proposed. R functions are provided that can be used to compute the proposed

confidence intervals and sample size formulas.

1. Introduction

The independent-samples t-test is widely used in psychological research to compare two

populationmeans that have been estimated from two independent samples. It is common
practice to report the results of an independent-samples t-test as ‘significant’ or ‘non-

significant’. Of course, a ‘significant’ result does not imply that any practical or

scientifically important difference in population means has been detected, and a ‘non-

significant’ result should not be interpreted as evidence of a true null hypothesis. The

latest edition of the Publication Manual of the American Psychological Association

states that ‘effect sizes and confidence intervals are theminimum expectations for all APA

journals’ (American Psychological Association, 2010, p. 33). Point and interval estimates

of Cohen’s d or the point-biserial correlation are recommended supplements to an
independent-samples t-test (see, for example, Kline, 2013). The point-biserial correlation

also is used in psychometric item analyses to assess the association between an item-

deleted total score and a dichotomous item score (Crocker &Algina, 1986; Lord&Novick,

1968).

Some researchers prefer the point-biserial correlation as a measure of effect size in

a two-group design over Cohen’s d because of its familiar correlation metric (McGrath
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& Meyer, 2006). Cohen’s d is also difficult to interpret if the response variable is not

normally distributed (Bonett, 2009). McGrath and Meyer (2006) provide a detailed

comparison of Cohen’s d and the classical point-biserial correlation and conclude that

neither measure is universally superior. A neutral stance regarding a preference for
Cohen’s d or the point-biserial correlation is taken here. The purpose of this paper is

to present alternative measures of point-biserial correlation, develop a variety of

confidence intervals for point-biserial correlations, explain how the proposed

confidence intervals can be used to test different types of hypotheses regarding

point-biserial correlations, and develop sample size formulas that can be used to

design a study to estimate a point-biserial correlation with desired precision or

conduct a point-biserial hypothesis test with desired power.

2. Three types of standardized mean differences

A point-biserial correlation can be defined in terms of a standardized mean difference.

Three types of standardizedmean differences are described here. One type is appropriate

for both experimental and non-experimental designs if equal population variances can be

assumed; a second type is appropriate for non-experimental designs and does not assume
equal population variances; and a third type is appropriate for experimental designs and

does not assume equal population variances. In an experimental design with two

treatments, a simple random sample is obtained from some population of size N and the

sample is then randomly divided into two groups (not necessarily of equal sizes) where

one group receives treatment A and the other group receives treatment B. In an

experimental design, the sample sizes in each treatment condition are assumed to be

fixed. In a non-experimental design, two types of sampling methods are common. With

simple random sampling, a random sample is obtained from somepopulation of sizeN and
the members of the random sample are classified into two groups on the basis of some

existing characteristic (e.g., male or female). With simple random sampling in a non-

experimental design, the total sample size is fixed and the group sample sizes are random.

With stratified random sampling, the population of size N is stratified into two

subpopulations of sizes N1 and N2 on the basis of some existing characteristic. A random

sample is then taken from each of the two subpopulations. With stratified random

sampling the two sample sizes need not be equal and are assumed to be fixed.

LetX be a dichotomous variablewith values 1 and 2. The values ofX represent the two
treatment conditions in an experimental design or the two subpopulations in a non-

experimental design. Let Y denote a quantitative response variable. The most common

type of standardized mean difference is defined as

d1 ¼ l1 � l2ð Þ
r

; ð1Þ

where lj is the population mean of Y at X = j and r is an assumed common standard

deviation of Y at each level ofX. If the homoscedasticity assumption can be justified, d1 is
appropriate for both experimental and non-experimental designs.

Now consider a two-group non-experimental design where p is the proportion of

members in the population that belong to subpopulation 1 and 1 – p is the proportion of

members in the population that belong to subpopulation 2. The variance of Y for all

members of the population can be decomposed into between-group and within-group
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variances where the within-group variance is pr21 þ 1� pð Þr22. This suggests the

standardized mean difference

d2 ¼ l1 � l2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr21 þ 1� pð Þr22

p ; ð2Þ

which is appropriate for non-experimental designs and does not assume homoscedas-

ticity. Note that if r21 ¼ r22 then d2 reduces to d1.
A third type of standardizedmean difference that does not assume homoscedasticity is

defined as

d3 ¼ l1 � l2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr21 þ r22Þ=2

p ; ð3Þ

and is appropriate for experimental designs where participants are randomly assigned to

treatment conditions. In a two-group experiment, lj and r2j are respectively themean and

variance ofY, assuming allmembers of thepopulationhad received treatment j.Given that

r21 and r22 describe the same population in an experimental design, the unweighted

average of these two variances is an appropriate description of the average within-

treatment variance. Note that if r21 = r22 then d3 reduces to d1.
Estimators of di (i = 1, 2, 3) will be used to define different estimators of point-biserial

correlation. A frequently used estimator of d1, sometimes referred to as Cohen’s d, is

d̂1 ¼ l̂1 � l̂2ð Þ
r̂p

; ð4Þ

where r̂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þr̂21 þ n2 � 1ð Þr̂22½ �=df

p
,nj is the sample size atX = j,df = n1+n2 –2,

r̂2j is the unbiased estimator of the population variance of Y at X = j, and l̂j is the sample

mean of Y at X = j. The estimator r̂2p has two uses. It is an optimal estimator of a common

variance and also a consistent estimator of pr21 þ 1� pð Þr22 in non-experimental designs

when simple random sampling is used.

The following estimator of d2 is appropriate in non-experimental designs with
stratified random sampling where p is known:

d̂2 ¼ ðl̂1 � l̂2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr̂21 þ ð1� pÞr̂22

p ; ð5Þ

and does not assume homoscedasticity. An estimator of d3, which is appropriate in

experimental designs and does not assume homoscedasticity (Bonett, 2009), is

d̂3 ¼ l̂1 � l̂2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̂21 þ r̂22Þ=2

p : ð6Þ

3. Alternative measures of point-biserial correlation

If homoscedasticity can be assumed, one type of population point-biserial correlation for

non-experimental designs can be defined in terms of d1 as

Point-biserial correlation 3



q1 ¼
d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d21 þ 1
pð1�pÞ

q ; ð7Þ

where p is the proportion ofmembers in the population that belong to subpopulation 1. If

homoscedasticity can be assumed, a second type of population point-biserial correlation
for experimental designs can be defined in terms of d1 as.

q2 ¼
d1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ 4

q ; ð8Þ

where p is set to 1/2 to reflect the fact that the entire population could hypothetically be

assessed under one treatment condition and the same population could also be assessed

under a second treatment condition.

A third type of population point-biserial correlation, which does not assume
homoscedasticity, can be defined in terms of d2 as

q3 ¼
d2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d22 þ 1
pð1�pÞ

q ; ð9Þ

and is appropriate for non-experimental designs. A fourth type of population point-

biserial correlation, which does not assume homoscedasticity, can be defined in terms of

d2 as

q4 ¼
d3ffiffiffiffiffiffiffiffiffiffiffiffiffi
d23 þ 4

q ; ð10Þ

and is appropriate for experimental designs.Note thatq3 is a heteroscedastic alternative to
q1 and q4 is a heteroscedastic alternative to q2. With homoscedasticity, q1 = q3 and

q2 = q4.
If the dichotomous variable X is a nominal scale measurement of some attribute (e.g.,

male versus female or treatment A versus treatment B), the sign of the point-biserial
correlation depends on how the two groups are coded and only the absolutemagnitude of

the point-biserial provides useful information. However, if X represents an ordinal scale

measurement of some attribute (e.g., control versus treatment or 1 week of treatment

versus 3 weeks of treatment), then both the sign and the magnitude of the point-biserial

correlation provide useful information.

In a single-factor between-subjects design, another popular measure of effect size

is g2 ¼ 1� r2=r2Y , where r2 is an assumed common variance of Y within each level

of the between-subjects factor, and r2Y is the variance of Y. g2 describes the
proportion of the response-variable variance that is predictable from the independent

variable. In a two-group non-experimental design, r2Y is the variance of Y for all

members in the population and g2 can be defined as q21. In a two-group experimental

design, r2Y ¼ r2 þ ðl1 � l2Þ2=4 (McGrath & Meyer, 2006). In an experimental design

g2 can be defined as q22:
Some references claim that a point-biserial correlation has a range from –1 to 1 (Stuart,

Ord, & Arnold, 1999, p. 496) while other references (see, for example, Lord & Novick,
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1968, p. 340) claim that the point-biserial correlation has a maximum of about .8. Given

that di is unbounded, it is clear that qi has a range of –1 to 1. Although qi has a theoretical
range of –1 to 1, the values of q1 and q3 depend on the values of p. Table 1 gives the values
of q1 corresponding to different values of d1 for p = .1, .3, and .5. The entries in Table 1
suggest that a ‘large’ point-biserial correlation is smaller thanwhat might be considered to

be a ‘large’ Pearson correlation between two quantitative variables.

The claim that a point-biserial correlation has a maximum value of about .8 applies to

the case where Y and X are bivariate normal and X has been artificially dichotomized. In

this situation, it can be shown (Gradstein, 1986) that the classical point-biserial correlation

has a maximum value of about .8 and that this maximum is achieved at p = 1/2. If X has

been artificially dichotomized, then a biserial correlation is usually a more appropriate

measure of association than a point-biserial correlation (Stuart et al., 1999, p. 492).

4. Independence and mean-independence

For two quantitative variables X and Y, a Pearson correlation equal to 0 implies

independence of X and Y only in the special case of bivariate normality. For the point-

biserial correlations defined here, what does qi = 0 (i = 1, . . ., 4) imply? To answer this
question, let Y and X represent two random variables and let r and s be positive integers.

Goldberger (1991) shows thatY is independent ofX ifE(Xr
Y
S) = E(Xr)E(YS) for all r and s,

Y ismean-independent ofX ifE(Xr
Y) = E(Xr)E(Y) for all r, andY andX are uncorrelated if

E(XY) = E(X)E(Y), assuming these expectations exist. Goldberger also shows that mean-

independence implies E(Y|X) = E(Y) for all X. Consequently, if l1 = l2 then Y is mean-

independent ofX. Hence qi = 0 (i = 1, . . ., 4) implies that Y is mean-independent ofX for

any distribution ofY that has a finitemean and variance. Furthermore, qi = 0 (i = 1, . . ., 4)
implies that Y is independent of X for any distribution of Y if the shape of the distribution
of Y is the same at each level of X.

5. Point-biserial estimators

The estimators of a population standardized mean difference given in Section 2 can be

used to define estimators of qi (i = 1, . . ., 4). Pearson’s classical estimator of q1 can be
expressed as (Hays, 1988, p. 311)

Table 1. Values of q1 as a function of d1 and p

d1 p = .5 p = .3 p = .1

0 0 0 0

0.2 .10 .09 .06

0.5 .24 .22 .15

1.0 .45 .42 .29

1.5 .60 .57 .41

2.0 .71 .68 .51

2.5 .78 .75 .60

3.0 .83 .81 .67

Note. q1 = q3 with homoscedasticity, q1 = q2 with p = .5, and q1 = q4 with homoscedasticity and

p = .5.
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q̂1 ¼
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ df
p ; ð11Þ

where t ¼ l̂1 � l̂2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2p 1=n1 þ 1=n2ð Þ

q
;df ¼ n1 þ n2 � 2, and r̂2p is the pooled variance

estimate used in equation (4). After some algebra, equation (11) can be expressed as

q̂1 ¼
d̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d̂21 þ df

np̂ð1�p̂Þ
q ; ð12Þ

wheren = n1 +n2 and p̂ ¼ n1=n. Inmeta-analysis applications, the following estimator of

q1 is typically used:

�q1 ¼
cd̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2d̂21 þ 1
p̂ð1�p̂Þ

q ; ð13Þ

where c = 1 – 3/(4n – 9) is a bias adjustment to d̂1 derived by Hedges (1981).
The following estimator of q2 is defined using d̂1:

q̂2 ¼
d̂1ffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂21 þ 4

q : ð14Þ

It does not assume homoscedasticity and is appropriate in experimental designs with

equal or unequal sample sizes. If p is known and stratified random sampling is used, the

following estimator of q3 is defined using d̂2:

q̂3 ¼
d̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d̂22 þ 1
pð1�pÞ

q : ð15Þ

It does not assume homoscedasticity.

The following estimator of q4, which is appropriate for experimental designs with

equal or unequal sample sizes and does not assume homoscedasticity, is defined using d̂3:

q̂4 ¼
d̂3ffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂23 þ 4

q : ð16Þ

To summarize, the classical point-biserial estimator (q̂1) is appropriate in both

experimental and non-experimental designs if homoscedasticity can be assumed. The

classical estimator also is appropriate in non-experimental designs with heteroscedastic-

ity if simple random sampling is used so that p̂ will be a consistent estimator of p. The
estimator q̂2 is appropriate in experimental designs with equal or unequal sample sizes if

homoscedasticity can be assumed, while q̂4 is appropriate in experimental designs with

equal or unequal sample sizes when homoscedasticity cannot be assumed. The estimator

q̂3 is appropriate in non-experimental designs with equal or unequal sample sizes when
homoscedasticity cannot be assumed and stratified random sampling has been used.
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6. Bias of point-biserial correlation estimators

The small-sample bias of q̂1 and �q1 is given in Table 2 for a non-experimental design
with simple random samples of size n = 30 and n = 60, three values of p (.20, .35,

.50), within-subpopulation normality, and homoscedasticity. The bias was estimated

from 200,000 Monte Carlo trials. With simple random sampling, the group sample

sizes (n1 and n2) are random variables but were constrained to be >2. The classical

Pearson estimator (q̂1) is nearly unbiased in all conditions, while the alternative

estimator (�q1) that is commonly used in meta-analyses can have substantial negative

bias.

The small-sample bias of q̂1 is given in Table 3 for non-experimental designs with
simple random samples of size n = 30 and n = 60, three values of p (.20, .35, .50),

within-subpopulation normality, and heteroscedasticity. As in the homoscedastic

case, the small-sample bias of q̂1 is negligible under heteroscedasticity with simple

random sampling.

The small-sample bias of q̂2 and q̂4 as estimators of q4 is given in Table 4 for

experimental designs where n1 and n2 are fixed. Recall that q2 = q4 if r1/r2 = 1. If

the sample sizes are equal or if r1/r2 = 1, the bias of q̂2 and q̂4 is nearly identical.

With r1/r2 = 2 and unequal sample sizes, q̂4 remains nearly unbiased while q̂2
(which assumes equal variances) has substantial bias. When the group with the

smaller sample size has the larger variance, q̂2 has positive bias, and when the

group with the larger sample size has the larger variance, q̂2 has negative bias. In

practice, it can be difficult to determine if the homoscedasticity assumption can be

satisfied, and q̂4 will be preferred to q̂2 in applications where the sample sizes are

not equal.

Table 2. Bias of q̂1 and �q1 with normality, homoscedasticity, and simple random sampling

p q1

n = 30 n = 60

bias(q̂1) bias(�q1) bias(q̂1) bias(�q1)

.20 0 .000 .000 .000 .000

.2 �.002 �.012 �.002 �.007

.4 �.004 �.023 �.003 �.013

.6 �.005 �.027 �.004 �.015

.8 �.004 �.022 �.003 �.012

.35 0 .000 .000 .000 .000

.2 �.002 �.012 �.001 �.006

.4 �.003 �.021 �.001 �.011

.6 �.002 �.024 �.001 �.012

.8 .000 �.017 .000 �.008

.50 0 .000 .000 .000 .000

.2 �.001 �.012 �.001 �.006

.5 �.002 �.021 �.001 �.010

.6 .000 �.023 .000 �.011

.8 .002 �.006 .001 �.008

Note. Absolute bias estimates <.001 are reported as .000. The bias estimates were computed from

200,000 Monte Carlo trials. The random sample sizes (n1 and n2) were constrained to be >2.
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7. Variance estimates

The variance of q̂i is needed in meta-analysis (Section 8.4) and sample size planning

(Section 11). Applying the delta method, the approximate variances of the point-biserial

estimators are

cvarðq̂1Þ � df

np̂ð1�p̂Þ
h i2 cvarðd̂1Þ
d̂21 þ df

np̂ð1�p̂Þ
h i3 ; ð17Þ

dvar ðq̂2Þ � 16cvarðd̂1Þ
d̂21 þ 4
h i3 ; ð18Þ

cvarðq̂3Þ � 1
pð1�pÞ
h i2 cvarðd̂2Þ
d̂22 þ 1

pð1�pÞ
h i3 ; ð19Þ

dvar ðq̂4Þ � 16cvarðd̂3Þ
d̂23 þ 4
h i3 ; ð20Þ

Table 3. Bias of q̂1 with normality, heteroscedasticity, and random sample sizes

p q1

n = 30 n = 60

r1/r2 = 2 r1/r2 = 4 r1/r2 = 2 r1/r2 = 4

.20 0 .000 .000 .000 .000

.2 �.002 �.002 �.002 �.002

.4 �.004 �.004 �.003 �.003

.6 �.005 �.005 �.004 �.004

.8 �.004 �.004 �.003 �.003

.35 0 .000 .000 .000 .000

.2 �.002 �.002 �.001 �.001

.4 �.003 �.003 �.001 �.001

.6 �.002 �.002 �.001 �.001

.8 .000 .000 .000 .000

.50 0 .000 .000 .000 .000

.2 �.001 �.001 �.001 �.001

.5 �.002 �.002 �.001 �.001

.6 .000 .000 .000 .001

.8 .002 .002 .001 .001

Note. Absolute bias estimates less than .001 are reported as .000. The bias estimateswere computed

from 200,000 Monte Carlo trials. The random sample sizes (n1 and n2) were constrained to be >2.
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where varðd̂iÞ is an estimate of the variance of d̂i (i = 1, 2, 3). The following approximate
variance estimates for d̂i can be derived using an approach described by Bonett (2008a):

dvar ðd̂1Þ � d̂21
1
df1

þ 1
df2

� �
8

þ 1

n1
þ 1

n2
; ð21Þ

dvar ðd̂2Þ � d̂22
1
df1

þ 1
df2

� �
8

þ r̂21
r̂2n1

þ r̂22
r̂2n2

; ð22Þ

cvarðd̂3Þ � d̂23
r̂41
df1

þ r̂42
df2

� �
8r̂4

þ r̂21
r̂2df1

þ r̂22
r̂2df2

; ð23Þ

where r̂2 = pr̂21 þ 1� pð Þr̂22 for cvarðd̂2Þ and r̂2 ¼ ðr̂21 þ r̂22Þ=2 for cvarðd̂3Þ. Equation (23)

was given by Bonett (2008a). The above variance estimates assume normality of Ywithin

each level of X.

Table 4. Bias of q̂2 and q̂4 with normality, homoscedasticity, heteroscedasticity, and fixed sample

sizes

n1 n2 q4

r1/r2 = 1 r1/r2 = 2

bias(q̂2) bias(q̂4) bias(q̂2) bias(q̂4)

15 15 0 .000 .000 .000 .000

.2 �.004 �.004 �.003 �.003

.4 �.006 �.006 �.004 �.004

.6 �.006 �.006 �.004 �.004

.8 �.003 �.003 �.002 �.002

20 40 0 .000 .000 .000 .000

.2 �.003 �.002 .020 �.001

.4 �.004 �.004 .034 �.002

.6 �.004 �.002 .039 �.002

.8 �.002 �.001 .029 �.001

40 20 0 .000 .000 .000 .000

.2 �.003 �.002 �.018 �.002

.4 �.004 �.004 �.032 �.002

.6 �.004 �.003 �.037 �.002

.8 �.001 �.001 �.029 �.001

30 30 0 .000 .000 .000 .000

.2 �.002 �.002 �.001 �.001

.5 �.003 �.003 �.002 �.002

.6 �.003 �.003 �.002 �.002

.8 �.001 �.001 �.001 �.001

Note. Absolute bias estimates less than .001 are reported as .000. q2 = q4 with r1/r2 = 1. The bias

estimates were computed from 200,000 Monte Carlo trials.

Point-biserial correlation 9



The variance of Pearson’s point-biserial correlation estimator was unknown until Tate

(1954) derived the approximation

varðq̂1Þ �
ð1� q̂21Þ2 1� 3q̂21

2
þ q̂21

4p̂ð1�p̂Þ
h i

n
: ð24Þ

Both varðq̂1Þ and cvarðq̂1Þ are approximations that were derived using completely

different approaches. It is informative to compare their values with each other and with

the true value of varðq̂1Þ. Table 5 gives the standard deviation of the q1 estimates and the
average values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðq̂1Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðq̂1Þp
in 200,000 Monte Carlo trials and for a simple

random sample of n = 60 in each trial. Both
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðq̂1Þ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðq̂1Þp
tend to slightly

understate the true variability of q̂1. Both variance estimates appear to be similar in their

accuracy and either could be used in meta-analysis or sample size planning applications.

8. Confidence intervals

8.1. Confidence interval for a point-biserial correlation
A confidence interval for a point-biserial correlation can be obtained by first computing a

confidence interval for di (i = 1, 2, 3) and then substituting the lower and upper limits into

equations (12), (14), (15) or (16). An approximate 100(1 – a)% confidence interval for di
(i = 1, 2, 3) is

d̂i � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar d̂i
� �r

ð25Þ

where za=2 is the a/2 quantile of the standard normal distribution. An alternative to

equation (25) for the special case of d1 is based on the computationally intensive

Table 5. Comparison of two estimators of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðq̂1Þ

p
with normality, homoscedasticity, and random

sample sizes (n = 60)

p q1 SD(q̂2) Average
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar q̂1ð Þ

p
Average

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var q̂1ð Þp

.20 0 .132 .129 .127

.2 .126 .124 .123

.4 .111 .106 .109

.6 .088 .085 .086

.8 .052 .047 .051

.35 0 .131 .129 .127

.2 .124 .123 .121

.4 .107 .105 .104

.6 .079 .076 .077

.8 .042 .040 .041

.50 0 .131 .129 .126

.2 .124 .123 .121

.5 .106 .105 .103

.6 .077 .076 .076

.8 .042 .040 .040

Note. The estimates were computed from 200,000Monte Carlo trials. The random sample sizes (n1

and n2) were constrained to be greater than 2.
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confidence interval for a Student t non-centrality parameter (Steiger & Fouladi, 1997) and

is recommend if n1 or n2 is <10. Equation (25) assumes that the distribution of Y within

each level of X is at most moderately non-normal. A bootstrap confidence interval for di
(Kelley, 2005) could be used in applications where the data are clearly non-normal and a
data transformation (e.g., log, square root, reciprocal) cannot rectify the problem.

Let L andUdenote the lower and upper limits of equation (25), respectively. The lower

and upper limits of an approximate 100(1 – a)% confidence interval for q1 are

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ df

np̂ 1�p̂ð Þ
q ;

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ df

np̂ 1�p̂ð Þ
q

264
375; ð26Þ

where L and U are the lower and upper limits for d1. The lower and upper limits of an

approximate 100(1 – a)% confidence interval for q3 are

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 1

p 1�pð Þ
q ;

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 1

p 1�pð Þ
q

264
375; ð27Þ

where L and U are the lower and upper limits for d2. The lower and upper limits of

approximate 100(1 – a)% confidence intervals for q2 or q4 are

Lffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4

p ;
Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ 4
p

� �
; ð28Þ

where L and U are the lower and upper limits for d1 or d3, respectively. The R function

ci.pbcor124 (Appendix) computes the confidence intervals for q1, q2, and q4. The R

function ci.pbcor3 (Appendix) computes the confidence interval for q3.

8.2. Confidence intervals for q21 and q22
If the confidence interval forq1 doesnot include0, thenanapproximate confidence interval

for q21 is computed by simply squaring the endpoints of the confidence interval for q1. If the
confidence interval forq1 includes0, the lower limit of theconfidence interval forq21 is set to
0 and the upper limit is equal to the larger of the squared lower limit or squared upper limit.

The same procedure is used to compute an approximate confidence interval for q22.

8.3. Confidence interval for difference in point-biserial correlations

A test for equal Pearson correlations using independent samples is discussed in many

statistics texts for psychologists (Cohen, Cohen, West, & Aiken, 2003, p. 49; see Howell,

2007, p. 259; Field,Miles, & Field, 2012, p. 239). A confidence interval for the difference of

two point-biserial correlations can be used to test for equal population point-biserial

correlations and also provides useful information about the magnitude of the difference.
Let qi1 represent a population point-biserial correlation betweenX and Y in population 1,

and let qi2 represent a population point-biserial correlation between X and Y in

population 2. A random sample from population 1 will be used to estimate qi1 and a

random sample from population 2 will be used to estimate qi2. Let q̂i1 represent a point-
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biserial estimator from sample 1, and let q̂i2 represent a point-biserial estimator from

sample 2. Let L1 and U1 denote the lower and upper 100(1 – a)% confidence interval

endpoints for qi1, and let L2 and U2 denote the lower and upper 100(1 – a)% confidence

interval endpoints for qi2. Applying a method described by Zou (2007), an approximate
100(1 – a)% confidence interval for qi1 – qi2 is

q̂i1 � q̂i2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂i1 � L1ð Þ2þ q̂i2 � U2ð Þ2

q
; q̂i1 � q̂i2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂i1 � U1ð Þ2þ q̂i2 � L2ð Þ2

q� �
: ð29Þ

The R function ci.diff.pbcor (Appendix) computes expression (29).

8.4. Confidence interval for an average of point-biserial correlations

If a point-biserial correlation is estimated inm ≥ 2 different studies using the sameX andY

variables, we can estimate q =
Pm

k¼1 qik=m, where qik is the population point-biserial

correlation between X and Y that has been estimated in study k (k = 1, . . ., m). The

confidence interval forq can be substantially narrower than the confidence interval for qik
from any single study. Combining parameter estimates from two or more studies is

referred to as a meta-analysis.
An estimate of q =

Pm
k¼1 qik=m is

q̂ ¼
Pm
k¼1

q̂ik

m
; ð30Þ

and its estimated variance is

cvarðq̂Þ ¼ m�2
Xm
k¼1

cvarðq̂ikÞ; ð31Þ

where cvarðq̂ikÞ is given by (17), (18), (19) or (20) for each k.Note that q̂ can be an average

of different types of point-biserial estimates. For example, q̂1 could be computed for non-

experimental design studies that used simple random sampling, q̂3 could be computed for

non-experimental design studies that used stratified random sampling, and q̂4 could be

computed for experimental design studies.

Following an approach described by Bonett (2008b) for Pearson correlations, an

approximate 100(1 – a)% confidence interval forq is obtained in two steps. In the first step
compute

q̂� � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar q̂ð Þ
1� q̂2ð Þ2

s
ð32Þ

where q̂� ¼ 1
2
ln 1þq̂

1�q̂

h i� �
is a Fisher transformation of the average point-biserial correla-

tion. The Fisher transformation of the average point-biserial correlation is not a variance-

stabilizing transformation, but the sampling distribution of q̂� will be more closely
approximated by a normal distribution than the sampling distribution of q̂.

Let L� and U� denote the endpoints of equation (32). In the second step, reverse-

transform the endpoints of equation (32) to obtain the following 100(1 – a)% confidence

interval for q:
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exp 2L�ð Þ � 1

exp 2L�ð Þ þ 1
;
exp 2U�ð Þ � 1

exp 2U�ð Þ þ 1

� �
: ð33Þ

This confidence interval for q is a varying-coefficient confidence interval that does not
make the unrealistic assumptions of the traditional constant-coefficient (‘fixed-effect’)

and random-coefficient (‘random-effects’) meta-analysis methods (see Bonett & Price,

2015). The R function ci.ave.pbcor (Appendix) computes expression (33).

Unlike the constant-coefficient estimator, expression (33) does not assume equality of
qik values, and unlike the random-coefficient estimator, expression (33) does not assume

that the qik parameters are a random sample from a normally distributed superpopulation

of point-biserial correlations. The traditional constant-coefficient and random-coefficient

methods for point-biserial correlations compute a confidence interval for an average

Fisher-transformed point-biserial correlation and then reverse-transform the endpoints.

Except in some special cases (e.g., a set of correlations that are symmetrically distributed

around 0), reverse-transforming an average of Fisher-transformed correlations will

introduce bias into the reverse-transformed estimator. The random-coefficient method
computes a weighted average estimator of q and the weights are assumed to be

uncorrelated with the Fisher-transformed point-biserial correlations. A correlation

between the weights and the estimates introduces additional bias into the random-

coefficient estimator of q (Bonett & Price, 2015).

The varying-coefficient confidence interval describes the average of them population

point-biserial correlations. The allure of the random-coefficient confidence interval is that

it describes the average of all point-biserial correlations in the superpopulation. However,

the random-coefficient confidence interval enjoys this useful interpretation only if them
population point-biserial correlations are a random sample from some definable

superpopulation of point-biserial correlations.

8.5. Subgroup analysis

Subgroup analyses are often performed in a meta-analysis to assess the effect of a

categorical moderator variable (see Borenstein, Hedges, Higgins, & Rothstein, 2009,

Chapter 19). Expressions (33) and (29) can be used in conjunction to perform a two-level
subgroup analysis of point-biserial correlations. A two-level point-biserial subgroup

comparison can be expressed as qiA – qiB, where qiA is the average or two or more point-

biserial correlations andqiB is the average or twoormorepoint-biserial correlationswhere

the point-biserial correlations that comprise qiA are distinct from the point-biserial

correlations that comprise qiB. In some subgroup analyses, qiA or qiB might represent a

single point-biserial correlation rather than an average. Some examples of subgroups

comparisons are (qi1 + qi2)/2 – qi3 and (qi1 + qi2) – (qi3 + qi4 + qi5)/3. To compute a 100

(1 – a)% confidence interval for qiA – qiB, compute 100(1 – a)% confidence intervals for qiA
and qiB and then plug the point and interval estimates into expression (29).

8.6. Confidence interval interpretation

Classical confidence intervals are typically motivated using a relative frequency definition

of probability, and statisticians have correctly pointed out that nothing can be said about a

computed confidence interval using a relative frequency argument (Arnold, 1990, p. 568).

Although the relative frequency definition is of no use after the data have been analysed
(Pearson, 1947), a subjective degree of belief definition of probability can be used to
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interpret a computed confidence interval, as explained by Bonett andWright (2007). It is

not correct to assume that a subjective degree of belief definitionof probability only canbe

used in a Bayesian analysis.

9. Performance of confidence intervals

The small-sample coverage probabilities of 95% confidence intervals for q1 and q3
were assessed in a Monte Carlo study to simulate a non-experimental design with

simple random sampling. Normality within each subpopulation was assumed. Two

values of p were examined (.20 and .50) under both homoscedasticity and
heteroscedasticity (r1/r2 = 2). Recall that the estimators of both q1 and q3 are

appropriate with heteroscedasticity if simple random sampling is used. Random data

were computer generated for five different values of q1 (0, .2, .4, .6, .8). With

homoscedasticity, q1 = q3, and with heteroscedasticity q̂1 is a consistent estimator of

q3 if simple random sampling is used. For each value of p and q3, confidence intervals

for q1 and q3were computed from 100,000 Monte Carlo trials. The estimated

coverage probabilities of the two confidence interval methods are summarized in

Table 6. Estimated coverage probabilities for q1 and q3 with normality and random sample sizes

n p q3

r1=r2 = 1 r1=r2 = 2

CI for q1 CI for q3 CI for q1 CI for q3

30 .20 0 .956 .926 .956 .927

.2 .954 .931 .955 .930

.4 .950 .942 .949 .942

.6 .944 .957 .945 .958

.8 .943 .973 .942 .974

.50 0 .948 .947 .949 .947

.2 .949 .947 .948 .948

.4 .948 .948 .949 .948

.6 .950 .950 .950 .949

.8 .952 .952 .951 .951

60 .20 0 .952 .939 .952 .939

.2 .950 .941 .951 .941

.4 .945 .949 .945 .948

.6 .938 .959 .938 .960

.8 .928 .973 .928 .973

.50 0 .949 .949 .949 .949

.2 .949 .948 .949 .949

.4 .949 .949 .949 .949

.6 .950 .950 .950 .950

.8 .951 .950 .950 .950

Note. q1 ¼ q3 withr1=r2 = 1 and q̂1 is a consistent estimator ofq3 withr1=r2 6¼ 1 if simple random

sampling is used. Estimates in each row are based on 100,000 Monte Carlo trials using randomly

generated normal scores within each group. The random sample sizes (n1 and n2) were constrained

to be >2.

14 Douglas G. Bonett



Table 6. Both 95% confidence intervals have estimated coverage probabilities that are

close to .95 under all conditions examined.

In non-experimental designs where p is known, stratified random sampling can be

used to obtained the desired sample sizes in each group. Researchers often want equal
sample sizes to maximize the power of the independent-samples t-test or to minimize the

negative effects of assumption violations (Scheff�e, 1959). A second Monte Carlo study

examined theperformance of the confidence intervals forq1 andq3with stratified random

sampling fromapopulationwithp= .20. The results are summarized in Table 7. Unless the

fixed sample sizes are selected such that n1/(n1 + n2) = p, the coverage probability of a

95% confidence interval for q1 can be far below .95. Poor performance was observed

when q1 = .8. But with p = .20, a q1 value of .8 corresponds to a d1 value of about 3.33,
which rarely would be observed in any actual study. In non-experimental designs where
the minority subpopulation is oversampled in an effort to obtain similar sample sizes, the

classical point-biserial correlation should not be used and q3 is the recommended

alternative.

The small-sample coverage probabilities of 95% confidence intervals for q2 and q4
(which are appropriate for experimental designs) were estimated from 100,000 Monte

Carlo trials for fixed sample sizes, within-condition normality, homoscedasticity, and

heteroscedasticity (r1/r2 = 2). The results are summarized in Table 8. With homoscedas-

ticity, q2 = q4, but with heteroscedasticity q̂2 is not a consistent estimator of q4 if the
sample sizes are unequal. The confidence interval for q2 has coverage probabilities that

were close to .95 in the equal sample size conditions under both homoscedasticity and

heteroscedasticity. In the heteroscedastic cases with unequal sample sizes, the

confidence interval for q2 is liberal when the group with the larger variance has the

smaller sample size and is conservative when the group with the larger variance has the

larger sample size. The confidence interval for q2 is liberal with moderate and large values

of q2, heteroscedasticity, and equal sample sizes. The confidence interval for q4 has

coverage probabilities that are close to .95 under all conditions.
Confidence intervals for standardized mean differences are not robust to

violations of the normality assumption (Bonett, 2009). The coverage probability

for a standardized mean difference tends to be conservative with platykurtic (short-

tailed) distributions and anti-conservative with leptokurtic (long-tailed) distributions

within each level of X. Confidence intervals for point-biserial correlations will have

similar properties. The coverage probabilities of 95% confidence intervals for q1
under non-normality and homoscedasticity assuming a simple random sample of size

n = 60 were estimated from 100,000 Monte Carlo trials using four different beta
distributions. The results are summarized in Table 9. The beta distribution family has

a finite range and is a useful representation of the distribution of the numerous

finite-range tests and questionnaires used in psychology. The Beta(1, 1) and Beta(2,

2) distributions are symmetric and platykurtic with kurtosis coefficients of 1.8 and

2.14, respectively. The Beta(2, 4) and Beta(1, 5) distributions are skewed with

skewness coefficients of 0.47 and 1.18, respectively, and with kurtosis coefficients of

2.62 and 4.2, respectively. The coverage probabilities of 95% confidence intervals for

q2 under non-normality and homoscedasticity with fixed sample sizes were estimated
from 100,000 Monte Carlo trials using the four different beta distributions described

above. The results are summarized in Table 10.

The confidence intervals qj are robust to non-normality with small values of qj. With

large values of qj, the coverage probabilities can be unacceptably conservative with

platykurtic distributions and unacceptably liberal with leptokurtic distributions. Data
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transformation is often useful in reducing kurtosis in skewed and leptokurtic distribu-

tions. For example, taking the square root of Beta(1, 5) scores produced 95% coverage

probabilities closer to .95 for all values of qj. Although a confidence interval for l1 – l2
could be difficult to interpret with transformed data, data transformations do not

introduce interpretation problems for the point-biserial correlation because it is a unitless

measure of effect size.

The traditional method of constructing a confidence interval for g2 uses a transfor-

mation of a computationally intensive confidence interval for an F non-centrality
parameter (Steiger, 2004). The proposed confidence intervals for g2 based on confidence

intervals forq21 and q
2
2 were examined using 100,000Monte Carlo trials for random sample

sizes (Table 11), fixed sample sizes (Table 12), normality, and homoscedasticity. The

coverage probabilities of the 95% confidence intervals were close to .95 for all conditions

except for qj = .2, where the coverage probability was closer to .975.

Table7. Estimated coverageprobabilities forq1 andq3with normality, fixed sample sizes, andp= .2

q3 n1 n2

r1=r2 = 1 r1=r2 = 2

CI for q1 CI for q3 CI for q1 CI for q3

0 15 15 .948 .948 .948 .948

20 40 .950 .947 .950 .947

40 20 .950 .948 .950 .948

30 30 .949 .949 .949 .949

12 48 .951 .941 .951 .941

.2 15 15 .938 .947 .938 .947

20 40 .941 .948 .941 .948

40 20 .941 .945 .941 .945

30 30 .931 .949 .931 .948

12 48 .953 .943 .953 .943

.4 15 15 .908 .944 .908 .944

20 40 .912 .949 .912 .949

40 20 .913 .938 .912 .937

30 30 .870 .944 .870 .944

12 48 .958 .950 .958 .950

.6 15 15 .851 .937 .851 .938

20 40 .859 .951 .859 .950

40 20 .859 .923 .859 .923
30 30 .757 .937 .757 .937

12 48 .965 .960 .965 .960

.8 15 15 .754 .928 .756 .927

20 40 .769 .953 .768 .953

40 20 .769 .898 .768 .899
30 30 .571 .926 .572 .927

12 48 .976 .974 .976 .974

Note. q̂1 is not a consistent estimator of q3 unless n1/(n1+n2) = p. Estimates in each row are based

on100,000MonteCarlo trials using randomly generated normal scoreswithin each group. Coverage

probabilities less than .925 or greater than .975 are in bold type.
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The performance of the varying-coefficient confidence interval was compared with

the constant-coefficient and random-coefficientmethods form = 5. The formulas given in

Borenstein et al. (2009) were used to compute the constant-coefficient and random-

coefficient confidence intervals. Four different patterns of q2 were used in the computer

simulations comparing the varying-coefficient and constant-coefficient confidence

intervals. For each pattern, the varying-coefficient and constant-coefficient point

estimates and confidence intervals were computed in 100,000 Monte Carlo trials. Within
each trial, scores were randomly generated from a normal distribution with equal

variances within and across them = 5 studies. Table 13 compares the performance of the

constant-coefficient confidence interval with the varying-coefficient confidence interval

for fixed sample sizes of n1 = 20, n2 = 30, n3 = 40, n4 = 50, n5 = 60, where nj is the

sample size per group within each of the m = 5 studies. The first row of Table 13

summarizes the performance of the twomethods for equal values of q2 across studies and
thus satisfies a primary assumption of the constant,coefficient method. With effect-size

equality, both the varying-coefficient and constant-coefficient methods yield nearly
unbiased estimates of the average point-biserial correlation and both methods have 95%

coverage probabilities that are close to .95. However, with effect-size heterogeneity,

Table 8. Estimated coverage probabilities for q4 with normality and fixed sample sizes

q4 n1 n2

r1=r2 = 1 r1=r2 = 2

CI for q2 CI for q4 CI for q2 CI for q4

0 15 15 .948 .955 .955 .955

20 40 .950 .952 .887 .951

40 20 .950 .952 .982 .954

30 30 .949 .953 .947 .952

.2 15 15 .948 .956 .944 .954

20 40 .950 .951 .887 .951

40 20 .950 .951 .981 .954

30 30 .949 .953 .947 .952

.4 15 15 .949 .957 .943 .954

20 40 .951 .952 .877 .951

40 20 .951 .952 .974 .953

30 30 .949 .953 .945 .952

.6 15 15 .950 .958 .940 .954

20 40 .953 .953 .861 .949

40 20 .950 .953 .960 .953

30 30 .950 .954 .940 .952

.8 15 15 .951 .958 .932 .952

20 40 .957 .953 .833 .949

40 20 .957 .953 .919 .952

30 30 .950 .954 .931 .951

Note. q1 ¼ q4withr1=r2 = 1. q̂2 is not a consistent estimator ofq4withr1=r2 6¼1andunequal fixed

sample sizes. Estimates in each row are based on 100,000 Monte Carlo trials using randomly

generated normal scores within each group. Coverage probabilities less than .925 or greater than

.975 are in bold type.
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which is the rule rather than the exception in practice, the varying-coefficient method

continues to performproperly,while the performance of the constant-coefficientmethod

is unacceptable with 95% coverage probabilities that are substantially <.95.
The serious limitations of the constant-coefficient meta-analysis methods are nowwell

known (Schmidt & Hunter, 2015, p. 368). Bonett (2008a) derived an expression for the

large-sample bias of the constant-coefficient point estimator which shows that this

estimator is consistent with effect-size homogeneity or with equal weights. In practice,

the weights that are used in a constant-coefficient meta-analysis will be unequal and the
coverage probability of a 95% constant-coefficient confidence interval can be far less than

.95, as illustrated in Table 13.

Random-coefficient methods, which do not assume effect-size homogeneity, have

been proposed as a preferred alternative to constant-coefficient methods. Table 14

Table 9. Estimated coverage probabilities for q1 and q3 with non-normality, homoscedasticity, and

random sample sizes (n = 60)

Distribution qi

p = .20 p = .50

CI for q1 CI for q3 CI for q1 CI for q3

Beta(1, 1) 0 .952 .936 .949 .948

.2 .951 .940 .950 .949

.4 .950 .951 .955 .954

.6 .949 .962 .963 .963

.8 .952 .990 .979 .979

Beta(2, 2) 0 .952 .937 .949 .953

.2 .951 .940 .950 .953

.4 .949 .950 .953 .957

.6 .946 .966 .960 .963

.8 .945 .986 .972 .974

Beta(2, 4) 0 .952 .936 .949 .948

.2 .951 .941 .949 .949

.4 .947 .951 .951 .951

.6 .941 .965 .955 .954

.8 .936 .981 .960 .960

Beta(1, 5) 0 .953 .928 .950 .949

.2 .949 .935 .948 .948

.4 .940 .943 .942 .942

.6 .924 .952 .934 .934

.8 .904 .955 .917 .917ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beta 1; 5ð Þp

0 .952 .936 .949 .949

.2 .950 .941 .949 .949

.4 .948 .951 .951 .951

.6 .943 .965 .956 .956

.8 .939 .982 .964 .964

Note. Estimates in each row are based on 100,000Monte Carlo trials using randomly generated Beta

(a,b) scoreswithin each group. Coverage probabilities less than .925 or greater than .975 are in bold

type. The random sample sizes (n1 and n2) were constrained to be >2.
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summarizes the performance of the varying-coefficient and random-coefficient methods

under some conditions that are nearly ideal for the random-coefficient methods. Within

each of the 100,000 Monte Carlo trials, the q2 values were randomly selected from a beta

distribution of q2 values, the sample sizes were randomly generated to minimize the

correlation between the Fisher-transformed estimates and the weights, and the y-scores

within each group were randomly generated from a normal distribution with equal

variances within and across studies. The Beta(2, 2), Beta(3, 3), and Beta(4, 4) distributions

are symmetric and unimodal. The Beta(3,3) and Beta(4, 4) distributions are also bell-
shaped. The results in Table 14 show that the random-coefficient estimator of the average

point-biserial correlation is biased and the 95% random-coefficient confidence interval has

a coverage probability that is substantially less than .95. In contrast, the varying-coefficient

estimator of the average point-biserial correlation is nearly unbiased and the 95% varying-

Table10. Estimated coverageprobabilities forq2 andq4with non-normality, homoscedasticity, and

fixed sample sizes

Distribution qi

nj = 15 nj = 30

CI for q2 CI for q4 CI for q2 CI for q4

Beta(1, 1) 0 .947 .955 .949 .952

.2 .949 .956 .950 .950

.4 .954 .961 .955 .958

.6 .962 .968 .964 .967

.8 .978 .982 .979 .981

Beta(2, 2) 0 .947 .955 .949 .953

.2 .949 .957 .950 .953

.4 .952 .959 .953 .957

.6 .959 .965 .960 .963

.8 .971 .975 .972 .974

Beta(2, 4) 0 .948 .955 .949 .952

.2 .949 .957 .950 .953

.4 .951 .958 .951 .955

.6 .954 .961 .954 .958

.8 .959 .966 .960 .963

Beta(1, 5) 0 .949 .958 .949 .953

.2 .948 .957 .948 .953

.4 .943 .953 .943 .948

.6 .933 .945 .934 .940

.8 .916 .929 .915 .923ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beta 1; 5ð Þp

0 .948 .955 .948 .953

.2 .948 .956 .950 .953

.4 .951 .958 .952 .955

.6 .955 .962 .956 .959

.8 .964 .969 .964 .966

Note. Estimates in each row are based on 100,000Monte Carlo trials using randomly generated Beta

(a,b) scoreswithin each group. Coverage probabilities less than .925 or greater than .975 are in bold

type.
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coefficient confidence interval has coverage probabilities close to .95 under all

conditions. Note that the greater bias in the random-coefficient estimator is due primarily

to reverse-transforming an average of Fisher-transformed correlations with greater

superpopulation heterogeneity.

When using a random-coefficient method, it is important to also report a confidence

interval for the variance of the randomeffect. However, the currently available confidence

intervals for the random-effect variance are hypersensitive to minor violations of the

Table 11. Estimated coverage probabilities for q21 with normality, homoscedasticity, and random

sample sizes

q1

p = .20 p = .50

n = 30 n = 60 n = 30 n = 60

0 .956 .952 .949 .949

.2 .978 .976 .972 .973

.4 .954 .945 .953 .949

.6 .945 .937 .949 .950

.8 .943 .929 .952 .950

Note. Estimates in each row are based on 100,000 Monte Carlo trials using randomly generated

normal scores within each group. The random sample sizes (n1 and n2) were constrained to be

greater than 2. Coverage probabilities greater than .975 are in bold type.

Table 12. Estimated coverage probabilities for q22 with normality, homoscedasticity, and fixed

sample sizes

q2 n1 = 15, n2 = 15 n1 = 20, n2 = 40 n1 = 30, n2 = 30

0 .948 .949 .949

.2 .973 .975 .974

.4 .951 .951 .949

.6 .949 .953 .949

.8 .951 .957 .950

Note. Estimates in each row are based on 100,000 Monte Carlo trials using randomly generated

normal scores within each group.

Table 13. Comparison of constant-coefficient (CC) and varying-coefficient (VC) methods for q2
with normality and homoscedasticity

q2 q

VC method CC method

Average

estimate

95% coverage

probability

Average

estimate

95% coverage

probability

[.3 .3 .3 .3 .3] .3 .298 .947 .303 .944

[.1 .2 .3 .4 .5] .3 .298 .946 .364 .662
[.5 .4 .3 .2 .1] .3 .298 .949 .264 .869
[.5 .2 .1 .2 .5] .3 .298 .948 .322 .904

Note. Estimates in each row are based on 100,000 Monte Carlo trials using randomly generated

normal scoreswithin each group. The sample sizes per groupwere fixed at n1= 20, n2 = 30, n3= 40, n4
= 50, n5 = 60 within each trial. Coverage probabilities less than .925 are in bold type.
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superpopulation normality assumption, and a very large number of studies are required to

assess this critical assumption. A large number of studies are also needed to obtain a

usefully narrow confidence interval for the random-effect variance. In contrast, pairwise

comparisons or subgroup analyses can be used to effectively describe the nature of effect-

size heterogeneity with varying-coefficient methods.

10. Hypothesis tests

10.1. Directional two-sided hypothesis test

In some applications, the researcher simply needs to decide if qi is either greater than or

less than some researcher-specified value (h). The sign of h will depend on how X is

coded. If qi is determined to be > h, this could provide support for one theory or one

course of action, and if qi is determined to be < h, then this could provide support for
another theory or another course of action. This type of decision for a given value of a is
called a directional two-sided test (see Jones & Tukey, 2000). It can be shown that the

probability ofmaking a directional error (i.e., deciding thatqi > hwhenqi < hor deciding

that qi < h when qi > h) is at most a/2, assuming all assumptions of the test have been

satisfied.

A confidence interval for qi can be used to conduct a directional two-sided test for the

population point-biserial correlation. Specifically, if the lower limit of the 100(1 – a)%
confidence interval is > h, then the null hypothesis (qi = h) is rejected and we accept
qi > h; if the upper limit of the 100(1 – a)% confidence interval is less than h, then the null

hypothesis is rejected and we accept qi < h; if the 100(1 – a)% confidence interval

includes h, the results are inconclusive.

For the special case of h = 0, the independent-samples t-test can be used to conduct a

directional two-sided test for a population point-biserial correlation. Specifically, if the p-

value is < a and the t-value is positive then accept qi > h; if the p-value is < a and the t-value
is negative then accept qi < h. If the p-value is > a, the results are inconclusive. For h = 0,

the independent-samples t-test can be used for all four of the point-biserial correlations
because l1 = l2 implies qi = 0 (i = 1, . . ., 4).

A confidence interval forqi1–qi2 canbeused to conduct a directional two-sided test for

a difference in two population point-biserial correlations that have been estimated from

two independent samples. Specifically, if the lower limit of the 100(1 – a)% confidence

Table 14. Comparison of varying-coefficient (VC) and random-coefficient (RC)methods forq2 with

normality and homoscedasticity

Distribution of q2 q

VC method RC method

Average

estimate

95% coverage

probability

Average

estimate

95% coverage

probability

Beta(4, 4) – .2 .3 .298 .947 .317 .882
Beta(3, 3) – .2 .3 .298 .947 .322 .856
Beta(2, 2) – .2 .3 .298 .947 .331 .800
Beta(2, 4.65) .3 .299 .948 .322 .862

Note. Estimates in each row are based on 100,000 Monte Carlo trials using randomly generated

normal scores within each group. The equal sample size per group for each study was randomly

generated from a Uniform(20, 60) distribution within each trial. Coverage probabilities less than

.925 are in bold type.

Point-biserial correlation 21



interval is > h, the null hypothesis (qi1 – qi2 = h) is rejected and we accept qi1 – qi2 > h; if

the upper limit of the 100(1 – a)% confidence interval is less than h, the null hypothesis is

rejected andwe accept qi1 – qi2 < h; if the 100(1 – a)% confidence interval includes h, the

results are inconclusive.

10.2. Equivalence test

In some two-group studies, the researcher wants to show that two different treatments

(e.g., an inexpensive new treatment and the current treatment) or two different

demographic subpopulations (e.g., men and women) have similar population means

(Wellek, 2010). Suppose two treatments or two subpopulations are considered to be

equivalent if l1 – l2 is within the � h to h range, which is called the range of practical
equivalence (ROPE). A confidence interval for l1 – l2 can be used to decide if l1 – l2 is
inside or outside the ROPE. In applications where the response variable has an arbitrary

metric or if the values of the response variable do not have clear clinical interpretations, it

could be difficult for the researcher to specify a ROPE for l1 – l2. In these situations, it

might be easier for the researcher to specify a ROPE forqi. For example, a researchermight

argue that a point-biserial correlation within the range �.1 to .1 represents a small or

unimportant difference in population means. A 100(1 – 2a)% confidence interval for qi
canbeused to decide ifqi iswithin the range � h toh, or ifqi is outside this ROPE (Wellek,
2010). If the confidence interval for qi is completely within the ROPE, the two treatments

or subpopulations are declared to be equivalent; if the confidence interval for qi is
completely outside the ROPE, the two treatments or subpopulations are declared to be

non-equivalent; and if the confidence interval includes the value � h or h, the results are

inconclusive.

10.3. Non-inferiority test
A 100(1 – a)% confidence interval for qi can be used to conduct a non-inferiority test

(Wellek, 2010). Suppose the ROPE is � h to h and the goal of the study is to determine if

qi > �h (non-inferiority) or qi < –h (inferiority). For this test, accept qi > �h if the lower

limit for qi is greater than –h, and acceptqi < –h if the upper limit for qi is less than –h. The
results are inconclusive if the confidence interval includes the value –h or h. In some

applications, it is sufficient to show that an inexpensive treatment is not inferior to amore

expensive treatment. The traditional t-test of equal population means is not an

appropriate test for non-inferiority.

10.4. Directional non-equivalence test

A 100(1 – a)% confidence interval for qi can be used to conduct other non-traditional

hypothesis tests. For example, suppose the ROPE is –h to h and the goal of the study is

to determine if qi > h or qi < –h. For this test, accept qi > h if the lower limit for qi is
greater than h, accept qi < –h if the upper limit for qi is less than –h, and accept the

hypothesis of equivalence if the confidence interval for qi is completely within the –h
to h range. The results are inconclusive if the confidence interval includes the value –h
or h. Compared to the traditional test of qi = 0, where a rejection of the null

hypothesis does not preclude the possibility that qi is very close to 0, the acceptance of

qi> h or qi < –h indicates that the value of qi is at least meaningfully large in addition

to specifying the direction of the effect.
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11. Sample size planning

11.1. Sample size for desired power
Thepoint-biserial correlations presented here are useful supplements to the independent-

samples t-test.Whenplanning a two-group experimentwithn2/n1 = r and approximately

equal variances, the values of n1 and n2 required for an independent-samples t-test with

power 1 – b and a Type I error rate of a are very accurately approximated by the formula

n1 ¼ ~r2ð1þ 1=rÞðza=2 þ zbÞ2=ð~l1 � ~l2Þ2 þ z2a=2=4; ð34Þ

andn2 = rn1,where ~r2 is a planning value of the averagewithin-group variance, ~l1 � ~l2 is
a planning value of the expected difference in population means, za=2 is a two-tailed

critical z-value, zb is a one-tailed critical z-value, and the adjustment z2a=2=4 is based on

results given by Guenther (1981).

Researchers might have difficulty using equation (34) if they have difficulty specifying
~r2 or the value of ~l1 � ~l2. Given the relation between a point-biserial correlation and

standardized mean difference, equation (34) can be expressed as

n1 ¼
1�~q2ð Þð1þrÞ

4r

h i
z
a=2

þ zb

� �2

~q2
þ z2a=2=4 ð35Þ

where ~q is a planning value of q2. A planning value of q2 could be obtained from expert

opinion, a pilot study, or a review of the literature. Some researchers will find

equation (35) easier to implement than equation (34). As can be seen from equation (35),

a smaller value of ~q produces a larger sample size requirement. The R function

size.test.pbcor2 (Appendix) computes equation (35).

Equations (34) and (35) are appropriate for experimental designs. In a non-

experimental design with simple random sampling, the total sample size (n = n1 + n2)

required to conduct a directional two-sided test ofH0:q1 = 0with power 1 –b and aType I
error rate a is approximately

n ¼
1� 1:5~q2 þ ~q2

4~pð1�~pÞ
� �

za=2 þ zb
� �2

~q�2
; ð36Þ

where ~p is a planning value of p and ~q�2 = ln[(1 + ~q)/(1–~q)]/2. The R function

size.test.pbcor1 (Appendix) computes equation (36).

11.2. Sample size for desired precision
The hypothesis testing result of an independent-samples t-test does not provide

effect-size information. A confidence interval for a population point-biserial correla-

tion will provide useful information about the magnitude of the effect if the

confidence interval is sufficiently narrow. When planning a two-group experiment

with n2/n1 = r and approximately equal variances, the values of n1 and n2 required

to obtain a 100(1 – a)% confidence interval for q2 that has a desired width of about

w are approximately
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n1 ¼ 1þ r

r

	 

~q2

2 1� ~q2ð Þ þ 1

� �
~q2

1� ~q2
þ 1

� ��3
za=2

w

� �2

ð37Þ

and n2 = rn1. The R function size.ci.pbcor2 (Appendix) computes equation (37).

When planning a non-experimental study with simple random sampling, the total

sample size required to obtain a 100(1 – a)% confidence interval for q1 that has a desired
width of about w is approximately

n ¼ 4 1� ~q2
� �2

1� 1:5~q2 þ ~q2

4~p 1� ~pð Þ
	 
� �

za=2

w

� �2

; ð38Þ

where ~p is a planning value of p. The R function size.ci.pbcor1 (Appendix)

computes equation (38).

12. Examples

12.1. Example 1

Howell (2007, p. 200) described a two-group experiment to assess the effect of stereotype

threat on mathematics examination performance of college students. The estimated

means were 9.64 and 6.58, the estimated standard deviations were 3.17 and 3.03, and the

sample sizes were 11 and 12 for the control and stereotype threat groups, respectively.

Howell computed a pooled-variance independent-samples t-test and obtained t(21) = 2.37,

p = .027. This result allows us to reject the null hypothesis of equal population means at

a = .05 and conclude that the population mean in the control condition is greater than
the population mean in the stereotype threat condition.

To describe the magnitude of the population effect size, a confidence interval for l1 –
l2, a standardizedmeandifference, or a point-biserial correlation should be reported along

with the t-test result. The sample sizes are too small to assess homoscedasticity, and it is

prudent to report a 95% confidence interval for q4 rather than q2. Using the R function

ci.pbcor124 (Appendix), the point estimate of q4 is .446 and the 95% confidence

interval for q4 is [.037, .689]. It could be argued that this confidence interval is toowide to

provide useful scientific or practical information and the study should be replicated using
a larger sample size. Using the R function size.ci.pbcor2 (Appendix) with a = .05, a

point-biserial planning value of .446, assuming equal sample sizes per group, and a desired

95% confidence interval width of .3, the required sample size per group in a replication

study is about 50.

The sample size required to achieve desired precision is often substantially larger than

the sample size required to achieve desired power of a two-sided directional test. Using

the R function size.test.pbcor2 (Appendix), the sample size required to conduct an

independent-samples t-test with a = .05, power of .9, and a point-biserial effect size of
.446 is about 23 per group.

12.2. Example 2

Wright, Quick, Hannah, and Hargrove (2017) developed a new scale to measure

‘character’ inwhich one of the subscaleswas ameasure of ‘valour’. One of the goals of this

study was to develop a new measure of valour that is not gender-biased (T. A. Wright,

personal communication). They conducted two studies. In one study they obtained a
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simple random sample of college students, and in a second study they obtained a simple

random sample of working adults. The members of each sample were classified into male

and female groups. Using the reported descriptive statistics in Wright et al. (2017) and

utilizing the R function ci.pbcor124 (Appendix), the estimate of q1 is .052 with a 95%
confidence interval of [–.053, .156] for the college students and –.068 with a 95%

confidence interval of [–.187, .053] for the working adults. Using the R function

ci.diff.pbcor (Appendix), a 95% confidence for the difference inq1 values in the two

populations is [–.040, .278]. This confidence interval includes 0, which could justify an

examination of the average point-biserial correlation in the two populations. Using the R

function ci.ave.pbcor (Appendix), an estimate of the average of the q1 values in the

two populations is –.008 with a 95% confidence interval of [–.088, .071]. Note that the

confidence interval for the average point-biserial correlation is substantially narrower
than the confidence interval for each separate population and narrow enough to perform

an equivalence test. If we assume that a point-biserial correlation between valour and

gender of less than about .1 is evidence of gender equivalence, then the confidence

interval for the average point-biserial correlation suggests that the gender bias in the new

valour scale is small and unimportant.

13. Conclusion

Each point-biserial correlation is appropriate in specific types of applications. The

classical point-biserial correlation (q1) is appropriate in both experimental and non-

experimental designs if the homoscedasticity assumption can be justified. The classical

point-biserial correlation also is appropriate in non-experimental designs with

heteroscedasticity if simple random sampling is used. The q2 measure of point-biserial

correlation is appropriate in experimental designs with equal or unequal sample sizes if
the homoscedasticity assumption can be justified. The q3 measure of point-biserial

correlation is appropriate in non-experimental designs with stratified random sampling,

equal or unequal sample sizes, and heteroscedasticity. The q4 measure of point-biserial

correlation is appropriate in experimental designs with equal or unequal sample sizes and

heteroscedasticity. The appropriate types of applications for the four point-biserial

correlations are summarized in Table 15.

The current practice of reporting the p-value for an independent-samples t-test along

with only a sample value of a standardized mean difference or a point-biserial correlation

Table 15. Summary of point-biserial formulas and applications

Parameter

Point

estimator

equation

Confidence

interval

equations Applications

q1 (12) (25) and (26) Experimental or non-experimental designs with equal or

unequal nj and equal r2j ; or non-experimental designs

with unequal r2j and simple random sampling

q2 (14) (25) and (28) Experimental designs with equal or unequal

nj and equal r2j
q3 (15) (25) and (27) Non-experimental designs with stratified random

sampling, equal or unequal nj and equal or unequal r2j
q4 (16) (25) and (28) Experimental designs with equal or unequal nj and

equal or unequal r2j
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can be more misleading than reporting only the p-value. In Example 1, the sample point-

biserial correlation was .442 (which could interpreted as a ‘large’ effect), and it would be

tempting to conclude that stereotype threat had not only a statistically significant effect

but also a large effect on performance. However, the 95% confidence interval [.039, .687]
for the population point-biserial correlation provides important additional information

and suggests that the population point-biserial correlation could be trivial or very large. In

this case, a larger sample is needed to more accurately assess the size of the stereotype

threat effect. The confidence intervals for point-biserial correlations presented here can

be used to supplement the results of an independent-samples t-test with useful effect-size

information.

In studies with two independent samples, the t-test for equal population means is

typically performed, but several non-traditional hypothesis tests (e.g., equivalence test,
non-inferiority test, directional non-equivalence test) can also be performed. These non-

traditional tests require the researcher to specify aROPE, but thismight bedifficult to do in

terms of a mean difference. When the effect size is expressed as a point-biserial

correlation, it is usually easier to specify a ROPE. The confidence intervals for a population

point-biserial correlation presented here can be used to perform a variety of useful non-

traditional hypotheses tests.

The point-biserial correlation is a commonly used measure of effect size in meta-

analyses. The currently used constant-coefficient and random-coefficient meta-analysis
methods for point-biserial correlations have serious limitations, and their continued use is

difficult to justify. The varying-coefficient meta-analysis methods for point-biserial

correlation presented here have excellent performance characteristics and do not make

any of the unrealistic assumptions of the constant-coefficient and random-coefficient

methods. With the new point-biserial correlations introduced here, the most appropriate

type of point-biserial correlation can be computed for each study and then combined in

the meta-analysis.

In a study that has used a sample size that is too small, hypothesis tests will have low
power and confidence intervals could be uselessly wide. Sample size planning is perhaps

one of the most important steps in the design of a proposed study. The sample size

formulas presented here can be used to design a study thatwill have an acceptably narrow

point-biserial confidence interval or a hypothesis test with desired power.
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Appendix:

R functions

ci.pbcor124 <- function(alpha, m1, m2, sd1, sd2, n1, n2) {
# Computes confidence intervals for three types of population 
# point-biserial correlations in a two-group design. 
# Arguments:
#   alpha: alpha value for 1-alpha confidence
#   m1:    sample mean for group 1
#   m2:    sample mean for group 2
#   sd1:   sample standard deviation for group 1
#   sd2:   sample standard deviation for group 2
#   n1:    sample size for group 1
#   n2:    sample size for group 2
# Returns:
#   point estimate, SE, and CI for point-biserial correlations
z <- qnorm(1 - alpha/2)
n <- n1 + n2
p <- n1/n
b <- (n - 2)/(n*p*(1 - p))
df1 <- n1 - 1
df2 <- n2 - 1
s1 <- sqrt((df1*sd1^2 + df2*sd2^2)/(df1 + df2))
d1 <- (m1 - m2)/s1
sed1 <- sqrt(d1^2*(1/df1 + 1/df2)/8 + 1/n1 + 1/n2)
se1 <- sqrt((b^2*sed1^2)/(d1^2 + b)^3)
se2 <- sqrt((16*sed1^2)/(d1^2 + 4)^3)
lld1 <- d1 - z*sed1
uld1 <- d1 + z*sed1
cor1 <- d1/sqrt(d1^2 + b)
cor2 <- d1/sqrt(d1^2 + 4)
ll1 <- lld1/sqrt(lld1^2 + b)
ul1 <- uld1/sqrt(uld1^2 + b)
ll2 <- lld1/sqrt(lld1^2 + 4)
ul2 <- uld1/sqrt(uld1^2 + 4)
s2 <- sqrt((sd1^2 + sd2^2)/2)
d2 <- (m1 - m2)/s2
a1 <- d2^2*(sd1^4/df1 + sd1^4/df2)/(8*s2^4)
a2 <- sd1^2/(s2^2*df1)+ sd2^2/(s2^2*df2)
sed2 <- sqrt(a1 + a2)
se4 <- sqrt((16*sed2^2)/(d2^2 + 4)^3)
lld2 <- d2 - z*sed2
uld2 <- d2 + z*sed2
cor4 <- d2/sqrt(d2^2 + 4)
ll4 <- lld2/sqrt(lld2^2 + 4)
ul4 <- uld2/sqrt(uld2^2 + 4)
out1 <- t(c(cor1, se1, ll1, ul1))
out2 <- t(c(cor2, se2, ll2, ul2))
out3 <- t(c(cor4, se4, ll4, ul4))
out <- rbind(out1, out2, out3)
colnames(out) <- c("Estimate", "SE", "LL", "UL")
rownames(out) <- c("PB1", "PB2", "PB4")
return(out)

}

Example

ci.pbcor124(.05, 9.64, 6.58, 3.17, 3.03, 11, 12)

Estimate        SE         LL        UL
PB1 0.4588693 0.1629710 0.06095109 0.6969370
PB2 0.4428716 0.1601635 0.05830514 0.6808174
PB4 0.4424886 0.1678624 0.03719998 0.6886044
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ci.pbcor3 <- function(alpha, m1, m2, sd1, sd2, n1, n2, p) {
# Computes confidence intervals for a population point-biserial
# correlation in a two-group nonexperimental design with stratified
# random sampling. 
# Arguments:
#   alpha: alpha value for 1-alpha confidence
#   m1:    sample mean for group 1
#   m2:    sample mean for group 2
#   sd1:   sample standard deviation for group 1
#   sd2:   sample standard deviation for group 2
#   n1:    sample size for group 1
#   n2:    sample size for group 2
#   p:     proportion of subpopulation 1 members
# Returns:
#   point estimate, SE, and CI for point-biserial correlations 
z <- qnorm(1 - alpha/2)
n <- n1 + n2
b <- 1/(p*(1 - p))
df1 <- n1 - 1
df2 <- n2 - 1
s2 <- sqrt(p*sd1^2 + (1 - p)*sd2^2)
d2 <- (m1 - m2)/s2
sed2 <- sqrt(d2^2*(1/df1 + 1/df2)/8 + (sd1^2/n1 + sd2^2/n2)/s2^2)
se3 <- sqrt((b^2*sed2^2)/(d2^2 + b)^3)
lld2 <- d2 - z*sed2
uld2 <- d2 + z*sed2
cor3 <- d2/sqrt(d2^2 + b)
ll3 <- lld2/sqrt(lld2^2 + b)
ul3 <- uld2/sqrt(uld2^2 + b)
out <- t(c(cor3, se3, ll3, ul3))
colnames(out) <- c("Estimate", "SE", "LL", "UL")
rownames(out) <- c("PB3")
return(out)

}

Example

ci.pbcor3(.05, 9.64, 6.58, 3.17, 3.03, 11, 12, .3)

Estimate        SE         LL       UL
PB3 0.4151766 0.1548671 0.05315445 0.651824

ci.diff.pbcor <- function(alpha, cor1, ll1, ul1, cor2, ll2, ul2) {
# Computes a confidence interval for a difference in two population
# point-biserial correlations estimated from two different samples
# Arguments: 
#   alpha: alpha value for 1-alpha confidence
#   cor1: sample point-biserial correlation in group 1 
#   ll1:   lower limit for first point-biserial correlation
#   ul1:   upper limit for first point-biserial correlation
#   cor2: sample point-biserial correlation in group 2
#   ll2:   lower limit for second point-biserial correlation
#   ul2:   upper limit for second point-biserial correlation
# Returns:
#   confidence interval
ll <- cor1 - cor2 - sqrt((cor1 - ll1)^2 + (ul2 - cor2)^2)
ul <- cor1 - cor2 + sqrt((ul1 - cor1)^2 + (cor2 - ll2)^2)
ci <- c(ll, ul)
return(ci)

}
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Example

ci.diff.pbcor(.05, .052, -.053, .155, -.069, -.186, .052)
[1] -0.03920612  0.27687816

ci.ave.pbcor <- function(alpha, cor, se) {
# Computes confidence interval for an average point-biserial correlation 
# using estimates from two or more studies. Different types of point-biserial
# correlations (PB1, PB2, PB3, PB4) can be used across studies.
# Args:  
#   alpha: alpha level for 1-alpha confidence
#   cor:   vector of point-biserial estimates 
#   se:    vector of point-biserial standard errors 
# Returns:
#   estimated average, standard error, confidence interval
m <- length(cor)
z <- qnorm(1 - alpha/2)
ave <- sum(cor)/m
var.ave <- sum(se^2)/m^2
cor.f <- log((1 + ave)/(1 - ave))/2
ll0 <- cor.f - z*sqrt(var.ave/(1 - ave^2)^2)
ul0 <- cor.f + z*sqrt(var.ave/(1 - ave^2)^2)
ll <- (exp(2*ll0) - 1)/(exp(2*ll0) + 1)
ul <- (exp(2*ul0) - 1)/(exp(2*ul0) + 1)
out <- cbind(ave, sqrt(var.ave), ll, ul)
colnames(out) <- c("Estimate", "SE", "LL", "UL")
return(out)

}

Example

cor = c(.052, -.069)
se = c(.0533, .0613)
ci.ave.pbcor(.05, cor, se)

Average SE          LL         UL
[1,]  -0.0085 0.04061582 -0.08788419 0.07099147

size.test.pbcor2 <- function(alpha, cor, pow, r) {
# Computes the sample size per group required to conduct a directional
# two-sided test of a population point-biserial correlation with desired
# power in a 2-condition experiment. Equality of variances is assumed.
# Arguments: 
#   alpha:  alpha level for hypothesis test
#   cor:    planning value of point-biserial correlation
#   pow:    desired power
#   r:      n2/n1 ratio 
# Returns:
# required sample size per group 
za <- qnorm(1 - alpha/2)
zb <- qnorm(pow)
k <- (1 - cor^2)*(1 + r)/(4*r)
n1 <- ceiling(k*(za + zb)^2/(cor^2) + za^2/4)
n2 <- n1*r
out <- t(c(n1, n2))
colnames(out) <- c("n1", "n2")
return(out)

}
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Example

size.test.pbcor2(.05, .446, .9, 1)
n1 n2

[1,] 23 23

size.test.pbcor1 <- function(alpha, cor, pow, p) {
# Computes the total sample size required to conduct a directional
# two-sided test of a population point-biserial correlation with
# desired power in a two-group nonexperimental design with simple
# random sampling.
# Arguments: 
#   alpha:  alpha level for hypothesis test
#   cor:    planning value of point-biserial correlation
#   pow:    desired power
#   p:      proportion of subpopulation 1 members planning value
# Returns:
#   required sample size per group 
za <- qnorm(1 - alpha/2)
zb <- qnorm(pow)
cor.f <- log((1 + cor)/(1 - cor))/2
k <- 1 - 1.5*cor^2 + cor^2/(4*p*(1 - p))
out <- ceiling(k*(za + zb)^2/cor.f^2)
return(out)

}

Example

size.test.pbcor1(.05, .3, .8, .25)
[1] 81

size.ci.pbcor2 <- function(alpha, cor, w, r) {
# Computes the sample size required to estimate a population point-biserial 
# correlation with desired confidence and precision. Equality of variances 
# is assumed.
# Arguments: 
#   alpha:  alpha level for 1-alpha confidence 
#   cor:    planning value of point-biserial correlation
#   w:      desired confidence interval width
#   r:      n2/n1 ratio 
# Returns:
#   required sample size per group 
z <- qnorm(1 - alpha/2)
k1 <- (1 + r)/r
k2 <- cor^2/(2*(1 - cor^2)^2) + 1
k3 <- (cor^2/(1 - cor^2) + 1)^(-3)
n1 <- ceiling(k1*k2*k3*(z/w)^2)
n2 <- n1*r
out <- t(c(n1, n2))
colnames(out) <- c("n1", "n2")
return(out)

}
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Example

size.ci.pbcor2(.05, .446, .3, 1) 
n1 n2

[1,] 50 50

size.ci.pbcor1 <- function(alpha, cor, w, p) {
# Computes the sample size required to estimate a population point-biserial 
# correlation with desired confidence and precision. Equality of variances 
# is assumed.
# Arguments: 
#   alpha:  alpha level for 1-alpha confidence 
#   cor:    planning value of point-biserial correlation
#   w:      desired confidence interval width
#   p:      proportion of subpopulation 1 members planning value
# Returns:
#   required total sample size 
z <- qnorm(1 - alpha/2)
out <- ceiling(4*((1 - cor^2)^2)*(1 - 1.5*cor^2 + cor^2/(4*p*(1 - p)))*(z/w)^2)
return(out)

}

Example

size.ci.pbcor1(.05, .3, .2, .3)
[1] 310
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