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Applied Motor Noise Affects Specific
Learning Mechanisms during
Short-Term Adaptation to Novel
Movement Dynamics
Katherine Foray,1 Weiwei Zhou,1 Justin Fitzgerald,1 Pierre G. Gianferrara,1 and
Wilsaan M. Joiner1,2

Departments of 1Neurobiology, Physiology and Behavior and 2Neurology, University of
California, Davis, Davis, California 95616

Abstract

Short-term motor adaptation to novel movement dynamics has been shown to involve at least two
concurrent learning processes: a slow process that responds weakly to error but retains information
well and a fast process that responds strongly to error but has poor retention. This modeling framework
can explain several properties of motion-dependent motor adaptation (e.g., 24 h retention). An important
assumption of this computational framework is that learning is only based on the experienced movement
error, and the effect of noise (either internally generated or externally applied) is not considered. We
examined the respective error sensitivity by quantifying adaptation in three subject groups distinguished
by the noise added to the motion-dependent perturbation. We assessed the feedforward adaptive
changes in motor output and examined the adaptation rate, retention, and decay of learning. Applying
a two-state modeling framework showed that the applied noise during training mainly affected the
fast learning process, with the slow process largely unaffected; participants in the higher noise groups
demonstrated a reduced force profile following training, but the decay rate across groups was similar,
suggesting that the slow process was unimpaired across conditions. Collectively, our results provide evi-
dence that noise significantly decreases motor adaptation, but this reduction may be due to its influence
over specific learning mechanisms. Importantly, this may have implications for how the motor system
compensates for random fluctuations, especially when affected by brain disorders that result in move-
ment tremor (e.g., essential tremor).

Significance Statement

Short-term motor adaptation to novel movement dynamics has been shown to involve at least two
concurrent learning processes: a slow process that responds weakly to error but retains information
well and a fast process that responds strongly to error but has poor retention. This computational
framework assumes that learning is only based on the movement error, and the effect of noise is
not considered. We found that as the magnitude of externally generated noise increased, the overall
learning rate decreased, which could be explained specifically by impairments to the fast learning pro-
cess. The applied motor noise had little effect on the retention and decay of adaptation—aspects that
mainly involve the slow learning process.

Introduction
Motor learning is a type of experience-dependent learning that involves changes in

behavioral output to achieve a desired outcome (Wolpert et al., 2001, 2011; Halsband
and Lange, 2006; Krakauer et al., 2019). The nervous system integrates different sources
of information (e.g., externally generated sensory feedback, internally generated
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predictive signals, etc.) to determine the appropriate motor output to compensate for experienced errors (Mazzoni and
Krakauer, 2006; Wolpert et al., 2011; Krakauer et al., 2019). Motor adaptation, a form of short-term motor learning, can
occur on a trial-by-trial basis (i.e., error-based learning) to recalibrate motor output to reduce sensory prediction errors
(Synofzik et al., 2006, 2008; Berniker and Körding, 2008; Shadmehr et al., 2010; Izawa and Shadmehr, 2011; Wolpert
et al., 2011; Butcher et al., 2017).
Motor adaptation of arm reaching movements (Shadmehr and Mussa-Ivaldi, 1994) is typically studied using a robotic

manipulandum. Participants hold the handle of the robot and are asked to make reaching movements between targets
in the presence of a dynamic, lateral force-field (FF) perturbation (Joiner and Smith, 2008; Mckenna et al., 2017;
Alhussein et al., 2019; Zhou et al., 2022). These FF perturbations are usually orthogonal to the direction of the arm reaching
motion, and the amount of force is proportional to the motion state of the movement (e.g., movement velocity). During this
perturbation, participants must adapt the temporal pattern of force to counteract the lateral force of the perturbation
(Conditt et al., 1997; Conditt and Mussa-Ivaldi, 1999; Sing et al., 2009, 2013; Yousif and Diedrichsen, 2012; Hosseini
et al., 2017; Joiner et al., 2017). Interspersed randomly throughout the task, error-clamp (EC) trials restrict movement
(in the absence of the perturbation) so that participants are guided toward the target in a straight line while keeping lateral
errors very small (Scheidt et al., 2000; Hwang et al., 2006; Smith et al., 2006; Wagner and Smith, 2008; Sing et al., 2009;
Wei and Körding, 2010; Wanda et al., 2013). EC trials capture the applied force of the subject and provide a measure of
adaptation; the temporal profile of the lateral force produced by subjects is compared with the ideal force pattern based on
the measured motion state throughout the movement (e.g., movement velocity).
Retention of motor adaptation of arm reachingmovements can bemodeled as amulti-rate, gain-independent two-state

model developed by Smith et al. (2006). This framework postulates that adaptation is the result of two concurrent learning
processes: one process that responds quickly to movement errors but has poor retention (i.e., the fast process) and
another that responds slowly to movement errors but retains the learning well from one trial to the next (i.e., the slow pro-
cess; Smith et al., 2006; Joiner and Smith, 2008; Shadmehr et al., 2010; Wolpert et al., 2011; Albert and Shadmehr, 2018;
Sarwary et al., 2018; Coltman et al., 2019). The two-state model has been shown to account for the retention of adaptation
following a 24 h period (Joiner and Smith, 2008); at the end of training, the best predictor of retention is the slow learning
process’s efficiency over time as opposed to the overall adaptation level reflective of learning, as might have been
expected. In a further attempt to understand which specific mechanisms during training affects the stability of adaptation,
Alhussein et al. (2019) systematically examined the influence of training duration and type of exposure (gradual vs abrupt)
on the short-term decay of learning. The authors found that the training duration had the strongest effect on adaptation
stability (i.e., the persistence of the adapted motor output over a period of time); the longer training durations resulted in a
slower decay of adaptation, independent of the type of exposure. Using the two-state modeling framework, the authors
further showed that the slow learning process was best able to predict the stability; the less stable the slow learning pro-
cess, the faster the adaptation decayed. Thus, the studies above show that the slow learning process plays a substantial
role in the long-term memory formation and stability (observed by the time course of decay) of motor adaptation.
One current limitation of the two-state model is its interpretation of the error as a perturbation originating from a single

source. That is, the model assumes that the motor error that drives learning has idiosyncratic consistent characteristics.
However, error can possess different characteristics, such as source, magnitude, and frequency (Faisal et al., 2008;
Wolpert and Landy, 2012). While the slow learning process is most influenced by the duration of training and evolves
over time, the fast learning process is characterized by quick responses to movement errors, which are rapid changes
in the environment resulting in motor variability (Smith et al., 2006; Alhussein et al., 2019). However, it is unclear how
the error sensitivity of the respective processes changes when faced with variability. That is, it is unknown to what extent
the learning mechanisms adjust their response when faced with fluctuations in the experienced error. Thus, there is a need
to understand the exact relationship between variability in error, or noise, and the subsequent effect on these two learning
processes. By understanding the impact that different noise parameters have in adaptation, we will gain greater insight
into how variability in the experienced error influences motor learning. This in turn will allow updating the current models
of adaptation to reflect the compensation to real-world movement errors.
In addition to the underlying temporal and spatial characteristics, motor noise can be broadly categorized as either inter-

nally or externally generated (coming from a source within or separate from the organism; Berniker and Körding, 2008;
Faisal et al., 2008). Understanding this influence will assist in assessing the consequences of noise on the motor behavior
in certain patient populations. For example, motor noise has been shown to impair the ability to appropriately adapt motor
output when either internally generated (McCrea and Eng, 2005; Kronenbuerger et al., 2007; Shill et al., 2009) or externally
applied (Therrien et al., 2018). This is particularly relevant to patients with pathological tremor, a type of internally gener-
ated noise, who have impaired motor learning (McCrea and Eng, 2005; Kronenbuerger et al., 2007; Shill et al., 2009).
Specifically, patients with essential tremor (ET) are known to have a high-frequency tremor (6–12 Hz; Agarwal and
Biagioni, 2024) that impairs their ability to adapt (Shill et al., 2009). In a study examining visual sensory feedback noise,
higher amounts of externally generated noise during adaptation have been suggested to require compensation from
explicit learning strategies (Miyamoto et al., 2020), which have been thought to constitute the fast learning process of
the two-state model (McDougle et al., 2015). While these studies provide initial insight into how noise impairs motor adap-
tation, there has not yet been direct evidence of the specific mechanisms and timescales by which these impairments
occur. To better understand the precise aspects of motor learning affected by internally generated noise, especially in
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disease models, wemust first establish how varying characteristics of externally generated noise with the same frequency
as essential tremor impacts healthy participants.
The objective of this study was to assess motor adaptation in the presence of additional noise of different magnitudes.

By applying the two-state model, we aimed to further understand the impact of externally applied motor noise on different
characteristics of motor learning (e.g., adaptation rate, retention, and decay). Through the addition of noise with the same
frequency as essential tremor to movement error, we hoped to gain greater insight into real-world representations of
movement error and contribute to the current two-state model, which currently interprets error as being nonvariable.
We hypothesized that as the magnitude of externally generated noise increased, the motor adaptation rate in response
to the novel movement dynamics would decrease, specifically as a result of impairment of the fast learning process.
Subsequently, due to a largely intact slow process, the specificity of impairment would result in similar retention and decay
rates of adaptation across the different levels of applied noise. Ultimately, a more comprehensive understanding of error
sensitivity will provide insight into how the motor system compensates for random fluctuations, especially when affected
by brain disorders that result in movement tremor (e.g., essential tremor or Parkinson’s disease).

Materials and Methods
Sixty right-handed participants (15 male, 44 female, and 1 unknown; aged between 18 and 30 years) without known

neurological impairments were recruited at a location which will be identified if the article is published. Participants
received financial compensation for their participation. All participants used their right dominant hand to complete the
experiment and their handedness was measured by the Edinburgh Handedness Inventory (Oldfield, 1971). Each partici-
pant only performed a single experimental paradigm. All participants were naive to the purpose of the experiment and gave
written informed consent in accordance with protocols approved by the Institutional Review Board at a location which will
be identified if the article is published.
Motor adaptation was investigated through an arm reaching paradigm (Shadmehr and Mussa-Ivaldi, 1994; Scheidt et

al., 2000; Fig. 1). The paradigm required participants to move a robotic arm on a planar workspace that moved a screen
cursor between presented targets. The robotic armmanipulandum (KINARMEnd-Point Lab, BKIN Technologies) sampled
motor output, including position, force, velocity, and acceleration at 1,000 Hz. A horizontal screen display blocked partic-
ipants from viewing their arm directly. A downward-facing LCD monitor, reflected by an upward-facing mirror, allowed
viewing of trial start locations and targets, marked by small circles. Participants were seated in an adjustable chair so
that they could comfortably view the mirrored display.
Participants were instructed to make straight arm reaching movements between two circular targets 0.5 cm in diameter

spaced 10 cm apart on a screen while holding the handle of the robotic manipulandum (Fig. 1A). The two targets were
located 20–30 cm away from the body on the sagittal axis. Armmovement via the robotic manipulandumwas represented
by awhite filled circle, 3 mm in diameter on the screen. Horizontal and vertical armmovement (i.e., movement within the 2D
plane that results in x and ymovement directions of the cursor) was measured, and a successful movement to the target
was achieved when the peak movement velocity in the y direction (toward the target) was within a range of 0.2–0.55 m/s.
Additionally, participants were given both visual and auditory feedback on successful reaches. When peak movement
velocity met the specific criteria, the target would turn green and make a brief auditory tone. When the reach was too
slow, the target would turn yellow. If too fast, red. At the beginning of the task, participants were instructed to obtain
“as many green feedback trials as possible.”
Within the task, there were four types of trials: null, force-field perturbation (FF), error-clamp, and noise-only (Fig. 1B).

During null trials, participants made straight arm reaching movements between the targets without any perturbations or
restrictions tomovement (no noise and no force- field). During FF trials, reaching armmovements were systematically per-
turbed during the training period. On these trials, the robot perturbed the handmotion with forces that were proportional to
the velocity of movement and perpendicular to the direction of hand motion (Eq. 1). Within the FF trials, there were three
groups of subjects, and each group experienced a different level of noise, (magnitudes of either 0, 3, or 7 N, at a frequency
of 10 Hz) in addition to the main FF perturbation. For the level of noise, we wanted to simulate the pathological tremor
experienced by those with essential tremor. A 10 Hz frequency is within the range for that experienced by individuals
with essential tremor. However, we were limited by the KINARM’s generation of noise magnitude (i.e., force). Using our
best estimates, we wanted to capture the full range of noise magnitude that could be produced by the KINARM without
causing discomfort to participants. The 7 Nmagnitude was the far end of this range while the 3 Nmagnitude was approx-
imately between 0 and 7 N. The noise was generated by a sine function (Eq. 2) and applied along the x-axis—the axis that
subjects would eventually experience the force-field perturbation.

Fx

Fy

[ ]
= ck

0 − k
k 0

[ ]
ẋ
ẏ

[ ]
, k = 15 Ns/m. (1)

Error-clamp (EC) trials assessed the feedforward adaptive changes in motor output. EC trials involved restricting lateral
movement, forcing participants to move the cursor in a straight line toward the target so that lateral errors were kept to
a minimum. In this case, the robot motors constrained movements in a straight line toward the reach target by
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counteracting any motion perpendicular to the target direction. This was achieved by applying a stiff one-dimensional
spring (6 kN/m) and a damper (150 Ns/m) in the axis perpendicular to the reach direction. In these trials, perpendicular dis-
placement from a straight line to the reach target was held to <0.6 mm and averaged ∼0.2 mm in magnitude. Importantly,
the force field (and added noise) was not applied on these error-clamp trials. Thus, there would not be any rapid feedback
correction on these error-clamp trials. The error-clamp trials provide the force profiles shown in Figures 2 and 4 (the force
the robot must apply in order to ensure the subject moved in a straight line).
During noise-only trials, participants made straight arm reaching movements between the targets while the robot

applied the amount of noise consistent with their condition (magnitudes of either 0, 3, or 7 N, at a frequency of 10 Hz).

Noise = m · sin(2 · p · f · t) , f = 10Hz, m = 0, 3 or 7N. (2)

Experimental paradigm. The task began with a familiarization period, where participants of all groups had null (no added
noise or FF) movement trials. One group (0 N noise) served as the control group. Two groups experienced noise with an

Figure 1. Experimental set-up and protocol. A, Participants made straight arm reaching movements between two circular targets from midline ∼10 cm
apart while holding the handle of a robotic manipulandum. Forward reachingmotion was completed in the 90° direction while reaching back toward oneself
was completed in the 270° direction. However, we only used arm movements completed in the 270° direction to compute adaptation coefficients and
assess force profiles. The location of the hand was represented on the screen as a white filled circle. B, There were four movement types: null, noise-only,
force field (without noise), force field (with noise), and error-clampmovements. Each trial consisted of one movement. Null movements were completed as
a free-range movement (no resistance from the robot) without any added noise or force field perturbation. Noise-only movements were free-range move-
ments with added noise (according to condition). During force field movements, participants experienced a velocity-dependent, lateral perturbation
(horizontal small black arrows). For the 270° reaching motion, the force-field perturbed the participant arm reach to the right. The control condition
experienced this perturbation without any added noise [force-field movement (without noise)]. The experimental groups experienced this perturbation
with the addition of either 3 N or 7 N of noise (applied at 10 Hz) supplied by the robot [force-field movement (with noise)]. This noise was generated by
the sine function described in the Materials and Methods. During error-clamp trials (EC), lateral movement was constrained by clamps, constraining lateral
error to <0.6 mm. C, Paradigm structure. Participants started off with a block consisting of null movements with occasional error-clamp trials to establish
baseline performance. During the training blocks, participants experienced the force-field perturbation (with added noise in the 3N and 7 N noise groups).
During the retention probe block, on some of the trials, participants were asked to hold the cursor at the start target for ∼1 min before proceeding with the
reaching movement. During the decay probe block, participants were given a series of 80 error-clamp trials to assess the decay of adaptation.
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amplitude of 3 or 7 N (except for during the familiarization period). This was followed by baseline trials. For the control
group, the baseline block contained 100 null trials randomly dispersed with 10 EC trials (110 trials total). For the two noise
groups, the baseline consisted of 50 noise-only trials and 60 null trials (no noise) randomly dispersed with 10 EC trials (120
trials total). Immediately following baseline, participants were exposed to a training block. As described above, we divided
participants into three groups based on the amplitude of the noise experienced during the training period. Each participant
only experienced one type of training and the training period consisted of 100 FF trials interspersed randomly with 20 EC
trials (120 trials total). For every 5 FF trials, there was 1 EC trial randomly dispersed. In addition to the FF perturbation, the
robot applied the magnitude of noise that corresponded to the condition of each participant.
The retention block (Fig. 1C) immediately followed the training period. During this block participants experienced 5–7

trials of the FF perturbation (with the added noise based on the subject group) followed by an EC trial. This EC trial
was followed by a delay period of 1 min during which participants were asked to hold the cursor at the start location.
Based on prior work, we hypothesized that during this delay, the fast process would rapidly decay so that the subsequent
error-clamped movement on the trial following the delay would reflect the amount of slow learning process retained over
the period without movement. This sequence (5–7 FF trials, 1 EC trial, a 1 min delay, and 1 EC trial) was repeated 10 times
within the retention block. Finally, following the retention block there was a decay block, which consisted of 80 consec-
utive EC trials. This allowed a measure of the decay of adaptation toward baseline.

Quantification of adaptation. To quantify adaptation throughout the task, we use the lateral force profiles measured
throughout the EC trials. For our analyses, we only calculated adaptation and the applied force profiles for reaches in
the direction toward the body (270°). Since we only perturbed arm reaching movement during the 270° movements, we
wanted to analyze only that direction for changes in participant force profile. For each FF trial, there is an ideal temporal
pattern of compensatory force to fully compensate for the lateral perturbation. This ideal compensatory force is directly
proportional to the velocity profile of movement on that trial, so the ideal force profile for each FF trial is unique. Force pro-
files are the temporal pattern of applied force (N) which is measured continuously throughout a single reachingmovement.
The force profiles on individual trials were centered on the peak velocity with a temporal window of 1,200 ms (±600 ms,
where 0 ms is the moment when the movement reaches peak velocity). This provides an alignment of all movements in the
same temporal window. Force profiles were aligned to the peak velocity because the force-field perturbation applied by
the robot is based on themovement velocity. Thus, plotting the ideal force pattern (based on the actual movement velocity
on that trial) with the actual applied force on that trial provides a straightforward comparison of the two profiles. We cal-
culated the participants’ ability to adapt to the perturbations by linearly regressing the baseline-subtracted actual force
profile applied by participants to the ideal compensatory force profile for each EC trial. The baseline subtractions are sub-
tracting the average force profile, determined over the same 1,200 ms window, obtained during the EC trials during the
baseline period from the force profile on the EC trials experienced during training. Determining the regression slope
involved utilizing a least squares estimate to minimize the model fit error, and the slope was used as the measure to quantify
adaptation (i.e., the adaptation coefficient, AC). It is this slope of the linear regression between the baseline-subtracted actual
force and the ideal force (based on the movement velocity on that trial) that is the scalar AC—a measure of how well the
applied force matches the ideal force based on the movement velocity. If the actual compensatory force was equal to the
ideal compensatory force, then the AC=1. If they are exact opposites, AC=−1. If they are unrelated to one another, AC=0.

Baseline analyses. To better understand how the groups performed before exposure to the perturbation condition, we
quantified the variability of null movements during the baseline period. In this case variability refers to the angular deviation
from the straight line path at the point of maximum lateral movement deviation.

Computational modeling. To determine the effect of the applied noise on specific learning mechanisms, we used the
multi-rate gain-independent two-state model from Smith et al. (2006). The equations for adaptation to error (perturbation)
are shown below.
Two-State Model (Smith et al., 2006):

xf [n+ 1] = Af · xf [n] + Bf · e[n] , (3)

xs[n+ 1] = As · xs[n] + Bs · e[n], (4)

Bf .. Bs , As .. Af , x[n] = xf [n] + xs[n],

xf [n], xs[n]: Net motor output on trial n
Af , As : Retention factors
Bf , Bs: Learning rates
e[n]: Error on trial n
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FF Trials:

e[n] = f [n] − x[n], (5)

EC Trials:

f [n] = x[n] � e[n] = 0, (6)

e(n): error on trial n
f (n): strength of FF disturbance on trial n
x(n): state of learned motor output on trial n

The two-state model postulates that adaptation is supported by two, distinct processes that operate in parallel (Eqs. 3, 4).
The total compensation to error (x[n]) is the sum of the fast (xf [n]) and slow (xs[n]) learning processes. The fast and slow learn-
ing processes differ in their respective learning (Bf , Bs) and retention (Af , As) rates. Here, learning rates are quantified by the
previously mentioned adaptation coefficients, which are averaged across participants for each trial. The fast learning pro-
cess has a faster learning rate than the slow learning process (Bf .. Bs) but the slow learning process has a much greater
retention factor (As .. Af ). The netmotor output on the next trial (x[n+1],A) is dependent on the amount of learning retained
(retention factor) scaled by the amount of the fast or slow process (the internal state). The amount of the fast or slow process
has been intrinsically normalized based on the current motor output in addition to the current learning rate (B) scaled by the
amount of error on the current trial (e[n]). The net motor output on a specific trial (xf[n], xs[n]) refers to the AC for each learning
process (fast or slow). As the ACs themselves are scalar (−1 to 1), the net motor output reflects this learning in a scalar fash-
ion. The potential amount of learning based on the presence or absence of error on the current trial, for the purposes of this
study, was normalized as either f [n] = 0 (no perturbation) or f [n] = 1 (FF is present). In the FF trials, the strength of the
perturbation ( f [n]) minus the learned force to counteract that perturbation (x[n]) during a single trial will provide the amount
of error (e[n]) that remains. Note that to determine the adaptation coefficient, we change the sign of the ideal force profile to
have a direct comparison to the actual force profile. That is, the actual force should be opposite the FF, but we ensure that
both are in the same direction (flip the sign) to determine howwell they match. In this way, a positive coefficient represents a
successful cancellation of the perturbation. Thus, in this case the error is f (n)− x(n). Additionally, xf[n] and xs[n] represent the
respective amount of the adaptation to the force-field perturbation attributed to either process.When f [n] = 0 during EC trials,
there is no potential for learning because the error is clamped to zero.
Model parameters were derived within groups (i.e., controls, 3 N, 7 N) by minimizing the model fit’s error relative to the

collected data with the fmincon function in MATLAB; Eq. 7). Because our optimization function is biased toward
the asymptote, we wanted our initial parameters to more closely reflect the initial rise in the adaptation coefficient
(Af = 0.775; Bf=0.06; As=0.992; Bs=0.02). To accurately constrain the best-fit parameter estimates of the data, we ran
a bootstrapping algorithm that sampled participant data with replacement and added a regularization term to the error
function to prevent biasing effects from repeated outliers in the data (Eq. 8). This procedure was replicated 2,000 times
to reliably estimate a distribution of bootstrapped parameters. Each replicate was made by sampling data from 20 ran-
domly generated choices generated from the 20 participants in the study. We made 2,000 different bootstrap estimates
and fit the model to each estimate. We used the 2.5 and 97.5 percentile values of each parameter distribution’s fitted
Gaussian as the 95% confidence interval limits.
Estimating plausible ranges of estimates for each of the four model parameters (Af , Bf , As, Bs) happened in two steps. In

Step 1, we computed the original parameter estimates based on the least-squares method. We first estimated reasonable
values for each of the four model parameters by minimizing the model prediction error relative to the original data y
(i.e., best model fit). Specifically, we ran the fmincon() function in MATLAB to extract the parameter estimates that would
minimize the error function as described in Equation 7.

uLMSE = argmin
∑N

n=1 (y
(n) − ŷ(n))

2

N

{ }
, (7)

where N refers to the total number of trials, y(n) refers to the original observation on trial n, and ŷ(n) refers to the model pre-
diction on trial n.
In Step 2, we estimated plausible confidence intervals around the original parameters uLMSE. We implemented a boot-

strapping strategy to estimate a reasonable confidence interval around each of the original LMSE parameters within uLMSE.
This strategy consisted in sampling data with replacement and estimating new û vectors for each bootstrap. Bootstraps
were made by concatenating 20 randomly generated choices corresponding to data produced by the 20 participants in
the study. We extracted 2,000 different bootstrapped parameter estimates by fitting the model to each random data con-
catenation. We added a regularization term to Equation 7 to penalize extreme weights due to the biasing effect of occa-
sional repeated outliers in the sampled data. We implemented the fmincon() function in MATLAB to estimate each of the
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2,000 bootstrapped û based on Equation 8.

û = argmin
∑N

n=1 (y
(n) − ŷ(n))

2

N
+ l

∑4
s=1

ûs − uLMSEs��������
uLMSEs

√
[ ]2{ }

, (8)

whereN refers to the total number of trials, y(n) refers to the original observation on trial n, ŷ(n) refers to themodel prediction
on trial n, uLMSE refers to the original model parameters from Step 1, and l refers to a regularization constant which was set
to l = 0.05. This choice of value for the hyperparameter l was found to be a reasonably low option that optimizes the
trade-off between data overfitting (yielding û outliers) and the overly constrained normalization of the û distribution.
Note, here, that for each parameter estimate s the choice of

��������
uLMSEs

√
as the denominator in the regularization term ensured

that all fourûs, lying between 0 and 1, would equally be constrained by the regularization factor l regardless of their relative
magnitude.
For the bootstrapping algorithm, we used the following bounds in the initialization of the fmincon() function across all

conditions:

Af :0.25–0.75,

Bf :0.0–0.2,

As:0.93–1.0,

Bs:0.0–0.2,

This method was replicated 2,000 times in each bootstrap to estimate fourû distributions. A normal Gaussian was fitted to
each of these distributions to estimate each parameter’s mean and 95% confidence interval. Specifically, we used the 2.5
and 97.5 percentile values of each parameter as the 95% confidence interval lower and upper bounds.

Code accessibility. The code/software described in the paper is freely available online at osf.io/cktnw. The code is avail-
able as Extended Data.

Statistical analysis. Statistical analyses were performed in MATLAB (version R2023a) on trials that met the speed, dura-
tion, and position criteria listed above. Based on these criteria, 5% of trials were discarded for the control group, 1.8% of
trials were discarded for the 3 N group, and 5.45% of trials were discarded for the 7 N group. In our statistical analyses, we
used both fixed (i.e., condition) and random (i.e., subjects) effects. To compare the learning rate for each noise condition,
we utilized a logistic growth model (Eq. 9, listed in results) using trial number and average adaptation coefficient across
participants for each trial number. We then calculated the R-squared value for goodness of fit for our data. We hypothe-
sized that the control group would have a greater maximum adaptation and would reach this asymptote at a faster rate
than the 3 N and 7 N groups. To compare force profiles across the force windows (150 ms before peak movement,
peak movement, and 150 ms after peak movement) and period of training (early, middle, and late training) for each noise
condition, in addition to comparing average adaptation coefficient for each period of training across groups, we utilized a
two-way and three-way analysis of variance (ANOVA). We predicted that the adaptation would be greater for the control
group than the 3 N and 7 N conditions duringmiddle and late training due to the 3 N and 7 N groups having impaired learn-
ing during early training. For the retention trials, we compared the average adaptation coefficient at the end of training and
the average adaptation coefficient during the retention probe across groups with a two-way ANOVA. Due to our overall
hypothesis of an unimpaired slow learning process, we predicted that there would not be a significant difference between
the end of training and retention probe performance across groups. If significant results were found, we further investi-
gated significance between groups. Additionally, to confirm statistical equivalence across all groups for retention probe
performance, we conducted Mann–Whitney U tests. To better compare the differences in the average amount of decay
across motor noise conditions, we performed a two-phase exponential fit (Eq. 10, listed in results), using trial number
and average adaptation coefficient across participants for each trial number, and compared the exponential decay con-
stants. To again address our overarching hypothesis that long-term retention, driven by the slow learning process, was not
impaired by the added noise, we predicted that the rate of decay would show no statistical difference across conditions.
We conducted an Akaike information criterion (AIC) test to determine the optimal model, specifically evaluating the appro-
priateness of one-phase and two-phase exponential decay models. We computed the log-likelihood from fits to the one-
phase and two-phase exponential decaymodels by fitting the data under a t-distribution and basing the AIC on the sum of
the squared errors (Akaike, 1998). The results of the goodness-of-fit assessment revealed that the two-phase exponential
decay model provided the most favorable fit for our dataset. For all ANOVAs, we corrected for multiple comparisons using
Bonferroni’s post hoc test. For significant interactions, we conducted post hoc Tukey-HSD tests. Effect size (eta squared)
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was calculated using the hhentschke/measures-of-effect-size-toolbox in MATLAB (Hentschke, 2023). For all tests, the
significance level was 0.05 and data are presented by means±SE.

Results
In this study we investigated the specific mechanisms by which increasing externally applied motor noise magnitude

affected motor adaptation. We utilized a force-field adaptation task (Shadmehr and Mussa-Ivaldi, 1994) in which three
groups of participants were exposed to varying levels of noise magnitude (0, 3, or 7 N, at a frequency of 10 Hz) while being
simultaneously perturbed by the velocity-dependent force-field perturbation. Each group consisted of 20 individuals.
Each individual only experienced one noise level within the experiment. We examined the effects of the externally applied
noise on the time course of adaptation, as well as the retention and decay of the learning.

The effect of motor noise on unperturbed and perturbed movements
To determine if the three groups differed during baseline movements (prior to any training), we examined force profiles

during EC trials in addition to themovement duration, peak velocity, and path length of the null trials. Average force profiles
were not significantly different across the three conditions (Fig. 2A,B; one-way ANOVA; F(2,59) = 0.96; p=0.39; η2 = 0.03).
However, movement duration (Fig. 2C; one-way ANOVA; F(2,59) = 2.06; p=0.14; η2 = 0.68), peak velocity (Fig. 2D; one-way
ANOVA; F(2,59) = 0.35; p=0.7; η2 = 0.01), and path length (Fig. 2E; one-way ANOVA; F(2,59) = 2.37; p=0.1; η2 = 0.08) of base-
line null trials were not significantly different across conditions. Variability of baseline null trials was significantly different
between conditions (Fig. 2F; one-way ANOVA F(2,59) = 39.2; p=1.99 × 10−11; η2 = 0.58), with the 7 N group having greater
pretraining variability followed by the 3 N and 0 N groups (see Materials and Methods). Thus, the added noise affected
certain aspects of movement kinematics on the baseline trials. Next, we examined these effects on movement adaptation
in response to a velocity-dependent force-field perturbation.

Figure 2. Comparison of baseline movements. A, Force profiles comparison across conditions (orange, control group with no added noise; green, 3 N of
added motor noise; purple, 7N of added motor noise). Force profile is the value, measured in magnitudes (N) on the y-axis, used to indicate how much
lateral force was exerted during EC trials throughout a single reaching movement. Force profiles on individual trials were centered on peak velocity
(peak velocity indicated as 0 ms). Box plots are shown for the average (B) force (C) movement duration, (D) peak velocity, (E) path length, and (F) variability
of baseline null trials. Each unfilled circle represents the results for the average of the windowed trials. Force, movement duration, peak velocity, and path
length were not significantly different across the three conditions. However, movement variability was significantly different at baseline.
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Added motor noise affects the initial rate of adaptation
Figure 3A plots the adaptation coefficient (seeMaterials andMethods) as a function of training trials for the three subject

groups. To quantify the learning rate of each motor noise condition, we utilized a logistic growth model, shown below:

An = K

1 + K − A0

A0

( )
e−rn

, (9)

An: adaptation coefficient on trial n
K: carrying capacity (maximum adaptation coefficient subjects could reach)
A0: initial adaptation coefficient
r: growth rate for learning curve

The control group (0 Nof appliedmotor noise) achieved thegreatestmaximumadaptation (Kcontrol = 0.60; 95%CI [0.57 0.63])
and did so at the fastest rate (rcontrol = 0.37; 95% CI [0.15 0.59]; R2=0.92; Fig. 3A). The 3 N group achieved a maximum adap-
tationofK3N=0.42, 95%CI [0.390.45]with a learning rate thatwas slower than thecontrol group (r3N=0.26; 95%CI [0.080.44];
R2=0.85). The7 Ngroupachieved the lowestmaximumadaptation (K7N=0.24;95%CI [0.200.28])with theslowestearning rate
(r7N=0.07; 95% CI [0.02 0.12]; R2=0.78). These results suggest that as motor noise magnitude increased, the ability of each
group to adapt decreased (Kcontrol >K3N>K7N). Additionally, increasing motor noise magnitude also affected the rate at which
peak adaptation occurred, with higher magnitudes of motor noise associated with slower learning rates (rcontrol > r3N> r7N).
To better understand how the average adaptation coefficients differed at specific time periods of training, we examined

the average adaptation coefficient from the first 10% of training trials (early trials), the middle 10% (middle trials), and last
10% (late trials; Fig. 3B). A two-way ANOVA demonstrated that there was a significant difference in adaptation between
motor noise groups (F(2,178) = 25.89; p=1.53 × 10−10; η2 = 0.2), and within each motor noise group, adaptation was signif-
icantly different between three training periods (two-way ANOVA; F(2,178) = 26.07; p=1.33×10−10; η2 = 0.2). No significant
interaction between the two factors was found (F(4,178) = 1.53; p=0.2; η2 = 0.02). The decrease in learning rate occurred
early in training; in the early training period, the control group [orange trace; adaptation coefficient (AC) of 0.24 ±0.10]
has a steep rise whereas the 3 N (0.19 ± 0.03) and 7 N (0.08 ± 0.02) groups had not adapted as well (green and purple
traces, respectively). The slowed and impaired ability to adapt in early trials due to increasing motor noise magnitude is
subsequently followed by lower performance overall in the middle and later trials (middle training period: control, 0.61 ±
0.07; 3 N, 0.44 ± 0.04; and 7 N, 0.23 ± 0.03; late training period: control, 0.6 ± 0.05; 3 N, 0.44 ±0.04; and 7 N, 0.24 ±0.03).

Added motor noise affects the temporal force profiles
We analyzed the respective force profiles within a 100 ms window to identify differences between the temporal struc-

tures of adaptation (Joiner et al., 2017). This also provided information on the effect of increasing noise magnitude on

Figure 3. Learning curves during training. A, Adaptation, quantified by the adaptation coefficient, is plotted as a function of trial number for each condition.
These learning curves show that as noise increases (control, orange trace; 3 N, green trace; 7 N, blue trace), the ability to adapt becomes impaired. Logistic
growth curve fits (dashed traces) for each condition are shown: R2

control = 0.92, R2
3N = 0.85, R2

7N= 0.78. Gray shading represents SEM. Yellow regions mark
the early, middle, and late periods of training. B, Box plots of the average adaptation coefficient for each condition during early, middle, and late periods of
training for each group. Each unfilled circle represents the results for one subject.
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adaptation reflected in the force profiles across conditions (Fig. 4). We continued to separate the training data into early,
middle, and late trials, as described previously.
To best represent the differences between the temporal force profiles, we also separated the data to compare the

applied force within a 100 ms window centered on peak velocity, 150 ms before peak velocity, and 150 ms after peak
velocity for each training period (Fig. 4A). There was a significant effect of training period (three-way repeated-measures
ANOVA; F(2,530) = 59.60; p=5.49 × 10−24), temporal force window (three-way ANOVA; F(2,530) = 31.98; p=8.21 × 10−14), and
noise condition (three-way ANOVA; F(2,530) = 58.70; p=1.14 × 10−23) on average force profile. These results verify that the
difference in performance, as indicated by force profile, between the three conditions is dependent on specific periods of
training, namely, middle and late training periods (explored in post hoc tests). Additionally, the control group had signifi-
cantly greater peak force (2.32 ±0.16) across training windows than the 3 N (1.43 ± 0.1) and 7 N (0.72 ±0.08) groups, which
suggests that increasing the magnitude of artificially applied noise impairs one’s ability to accurately adapt. All three fac-
tors had significant interaction effects, which we further explored by looking at each training period (Table 1) and conduct-
ing post hoc tests. Post hoc Tukey-HSD tests revealed that there was greater force exerted in the 0 N middle training
period (0.84 ±0.76) than in the 3 N middle training period (0.54 ± 0.43; 95% CI [0.29 1.02]; p=8.4 × 10−7) and in the 7 N
middle training period (0.32 ±0.22; 95% CI [0.72 1.46]; p=9.76 ×10−20). Moreover, there was greater force exerted in
the 3 N middle training period than the 7 N middle training period (95% CI [0.12 0.98]; p=0.002). Peak force was overall
significantly different between the 0 N and 3 N conditions (95%CI [0.37 1.23]; p=3.28 ×10−7), the 0 N and 7 N conditions
(95% CI [0.92 1.79]; p=3.31 × 10−22), and the 3 N and 7 N conditions (95% CI [0.12 0.98]; p=0.002). Further testing
revealed that the peak force was specifically greater during the middle training period than the early training period
(95% CI [−1.3 −0.89]; p=8.86 × 10−9) but there was no significant difference in peak force between the middle and late
training period.

Figure 4. Temporal force profiles during training. A, Average force profiles for each group during early, middle, and late periods of training for the three
conditions (orange, control group with no added noise; green, 3 N of added motor noise; purple, 7 N of addedmotor noise). Force profile is the value, mea-
sured in magnitudes (N) on the y-axis, of force used to counteract the FF perturbation throughout the reaching movement. Ideal force profile represents
howmuch force would be needed to exactly counteract the FF perturbation to continue making a straight arm reaching movement. The actual force profile
indicates how much force, on average, participants used to counteract the FF perturbation. Force profiles were split into three windows: one 100 ms win-
dow centered around 150 ms prior to peak movement velocity, one 100 ms window centered around the peak (time= 0) movement velocity, and one
100 ms window centered around 150 ms after peak movement velocity. These three time periods are represented by the three yellow regions.B, Box plots
show differences in the average force profile for each condition during the pre-150 ms force window, peak force window, and post-150 ms force window
within early, middle, and late periods of training.
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During the early training period (Fig. 4, left column), there was a significant effect of noise group on average force profile
(two-way ANOVA; F(2,179) = 3.69; p=0.03; η2 = 0.04), but the force window did not have a significant effect (two-way ANOVA;
F(2,179) = 0.94; p=0.5; η2 = 0.01). There was no significant interaction effect between the two factors (two-way ANOVA;
F(4,179) = 0.89; p=0.5; η2 = 0.02). Thus, regardless of temporal force window, as the magnitude of noise increased during
the early training period, the average force profile decreased (control, 0.34± 0.21; 3 N, 0.29±0.06; and 7 N, 0.17±0.06).
During themiddle training period (Fig. 4, middle column), there was a significant effect of temporal force window (two-way

ANOVA; F(2,170) = 19.56; p=2.47×10−8; η2 = 0.13) and noise level (two-way ANOVA; F(2,170) = 45.21; p=2.5×10−16; η2 = 0.3)
on the average force profile. Therefore, noise level affected specific temporal force windows. There was a significant inter-
action effect between the two factors (two-wayANOVA; F(4,170) = 3.05; p=0.02; η2 = 0.04), whichwe further explored by look-
ing at each noise level (Table 1) and by conducting a post hoc test. Post hoc Tukey-HSD tests revealed that the 0 N condition
had a greater amount of peak force (2.35±1.02) than the 3 N condition (1.4±0.54; 95% CI [0.34 1.57]; p=4.64×10−5) and
the 7 N condition (0.7±0.46; 95% CI [1.03 2.27]; p=2.15×10−15). Additionally, the 3 N condition had a significantly greater
amount of peak force than the 7 N condition (95%CI [0.09 1.3]; p=0.01).With this, we demonstrate that as themagnitude of
noise increased during the middle training period, the average force profile decreased, and this variation was modulated
throughout the force profile (Table 1).
During the late training period (Fig. 4, right column), there was also a significant effect of both temporal force window

(two-way ANOVA; F(2,179) = 32; p=1.57×10
−12; η2= 0.2) and noise level (two-way ANOVA; F(2,179) = 38.76; p=1.31×10

−14;
η2 =0.24) on the average force profile. Thus, noise level affected specific temporal force windows. There was a significant
interaction effect between the two factors (two-way ANOVA; F(4,179) = 3.33; p=0.01; η

2 =0.04). Post hoc Tukey-HSD tests
revealed that the 0 N condition had a greater peak force (2.65±1.03) than the 3 N condition (1.94±0.7; 95% CI [0.05 1.38];
p=0.02) and the 7 N condition (1.02±0.5; 95%CI [0.97 2.3]; p=3.81×10−13). Moreover, the 3 N condition had a significantly
greater peak force than the 7 N condition (95% CI [0.26 1.58]; p=0.001). Similar to the middle of the training period, this
suggests that as the magnitude of noise increased during the late training period, the average force profiles decreased
and that this difference changed throughout the force profile (Table 1).
Overall, these results support the previous finding that increasing the magnitude of externally generated noise impairs

adaptation to the force-field perturbation. Across all training windows, higher magnitudes of noise significantly reduced
the force profiles, especially during peak movement velocity.

Added motor noise affects the fast learning process underlying motor adaptation
We hypothesized that increasing the externally applied motor noise magnitude impaired adaptation by specifically

affecting the fast learning process while the slow learning process remained largely unaffected. This can be attributed
to the fast learning process, due to it having greater influence during early adaptation. Thus, the impairment of the initial
steep increase in adaptation (Fig. 3) suggests that the fast learning process is impaired by the increase in motor noise
magnitude.
To test this hypothesis, we applied the two-state model to our data (Fig. 5A). In Figure 5, the overall adaptation rate for

each group is represented by a solid black line (95% confidence intervals, control [0.66 0.71], 3 N [0.38 0.42], 7 N [0.18
0.23]). The slow process learning rate, indicated by the dotted green line in Figure 5A, is relatively unimpaired across con-
ditions (parameter values for slow learning rate across groups, control Bs 0.02, 3 N Bs 0.02, 7 N Bs 0.01; 95% confidence
intervals, controlBs [0.01 0.03], 3 NBs [0.01, 0.03], 7 NBs [0.003 0.01]; Fig. 5B). Additionally, the retention rates for the slow
process (Fig. 5C) are unchanged (control As=0.99, 3 N As=0.97, 7 N As=0.96; 95% confidence intervals, control As [0.97
1.0], 3 N As [0.96 0.98], 7 N As [0.96 1.0]. Conversely, the fast process learning rate, indicated by the dotted pink line in
Figure 5A, is impaired by increasing motor noise magnitude (control Bf 0.18, 3 N Bf 0.08, 7 N Bf 0.06; 95% confidence
intervals, control Bf [0.14 0.2], 3 N Bf [0.07 0.09], 7 N Bf [0.05 0.06]). These modeling results are summarized in
Figure 5B and Table 2. Thus, application of the two-state model confirms that increasing the magnitude of externally
applied motor noise impairs adaptation specifically by influencing the fast learning process (Fig. 5, pink bars) while the
slow learning process remains relatively unaffected (Fig. 5, green bars).

Table 1. Mean and standard error for actual force throughout training

Early Middle Late

Control Pre-150 ms 0.42 ± 0.34 1.21 ± 0.16 1.21 ± 0.17
Peak 1.11 ± 0.4 2.36 ± 0.23 2.65 ± 0.23
Post-150 ms 0.7 ± 0.28 1.42 ± 0.18 1.73 ± 0.17

3 N Pre-150 ms 0.38 ± 0.09 0.78 ± 0.09 0.91 ± 0.12
Peak 0.69 ± 0.10 1.40 ± 0.12 1.94 ± 0.16
Post-150 ms 0.35 ± 0.10 0.85 ± 0.11 1.10 ± 0.13

7 N Pre-150 ms 0.33 ± 0.09 0.51 ± 0.08 0.65 ± 0.12
Peak 0.29 ± 0.08 0.71 ± 0.10 1.02 ± 0.11
Post-150 ms 0.26 ± 0.10 0.49 ± 0.10 0.66 ± 0.10

Mean± standard error of the actual force at different periods in training (early, middle, and late) and at different force windows (at peak velocity, and 150 ms before and
after peak velocity) within each noise condition.
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Added motor noise does not affect short-term retention of motor adaptation
We next examined the extent to which retention was affected by increasing motor noise magnitude, as measured by the

1 min delay probe during the retention block of the experiment (see Materials and Methods). One of the benefits of apply-
ing the two-state model to our results is the predictions we can make about behavior under different conditions. A pre-
diction of a systematically impaired fast learning process (with the increase in noise) is that we should observe less of
a decrease in overall learning over a 1 min hold period. This is due to the fast learning process decaying with time while
the slow learning process maintains learning amounts well with the passage of time. Thus, by examining the difference in
the learning amount before and immediately following the 1 min delay, we can indirectly assess changes in the fast learn-
ing process. During the 1 min delay, we expected that adaptation would rapidly decay by a set amount due to the time
dependence of the fast process. Thus, during the error-clamp trial following the delay period, we could isolate the amount

Figure 5. Two-state model results. A, The overall adaptation (black trace), fast process (pink trace) and slow process (green trace) are shown for the three
conditions (orange, control group with no added noise; green, 3 N of added motor noise; purple, 7 N of added motor noise). Colored traces represent the
mean adaptation coefficient and gray shading represents SEM. Best-fit model coefficients are stated at the top of each graph. As noise magnitude
increases, the learning rate for the fast process (Bf) decreases while the learning rate for the slow process (Bs) remains relatively unimpaired.
B, Learning rate parameters for each condition. As noise magnitude increases, the fast learning process rate decreases while the slow learning process
rate remains relatively unimpaired.C, Retention factor parameters for each condition. Retention for the fast learning process decreases as noisemagnitude
increases. However, retention in the slow learning process appears unaffected by the addition of motor noise. Error bars represent the 95% confidence
intervals.

Table 2. 95% Confidence intervals for two-state model parameters

Af 95% CI As 95% CI Bf 95% CI Bs 95% CI

Control group [0.66 0.75] [0.97 1.0] [0.14 0.20] [0.01 0.03]
3 N group [0.61 0.63] [0.96 0.98] [0.07 0.09] [0.01 0.03]
7 N group [0.26 0.26] [0.96 0.99] [0.05 0.06] [0.003 0.01]
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of adaptation that was retained due to the (relative) time-independence of the slow process. Figure 6A shows the adap-
tation coefficient before and after the 1 min delay for each subject group. There was a significant difference in the amount
of adaptation between the end of the retraining period and the amount of adaptation after the 1 min delay period (two-way
ANOVA; F(1,119) = 119.23; p=1.97×10−19; η2 = 0.44) that was significantly different across motor noise conditions
(F(2,119) = 12.1; p=1.71 × 10−5; η2 = 0.09). These results suggest that there was a significant amount of decay between
the end of the retraining period and the decay period and that this was true across noise levels. There was also a significant
interaction effect between these two factors (F(2,119) = 6.32; p=0.003; η2 = 0.05). A post hoc Tukey-HSD test confirmed
that there is no significant difference between the amount of adaptation during the 1 min delay between the control group
and the 3 N group (p>0.05). However, there is a significant difference between the control group and 7 N group (p=0.03)
as well as the 3 N group and 7 N group (p=0.01). We do see that the mean difference over the 1 min hold period is in fact
decreasing with noise level (0.45 ± 0.05, 0.26 ± 0.03, and 0.1 ± 0.02, for 0, 3, and 7 N respectively)—there is less of the fast
learning process to decay with the increase in noise. Importantly, based on the model predictions, this difference should
be minimal because the contributions of the fast learning process at asymptotic learning should be small compared with
the slow learning process. That is, our intent was not to determine if there were significant differences between the subject
groups, but rather to confirm that there is very little difference because the decay over the hold period is largely caused by
the fast learning process.
Next, we determined if there was a significant difference in the amount of decay across noise conditions. We were inter-

ested in the amount of decrease in learning over the 1 min delay. Since the two-state model predicted that a decrease in
the overall learning over a 1 min hold period should be attributed to the fast learning process, we plotted the difference in
the adaptation coefficient before and immediately after the delay period. We wanted to determine if this decrease was
roughly equivalent between groups despite there being significant differences in the level of adaptation before the delay.
As reflected in Figure 6B, there was not a difference in the short-term retention of adaptation (difference before and after
the 1 min delay; control, 0.23 ± 0.04; 3 N, 0.22 ±0.02; 7 N, 0.18 ±0.02). We found that the amount of reduction in the adap-
tation over the 1 min delay was not significantly different across conditions (one-way ANOVA; F(2,59) = 0.75; p=0.5; η2 =
0.03). By examining the delta, we can postulate that the slow learning process is largely unaffected; even though the learn-
ing amount before the delay is different across the three conditions, the drop over the 1 min hold is comparable, suggest-
ing learning is decaying to the level achieved by the slow learning process in each respective group. A Mann–Whitney U
test showed that the control group (Mean ±SE: 0.23 ± 0.04) did not have significantly different decay from the 3 N group
(0.22 ± 0.02), z=0.07, p=0.95, nor the 7 N group (0.18 ±0.02), z=0.83, p=0.41. Additionally, the 3 N group and 7 Ndid not
have significantly different decay (Mann–Whitney U test; z=1.26; p=0.21). The similarities in the reduction suggest that
increasing motor noise magnitude does not significantly impair the short-term retention of adaptation.

Figure 6. Retention of adaptation. During the retention probe, participants were initially re-exposed to the force-field movements, which was followed by
error-clamp trials. A, The average adaptation coefficients on these trials (blue box plots and circles) were compared with the average adaptation coeffi-
cients on the retention trials which followed a 1-minute delay period (red box plots and circles). Each unfilled circle represents the results for one subject.
B, Amount of short-term decay (the difference between the amount of adaptation at the end of training and after the 1 min delay period) for each condition.
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Added motor noise does not affect the decay of motor learning
In addition to retention, we also investigated the effect of motor noise on the decay of adaptation. Figure 7A shows the

non-normalized decay curves, which have different starting adaptation coefficient percentages due to the previous impair-
ment to learning based on noise condition (Fig. 3). To better compare the decay rate of each group, we normalized the
decay curves (Fig. 7B). Figure 7A displays the raw adaptation coefficient, and Figure 7B displays the adaptation coefficient
as a percentage of the value at the end of training.
Figure 7B shows the normalized adaptation coefficient percentage over consecutive error-clamp trials in the decay

period (see Materials and Methods). During the decay block, participants were exposed to 80 consecutive EC trials in
which lateral movement was restricted, allowing for the adapted movement to return to baseline. To best determine which
exponential fit model would best capture the rate of decay, we performed an Akaike information criterion (AIC) test with a
single-phase and a two-phase exponential model. Based on the results of the AIC, we determined that a two-phase expo-
nential fit would best capture the rate of decay:

y = Aebx + Cedx. (10)

This two-phasemodel assumes that the rate of decrease is the result of a fast (y = Aebx) and slow (y = Cedx) exponential
decay, both of which are concurrent throughout the decay period (Fig. 7D). For the fast decay process, the control, 3 N,
and 7 N groups had similar decay rates (control: bcontrol =−0.19, 95%CI [−0.23 −0.14], R2 = 0.98; 3 N: b3N =−0.32 95%CI
[−0.38−0.26],R2 = 0.97; 7 N: b7N =−0.36, 95%CI [−0.45−0.26],R2 = 0.93), though the confidence intervals for the control
group decay rates did not overlap those of the 3 N or 7 N groups. For the slow decay process, there were similar decay
rates across groups (control: dcontrol =−0.01, 95% CI [−0.02 −0.005]; 3 N: d3N =−0.008, 95% CI [−0.01 −0.005]; 7 N:
d7N = −0.004, 95% CI [−0.01 0.002]). Regardless of the varying levels of noise introduced, it is important to note that
the 95% confidence intervals for all decay rates overlap.

Figure 7.Decay of adaptation.A, Non-normalized decay of adaptation, quantified by the raw adaptation coefficient, is plotted as a function of trial number for
each condition (control, orange trace; 3 N, green trace; 7 N, blue trace) during the decay probe block. Colored traces represent the mean adaptation coef-
ficient and gray shading represents SEM.B, The normalized decay curves, quantified by the adaptation coefficient as a percentage of the value at the end of
training, demonstrate that decay rates are similar across groups. The curveswere normalized by dividing the average adaptation coefficient of each trial by the
average adaptation coefficient for each subject during the first trial of the decay period. C, Box plots of the average adaptation coefficient for each condition
during early, middle, and late periods of decay for each group. Each unfilled circle represents the results for one subject.D, Two-phase exponential decay fit,
Aebx + Cedx, for each condition is shown: control, 70.91× 10−0.18x + 44.08× 10−0.01x (R2

control = 0.98); 3 N, 78.61× 10−0.32x + 42.8× 10−0.009x (R2
3N=0.97);

7 N, 96.38× 10−0.36x + 34.17× 10−0.004x (R2
7N=0.93). Adaptation coefficient is shown as a percentage of the value at the end of training.
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To better understand how the average adaptation coefficients differed at specific time periods of decay, we examined
the average adaptation coefficient as a percentage of the value at the end of training from the first 10%of decay trials (early
trials), the middle 10% (middle trials), and last 10% (late trials; Fig. 7C,D). A two-way ANOVA demonstrated that there was
not a significant difference in adaptation between motor noise groups (two-way ANOVA; F(2,35) = 0.84; p=0.44; η2 = 0.01)
but there was a significant difference in adaptation during different temporal windows during decay (F(2,35) = 102.07;
p = 2.56 ×10−13; η2 = 0.87), as one would expect. This observation suggests that decay rates following adaptation are
relatively resistant to added motor noise.

Discussion
In this study, we sought to understand the underlying mechanisms and timescales by which externally applied motor

noise impairs the initial motor adaptation and the retention and decay of the learning. We hypothesized that this noise
impacts the learning rate specifically through the fast learning process of the two-state modeling framework used to cap-
ture short-termmotor adaptation. To test this, we utilized an established motor adaptation paradigm in which participants
made arm reaching movements between two targets and had to adapt to lateral perturbations (a velocity-dependent
force-field) in addition to externally appliedmotor noise. The participants were divided into three separate groups, in which
artificial motor noise was applied at either 3 N or 7 N, compared with a control group that did not experience the motor
noise. We found that as the magnitude of motor noise increased, the overall learning rate decreased. Applying the
two-state model revealed that this overall decrease in adaptation could be explained by impairments to the fast learning
process while the slow learning process remained relatively unimpaired. In addition, the applied motor noise had little
effect on the retention and decay of adaptation—behavioral aspects that mainly involve the slow learning process.

Motor noise affects different processes underlying adaptation
The slow learning process has been shown to be largely responsible for both the overall decay and 24 h retention of

motor adaptation (Smith et al., 2006; Joiner and Smith, 2008; Wolpert et al., 2011; Albert and Shadmehr, 2018;
Sarwary et al., 2018; Alhussein et al., 2019). Thus, based on our hypothesis that noise impacts the learning rate specifically
through the fast learning process, we expected to observe no significant differences in the retention of adaptation across
levels of motor noise magnitude. While initial findings appeared to suggest that retention was impacted by themotor noise
(Fig. 6A), similarities in the overall reduction of adaptation over the 1 min delay revealed that the retention was relatively
unaffected by increasing motor noise magnitude (Fig. 6B). Observing no significant differences in the reduction of adap-
tation between conditions was also confirmed by the two-state model; the slow learning process (the main component of
long-term retention of learning; Joiner and Smith, 2008) was not modulated by motor noise magnitude (Fig. 5).
The fast learning process has previously been shown to quickly respond to movement errors (Smith et al., 2006; Joiner

and Smith, 2008; Shadmehr and Mussa-Ivaldi, 2012; Wolpert et al., 2011; Albert and Shadmehr, 2018; Sarwary et al.,
2018; Coltman et al., 2019). In theory the more variability in the error, the more impairment there will be in determining
the appropriate recalibration of the motor output due to increased uncertainty. Our results suggest that it is the fast learn-
ing process that is impaired by the noise added to the force-field perturbation. This increase in uncertainty of the move-
ment disruption may be captured by predictive models, such as the impaired learning rate parameter captured in the
two-state model (Fig. 5). Increasing uncertainty can impair the ability of predictive models to capture learning.
Increasing noise, a source of uncertainty, lowers the signal-to-noise ratio, which may influence the model to learn less
from the error and more from the noise, which we see with the impaired learning curves of the 3 N and 7 N groups
(Fig. 3). With noise distracting the modeling process from accurately learning from the error signal, or in the current
case, the lateral perturbation, we impair subsequent state estimations from being able to accurately predict and adapt
to the error, thus resulting in poorer sensorimotor adaptation over the course of trials. We see this reflected in Figure 3
adaptation coefficient learning curves demonstrating poorer adaptation for high noise groups. As the fast process
must quickly respond to changes in sensory information, such as a change in force between the previous and current trial,
the model’s extraction of fast process learning parameters might learn more from the noise, rather than the lateral pertur-
bation, because the model does not distinguish between these sources of error when making estimations. This could ulti-
mately make it difficult to accurately estimate the current state and lead to impaired learning (the suboptimal behavior as
we observe here for the 3 N and 7 N groups).
The current two-state model treats error as a constant, though real-world motor errors are often “noisy” and have

diverse characteristics (e.g., temporal, spatial, etc.). Our results demonstrate that increasing themagnitude ofmotor noise,
or rather manipulating a specific characteristic of the noise, impairs motor adaptation by impacting the fast process’s tem-
poral sensitivity to the error while the slow learning process remains relatively intact. When faced with noisy error, the fast
learning process’s contribution may be reduced. Perhaps, this can be due to the fast process having noise-induced gain
control and, as an effect, diminishes the slow process. It is clear that early in the learning curve (where the fast process
contributes the most to overall adaptation) the initial steep, immediate increase in the learning rate is most reduced as
the magnitude of motor noise increases (Fig. 3). According to the feedforward model described in Wolpert et al. (1994),
increasing the noise, or uncertainty, of the sensory input will result in a decrease in relying on sensory information to pre-
dict optimal motor output. This instead leads to a reliance on the feedforward prediction. As shown in Figure 5, by
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increasing the noise level of the robotic manipulandum, there is a decrease in the fast learning process, which compared
with the slow process is relatively more sensitive to changes in incoming sensory information. Thus, our study provides an
initial step into utilizing the two-state framework to understand how underlyingmechanisms of adaptation are impacted by
noisy motor errors. Overall, our study provides an initial step into utilizing the two-state framework to understand how
underlying mechanisms of adaptation are impacted by noisy motor errors. In doing so, we set the foundation to update
the two-state model framework’s treatment of error as a constant to its more realistic “noisy” presence.
While previous studies (Smith et al., 2006; Joiner and Smith, 2008) have demonstrated the predictive power of the

two-state model, there is currently no biological basis for the fast and slow learning processes. McDougle et al. (2015)
sought to better understand what mechanisms constitute the fast and slow learning processes and proposed that implicit
learning may be closely associated with the slow learning process and explicit learning may approximate the fast learning
process. Both the fast learning process and explicit learning occur during the early phase of motor learning. Doyon and
Ungerleider (2002) proposed that corticostriatal and corticocerebellar circuits have increased functional activity during the
early phase of motor learning, which has been supported by both behavioral and clinical studies (Doyon and Benali, 2005).
Indeed, early phases of motor learning, particularly explicit learning through trial-and-error, have been found to be asso-
ciated with regions of the dorsolateral prefrontal cortex, as well as the cerebellum (Halsband and Lange, 2006). This aligns
with previous studies of motor adaptation; online motor corrections and error feedback are largely attributed to contribu-
tions from the cerebellum (Wolpert et al., 1998; Bastian, 2006; Tseng et al., 2007; Schlerf et al., 2012; Popa and Ebner,
2019; Tzvi et al., 2022). Regions of the brain that filter noise to allow for goal-directed adaptation appear to overlap, as
prefrontal cortex→basal ganglia→thalamic pathways have been demonstrated to help select between relevant and non-
relevant stimuli (Wimmer et al., 2015; Marton et al., 2018; Nakajima et al., 2019; Waschke et al., 2021; Sych et al., 2022).
Additionally, the cerebellum has been suggested to play the role of an adaptive filter during online error correction during
movement, which involves sorting through sensorimotor noise (Fujita, 1982; Medina and Lisberger, 2007; Requarth and
Sawtell, 2011). Thus, the overlap between the brain regions involved in early motor learning and those responsible for fil-
tering sensorimotor noise may play a role in the current results. Specifically, the application of motor noise impairs the fast
learning process, which has the most influence during the early phase of adaptation to the velocity-dependent force field.
Our behavioral results suggesting that increasing noise specifically impairs the fast learning process implicates that per-
haps this could be due to interference with the corticostriatal (Doyon and Ungerleider, 2002; Doyon and Benali, 2005;
Wimmer et al., 2015; Marton et al., 2018; Nakajima et al., 2019; Waschke et al., 2021; Sych et al., 2022) and corticocer-
ebellar (Fujita, 1982;Wolpert et al., 1998; Bastian, 2006; Halsband and Lange, 2006;Medina and Lisberger, 2007; Tseng et
al., 2007; Requarth and Sawtell, 2011; Schlerf et al., 2012; Popa and Ebner, 2019; Tzvi et al., 2022) circuitry during the initial
phase of adaptation. However, these theories are likely a broad interpretation of a complicated network. Further studies
examining these relationships are needed to better understand what neural networks are responsible for these different
learning processes and the extent these neural mechanisms are also involved in compensating for different noise sources
and characteristics.

Implications for impaired learning in different clinical populations
Tremor—the involuntary, rhythmical movement of the body (Deuschl et al., 2001; Elble, 2017)—is a type of noise that is

present during both the preparation of movement as well as its execution. Externally generated tremor is induced when a
source outside the organism causes involuntary shaking movements of any part of the body (e.g., an electric toothbrush).
Conversely, internally generated tremor is induced when a source from within the organism results in involuntary, oscil-
latory movements (e.g., the pathological tremor observed in essential tremor, ET). Tremor is an example of noise that
can be directly measured in terms of its source, magnitude, and frequency. Similar to other examples of noise, tremor
has been shown to impair motor learning and control (Lakie et al., 1995; Kronenbuerger et al., 2007; Shill et al., 2009;
Lakie, 2010; Hanajima et al., 2016; Alty et al., 2017; Lopez-de-Ipina et al., 2021; Bindel et al., 2023). For example, Shill
et al. (2009) utilized a classical eyeblink conditioning paradigm to compare healthy control participants with ET patients.
During the first block of the task, they found that motor learning was impaired by 55.6% in ET patients compared
with controls, and this impairment was sustained throughout the entirety of the task. While it is established that tremor-
dominant movement disorders have impaired motor learning, the characteristics of tremor and their impact on the
underlying components of motor learning, including adaptation, are not well quantified. However, the literature shows
that ET frequency ranges between 5 and 10 Hz accompanied by large amplitudes (Louis, 2005; Jankovic, 2008), which
we used to inform our noise characteristics. To better understand how variability in internally generated error, such as
tremor, impacts patients with movement disorders, we first had to establish how variability in error impacts healthy
subjects. This study provides a foundation for understanding how increasing the magnitude of tremor impacts specific
underlying mechanisms of motor learning in healthy subjects, demonstrating that varying specific characteristics of noise,
such as magnitude of tremor and tremor source, affects motor learning by impairing the fast learning process. If internally
generated tremor in disease models plays a role in impairing motor learning, we would expect that it would do so through
similar means.
Internally generated tremor, such as the pathological tremor seen in movement disorders, has also been shown to

impair motor adaptation. Patients with essential tremor (ET), a neurological condition hallmarked by persistent tremor,
are known to have impaired motor adaptation and skill acquisition. Challenges in balance, movement, and postural
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stability (Rao et al., 2006; Heldman et al., 2011) can lead to difficulties in self-agency and daily living (Lorenz et al., 2006;
Anderson et al., 2007). The observed deficits in ET have been suggested to be attributed to the cortico-thalamo-cortical
loop in addition to the cerebello-thalamo-cortical pathway (Fasano et al., 2010). The disruption of brain circuits involved in
ET are located primarily in the cerebellar cortex (Welton et al., 2021), which is known to govern balance and movement
control (Morton and Bastian, 2004). As previously mentioned, increased activity in the cortex, thalamus, and cerebellum
is implicated in the early phases of motor learning (and, by association, possibly the fast learning process) as well as the
selection of relevant information from sensory noise. It is possible that the same neural mechanisms that are disrupted in
ET also contribute to the fast learning process impairment during adaptation to externally generated noise. Deep brain
stimulation of the thalamus, which relays sensorimotor information from the cerebral cortex to other motor regions within
the brain, has been shown to reduce deficits, such as postural stability and tremor severity in ET patients (Wong et al.,
2020). In a study by Bindel et al. (2023), initial motor learning was impaired in ET patients compared with healthy controls,
but deadaptation rates between the two groups were similar, suggesting that retention is unimpaired in ETmotor learning.
These results are aligned with the current findings that motor noise mainly affects the fast learning processes.
A major responsibility of the motor system is determining the source of movement errors to correctly recalibrate motor

output (Scheidt et al., 2001; Joiner and Shelhamer, 2006; Berniker and Körding, 2008; Wei and Körding, 2009; Dam et al.,
2013; Berniker et al., 2014; Kong et al., 2017). For example, when failing to push open a heavy door, themotor systemmust
determine where the error originated. Is this due to the door itself (is it heavier than assumed?) or is this due to not pushing
hard enough (is the exerted force less than assumed?). The motor system relies heavily on integrating information from
multiple sensory systems to determine the error source (Ernst, 2006; Körding et al., 2007). It is thought that this is accom-
plished through reliance on the temporal characteristics of sensory changes to determine if error should be attributed to
internally generated or externally based sources. In general, if sensory changes occur gradually over time, the source of
error is attributed to the self (Fercho and Baugh, 2014). However, if sensory changes occur quickly, the source of error is
often attributed to the external environment (Fercho and Baugh, 2014). After determining the error’s source, the motor
learning system can adapt/recalibrate motor output to achieve a desired outcome. Thus, if the door remains hard to
open after several tries (over time), one might adjust how hard they are pushing on it.
Based on this difference in credit assignment, it is possible that the addition of the externally applied motor noise may

interfere with error attribution in a different way than internally generated tremor. Further research is needed in these
tremor-dominant movement disorder populations to compare the impact of internally generated tremor in patients versus
externally applied motor noise in healthy control. Developing amore comprehensive understanding of the precise aspects
of motor learning that are impaired in different movement disorder populations will assist in identifying possible treatment
strategies and clinical assessments for specific motor learning deficits (Doyon, 2008; Nieuwboer et al., 2009).

Possible limitations
With higher levels of motor noise, such as in the 7 N condition, participants must use greater amounts of force to

correct their reaching movement. Over time, this use of force may lead to fatigue. In our study, participants were
given the opportunity to rest in between experiment blocks, which has been shown to decrease the impact of fatigue
on performance (Verhoeven and Newell, 2018). There is also an immediate separation of learning rate performance early
on during the training blocks between groups. If fatigue was the sole factor in explaining our results, it is likely we would
largely see the largest difference and/or a decrease in learning rate during the later trials during training. The observation
that this was not the case suggests that it is unlikely that fatigue significantly contributed to the observed differences
between groups.
Additionally, based on our experiments, we can conclude that the applied noise impaired the ability to learn the required

temporal pattern of force, but we cannot determine directly if this was the result of cocontraction. During FF trials, it is likely
participants cocontracted to counteract the lateral perturbation (Franklin et al., 2003; Milner and Franklin, 2005). However,
we relied onmeasurements from subsequent EC trials (which did not contain the lateral perturbation) to quantify the ability
to adapt to previous FF trials. It is unclear if participants continued this cocontraction during EC trials without the presence
of the perturbation, asmuscle activation patterns tend to differ in changing environments (Osu et al., 2003). As the purpose
of our current study was to determine the extent participants compensated to the standard movement perturbation
[i.e., the force-field (FF) perturbation] with added levels of applied noise, we aim to investigate this possibility in future
experiments.
In our study, we used the applied motor noise to examine the possible effects of externally generated tremor on motor

learning. However, it is difficult to extrapolate these findings directly to other noise sources (e.g., internally generated
tremor due to brain disorders). Thus, even though it provides valuable insight into how the nervous system handles
increasing noise during adaptation to error, we should note that the externally applied motor noise in the current study
may have limitations in the generality to patient populations. For example, it is currently unclear how physiologically rel-
evant 3 N and 7 N of noise magnitude compares to pathologic tremor (Elble, 1986; Calzetti et al., 1987; Elble et al., 2006;
Deuschl et al., 2022). However, through our findings, we can now understand that when magnitude of noise increases,
ability to adapt decreases, which can then be tested in the context of ET. The frequency (10 Hz), which was standard
across conditions, is most closely related to the tremor frequency experienced by patients with ET, whose tremor tends
to range from 5 to 10 Hz (Louis, 2005; Jankovic, 2008). Overall, we aimed to model the general manifestation of a single
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characteristic of pathological tremor, which is typically described as high amplitude (Elble, 1986; Calzetti et al., 1987).
Through this experiment, we provide preliminary evidence that increasing the magnitude of externally generated tremor
affects motor adaptation specifically by impairing the fast learning process. Future studies will aim to investigate how
changing other characteristics of tremor, such as frequency and source, influence specific underlying characteristics of
motor learning and control.
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