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A lesser scientist than Einstein might bhave said, “But scientific
knowledge comes from nature. Nature provides the hypothesis.”
But Einstein understood that nature does pot.

Nature provides only experimental data.

ZEN and the Art of Motorcycle Maintenance — R.M. PIRrsiG

Abstract

This report introduces Bayesian updating as a convenient method of analyzing experimental
data related to structural engineering applications. Bayesian model assessment is essential for
a consistent evaluation of structural safety and the development of a reliability method that
accounts for imperfect states of knowledge and recognizes all sources of uncertainty arising
in structural problems.

After a short general introduction to the Bayesian theorem, the use of Bayesian methods
in model assessment is highlighted. Bayesian model updating is discussed in the broader
context of Bayesian structural reliability. An important subproblem of Bayesian updating is
the efficient numerical integration of the updating formula. Different proposed methods are
reviewed.

Current implementation in the program BUMP (v1.07) is described in detail and a full “User’s
Manual” is appended to the report. Problems associated with the Bayesian integration
methods used in BUMP are documented.

Finally, the utility of Bayesian model assessment in general and of the BUMP program in
particular, are demonstrated by applying the updating principles to asses a model relating the
elastic modulus of concrete to its compressive strength and a model describing the evolution of
the compressive strength of plain concrete with time. ACI models for the modulus of elasticity
and for the compressive strength of aging concrete are calibrated using data obtained at the
Department of Civil Engineering of the University of California at Berkeley.
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1. Introduction

In this section, an attempt is made to clarify the essentials of the Bayesian paradigm without
going into the theoretical, often philosophical issues. For argumentation on the foundations
of Bayesian thinking, the reader is referred to PREss [37)].

1.1 Bayes’ theorem

Assume that z,,z,,...,z, denote independent observations by random sampling from a
density f(z]8). The density is conditioned on a set of unobservable random parameters
with density p(6). The Bayes theorem states that

$@110)-f@0)......f (2:10)-2(®) 1)
Jo £(:10). .- F(z.18) (8)d8 '

with © the total definition space of the parameter set §. The trivial proof of the theorem is
based on the definition of conditional probability. The interpretation of the formula given by
Bayes initiated a new approach to statistical reasoning.

f8lz) =

The prior density p(6) bundles all prior knowledge about the unknown parameters. Since
it has no relation with the experiment under study, it has no objective basis whatsoever,
but relies on subjective information about the parameter set. In order to be able to make
this statement, one has to refute the frequentist approach to probability, saying that P(A) =
limy o /N, with n the number of successful events on a total of N experiments, and accept
probability to be a mathematical measure for the “personal degree of disbelief or uncertainty”. '

Given the realization of the sample z,,z,,...,2, and using Bayes’ theorem for statistical
inference, one makes an updated assessment of the behavior of the unknown parameters §,
in agreement with the acquired data. The density f(8]z) is therefore called the posterior
density of the parameter set.

The likelihood function L(z,,...,z,|8) is proportional to the probability of making a specific
observation, given the value 8 of the parameters. This is where the data enters the updating
formula (1.1): the initial belief about the stochastic behavior of a set of parameters is updated
using objective observations. The data is indirect: variables influenced by the unknown
parameters # provide the necessary information.

Information can be supplied in many different ways. Observation of an independent sample
Z,,Z3,...,Z, is easily integrated in the Bayesian formula: the likelihood is proportional to
L(zy,..-,2,18) = f(2110)-f(2218)- .. ..f(z.168), with f(z;|8) proportional to the probability



of observing the values z; when the parameters are equal to 8. Inference on less determinate
data is equally important. Assume, for example, that the survival of a system is represented
by the random variable z. A number i = 1,...,n of independent experiments consists of
monitoring the first z;; life-cycles of the system under study. When the system survives, the
experiment only provides a lower bound on the variable X: i.e. X > z;. A more general
formulation of the likelihood function, for continuous variables z, is then

k l m
L(z|f)  [] £(zil8) [] F(zuil8) ][] G(z1:8) (1.2)

i=1 =1 =1

with z; and z, observed lower and upper bounds, respectively, and G(z|8) = [1 - F(z|8)] the
complementary CDF.

The Bayesian theorem is often used in its simplified form: posterior density is proportional
to likelihood multiplied by prior density

Jo(8) o< L(8)-p4(8) (1.3)

with explicit reference to the data omitted in the notation above. It allows the integration of
prior, subjective knowledge into a probabilistic assessment of the parameters. The propor-
tionality factor is determined by applying the first probability axiom to the posterior density
(total probability = 1). The simplified notation of (1.3) is convenient, since observations
are fixed and variation with respect to them is of no further interest. One intuitively feels
comfortable with the Bayesian formulation since engineering judgment or decision is almost
invariably based on prior information and experience. It also allows for educated decisions
based on small samples. A possible argument against Bayesian thinking is the cognitive as-
pect of the “personal degree of uncertainty”, in contrast with the seemingly more “objective”
mathematical foundation given by the frequentists.

1.2 Choice of priors

Since the subjective uncertainty on the behavior of the parameters enters the Bayesian formula
through the prior pg(8), significant research efforts have been spent on the educated choice
of priors. A very complete description of the subject can be found in Box AND Tiao [8].

The main requirement of any statistical inference is robustness: a statistical inference is
considered robust, if it is not seriously affected by changes in the initial assumptions [26].
For a large data-set, sensitivity to the type of distribution and to the choice of prior is



minimal. The requirement becomes of major importance when the observed sample is small

or moderate in size.

Extending Bayes’ original use of the uniform prior, Box AND T1A0 [8] define a locally uniform
prior to be constant in the significant range of the likelihood and small outside this range.
A locally uniform prior can be improper (i.e. not abiding by the first probability axiom =
J pe(8)dé # 1). When a locally uniform prior is chosen, the Bayesian formula simplifies to

L(8)-pe(6) _ L(§) (1.4)

fo(8) = T L(ﬁ)_pjg(_q)dg ~ JL(8)dd

making the posterior result only a function of the likelihood (= data).

This approach (uniform or locally uniform prior) strongly depends on the choice of param-
eterization: a diffuse prior, uniform in # might provide information about a function of the
parameter 6, such as 6~ or log(6) (see [26, p.49ff. In order to eliminate this unwanted
effect, an attempt is made to find a metric ¢(8) in which a locally uniform prior ¢(8) = ¢ can
be regarded as non-informative for the specific transformation of parameters 8 used in the
parameterized distribution f(z|). An appropriate choice of metric ¢ makes the likelihood
data-translated [8, p.26ff]:

L(z|6) = g(#(8) - f(2)) (1.5)

The likelihood is data-translated when the data z; only influences the position of the likelihood
in @-space, not its spread. Identical considerations apply to the choice of prior densities on
updatable parameters of mathematical models.

When analytical calculation of the updated density is attempted, one chooses conjugate priors
[3] in order to simplify the calculations. The choice is one of convenience and considerations of
robustness are discarded. In estimating model parameters, this choice is often not available.



2. Bayesian model assessment

2.1 Mathematical models

Studying the behavior of a physical system, one inevitably tries to find a mathematical model
describing the system under study in order to make adequate predictions of system behavior.
A mathematical model is a set of equations defining relations between observable variables
2=(21,22,..-,2k) [12). The relation between aforementioned variables can be implicit when
e.g. a numerical algorithm is used to solve a set of differential or integral equations. In
order to formulate such expressions, one has to introduce a set of unobservable parameters
8 = (6,,6,,...,6;) of which some might be known constants and others will be determined
during the empirical calibration of the model.

In its most general form, the mathematical model will be an implicit function of variables

and parameters
9(2,8)=0 (2.1)

with g an s-dimensional vector of functions, z the m-dimensional vector of observable variables
and @ the n-dimensional vector of parameters. This formulation is known as the structural set
of equations [5]. In most cases the variable set z can be partitioned in a subset of independent
variables z and dependent variables y. Solving the structural equations for the dependent
variables, the reduced model is obtained

yt':fi(gag) t= 1,...,7' (2.2)

In this study, we will deal with a one-equation (r = 1) reduced model. Extension to multi-
equation problems is straightforward.

Because of unavoidable simplifications and uncertainties described in the next section, the
model only has an approximate relation to the actual system behavior. Stochastic modeling
of model error allows for a mathematical treatment of the model uncertainty.

2.2 Model uncertainty
The uncertainty in a mathematical model has three major sources [11]:

- errors of ignorance or simplifications: in most cases the underlying physical phenomena
controlling the behavior of the system are insufficiently understood. Variable interaction
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can remain undetected. Even the functional form of the model might be inappropri-
ate. For reasons of convenience, one is also often compelled to simplify the model by
eliminating supposedly insignificant terms from the equations or adopting simplified
functional forms (e.g. linearized equations). One could argue about the modeling of
ignorance and uncertainty errors as random phenomena. This modeling method is con-
sistent with the Bayesian paradigm, where randomness can be interpreted as a degree
of uncertainty.

- measurement errors: a mathematical model is calibrated, i.e. model parameters are
determined by using experimental data. Data is acquired by measurement and mea-
surements are prone to (random or systematic) errors. Using potentially inaccurate
measured values to determine the model parameters, additional uncertainty is intro-
duced into the model.

- statistical errors: when the model is exact and deterministic, a data-set of the same
dimension as the set of unknown parameters is sufficient to determine aforementioned
parameters. In dealing with an uncertain model, an infinite set of data is required to find
“exact” point-estimates of the parameters. Model uncertainty will increase when only
a limited data-set is available. This is particularly the case in structural engineering
applications, where only few experiments can be performed, due to the high cost and
the destructive nature of the tests.

- In some cases (see applications (§ 6.)), no direct relation exists between the different
measured data-items. For example, in finding the relation between elastic modulus
and compressive strength of concrete, the different measurements will be performed
on different specimens of the same batch. As such, we will only be able to relate the
measured elasticity to the population characteristics of the compressive strength. This
uncertainty is also of statistical nature.

To integrate all these uncertainties into the model, model parameters are considered as ran-
dom variables. Consistent with the Bayesian principle, a probability density function (PDF)
is assigned to the set of parameters. Bayesian model assessment then means the updating of
prior information on model parameters in light of observed data to construct a posterior dis-
tribution on the parameters. Characterization of marginal and joint statistics of the posterior
distribution will be the prime focus of this study.



2.3 Theory

The uncertainty of the model is reflected in the uncertainty of its parameters. The determi-
nation of the model parameters can be done in two different ways

- calculation of point estimates is done by defining a procedural function between data
and parameter estimate 8 = h(z,25,--.,2,) which allows the determination of a “sin-
gle” value of the parameter vector. The estimates @ are themselves random variables,
characterized by a distribution which depends on both the functional relationship k
and the data-distribution. The functional relationship can take different algorithmic
forms: a point-estimator § can maximize the likelihood L(z|8) (MLE: maximum likeli-
hood estimator), can minimize the sum of squares of the residuals e; = y; — f(z;,8%)
(LSE: least square estimator), etc. A detailed description of point-estimation is given
in [5].

- As mentioned before, the uncertainty on the parameters can be translated into a PDF
fo(8). Using Bayesian updating, prior information about the parameters can be in-
tegrated in the final parameter assessment. A posterior distribution carries more in-
formation than a point estimator. Small databases can efficiently be used. Point or
interval estimates can still be obtained by statistical analysis of the posterior distribu-
tion. Using the PDF on the parameters, a predictive density of the dependent variable
y can be obtained.

The posterior distribution of the parameters is obtained by applying the Bayesian updating
formula (1.3)

Jo(8) x L(zy, 23, - - -, 208)-po(8) (2:3)
An important issue in the use of the Bayesian updating formula for model assessment is the

adequate selection of a likelihood function L(:).

2.3.1 Likelihood: exact model

Supposing that the model y = g(z,8) is exact, uncertainty originates from measurement
error. In addition, the limited data set does not allow full quantification of aforementioned
errors (=> statistical uncertainty). Assuming that only the dependent variable y is subject to
inexact measurements, the error on observation k is equal to

k=9 —9(z4,8) k=1,...,n (2.4)



where ;. stands for the measured value of the dependent variable y for observation z;. Since
the likelihood is proportional to the probability of observing errors ¢ = (€1,...,€,) When
@ takes on a certain value, it has to be proportional to the joint PDF of the measurement
errors:

L(Qvﬂ) x fg(ﬁl - g(glsg)a g2 - g(iz»ﬂ)’ ceey gn = g(-‘!nsg.)'ﬂ) (25)

with 5 the parameters of the joint distribution of ¢. These parameters are theoretically
unknown, and should therefore be added to the updatable parameter set 6.

Taking measurement errors to be mutually independent with identical normal distribution
is a valid engineering approximation [3]. If the measurement device was duly calibrated,
the measurements are unbiased, meaning that the measurement error has zero mean and
standard deviation o.. Based on these assumptions, the likelihood is written as

L(8,0.) x = exp [--;— )3 (-’fk—l%‘iﬁ)z] | (2.6)
[ 1 €

If we further assume that o, is a known characteristic of the measurement device, equation
(2.6) reduces to

L) x exp [—% )3 (yL'—’;;(ﬂ—Q))ZJ 27)
1

€

2.3.2 Likelihood: inexact model

One way to include model inexactness in the probabilistic assessment, is to concentrate the
uncertainty caused by both the inexactness of the model formulation and the influence of
missing variables into a single correction factor v

Uk = 9(z4,8) + (2.8)

If £,(2In) is the PDF of the sample ¥ = (1,72, ---,7n), the formulation of the likelihood is
similar to (2.5). It is convenient (but not necessarily exact) to assume that +; are mutually
independent normals, with zero mean (unbiased model) and common standard deviation o.,.
The likelihood function is then equal to (2.6), if measurement error ¢ is replaced by the model
error parameter 4.



2.3.3 Likelihood: combination of uncertainties

When both sources of uncertainty are present, both correction factors € and v are introduced
to obtain the observed value §; of the dependent variable

9k = 9(2;,0) + 7 + &x (2.9)

The likelihood function is determined by the joint PDF of y + £. Under the aforementioned

normal assumptions, the sum of these two variates is also normal with variance o? = a? + 0,3.
Applying the same reasoning as in the previous sections, the likelihood becomes
L(8.o2. o2 2 2\-n/2 1 ¢ yk"g(llno) (2.10)
(..’aua‘y) & (ac + a‘r) exp —5 ; 02 + 02 :

Other derivations of the likelihood for more general formulations of the mathematical model
and for other uncertainty assumptions are discussed by DER KIUREGHIAN [12].

2.3.4 Predictive use of statistical models

Once the posterior distribution of the variables is determined, different statistics can be
obtained from by the general Bayesian integral

/(a w(8) fo(6)d8 211)

with fg(@) the posterior distribution of the parameters  and w(8) a weight function, which is
dependent on the statistic of interest: for w(@) = 1, the reciprocal of the proportionality con-
stant of the Bayesian updating formula is obtained, for w(8) = 8 the mean parameter-vector
is calculated and for w(f) = 6.6' the mean-square matrix is evaluated. By restricting the
integration to a subset of the parameter space, nuisance parameters are eliminated resulting
in appropriate marginal densities and moments of the parameter subset.

Of main interest is the use of the calibrated probabilistic model for predictive purposes, e.g.
for obtaining a probability density function of the dependent variable y for given deterministic
or probabilistic values of the independent variables z. According to the total probability rule,
one can write

f(y) = /e £,16(418) fo(8)d8 2.12)



The conditional distribution f,o(y|8) is implicitly defined by the functional dependence of
y on z. The theory of probability transformation [39] enables the determination of this
distribution. The transformation procedure is best understood when applying it to a specific
calibrated model (see § 6.).

It should be obvious from the previous discussion that an efficient determination of the
Bayesian integral (2.11) is crucial for the success in Bayesian model assessment. Analytic
solutions are only possible for few (academic) applications. Numerical procedures for the

integration will be detailed in this report (§ 4.).



3. Bayesian structural reliability

3.1 Introduction

Bayesian model assessment, which is the main focus of this report, may be conducted in the
broader context of Bayesian Structural Reliability (BSR). While strong foundations for the
introduction of Bayesian decision theory were already laid by CORNELL in 1969 [10], reliability
researchers seem to have altogether shunned the idea for many years. In recent publications
by DEr KIUREGHIAN [11][12], principles of Bayesian decision theory were introduced in the
“classical” reliability formulation in order to distinguish between the different sources of
uncertainty with which the reliability engineer is confronted. Distinction between reducible
and inherent variability has prompted MAEs [30] to use BSR for code calibration: users of the
code are rewarded by smaller safety factors when design is based on more accurate modeling.
The main features of BSR are summarized in the following sections.

3.2 Definitions

Calculating the reliability of a structural component boils down to the evaluation of the
following probability integral

P = / fo)dz (3.1)
g(z)<o

with fr(z) the distribution of the basic variables z = (z,,z2,...,%,) and g(z) the limit-state
function. When g(z) < 0, the component is considered to be in a failure state.

In order to distinguish between the sources of uncertainty, further parameterization is pro-
posed:

P)= [

9(z,8)<

. fz(z,8)dz (3:2)

The parameters @ stand for the statistical estimation error and the model imperfection,
the basic variables z describe the inherent variability of the structural system. Sources
of model imperfection have been enumerated in the previous section. The imperfection of
the probabilistic model f;(z) is induced by lack of data for the statistical characterisation
of the basic variables. Again, in accordance with the Bayesian paradigm, these errors or
uncertainties are translated into PDF's of the parameters.

10



The most interesting feature of this parameterization is the distinction made between re-
ducible and irreducible variability: inherent uncertainty on the basic variables is per defini-
tion irreducible, but model and estimation errors can be reduced by model refinement and/or
further data-acquisition. The reducible uncertainty is bundled in the parameter set §.

In “classical” reliability analysis, the lack of information has been tackled in a number of
pragmatic ways, e.g. only the first- and second order moments of the basic variables were
assumed to be known in the second-moment modeling approach, or a stochastic model is
constructed from marginal densities of and correlation between the basic variables (Nataf
model) [14].

In actual practice the amount of information taken from a sample is not restricted, as is
assumed in the previous methods, but the quality of the information decreases with increasing
order of the statistic. The parametric reliability method (3.2), combined with Bayesian
updating, adequately handles the influence of “adding information” (= performing further
experiments), thus allowing the engineer to make educated decisions about the extension of
his experimental campaign. Finally, the Bayesian reliability format allows the integration of
subjective information (engineering judgment) in the reliability assessment.

Since the failure probability is a function of the parameters 8, the (generalized) reliability
index also becomes a random function of the parameters:

B(8) = &7'(1 - Py(8)) (33)

in which @(.) denotes the standard normal cumulative probability density (CDF). One aim
of Bayesian reliability analysis is to determine the PDF of 3(8) so that different consistent
point-estimators of the reliability index can be calculated. DER KIUREGRIAN [11] defines
the minimum penalty reliability index as the reliability index minimizing a predetermined
penalty function. This weighted point estimation is a common technique in Bayesian decision
theory [4]:

- Bmas -
Bunp = min E[h( — )] = min / h(8 — B)dF5(B) (3.4)
B B

where h(8 - B ) is a penalty function. Predictive safety measures are also a necessary tool for
reliability based decision making

P =EP@)= [ @%@ » F="l1-F] (3.5)
B is called the predictor reliability indez.

11



3.3 Calculation

The integration of the probability integrals (3.1) and (3.2) has been a research topic for quite
some time. First- and second-order reliability methods, simulation, etc. [29][31] give approx-
imate solutions for the integral. Many of these methods also provide sensitivity measures of
the failure probability with respect to any parameter of the problem.

Decision variables, such as the minimum penalty and the predictive reliability index require
yet another integration level. For instance, the CDF of 8 is obtained by solving

Fs(B) = / fo()d8 (3.6)
B(8)-B<0

This is similar to the probability integral (3.1), with integration domain 3(8) — 8 < 0. The
boundary in itself requires the probability integral (3.2) to be solved. Computation of the
above integral requires a nested application of the standard reliability methods cited above.

One way to perform the integration for the predictive failure probability (3.5) is to extend

the set of basic variables z with the reducible parameters 8

Py = / ful)dy  z= [g ] (3.7)
s(w)<o L
allowing for the application of the aforementioned traditional techniques.

Alternatively, one can perform a nested reliability calculation. It can be proven [11] that the
predictor reliability index f is the solution of the reliability problem with

g=u+p(8) (3.8)

as limit-state function, where [u, 8]7 is the set of basic variables and u ~ N(0, 1)is a standard-
normal variate. Since the limit-state § is a function of B(8), a nested reliability solution is
required for this approach.

Further approximations for the predictor S or alternative

point-estimators 3 can be found in [11).

12



4. Quadrature of the Bayesian updating formula

4.1 Introduction

When applying Bayesian methods for the determination of model parameters, using subjective
information and experimental data, one comes across integrals of the type

I(w(8)) = /e w(8)L(z|0)ps(8)d8 = /e B(8)d8 (4.1)

with L(z|8) the likelihood function and ps(8) the prior distribution of the parameters 8. The
weight function w(@) is determined by the statistic to be obtained

. w(ﬁ) = 1 = inverse of the normalizing constant (proportionality constant) of the
Bayesian updating formula.

- w(8) = 6; = expectation of parameter 6;.
- w(8) = (6; — E(6;)).(6; — E(6,)) = covariance between parameters 6; and 6;; variance
of 6; for i = j.

- w(8) = f,16(yl6) = predictive distribution fy(y) of the dependent variable y.

By performing the integration over a subset of the parameter space, nuisance parameters [8]
can be eliminated to obtain marginal statistics.

In the following paragraphs, the product of the weight w(8), the likelihood L(8) and the prior
2(8) will be referred to as the Bayesian kernel B(8). A different formulation of (4.1), based
on a logarithmic Bayesian kernel B(#), is frequently used for the derivation of approximation
methods

I(w(8)) = /e w(8) exp{L(8) + 7(8)}d8 = /e B(8)d8 (42)

where £(8) = log L(8) is the log-likelihood function and 7(8) = log pg(8) is the logarithm of
the prior distribution.
Only in very few cases is it possible to analytically solve the Bayesian integration (4.1).

Analytical solving restricts the choice of priors to conjugate distributions, if they exist. In
many practical cases one has to resort to numerical integration or approximate evaluation of

I(w(8)).

13



The high dimensionality of § and the often infinite integration domain constitute important
problems. Moreover, given the diversity in weight functions w(@) and priors ps(8), a flexible
method has to be selected. Many evaluations of integrals (4.1) have to be performed in
order to obtain all necessary statistics of posterior and predictive variables. Efficiency of the
selected method thus becomes an important issue. In this chapter, methods for the numerical
integration or approximation of I(w(8)) are critically reviewed. Press [37] gives a short review
of the listed methods.

4.2 Expansion method

This approximation method, introduced by LINDLEY [27], is applicable for large databases
(n samples) and low dimension (p < 5) of the parameter set. The large number of samples
guarantees that the likelihood L(#) is concentrated around a single maximum likelihood
estimator §. The approximation method is based on a Taylor expansion of the logarithmic
Bayesian kernel (4.2). The expansion method is more of historical interest. Indeed, it requires
the third-order partial derivatives of the (log-)likelihood to be known, while the Laplace
approximation, described in the following section, attains the same accuracy using only the
Hessian of the (log-)likelihood.

4.3 Laplace approximation

An approximation of the integration (4.2) based on the asymptotic approximation of Laplace-
type integrals is presented in a paper by TIERNEY AND KADANE [43]. The initially proposed
method was restricted to the approximation of I with strictly positive weight functions w(8).
In [44] the method was extended to the calculation of expectation and variance by non-positive
functions w(@) through use of the moment generating function. A further application of the
approximation is presented in [44].

The asymptotic (»n — o) approximation of a Laplace integral [ exp{nk(8)}d6, with h(6) an
unimodal function, is equal to

/_ :jexp{nh(o)}da = /_: exp{nh(f) - n(‘& :2) }dé (4.3)

= V21 o n~2exp{nh(h)}

with 6 equal to the mode of h(8) and o2 = —1/h"(6). Extension to multidimensional Laplace
integrals is straightforward.
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The integral I(w(#)) (4.2) is of Laplace-type and the aforementioned expansion (4.3) can be
applied, n being equal to the size of the sampled data set

I(w(9)) = (27} det[S] exp{nH(8)} (4.9)

with H = 2{L(8) + x(8) + log(w(8))}, 8 — M(8) = maxsce H(t)} the mode of H(8) and T
equal to the inverted Hessian of H(8), evaluated at the mode T = [V2H(8)]"!.

The approximation error of (4.3) is of the order O(n~?). Solving a Bayesian updating problem,
the fraction I(w(8))/I(1) needs to be taken to eliminate the proportionality constant. By
taking the fraction, dominant error terms cancel and the Laplace approximation is of order
O(n~?), provided w(#) is strictly positive. For non-positive functions w(8), TIERNEY ET AL.
[44] recommend the use of the moment-generating function exp{sw(@)} and the calculation
of M(s) = Elexp{sw(8)}]. The expectation and variance of w(8) can then be found by
differentiation

Elw(8) = = log ¥(0) (4.5)
- d2 "
El(w(8))"] = <5 log M1(0) (456)

where the hat stands for the fact that the integration was performed using the approximation
(4.4).

The Laplace method is particularly suited to determine initial estimates of expected value
and covariance of the parameter set.

4.4 The Gauss-Hermite quadrature

BAZANT AND CHERN [6] use a GAUss-HERMITE type integration to solve a particular
Bayesian integral. A more general approach was initially proposed by NAYLOR AND SMITH
in [34] and was further developed in a paper by SMITH ET AL. [42].

The integration method is based on the Gauss-Hermite quadrature for weighted integrals of
the form
+co
exp{—t2}A(t)dt (4.7

-=00
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The integral is approximated using a k-point rule

+oco k k-1 T
[ exp{-t?}h(t)dt ~ Ew,'h(t,') wi = ;:%[_m?k:—(\t{_;]i (4.8)

oo 1

with Hi_; the Hermite polynomial of order k-1 and ¢; the ith root of Hi(t). The quadrature
formula is exact when A(t) is a polynomial of order 2k — 1.

Considering
2
B(t) = h(t)(27 6®)"/? exp {-—% (t—i—u) } (4.9)
it is easy to prove [34] that, for h(t) a well-behaved function
+oo n
B(t)dt = m;B(z; 4.10
[ Bwd= 3 mis(a) (410)
with
m; = w; exp(t?)\/i o z=p+ V2 ot; (4.11)

The Gauss-Hermite quadrature is very efficient for I(w(6)) having a kernel that can be ap-
proximated by a function of the type “polynomial X normal”. Since the likelihood generally
behaves like a normal density for large sample sizes (8], most problems will satisfy this un-
derlying requirement.

A multivariate extension of the quadrature formula is obtained by applying the Cartesian
product-rule

/.../B(tl,...,tn)dtl...dtk zZm;kZ...zmu B(zi1y- -5 2ik) (4.12)

A problem in the application of (4.10) and (4.12) for integration of the Bayesian integral (4.1)
is an adequate choice of mean y; and variances o, of the Gaussian approximation of the
likelihood. These quadrature parameters should be equal to the unknown mean and variance
of the (unimodal) posterior density of each parameter §;. The maximum likelihood estimates
(MLE)

p=1L() = max L(2) | (4.13)
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0% = —{[V2L(d)] )i (4.14)

can be taken as starting values of an iteration in which the current approximations to the
posterior mean and variance are used to construct grid z;; and weights m;. for the next
iteration.

In order to be able to apply the Cartesian product-rule, one has to make assumptions about
posterior independence of the parameters. When high posterior correlations between the
parameters ¢ exists, an appropriate linear (second-moment) transformation is performed to
obtain a new orthogonal set of parameters (i.e. orthogonality in the statistical sense of the
word: E[t;.t;] = 0, for i # j).

The Gauss-Hermite method does not require the satisfaction of any asymptotic assumption,
but the requirement of having an integrand which approximately behaves as a “polynomial x
normal” might cause convergence problems when dealing with small data sets. Applications
of the method have been restricted to low dimension cases (p < 6), due to the assumptions
underlying the use of the Cartesian product rule.

4.5 Simulation
4.5.1 Introduction

Simulation has always been an appropriate but expensive method for numerical integration
[40]. Application of the Monte Carlo method for solving (4.1) has been extensively publicized
[37]. No restrictions are imposed on the integrand and the dimensionality of the integration.
The estimate of the integral can be made with any desired accuracy, at least when one
is prepared to pay the high computational cost. Monte Carlo simulation is rarely applied
without some sort of variance reduction technique, such as importance sampling [40).

In two recent papers GELFAND AND SMITH [17] and GELFAND ET AL. [16] discuss the use of
Gibbs-sampling for the reconstruction of marginal densities (and their moments) given a full
set of conditionals. This method is described later in this section.

4.5.2 Importance sampling

An early account of the use of Monte-Carlo importance sampling method for the Bayesian
estimation of the posterior moments of the parameters of a linear econometric model can
be found in KLoEx AND VAN Duck [25]. The paper focused on the adequate choice of an
importance sampling distribution. In [45] the authors extend some of the methods developed
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in their original paper. GEWEKE [18] finally puts all heuristic considerations on the selection
of a sampling distribution into a consistent mathematical framework.

Using importance sampling, the Bayesian integral (4.1) is modified in order to incorporate
the importance sampling density S(8)

Iw(8) = [ %%lsw)dﬂ (4.15)

Moments of the posterior distributions obtained by Bayesian updating can then be estimated

using

1 < [B(e® |
o33 [20] (4.16)

in which samples 8 are drawn from S (8). It can be proven that, under weak assumptions,

the estimator wy converges to J(w(8)) for N — oc.

GEWEKE [18] states that the importance sampling density should closely mimic the behavior
of the posterior density, especially in the tail region: the tails of S(8) should not decay more
rapidly than the tails of the posterior fs(8) and no subset of the posterior should be excluded.
Empirical selection of an importance sampling density in many practical cases has proven to
be cumbersome [46]. For seemingly sensible choices of S(8), @n can behave badly, resulting
in unstable behavior of the estimator caused by extremely large values of w(8")). GEWEKE,
therefore, approached the problem from an analytic perspective, using the local behavior of
the posterior density at its mode. He introduced a new importance sampling density based on
the Student-t distribution. Replication of these principles is beyond the scope of this report
and the reader is therefore referred to the original paper [18].

4.5.3 Directional sampling

Confronted with the aforementioned tail-problem, VAN Duck ET AL. [46] introduced a
different approach to the simulation method. Their research was motivated by the observation
of ill-behaved posterior densities for small data-bases. The directional sampling method still
assumes the posterior to be unimodal, but it is able to capture the directional variance in
tail-behavior. This method reduces the parameter space § = (6,,6;,...,60,) to an n — 1
dimensional vector and a scalar. For the original mathematical construction of the method,
the reader should consult [46). We have opted for a different approach, based on the statement
of the authors that their results can also be obtained by using a simple polar transformation
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of the parameter space [23]. The presented alternate approach is also closely related to the
well-known directional simulation principle in structural reliability [7][15](32].

The directional sampling method is based on a sequence of transformations. First, a second-
moment transformation is performed, so that the parameter set becomes standardized (zero
mean, unit covariance matrix) in the transformed space

s= A(6- E[9) g = (A7)(A7Y) (4.17)

which transforms the Bayesian integral (4.1) into

+00 )
o) = [ [ B detla s (4.18)

The standardization is approximate since the values of expectation and covariance matrix of
8 are not exactly known. Next, the standardized variable s is transformed to hyper-polar
coordinates [15][32][23]:

s=1w r = |ls| w= 2 r>0 (4.19)

[lsll

with w located on the unit hypersphere. The integral transforms into

+00 n/2
I(w'(r_c._.v))=/n/0 B‘(rg)det[ﬁ'l]ﬁ%ﬁ—)r(n‘ndr@ (4.20)

with n the dimension of the parameter space. The Jacobian of the hyperpolar transformation
is equal to the surface of the unit hypersphere. Simulation on the unit hypersphere produces
the estimator

- SN 2.0 WA 1o/ X Y el e
I= det[_4 ]WEy‘ A B (r_‘._g( ))‘r( )d‘r (4.21)

where the expectation E stands for a summation over all samples w(¥), divided by the number
of samples N. Counting on symmetry of the posterior density, the principle of antithetic
sampling [40] can further reduce the variance on the sampling estimator I

NSPYZ) ) Il Rl
21«3&’[ [ B (e )irl 1)dr] (4.22)

Standard quadrature modules (mathematical software libraries) can be used to perform the
infinite linear integration [e.g. [36]).
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Directional sampling should not be too sensitive to the initial choices of mean vector  and
covariance array C, since the entire mass of the likelihood is included by the infinite integra-
tion in the radial direction. Convergence is therefore guaranteed. Initial values of first- and
second-order moments of the parameters will most certainly influence the efficiency of the
sampling. Indeed, the second-moment transform can be considered as an implicit variance
reduction scheme by introduction of a normal importance sampling density, as is adequately
demonstrated in [46]. Evolution of the sampling coefficient of variation (COV) should be a
good indication for the quality of the initial estimates. MLEs provide decent first estimates
of the moments of the parameter set.

4.5.4 Conditional sampling

GELFAND AND SMITH [17] developed the theoretical bases of the application of conditional
sampling (or Gibbs sampling) for the determination of marginal densities by means of simu-
lated samples of conditional distributions.

Consider the random variables z;,z,,...,z, of which the complete set of full conditional
distributions of z;|z;(j # 1) is available. In many practical situations, full conditioning will
not be necessary: only a limited subset of z,,...,z;_1,%i41,...,Z, influences the behavior
of variable z;.

The Gibbs sampling updating scheme proceeds as follows: (i) select a set of starting values
z§°’ ©) and (ii) draw a sample zgn from the density f,, |z,,...,z,.(21|z§°),. . .,zﬁo)), (iii)

seeesZn
followed by a sample zgl) from the density f,|z; zs,...zn (xglzgl), zf,?’, ceey zgo)) ..., (iv) pursue

in natural order, until a sample z is obtained from Sznjzr,.. ',”_,(znlzgl), .. .,zf,l_)_l

The algorithm requires n random variate generators. After N iterations the sampled set
(ng),z;N), . ..,zS,N)) is obtained. It can be proven that under mild conditions, the sampled
set converges to a set z with joint distribution f-(z) for N — co. The convergence also holds
for every component of the random vector z and the marginal density is estimated using

N
Felz) = 5 Y Seuteorsa(zalz, = 2ir # 9) (4.23)

=1
Moments of a function w(z) can easily be calculated since a sample of z is available.

In a following article GELFAND ET AL. [16] presented the application of Gibbs sampling
for the calculation of marginal posterior densities. All distributions are considered to be
conditioned on the data and the other components of the parameter set. The interested
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reader can find many examples of Gibbs sampling in Bayesian inference in the previously

mentioned paper.

The Gibbs sampling method is remarkably simple, requiring no intricate transformations of
the parameter space. The computational expenses are claimed to be within reason. The
only problem is the implementation of n random variate generators able to draw samples
from problem dependent conditional distributions. The problem of an adequate convergence
criterion for the iterative sampling procedure is only pragmatically addressed by GELFAND
ET AL. [16].
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5. BUMP: implementation

5.1 Introduction

Two of the numerical integration methods mentioned in chapter (§ 4.) have been implemented
in the current version of BUMP: the directional sampling method (DS), and the Gauss-Hermite
quadrature (GHQ) algorithm. In this section relevant specifics of the implementation are de-
scribed, without going into actual programming details. Understanding of these implemen-
tation details will be a valuable help for the critical scrutiny of the BUMP output. Description
of the input file is given in the appendices (§ A. and § B.) together with a summary of error
messages (§ C.) and their probable causes.

It goes without saying that BUMP (v1.07) could gain from further improvements. A future
version of BUMP should for example contain a simple regression module providing reasonably
accurate initial estimates of first- and second-moments of the parameter set. Despite all these
considerations, it is our opinion that this version already provides sufficient functionality
to allow research in the applicability of Bayesian model assessment for many engineering
applications.

5.2 Transformations
5.2.1 Variable transformation

It should be clear from the theoretical discussion in the previous chapter that the implemented
methods for Bayesian integration (DS, GHQ) assume that the parameter space is unbounded.
In many practical situations, this is not the case. Transformation from original to unbounded
domain (and vice-versa) is therefore necessary.

In general, parameter 6; is defined in a finite interval 6; € [a,b], with a the lower and
b the upper bound of parameter 6;. Both |a| and |b| can become infinite (= o0), which
basicly means that the variable is semi-bounded or unbounded. The transformation to the
unbounded variables ¢ depends on aforementioned type of bounding. Table 5.1 shows the
different formulations of t = T'(8) and its associated inverse 8 = T1(t).
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Table 5.1: Variable transformation

6; € [—o0, +0) ' 6; € [a,b]

t; = T(6;) ; log (%{-;)
[JTii=gty§ 1 (b-g.’;(;':-a)
6 = T-\(t;) 4 ——E{(jl"li”;{’; -
0 = T:(2:,6) b+, (‘("2 —glbenpft] ol {-tf}o
= B ! CRUERT

" 6; € [a,+00) 0; € [—o0,b]

t; = T(6;) log(6; — a) —log(b - 6:)
[Jzii = %’; = =
6; =T-(t) a + exp{t;} b — exp{-t;}
p-i = G exp{t) exp{1}
0; = T 1(t;,6;) a + (6; — a)exp{t;} b— (b- 6;)exp{—t;}
Vgl = (6 - a) expit;} (6 6) exp{~t:}

In both integration methods (DS, GHQ) the origin of the unbounded domain has to coincide
with the current estimate of the expectation of the parameter set. With the simple (inverse)
variable transform described above (§ 5.2.1), the origin of the unbounded domain is invariably
transformed to the same location, independent of the expectation of the parameters (e.g. for
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a parameter with lower bound 6; € [a,+00] : t; = 0 = T~!(t;) = 6; = 1 + a). We therefore
define a modified (inverse) transformation, labelled centered variable transformation T;'.
This transformation makes the origin of the unbounded space coincide with a specific value
6; of the original parameter. The centered transformation is included in Table 5.1.

The transformations are introduced at integration level and, therefore, the presence of the
Jacobian of the transformation is required. The Jacobian matrix of the transform defined
above (or its inverse) is strictly diagonal. Derivatives of the transformation I and of the
inverse transformation T~ are also given in Table 5.1

The transformation of moments requires that the second-order derivative of the inverse trans-
formation be known. We only print this derivative for the fully bounded case 8; € [a, b)].

8%6; _ (b—a)exp{t}[1 — exp{t]}]
a2 [1+ exp{t}]?

5.2.2 Transformation of moments

Initial estimates of expectation and covariance of the parameters are determined by optimiza-
tion in the unbounded domain. These results have to be transformed to the original domain.
A second-order approximation [4] is used to obtain the expectation in the original domain

azt,'

E[6:] = E[T7'(t:)] = T~ (E[t:]) + Varlti) =

(5.1)

A first-order approximation is used to determine the covariance in the original domain

00; 99

Cov(6;, 0j) = Cov(t;, t’)-(’i_t..gtj

(5.2)

5.3 Initial estimates

In the theoretical discussion, the MLE have been proposed as decent initial values for the
iterative determination of expectation and covariance of the parameter set by the GHQ and
the DS methods. This choice of initial values is based on the fact that for a sufficiently
large sample of data (and under suitable regularity conditions) the likelihood L(8|z) closely
approximates a normal distribution [8)

L(8lz) = N(8, -[V*L(8)]™") (5;3)
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with £(.) = log L(.) the log-likelihood and 8 — L(8) = max,ce L£(2) the mode of the log-
likelihood.

Determination of mode and inverted Hessian of the log-likelihood function is the next problem
to tackle. The former demands an optimization scheme, the latter could be solved by using
finite differences. BUMP uses a quasi-Newton optimization scheme to find the mode and to
approximate the inverted Hessian. A similar approach was already employed in [20] solving
the design point and the principal curvatures of the limit-state surface for reliability problems.

8.3.1 Quasi-Newton optimization

The mode is determined using an unconstrained quasi-Newton optimization scheme [28].
BUMP determines the minimum of the negative log-likelihood, after transformation to the
unbounded domain

min {-L(T~1(2)|z 5.4

min{-£(T Ol) (54)
Selection of a minimization scheme (as opposed to maximization) is rather arbitrary, and
has no other specific advantage than the immediate determination of the negative inverted
Hessian.

At iteration k the search direction is d; = H; VL(¢;), with t; the current approximation
of the mode and H, the current approximation of the inverted Hessian. The gradient of
the log-likelihood is determined by central finite difference and Richardson extrapolation [9)].
The next approximation of the optimum is equal to t,,; = t; + axd;. The step length
aj is determined by an exact line-search, based on the golden section method [28]. The
iteration is considered to have converged when two criteria are fulfilled: (i) ||[VL|| < &1 and
(i) llerdel| < €2

5.3.2 BFGS-update of the inverted Hessian

Quasi-Newton schemes are differentiated from (pure) Newton schemes, because second-order
derivative information is not re-evaluated at every iteration step. An efficient class of meth-
ods uses an updating scheme that allows reconstructing the inverted Hessian, provided the
updating is initiated with a positive definite matrix Ho. It is widely accepted that the BFGS-
scheme is the most efficient updating algorithm available [21). It is formulated as follows

‘H t 8,0 H,+H,q, st
Hyy=Hp+ (142200 ) s 28,00 7 Bgh (5.5)
92k ) Lk sk
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with g, = VL(t) = VL(Ly1) a0d 5 = Ligy — L = o

Convergence of the actual inverted Hessian is not checked. A specific construction of the
program guarantees that the updated H, is sufficiently close to —[V2L£(8)]™!:

- the implemented method is partial, meaning that every p x n steps the updating is
re-initialised, in order to reduce influence from inadequate starting values; the pro-
gramming parameter p is currently set to 3.

- the iteration is implemented as a double loop such that, even when convergence is
achieved (according to aforementioned criteria), a sufficient number of additional iter-
ations will guarantee a decent estimate of the inverted Hessian.

The motivation behind implementation of a partial method is one of convergence. The reason
for the double looping lies in the fact the for a quadratic objective function, the inverted
Hessian is ezactly reconstructed using n BFGS updating steps [28].

5.3.3 Transformation

As stated earlier, optimization is performed in the unbounded domain. Initial estimates
for expectation and covariance are also in reference to the unbounded variables . Moment
transformation (§ 5.2.2) is used to find approximations in the original space.

5.4 Directional Sampling

The directional sampling method is implemented according to the theory described in sec-
tion 4.5.3. Details regarding the sampling, line integration, variables transformation and
convergence are documented below.

5.4.1 Sampling

A realization of the directional vector w, uniform on the n — 1 dimensional unit hypersphere
§, is obtained by sampling a » — 1 dimensional standard normal vector u, followed by a
normalization w = u/||z]|. A linear congruential generator (m = 23! - 1, @ = 16807) is used
to generate uniform random variates [19]. The Box-Muller formula [38] transforms these
uniform variates into variables drawn from a standard normal distribution.
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§.4.2 Linear integration

The linear integration within the directional sampling estimator (4.22) is solved using an
adaptive quadrature routine from QUADPACK [36]. Implementing the double infinite integra-
tion induces numerical problems (as was experienced in early development of the program).
Knowing that the likelihood behaves approximately normal (more so with increasing size
of the data set), integration is performed in a bounded interval [-b,3]. If the likelihood is
assumed to be normal, the square of the polar coordinate r? will have a x?, distribution

1 n r?
()= =—T(=,— 5.6

RO= o (37) ©0
with T'(-,-) the incomplete gamma function [1]. The bound b needs to be determined so that
the bulk of the likelihood mass is included. Table 5.2 shows minimum values of b as a function
of the dimension n and the tail probability a. In the current implementation of BUMP, b is
set to 10.

Table 5.2: Minimum bound b: F,(}) 2 1 -«

l n l a=0.01|a=0.001|

Note that convergence of the DS-iteration is no longer guaranteed by restricting the linear
integration. Inadequate initial choices of expectation and covariance will lead to exclusion
of likelihood mass. A good indication of this happening is when expectation and covariance
from subsequent iterations tend towards zero values. A large and heavily fluctuating sampling
COV is also a strong indicator for bad starting values.

$.4.3 Transform

The actual implementation of the sequence of transforms is slightly different from the theo-
retical sequence, described in (§ 4.5.3). Polar coordinates are randomly generated and inverse
polar transform is used to obtain the standardized variables.

27



The second moment transformation (4.17) is not applicable as such. DS determines the first-
and second-order moments in the original domain, hence, the second-moment characteristics
of the unbounded parameter set are not available during the simulation. DS needs the latter
statistics, since line integration along the sampled direction is performed in a standardized
metric with the origin at the expectation of the likelihood mass.

From experience with BUMP, it became evident that the sensitivity to the choice of the covari-
ance matrix (scale parameter) is quite low, so that standardization in the unbounded domain
using a first-order approximation (§ 5.2.2) of the covariance is sufficiently accurate. This
is not the case with the expectation (location parameter). Convergence of the integration
strongly depends on accurate estimation of the location of the origin of the standardized
space, more so if the likelihood is strongly concentrated around its expectation (e.g. in the
case of large data sets).

BUMP rescales the likelihood in the unbounded domain, using the first-order estimate of the
covariance matrix. If the shift is also performed in the unbounded domain, only a first-order
estimate of the expectation of the likelihood would be available. This inexact estimate can
jeopardize convergence of the DS algorithm. The shift from origin of the standardized space
to the expectation of the likelihood is therefore performed in the original domain using the
centered transformation T (§ 5.2.1). The centered transformation uses the expectation é
in the original domain, as it was obtained from the previous iteration.

5.4.4 Coeflicient of variation

Bayesian statistics are obtained from the division of two integrals (4.1), since the unknown
proportionality constant of the likelihood has to be eliminated

E[w(8)] = -,(—fv‘g—i’)l—) (5.7)

Both integrals are individually evaluated by directional sampling. The COV on each of the
sampling results is calculated using the estimator [40)

' N
5" = E":’[ ,]\J N{. 1 {'JIV (ZU (i)lz) - (E(N)U ])2} (58)

=1

with 3}”’ the estimator of the COV on the Bayesian integral I after N simulations, E(N)[I ]
the estimate of the integral I and I(*) the result of a single sample.
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The COV of the fraction (5.7) is obtained from a first-order approximation (4],

AN N2 7o\ 2 '
5 = \/ (5} ’) + (6{ ’) (5.9)
under the assumption that no correlation exists between estimators of the COV on the nu-

merator and the denominator. The validity of this assumption is questionable when the
approximate integration method contains systematic errors in evaluating the two integrals.

5.5 Gauss-Hermite quadrature
5.5.1 Transformation

The GHQ method is also implemented using a sequence of transforms. The grid of quadrature
points is defined in standardized space s. A second-moment transformation (4.17) rescales
the parameter space, using the current estimate of the covariance matrix in the unbounded
domain. The value of the parameters in the original domain is finally obtained after appli-
cation of the centered transform (§ 5.2.1). The reasoning behind this transform sequence is
similar to the one described for the DS-method (§ 5.4.3).

5.5.2 Cartesian product-rule

The Cartesian product-rule presents two interesting peculiarities: (i) it is an approzimate
approach to deal with multi-dimensional integration, (i) the depth of summation is related
to the actual dimensionality n of the problem, the dimension of the parameter set §. Every
term in the summation represents a single quadrature point, in which the value of the Bayesian
kernel has to be evaluated. Summation is performed in a single loop, with the help of an
index-vector of dimension n. The components of the vector are considered as digits of a
number in base k representation, where k is the specified dimension of the grid. A particular
gridpoint is associated with a single index combination. Incrementation modulo k of the
index-number guarantees a summation over all gridpoints.

5.6 Joint statistics

Two types of statistics are always determined by BUMP, independent of the user-defined out-
put: the expectation of the parameters 8

I(w(8) = )

8= = 7 9= 1)

(5.10)

29



and the covariance matrix

I(w(8) = (8- 8)(8 - 8)")

Tw@= 1) (5.11)

Cov(8) = E[(8 - 8)(8-0)") =

since both integration methods (DS, GHQ) rely on these estimates for standardization of
the likelihood. Vector # and matrix Cov are evaluated component per component. As was
stressed before, the determination of these statistics is iterative: new estimates are calculated
using the current estimates for standardization.

5.7 Marginal statistics

Marginal statistics are obtained by integrating out the nuisance parameters

Jo. w(8:)L(8lz)p(8)db; . ..d6;_1db;y . . .db,,
I(w@) =1)

M) = (5.12)
BUMP takes a different approach. Only the marginal density is evaluated by integration. This
is done by taking w(6;) = 1 in the numerator and by assigning a predefined set of values to
the parameter ;. Evaluating (5.12) for each of these values generates a discrete number of
points of the marginal density fs,(6;). A spline-curve is fitted to these points (using FITPACK).
The fitted curve serves as the basis for calculation of the marginal distribution and moments.

5.8 Predictive statistics

A similar approach is taken for the determination of predictive statistics. In this case, the
full set of updatable parameters # are considered to be “nuisance” parameters

1(w(yl9))

P(y) = Tw@ =1 (5.13)

Points of the predictive density are determined by evaluation of the integral (5.13) for a
predetermined set of values y. of the dependent variable. Curve fitting allows calculation of
the predictive distribution and moments.
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6. Examples

Bayesian model assessment is demonstrated using real engineering modeling problems. In the
first example a mathematical model is used to relate the elastic modulus of concrete to its
compressive strength. This problem is particularly interesting, since exact analytic solutions
of the updating formula are available [13], making it possible to check the accuracy of BUMP.
The second problem is of such complexity that only numerical analysis using BUMP will enable
the Bayesian assessment of parameters and of the dependent variable. The model treated
in the second example predicts the time-dependent behavior of the compressive strength
of concrete. In this section, a full problem description is given, the likelihood function is
constructed and weight-functions for predictive analysis are given. Selected BUMP input and

output files are reproduced in appendix (§ D.)

6.1 Elastic modulus of concrete
6.1.1 Problem definition

Given the fact that testing for the elastic modulus is more expensive and elaborate than
the simple compressive strength test of concrete, attempts to relate compressive strength to
Young’s modulus have regularly been made. Both the ACI Building Code 318R-83 [2] and
the ACI Nuclear Safety Structures Code 349-27 [2] take PAUW’s [35] empirical formula

E. = av®/%\/f! (6.1)

as a density (w) dependent mathematical relation between elastic modulus E. and compres-
sive strength f/ of the concrete batch under study. PAuw used linear regression on a large
set of data to derive the constant @ = 33. The ACI codes further suggest that, for normal
weight concrete, equation (6.1) can be simplified to

E.=A fé (62)

with A4 = 57,000 when both E. and f! are expressed in psi. ACI 363R-21 [2] suggests using
a modified expression for high-strength concrete (f! > 6,000 psi.) [33].

Bayesian model assessment is used to evaluate the simplified ACI relation (6.2). Variation on
the parameters will be a strong indicator for the quality of the model. Predictive calculation
of E. will reflect all uncertainties involved.
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6.1.2 Data

Tests were conducted at the University of California at Berkeley for the measurement of E,
and f/, 28 days after the concrete samples were cast. Experimental results are summarized
in Table 6.1.

Table 6.1: Berkeley test series

4.13 3.86 3.92 4.27 4.15
3.66 3.91 3.98 4.15 4.25

For the measurement of f/, 20 samples were taken from the same concrete batch. The
compressive strength was found to be adequately represented by a log-normal distribution
with mean u; = 5,430 psi and coefficient of variation (COV) 65 = 0.023. The COV of the
measured f! population is unusually small due to strict controls observed in the production
and testing of the specimens.

A second series of measurements is extracted from SHIDELER’s [41] and HANSON’s [22] pub-
lications, which also provided the data for PAuw’s study [35]. Both authors perform a vast
comparative study of lightweight aggregates in different concrete mixes. Only one single ag-
gregate produced a concrete that qualified as having normal weight (aggregate 8 [41)[22]).
Every mix with the latter aggregate is chosen so that a target compressive strength is ap-
proximately obtained. The data (for concrete tested at 28 days) is reproduced in Table
6.2.

Table 6.2: SHIDELER-HANSON test series

j psi (psi)  &y; {Ec}x (x10° psi)
1 3140 0.036 320 3.53
2 3885 0.049 3.22 3.82
3 4340 0.042 3.43 3.84
4 5270 0.030 3.82 401

SHIDELER and HANSON distinguish between wet and dry storage conditions for the aggre-
gates. Since this distinction is irrelevant in equation (6.2), the associated measurements are
considered as equivalent data. While 10 to 15 control cylinders were used to check the com-
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pressive strength of each mix, the COV of the population was not reported. The latter COV
was estimated by considering the reported strengths of wet and dry storage conditions as
samples of the same population. The obtained coefficients agree with nominal values given
by SHIDELER [41].

While for a field test the COV on the compressive strength might be larger than the one of
the example data, the mathematical methods employed to predict the model would remain
equally valid.

6.1.3 Bayesian Model Assessment

Single Mix of Concrete

For the convenience of subsequent analysis [13], the logarithm of model (6.2) is analyzed. This
conversion in no way jeopardizes the accuracy and illustrative quality of the results. Statis-
tical uncertainty caused by the inadequate empirical relation is considered by introducing a
correction factor 4 to account for the model error

D=6+05F+7 (6.3)

with D = log(E.), 6 = log(A) and F = log(f!). The influence of the error in measuring E.
is incorporated in «.

‘Testing procedures do not allow to measure the exact relation between E,. (or D) and f. (or
F) for each specimen: one is only able to determine a relation between E, and the population
of f{, inducing additional statistical uncertainty in the model.

The k** observation obeys Dy — 6 = 0.5F; + vk, where Fi and yx are samples, respectively,
of F and v and D; is the measured value of log(E.). Assuming a lognormal density for f/,
F is normally distributed with mean pr and standard deviation o%. Taking the normality
assumption for v (§ 2.3.2), the following likelihood function is obtained

_ 1 |~ (Di-0-05ur)?
L(9,02) ox (0250} + a2) 2 exp {‘5 LZ BT ] } o
=1 ° v

where the mean of v is zero and 0., denotes its standard deviation. After expanding the sum
in the argument of the exponential function, and taking into consideration 1 3°7_, D? =
s}, + m}, the likelihood can be written as

L(6,02)  (0.250% + 02)"2 exp {-% [(0 = E;"gs;;f’;’;;}:* ’5] } (6.5)
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with mp the sample mean and s}, the sample variance of the observations Dy.

In the case where no prior information is given on @ (locally uniform prior (8], p(6) = ¢), it is

easy to see from (6.5) that the conditional distribution of 6 given 02 is normal. Conditional

and unconditional moments of @ are [13].

Hojoz = po = mp — 0.5uF (6.6)
0.250% + o2 0.2502 + E[02]
hoz = ——-—E—-—" = o= ——i;——-—’l- (6.7)

The marginal density of 02 is obtained by multiplying the likelihood with the prior density
and dividing through the conditional PDF of |02

f(8,02) o L, 02)p(0)p(a?)
f(6l02) f(6lo2)

f(e3) = (68)

Box AND TiAo [8] prove that a locally uniform prior (p(c2) = c) still carries information
about the scale parameter 02. The non-informative prior [8] is

2(02)  (0.250% + 02)? (6.9)

Hence, the marginal density of 02 is proportional to

1 n s2
2 2 2\=(n+1)/2 D
f(d.,) x (0.250}: + d.y) ( )/ exp {—Em} (610)
with inverse proportionality factor
i 1 n s
2 2y=(n+1)/2 _2 D 2
/o (0.250% + 03) exp { 2023502 1 57) } do;, 6
=r(n—l’ ns?, ) (nsf,)_("_l)/2 -
2 ’0.50% 2
and I'(p,a) = [; t(P~1) exp{~t}dt, the incomplete gamma function [1}.
The expectation of the model variance a."; is equal to
, T (.'.'__3 EZDT)
2 0.
E[o?] = 22D 059%/ _ 02502 (6.12)

2 l,‘(n—l ns%
2’0502
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The data-based variance of @ is obtained by introducing (6.12) in (6.7)

r (n -3 ns} )
2 ! 2
o2 =D 2_ 03¢ (6.13)

2 T (n - 1, ns?, )

2 '0.50%
If the second argument of I'(p,a) is sufficiently large (e.g. a > 50 when p = 10 [1]), the
incomplete gamma function is adequately approximated by the gamma function I'(p). Under

this condition, equation (6.13) simplifies to

o = (6.14)

n-3

Different Concrete Mixes

Each individual mix is characterized by a likelihood (6.5). If independence between the data
originating from the different concrete mixes is assumed, the likelihood becomes

k 2, 42
| 1 | (6 = (mp; +0.54F;))* + sp;

L(8,0? 0.250%, + 02)™™/2 -= 2 6.15
( '1) & JI=I]( UFJ + 0‘7) exp 2 (0.2503_;'J + 0,3)/"7:7 ( )
with ur; and of; the mean and the standard deviation of the log-transformation of the
compressive strength for each mix j of concrete and k the number of different mixes. The
sample statistics mp; and sp; of D are determined for each different concrete mix j. A
number n; observations of D is performed on concrete mix j. The compound non-informative

prior on o2

~ 18

k
p(03) « J](0.250%; + 02)~"s/™ (6.16)
IJ=1

with n; the total number of observations (= Z;;l n;).

The complexity of the likelihood and the prior make further analytical developments diffi-
cult. One has to resort to computational integration to determine posterior and predictive
statistics.

Predictive Analysis using the Calibrated Model
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Having calibrated the model (6.3), i.e. having determined the PDF of parameters 6 and o2,
it should be put to profitable use. Predictive analysis on the calibrated model will give
the statistical characteristics of Young’s modulus E. for a specific mix of concrete. The
compressive strength f. of the mix is assumed to have a lognormal population with known
mean 4y, and standard deviation o4,. Hence, the statistics of the normal variable F = log( f;)
are easily determined.

Predictive analysis for model (6.3), calibrated with a single mix of concrete, is straightforward:
D is the sum of normal variates. It is therefore also normal, with mean up = ps + 0.54F,
and variance 0}, = 07 + 0.250%,+E[02]. E. is then lognormal.

This analytical solution is not available when different mixes of concrete are used to calibrate
the model. The predictive statistics have to be determined numerically.

Taking into account the initial (normality) assumptions on F and 7, it is convenient to
replace 0.5F + v by a single normal variable G, with mean ug = O.Supp and variance aélagl =
0.250%, + 02. The latter variance is conditional on the value of 0. The joint, posterior
density of 6 and G is

l (G- 0-5#Fp)2

2 2 2
2{0.250%, + 02) } L(6,02)p(c2)do?  (6.17)

f'(6,G) / (0.250%, + 02)™ /2 exp {—
()

Prediction of the stochastic behavior of D is performed by considering the sequence of prob-
ability transformations

Th:0,G—~D:D=6+G T;: D~ E.: E. = exp{D} (6.18)

Applying transformation theory [39], the predictive distribution of E. is obtained

too poo 1 llog(E.) — 6 — 0.5u5,)?
E _ c 2
f( C) x ‘/—oo /0 Ec(0.250%p + 03)1/2 =P { 2(0'250%1’ + 6'27) (619)
L(8,02)p(02)do2do

Integral (6.19) is of Bayesian type (see equation (4.1) in § 4.). The weight function is equal
to

1 llog(E:) = 0 — 0.55,?
E.|0.02%) = — - ¢ 2
W( CI ’0‘7) Ec(0-250%‘p + 63)1/2 exp { 2(0-250}, + 6‘3) (6-20)
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6.1.4 Results and Interpretation

Table 6.3 displays statistics of the model parameters obtained from single mix calibration
using the Berkeley data. The sample characteristics for the corrected log-model (6.3) are
pur = 8.6 and of = 0.023. The characteristics of the data entering the likelihood (6.5) are
mp = 15.2,sp = 0.049 and n = 10. Exact results (§ 6.1.3) are compared with results obtained
by the optimization for the MLE estimators, as well as results of numerical integration by
directional sampling (DS) and by Gauss-Hermite quadrature (GHQ).

Table 6.3: Comparison of Bayesian integration methods

Exact MLE DS GHQ

B 10.90 10.91 10.90 10.91
oy 0.0185 0.0153 0.0188 0.0189
E[02] 0.0033 0.0023 0.0034 0.0034

Directional sampling results were obtained after a single iteration of 20,000 samples. Conver-
gence to the expectation of the parameters is almost immediate, but further iterations will
result in a fluctuating estimate of the variance on parameter 6.

The Gauss-Hermite quadrature was stopped after 3 iterations, using a grid of 312 points.
Additional quadrature iterations only reduced the cross-covariance between 8 and o2 to zero,
variance and expectation of the parameters did not change. Decreasing the gridsize under-
estimates the expectation of the parameters and jeopardizes convergence, since part of the
likelihood mass is left out.

GHQ is much more efficient than DS, and generally provides accurate results. This conclusion
has been confirmed in other applications. In cases where GHQ is likely to produce erroneous
results, i.e. cases where the likelihood does not comply to the “normal x polynomial” as-
sumption (§ 4.4)), DS constitutes a necessary validation method. Note that in this case the
mode and expectation of @ are equal, indicating that the likelihood closely approximates a
normal distribution. Sampling becomes prohibitively expensive when it is used for accurate
evaluation of marginal or predictive PDF’s.

Table 6.4 compares statistics of the model parameters obtained by single and multiple mix
calibrations. The statistics were calculated using the Gauss-Hermite quadrature method.

The change of the standard deviation on the parameter # and of the modeling variance a,"; is
to be expected. The single mix calibration looks at the accuracy of the model for a limited
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Table 6.4: Comparison of the calibration methods

single mix | multi-mix
Mo 10.91 10.94
.7 0.0189 0.0254

E[s2] | 0.0034 0.0047

interval of f.. Multi-mix calibration uses information of a number of such intervals, each
describing a different “area” of the curve. Multi-mix calibration thus gives a global appre-
ciation of the lack of fit of the model. Hence, the increase in uncertainty is comprehensible.
Both calibration methods have their specific use. If a general model, e.g. for use in concrete
codes, is to be derived, global calibration is recommended. Single mix calibration (or local
calibration) is particularly suited for a situation in which a known concrete mix is going to
be used throughout the construction process. It tailors the model to the specific mix of the

concrete.

In Figure 6.1 the marginal PDF of o2 for both single mix and multi-mix calibration is dis-
played. Figure 6.2 does the same for the variance on the modeling error. The marginals were
obtained using Gauss-Hermite quadrature.

25 L] 1] L] v L]
local calibration -e—
global calibration -+

probablity density

108 1085 10.9 10.85 n 11.05 141

Figure 6.1: PDF of the model parameter 8
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Figure 6.2: PDF of the variance on the model error a.f

The calibrated model is used to determine the statistical characteristics of E. for a mix of
concrete with uy, = 5430 psi and oy, = 125 psi. These are the characteristics of the mix
used for the single-mix calibration. Figure 6.3 shows the predictive density (PDF) of E. for
both calibration types while the cumulative density (CDF) is shown in Figure 6.4.

Modelling and measurement errors are represented by the the random correction parameter
4. The uncertainty on parameter 6 is caused by all sources of uncertainty: lack of data,
randomness in f/, measurement error and modeling error. The predictive analysis showed
(§ 6.1.3) that the variance of D = log(E.) has three distinct contributions: 0} = o7 +
0.250% + E[02]. Hence, The lack of fit of the model is evaluated by focussing on the variances
of the model parameter 02 and the correction factor E[02]. The model COV g, , based on

6p = ‘/ag + E[02] and determined for a specific value of f; (or F), can be an indicator for
the modeling accuracy.

Table 6.5 compares the model COV 4, with the predictive COV 8g,. It is clear that the bulk
of the uncertainty is due to model imperfection (as opposed to the variability arising from
the randomness of f{). This clearly indicates the importance of assessing model uncertainty.

Finally, it is worth while to compare the value of E. predicted by the ACI relation with the
results obtained by Bayesian predictive analysis. The ACI relation (6.2) needs nominal values
of the dependent and independent variables. If (6.2) is used in reliability-based design, the
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Figure 6.4: Predictive CDF of Young’s Modulus E, (s, = 5340, §7, = 0.023)

lower a-quantile is used as characteristic value E.; (Pr(E. < E) = a). Indeed, both f! and
E. generally provide resistance in a structural assembly. This characteristic value is obtained
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Table 6.5: Predictive and model COVs (u;, = 5430 psi, &5, = 0.023)

up | (63 +E[02])!/? BE. e, | Ok,
single mix | 15.21 0.0613 4.03x10% psi | 6.3 % | 6.1 %
multi-mix | 15.24 0.0731 [ 4.16x10°psi [ 74 % [ 7.3 %

by either plugging in the associated characteristic value of the compressive strength f/, in
the ACI formula, or by finding the appropriate quantile of the predictive distribution of E.
obtained from Bayesian analysis. Table 6.6 shows a comparison of both values.

Table 6.6: Comparison of characteristic values of E. (us, = 5430 psi, 67, = 0.023)

ACI-318 BUMP
single batch multi-batch
a ! (psi) | Eck (X108 psi) || Ecx (x108 psi) | Ecx (x10° psi)
50 % 5430 4.20 4.02 4.15
10 % 5270 4.14 3.7 3.80
5% 5225 4.12 3.64 3.68
1% 5135 4.08 3.45 3.44

The characteric values obtained from the ACI-318 relation (6.2) seem to be grossly unconser-
vative when used within a reliability context. The large difference between the ACI formula
and the Bayesian predictive distribution is to be ascribed to the neglect of model uncertainty
in the former. The characteristic value according to ACI-318 only incoporates the stochastic
nature of the concrete mix under study. This large difference most certainly stresses the
supremacy of a Bayesian approach for mathematical modeling of physical phenomena when
accounts for all different sources of uncertainty are present.

6.2 Strength of Aging Concrete
6.2.1 Problem definition

Prediction of concrete strength as a function of time has always been of interest to con-
struction engineers, since it largely determines the progress on the construction site. ACI-
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Commitee 209 [2] recommends use of the expression

£18) = fls (;ﬂ%,;;) (6.21)

for modeling the compressive strength gain of concrete with time [33]. The compressive
strength f, at time t is compared with the reference value fl,;, obtained after 28 days.
Values of the coefficients a and b can vary within a wide range, depending on the type of
cement and curing used. Values of interest for the subsequent analysis are associated with
moist-cured concrete containing Type I cement: a = 4.0 and b = 0.85 [2]. The experimental
data used in this section stems from such concrete.

The ACI-209 model (6.21) is calibrated by a Bayesian procedure. Because of the destructive
testing procedure, we are again faced with a problem where no direct correspondence exists
between measured f/(t) and f,; values. Simple regression analysis cannot assimilate this
type of relation between model variables.

6.2.2 Data

Bayesian model assessment is applied for optimal inference on data acquired at the University
of California, Berkeley (Table 6.7). Strict controls observed during casting and during the
experimentation produced data of exceptional quality (small COV, for a given time).

The compressive strength at 28 days after casting has a lognormal population with mean
Hjos = 5431 psi and standard deviation oy, = 125 psi (6 = 2.3%).

A second data-set is taken from literature: KLIEGER [24] reports on an extensive campaign
to assess the time-variant behavior of cement as principal component of the concrete mix.
KLIEGER’s data was part of the original data-set for the regression analysis on formula (6.21).

The 28-days compressive strength of KLIEGER’s concrete sample has a lognormal population
with mean py,, = 5281 psi and standard deviation oy,,, = 542 psi (6§ = 10.3%). It should
be mentioned that the data extracted from [24] for Type I cements. Since formula ACI-209

(6.21) does not distinguish between members of the latter family, amalgamation of the data
was deemed valid.

6.2.3 Bayesian analysis
Considering the logarithmic model for sample k, we can write
Fu = Fagi + loglti/(a + bti)] + 1 (6.22)
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Table 6.7: Berkeley data for f/(t)

{10} psi.
3 days | 7 days | 21 days 28 days
2680 3960 5120 5530 5460 5360 5490
2680 3970 4960 5250 5070 5500 5410
2680 3800 5030 5410 5390 5460 5620
3910 5430 5470 5450 5650
3870 5500 5350 5480 5350
60 days | 90 days | 120 days | 180 days | 210 days
5730 6030 6135 5930 6400
5580 6110 6300 6100 6250
5170 5760 6045 6250 6310
6095 6215
6490 6055
Table 6.8: KLIEGER’s data for f!(t)
{£2(D)}& (psi)
1 day | 7 days | 28 days | 90 days | 360 days | 1080 days
780 | 4210 5870 6390 7020 6910
580 | 3800 5710 6650 7010 7380
890 | 2740 4730 5760 6400 6750
800 | 3480 5190 5700 6540 7030
1260 | 4730 5830 6280 6440 6360
1020 | 4000 5820 6520 7060 7640
740 | 3480 5770 6410 6560 6890
670 | 3600 5600 6230 6540 6810

with Fy = log f/,(t), F2s = log fl5 and v the Gaussian, random correction accounting for
model uncertainty and measurement error. The population of Fg is normally distributed
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with ur and of. The likelihood function is proportional to

L(a,b,0%t)

; 2 (6.23)
(of +03) "2 exp {-mﬂ.—,g 21 [sz - log (:T'.tﬁ) - ﬂr] }

The complexity of the likelihood does not allow an analytical approach.
We assume to have local uniform priors on parameters ¢ and b. The prior density of the
variance of the model error 62 is chosen to be non informative [8]

p03) = (of + o)™ (6.24)

Predictive analysis using the calibrated model requires a double probability transform: (i)
T: : (a,b, Fag,v) — F, (ii) T2 : F; — f!(t). Applying probability transformation theory [3],
the predictive distribution of f/(t) at time t, is found by evaluating

1) = log(t/(a + bt)) — pr)?
_Dog(f 20(8;3/_‘(_“6%) )) = pF] }L(a,b,a,3|t)dadbda.3

(6.25)

6.2.4 Results and Interpretation

Both directional sampling and quadrature produce the same results. The moments obtained
by GHQ and DS are remarkably close to the initial MLE estimates especially for the Berkeley
data. Sampling was performed using a single iteration of 1000 samples, but reasonable
results were already obtained using only 100 simulations. Three iterations of 113 points were
sufficient to produce accurate quadrature results. These facts indicate that the likelihood not
only approximates a normal density, but is also strongly concentrated around its mean/mode.
This is caused by the fairly large data-set available for this problem. The large dispersion of
the KLIEGER data produces a less pronounced concentration effect.

The joint statistics of the parameter set obtained from Bayesian integration are reproduced
in Table 6.9. Entries in the table represent the expectation or variance / covariances of the
parameters shown in rows and columns.

Close scrutiny of Table 6.9 leads to a number of important observations. First, the parameter
b is nearly degenerate (very small variance). This means that there exists an almost deter-
ministic relation between the 28-days compressive strength fl,5 and the compressive strength
fe(t = oo) the concrete will attain after a long time.
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Table 6.9: Moments of parameter set

ACI Berkeley data KLIEGER DATA
E 1 a b E 1 a b
a|l 40 | a 3.59 0.0107 —0.000362 | a 5.42 0.0662 -0.00150
b{085| b 0.87  —0.000362 3.55x10~5| b 0.76  -0.00150 0.000380
o2 | 0.00619 ~ 0 =0 021000720 =0 ~ 0

Secondly, there exists significant (negative) correlation between parameters a and b (p =
45%). Parameter b is the reciprocal of the asymptotic (f — 00) compressive strength; a is
the reciprocal of the gradient of the compressive strength at time ¢t = 0. Negative correlation
implies that if a specific sample of b is in the lower tail of its distribution, parameter a will
most likely take a value larger than its mean. Note that this is a probabilistic relation (“most
likely”), not a functional one. Therefore, higher asymptotic values are likely to be reached
after shorter periods of time.

The fairly large difference between the moments obtained from the Berkeley data and those
obtained from the KLIEGER data may disturbing at first glance. The larger variances of the
model parameters for the KLIEGER data are clearly due to the larger dispersion inherent in
this data set. The large difference between the mean values however, is an indication that
the parameter values strongly depend on the concrete mix. ACI 209R-9 [2] indeed reports
wide ranges in which the parameters can be found: 0.05 < a < 9.25 and 0.67 < b < 0.98. The
values given in Table 6.9 are typical (nominal) values recommended by ACI for moist cured
concrete based on a Type I cement. The wide ranges of parameters, confirmed by the Bayesian
analysis here,suggests that perhaps formula (6.21) should be re-assessed for different types
of concrete mixes or be refined to include variables that characterize the mix. The Bayesian
assessment method described in this report is particularly suited for such re-evaluation.

Integration of (6.25) produces the predictive PDF of the compressive strength f! as a function
of time. The evolution of the mean strength is shown in Figure 6.5 for both data-sets. The
upper diagram displays the evolution of the compressive strength during the first three years.
The lower plot is restricted to 60 days after casting in order to highlight the early evolution
of the concrete strength. Both plots show the recommended ACI value of f/(t) based on the
corresponding mean of flyg.

The comparison between the nominal ACI relation and the mean predictive values of f(t)
reveals that the Berkeley data produces a mean relation which is in close agreement with the
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Figure 6.5: Expectation of compressive strength as a function of time

ACI formula for the mean value of f/(t). This is not true for the KLIEGER data-set. This
observation is further accentuated in Table 6.10, where the lower 20 bounds of f/(t) obtained
by Bayesian updating are compared with the ACI-209 formula using the lower 20 bounds
on fl,s. These bounds may be considered as characteristic values of the strength for us in a
partial factor design approach.

The comparison reveals that the ACI formula provides inconsistent predictions, both on
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Table 6.10: Lower 20 bound on the compressive strength fi(t)

i £1() (psi) |
[ Berke]e—y data ]
t | 7 days | 28 days | 90 days | 360 days
ACI| 3647 5184 5795 6020
BUMP | 3652 5068 5559 5745
Klieger data
t | 7 days | 28 days | 90 days | 360 days
ACI | 2950 4223 4657 4869
BUMP | 2525 4071 4729 4991

the conservative and unconservative sides. This inconsistency has obvious ramifications on
reliability-based design of structures.

Figure 6.6 shows the PDFs of f/(t) for different times based bon the KLIEGER data, clearly
revealing the increase of the predictive variance with time. The predictive COV remains
practically constant with time. The model distributes uncertainty, originating from lack of
data or dispersion of data at a certain moment in time, over the whole time scale. The
predictive COV of the model calibrated with the KLIEGER data is close to 13.5%, while the
Berkeley data induces a COV of 3.4% in the predictive distribution.

The large COV of the KLIEGER data is only partially caused by the large dispersion of the
data. The previous discussion has emphasized the lack of fit of the recommended ACI-209
mode] as far as the KLIEGER data is concerned. A major part of the predictive COV is
attributed to the modeling uncertainty.

Predictive Bayesian analysis enables the analyst to produce graphs that are particularly
useful to the field engineer. For example, Figure 6.7 shows mean and meanto bounds on
compressive strength as a function of time. The curves are based on the predictive analysis
performed on the model calibrated with the KLIEGER data.
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Figure 6.7: Mean and meanto bounds on f/(t) (KLIEGER data)
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7. Summary and Conclusion

The theory behind Bayesian model updating (BMU) has been detailed in this report. It
has been shown that practical application of BMU requires efficient numerical procedures for
the integration of the Bayesian kernel. Different methods have been reviewed, two of them
(directional sampling and Gauss-Hermite quadrature) are implemented in the program BUMP.

Examples have shown that Bayesian model updating in general and BUMP in particular are
powerful tools for engineering modeling and inference. From the different integration meth-
ods used, Gauss-Hermite quadrature is the most efficient: it provides accurate results with
minimal effort, provided the likelihood resembles a “polynomial x normal” form. Directional
sampling is found to be unsuitable for marginal or predictive analysis. Nevertheless, it is still
an important tool for Bayesian analysis, as it provides a control method for the determina-
tion of joint, second-moment statistics of a parameter set.“Exact” results will be obtained,
provided computer resources and time are invested in the calculation. This characteristic is
important when dealing with ill-behaved (not approximately normal) likelihood functions in
order to verify results obtained from the GHQ method.

The examples have further demonstrated the importance of the Bayesian model assessment.
The approach presented herein has proven to be an effective and systematic framework for
the inclusion of all possible types of uncertainty in model calibration. It was shown that
the incorporation of model uncertainty, measurement error, etc. has a strong influence on
statistics to be used in a reliability context.

The Bayesian model assessment may also take into account subjective information available
on the model and its parameters. This is introduce into the analysis through the prior
distribution. The adequate definition of the likelihood allows the inclusion of observed data,
independent of the size of the data set.

The Bayesian format is particularly suited for flexible coding purposes. The deterministic
mathematical model frequently fails to cover the broad domain it is supposed to describe. Its
parameters are often chosen by compromise. This was amply demonstrated by the analysis
of the ACI-209 model for the compressive strength of aging concrete.

A coded Bayesian format should prescribe distributional assumptions on parameters, depen-
dent and independent variables. The accumulated experience of prior calibration campaigns
can easily be introduced at the level of the prior distribution. The field engineer would then
update the model with the field data that is directly related to the application of interest.
The engineer then has a model that is an optimal blend of the problem-specific data and of
past experience.
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At its current stage, the research into the Bayesian model assessment has proven that in many
civil engineering applications deterministic modeling can easily be replaced by the proposed
stochastic modeling technique. It adds important flexibility and reliability to the modeling
process for a negligible computational price.
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A. BUMP: user’s manual

A.l1 Input
A.1.1 General remarks

BUMP reads input from the standard input device. Its commands are best grouped in an input
file, which can then be submitted the program using input redirection (for both DOS and
UNIX operating systems)

% bump < {infile}

with {infile} the name of the input file.

The input file consists of a number of independent sections, each having a body of data
(Figure 6.8). The data structure is specific for each section. Sections are separated by a slash
“/”. In this chapter, sections are described in order of appearance'in the file. The user will
be flagged if a section is missing. Errors will occur if the prescribed order is not maintained.

HEADER

DATA
/
HEADER

Data
/

Figure 6.8: General structure of the input file

The data of a section is built up from input lines. An input line consists of different items,
separated by a comma or by a space. Input following a percentage sign ¥ is discarded, allowing
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the inclusion of comments in the file. The BUMP line parser identifies if an item is numeric or
alphabetic. Alphabetic data is truncated to 4 significant characters. BUMP is insensitive to
case. The parser does not make any difference between real and integer numbers.

Each section activates a reading routine, which will then call upon the parser to analyze
the input. Consistency of the input is not checked at parser level, but is controlled by the
section-related read routines. Clear error messages (§ C.) are displayed when inconsistent
data is encountered. In the following paragraphs, each individual data section will be fully
described. Example input files can be found in appendix (§ D.).

A.1.2 Identifier

The file identifier is the only section not having a body. It simply consists of the header bump.

A.1.3 Parameter definition

Header: parameter
Body:  {name},{type},{range/value},{init}
{name}: parameter identifier <char>
{type}: updatable or known <char>
{range/value}:
if type = updatable then
range = {lowerbound}, {upperbound}
if type = known then
range = {value},0.
{init}: initial value for optimization (= MLE)
Remarks:
- if lowerbound < -1035 then lowerbound = —o0
if upperbound > +103° then upperbound = +oc
- a known parameter has a fixed value throughout the analysis

A.1.4 Prior density

Header:  prior

Body:  {name},{type}.{p1}.{p2}.{r3}.{p4}
{name}: name of considered parameter <char>
{type}: type of prior density <char>
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- none

- normal

- lognormal

- gamma

- beta

- uniform
user

{r*}: distribution parameters <numr> (table 6.11)

Remarks:

- all updatable parameters have to be included in the prior list

Table 6.11: Prior density library

name PDF pl p2 p3 | p4 l
normal exp{—(z - p)*/20%)}/V2m0 g |0<eo| - | -
lognormal | exp{~(log(z)— A)?/2n?)}/V27nz A |o0<n| - | -
gamma M Az)-lexp{-Az}/T(k) z>0 O<A|O<k| - | -
beta (z —a)" Yz -b0)"'/{B(g,r)(b—a)*™"1} |0<g|O<r| a | b
a<z<b

uniform (b-a)™? a<z<b a b -] -

A.1.5 Observations

Header:  observations

Body: first line: nobs = {nn},nvar = {mm}

{nn}: number of observations <numr>

{mm}: number of observed variables <numr>

followed by nn rows of mm data-items

Remarks:

- the data is not parsed, but read using FORTRANT77 list directed input.
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A.1.6 Execution control

Header: execute
Body: {method},{p1},{p2},{p3}
{method}: identification of integration method <char>
- method = samp => directional sampling

- method = quad = Gauss-Hermite quadrature
{r*}: integration parameters <numr>

if method = samp then
{p1} = generator seed
{p2} = number of iterations
{p3} = number of samples per iteration
if method = quad then
{p1} = number of iterations
{p2} = number of quadrature points per dimension
Remarks:

- BUMP uses the integration methods with the specified parameters in the order given; the
second-moment results of the previous execution are used as initial values of the next
integration method. »

- the last integration in the sequence is used to calculate marginal and predictive statis-

tics.

A.1.7 Output control

Header: output
Body: {type},{name/number},{p1},{p2},{p3}.,{w*}
{type}: identification of the requested output <char>
- marginal
- predictive
if type = marginal then
{name}: name of marginal parameter <char>
{p1} = number of increments in interval
{p2},{p3} = interval definition
if type = predictive then
{number}: number of user defined weightfunction
= identification of dependent variable
{p1} = number of increments in interval
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{p2},{p3} = interval definition
{w*}: parameters passed on to the weight function <numr>
Interval definition
default interval
{p2} = 0.
{p3} = 0. '
the interval is defined as the 50 boundary around the expectation
relative interval definition
{p2} = {k} <numr>
{p3} = 0.
the interval is defined as the ko boundary around the expectation
absolute interval definition
{p2} = {lowerbound} <numr>
{p3} = {upperbound} <numr>
the interval is defined as [{lowerbound},{upperbound}]
Remarks:

- o0 is approximated by the square root of the appropriate diagonal element of the covari-

ance matrix.

- predictive analysis requires the definition of the lowerbound and upperbound of the

interval; relative interval definition will prompt an error message

- when a marginal density is determined by sampling, explicit definition of the interval
bounds is strongly recommended; an inexact estimate of o might produce an interval

that contains no likelihood mass.

A.2 User deﬁned subroutines

BUMP needs 3 subroutines to be supplied by the user.

- ulhood: the user-defined likelihood function
- uprior: the user-defined prior density

- uwghtf: the weight function (for predictive analysis)

Implementation of ulhood is imperative since the whole purpose of BUMP is the integration
of a Bayesian kernel, containing a problem-related likelihood function. Definition of a prior
density is only required when the user option is activated in the prior section (§ A.1.4).
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The user-defined weight function is currently only used when predictive statistics need to be
calculated. :

The source listing of file user.for is reproduced in appendix (§ B.). Description of the
parameters of the subroutines can be found in the comments to the source.

A.3 Precision

BUMP, and the library routines it uses, captures as many over- and underflows as possible
and- tries to take full advantage of the precision of the computer on which it is running.
Precision parameters therefore need to be defined. The subroutine dimach.for contains
machine parameters for most of the common computer platforms. The user must change this
routine to comply to the double precision implementation of the particular computer in use.
It is currently set for the precision definition according to the IEEE-standard, standard by
which most workstations and personal computers abide.

A.4 Output

BUMP writes its results to the standard output device. Device redirection can be used to
capture the output in a file. The typical call to BUMP would look like (DOS/UNIX)

% bump < {infile} > {outfile}

with {infile} the name of the input file containing the BUMP commands and {outfile} the name
of the file in which the results will be collected.

The BUMP output consists of following major parts

parser trace the input is echoed to the output, allowing the user to trace back the
command being executed the moment an error interrupts the program.

data printout observations are printed to the output in order to check if all data has
correctly been read.

MLE optimization trace optimization parameters are printed at regular intervals so that
divergence of the iteration can be spotted and its cause can be identified. Note
that trace values are referring to the unbounded domain.

MLE optimization output the final result of the optimization, the MLE of the parameter
set, is printed after transformation to the original variables.
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execution trace joint second-moment results are printed after every iteration, for every
line in the exec input section (§ A.1.6). When integration is performed by the
directional sampling method, COV values will be included in the trace.

execution output second-moment statistics are printed at the end of all iterations re-
quested in single execution definition. Repeated for all executions.

marginal/predictive output Marginal and predictive analysis uses the second-moment
results obtained after the last iteration. The integration method is determined
by the last line in the exec section. Expectation and variance of the marginal /
predictive variable is followed by a printout of density and distribution: values of
both functions are printed in the the user-defined abscissae.

Example printouts of the output file are included in appendix (§ D.).
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B. Source listing of USER.FOR

c
double precision function ulhood(mparam,mobsrv,mvarbl,nparam,
& nobsrv,nvarbl,observ,parval)
c
c S —ess=====s==z==
c USER-DEFINED LIKELIHOOD FUNCTIOK
<
c parameters
c mparam : maximum number of parameters (= 20) <dim>
c mobsrv : maximum number of observations (= 500) <dim>
c mvarbl : maximum number of observed variables (= 10) <dim>
c nparam : number of parameters <in>
c parval : current value parameter <in>
c nodbsrv : number of observations <in>
c nvarbl : number of variables per observation <in>
c observ : observations <in>
c ulhood : value of likelihood function <out>
c remark
c parameters are numbered according to the definition
c sequence in the input file
c
c
c
integer mparam,mobsrv,mvarbl,nparam,nobsrv,nvarbl
real observ(mobsrv,mvarbl)
double precision parval(mparam)
c
ulhood = 1d0
c
return
end
c
c
double precision function uprior(mparam,mpripr,nparam,pripar,
& parval)
<
(<
c
c USER-DEFINED PRIOR DENSITY
c
c parameters
c mparam :@ maximum number of parameters (= 20) <dim>
c Bpripr : maximum number of parameters for prior (= 4) <dim>
c nparam : actual number of parameters <in>
c pripar : parameters of the prior distribution <in>
c parval : current value of the parameters (original) <inm>
c uprior : value of the prior for parameters = parval <out>
< Tremark
c parameters are numbered according to the definition
< sequence in the input file
c
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(4]

lparan,nprifr,nparan

integer
real pripar(mparam,mpripr)
double precision parval(mparam)
c
uprior = 1d0
return
end
c
c
double precision function uwghtf(mparam,mwgtpr,nparam,parval,
& wgtnum,prdvar,wgtpar)
c
¢ ssssssscs=scs==s====== ====
c
c USER-DEFINED WEIGTH FUNCTION (eg. for predictive distribution)
c
c parameters :
c mparam : maximum number of parameters to analyse <dim>
c mVgtpr : maximum number of parameters for weight function <dim>
c nparam : number of parameters <in>
c parval : parameter values in original domain <in>
[ vgtnum : identification of the weightfunction <in>
c prdvar : value of the predictive parameter <in>
c wgtpar : parameters of the weight function <in>
c uwghtf : value of the user defined weight function
c
c
c
integer mparam,mwgtpr,nparam,vgtnum
double precision parval(mparam),prdvar
real wgtpar (mwgtpr)
c

i? (wgtnum.eq.1) then

uvght? = 1d0

else if (wgtnum.eq.2) then
uvghtt = 1d0

else
uwghtt = 140

endif

return

end
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C. Error messages

Although the program is not “fool-proof”, it will capture most important errors occurring.

Execution of the program will be stopped on occurrence of an error.

This appendix contains a review of error messages and their probable causes. Errors caused by
invalid input are easily traced. When the implementation of the likelihood function is faulty,
messages may become confusing. Tracking the error down will be quite difficult. Extreme
care should therefore be taken when implementing the user-defined subroutines. If you really
cannot find the problem, send an EMail to “jhdaa04@cc4.kuleuven.ac.be” containing problem
description, input file and user-defined subroutines. This will help the first author find
remaining bugs.

The most common error messages are related to incorrect input. The are detected before the
actual calculation is started.

**% Error: invalid input-file [rinput]

the bump file identifier (§ A.1.2) was not found and the program assumes you have
submitted an invalid input file

#»* Error: invalid data [lparse)

the line parser captured a FORTRAN error that occurred while reading your command line;
it probably contains an invalid character, you might also have typed an integer larger
than 231 -1, ....

#x* Error: incomplete input file [rinput]
check if you have all required sections in your input file.
**x Error: no parameter definition [rparam]

BUMP thinks it found an empty parameter section, check if you complied to the structure
of this section (§ A.1.3).

**s Error: incomplete definition [rprior]
you have forgotten to specify a prior density for an updatable parameter.
s*» Error: parameter unknown [rprior] ’

the prior definition is referring to a parameter that was not previously defined; check
the sequence of sections in the input file or the spelling of the parameter name

ss* Error: prior of known variable [rprior]

the prior definition for a known parameter does not really make sense.
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wx%

%%

*%k¥

%%

L2 3]

%%

%%

%%

L 2 1 4

L 2 2/

Error: impossible value for parameter [rprior]

you have given an invalid paraméter value to a prior density. Check possible parameter
values in table 6.11 (§ A.1.4).

Error: parameters not defined [robsrv]

the first line of the data-section does not contain the compulsory dimensioning variables
(§ A.1.5).

Error: invalid data [robsrv]

the subroutine reading the experimental data captured an error that occurred during
the unformatted, list-directed FORTRAN read. An invalid input character is the probable
cause.

Error: method not specified [rexctl]

BUMP has not found the name of the integration method you want to use. Check the
format of the exec section (§ A.1.6)

Error: method not implemented [rexctl]

this might be wishful thinking on your part: BUMP only uses sampling or quadrature to
solve the Bayesian integration problem! Or perhaps you mistyped the identifier string
for the integrations method (§ A.1.6)?

Error: incomplete specification [rexctl]

you have omitted integration parameters. Check the definition of the exec section in the
user’s manual (§ A.1.6)

Error: grid too large [rexctl]

you have selected too may gridpoints for the Gauss-Hermite quadrature. The maximum
is currently set at ngrid = 300.

Error: parameter unknown [routct]

you are requesting marginal information from a parameter that was not previously de-
fined. Check to see if you have not misspelled the name of the parameter. You might
have requested output before defining the actual parameters, which is a bit confusing to
BUMP

Error: output for known variable [routct]

asking for marginal statistics from a known variable is rather awkward to BUMP; you must
probably have confused parameter names.

Error: incomplete interval specification [routct]
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there is something wrong with the specification of the interval in which the marginal
/predictive density is going to be evaluated. Read through (§ A.1.7) to see what you
have done wrong.

»*x Error: predictive requires bounds [routctl]

you cannot use the default or relative definition of the interval for a predictive density,
use absolute bounds [{lowerbound}, {upperbound}].

**x Error: too many steps for demsity [routct]

the number of points in which the density is going to be evaluated exceeds the capacity
of the program; the maximum is currently set at 500 points.

The following enumeration of messages concerns run-time errors captured by BUMP

=xx Error: 2zero likelihood [derivt]

the finite difference routine is confronted with a zero value of the likelihood = triple-
check your implementation of the function ulhood. This error can also occur when the
optimization routine has reached the maximum before both convergence criteria are true.
A remedy to this unlikely event is the selection of other starting values for the iteration
(§ A.1.3)

*»* Error: overflow in exponential [qdcore]

the quadrature formula contains an exponential with positive argument; when the num-
ber of gridpoints is to high, this exponent will overflow. The current maximum number
of gridpoints is chosen so that overflow will not occur on an IEEE machine. If your
computer uses a different double precision implementation (eg. IBM370) this error is
likely to occur for large grids. Reduce the number of gridpoints until the problem has
disappeared.

*#*x Error: initial values in likelihood tail [qnewtn]

your initial values are so far in the likelihood tail that the gradient of the (log-)likelihood
is zero; change your initial values. A simple regression procedure might help to make
educated guesses about adequate initial values for the optimization.

ss* Error: no convergence [gosect]

the golden section line search has not found an optimum along the direction given by the
quadratic approximation. A pragmatic approach suggests to use different initial values
for the iteration. If that does not help, than there is probably something wrong with
your likelihood function.
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ss# Error: inaccurate quadrature [smp#*]

the QUADPACK adaptive linear integration routine was unable to perform the integration to
the preset accuracy. The likelihood is again to blame: either it is wrongly implemented,
or it is really ill-behaved.

This final list of messages are originating from errors within some of the library routines BUMP
uses. These errors should, in theory, never occur. You have most probably stumbled upon a
bug. Send me an EMail, and I will try to fix it as soon as I can.

ssx Error: internal [dgamma]
s** Error: illegal parameter [dgemv]
s*« Error: invalid parameter [dgerup]

s*% Error: unable to perform curve fit on density [cumdis]
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D. BUMP output

D.1 Example 1: quadrature results — Berkeley data

BUMNP (v1.05)
Bayesian Updating of Model Parameters

Y T T T T Ty Yy -

INPUT

bump

parameters
thta,update,-136,1e36,11.
muf ,known,8.6
sgf,known,0.023
errv,update,0e0,1636,0.005

prior
thta=none
errv=user

data
nobs=10 nvar=1

method
quad, 3,31

output
marginal,thta,100,5
marginal,errv,100,3
predictive,1,100,14e0,16e0

VVVVVVVVVVVVVVVVVYVVVVVY

:

DBSERVATIONS
Data : 10 observations of 1 variables

1
.4130E+07
.3860E+07
.3920E+07
.4270E+07
.4150E+07
.3660E+07
.3910E+07
.3980E+07
.4160E+07
.4250E+07

QOO NN WN -
Oo0o0OO0O0OD0OOODOO

[

OPTIMIZATION TRACE (unbounded domain)
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iteration 12

optimum
0.1091D+02 0.8600D+01 0
gradient
-0.5331D-03 0.0000D+00 0
inverted Hessian
0.2350D-03 0.0000D+00 0
0.0000D+00 0.1000D+01 0
0.0000D+00 0.0000D+00 0
-0.3795D-03 0.0000D+00 0
INITIAL ESTIMATES
Expectation (SO-approx)
thta muf
E 0.1091E+02 0.8600E+01
Covariance (FO-approx)
thta muf
thta 0.2350E-03 0.0000E+00
muf 0.0000E+00 0.1000E+01
sgt 0.0000E+00 0.0000E+00
errv  -0.7634E-06 0.0000E+00
QUADRATURE: EXECUTION TRACE
iteration 1
proportionality factor
0.3603D+08
expectation
0.1091D+02 0.8600D+01 0
covariance
0.3570D-03 0.0000D+00 0
0.0000D+00 0.1000D+01 0
0.0000D+00 0.0000D+00 0
-0.4258D-09 0.0000D+00 0
iteration 2
proportionality factor
0.3603D+09
expectation
0.1091D+02 0.8600D+01 0
covariance
0.3572D-03 0.0000D+00 o
0.0000D+00 0.1000D+01 0
0.0000D+00 0.0000D+00 o]
0.9060D~-16 0.0000D+00 0

iteration 3

proportionality factor
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.2300D-01 -0.6208D+01
.0000D+00  -0.2805D-04
.0000D+00 -0.3795D-03
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.2340D+00
sgt errv
0.2300E-01 0.2247E-02
sgt errv
0.0000E+00 -0.7634E-06
0.0000E+00 0.0000E+00
0.1000E+01 0.0000E+00
0.0000E+00 0.9469E-06
.2300D-01 0.3440D-02
.0000D+00 -0.4258D-09
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.7764D-05
.2300D-01 0.3440D-02
.0000D+00 0.9060D-16
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.6365D-05



0.3603D+09

expectation .
0.1091D+02 0.8600D+01 0.2300D-01 0.3440D-02
covariance
0.3572D-03 0.0000D+00 0.0000D+00 -0.2138D-18
0.0000D+00 0.1000D+01 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.1000D+01 0.0000D+00
-0.2138D-18 0.0000D+00 0.0000D+00 0.6365D-05
JOIRT MOMERTS by GAUSS-HERMITE QUADRATURE
niter = 3, ngrid = 31
Expectation
thta muf sgt errv
E 0.1091E+02 0.8600E+01 0.2300E-01 0.3440E-02
Covariance
thta muf sg! errv
thta 0.3572E-03 0.0000E+00 0.0000E+00 -0.2138E-18
muf 0.0000E+00 0.1000E+01 0.0000E+00 0.0000E+00
sgt 0.0000E+00 0.0000E+00 0.1000E+01 0.0000E+00
errv  ~0.2138E-18 0.0000E+00 0.0000E+00 0.6365E-05

MARGINAL STATISTICS by GAUSS-HERMITE QUADRATURE

parameter = thta

Expectation = 0.1090E+02
Variance = 0.3733E-03
abscissa density
1 0.1081E+02 0.1460E-01
2 0.1082E+02 0.1692E-01
3 0.1082E+02 0.1964E-01
4 0.1082E+02 0.2285E-01
5 0.1082E+02 0.2663E-01
85 0.1099E+02 0.3110E-01
96 0.1099E+02 0.2664E-01
97 0.1100E+02 0.2286E-01
98 0.1100E+02 0.1965E-01
99 0.1100E+02 0.1692E-01
100 0.1100E+02 0.1460E-01

distribdb
0.0000E+00
0.3002E-04
0.6486E-04
0.1053E-03
0.1525E-03

.9994E+00
.9994E+00
.9995E+00
.9995E+00
0.9995E+00
0.9996E+00

00O0O0

MARGINAL STATISTICS by GAUSS-HERMITE QUADRATURE

parameter = errv

Expectation =

0.3421E-02
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Variance

N W =

95
96
97
98
99
100

= 0.5594E-05

abscissa
0.3826E-03
0.4000E-03
0.4182E-03
0.4372E-03
0.4870E-03

0.2495E-01
0.2608BE-01
0.2726E-01
0.2850E-01
0.2980E-01
0.3115E-01

density
0.5524E-01
0.8237E-01
0.1519E+00
0.2485E+00
0.3901E+00

0.1421E+00
0.1158E+00
0.9428E-01
0.7667E-01
0.6226E-01
0.5056E-01

distridb
.0000E+00
.1266E-05
.3439E-05
.T1B66E-05
.1338E-04

00000

.9990E+00
.9992E+00
.9993E+00
.9994E+00
.9995E+00
.9996E+00

000000

PREDICTIVE STATISTICS by GAUSS-HERMITE QUADRATURE

Expectation = 0.1521E+02
Variance = 0.3926E-02

abscissa density

1 0.1400E+02 0.2751E-07
50 0.1489E+02 0.4967E-01
51 0.1501E+02 0.8760E-01
52 0.1503E+02 0.1566E+00
53 0.1505E+02 0.2826E+00
54 0.16507E+02 0.5105E+00
58 0.1508E+02 0.9127E+00
56 0.1511E+02 0.1588E+01
67 0.1513E+02 0.2632E+01
58 0.1515E+02 0.4046E+01
59 0.16517E+02 0.5599E+01
€0 0.1519E+02 0.6793E+01
61 0.1621E+02 0.7097E+01
62 0.1523E+02 0.6355E+01
63 0.1626E+02 0.4932E+01
64 0.1527E+02 0.3392E+01
65 0.1529E+02 0.2128E+01
66 0.1531E+02 0.1253E+01
67 0.1633E+02 0.7102E+00
1] 0.1835E+02 0.3948E+00
89 0.1537E+02 0.2186E+00
70 0.1539E+02 0.1216E+00
71 0.1541E+02 0.6846E-01
72 0.1543E+02 0.3916E-01
73 0.15645E+02 0.2280E-01
74 0.1647E+02 0.1353E-01

distrib
0.0000E+00

0.1918E-02
0.3267E-02
0.5665E-02
0.9977E-02
0.1777E-01
0.3178E-01
0.5650E-01
0.9848E-01
0.1654E+00
0.2630E+00
0.3892E+00
0.5313E+00
0.6687E+00
0.7834E+00
0.86872E+00
0.9224E+00
0.9559E+00
0.9753E+00
0.9862E+00
0.9922E+00
0.9955E+00
0.9974E+00
0.9984E+00
0.9991E+00
0.9994E+00
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75
76
77
8
79
80

0.1549E+02 0.8191E-02 0.9996E+00
0.1852E+02 0.5083E-02 0.9998E+00
0.1554E+02 0.3175E-02 0.9998E+00
0.1556E+02 0.2032E-02 0.9999E+00
-0.1558E+02 0.1322E-02 0.9999E+00
0.1560E+02 0.8746E-03 0.1000E+01

D.2 Example 1: sampling results — Berkeley data

BUNMP (v1.05)

Bayesian Updating of Model Parameters

INPUT

> bump
> parameters

prior
thta=none
errv=user

data

method

output

VVVVVVVVVVVVVVVVYVY

:

thta,update,-1e36,1e36,11.
muf ,known,8.6

sg? ,known,0.023
errv,update,0e0,1e36,0.005

nobs=10 nvar=1

samp, 12076492, 1,20000

DIRECTIORAL SAMPLIKG: EXECUTIOE TRACE

iteration 1

proportionality factor

0.36E+09 (.00)
expectation
0.11E+02 (.00)
covariance
0.35E-03 (.00)
0.00E+00 (.00)
0.00E+00 (.00)
0.63E-07 (sx=)

0.86E+01 (.00)

0.00E+00 (.00)
0.10E+Q1 (.00)
0.00E+00 (.00)
0.00E+00 (.00)

0.23E-01 (.00)

0.00E+00 (.00)
0.00E+00 (.00)
0.10E+01 (.00)
0.00E+00 (.00)
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0.34E-02 (.00)

0.63E-07 (s*x)
0.00E+00 (.00)
0.00E+00 (.00)
0.77E-05 (.01)



JOINT MOMENTS by DIRECTIONAL SAMPLING

seed = 12076492, niter = 1, nsamp = 20000
Expectation

thta muf sgt

E 0.1090E+02 0.8600E+01 0.2300E-01

Covariance

thta muf sgt

thta 0.3549E-03 0.0000E+00 0.0000E+00

auf 0.0000E+00 0.1000E+01°  0.0000E+00

sgt ©0.0000E+00 0.0000E+00 0.1000E+01

eIV 0.6265E-07 0.0000E+00 0.0000E+00

errv
0.3437E-02

exrrv
0.6265E-07
0.0000E+00
0.0000E+00
0.7710E-05

D.3 Example 2: quadrature results — Berkeley data

BUMNMP (v1.05)
Bayesian Updating of Model Parameters

INPUT

> bump

> parameters
aa,update,0e0,1e36,4.0
bb,update,0e0,1036,0.9
errv,update,0e0,136,0.01
=auf,knowvn,8.6
sgf,known,0.023

prior
aa=none
db=none
srxrvs=none

data
nobs=50 mnvar=2

method
quad,3,11

output
predictive,1,50,2200¢0,3200e0,3
predictive,1,50,3000e0,4500e0,7
predictive,1,50,40000,5500e0,14
predictive,1,50,45000,6000e0,21

VVVVVVVVVVVVVVVVVVVVVYV

> predictive,1,50,56500e0,7000e0,240
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§0 observations of

>
>
>
>
> run
OBSERVATIORS
Data :
1
1 0.3000E+01
2 0.3000E+01
3 0.3000E+01
4 0.7000E+01
5 0.7000E+01
6 0.7000E+01
7 0.7000E+01
8 0.7000E+01
) 0.2100E+02
10 0.2100E+02
11 0.2100E+02
12 0.2800E+02
13 0.2800E+02
14 0.2800E+02
15 0.2800E+02
16 0.2800E+02
17 0.2800E+02
18 0.2800E+02
19 0.2800E+02
20 0.2800E+02
21 0.2800E+02
22 0.2800E+02
23 0.2800E+02
24 0.2800E+02
25 0.2800E+02
26 0.2800E+02
27 0.2800E+02
28 0.2800E+02
29 0.2800E+02
30 0.2800E+02
31 0.2800E+02
32 0.6000E+02
33 0.6000E+02
34 0.6000E+02
35 0.9000E+02
36 0.8000E+02
37 0.9000E+02
38 0.9000E+02
39 0.9000E+02
40 0.1200E+03
41 0.1200E+03
42 0.1200E+03
43 0.1200E+03

predictive,1,50,5500e0,7000e0,270
predictive,1,50,5500e0,7000e0,300
predictive,1,50,550000,7000e0,360

2
0.2680E+04
0.2680E+04
0.2680E+04
0.3960E+04
0.3970E+04
0.3800E+04
0.3910E+04
0.3870E+04
0.5120E+04
0.4960E+04
0.5030E+04
0.5530E+04
0.5250E+04
0.5410E+04
0.5430E+04
0.5500E+04
0.5460E+04
0.5070E+04
0.5390E+04
0.5470E+04
0.5350E+04
0.5360E+04
0.5500E+04
0.5460E+04
0.5450E+04
0.5480E+04
0.5490E+04
0.5410E+04
0.5620E+04
0.5650E+04
0.5350E+04
0.65730E+04
0.5580E+04
0.5170E+04
0.6030E+04
0.6110E+04
0.5760E+04
0.6095E+04
0.6490E+04
0.6135E+04
0.6300E+04
0.6045E+04
0.6215E+04

2 variables
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44
45
46
47
48
49
50O

0.1200E+03
0.1800E+03
0.1800E+03
0.1800E+03
0.2100E+03
0.2100E+03
0.2100E+03

0.6055E+04
0.5930E+04
0.6100E+04
0.62B50E+04
0.6400E+04
0.6250E+04
0.6310E+04

DPTIMIZATION TRACE (unbounded domain)

iteration 1§

optimum
0.1279D+01  ~0.1388D+00 ~0.7592D+01 0
gradient
-0.2104D-01 ~-0.4508D-01 0.1080D-02 0
inverted Hessian
0.7541D-03 -0.1109D-03 -0.7554D-04 0
-0.1108D-03 0.4286D-04 -0.1084D-03 0
-0.7554D-04 -~0.1084D-03 0.1617D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
iteration 26
optimum
0.1279D+01  -0.1388D+00 -0.7592D+01 0
gradient
0.3956D-06 0.2129D-05 -0.3650D-07 0
inverted Hessian
0.7431D-03 -0.1040D-03 0.7018D-06 0
-0.1040D-03 0.4218D-04 0.3885D-06 0
0.7018D-06 0.3885D-06 0.1681D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
INITIAL ESTIMATES
Expectation (SO-approx)
aa bb errv
E 0.3594E+01 0.8704E+00 0.5467E-03
Covariance (FO-approx)
aa bd errv
aa 0.9592E-02 -0.3252E-03 0.1272E-08
b -0.3252E-03 0.3196E-04 0.1705E-09
oxrrv 0.1272E-08 0.1705E-09 0.4275E-07
nuf 0.0000E+00 0.0000E+00 0.0000E+00
sg? 0.0000E+00 0.0000E+00 0.0000E+00

QUADRATURE: EXECUTION TRACE
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.8600D+01 0.2300D-01
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.1000D+01
.8600D+01 0.2300D-01
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.1000D+01
muf sg?
0.8600E+01 0.2300E-01
muf sgt
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.1000E+01 0.0000E+00
0.0000E+00 0.1000E+01



iteration 1

proportionality factor

0.9998D-02
expectation
0.35985D+01 0.8704D+00 0.6453D-03 0
covariance
0.1091D-01  -0.3697D-03 0.1144D-06 0
-0.3697D-03 0.3632D-04 -0.9615D-09 0
0.1144D-06 -0.9615D-09 0.7534D-07 0
0.0000D+00 0.0000D+00 0.0000D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
iteration 2
proportionality factor
0.99988D-02
expectation
0.3595D+01 0.8704D+00 0.6453D-03 0
covariance
0.1091D-01  -0.3697D-03 0.8899D-07 0
=0.3697D-03 0.3632D-04 0.3072D-09 0
0.8898D-07 0.3072D-09 0.6562D-07 0
0.0000D+00 0.0000D+00 0.0000D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
iteration 3
proportionality factor
0.9998D-02
expectation
0.3595D+01 0.8704D+00 0.6454D-03 0
covariance
0.1091D-01  -0.3697D-03 0.8897D-07 0
=0.3697D-03 0.3632D-04 0.3073D-09 0
0.8897D-07 0.3073D-09 0.6560D-07 0
0.0000D+00 0.0000D+00 0.0000D+00 0
0.0000D+00 0.0000D+00 0.0000D+00 0
JOINT MOMEETS by GAUSS-HERMITE QUADRATURE
niter = 3, ngrid = 11
Expectation
aa bb errv
E 0.3595E+01 0.8704E+00 0.6454E-03
Covariance
aa bd orrv
aa 0.1091E-01  -0.3697E-03 0.8897E-07
bb -0.369TE-03 0.3632E-04 0.3073E-09
orrv 0.8897E-07 0.3073E-09 0.6560E-07
muf 0.0000E+00 0.0000E+00 0.0000E+00
sg? 0.0000E+00 0.0000E+00 0.0000E+00
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.8600D+01 0.2300D-01
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.1000D+01
.8600D+01 0.2300D-01
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.1000D+01
.8600D+01 0.2300D-01
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.0000D+00 0.0000D+00
.1000D+01 0.0000D+00
.0000D+00 0.1000D+01
muf sgt
0.8600E+01 0.2300E-01
muf s
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00
0.1000E+01 0.0000E+00
0.0000E+00 0.1000E+01



PREDICTIVE STATISTICS by GAUSS-HERMITE QUADRATURE

D.4 Example 2: sampling results — Berkeley data

BUMNP (v1.05)
Bayesian Updating of Model Parameters

INPUT

> bump

> parameters
aa,update,0e0,1¢36,4.0
bb,update,0e0,136,0.85
errv,update,0e0,1e36,0.01
muf,known,8.6

sgf ,known,0.023

prior
=none
bb=none
errv=none

data
nobs=50 nvar=2

method
samp,1695678,1,1000

output

VVVVVVVVVVVVYVYVVVYVYVYVY

:

DIRECTIONAL SAMPLING: EXECUTION TRACE

iteration 1
proportionality factor
0.10E-01 (.00)
expectation
0.36E+01 (.00) O0.87E+00 (.00) 0.65E-03 (.00) 0.86E+01 (.00)
covariance .
0.11E-01 (.03) -0.36E-03 (.05) -0.30E-06 (*s+) 0.00E+00 (.00)
-0.36E-03 (.058) 0.36E-04 (.03) O0.15E-07 (»*») 0.00E+00 (.00)
-0.30E-06 (sss) 0.15E-07 (»»*) 0.77E-07 (.02) 0.00E+00 (.00)
0.00E+00 (.00) O.00E+00 (.00) O.00E+00 (.00) 0.10E+01 (.00)
0.00E+00 (.00) O.00E+00 (.00) O0.00E+00 (.00) ©.00E+00 (.00)
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0.23E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.10E+01

PN\ ~

.00)

.00)
.00)
.00)
.00)
.00)



JOINT MOMENTS by DIRECTIONAL SAMPLING

seed = 1695678, niter = 1, nsamp = 1000
Expectation
aa bb errv
E 0.3591E+01 0.8714E+00 0.6463E-03
Covariance
aa bb errv
aa 0.1066E-01 -0.3600E-03 =-0.3045E-06
bb -0.3600E-03 0.3581E-04 0.1538E-07
errv  -0.3045E-06 0.1835E-07 0.7746E-07
muf 0.0000E+00 0.0000E+00 0.0000E+00
sgt 0.0000E+00 0.0000E+00 0.0000E+00
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muf
0.8600E+01

nuf
0.0000E+00
0.0000E+00
0.0000E+00
0.1000E+01

0.0000E+00

sgt
0.2300E-01

sgt
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.1000E+01
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