UC Berkeley

Earlier Faculty Research

Title

A Utility-Theory-Consistent System-of-Demand-Equations Approach to Household Travel
Choice

Permalink

https://escholarship.org/uc/item/3h67i2p2

Author
Kockelman, Kara M.

Publication Date
1998-09-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3h67j2p2
https://escholarship.org
http://www.cdlib.org/

UCTC Diss#41
A Utility-Theory-Consistent System-of-Demand-Equations Approach

to Household Travel Choice

by
KaraMaria Kockelman
B.S. (University of California, Berkeley) 1991
M.S. (University of California, Berkeley) 1996
M.C.P. (University of California, Berkeley) 1996
A dissertation submitted in partia satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Engineering — Civil and Environmental Engineering
inthe
GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:
Professor Mark Hansen, Chair
Professor Daniel McFadden
Professor Martin Wachs

Fall 1998



The dissertation of KaraMaria Kockelman is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 1998



A Utility-Theory-Consistent System-of-Demand-Equations Approach

to Household Travel Choice

Copyright 1998

by

KaraMaria Kockelman



Abstract
A Utility-Theory-Consistent System-of-Demand-Equations Approach

to Household Travel Choice

by
KaraMaria Kockelman
Doctor of Philosophy in Civil and Environmental Engineering
University of California, Berkeley

Professor Mark Hansen, Chair

Modeling personal travel behavior is complex, particularly when one tries to adhere
closely to actual causal mechanisms while predicting human response to changes in the
transport environment. There has long been a need for explicitly modeling the underlying
determinant of travel —the demand for participation in out-of-home activities; and
progressis being made in this area, primarily through discrete-choice models coupled
with continuous-duration choices. However, these models tend to be restricted in size
and conditional on awide variety of other choices that could be modeled more
endogenously.

This dissertation derives a system of demands for activity participation and other
travel-related goods that is rigorously linked to theories of utility maximization. Two
difficulties inherent in the modeling of travel — the discrete nature of many travel-related

demands and the formal recognition of atime budget, not just afinancial one — are dealt



2
with explicitly. The dissertation then empirically evaluates several such demand systems,
based on flexible specifications of indirect utility. The results provide estimates of
activity generation and distribution and of economic parameters such as demand
elasticities. Severa hypotheses regarding travel behavior are tested, and estimates are
made of welfare effects generated by changesin the travel environment.

The models presented here can be extended to encompass more disaggregate
consumption bundles and stronger linkages between consumption of out-of-home
activities and other goods. The flexibility and strong behavioral basis of the approach

make it a promising new direction for travel demand modeling.
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Chapter One: Introduction

This research examines a methodology for modeling household travel demand, as
tied to out-of-home activity participation. The investigation adheres to the
microeconomic theories of rational behavior and utility maximi zamionEI by the household
and incorporates constraints on time, in addition to the common constraint on monetary
expenditures. The methodology istested empirically for several model specifications,
using data from the San Francisco Bay Area. The results provide estimates of optimal
trip generation and distribution (that is, destination choice) by households together with
multiple economic variables, including cross-travel time elasticities, values of time, and
welfare changes.

Little prior travel-behavior research has taken into account a time constraint or
explicitly recognized travel demand as driven by demand for activities at physically
separate destinations. Much of the research regarding time constraints has been
theoretical, with little empirical support (e.g., Becker 1965, Johnson 1966, DeSerpa
1971). A primary reason for the absence of empirical method is the difficulty satisfying
utility maximization theory while permitting estimation. Other methods of analysis have
resorted to substantial simplification of behavior based on strong assumptions such as
bindingness of a single constraint (either the money or the time constraint is binding, but
not both) and/or strongly additive preferences (e.g., Zahavi 1979a, Zahavi et al. 1981,
Gronau 1970). Accordingly, these methods have lost many relations of interest.

Discrete-choice models can accommodate the simultaneous (rather than sequential)
nature of avariety of decision types and can be consistent with utility-maximizing

behavior (McFadden 1974, Ben-Akivaand Lerman 1985, Train et al. 1987). However,
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many choice variables are ordered or continuous (for example, the number of dining trips

per month, square footage of home parcel). Ordered logit and probit models have been
estimated for a single choice and for error-correlated simultaneous choices (e.g., Yen et
al. 1998), but not for a set of simultaneous choices where the parameters are constrained
across equations or where the outcomes are cardinal (such as the number of person-trips
by a household to different activity types over aday or more). If ordered choiceswere
modeled simultaneously as non-ordered choices, the independence of irrelevant
aternatives (I1A) property of the logit model would not be tenable; and the probit suffers
from intractability for large numbers of (non-ordered) choices.

Thus, this dissertation takes a different approach and seeks to illuminate the
interactions and trade-offs among demands for out-of-home activities and, therefore,
travel. The methodology is sufficiently flexible that other consumption can be
incorporated aswell. The approach employs models consistent with utility theory so that
the basic model structure and resulting predictions yield behaviors that are economically
rational under awide range of circumstances. Moreover, utility theory provides
numerous extensions, supplying, for example, estimates of welfare changes, cross-time
demand elasticities, and values of time.

In this research, systems of demand functions are derived from flexible functional
forms of the indirect utility function through parallelsto Roy’s Identity. Continuous
(though latent) demand levels underlie the system of interdependent equations, and these
equations are simultaneoudly estimated so that cross-equation parameter constraints and
correlated error structures are accommodated. The system is estimated as a set of

negative binomial regressions, produced from mixing independent Poissons with
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stochastic gamma terms and thereby providing for unexplained heterogeneity in behavior.

These gammaterms are correlated, recognizing the correlation of unobserved information
across multiple responses for a single observationa unit.

The methods devel oped here are intended to further the state of the art in travel-
demand modeling. The behavioral foundations of the investigated models are stronger
than those of many existing models, lending greater credibility to the results and
predictions. And the incorporation of relevant market “prices’ (in the form of travel
times) as well astwo distinct budget constraints makes the models applicable to avariety

Bl

of policy scenarios.~ Moreover, the requisite data are commonly available to
metropolitan and local planning organizations, so the methods advanced and applied here
can be implemented in the short term.

Additionally, the resulting models allow for various tests of hypotheses concerning
travel- and activity-related consumption, such as the existence of constant travel-time
budgets. Application of microeconomic theory using the model’ s estimated (scal ed)
indirect utility functions al'so permits evaluation of “welfare” changes due to policy
changes (e.g., Hausman et al. 1995, Burt and Brewer 1971, Cicchetti et al. 1976). For
example, through inversion of the indirect utility function with respect to either one of the
constraint levels, measures of aproject’s social “cost” or “benefit” can be estimated in
units of time and money by using differences in the constraints' respective expenditure
functions across households.

This model’ s recognition of simultaneity in decision-making, time constraints on

choice, and the discrete nature of travel data, along with its rigorous microeconomic
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foundation, offer significant advantages in travel modeling. The ensuing chapters detall

the model’ s specification and illustrate its application.



ENDNOTES:

! The assumption of utility-maximizing behavior, implicit in many models and their constraints (e.g., cross-
equation constraints on parameters), can often be tested using empirical results. For examples of such
tests, see Christensen et al., 1975, and Deaton and Muellbauer, 1980a.

2 For example, if sales and service opportunities were to re-locate, the travel-time environment would
change. These changes are incorporated directly in the proposed model, permitting immediate estimation
of ahousehold’ s response, via substitution and time-constraint effects.



Chapter Two: Review of Related Literature
General

Over the years, travel behavior has been modeled in a number of ways. Many of the
earliest models were developed primarily for prediction; their virtue is that they are easy
to apply. Later models are theoretically sounder, based on hypotheses concerning human
behavior and focusing on causation. Some of the most plausible travel models
acknowledge simultaneity in decision-making by avoiding strictly sequential estimation,
hypothesize distinct behavioral mechanisms, and/or suggest new ways of adhering to
microeconomic theory. However, shortcomings in existing models persist, and this
research seeks to overcome the deficiencies. The purpose of this chapter isto summarize
the strengths and weaknesses of existing models.

Models of Trip Generation

In the standard Urban Transportation Planning Model (UTPM), thefirst stepistrip
generation — estimation of the number of trips made for different purposes by households.
The sequential, rather than simultaneous, estimation of such models and their lack of
transportation-supply variables have long been recognized as inherent weaknesses in this
mainstay of planning practice (e.g., Dickey 1978, Gur 1971), yet these practices continue
in the present day (e.g., MTC 1996, Purvis et al. 1996, ITE Journal 1994). In their
comprehensive book Modelling Transport, Ortuzar and Willumsen (1994) point out that
while one' s access to opportunities affects trip generation and “ offers a way to make trip
generation elagtic (i.e., responsive) to changes in the transport system”, it “has rarely been
used....” (1994, p. 117) For example, in atwo-stage “recursive” model of trip and trip-

chain generation, Goulias and Kitamura's (1991) explanatory variables are almost



exclusively demographic in nature; for non-demographic data, they use arura-versus-
large city dummy variable and segment their trip-chain model by three city sizes.EI

Few recent methodol ogies consider total trip demand before addressing other aspects
of behavior, such astrip chaining, distribution, timing, and duration. The absence of
interest may be due to the apparent inelasticity of total demand with respect to access
costs. Following an extensive review of past literature on trip frequency as a function of
severa rather ssimple measures of location type and accessibility (such aslocal-area
densities and distance to central business districts) and a correlation-based analysis of
their own, Hanson and Schwab (1987) conclude that “accessibility level has a greater
impact on mode use and travel distance than it does on discretionary trip frequency” —an
“unexpected” result given “the strong trip frequency-accessibility relationship posited
frequently in the literature” (1987, p. 735). And Ortlzar and Willumsen observe that the
incorporation of typical measures of access “has not produced the expected results, at
least in the case of aggregate modeling applications, because the estimated parameters of
the accessibility variable have either been non-significant or with the wrong sign.” (1994,
p. 147) These results may be questioned, however, since the models and measures used
to examine this relationship generally are unrefined. In order to estimate the elasticity of
travel demand with respect to access, more sophisticated, behaviorally based models
should be used.
Systems of Equations

A set of model equationsis estimated as a system when a correlated error structureis
hypothesized, there exist endogenous explanatory variables, and/or cross-equation

parameter constraints exist. Researchers have applied the technique of structural equation



modeling to predict multiple travel choicesin amanner similar to the modeling
methodology developed here, but without cross-equation parameter constraints or a strict
behaviora basis. For example, Golob and McNally (1997), Golob and Meurs (1987),
Golob and van Wissen (1989 and 1990), and Lu and Pas (1997) regress variables such as
vehicle-milestraveled (VMT), time spent per day in different activities, mode share, and
auto-ownership on exogenous socioeconomic variables as well as on several endogenous
variables. Much of the software used by these researchers allows for latent-variable
techniques, such as the Tobit and ordered probit. However, the foundation for such
systemsin a utility-maximizing framework is missing. In arecent paper, Kitamurawrites
that existing structural equations models “ offer no explicit treatment of the decision
mechanisms underlying activity engagements.” (Kitamura 1996) One finds that “prices’
are absent from these models, and measures of benefit cannot be constructed from their
results.

Outside of transportation, there are many simultaneous-equations models of demand
for goods and services. Optimal shares of monetary expenditures are typically estimated
after applying rigorous microeconomic theory (e.g., symmetry in compensated
substitution, homogeneity in prices and income, summability and concavity of
expenditures); however, time constraints are not considered. Abundant experience with
these models has resulted in an understanding of the limitations of different functional
forms and the need for specific cross-equation parameter restrictions for conformance
with neoclassical economic theory (such as demands' zero-degree homogeneity in prices
and income). For detailed examples, see Lau 1986, Deaton 1987, Deaton and Muellbauer

1980h, Stone 1954, and/or Pollack and Wales 1978 and 1980.



Hybrid/Simulation Models

Recent, so-called “hybrid” models hypothesize traveler decision mechanisms which
require less information than utility maximization yet satisfy spatial and temporal
constraints. For example, Recker’s (1995) Household Activity Pattern Problem (HAPP)
algorithm minimizes a generalized time cost function (which he calls “disutility™) subject
to linear coupling, connectivity, temporal, and budget constraints. However, his method
takes demand for participation in activities (as well as their duration and location) as
given and neglects actual behavior for calibration of the model or its objective function.
While the model is detailed and able to accommodate a variety of constraints, it avoids
consideration of the basisfor travel demand and is effectively a scheduling problem.

STARCHILD (Recker, et al. 1986a, 1986b) and SMASH (Ettema et al. 1993, 1995a)
are similar to Recker’s HAPP model in that an activity program is provided exogenously,
decision rules to choose among alternatives are relatively simplistic, and the models
determine scheduling. Another model, AMOS (RDC 1995), can be classified similarly,
but it requires more inputs and is tailored for response prediction in alimited policy
setting. In comparing these models to econometric models, Bowman and Ben-Akiva
(1996) observe that with the *“hybrid” models the sample of considered alternativesis
often inadequate, the response or decision process is probably too simplistic, and many
significant, related decisions must be determined exogenoudly (e.g., activity type,
location, and travel mode).

Discrete- and Discrete + Continuous-Choice Models
Following McFadden’s seminal linkage of the logit model specification to

microeconomic theory (1974), many discrete-choice models have been developed for the
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purpose of travel demand modeling. The strict application of these models requires a

complete specification of the feasible choice set, restricting the simultaneous and flexible
estimation of total demand. Notwithstanding this limitation, many of these models
remain microeconomically rigorous by assuming and applying the principles of utility
maximization, though some of the strongest applications are not in the area of
transportation. For example, Cameron (1982 & 1985) tests flexi bIeEIi ndirect-utility
specifications in nested logit models for her analysis of home-weatherization choices.
While rigorous, the size of her problem islimited; she evaluates two choices — the
installation of energy-conserving appliances and, when applicable, the appliance package
chosen.

In an early study of travel behavior, Adler (1976) relies exclusively on a multinomial
logit across “al” possible non-work trip patterns for households, but the independence of
irredlevant alternatives (I1A) assumption implicit in the logit formulation is unlikely to
hold in hismodel. Fortunately, the nested logit structure has provided a useful way to
avoid imposing the lIA property. Domencich and McFadden (1975) detail afour-level
nested logit specification by modeling shop-trip mode split, time-of-day choice (peak vs.
off-peak), destination choice, and “frequency.” Still, their model’ s permitted shopping-
trip frequency allows just one or no shop trips per household per day, which may be too
limiting for many applications.

Incorporating the choice of trip purpose, but assuming fixed total demand, Kitamura
and Kermanshah (1984) sequentially estimate a nested logit for trip-purpose and trip-
destination choices. In the destination-choice model, a negative and statistically

significant coefficient on the time-of-day-times-distance variable, after controlling for
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distance by itself, causes them to conclude that longer trips are less likely toward the end

of aday, astime constraints become more binding. Their recognition of a possible time-
budget effect isimportant; however, their assumption of the time-of-day variable's
exogeneity is questionable, and the time constraint is accommodated obliquely.

Damm and Lerman (1981) recognize travel as aderived demand and combine
discrete-choice models of activity participation with the continuous choice of activity
duration. Thismodel offers the advantage of providing information on the time-of-day
for an individual’ stravel and a system of simultaneous equations for estimation of the
five periods' activity durations. However, while the authors discuss the indirect
incorporation of a discretionary-time constraint via an individual’ s socio-economic
characteristics, this constraint is not made explicit. Moreover, the research considers only
the choices of workers on aworkday given five distinct peri odsEI during which to choose
participation in a non-work activity, and the authors specify linear utility functions with
additive separability across each of the five choices.

Kitamura swork in this area (1984) is similar to that of Damm and Lerman (1981),
except in the functional form of the time-allocation equation and in the discussion of
model set-up. Kitamura s models are more fundamentally linked to economic theory and
avoid selectivity biasin parameter estimates (by weighting responses in the duration
model according to observations' likelihoods in the discrete-choice model).
Nevertheless, due to the substantial complexities of the model, Kitamurarelies on very
specific functional forms for indirect utility and error structure in order to readily derive
activity-participation-time demands. He also considers only two classes of time use:

mandatory and discretionary.
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In the context of auto ownership and use, Mannering and Winston (1985) also

combine a discrete with a continuous choice. Making use of Dubin and McFadden's
(1984) appliance-purchase-and-consumption model specification, they specify alinear
functional form for demand of a single good, vehicle milestraveled in period “t” (VMT,),

and, using Roy’s Identity (dv/dY xVMT, +dv/dR,,, =0[where variables here and

throughout the paper are as defined in the List of Symbols, immediately following the
Table of Contents], Roy 1943), determine the implied functional form for indirect utility
(V). They then usethisindirect utility in anested logit model for the number of cars
owned — and the type or “class’ of vehicle, given the number owned. After estimating the
logit — and thus an indirect utility function, the estimated levels of VMT are easily
obtained. This modeling method provides another example of a semi-simultaneous
mixed discrete-with-continuous model of travel, and it incorporates some basic economic
theory for abehavioral basis. Unfortunately, for a case of multiple goods, working
“backwards’ to derive indirect utility can be very difficult unless one begins with highly
constrained demand eguations; the connection is more clear if one moves from a
functional form for indirect utility to aform for demands. Moreover, Mannering and
Winston's necessarily specific choice of functional form for VMT demand leads to a
rather limiting indirect utility function, one that is not, for example, homogeneous of
degree zero in income and prices (which is atheoretically required condition discussed in
Chapter Three). And, unlike thisresearch, their focusis not on activity participation, the
influence of time constraints, or the accommodation of multiple, integer demands.
Harvey and Deakin’s STEP analysis package (1996) does not simultaneously

combine discrete and continuous choices, but it does apply discrete-choice estimation to a
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wide array of travel-related decisions by individuals, including location choice and time

of travel. Notably, STEP incorporates an entire region’ stravel “prices’ (i.e., interzonal
travel times— peak and off-peak, and intrazonal parking prices) into its models of trip
distribution. However, STEP is not fully simultaneous and pays little attention to the
implications of microeconomic theory for model form.

Value-of-Time Models

For along time microeconomics and utility theory focused on the money budget and
monetary expenditures. Inthe 1960’'s and 1970’ s time valuation, the labor-leisure trade-
off, and activity participation choices began to be studied in a variety of ways, using
microeconomic principles. Becker (1965), Johnson (1966), DeSerpa (1971), Oort (1969),
and Bruzelius (1979) provide theoretical derivations of time's valuation across different
activities. However, their hypothesized modelstypically treat travel as a single activity
and/or emphasi ze the time spent participating in (rather than accessing) the other
activities. Moreover, their focus is on the theoretical value of time, rather than aworking
system of demand equations for participation in out-of-home activities.

Becker (1965) argues that time useis a highly relevant aspect of household decision-
making and that “total-income losses’ due to non-income-producing uses of time are very
significant. Thus, he advocates the incorporation of time in economic models of the
household. He suggests that a household’s “full income is substantially above money
income” (1965, p. 517) and acknowledges peopl€e’ s pursuit of “productive consumption,”
such as eating and sleeping (activities which Golob and McNally [1997] and others have
termed “maintenance”). Becker also comments on the intra-household allocation of

consumption and production activities, arguing that members offering relative
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efficienciesin different areas (e.g., high-wage earners) will contribute relatively more

time in those pursuits. More recently, Jara-Diaz (1994) extends time-valuation models
into a setting which relies on travel times and can illustrate modal trade-offs. However,
his results remain similar to those just mentioned: largely theoretical, based on direct-
utility functions, and rarely tested empirically — except when employing random-utility
discrete-choice models.

Train and McFadden (1978) look specifically at the |abor-leisure trade-off using a
discrete mode-choice model. Their work demonstrates how wages might reasonably
enter the conditional-utility specification, as well as how workers optimize their time use.
But the model only considers the choice of workers and employs arestrictive, two-good,
Cobb-Douglas direct-utility specification.

Golob, Beckman, and Zahavi (1981) acknowledge the imposition of both time and
income constraints in a setting that uses microeconomic theory, but they either consider
only one at atime to be binding or assume travel expenditures are negligible relative to
time and/or money budgets. Such assumptions may rarely hold: one can reasonably
expect that both constraints are binding, as long as people value time and do not
experience satiation in consumption. For example, in order to maximize utility, a person
can sell his/her time to increase income (while reducing discretionary time available),
spend more time in enjoyable activities (e.g., leisure) and/or buy time-saving goods (such
as prepared meals). This assumption of the bindingness of constraintsistestablein the
proposed researchE.I Additionally, Golob, Beckman, and Zahavi neglect activity

participation as the underlying basis for travel demands, rely on additive utility functions,
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and model total distance traveled, rather than distinguishing trip types or estimating the

number of trips made.
Summary of Related Literature

There is awell-documented interest in the modeling of travel-related behaviors.
Moreover, substantial progress has been made in the topics of time constraints,
simultaneity of travel-related choices, the modeling of both continuous and discrete
behaviors, and the implications of microeconomic theory.

Still, deficiencies exist. Most prominently, the existing literature does not consider
integer consumption of multiple goods based on a continuous and cardinal latent response
in a microeconomically rigorous framework; behaviorally-based time-use research
remains largely theoretical; models of simultaneous choices which are consistent with
utility maximization tend to be of discrete choices; and supply-side variables have been
lacking in models of trip demand.

In contrast, the present research prominently incorporates supply-side variables (in
the form of travel times to iso-opportunity contours) while allowing simultaneous
estimation of trip generation and trip distribution, based on continuous, underlying
demands derived from rigorously applied microeconomic theoryE.| This research provides
estimates of numerous behavioral descriptors, such as demand elasticities; and it allows
for avariety of extensions, such as estimation of accesstimes effects on ahousehold’s
total travel time and on itswelfare. The methods and model specifications used are
considerably different from those found in previous work, and they are described in the

following chapters.
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ENDNOTES:

One, somewhat typical exception is Safwat and Magnanti’s (1988) Simultaneous Transportation
Equilibrium Model (STEM), where total trip generation is estimated as a function of alog-sum
accessibility measure (derived viathe calibration of their trip-distribution logit model).

Cameron (1982) investigates household preferences using the rather flexible trandog and L eontief
functional forms to describe indirect utility. Note that these functional forms are summarized in the
Appendix, section A-1, and are discussed in Chapter Three.

The periods for non-work activity participation that Damm and Lerman model are: prior to the home-to-
work trip, during the home-to-work trip, during work, during the work-to-home trip, and following the
work-to-home trip.

The bindingness of constraintsis tested in Chapter Five by calculating the T-statistics for the derivatives
of the estimated indirect utility function with respect to the constraint levels for each household; these
derivatives theoretically represent the shadow prices of these constraints, which come out of the utility
maximization.

In his ground-breaking time-valuation work, DeSerpa suggests that “ (d)espite (its) difficulties’ a system-
of-demands approach to the problem, where travel times effectively represent the minimum amount of
time required for participation in/consumption of an activity, “has considerable merit” because “‘ non-
economic’ factors, such as comfort and convenience are ... implicitly considered”, aggregation of
demands “does not depend on any arbitrary assumptions about the individuals comprising the group”,
and, “most importantly, the measure (of time's value) is compatible with the hypothesis of utility
maximisation. No other (time-value) measure can make that claim.” (1971, pg. 842) It appears that
DeSerpawould strongly support an approach fundamentally very similar to the one proposed here.



17
Chapter Three: Research Methodology

Microeconomic Foundations

In this research household activity and other, related consumption trade-offs are
posited to adhere to microeconomic theories of utility maximization. Estimates of travel-
related behaviors, such as trip-making rates and trip distribution, are derived from
empirical analyses of statistical models based on thistheory. In arather general
formulation of the utility-maximization problem, a household may be assumed to derive
itswelfare (i.e., utility) from consumption of/participation in a vector of distinct, out-of-
home activities A (which are location specific, include the household’ s work activities,
and are indexed by i), the time spent participating in each of these activities T, (and, in

particular for the work activity, T, ), the total time spent accessing all of these activities

tA (where T isthe vector of fixed travel timesto access the activitie%, and
consumption of all other goods Z. It ishelpful to think of the consumption/decision
variables in this problem as rates; for example, one activity might be the number of
shopping tripsin the local neighborhood per day. Under the general model, households

are subject to unearned income (Y, ) and available-time (H) constraints which are also

rates (e.g., dollars per day, hours per day), and these constraints lead to trade-offs between
consumption of the different goods. In equation form, the problem can be written as the

following:

Max Utility(A, T,tA, Z)
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Note that time spent for activity participation is of two types: travel to non-home

sites (t,) and during participation itself (T, ); both of these enter explicitly in the direct
utility function, though only the participation time, T, , is an endogenous variable. The

work activity contributes to the income budget level viathe wage earned, w; but

participation in most other activitiesis likely to cost money (with F,,,; + P, representing

the monetary price per unit of participation in activity i, due to travel costs and direct
participation costs). Thereisan equality in the time constraint since al time not spent in
accessing and participating in activities outside of the home counts as time spent in at-
home activiti e@

The general model is subject to various modifications. For example, if one wishesto
focus on discretionary activity choices and assume work and income exogeneity in such
decisions, one would not explicitly model work as an activity and would substitute total

income, Y, for unearned income, Y

n» and discretionary time, T, (total time minus, for
example, work and school time), for total time, H. Also, there are many other constraint
possibilities; for example, minimum participation-time constraints may exist for certain
activities (such as working, dining out, or seeing amoviein atheater) and only fixed

levels of consumption may be permitted (such as working or going to school five times

per week).
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Figure 3-1isanillustration of what the utility maximization looks likein a

simplified, two-activity case; in thisillustration a single, per-unit price and time-
expenditure exist for each of the two activities and income and time budgets are

exogenous/givensothat t, A +t,A, =H & P A +P,A, =Y. Inamore-redlistic, N-

good case, the intersection of the two budget constraintsis an N-2 dimensiona
hyperplane; so the optimal choice “bundle” of activities will not appear as a single point
of intersection, asit doesin theillustrated case of Figure 3-1. Furthermore, choice of
activity participation times (over a given period), rather than just optimal rates, expands
the decision space substantially, yielding a hyperplane of dimension 2N-2.

In practice, a closed-form/analytic solution to constrained maximization of direct
utility functions of more than a couple goods is rare, because solution of the Lagrangian
equation’s set of first-order conditions is often intractable. In order to derive a system of
(optimal) demand equations, it has been found significantly more convenient to work
with the indirect utility function, as defined in Equation 3-2 (with arguments defined as
for Equation 3-1 and in the List of Symbols, which follows the Table of Contents).

Indirect Utility={ MaxUtility| Budget & TimeConstraints}

o Chapter
=v(P,P,, P, , w, H) (Chep

rvl 1 un?

Three:-2)

By beginning from a specification of indirect utility, one can then rely on arelation
called Roy’ s Identity (Roy 1943) to provide individual demand equations. The derivation
of the entire system from a single indirect utility specification imposes many cross-
equation parameter constraints automatically (because many parameters are likely to

show up in two or more of the demand equations). However, there are avariety of other
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constraints implied by long-held microeconomic theories for the typical, money-based

applications of these methods, and these constraints tend to be more subtle; they are
discussed shortly, in a section titled Theory-Implied Constraints.

Roy’s Identity in a Two-Budget Framewor k

Roy’s Identity is the method for deriving demand functions, whose dependent
variables (consumption) can be observed, from indirect utility, which is unobservable and
ordina — rather than cardina —in nature. Fortunately, Roy’s Identity continuesto holdin
atwo-budget framework, although more restrictively than in the typical, single-budget
framework. Given afunctional specification for indirect utility, v, aswell as exogenously

determined available time (T) and income (Y) constraints, the relations one can use to
identify optimal demand, A", are shown in Equation 3-3. Details of this equation’s

derivation are provided in section A-2 of the Appendix.

v v
' ce * ditl _ d(PtrvI,i + PA) .
Roy's Identity: A = _E = _T’DI’
dT dy
where A" = Optimal, long —run rate of consumption per period, (Chapter

v = Indirect utility, t. = Travel timeto Activityi,
T = Time available per period,
P + P, =Unit Priceto participatein Activity i

trvl i
(dueto travel & participation costs),& Y = Income available per period.
Three:-3)

When income and time budget levels are exogenous and observed, the derivation of
optimal demand levelsis reasonably straightforward. However, income and discretionary
time are likely to be endogenous to the decisions to participate in non-work/discretionary

activities; in other words, households probably make choices of how much time to spend
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working — earning income while giving up discretionary time — when determining the
amounts of other activities they might engage in. In such a situation, the identities
allowing one to identify demands do not look so similar to the common form of Roy’s
Identity, and the estimations of value of time and compensated demand are complicated.
Imagine a situation where total time available to a household’ s members (e.g., 24
hours each day a member is surveyed), marginal hourly wage of the household, unearned
income, travel times, and activity-participation prices are observed. The Lagrangian

eguation and several of itsfirst-order conditions for utility maximization would look like

the following:

I_(A’T-’Z’/1Tinne’)| Money)zU(Ay-r,f ,Z) +A Time(H _ZTK _féj-.,
k
4 oney(Y +WT _P A_If)trvIA_lf)ZZ)
P,.tY,  H w)

rvl un?

vq [Pub m,qu}

...Z [|5 i+ Pr T Y How

opt
dL _ﬂ_i dL di /]TimeA +0
d, d d  dA |2 dt.

opt *
a” _dv_d a9,
dH dH  dH  dA [ZATT T g

dl™ dv _dL  dL
+—

—_— = X

dw dw dw dA [ZRTT dw Mo (Chapter
opt *

v _dd| A

dY,, dY, dY, dA ;" dY,

Three:-4)
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The endogeneity of discretionary time leadsto aform of Roy’s Identity which differs

from that shown in Equation 3-3. Following some simple manipulation of the first-order
conditions found in Equation 3-4, one has the following form:

Roy's Identity with Discretionary — Time Endogeneity:

dv dv
A*__dti __d(F)trvI,i+PA) O
dv dv T
dH dy,,
where A~ = Optimal, long —run rate of consumption per period, (Chapter

v = Indirect utility,t. = Travel timeto Activity i,
H = Total time available per period,
P T Py =Unit Priceto participatein Activity i

trvl i
(dueto travel & participation costs),

& Y ,,=Unearned Income available per period.
Three:-5)

The above identity is not the only one that can be derived from this model

specification. Incorporation of the wage variable, w, allows one to identify optimal work
time, TW* , asthe ratio of the derivative of indirect utility with respect to wage and with

respect to total time available. And the vector of other goods (Z ) remains identifiable (as
it isunder a situation of exogenous income and discretionary time); demands for these
goods equal the negative ratio of the derivative of indirect utility with respect to their
prices and with respect to unearned income.

Under a situation of endogenously determined budgets, the value-of-time
computations change; if unearned income and total time available are observed but

discretionary time is endogenous, one can use the following:
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dv -
Valueof Time= ;T‘”E =5 dH__ de, (t(’;u“'w’ W (Chapter
Money AYun un

Three:-6)

However, if unearned income is not observed in the data set (but total time available
and wage are, and discretionary time is endogenous), one will need to rely on the
following equation:

'R dv dv
Valueof Time= —tme =_/dH_ H
d W

ST

Note that in this equation one may care to use the observed amount of time worked

(Chapter

Three:-7)

(T,,) to approximate value of time rather than the optimal level of working hours (TW* ),

because unearned-income information may not be available and/or may be measured with
significant error. Since unearned-income information is not available in the data set used
here for empirical analyses, the approximation in Equation 3-7 is used in those models of
Chapter Five that endogenize time expenditures.

Assuming that households are able to optimize their time expenditures and activity
participati onE! how will models which assume exogenous total expenditures/income and
discretionary time compare in their value-of-time computations with those which
incorporate these variables endogenously? One way to look at the differenceisto

manipul ate the ratio of derivatives in the income-and-discretionary-time endogenous

case; for example:
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Vo

d
O%Td :( § de _ Y dedYun
d%Y d\/AYUFI dv dYun dT%H

(dy/dy,,)

1l T, )
(1 T, j

So, if the second term in the last part of the above equation is greater than one, one

(Chapter

=Value of Timex

Three:-8)

will over-estimate the value of time. It seems reasonable that, as total time available (H)
increases, a household’ s members will work somewhat more, but not all of the newly
availabletime. Thus, the denominator of the second term islikely to be less than one but
not necessarily very close to zero (especialy if work restrictions — such as aforty-hour
week maximum paid week — are imposed). And, as unearned income increases, one may
expect work time to decrease, perhaps so much that wage multiplied by work time exactly
cancels unearned income, making the top part of the equation close to zero and causing
one' s value of time estimate (with the assumption of work-time and income exogeneity)
to be much lower than the actual.

If work time is exogenously determined for households, then work time is
unresponsive to changes in total time available to a household, H, and unearned income,
Yun, @nd one will be estimating the true value of time, without inflation or deflation.
Unfortunately, without observing the variable of unearned income across the sample, it is
difficult to analyze how work time depends on total time and unearned income.

However, one can crudely estimate work time’s response to changesiin total time
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available by modeling observed work time for this sample as a function of wage, travel

times, total time available, and a coarse estimate of unearned income; a ssimple ordinary
least squares model across households with one or more workers produces a derivative
value of just 0.0808 hours of work time per hour of total time available to the household
(with a T-statistic of 29.5). J The estimate of unearned income on which this crude model
reliesisavaue equal to the household’ s income if the household has no surveyed
workers and zero otherwise. Running this same model specification for all sampled
households produces a coefficient estimate of just -0.145 hours per $1,000 of unearned
income (with a T-statistic of -27.3). These results suggest that the derivatives of work
time with respect to both income and wage are small; in fact the ratio of the derivatives of
indirect utility with respect to discretionary time and total income available to the
household (as in Equation 3-8) are estimated this way to be about nine percent higher
than the true value of time, on averageﬂ. If thisisagood estimate of the biasin this
measure, it makes sense to deflate the val ue-of-time results for models which taken
income and discretionary time to be exogenous by five to fifteen percent.
Theory-Implied Constraints
The models estimated here are not as general as the formulation presented in

Equation 3-2, due to alack of data on monetary prices and an inability to
microeconomically identify non-work time expendituresin activities; but they are
described by a system of equations which determines the optimal number of out-of-home
activities accessed per day by household members. In order for a system of demand
equations to be consistent with microeconomic theory and common sense, the equations

must generally be compatible with several types of constraints; not only do such
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restrictions impose consistency with theory, they can be helpful in reducing the

dimensionality of the problem (i.e., the size of the parameter space)E! Non-negativity of
optimal demandsis afeasibility limitation, and concavity of total monetary expenditures
in pricesis arequirement when prices are exogenous and constant; these conditions are
generaly checked following model estimation. In contrast, zero-degree homogeneity of
demands (in prices and expenditures/income) is typically imposed a priori and
automatically in the functional specification, and summeability of expenditures (to equal
total budget) and symmetry (of compensated cross-price effects) are often imposed
through parameter constraints. If the conditions of summability and symmetry are not
needed for parameter identifiability, their viability can generally be tested using
differences in the constrained and unconstrained likelihood values. A final constraint on
many estimated modelsis the implicit assumption of separability of preferences from
other, non-considered goods. These various constraint types and their usefulness in the
models investigated here are discussed below.
Non-Negativity

Generally, people cannot consume negative amounts of a good, unless, for example,
they own some and sell or giveit to others. In the context of this research, one can argue
that people sometimes pay others to participate in out-of-home activities for them (such
as food shopping). However, the available data do not provide information on such
transactions so all observations are non-negative and this condition is imposed on the
estimates. The method of ensuring this condition via the estimation process used hereis
an assignment of avery low likelihood value every time the iterative maximum-

likelihood search mechanism tries parameter sets which produce negative demand
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estimates for every demand type of at least one household. If some, but not all, demand

types are estimated to be negative for a given household, the parameter set is permitted
but optimal demands which are initially predicted to be negative are set to a positive level
very closeto zero. The optimal demand rates are not set to exactly zero sinceitis
expected that, for the demand types specified, every household will eventually have to
consume at least one such good. For example, a demand set of four iso-opportunity
contours for all types of discretionary trips represents a partitioning of destinations for a
type of trip virtually all households eventually make. However, if trip purposes were
partitioned quite narrowly, segregating purposes like “education,” “work,” and “child-
care”’, one would need to incorporate zero-level demands since househol ds without
students, workers, and/or children would not reasonably be expected to make such tri psE.I
Before concluding this discussion of non-negativity, one should recognize that the
rather ad hoc choice of a close-to-zero level of demand to assign to households with a
predicted-to-be-negative optimal demand level is not theoretically satisfactory,
particularly when the other demand levels are left asinitially predicted. Inreality, such
households find themselves at a corner solution, where Roy’ s Identity no longer appliesto
all demand types at once; instead, theory suggests that an optimization over limited
choice sets is undertaken and the maximized utilities of distinct scenarios are compared.
This added complexity can be accommodated in the models presented here, though it has
not been in the estimated models provided in Chapter Four. In fact, Chapter Four’s
predicted demands are well above the close-to-zero value for all demand types in almost

al the models estimated.
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Concavity of the Expenditure Function

Price extremes are preferable to balanced prices; this characteristic is manifest in
guasiconvexity of the indirect utility function and concavity of itsi nverseE! the
expenditure function. While this characteristic is not immediately intuitive, itis
theoretically expected. It is expected because at “average’ prices, one can buy no more
than one could buy across the combined feasible space of the two price extremes which
produced the average, subject to asingle budget level; so one cannot be better off at
balanced prices that at a combination of the two extremes. Thus, the indirect utility
resulting from aweighted average of price vectors can be no higher than that achieved
from aweighted average of indirect utilities resulting from the two extreme price sets.
Moreover, if one or more pricesincrease, oneis at least as well off if one’'s budget
increases in an amount equal to the price change (a vector) times the vector of previously
optimal quantities; this amount of added income will allow one to consume the old
bundle of goods and thereby be just as well-off. But, due to substitution effects, one will
likely shift away from consumption of the relatively more expensive goods and be able to
be just as well-off, so the amount of expenditures needed to achieve agiven level of
utility isless and thus concave in prices. These relations trandlate to the matrix of second
derivatives of the money-expenditure function in prices being negative semi-definite.
(For further discussion of these conditions, see, e.g., Varian 1992.)

How do these conditions apply in the present model, where time characterizes costs?
If one were to consider all time use, one would expect humans to require moretimein a
day in order to be just as well-off if travel timesincrease. However, the amount of

additional time required is not necessarily less than the quantity of activities consumed
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timestheir changein travel times. Humans directly experience time use, including travel

time, so time expenditures are arguments in the direct utility function. This aspect of
time use also arises in the following discussion, on homogeneity, and affects the
application of many microeconomic theories in a time-expenditure setting.

In reality, more time spent accessing opportunities/activities may require more than a
full compensation of total time to keep welfare constant; the direct impact on one's
welfare may be sufficiently negativeE.| Thus, concavity of time expendituresin travel
timesis not arequired property. And, as one might expect, the sister property of a
guasiconvex indirect utility function with respect to travel times does not apply here
either. While the time-budget constraint resulting from aweighted averaging of two
travel-time vectors leads to afeasible consumption space which is a subset of the union of
the two feasible spaces of the original two vectors, one may be better off because the
indirect utility function shifts when the time vector changes! There may be a preference
for better-balanced travel times because, for example, one can then spend better balanced
amounts of time participating in avariety of activities (versus being “stuck” in the few
activitieswhich are relatively travel-time inexpensive). Changesin iso-utility contours
due to changesin the travel times can bring this about. For these reasons, the conditions
of time-budget concavity and indirect utility quasiconvexity are not imposed or expected
for the models estimated here.EI

Homogeneity

Since money isjust aunit of exchange and does not itself hold value, rational

humans are expected to not ater their choices under pure inflation. The theory is that

indirect utility and all demands are homogeneous of degree zero in prices and income; so,
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if prices and income all change by the same factor, a household’ s welfare/utility and

consumption choices do not change (see, e.g., Deaton and Muellbauer 1980b, Varian
1992). A typical specification of indirect utility and its resulting system of demand
eguations show prices everywhere divided by total expenditures, so that homogeneity is
implicit in the formulation; section A-1 of the Appendix details severa such
specifications for a money-expenditure setting, but a general description of such a model

in a time-and-money-homogenous setting is the following:

Indirect Utility = v(% 5] (Chapter
Three:-9)

The ideathat pure inflation should not change one' s consumption patternsis
theoretically acceptable in an environment where people pay for goods with money, but
thisis probably too strong an assumption for consumption which involvestime
expenditures, since timeis not instantly tradable — people directly experience their
spending of timéﬂ! For this reason, several modifications were made to the typical model
specifications, providing greater functional flexibility by not imposing homogeneity with
respect to travel times and the time budget; these functional forms are shown in the
section titled Model Specifications. Note that if information on monetary prices were
available in the data sets, one could include these and impose homogeneity over prices
and monetary expenditures.

Summability

The very common assumption of non-satiati onIE! that alittle more of agood isa
positive thing, no matter how much a person already has, implies summability of

monetary expenditures when one is considering consumption across all demand



32
aternatives. Summability is also the condition that the sum of all demands considered in

amodel timestheir prices equals total expenditure on the set of goods considered.

In a system of activity-demand equations where one is modeling all uses of time (or
al uses of, say, discretionary time), one would probably want to impose summability to
ensure that results are consistent with redlity (e.g., a 24-hour day). However, when one
considers only the number of activities accessed, as in this research, rather than also
modeling the amount of time spent in each, summability’ simposition —in this case across
travel-time expenditures — puts the focus on allocating an exogenous total travel time,
rather than allocating total time available. Thus, summability would be unnecessarily
limiting and is not imposed here.

Separ ability

The neglect of other goods' price information generally necessitates an assumption of
separability and shifts the modeling focus to substitution and trade-offs within a subset of
consumption over an exogenously determined subset of the budget. Separability
exists when direct utility is afunction of sub-utility functions having distinct good sets as
arguments; if utility isan additive function of these subutility functions, strong
separability exists.'l?"|

As an example, one may collect detailed data on households' consumption of food
items but not have any information on their consumption of clothing, lodging, transport,
and utilities. To be able to apply the rigorous microeconomic theories associated with

utility maximization and estimate a system of demand equations across this limited data

set, one would need to argue for separability of preferences and rely on food expenditures
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as the exogenous budget constraint, rather than total budget. The utility function and

demand functions would then be written as the following:

U(X) = (U (K roo0): U (X ),

><i,Food = Xi,Food (I5Food ’YFood )
Three:-10)

(Chapter

Separability is a strong assumption; it implies that consumers can order their
preferences in each, distinct subset of choices independent of the amounts of other goods
consumed. Strong or additive separability is even more restrictive; it rules out the
possibilities of inferior subsets of goods and complementarity across subsets while
imposing approximate proportionality between own-price and income elasticities. A
more detailed discussion of separability can be found in Deaton and Muellbauer (1980a).

A mode which assumes separabl e preferences can be significantly more limiting
than amodel considering the role of the entire budget available to a consumer. However,
if one assumes that prices of al non-considered goods are the same for all households,
preference separability is unnecessary. In the case at hand, this condition requires that
only the travel-time environments differ across the sample population. The constancy of
other goods' prices across the sampled observations means that their effects are not
identifiable empirically; so, even if these prices were known, their invariance would
effectively conceal their distinct parameters within the set of identifiable effects. One of
the limitations this assumption places on model estimates is that the effects of changesin
relative prices of the non-considered goods will not be predictable with the results

established here.
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How valid is the assumption of price invariance across non-considered consumption

in the models estimated here? The price of a McDonald’ s hamburger may be the same
regardless of where purchased in aregion, but the prices of other goods, such as
restaurant dining and food shopping may vary according to land rents, freight delivery
costs, and local shoppers' preferences. However, if, for example, demand types are
defined sufficiently broadly in a spatial sense (e.g., destination zones are large), average
price variability may be rather negligible, with enough opportunities present to match the
prices found elsewhere.

If prices of goods not considered in the demand system do vary significantly, one
may assume that separability holds and replace the variable of total expenditures with that
of the subset’s expenditures. Or, if prices move proportionally together, according to
one' slocation (e.g., central-city versus suburban dwellers), one may consider deflating or
inflating income measures according to a price index, across sampled consumers. These
approaches are not taken here, however, because it is virtually impossible to argue
separability of goods consumption and activity participation (since many activities are
complements of consumption — for example, recreational activities and entertainment
expenses) and because price and monetary-expenditure information is lacking in available
data sets.

Symmetry

Symmetry is a condition that arisesin the typical system-of-demands frameworks,
i.e., in those where only a monetary constraint governs. It refers to the condition of
symmetry of compensated cross-price effects (Slutsky 1915). Income-compensated or

Hicksian demands can be derived simply by taking the first derivatives of the typical,
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money-expenditure function; the derivatives of these demands with respect to other

goods' prices are the cross-price effects, and these are symmetric thanksto Young's
Theorem (which says that the order of differentiation is not important). Thus, the second
derivatives of the expenditure function with respect to prices P; and P; are symmetric, as

illustrated in the following equations:

Expenditure = g, (P, u) = Money needed at prices P toachieveutility u;

_ de, (P
Money — Compensated Hicksian Demand = h ((P,u) :%; (Chapter
dh  (P,u) d?e,(P, dh. . (P,u
Compensated Cross - Price Effect; = Ns(PU) _de(Pu) _dnys ).
dP, dR.dP, dP

Three:-11)

The matrix of compensated-demand derivativesis called the Slutsky matrix, and
theory impliesthat it is negative semi-definite, since total money expenditures are
concave in prices. However, in the modd structure investigated here, the first derivative
of time expenditures with respect to an activity’ stravel timeis not the compensated
demand for that activity. Inthe common application, expenditures equal pricestimes
amount of goods consumed; but in the decisions considered here, time expenditures are
the sum of access costs/travel times multiplied by the number of out-of-home activities
consumed plus the amount of time spent in each activity (in- and out-of-home). Thus, the
derivative of time expenditures with respect to any travel timeis no longer equal to the
time-compensated demands for activities, so the matrix of second derivatives of the time-
compensated expenditure function is no longer the same as the time-based Slutsky matrix
and symmetry is not a condition imposed on the demand system estimated here. The

following equations illustrate this property:ELI
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Typically, e, (P,u) = P'hy(P,u);and,
sincee, (P, u)ishomogeneousof degreeonein pricesand
h ¢ (P, u)ishomogeneousof degreezeroin prices,

de. (P. ) de, (P,
Z%R =¢,(P,u) :iZh,s;Pi, and Z%:Z“ﬁ“

- (Chapter
deg(P,u) _ _
S0 T- h s (P,u).

However e (f,P,Y,u) =tA (f,P,Y,u) +> T, (f,P,Y,u),

and isnot homogeneousof degreeoneinaccesstimesand
involvesunidentifiable participation — timedemands
Three:-12)

Validity of Utility Maximization Hypothesis

It isimportant to recognize that many empirical analyses of demand systems,
analyzing different consumption sets' shares of monetary expenditures for aggregate,
serial data sets and using a variety of common forms (such as the translog and generalized
Leontief), have failed to support results satisfying basic economic theories (e.g., Guilkey
et al. 1983 and Caves and Christensen 1980). For example, imposition of symmetry
constraints may reduce the likelihood of the observed sample substantially or the
concavity of expendituresin prices may not be satisfied at many observations. (Lau 1986,
Deaton and Muellbauer 1980a & 1980b, Pollack and Wales 1978 & 1980) Lack of
support for well-accepted economic theory by a model suggests that the model
specification is substantially incorrect and/or the households/individuals observed are not
economically “rational” (according to a utility-maximization hypothesis of behavior).
Any modeler should be conscious of these possible inconsistencies and check for them
where practicable. However, as discussed throughout much of this section on theory-

implied constraints, very few of the theories which are expected to apply in a money-
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expenditure setting are likely to hold here. Without symmetry and summability, Roy’s

Identity isthe origin of virtually all restrictions imposed in the models estimated in
Chapter Four; these restrictions are implicit by virtue of the common parameters found
throughout the estimated demand equations and are due to the system’ s derivation from a
single indirect utility function. Non-negativity of demands and positivity of the marginal
utility of time are the only other conditions imposed here; however, marginal utility
estimates are considered for their conformance with theory, and the concavity of
estimated expenditure functions and convexity of estimated indirect utility functions are
examined briefly.

Estimating Benefitsand Costs

“Equivalent” and “compensating variation” are measures of welfare changes
following price changes, each using a difference in expenditure functions but at different
reference levels of indirect utility. The author knows of no empirical examples where
equivalent and/or compensating variation has been quantified with anything other than a
money metric. Actual welfare change is not measurable in known units, sinceit is
generally agreed to be the change in utility associated with price/cost changeﬁ.ELI

The distributional effects associated with policy changes are very important. Total
benefits exceeding costs/disbenefits only signifies a potential for Pareto superiority, i.e.,
the possibility of a Pareto-preferred redistribution of the benefits so that no oneisworse
off following a positive-net-benefits change. (Varian 1992) As economist Steven M.

Goldman describes it, “ Cost-benefit analysis as a welfare measure which is done

independently of distributional effectsisfundamentally flawed.” (Goldman 1998)
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M easurement of welfare changes using a money metric favors projects benefiting

those who have the most monetary resources available, rather than those who might
experience the most welfare benefit, because those with the most money can place the
highest monetary value on achangein conditionsE'(see, e.g., Heap et al. 1992, Price
1993). Thisisof particular concern in the evaluation of projects producing significant
time-expenditure differences, such as transportation infrastructure alterations (e.g.,
Daganzo 1997). A fortunate result of recognizing atime constraint in utility
maximization is that the indirect utility function can be inverted with respect to this
budget variable and welfare impacts can be assessed with atime metric. Equation 3-13
provides the definitions of equivalent variation which are used here, in terms of money

(EVy) andtime (EV; ). Asillustrated, equivaent variation can be written asthe

difference in expenditure function values at reference price levels, aswell as, under

constant budget levels, the integrals of the compensated/Hicksian demand equati ons.E|

t‘O
WelfareChange, = EV, =g, (t°,T,u’) —g,(t°,T,u’) = jﬁ$(t‘,T,u’) (et
v f (Chapter
& WelfareChange, = EV, =e (f°,Y,u") -e (f°,Y,u°) = jﬁT(f,Y,u') [oft
:

Three:-13)

Note that the negative of equivaent variation can be understood to mean the
maximum amount of money or time a household would be willing to give up to avoid the
changein prices/travel times, if budgets levels are unchanged. Chapter Five's section on
cost-benefit analysis uses both the income and time definitions of equivalent variation to

estimate the welfare impacts of an increase in travel times.
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Functional Specification

Assuming that the demand equations arise from derivatives of the indirect utility
function, one may wish to select functional forms for the indirect utility function, v,
which are flexible to a second (or greater) orderE.I Thisflexibility permits estimation of
cross-price and income elagticities, in contrast to non-interactive functional forms, which
produce only non-zero direct elasticities. The transcendental logarithmic’s functional
form (i.e., the transog) is commonly used in practice (e.g., Cameron 1982, Christensen et
al. 1973 & 1975, Pollack and Wales 1980) and is quite flexi bIeIE,I but it has some
drawbacks. Under a situation of no cross-parameter constraints, the number of translog
parameters increases with more than two times the square of (rather than linearly with)
the number of goods, which may result in statistical insignificance for many parameters
and low confidence in estimation — depending on sample size. For empirical estimability
over limited sample sizes, one may need to make some a priori assumptions as to
relationships and assume a relatively parsimonious form for estimation.

Other functional forms for indirect utility are also possible and have been used in
money-expenditure systems of demand. A variety of forms are shown and discussed
briefly in the Appendix (A-1), but the simplest to estimate impose untenable assumptions
implicitly. For example, in atheoretically consistent linear-in-unknowns demand system
of monetary expenditures on three or more goods, all income elasticities must equal one.
(Lau 1986) And, in the traditional consumption framework where only a monetary
budget governs, the Cobb-Douglas and utility-consistent Rotterdam (Barten 1964, Thell
1965) functional forms impose additivity and homotheticity assumptions on preferences —

ol

along with a constant, unitary elasticity of substitution®across all pairs of goods! (Greene
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1993, Christensen et al. 1975) Inredlity, the substitutability of consumption goods may

vary widely, given different relative combinations (for example, at extremes of goods
ratios, less substitutability is expected than at better-balanced levels). The generaized
Leontief functional form may be more flexible than the translog when unequal or low
elasticities of substitutions exist across the choices (Guilkey et al. 1983, Caves and
Christensen 1980), but can be rather intractable in its most general form (Diewert 1971 &
1974) and is not expected to perform as well when high and unequal substitution
elasticities exist (Caves and Christensen 1980).

Thereisno particular reason to expect similarity of substitution across different
activity types, but there is an expectation of high substitutability across certain choice
definitions. For example, in the empirical investigations pursued here, activities are
distinguished by the iso-opportunity zones in which they take place, rather than the
activity type or purpose; therefore, one may expect very high substitution effects across
zones and opt for atranslog specification. Substitution is expected to be less when one
considers very distinct activity types, such as personal business versus social, so the
Generalized Leontief may be most useful in these cases; however, some trip types, such
as non-food shopping and recreation, may to a certain degree till act as substitutes.
Among the models estimated here, in Chapter Four, one of the specifications resembles
Ston€e’s Linear Expenditure System (1954), while the others are based on modifications of
the tranglog specification.

Model Specifications

Four distinct model types are tested empirically in Chapter Four, and their functional

forms are specified here, with typical economic notation for demand ( X;”) replacing the
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notation for optimal rate of activity participation, A* . Thefirst of these four modelsis

an attempt at arelatively simple specification using an indirect utility specification
similar to that which generates Stone's Linear Expenditure System (1954). The other
three are modifications of the translog model (Christensen et al. 1973 & 1975), and they
are presented here in order of increasing generality. All models are used to estimate long-
run, optimal out-of-home activity participation rates (per day) for households, and all but
the third are used only once, to model participation in discretionary activities. Thethird
of these specificationsis aso used to model entire home-based tours of activities, rather
than just individual stops, and these tours can include non-discretionary trip-making. All
specifications shown, except the fourth, rely on discretionary time (total time minus work
and school time) and income as exogenously provided arguments. The empirical results
from those analyses are provided in chapters Four and Five.

Type 1 Mode Specification: Modified Linear Expenditure System

In an effort to begin with as simple afunctional specification as possible, Stone’'s
Linear Expenditure System or “LES’ (1954) was examined for use. However, without
the ability to impose homogeneity in the time dimension and due to the presence of two
budget variables, the resulting demand system is not nearly as simple as Stone’s. The
indirect-utility specification and resulting demand equations used for this modified-LES

specification are as follows:
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Indirect Utility = v ={ MaxUtiIity| Budget & TimeConstraints}
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i

wheret, = Travel Tlmeto Activityi,Y = Income,
& T, = Discretionary Time Available,
and B; = B; [ij (for identifiability of parameters).

Three:-14)

Note that Stone’ s original specification produces a system of demand equations
whose parameter space increases only linearly with the number of goods consumed, “1”.
While Stone’ s system requires the estimation of 2I-1 parameters, the modified system
used here has a parameter set which grows quadratically with the number of goods
considered, requiring the estimation of 2I+1(1+1)/2 parametersE.I The assumption of
homogeneity saves a modeler many degrees of freedom for estimation purposes;
however, there exist many major weaknesses with the LES, as discussed in Section A-1
of the Appendix.

Under the modified LES specification used here, the value of time is independent of
the budget levels, depending only on access times, and the time-budget elasticities of
demand are independent of all variables but the demand’ s own access time; such
functional inflexibilities pose a serious problem. For example, this model’ s estimation
results, which are provided in Chapter Four, produce negative values of time for all
households in the 10,834-observation sample! A more flexible model is almost certainly

necessary.
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Type 2 Model Specification: Modified Translog

Having considered the strengths and weaknesses of various functional forms, many
of which were discussed in a previous section, titled “Functiona Specification”, a
modified version of the Christensen et al.’ stranslog form (1975) was chosen to represent
theindirect utility function for the remaining set of models estimated here. The translog
was chosen for its second-order functional flexibility as well asfor its ability to flexibly
model substitutes well .EI The most restrictive form of this general specification that is

anayzed hereistermed the “Type 2 Model Specification”, and it is asfollows:

Indirect Utility=v = Translog(t, T,,Y),
v=a, +> a;Int) > (12)8, In(t,)In(t,) + (Chapter

>y In(T)In(t) + 3 v In(Y) In(t) + yry In(T, ) InCY)
Three:-15)
The optimal demand levels which result from application of Roy’ s Identity (with
respect to time) to the above formulation are the following:

_(%)(ai + 2.8, In(t)) + iy InCY) + i In(T, )J
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wheret. = Travel Timeto Activityi,Y = Income,
& T, = Discretionary Time Available,
and B, = B; Uij & yr= 1(for identifiability of parameters).

Three:-16)
Notice that the number of parametersin this modified translog system increases

guadratically with the number of good types considered. The system of equations



requires the estimation of 31+1(1+1)/2 parameters, which is 21 more than in the LES-
based, Type 1 model.

Type 3 Model Specification: Modified Translog with Constants

The Type 2 model specification can not be nested with a no-information model
specification (i.e., amodel without any explanatory information) since all of its unknown
parameters interact with explanatory variables. Therefore, a more flexible model of this
form was investigated, adding |+1 parameters to the modified-translog specification to

effectively function as constant terms; this change produces the following:

Indirect Utility =
v=a, =Y it +u T+ agIn() £ (12)8, Int) Int;) + (Chapter

2. Vi In(T) In(t) + > vy In(Y) In(t;) + iy In(T,) INCY)
Three:-17)

The optimal demand levels which result from application of Roy’s Identity (with

respect to time) to the above formulation are the following:

“ —(%J(ai + 8, In(t)) +7y In(Y) + iy In(T, )J

i
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wheret. = Travel Timeto Activityi,Y = Income,
& T, = Discretionary Time Available,
and B, = B; Uij & yr~= 1(for identifiability of parameters).

Three:-18)
The expectation is that this more flexible specification will provide more reasonable

estimates of behavior, such as demand el asticities and values of time; it also alows the
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nesting of the Type 2 specification within the Type 3 and so provides a means of gauging

the need for Type 3's added flexibility.

Type 4 Model Specification: Modified Translog with Constants, using Wage and
Total Time Data

As discussed in the section on application of Roy’s Identity, on€e’ s discretionary-time
and income budgets may be endogenous to the choice of discretionary-activity
participation. Thus, amodel that allows for these choices in a simultaneous manner may
prove useful. Taking the most flexible of the model specifications suggested, i.e. that of
the modified translog with constants, a specification based on wage rates and total time

availability to a household’ s membersis the following:

Indirect Utility =
v=a, =Y it HuyH Y aint £ (Y2)8, Int) In(t)) + (Chapter
i i ij

D Vi In(H)In(t) + Dy, In(w + ) Int;) + iy IN(W +1) In(H)
Three:-19)

The optimal demand levels which result from application of Roy’ s Identity (with

respect to time) to the above formulation are the following:

Hi -(%J[ai + 2.8, In(t;) + ¥, In(w +2) +y,, In(w +1)J

8)1X.* =

1
Ui, +H[Z,-“ Viu In(t;) + Vs In(Y)J (Chapter

wheret, = Travel Timeto Activityi, w =Wage Rate,
& H = Total Time Available,
and gB; = B, Uij & a,,= 1(foridentifiability of parameters).

Three:-20)
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Since income is not exogenous in this model, values of time are estimated using

Equation 3-8’ s approximation, which requires an estimate of the unobserved variable
optimal work time, T, . Asdescribed in Table 3-2, ahousehold’s work time is assumed

to be eight hours per day for full-time workers plus four hours per day for part-time
workers. These results of these computations are shown in the following chapter,
Chapter Four.

Satistical Specification

Integer Demand Obser vations and the Poisson Assumption

Observed demands can be visibly discrete in limited-period data sets. However, one
may expect that continuous and smoothly differentiable preference and demand functions
underlie observed behavior, since households are typically free to optimize their choices
over relatively long periods of time. Thisisthe assumption made here, so alink to a
model of cardinally ordered discrete demand levelsis needed for empirical estimation.
Thislink may be best provided via the Poisson distribution, which is defined over the set
of non-negative integers.

Given an assumption of Poisson-distributed demands, the various activity typesi
(e.g., near vs. far, or dining vs. socia activities) can be characterized asin Equation 3-21.
This set of Poisson random variables is simultaneous in nature, since the derivation of all
mean demands from a single indirect utility specification introduces common parameters
across the demand specifications.

X. ~ Poisson(A,), O,
where A, = X, = f,(Py, Py as P T,Y, ).
Three:-21)

(Chapter
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The Poisson distribution arises naturally from counts of independent events that

occur at a specified rate, so it would be a plausible distributional assumption if household
members make trips at randomly and independently selected times throughout their
window of discretionary time. In reality, household members are often constrained to
temporally and spatially coordinate their trip-making due to limitations on automobile,
driver, and transit availability, closures of activity sites (e.g., storeslate at night), and the
desire to engage in activities together. Moreover, activity participation and travel take
time, undermining the assumption that such events occur independently in i me.lz“I
Without independent and identically distributed exponential inter-event times, the
Poisson may still characterize the counts of activity participation across households; this
may be particularly true over longer periods of time, as the short-term/daily realities of
trip chaining and activity coordination take on less importance relative to long-run
behavior. Unfortunately, the household travel surveys with sufficient sample size and
detail for usein this study tend to be of short duration (e.g., one to two days, typically); so
the Poisson remains a significant assumption. However, as described next, the Poisson is
mixed here with agamma distribution, in order to capture unobserved heterogeneity

across different households having the same set of observed characteristics.

Generalizing the Poisson Assumption through Use of a Negative Binomial

One limitation of the typical Poisson regression model isthat its varianceis
constrained to equal its mean. Cameron and Trivedi (1998) describe the failure of the
Poisson assumption of equidispersion as qualitatively similar to afailure of
homoscedasticity in alinear regression model, but with possibly much larger effects on

standard errors. However, alowing variation in the Poisson’s parameter A by mixing the
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Poisson with another distribution can help one avoid a restrictive equi-dispersion

assumption and accommodate the effect of unobserved factors on each household’ s mean
trip-making rates.

Overdispersion is common in behavioral data (Cameron and Trivedi, 1998), and it
was found to be present in the trip-making data sets, after controlling for a variety of
market characteristics and demographic explanatory variables and then applying
statistical tests described in Cameron and Trivedi (1998). Even though alarge set of
explanatory variablesis used, the dispersion coefficients (the a parameters) are highly
statistically significant in all models, indicating a decisive rejection of an equidispersion
hypothesis.

Factors other than travel times and income and time budget levels play an important
role in household activity participation rates. Whether a household is active or inactive,
profligate or frugal, may mean significant differences in optimal rates of trip-making.
Thanks to these unobserved characteristics, one also would expect there to be some
variation in trip-making rates across households with the same observed characteristics.

It istherefore useful to add a* second layer” of stochasticity by mixing a Poisson with a
second distribution. Additionally, one may reasonably hypothesize correlation across the
unobserved components of the various demands by a single household, since one can
expect the deviation in ahousehold’' s demand for one type of trip to be associated with
deviationsin its other trip demands. For example, if ahousehold istaking partin a
certain out-of-home activity more than one expected (given its time and income
constraints and the set of travel timesit faces), it may also tend to participate in other out-

of-home activities with a higher-than-expected frequency. Information on one set of
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demands observed for a specific household, relative to expectations, islikely to help one

better predict other consumption by the same household.

The use of a compounded and correlated error structure within a system of Poisson
eguationsis unusual. Few modeling efforts have used a multivariate Poisson form to
model demands, particularly in arigorous micro-economic framework with more than
two choice types. Hausman, Hall, and Griliches (1984) use the seminal set-up of Bates
and Neyman (1952) in order to model the number of patents received by a panel of firms
over time as “fixed-effect Poissons’, which integrate to negative binomials; but there are
no “prices’ or explicit links to profit maximization in their model. Hausman, Leonard,
and M cFadden (1995) estimate the choice of recreationa sites using a multinomial
distribution conditioned on total number of trips, where the total is a fixed-effects Poisson
and travel costs are included in the set of explanatory variables. Hausman, Leonard, and
McFadden’ s model provides measures of welfare/benefits viaalogit model’ s log-sum
maximum-expected-utility. However, their model does not consider other types of trips
or related consumption, and the two decision stages (i.e., total number of trips and
alocation of these trips across sites) are estimated sequentially, rather than
simultaneously.

If significant flexibility of the error terms’ covariance structure (e.g., amultivariate
normal distribution acrossthe*” &, ’S”) were permitted, the maximum-likelihood
equation’s values would almost certainly have to be computed using numerical
integration or distribution simulation over the multiple of probabilities. Such an approach

isillustrated by Equation 3-22, with g(€) representing an assumed joint-density, such as
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the multivariate normal, with fixed mean and a variance-covariance matrix to be

determined.
Prob(X = k|1,@),...4, (z)) = f f [ ew(-4 i)("i%!j () 0% (Chapter
Three:-22)

Many have used simulation for estimation of complex specifications; for example,
Yen et al. (1998) have used it for a set of correlated-in-unobserveds ordered probits, and
Train (1996), McFadden and Train (1996), and Mehndiratta (1996) have used simulation
successfully for arandom-parameters logit model. However, estimation times tend to be
long — and a second simulation will invariably lead to a set of different estimates.

Instead, if one can specify the second layer of stochasticity (i.e., the layer within the
Poisson’s own lambda parameter) so that the random component can be tractably
integrated out, the estimation is much ssimplified. For this reason, an integrable error
structure was sought in this research, leading to the mixing of a Poisson with agammato
produce a negative binomial distribution; the use of the same gamma error term across al
of ahousehold’' s demands allows for a cancellation of these terms in the probabilities of a
multinomial (which is conditioned on a negative binomial for total demand), as illustrated

in the following equations:
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| - n | .
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Asimplied in the above equations, two parameters characterize a negative binomial.
The parametersmand p  are used in Equation 3-23, and these can be thought of asasize

and probability parameter. Appendix section A-4 describes the negative binomial
distribution in more detail.

The negative binomia assumption has been used in empirical work for several
decades. For example, Chatfield et al. (1966) used a single negative binomial regression
equation to model household purchases, but Rao et al. (1973) were thefirst to use a
system of equations and thus a specification similar to (yet much simpler than) the set-up
followed here. Rao et al. (1973) modeled the number of boys and the number of girls
born to a pair of parents as symmetric binomials (i.e., with probability of either equal to
0.5) conditioned on a negative binomial for the total.

As mentioned, a negative binomial distribution (NB) can be thought of as a Poisson
whose parameter varies as agamma (i.e., PoissonCJGamma). And the entire system of
demand equations can still be considered a system of Poissons, but with variation

permitted in therates (A,’s). Knowing total count, a system of independent Poissons
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becomes a multinomia (MN) distribution; knowing total count under a system of

correlated Poissons conditioned on anegative binomial (i.e., PoissonstINB( A )) also

impliesaMN. However, for oneto be able to identify the probabilities of the choices
(pi’ s) with a closed-form solution — and avoid ssimulation or numerical integration, one
must make some assumptions and thereby constrain the system’s “ double stochasticity”
to acertain form. Here, the assumption that the system conditioned on total count isa
MN with p’sequaling A, /A, impliesthat the variationin each A, isequd to the factor
of variationinthe A; timesp;. Thus, for such aset-up, each multiplicative gamma error

component is the same value as the gamma random variable that affects total trips.
Since agammavariable times a constant is also agamma variable, all marginal

distributions of trips ( X, 's) are negative binomial (m,p;P), with their mean rate having a

L]

gamma distribution; in statistical notation: X, ~Poisson(, )OGamma(m,m/X,” ).2* The
density function for a gamma distribution is shown in Equation 3-24, helping illustrate
why the rates for individual demands are also gamma distributed. The stochastic
assumptions of observed demands having Poisson distributions whose rates interact

multiplicatively with the same unobserved gamma variable, for a given household, imply

that individual rates can be thought of as gamma variables with the same size parameter

astotal demand (m), but with modified scale parameters(m/xi* , rather than m/XT* ).

e ™ (em/ X, )"
X; T(m)

A ~Gamma(m,my X;") - pdf, (4;) =

wherem> 0,4, 20,and I'(m) = je‘xxm‘ldx [: (m=-1!if misinteger]. (Chapter
0

Sop A, ~ Gamma(m,m/ p, X, ) = Gamma(m,m/ X,").
Three:-24)
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Typically, amultinomial’s component levels are negatively correlated, because of a

fixed sum. However, when the sum or total is allowed to vary as permitted here, the
unconditional correlation becomes positive, as shown in the following set of equations.
Overdispersion, as previously discussed, is also a property of this distribution and

illustrated in the following equations.

If (X1, X, X, ) ~ Multinomial (p, X; ) [ Negative Binomial (m,P = i-p,
: p

then E(X;)=mP=>"X/,

and V(X;) =mP(1+ P) = E(X; )+ P) > E(X;) - Overdispersion.

E(X;) =mPp = E(X;)p, (Chapter
and V(X,) = p°PE(X;) + pE(X;) > E(X;) - Overdispersion.

COV/(X,,X,) = Ey, (COV(X,, X, | X;)) +COV,_(E(X,. X, X))

=-pp E(XT) + ExT (pi P XT2) Y E(XT)2 = PP PE(XT) >0, asexpected.
Three:-25)

In sum then, the system of demand equations can be termed a multivariate negative
binomial, since each of the demands is marginally represented by a negative binomial.
Moreover, the special, same-gamma-term assumption allows the system to collapse to a
multinomial for the different splits of activity types, conditioned on a negative binomial
for total activity participation. Asapoint of comparison, the third model specificationin
Chapter Four is run with the same-gamma-term assumption and without it (i.e., asa
system of independent Poissons); the correlations of residuals resulting from this later

specification are investigated.



Implication of the Assumption of Multiplicative Error Component for Indirect
Utility

The assumption that households having the same observed characteristics can have
different long-run, optimal rates of activity participation according to agamma

distribution implies something about the variation across these households’ indirect
utility values. Since the average optimal rates, X, ’s, are derived via Roy’s Identity, the

gamma error component must come out of one or both of the derivatives which are used:
the derivative of indirect utility with respect to travel time or that with respect to available
time. One stochastically convenient theory is that the households, although well aware of
their marginal utility of available time, observe their travel-time environment with some
error such that the travel timethey perceiveisrealy distributed like the inverse of a
gammarandom variable around the “true” or observed travel time. Another possibility is
that the travel time data observed and used to estimate the models provide the mean travel
times within different neighborhoods, but the actual, househol d-specific travel times
within that neighborhood are inversely gamma distributed around that neighborhood’ s
mean. These stochastically equivalent assumptions trandate to the following:

Lett, yoq = €L 1 Whereg ~ Gamma(m, m).
Thenv =v(ty,,T,Y) = V(. & T,Y),and (Chapter

£ ] Cooar v J O
[, X £
_ dti,fdtor actual _ dti,obs'd dti,fdtoractua] _ dti,obs'd

A T € N €7

Three:-26)

The aboveislikely the simplest method of integrating back from the error

assumption on the observed demand system to the unobserved indirect utility function;
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but other processes also could lead to the multiplicative gamma specification in the

demand system. However, no matter what method of accommodating the gamma error
specification at the level of the indirect utility function, welfare analysisislikely to be
complicated and one should be wary of using the indirect utility functions and their
inverted expenditure functions as originally specified, without explicitly acknowledging
the stochastic components. The need for averaging a measure like equivalent variation
over its unobserved, random components is generally important when the error does not
enter additively with amean of zero, since expectation is alinear operation. McFadden
(1996) provides a nice discussion of this situation in discrete-choice models.

Note that a simulation-of-likelihoods estimation method would allow one to estimate
amore distributionally complex model, without imposing the same gamma error term on
al the Poisson rates at the level of observed demand. For example, one could begin by
specifying the unobserved heterogeneity to occur in the indirect utility function and then
see what that implies for the demand functions. An error term which arises additively
and which isindependent of travel times and the total-time-budget variable would not
show up in the demand equations for number of trips (though it would typically be
relevant in average welfare estimates). A more reasonable assumption would be of
random parameters, i.e. of unobserved differences in household’s preference structures;
such an assumption would be very similar in nature to Train’s (1996) and Mehndiratta's
(1996) random-parameters logit models.

Data Set
The 1990 Bay Area Travel Surveys (BATS) was used for the empirical portion of

thisresearch. They detail trip-making of over 10,000 households in the San Francisco
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Bay Areafor periods of one, three, or five workdays. While the BATS are not surveys of

activities, per se, BATS households' activity participation can be inferred from the trip
purposes and the start and end times of consecutive trips. Since survey lengths vary

across the BATS households, atime component is included explicitly in the likelihood.
For example, if the Poisson rates, X, ’s, are for aone-day period, one must multiply

them everywhere in the Poisson specification with the variable days, where “days’ isthe
number of days for which the household was observed participating in activities. Inthe
multivariate negative-binomial likelihood equation used here (shown in Equation 3-23)
the multinomial portion of the likelihood remains the same, but the negative binomial’s

probability for total observed trips ( X; ) changes. The expectation of a multi-day
survey’ s total number of trips, X , is days times the single-day level, but the variance
increases more than linearly (unlike a Poisson). The parameter p for amulti-day survey
must be replaced by m/ (m + (days x XT* )) everywhere, so the variance remains equal

to i+ au?, but the mean, 1, hasbecome X ™ x days. Note that the process remains a

negative binomia with the same gammaterm, aslong as one assumes that the
heterogeneity for an household is constant for each of the days the household is

surveyed.EL|

The BATS data set is described in more detail in the Appendix section A-3,
and a definition of all variables used is provided in Table 3-2.

Definition of the Consumption Space

Interestingly — but not too surprisingly, investigations for this research indicate that
access times for activities distinguished simply by type or purpose (e.g., dining versus

recreational) are endogenous, given a household’ slocation. In other words, even given
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their relatively fixed residential locations, households can, to a significant extent, choose

how long they spend accessing different types of activities.

Initialy, per-trip travel times and distances for the San Francisco Bay Areawere
regressed on awide variety of urban form variables (e.g., accessibility to al jobs by
automobile, accessibility to sales and service jobs by walking, entropy across the
proportions of half-mile-radius-neighboring land uses, mix of neighborhood land uses,
and developed-area densities, as defined in Kockelman 1996 & 1997) in order to
instrument for the travel times and costs associated with different locations, after
controlling for trip purpose/activity type. The predictive power of these models was
minimal; for example, ordinary least squares regressions of per-trip travel times and
distance on the large set of detailed urban-form variables produces R-squareds of just
0.002 and 0.016, respectively. The R-squared results of OL S regressions controlling for
mode and trip type are shown in Table 3-1, where it appears clear that such models are
effectively useless for prediction. This set of access measures does not predict
statistically significant reductionsin per-trip travel times or distances, even after
controlling for mode and/or trip purpose!EI Thefirst of these two general resultsisin
agreement with the combination of Zahavi et al.’s constant travel-time-expenditures
hypothesis (Zahavi 1979a & 1979b, Zahavi and Talvitie 1980, Zahavi and Ryan 1980)
and the travel-time-inelastic nature of trip demands described by Ortlzar and Willumsen
(1994) and Hanson and Schwab (1987) (as mentioned in Chapter Two’s literature
review). Asaresult of al these indications, the possibility of instrumenting for the travel
costs needed for the system-of-demands approach by using characterizations of a

household’ s environment appears very remote.
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The evidence suggests that people travel further than they need to; this may very well

be because they wish to expand their choice set of activity sites and thereby increase the
expected “quality” of the activity they do engagein, at their chosen sites. For example,
while one probably will travel only to the closest of a very specific activity type (such as
eating out at aMcDonald’s), one will not often travel to the closest dining

establ ishment.EI Aslong asthe margina value of travel time plus the monetary cost of
travel remains below the marginal value of increased opportunities brought about by
traveling further, people can be expected to lengthen their journeys.

Table 3-1: Regressions of Travel Time and Distance on M easures of Urban Form



TIME Regression's Dependent Variable: R-Sguared

PV-Trip Travel Time for Personal-Business Trips 0.006
PV-Trip Travel Time for Social Visit Trips 0.004
PV-Trip Travel Time for Dining/Eat Trips 0.006
PV-Trip Travel Time for Recreation Trips 0.009
PV-Trip Travel Time for Grocery/Food Shop Trips 0.002
PV-Trip Travel Time for Non-Food Shopping Trips 0.004
Non-PV-Trip Travel Time for Personal-Business Trips 0.020
Non-PV-Trip Travel Time for Social Visit Trips 0.073
Non-PV-Trip Travel Time for Dining/Eat Trips 0.008
Non-PV-Trip Travel Time for Recreation Trips 0.009
Non-PV-Trip Travel Time for Grocery/Food Shop Trips 0.061
Non-PV-Trip Travel Time for Non-Food Shopping Trips 0.033
DISTANCE Regression's Dependent Variable: R-Squared

PV-Trip Travel Distance for Personal-Business Trips 0.011
PV-Trip Travel Distance for Social Visit Trips 0.011
PV-Trip Travel Distance for Dining/Eat Trips 0.010
PV-Trip Travel Distance for Recreation Trips 0.016
PV-Trip Travel Distance for Grocery/Food Shop Trips 0.014
PV-Trip Travel Distance for Non-Food Shopping Trips 0.020
Non-PV-Trip Travel Distance for Personal-Business Trips 0.011
Non-PV-Trip Travel Distance for Social Visit Trips 0.026
Non-PV-Trip Travel Distance for Dining/Eat Trips 0.009
Non-PV-Trip Travel Distance for Recreation Trips 0.006
Non-PV-Trip Travel Distance for Grocery/Food Shop Tripd 0.027
Non-PV-Trip Travel Distance for Non-Food Shopping Trip 0.028

Unfortunately, in virtually all existing travel data sets there is no information
regarding the quality of activities pursued. For example, except for genera activity-
purpose categories, there are no survey questions regarding the grade or class of
establishments visited or the unit prices of activity consumption. To deal with this lack

of detail in the data, one may choose to segment activities by some measure of quality,
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relative to an observation-specific origin (e.g., the household’ s home location). One such

measure is the number of choices atrip-maker has, which increases with time and/or

distance travel edE.| Thus, the number of jobs has been used here to distinguish activity



60
quality for trip types. Discretionary tripsto locations within bands of 60,000, 300,000,

900,000 and two million jobs serve as the four types of tripsin the models investigated.

The variables derived from the travel surveys and from travel-time and employment
data are described in Table 3-2. The focus is on the household as a unit, rather than intra-
household trade-offs and decisions. So the total time available and income budgetE’“I
apply to the entire household, and the sum of activity engagements over the households
members is the observed demand. Travel times for the four good groups distinguished in
the data set represent average travel times to access the four different iso-opportunity
contours from a household’ s home location.

In addition to the number of jobs, the amount of land areain different uses can be
used to measure opportunity levels, particularly for activities like outdoor recreation. One
may also wish to include trip-making from non-home trip-making bases, such as work.
However, the size of the demand set may increase multiplicatively; for example, trip-
making to four iso-opportunity contours from the home and work bases of a one-worker

household across al trip types would mean eight different demand types (and eight

different travel times upon which to apply Roy’s Identity).
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Table 3-2: Description of Variables Used

Dependent Variables:
Number of Person Trips - Number of trips by surveyed household members (i.e., those members aged five
and over) in the region on the survey days(s); does not include trips to home location
to:
Discretionary Activities, including:
Medical/Dental Activity
Social Visit
Dining - Eat medl
Recreation
Grocery Shopping
Non-Food Shopping
Non-Discretionary Activities, including:
Work and Work-Related Activities
Personal Business Activity
Education
Other - Child care, serve passenger, change travel mode, other reason

Explanatory Variables:

Income*® Y’ - Pre-tax household income in 1989

Marginal Wage “w" - Estimate of average wage per hour for household ($/hour)
= Income/50/(40x#full-time workers + 20x#part-time workers in household)

Discretionary Time*“ Ty" - Estimate of non-work-related and non-school time in aday availableto a
household’s members age five and older (hours/day)
= 24xHousehold Size - Time in work-related & school activities

Total Available Time“H” - Household Size (#members age five & older) x 24 hours (hours/day)

Travel Timesto |so-Opportunity Contours - Average total travel time by single-occupant vehicle
during free-flow conditions to access successively further sets of opportunities, relative to
household’ s home traffic analysis zone (TAZ); computed sequentialy to nearest TAZsin turn (and
exclusive of travel timesto TAZs lying in other iso-opportunity contours).
Contour Levels constructed at: 60,000, 300,000, 900,000 and two million total jobs, cummulatively.

Another way of creating more detailed consumption sets involves segmenting iso-
opportunity contours by modes of travel and by trip type. For example, the different
modes available would generate different travel times, recreational trips' travel times
would come from contours based on entertainment and other recreational employment,
and shopping trip travel times would come from those based on salesjobs. Clearly, there

will be very high substitutability among these classes, which can be accommodated using
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aflexible system of demand equations, as described in the section on functional

specification in this chapter.
Trip Chaining
The chaining of tripsinto “tours’ is a common phenomenon which complicates the
analysis of activity-participation demands by altering access times. Within the Bay Area
Travel Surveys (BATS), 36.6% of home-based trip tours involve more than one non-
home stop. 51.6% of the BATS person sample are full-time workers (and six percent are
part-time workers); so alarge percentage (12.3%) of the BATS trips are between work
and some non-home purpose, and 5.74% of sequential trip pairs represent atour from
work and back (i.e., they have “work” asthefirst trip’s origin and as the second trip’s
destination). However, more than half (56.4%) of the chained trips are unrelated to work.
The marginal cost of adding a stop to one’ s tour can be relatively small, if that
stop is anywhere near the genera path between primary activity locations. The nature of
home-based tours found in the data set was investigated and it was found that most tours
contain asingle major leg from home, even though the average number of stops per tour
iscloseto three, at 2.71. The mean and median total travel time per tourmare 21.4 and
11.9 minutes, respectively, across all tours made (which number ailmost 40,000); and the
travel time from home to the furthest destination accessed in each tour (with “furthest”
measured by travel time) are 9.6 and 5.2 minutes. Thus, asingle leg of the tour accounts
for about 45-percent of the tour’ stravel time, which can be taken to mean that about 90-
percent of the tour time is spent accessing a single destination. These results suggest that
a single destination accounts for much of the tour’ s travel time, while additional stops are

relatively marginal in travel time cost.
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Weekday non-work trip-making by workers tends to not be very complicated. For

example, in their 1981 data set of Nagoya, Japan, workers, Kwakami and Isobe (1990)
found that of the 15% of workers making non-work trips before or after work, only 2.3%
made atrip on their way to work, 6.7% made one stop on their way home, and 4.2% made
asingletrip after arriving home. Kwakami and Isobe’ s simulation results, which took
work time to be exogenous, predict that as the time spent working during the day falls,
workers travel further per non-work trip in addition to making more non-work trips; this
islikely due to the loosening of the discretionary-time budget constraint and the ability to
consume a higher quality of activity by traveling further. In arelated study of trip-
chaining by workers, Kitamura et al. (1990) found that mid-chain stop locations between
work and home “tend to cluster along the line segment than connects the home and work
bases as commuting distance increases’ (1990, p. 153); they also found that intensity
“peaks’ of stop location form toward the home and work ends of the segment.

These same sorts of tour characteristics were found in the analyzed data sets, leading
to a specification which accommodates chaining behavior; further description of this
model’ s definition of demands, along with empirical results, are presented in the

following chapter.



ENDNOTES:

The chaining of trips as well asthe linking of activities at a single opportunity site (e.g., shopping and
entertainment at a shopping center) complicate the analysis since access times can be reduced and, to a
significant extent, endogenized. To accommodate this effect, one can introduce variables for the
possibilities of linking trips and/or model endogenously the number of chained trips to better account for
the impact such travel behaviors have on a household’ s choice set and utility. Chapter Four presents and
estimates a model, using the Type 3 model specification described later in the current chapter.

In-home activities are included in the vector of activities, A, but they have zero travel time and zero
travel costs.

One should be aware that these formulations assume a two-constraint case. If other constraints apply and
lead to corner solutions for variables such as work time, the specified model will be insufficient and
equations such as 3-7 and 3-8 will not apply. Moreover, if ahousehold’s perceived wage or marginal
return to an extra hour of work is unobservable, one may need to construct a model which accommodates
this fact.

For this regression model, observed work time is the amount of hours spent at work and in work-related
activities during the survey day(s) for each household with workers, acrossits members. Table 3-2
defines the wage variable, w, used in these regressions (which is estimated using income and the number
of full- and part-time workers) as well as the total time available to the household (per day), H.

The median wage estimate for the household sample is $15.58/hour in 1990 pre-tax dollars, and this was
substituted for the wage variable, w, in Equation 3-8. Substituting -0.000145 hours/dollar and +0.0808
hours/hour for the derivatives of work time with respect to unearned income and total time, respectively,
yields a bias estimate of +9.04 percent.

There is significant debate as to the validity of constraints implied by the theory of demand, such as
homogeneity and symmetry (of the substitution matrix). For example, empirical tests of aggregate, serial
demand systems by Deaton and Muellbauer (1980a) and Christensen et al. (1975) reject these
restrictions. Deaton and Muellbauer suggest that their model’ s “rejection of homogeneity may be due to
insufficient attention to the dynamic aspects of consumer behavior.” (19804, p. 312) They suggest adding
time-trend variables, lagged values, and stocks as explanatory variables. And Polak and Wales (1978 &
1980) cite the importance of analyzing stocks, rather than flows, of durable goods, which requires a
rigorous dynamic treatment of behavior. Thus, one should use care in the analysis of some of the goods
of interest here, for example the number of automobiles or size of home; and any results using basic
methods of analysis for such goods should be considered with some caution. However, the datalikely to
be available for the research at hand will not be serial, so there can be little consideration of these effects.
Additionally, the current research will not experience the problems of high collinearity in prices and
aggregation biases, which aggregate serial data are prone to (e.g., Deaton and Muellbauer 1980a, Barten
1977).

Note that the log-likelihood equation must be re-written to accommodate certain zero-level demands,
since one or more multinomial probabilities will equal zero and the logarithm of zero isundefined. If a
demand level is optimally zero, the multinomial’ s choice set collapses, eliminating the zero-level
possibilities.

& AnR"- R function f(x) is convex/concave if f(ax,+ (1-a)x,) isless/greater than or equal to af(x,)+(1-
af(x,), for aJ[0,1]. Therefore, concavity of the money-expenditure function implies that the amount of
expenditures needed to achieve a given utility level isno lower at a set of average prices than at two
initial sets of unbalanced prices. Very similarly, quasiconvexity of the indirect utility function implies
that the upper contour set of a such afunction is a convex set; so, if two sets of prices, given income, lead
to the same level of indirect utility, any average of those prices can be no better for the consumer. Ina
money-expenditures setting, this condition can be written as the following: the set of prices P such that k
= v(P,Y) isaconvex set.

Since added consumption of some activities (without binding budget constraints) may require so much
added travel time and produce a net negative impact on utility, the commonly assumed property of
“nonsatiation” or “monotonicity” is not likely to always be viable here. After acertain point, strictly
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more of an activity is not necessarily a good thing. Thisisimportant to note because even if preferences
are complete, reflexive, transitive and continuous (as described in Varian 1992), there may not exist a
continuous utility function which represents those preferences.

10 Concavity implieﬁthat the symmetric matrix of second derivatives has only non-positive diagonal terms
(i.e, d? e, /dt < 00i). The matrices of second derivativesin prices of the expenditure function which
result from ‘estimation of the Type Two model were computed for all 10,834 households, separately.
Rather interestingly, for all 10,834 households, the first three of the four diagonal terms were positive and
the fourth was negative; this result may suggest a condition more closely resembling convexity in
discretionary-time expenditures with respect to travel times to the first through third contours!

Convexity of theindirect utility function is alittle easier to examine, since indirect utility is an immediate
product of the models' parameter estimation. In the case of the modified translog model specifications
with and without constant terms, the diagonal terms of the matrix of second derivatives (with respect to
travel times) is B“/t These should be non-negative if the function is convex, but one finds that the 3;;
(which determine the sign of this derivative) are estimated with negative signs for two to three of the
demand types in the four models of this type (as shown in Tables 4-2a, 4-3a, 4-4a, and 4-5a). Thus,
convexity of theindirect utility function is not apparent in travel times.

11 with monetary expenditures, people simply “hand over” their money; it is an immediate transaction, not
requiring effort at the moment of use and affecting the spender only in how much money he/she has left
over.

12 One word of caution as to expectations of non-satiation here: Activity participation can be tiring and
eventually undesirable for an individual, so non-satiation may not exist in terms of out-of-home time
expenditures alone. Having more goods is easy when compared with experiencing activities, since the
former requires storage space (or friends who are willing to cart away your belongings). Thus, the
viability on non-satiation in activity participation may not make sense, particularly at the level of the
individual. Still, one must experience his’her entire day (in contrast to not having to spend one’'s entire
income); restorative activities such as sleeping help make up for energy, and summability across all time
expendituresis clearly avalid condition.

13 Note that strong separability allows a monotonic transformation of the direct utility function to produce
an equivalent direct utility function which is explicitly additive in the sub-utility functions.

14 Even if one were to make the highly heroic and unreasonable assumptions that discretionary time
expenditure is homogeneous of degree one in access times, time-compensated activity demands are
homogeneous of degree zero in access times, and the sum of the derivatives of the various time-
compensated time-in-activity demands[ T, . (t, P,Y, u) 's] with respect to asingle access time equal zero,
one can still not argue that the time-compensated activity demands are the first derivatives of the time-
compensated expenditure function. The following equations make this apparent:

ot T x5 ) e[

i i j i i

=> h, +0+0 and

de, (T, P,Y,u)
2w

t, =e (f,P,Y,u) :Zh,Tti +ZT1,T’

. — d
the solutionto thesetwo equationsis NOT % =h;.

If the time-compensated activity demands were in fact the first derivatives of the time-compensated
expenditure function, one then could impose Slutsky symmetry on the estimable/identifiable demands,
derived from one'sindirect utility function. Symmetry of the Slutsky matrix in the common problem
formulation (i.e., one with purely a monetary expenditure constraint) is generally very useful because,
together with a condition for negative semi-definiteness (i.e., concavity of expendituresin prices), it
guarantees integrability (see, e.g., Jorgenson and Lau, 1979); this means that these two conditions
guarantee the existence of anindirect utility function that could generate the demand system estimated.
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However, as discussed in aprior section, one cannot assume concavity of the time-expenditure function,
thanks to travel time's direct effect on one’ swelfare. And, without the expenditure derivatives producing
compensated demands here, one cannot logically impose symmetry on the Slutsky relation, asillustrated
by the following relation.

Given:h . (F, P,Y,u) = X,"(f, P.Y, e (, P, Y, u)).
de;

Without —=h .,
o, hr

dh; _dx' , dx’ de , d’

dt, dt; dY dt, dtt,
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d - o,
and hr ¢dx' + I X." either |.
dt. dt. dy '

J |

15 Changesin what is known as “consumer surplus’ are a special case of equivalent and compensating
variation; the value of change in consumer surplus lies between these two estimates and is defined as the
integral of demand (vectors) over achangein prices. (Varian 1992)

16 The argument for a money measure of benefits/disbenefitsis that it best accommodates society’ s values of
benefits/disbenefits to everyone over avariety of impacts experienced. For example, one can argue that
the time of high-income persons should be more valued by society than that of other persons, since their
elevated incomes are typically due to their higher-valued labor-market activities; in other words, society
optimally trades their time at a higher rate.

Y Equivalent variation was originally defined by Hicks (1956) as the difference in expenditures at a
reference utility level, rather than at a reference price level. However, when budget levels are held
constant, the expenditures under the before and after scenarios are the same, so the definitions provided
in Equation 3-13 are then equivalent to those given by Hicks. The definitions used here can be found in
Varian (1992); they are the negative of Deaton and Muellbauer’s (1980) definitions, when available
income levels are unchanged.

Note also that Equation 3-13 assumes income (YY) and available time (T) are exogenous. With income
and work time endogenous instead, one would write the lower set of equalities with unearned income, Yy,
in place of total income, Y, and both sets of equalities with an added argument of wage, w.

'8 Flexibility to a certain order means that any set of values for that order of derivatives can be achieved
(with asingle, variable set of parameters).

19 Christensen et al. (1975) note that the translog provides a second-order approximation to any (typical)
direct or indirect utility function; thus, the resulting demand functions provide afirst-order approximation
to any system. The same istrue of the AlImost Ideal Demand System (Deaton and Muellbauer, 1980a)
and the generalized Leontief (Lau 1986).

2 An elasticity of substitution is the dimensionless version of the derivative of the ratio of two goods with
respect to their marginal rate of substitution (MRS). MRS s effectively a utility-constant measure of
substitution between two goods. The following equationsillustrate this definition:

dy
dX,
MRS, = - <

d
X,

=Rateof substituting X; for X; to keep utility constant.

Xi
Elasticity of substitution, = d( /(J) « MRS,
y n'_d(MRS,j (y)
X.
]
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% The parameterization of the distributional assumptions, which are described in the following section —
Statistical Specification, adds additional parameters requiring estimation to each of the model types
discussed in this section.

%2 second-order flexibility is not fully realized with the current specification, because it does not include a
log(Y)? term (which would not be identifiable from the demand system estimated). However, the ability
of this functional specification to capture substitution relationshipsis likely to remain superior to that of
the other most popular form for such models, that of the Leontief. As discussed earlier, in the section on
Functional Specification, substitution isimportant in the empirical analysis pursued here because the
demand sets modeled in Chapter Four differ by quality of destination, rather than by activity type or
purpose. So significant substitutability is anticipated.

% Some researchers are working with activity-duration models, acknowledging that activities endure
separately rather than overlap (e.g., Ettemaet al. 1995b, Bhat 1996), but micro-economic or other
rigorous behavioral linkages are missing from these models. For example, using Weibull-based hazard
functions, Kim (1994) models activity duration separately from trip generation but simultaneous with trip
travel time,

% Recall that a gamma random variable can be thought of as the sum of mindependent exponential random
variables, with each exponential sharing therate A. Thus, a constant p (which isless than one) timesa
gamma can be thought of as the sum of mindependent exponentials, each with alonger rate of A/p; so the
inverse of the rate (which is the average time between events) is shorter and the sum of the exponential
times between events is shorter.

% One can think of the sum of “t” days worth of a household's travel data as being the sum of “t” Poisson
random variables, each with the same mean over the population having this household’ s characteristics —
and each interacted with the same gamma term, which represents the heterogeneity within a population of
similar observed characteristics. Asiswell known, the sum of “t” independent Poissons is Poisson; the
“t" days of Poissons considered here for a single household (indexed by n) are independent when one
conditions on knowing the gamma error term and the mean rate (over the population with this
household's characteristics). Thus:

/].’n =X’

> (Xinabhin = %

s=1
~ Neg. Binomiaj(m': mP'= txi%).

gn) ~ Poisson(}, ,(t) =tX,'¢,), and

% More accessible environments do appear to lower automobile ownership, reduce total travel distances,
and shift mode of travel to slower modes (such as bus and walking), as described by Kockelman (1996 &
1997).

' The aggregation of tripsinto the broad categories asked for in surveys (e.g., recreational vs. shopping
trips) obscures the subtle but important distinctions across activities and renders travel times endogenous.
In theory, if one had alarge enough sample of observations, one could model a system of activity
demands where essentially every destination-and-mode (and time-of-day!) combination was a possible
“good” to be consumed by everyone residing in the region. Travel costs would be fairly obvious (given
inter-zonal travel times and distances), and with regional data one could ensure that an individual’s
responses to a limited survey would not bias his/her vectors of travel costs while implicitly controlling for
quality- and price-of-activity differences.

2 |t merits mention that much of Zahavi’swork (e.g., Zahavi 1979a) measures utility by total distance
traveled, essentially asserting that it is access to opportunities that determines one’ s welfare —an idea
similar to those discussed here. However, distance may be a seriously flawed utility measure; for
example, who can say with certainty that several short-distance journeys are preferred to afew longer
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journeys, just because the first choice involves less distance? The approach advocated in this dissertation
allows the data to interpret preferences far more flexibly than a distance metric.

% The survey used, like most surveys of significant size, does not provide income-per-worker or hourly
wage information, so analysis at the individual level would not have been feasible.

% The travel times referred to in this section are not as reported by survey respondents (who tend to report
times in increments of five minutes); instead, they come from interzonal free-flow automobile-travel
times provided by the region’s metropolitan planning organization, which is the Metropolitan
Transportation Commission in the case of the Bay Area Travel Surveys.
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Chapter Four: Empirical Estimation and M od€
Validation

Estimation Techniques
Likelihood M aximization

The likelihood maximization relies on S-Plus statistical computing software

(produced by MathSoft Co.), using a model/trust-region approach described by Gay
(1983). Dueto the constraint of strict positivity on the Poisson rates ( X, ") and the

complexity of the likelihood equations’ first and second derivativeg! the algorithm
employsits own, numerical approximations to the derivatives utilized in a quadratic
approximation to the likelihood function over an iterative series of neighborhoods it
“trusts”E!

Acquiring Starting Parameter Values

When amodel’ s regression equations are not linear in unknown parameters, asisthe
case for the functional forms considered here, the choice of a method to achieve starting
parameter estimates can be quite difficult. Thisis particularly true when negative
estimates of the marginal utility of time and negative demand estimates are effectively
disallowed (as discussed in the section on non-negativity in Chapter Three). In the
present specification, one could run an iterative maximum-likelihood search procedure on
each demand equation individually, using negative binomial stochastic assumptions;
however, such individual regressions require their own sets of feasible start values for
many of the unknown parameters, along with alikelihood search, without guarantee of

unique convergence.
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To begin the maximum-likelihood search routines in the models estimated here,

several different sets of parameter estimates were attempted for each system of equations
as awhole, with theory often guiding the choice of sign (e.g., the derivative of indirect
utility with respect to each travel time should be negative, so signs on the starting values
of prominent coefficients of travel times were chosen appropriately). Section A-5 of the
Appendix provides actual code and starting values used in typical program files.
Fortunately, not too many parameter sets were required to find afeasible set from which
to begin the iterative search in each model. Additionally, several very distinct but
feasible starting parameter sets were used on each model, and the likelihood values of
their solutions were compared in an attempt to avoid convergence to alocal, rather than
global, maximum.

Variance-Covariance Estimation

The model complexities complicate the estimation of errorsin estimation, so the
specification of the log-likelihoods' gradients and Hessians is not elementary. To
facilitate computations, the Berndt et al. (1974) method (BHHH) of Hessian estimation is
used, requiring only gradient information. The variance-covariance matrix for the
parameter set is thus estimated applying the following equation, but employing the
parameter estimates generated from the sampled observations (Greene 1993, p. 326):

AsymptoticVariance — Covariance Matrix =
h= -1
avcl) = Eﬂfwnwn} J = E([Ww] ‘1),
n=1

where@isthe MLE, w, = Gradient of Likelihood of n'thobservation,

andW = Matrixwhoserowsarethew,'s.
Four:-1)

(Chapter
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Results to be Estimated

To limit the problem size while analyzing a variety of different functional
specifications and illustrating use of the method, only four demand types were
distinguished here; and they are used with al four model types (Type 1 through Type 4,
as specified in Chapter Three). Specifically, the four demand types used in four sets of
results are the number of discretionary trips (i.e., non-work, non-education, and non-
serve-passenger trips) made to each of four iso-opportunity contours using the Bay Area
Travel Surveys. The contours are defined, as discussed in Chapter Three, by (free-flow,
automobile) travel times from a household’ s specific “ neighborhood” /traffic analysis
zone (TAZ) out to contours of 60,000, 300,000, 900,000, and two million jobsin the
region. Thefifth set of results presented here also relies on just four distinct demand
types across the four all-jobs iso-opportunity contours described, and it uses the Type 3
model specification; however, it explicitly accommodates trip chaining by focusing on
activity tours, rather than individual stops/single activities. These five sets of results are
described here now.

Results of Type One Model: Modified Linear Expenditure System

The estimates for a Type 1 model of discretionary-activity participation (represented
by Equation 3-14) are shown in Table 4-1a; these represent the likelihood-maximizing set
over the full sample (N=10,834) after starting from a variety of parameter values. The
median levels of first-order estimates of demand elasticities and the value of time for this
model are shown in Table 4-1b.

Even though the great majority of the parameter estimates appear to be highly

statistically significant in this model, the value-of-time and aggregate mean estimates
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differ significantly from expectations. For example, the quartiles of the value-of-time

estimates are all negative across the sample; these estimates are presented in Table 4-7,
along with value-of-time estimates from other models, in the section titled “ Discussion of

Value of Time Estimates’, toward the end of this chapter.

There are other clues that the model isfar off. For example, the average X, across
households is 2.67 trips/day, which is more than twice the observed mean of 1.09
trips/day, and the ratio of the sum of X,to X, is2.25 while the model predicts 1.55.
Thus, thismodel does not appear to be sufficiently flexible for our purposes, and its

results should not be taken too serioudly.



Table4-1a

Parameter Estimates of Modified Linear Expenditure System, as applied to
Discretionary-Activity Participation across Four All-Jobs|so-Opportunity

Contours, using the BATS data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics

a 0.902 1.94E-01 46 0.000
m 0.0929 3.26E-02 28 0.000
> 0.160 4.68E-02 34 0.000
a3 0.0947 2.16E-02 44  0.000
as 0.0580 3.15E-02 18 0.000
DBy -4.39E-05 2.24E-06 -20  0.000
Bov -5.06E-05 1.74E-06 -29  0.000
Bay -3.21E-05 3.06E-07 -105 0.000
By -2.99E-05 6.23E-07 -48  0.000
B -2.18E-01  3.79E-02 -5.8  0.000
B2 -6.72E-02  1.52E-02 -4.4  0.000
B3 -8.91E-02  7.19E-02 -1.2  0.215
DBia 2.69E-02 5.50E-02 05 0.625
B2 5.14E-02 1.87E-02 2.7 0.006
B3 -1.15E-01  1.66E-02 -7.0 0.000
Boa 5.49E-02 7.41E-03 74  0.000
B3 1.95E-01 2.54E-03 77  0.000
Baa -5.93E-02 2.10E-03 -28  0.000
Laa 9.96E-03 3.66E-04 27 0.000
L =-46,696

N =10,834




74
Table4-1b
Economic Implications of M odified Linear Expenditure System, as applied to

Discretionary-Activity Participation across Four All-Jobs|so-Opportunity
Contours, using the BATS data set

VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:

Immediate Zone Demand 0.389

Near Zone 0.672

Moderate Zone 0.572

Far Zone 0.304
Income Elasticity of Demand:

Immediate Zone Demand 0.044

Near Zone 0.163

Moderate Zone 0.411

Far Zone 0.696
Cross-Time Demand Elasticities:

w/r/t Time of: Immediate Near Moderate Far

Immediate Zone: -0.054 0.081 0.234 -0.191
Near Zone: 0.016 -0.725 0.575 -0.617
Moderate Zone: 0.284 0.814 -2.711 1.021
Far Zone: -0.216 -0.658 -0.209 -0.541

Notes:
Demands are in trips per day, Discretionary Time is hours,
Travel Times are minutes, & Income is before-tax dollars.

Results of Type Two Model: Modified Translog

The translog functional form of Equations 3-15 and 3-16 was used, with the
expectation that its larger parameter set would provide more flexible estimation and better
results than that of the modified linear expenditure system. For purposes of parameter

identification, thismodel’'s y;, parameter was fixed to equal positive one and the 3;'s
are constrained to equal 3;;'s. The parameter estimates are shown in Table 4-2a.
The log-likelihood value for this estimation is -46,431.6, but it cannot be compared

with a no-information situation (where each X, is modeled as a constant, independent of

time and income information) or even afull-information situation (where each
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household’s X, ,n* is modeled asits own constant), because there are no free constantsin

this model — every unknown parameter is interacted with explanatory variables which
vary across households.

Observe that the variance in the data is substantially reduced by using explanatory
information. For example, the estimate of the overdispersion parameter, a, falls from
1.638E|(for total trips) to 1.001 here, signaling atighter distribution thanks to explanatory
information and the model structure itsalf.

The average X, estimates of this mode! fall much closer to the sample means than
those of the modified linear expenditure system, suggesting much better accuracy in
aggregate prediction. Theaverage X, ’s are estimated to be 1.14, 0.66, 0.29, and 0.19,

respectively, while the observed per-day average demands are 1.09, 0.62, 0.27, and 0.19.

Theoretical considerations aside, this model appears to predict aggregate behavior well.



Table 4-2a

Parameter Estimates of Modified Translog Model, as applied to Discretionary-
Activity Participation across Four All-Jobs | so-Opportunity Contours,
using the BATS data set

Parameter Final Standard T- P-Values
Estimates Error Statistics
a 1.00 0.00 123 0.000
m 1.53 1.29 1.2 0.238
> -8.35 1.96 -4.3  0.000
a3 -9.69 1.74 -5.6  0.000
as -3.52 1.55 -23  0.023
B -7.96 0.91 -8.7  0.000
B2 -0.643 0.24 -2.7  0.007
Bis -1.05 0.24 -4.4  0.000
Bua -0.202 0.19 -1.1 0.286
B2 -1.03 0.51 -20 0.041
B3 -3.90 0.60 -6.5 0.000
Boa 0.858 0.29 3.0 0.003
B3 8.47 1.02 8.3 0.000
B -2.27 0.40 -5.7  0.000
B 1.95 0.48 4.1 0.000
Wy 1.60 0.19 8.6 0.000
Yoy 1.15 0.16 7.2 0.000
Yy -0.576 0.10 -6.0 0.000
Vay -0.836 0.12 -6.8  0.000
WUT -0.178 0.10 -1.9 0.064
Yot 0.913 0.23 40 0.000
VT 1.44 0.26 5.6 0.000
Yt 1.50 0.28 54 0.000
vy (fixed) 1.00 n/a n/‘a n/a
L =-46,432
N = 10,834

Economic Implications of the Type Two Model Results

Thismodel’s estimates’ of elasticities are shown in Table 4-2b. Overall, this
model’ s results appear reasonabl e, including the value-of-time estimates across the

household sample (whose quartiles are provided in Table 4-7).
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Discretionary-time el asticities are positive, as one would expect (i.e., more

discretionary time available to the household leads to more discretionary activity
participation). Income elasticities, on the other hand, are positive for far and moderate
zone activities but negative for closer activities; it appears that money is spent on access
to consumption of activities further away, rather than near one’s home. It isinteresting
that near trips are not found to be “inferior” with respect to time, but they are with respect
to income (albeit to aminor extent). Note that these results are not definitive because
part of thisincome effect is due to the purchase of automobiles, which effectively reduce
per-trip marginal costs and travel times, and part is arguably due to the higher-income
households having more specialized workers who must travel further on workdays and so
undertake more activities at sites remote from home, but near their work locations. The
presentation of the fifth set of model results more explicitly considers this question of trip
chaining.

Finally, observe that own-travel-time elasticity estimates are generally negative as
one would expect of economically “normal” goods, but not for the nearest zone' s activity
participation rates. And most cross-time elasticities are positive, suggesting the expected
substitution effects (rather than complementarity), since the demands are only defined
across “quality” here (i.e., level of opportunity choice), not activity type (e.g., social and
personal business activities are less likely to be substitutable).

Table 4-2b

Economic Implications of M odified Translog Model, as applied to Discretionary
Activity Participation across Four All-Jobs | so-Opportunity Contours,
using the BATS data set



VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:

Immediate Zone Demand 1.028

Near Zone 0.869

Moderate Zone 0.678

Far Zone 0.706
Income Elasticity of Demand:

Immediate Zone Demand -0.294

Near Zone -0.208

Moderate Zone 0.086

Far Zone 0.122
Cross-Time Demand Elasticities:

w/r/t Time of: Immediate Near Moderate Far

Immediate Zone: 0.257 0.061 0.103 -0.033
Near Zone: 0.100 -0.891 0.496 -0.188
Moderate Zone: 0.242 0.832 -2.952 0.442
Far Zone: 0.047 -0.207 0.383 -1.446
Notes:

Demands are in trips per day, Discretionary Time is hours,
Travel Times are minutes, & Income is before-tax dollars.
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Results of Type 3 Model: Modified Translog with Constants

The Type 3 model specification, amodified translog which includes constant terms,
(as shown in Equation 3-18) has been applied here to two different demand sets. Thefirst
covers the discretionary-activity participation demands used in the previous two models;
the second looks at home-based tours of all trip types. Both rely on the four iso-
opportunity contours used previously, which count all job types as opportunities.

|. Discretionary Activity Participation

The estimated parameters for a Type 3 model across four divisions of discretionary-
activity participation are shown in Table 4-3a. The estimate of the overdispersion
parameter a has dropped to 0.938, suggesting that estimates are falling closer to

observations than in the two previous models; and the demand estimates accurately
estimate aggregate behavior. The average X, ’s are estimated to be 1.08, 0.62, 0.28, and

0.19, respectively, while the observed per-day average demands are 1.09, 0.62, 0.27, and
0.19.

An advantage of the translog specification with constant termsis that one can nest a
no-information case within the specification. Table 4-3c provides a summary of the
likelihood values resulting from a variety of specifications linked to this particular
specification. The log-likelihood value for the no-information casemis -47,688; in
contrast, the log-likelihood of the full model is-46,218. The p-value for the hypothesis
that the no-information model is the proper model, given the assumption that this third

model specification encompasses the true model as a nested specialization, is 0.000; so

one must reject this hypothesis (given the assumption).



Table 4-3a

Parameter Estimates of Modified Translog Model with Intercept Terms,
asapplied to Discretionary Activity Participation across Four All-Jobs | so-
Opportunity Contours, using the BAT S data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics
a 0.938 0.020 47  0.000
Lo 0.267 0.049 55 0.000
7 0.930 0.234 40 0.000
Lb 0.189 0.062 3.1 0.002
s -0.075 0.026 -29 0.004
JA -0.033 0.030 -1.1  0.266
m -0.831 2.306 -04 0.718
> -1.066 3.325 -0.3  0.749
a3 -1.112 2.676 -04 0.678
as -0.944 5.668 -0.2 0.868
B -4.191 1.159 -3.6  0.000
B2 0.051 0.329 0.2 0.876
Bis -1.453 0.414 -3.5 0.000
Bua 0.714 0.268 2.7 0.008
Lo -0.123 1.287 -00 0.924
B3 -4.464 1.007 -4.4  0.000
Boa 2.237 0.537 42 0.000
B3 7.845 1.513 5.2 0.000
B -2.842 0.709 -4,0 0.000
LBua -0.200 1.658 -0.1  0.904
Wy 1.491 0.292 51 0.000
Yoy 0.078 0.141 0.6 0579
Yy -1.126 0.216 -5.2  0.000
Vay -1.187 0.230 -5.2  0.000
WT -0.813 0.146 -5.6  0.000
Yoy 0.262 0.310 0.8 0.398
Yy 1.443 0.435 3.3 0.000
Vay 1.888 0.521 3.6 0.000
vy (fixed) 1.000 n/a n/‘a n/a
L =-46,219
N =10,834
Table4-3b

Economic Implications of Modified Transog Model with Intercept Terms,



asapplied to Discretionary Activity Participation across Four All-Jobs Iso-

Opportunity Contours, using the BAT S data set
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VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:

Immediate Zone Demand 0.774

Near Zone 0.652

Moderate Zone 0.440

Far Zone 0.415
Income Elasticity of Demand:

Immediate Zone Demand -0.206

Near Zone -0.039

Moderate Zone 0.144

Far Zone 0.132
Cross-Time Demand Elasticities:

w/r/t Time of: Immediate Near Moderate Far

Immediate Zone: 0.574 -0.014 0.124 -0.144
Near Zone: 0.020 -0.630 0.440 -0.303
Moderate Zone: 0.252 0.688 -2.608 0.384
Far Zone: -0.073 -0.316 0.347 -1.231
Notes:

Demands are in trips per day, Discretionary Time is hours,
Travel Times are minutes, & Income is before-tax dollars.

Economic Implications of the Type Three, Discretionary Activities Model Results
Estimates of various economic implications of this model are shown in Table 4-3b.
While elasticity signs and magnitudes appear to be in general agreement with those
estimated for the previous, no-constant-terms model for these data, the value of time
estimates differ dramatically. Even though this model is more flexible (and offers a
significantly higher log-likelihood value, of -46,218 versus -46,432, for a difference of
just five parameters), its value-of-time estimates are highly negative and thus contrary to
expectations —in clear contrast to the value-of-time results for the previous model. This
model’ s value-of-time results are provided and discussed along with the value-of-time

results for other models, toward the end of this chapter.
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Model Comparisons: Case Example

Ten variations of this Type 3 system of discretionary-activity demands were run for
purpose of likelihood comparisons. They differ primarily in their assumptions about the
stochastic nature of the unobserved heterogeneity; but, the “no-information” and “full-
information” variants make assumptions about the access to explanatory information. A
broad comparison of likelihoods like this can be done for any of the modified-translog-
with-intercept models since their specification includes intercepts, allowing them to be
rigorous nested within afull-information case and over a no-information case. Note,
however, not all of the ten variants are specialization’s or generalizations of all others.
All ten cases are described briefly and compared by means of their log-likelihood values
in Table 4-3c.

Severa interesting results emerge from these log-likelihood values. Oneisthat the
imposition of the same-gamma heterogeneity assumption significantly constrains the
model as estimated. Without removing any estimated parameters yet allowing optimal
activity-participation rates to vary independently of one another (given their population
means, for agiven set of household characteristics), the log-likelihood rises dramaticaly,
from -46,218 t0 -42,592, given a difference of just three identifying restricti onsE!
Following this change in stochastic specification, the overdispersion factor, aor “a’ in
the table, rises substantially as well, from 0.938 across the set of tripsto 1.5 for
“immediate” or very local trips, 2.2 for “near” trips, 2.8 for “moderate’ trips, and 7.4 for
“far” trips. These results suggest that the imposition of the same-gamma assumption for
characterizing the unobserved heterogeneity in optimal participation ratesistoo strong —

at least for the data set used, where short-duration observations are likely to be more
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heavily influenced by chaining and intra-household trip coordination. More flexible

models, which still provide for some correlation in unobserved information, should prove
useful, though these likelihoods will probably require ssimulation.

Table 4-3c

Comparison of Log-Likelihood Values across Different M odels

based on the M odified Translog Model with Inter cepts

(analyzing Discretionary-Activity Participation across Four |so-Opportunity
Contours, using the BAT S data set)

M odel Description: a Log-Likelihood
i. P0iSs0ON (no unobserved heterogeneity, a=0): 0 -52,052
ii. No Information (no explanatory variables): 1.012 -47,688
iii. MODEL ASESTIMATED (same-gamma heterogeneity): 0.938 -46,218
iv. Semi-Independent Negative Binomials (with same overdispersion " a”): 2.13 -42,981
v. Totally Independent Negative Binomials (different " a"'s): 15t07.4 -42,592
vi. Full Information (all optimal rates = observed rates, minimized variance): 0 -32,749

vii. Individually Estimated Negative Binomias for each Demand

(without cross-equation parameter constraints): Immediate Trips: 151 -16,640
Near Trips. 2.20 -12,538

Moderate Trips: 3.04 -7,635

Far Trips: 6.18 -5,864

Sum = -42,677

Another way to look at these resultsis to compute the fraction of total likelihood
difference, between the full- and no-information cases (cases vi and ii), that is
“explained” by the specified model (caseiii). Thisratio is often referred to as a pseudo-
R? and it is 9.84% for this modeIE! Thisis actually higher than one might expect, given
the disaggregate and short-term nature of the data. As mentioned in Chapter Two's
literature review, little if any research has found significant elasticities of trip demand
with respect to travel times (Ortlzar and Willumsen 1994, Hanson and Schwab 1987).
The percentage of explained variation in models of single-day trip-making, other than the
model proposed in this research, tend to be on the order of five percent (e.g., Hanson and

Schwab 1987). However, one should not put too much stock in this measure of explained
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variation; smply alonger survey period with fewer zero-level observations of demand

would increase the percentage (or R-squared), without any change in parameter estimates,
because the zeros do not diminish the full-information log-likelihood at al I

Another point of interest isthat the removal of the cross-equation parameter
constraints does not do much for the log-likelihood. In case vii, where each demand is
estimated completely independently of the others (but with the same general functional
formgiven in Equation 3-18), 18 more parameters are being estimated than in the set of
demand equations derived from case v’ s single indirect utility specificati onEI(of Equation
3-17); yet thisonly trandates to alikelihood increase of -42,592-(-42,677), or 85. This
difference still provides for a highly statistically significant likelihood ratio test of the
differenceE,| but the magnitude of the difference appears small when compared with the
differences other changes in the model create. For as many observations asthere arein
the data set (10,834 households times four dependent-val ue observations per household),
it isnot surprising that one would get a statistically significant result for most tests; what
issurprising isthe relatively small size of this difference for this particular test. It
suggests that the derivation of a set of demands from a single indirect utility specification
isnot so presumptuous or limiting! However, the value-of-time results remain
unbelievable, so the model structureisimperfect.

1. Modeling Tours Explicitly

Due to the prevalence of trip-chaining or “tour-making” in many observations of
activity-participation, the incremental travel time faced by a household to pursue an
added activity can be substantially less than the round-trip travel time from home. Since

most tours appear to involve a primary stop or leg with a significant travel time from the
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home location, the data set of demands constructed for analysis here is based on the

number of tours made, with the furthest destination visited during the tour determining
the tour type (according to which of the four distinct iso-opportunity contours the tour
belongs). Since the number of toursthat are exclusively non-work related is rather small
(about 15,000 toursin the BATS data set) and many of the tours containing a work
purpose also contain discretionary-purpose stops, tours of all types were assembled here
for analysis, providing roughly 40,000 tours across the BATS households surveyed.

Estimation results are given in Tables 4-4a and 4-4b.



Table 4-4a

Parameter Estimates of Modified Translog Model with Intercept Terms,
asapplied to Trip Toursto Four All-Jobs I so-Opportunity Contours,
using the BATS data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics
a 0.076 0.004 20.7  0.000
Lo -0.079 0.035 -23  0.022
7 1.339 0.412 3.3 0.001
Lb 0.339 0.120 2.8 0.005
s 0.187 0.073 26 0.010
JA 0.127 0.097 1.3 0.189
m -0.044 2.847 -0.0 0.988
> -0.931 4114 -0.2 0.821
a3 -1.101 5.650 -0.2 0.845
as -0.729 14.639 -0.0 0.960
B -2.702 1.226 -2.2 0.028
B2 1.231 0.510 24 0.016
B3 -0.835 0.522 -1.6  0.110
Bua 0.812 0.437 1.9 0.063
Lo -0.000 1.594 -0.0 1.000
B3 -4.450 1.457 -3.1  0.002
Boa 3.012 0.920 3.3 0.001
B3 7.866 2.696 29 0.004
B -1.974 1.006 -20 0.050
LBua 0.445 4.695 0.0 0924
Wy -0.032 0.119 -0.3 0.789
Yoy -0.625 0.186 -34  0.000
Yy -1.506 0.378 -4,0 0.000
Vay -2.833 0.722 -3.9 0.000
WT 1.225 0.575 21 0.033
Yoy 1.225 0.575 21 0.033
Yy 2.343 0.862 2.7 0.007
Vay 4,959 1.607 3.1 0.002
vy (fixed) 1.000 n/a n/‘a n/a
L =-48,469

N =10,834
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Table 4-4b

Economic Implications of M odified Translog Model with Intercept Terms,
asapplied to Trip Toursto Four All-Jobs I so-Opportunity Contours,
using the BATS data set

VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:

Immediate Zone Demand 0.970

Near Zone 0.956

Moderate Zone 0.848

Far Zone 0.704
Income Elasticity of Demand:

Immediate Zone Demand -0.022

Near Zone 0.039

Moderate Zone 0.123

Far Zone 0.191
Cross-Time Demand Elasticities:

w/r/t Time of: Immediate Near Moderate Far

Immediate Zone: 0.356 -0.139 0.015 -0.196
Near Zone: -0.157 -0.400 0.397 -0.433
Moderate Zone: 0.052 0.407 -1.344 0.070
Far Zone: -0.092 -0.259 0.093 -0.711

Notes:
Demands are in trips per day, Discretionary Time is hours,
Travel Times are minutes, & Income is before-tax dollars.

Observe that the overdispersion factor a isvery close to zero here, suggesting less of
anegative binomia and more of a Poisson distribution; this reduced value also suggests
more stability in estimation thanks to less unobserved variation (assuming that a Poisson
holds). So tour-making may be less variable than individual stop-making, which makes
some sense given the fixed cost of getting ready to leave one' s home and take care of
business and activities outside one's home; the marginal cost of adding stopsisrelatively
small onceisaready “out and about”. Moreover, the same-gamma-error assumption may

apply better here because gross estimates of the atermsmfor the different, individual
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demands are much more stable; they are 0.84, 0.85, 0.70, and 0.52, rather than 1.7, 2.6,

3.4, and 7.6, as estimated for individual-activity (non-tour) demands.

Thismodel’ s estimates of demand are reasonable predictors of aggregate behavior.
The average Xi* 'sare estimated to be 1.22, 0.57, 0.37, and 0.28, respectively, while the

observed per-day average trip-chain rates to the different contours are 1.14, 0.64, 0.38,
and 0.32.

In Table 4-7, the value of times estimated for this model are negative, though they
are not as extreme as those implied by the previous transl og-with-constants model of
discretionary trip-making. The travel-time elasticity matrix (shown in Table 4-4b)
resembles earlier estimates of this matrix, but three of the four income elasticities are now
positive.

Results of Type 4 Model: Modified Translog with Constants, Using Wage
and Total Time Data

Asdiscussed in Chapter 3, the work decision, and thus the income and discretionary-
time budgets are likely to be made simultaneously with the discretionary-activity
decisions. Thus, amodel where these budgets are endogenous may prove useful. The
Type 4 model accommodates these decisions by relying on wage and total -time data,
rather than income and discretionary-time data, but the demand set analyzed is the same,
four-zone discretionary-trip data set analyzed in the first three models discussed here.

The results of this analysis are shown in Tables 4-5a and 4-5b.
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Table 4-5a
Parameter Estimates of Modified Translog Modéel with Intercept Termsand Wage

and Total-Time Information, as applied to Discretionary-Activity Participation
acr oss Four All-Jobs|so-Opportunity Contours, using the BATS data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics
a 0.935 0.020 47  0.000
s 0.387 5.529 0.0 0944
i 3.212 1.537 21 0.037
7 0.528 0.270 20 0.050
s -0.361 0.174 -21 0.038
JA -0.192 0.117 -1.6  0.100
m 3.564 5.456 0.7 0514
> -3.332 6.137 -05 0.587
a3 -4.253 5.436 -08 0434
as -2.461 11.412 -0.2 0.829
B 4211 2.565 16 0101
B2 0.841 0.861 1.0 0.329
Bis -4.060 2.088 -1.9 0.052
Bua 1.978 1.231 1.6 0.108
B2 -0.270 2.660 -0.1  0.919
B3 -4.443 2.480 -1.8  0.073
Boa -2.426 1.432 -1.7  0.090
B3 2.300 2.421 1.0 0.342
B -6.493 3.401 -1.9 0.056
B -2.749 3.779 -0.7  0.467
Yw 0.527 0.377 14 0.162
yw 0.586 0.437 1.3 0179
Yaw -0.223 0.203 -1.1 0.273
Vaw -2.267 1.132 -20 0.045
Vin (fixed) 1.000 n/a n/a n/a
Vo 3.948 1.520 2.6 0.009
JaH 5.084 2.238 23 0.023
Van 4,935 2174 23 0.023
K 4,580 2.318 20 0.048
Wy 1.617 0.246 6.6 0.000
L =-46,267

N =10,834
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Table 4-5b
Economic Implications of M odified Translog Model with Intercept Termsand Wage

and Total-Time Information, as applied to Discretionary-Activity Participation
across Four All-Jobs 1so-Opportunity Contours, using the BAT S data set

VALUE ESTIMATED: Median
of Sample

Total-Time Elasticity of Demand:

Immediate Zone Demand 0.705

Near Zone 0.554

Moderate Zone 0.379

Far Zone 0.435
Wage Elasticity of Demand:

Immediate Zone Demand -0.077

Near Zone -0.079

Moderate Zone -0.031

Far Zone 0.104
Cross-Time Demand Elasticities:

w/r/t Time of: Immediate Near Moderate Far

Immediate Zone: 0.850 -0.100 0.180 -0.181
Near Zone: -0.058 -0.567 0.169 0.065
Moderate Zone: 0.297 0.291 -1.878 0.434
Far Zone: -0.146 0.117 0.383 -1.716

Notes:
Demands are in trips per day, Discretionary Time is hours,
Travel Times are minutes, & Income is before-tax dollars.

Predictions of aggregate behavior using this model do not appear to be as strong as
those from the Type 3 model estimates, but they are quite reasonable. The average X, ’s
are estimated to be 1.07, 0.62, 0.28, and 0.19, respectively, while the observed per-day
average demands are 1.09, 0.62, 0.27, and 0.19.

The travel-time elasticity matrix corresponds roughly with those estimated previously
and total-time elasticities are positive, as expected. However, the wage elasticities are
generally negative and negligible, except for the furthest zone. One might expect more

significantly negative wage effects on discretionary trip-making as workers choose to
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work more and engage in fewer discretionary activities (during weekdays at |east).

However, the act of working more often may add to discretionary activity participation
because of added purchasing power and because work travel can put workers in contact
with many activity sites (along travel routes to and from work) for lower travel-time costs

than home-based trips.""'_'I

Comparison of All Model’s Elasticity Estimates

To facilitate comparisons, Table 4-6 provides a summary of elasticities estimated for
all five of the model specifications analyzed. The reported values are the median values
for the 10,834-household sample, and only the first three models are strictly comparable
interms of all estimates shown, since their response and explanatory variables sets are the
same. Asdescribed earlier, the fourth model analyzed relies on the same functional form
for demand as the third, but it models trip toursto all activity types, rather than
individual, discretionary-activity stops. The fifth model allows for work-time (and,
therefore, much of discretionary-time) and income endogeneity, so its reported elasticities

are with respect to total time and wage variables.
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Table 4-6

Summary of Elasticity Estimates. Median Values acr oss Households

Model Used: Type 1 Type 2 Type 3 Type 3* | Type 4**
(All Tours) | (Endogen.
Work)
Discretionary/Total**-Time Elasticity of Demand:
Immediate Zone Demand 0.389 1.028 0.774 0.970 0.705
Near Zone 0.672 0.869 0.652 0.956 0.554
Moderate Zone 0.572 0.678 0.440 0.848 0.379
Far Zone 0.304 0.706 0.415 0.704 0.435
Income/Wage** Elasticity of Demand:
Immediate Zone Demand 0.044 -0.294 -0.206 -0.022 -0.077
Near Zone 0.163 -0.208 -0.039 0.039 -0.079
Moderate Zone 0.411 0.086 0.144 0.123 -0.031
Far Zone 0.696 0.122 0.132 0.191 0.104
Cross-Time Demand Elasticities: Type 1 Type 2 Type 3 Type 3* Type 4**
Demand for Activities in: w/r/t to Travel Time to Immediate Zone:
Immediate Zone: -0.05 0.26 0.57 0.36 0.85
Near Zone: 0.02 0.10 0.02 -0.16 -0.06
Moderate Zone: 0.28 0.24 0.25 0.05 0.30
Far Zone: -0.22 0.05 -0.07 -0.09 -0.15
wi/r/t to Travel Time to Near Zone:
Immediate Zone: 0.08 0.06 -0.01 -0.14 -0.10
Near Zone: -0.73 -0.89 -0.63 -0.40 -0.57
Moderate Zone: 0.81 0.83 0.69 0.41 0.29
Far Zone: -0.66 -0.21 -0.32 -0.26 0.12
w/r/t to Travel Time to Moderate Zone:
Immediate Zone: 0.23 0.10 0.12 0.02 0.18
Near Zone: 0.57 0.50 0.44 0.40 0.17
Moderate Zone: -2.71 -2.95 -2.61 -1.34 -1.88
Far Zone: -0.21 0.38 0.35 0.09 0.38
w/r/t to Travel Time to Far Zone:
Immediate Zone: -0.19 -0.03 -0.14 -0.20 -0.18
Near Zone: -0.62 -0.19 -0.30 -0.43 0.06
Moderate Zone: 1.02 0.44 0.38 0.07 0.43
Far Zone: -0.54 -1.45 -1.23 -0.71 -1.72

Notes:
*The first three models and the fifth model discretionary activity participation;
the fourth models trip tours and includes all activities.
**The fifth model allows for discretionary-time and income endogeneity, while the others do not.
Demands are in trips per day, Discretionary Time is hours,
Travel Times are minutes, & Income is before-tax dollars.

Of thefirst three, comparable models, signs on estimates are strongly consistent
between the second and third models; but the first model, which relies on a modified
version of the linear expenditure functional form, is not so consistent with thesetwo. As

described briefly in Chapter Three and earlier in this chapter, the first model suffers from
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several constraints on its predictions — and the second and third specifications have their

own inflexibilities.

Despite their differences, all models predict strong elasticities of demand with
respect to time budgets; however, only the second model produces an estimate exceeding
one. The own-travel-time elasticities of demand tend to be significantly negative, with
elasticities for demand for activities in the moderately distant contour estimated to be the
most notably inelastic. Additionally, though generally positive, many cross-time effects
on demand to the furthest iso-opportunity contour are estimated to be negative.

All five models predict rather negligible elasticities of discretionary-activity and tour
demands with respect to income and wages. This effect may be due to alack of
identification of all income contributions to indirect utility (as discussed earlier), but,
also, it may be that additional money does not lead to additional activity participation,
everything else constant. For example, the quality of activities and the amount of money
spent on them may be substantially affected by income and/or wages, but rates of activity
participation may not change much, given fixed time constraints. More detailed data sets,
including expenditure and price information, may resolve this question.

Discussion of Value of Time Estimates

In contrast to the reasonable and rather stable elasticity results, the value-of-time

estimates vary substantially across the five models. The quartiles of the sample’ s value-

of-time estimates are provided in Table 4-7.
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Table4-7

Summary of Value-of-Time Esti matesa. Quartiles across Households

Model Used: Type 1 Type 2 Type 3 Type 3 Type 4**

(All Tours) | (Endogen.

Work)

Value of Discretionary/Total** Time:

Minimum $ (10.73)| $ 0.22 [$(7.67E+6)| $ (82.11)| $ 0

First Quartile $ (892)$ 794 $(187.62)$ (13.92) $ 11.72
Median $ (8.06)| $ 13.13| $(102.80)| $ (9.09)| $ 26.17

Third Quartile $ (6.22)| $ 21.47|$ (58.95)| $ (5.61)| $ 42.66
Maximum $ (1.98)| $ 151.80 | $2.42E+6| $ (0.16)| $ 384.90

All values are before-tax, 1990 dollars per hour.
**The fifth model allows for discretionary-time and income endogeneity, while the others do not.
Thus, the fifth model's value of time elasticities are with respect to total time and wage.

While of the expected order of magnitude, the signs are opposite of one's
expectations in three of the five models! As mentioned in Chapter Three's specification
of the first model, the modified linear expenditure system’ s structure is so limiting that its
value-of-time estimates depend only on travel times — rather than income and
discretionary time levels. Thisreasoning may explain alarge part of the unexpected
results for the first of the five models. But what about the other negative estimates? Isn’'t
amodified translog form flexible enough to provide afirst-order estimate of the value of
time?

A Functional Conflict between Behavioral Indicators

One interesting but restrictive consequence of the modified-translog specification is
that there may be some conflict between the income e asticity signs and those on the
marginal utility of income (dv/dY); both depend on the y,, and y ., terms, and for one to
be positive the other is likely to wind up negative. Equation 4-2 illustrates the conflicting
incorporation of these parameters for the Type 3 model specification. In this set of

equations, note how the final term of the income elasticity isimplicitly negative and the
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first term has a negative denominator; therefore, it isjust the y,, parameter that has

flexibility to determine the sign on income elasticity for the ith demand.

Ho +(%d](zyﬁ In(t,) + Yy |n(y)j
(%()(Zyw ln(ti) Vv ln(Td)j

— VTd
~ Marginal Utility of Income’ (Chapter

. X" :
Income Elasticity of Demand, =d L x Y* =V _ Vv ,
dy  Xi  tv,  Tevq

where T, >0,t, >0, y, = +1(fixed, a priori, for model identifiability),
v, = Marginal Utility of Travel Time <0,

Valueof Time,., =

and v; = Marginal Utility of Discretionary Time > 0.

Four:-2)

The same conflict holds true for the less flexible, Type 2 Model. However, its value-
of-time results happen to be much more in line with expectations hereE! One should be
wary of these ostensibly flexible specifications, and further functional flexibility may be
sought where practical@ But something more fundamental to the structure of the models

may be causing the unanticipated results.

Identification of All Income/Wage Termsin Indirect Utility

In fact, the primary reason for a negative marginal-utility-of-time result may be that
the indirect utility functions underlying the estimated models are limited in their
representation of income (or wage) effects. Everywhere one finds an income term (Y) [or
wage term (w)] in the different model specifications, it isinteracted with either atravel
time or available-time-budget term, allowing immediate estimation of the assumed

indirect utility function from the results of the system-of-demands estimation. However,
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if there are other, isolated income (or wage) effects, in the form of g(Y) (for

example, log(Y)?), these will impact the marginal-utility-of-income estimates and thus the

value-of-time estimates.

If oneisrelying on a system of demand equations derived from the application of
Roy’s Identity in atime environment, one can only identify the magnitude of the effects
that are available from derivatives of indirect utility with respect to time and available
time. In order to identify the purely income (or wage) effects (or these effects interacted
with the vector of prices, which are assumed not to vary across households and thus show
up as constants or concealed within fundamental parameters in the regression equations),
one needs observable information based on these effects. Essentially then, one needs a
system of demands derived from application of Roy’s Identity in a money/price
environment so that parameters characterizing the derivatives of indirect with respect to
income (or wage) are all present.

Assume then that one has the system of demand equations as developed from the
negative ratios of the derivatives of indirect utility with respect to (invariable) prices and
income. The entire model should be estimated in a simultaneous fashion, so that the
estimates of optimal demand levels developed in the time setting equal those devel oped
in the price/money setting. One can impose equality across the two demand systems by
substituting rather complicated functions of explanatory variables and parameters for
several of the constant terms (e.g., the 1, ’s). Given thisimposed equality, one can then
maximize the likelihood of the sample observations using this single set of significantly

more complicated demand equations and one should have access to all parameters of

interest.
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There is adifferent way to assess the magnitude of income effects which do not

appear in derivatives of indirect utility with respect to travel times and available time;
however, it is not as elegant and may not produce consistent estimators. It requires taking
the results of the existing models and regressing these estimates of optimal activity
participation on a system of demands developed in a price environment. This method
was used with the third model to take a closer look at the marginal utility of income, and

it consistently produced positive marginal utilities, thanks to the incorporation of Y,
log(Y) and log(Y)? effects. Theindirect utility specification used is the following:

Indirect Utility =
v=v,(f,T,, P@implicitly),Y) +v,(P,Y) =
a, —z,uiti +u,T, +Zai In(t,) +Z(J/2)ﬁij In(t, ) In(t;) + (Chapter
Z In(T,) In(t,) +ZyI In(Y) In(t; ) + Yy IN(T,) IN(Y) +

de In(P>+Zr5.PYIn(P>In(Y) + Y + 4, In(Y)?
Four:-3)

The optimal demand levels which result from application of Roy’s Identity in aprice

environment to the above formulation are the following:
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—Oip — JiPY' In(Y)

5 + %)(Z Vi I0CE) + o IN(T,) + Gy +2 &y In(Y)j | (Chapter

wheret, = Travel Timeto Activityi, P = Price for Activityi,
Y = Income, T, = Discretionary Time Available,

and J; :F15ipv = =
& ¥+ = +1(for identifiability of parameters).

Four:-4)

5iP JiPY 15PYT zzdeY |n(Pl),
i i i

Note that assumption of constant price levels leads to non-identification of the
fundamental price-interacted parameters but produces a similar, estimable functional
form, where the price-interacted parameters are subsumed into identifiable parameters.
Thisimplicit incorporation of the price-specific parameters can be thought of as having
occurred in all model specifications used here, particularly those with the constant terms
(which thereby allow for isolated-price effects).

Using this specification, a solution was sought which minimized the squared
difference between earlier estimates of X, ’s (derived in atime environment and
constructed using Table 4-2a' s parameter estimates) and the estimates arising from
Equation 4-4’ s demand specification (with y ., = +1 and the already-estimated y.,’s
substituted in directly). This method produced estimates of the marginal utility of income

(i.e., the denominator in the demand equation of Equation 4-4) which are dominated by a

positive d, term. The negative termsin the marginal utility of income which come from

dv, /dY are negligible in comparison with the highly positive estimate of J,,. The new
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value-of-time estimates are all positive, but their magnitude is too low by several orders

(e.g., the median value is $.00045/hour). Moreover, the second set of estimates relies so
substantially on the constant terms in the demand equations that estimates are predicted to
vary little across households. Apparently then, this expanded indirect utility specification
and/or the methods used to estimate this system’ s parameters (including simply
minimizing the sum of squared differences over all demands and strong assumptions like
price invariability) remain lacking. These modeling complexities are a prime areafor
additional research.

Other Reasonsfor Incorrect Marginal Utility of Income Estimates
In addition to full identification of the indirect utility function and flexibility in
functional form, there are other issues to consider in the estimation of the value of time.
For example, in the fifth model estimated here, which comes from the Type 4 Model
specification, the assumption of exogenously determined income and discretionary time
budgets is dropped, theoretically removing any unmodel ed dependencies across these
explanatory variables and demand which may have caused erroneous results. The loss of
thisimplicit and strong exogeneity assumption —which is present in the previously
estimated models — may be what gives this final model its reasonable value-of-time
esti mates.EI
Another reason for a negative marginal utility of income (and thus negative value of
time) results may be that high income households are able to live in lower travel-time
environments, so the parameters affecting the marginal utility of travel times might pick

up an income effect, leaving the final income effect rather ambiguous and ostensibly

negative in many models. For example, after normalizing income for total-time
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availability, H, one finds that average travel times to each of the four al-job iso-

opportunity contours gradually fall as normalized income increases; the mean travel times

between the first and fourth quartiles of Y/H fall from 11.5 to 11.0 minutes to reach the

first contour, 22.1 to 20.6 to reach the second, 33.5 to 31.3 to reach the third, and 49.4 to
47.2 to reach the fourth. It appears that high-income/low-time households are residing in
locations that better fit their constraints, as one would expect; thus, if household location
choice were made endogenous to the model, one could avoid some of the biases this
dependence may create.
Further Qualifications

While the results of this research are interesting, one should recognize that the data
are imperfect and the model assumptions are strong. For example, the travel-time data
are measured with some error, thanks to zonal aggregation and reliance on free-flow,
automobile travel times (— and due to the chaining of trips, as discussed at the end of
Chapter Three). And the income and wage variables either come from survey-bin mid-
points, in the case of income-reporting households, or have been estimated, for the non-
reporting households. Simply the use of a model with one or more explanatory variables
measured with error leads to highly uncertain impacts on estimates. (Greene 1993)
Unfortunately, most models of travel behavior are subject to such deficiencies in the data
set, since income tends to be reported by ranges and/or travel times come from a time-of-
day-independent data base.

There also is the concern that cross-sectional data do not provide the necessary
variation to discern heterogeneity from state dependence in the unobserved information

which influences decisions. Meurs (1990) recommends use of panel data for estimation
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of trip generation dueto difficulties arising in cross-sectional models from omitted time-

invariant/fixed effects across individuals; for example, Meurs' s models using the Dutch
Mobility Panel data set indicate that cross-sectional income elasticities of demand tend to
be biased high. Kitamura (1988) uses a three-year panel data set to study trip generation
rates and finds the serial correlation to be substantia “suggest(ing) that important
determinants of trip generation lie outside the set of variables that have traditionally been
considered in travel behavior analysis.”

Kitamuraet al. discuss the need for longitudina calibration to avoid a“longitudinal
extrapolation of cross-section variations’ (Kitamuraet al. 1996). In other words, cross-
sectiona elasticities are observed over different individuals yet often “applied asif they
represent longitudinal elasticities that capture the change in behavior that follows a
change in a contributing factor within each behavioral unit.” (Kitamuraet al. 1996, pg.
274). The use of cross-sectional elasticities for estimation of longitudinal behavior is
only rigorously valid under restrictive conditions, such as response being immediate and
its magnitude being independent of past behaviors, according to Goodwin et al. (1990).
In some cases, the greater the amount of time between a change in an independent
variable and measurement of behavioral response, the higher the likelihood that cross-
sectional estimates apply.

Becker (1965) voices some concern about the interpretation of cross-sectional
elasticities for adifferent reason. His primary thesisis that the true cost of “commaodity”
consumption involves atime cost, not just a monetary cost for the non-time factors/goods
used to produce commodities. Thus, he argues that “traditional cross-sectional estimates

of income elagticity (which) do not hold either factor or commodity prices constant...” are
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“...biased downward for time-intensive commodities, and give a misleading impression of

the effect of income on the quality of commodities consumed.” (1965, pg. 517)

Unfortunately, without adequate longitudinal data sets, Kitamura' s comments can
only be used to qualify the results of this research, in the estimates of such elasticities.
Accommodation of Becker’s fully general model requires information on the production
technology of commodities (e.g., the combinations of time and money that produce a
dining-out experience), so Becker’s concerns may can only be stated as qualifications
here.

The globalness of the likelihood' s maxima used to estimate parameter values and
assess covariance a so represents an assumption of these results. While the global
maximum is a consistent estimate of the true parameter values — assuming the model and
its distribution have been correctly specified, there is no guarantee that the search routine
has converged upon the function’s global maximumEi| This particular model’s
requirement of positive activity-participation rate-parameter estimates for a calculable
likelihood val uemoften makes the acquisition of feasible starting parameter values a
significant chore, particularly for the most functionally flexible models; thus, it is not
easy to try starting at awide variety of highly distinct parameter sets and comparing fina
points of convergencein an effort to avoid local maxima. However, as long as the results
seem reasonable (e.g., aslong as estimates of the means and proportions of trip-making
correspond well with observed values), one may expect that one' sresults are not alocal
maximum of poor prediction quality. And, aslong as the convergent set seems robust to
some changes in starting values, one may expect to be at the neighborhood’ s maximum.

Both these details were confirmed for the results presented here.
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The assumption of a single gamma variable characterizing the unobserved

heterogeneity across all consumption types considered is a very strong one. The
assumption of activities taking place as a Poisson process is also a strong one; it implies
independent increments, meaning that the number and types of eventsto show upin a
particular timeinterval, knowing the rates of occurrence, are independent of those
appearing in another, non-overlapping interval. Inreality, one expects that people will
not over-consume any certain type of activity; so, if, for example, one knows that a
household engaged in several social activitiesin the morning, one would expect fewer
such activities in the evening, given the household’ s optimal rate of social-activity
participation. However, thisissue of behavior conforming to a Poisson processis likely
to be less of aconcern over longer survey periods.

As ameans of comparing different stochastic specifications, consider the nesting of
the Type 3 specification for the four-contours discretionary trip making within less
stochastically restrictive models. For example, consider amodel of no gamma-error-term

correlation, i.e., a system of independent negative binomials (with related means, thanks
to the sharing of parameters acrossthe X, specifications). Asshown in Table 4-3c, this

difference of models produces a likelihood ratio test statistic of 2(-42592-(-46218)) or
7,252, for athree-parameter change (viathe addition of three more over-dispersion
factors). Thisresult clearly calsfor arejection of the assumption that the unobservable
gamma errors are equal across the four demand typeéE.| And it suggests that amore
complex model of correlation in unobserved information is needed — in place of the
perfect-correl ation/same-gamma assumption being made here. To alow more flexibility

and thus complexity, one may with to consider, for example, the incorporation of a set of
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unobservable random variables having a multivariate log-normal stochastic distribution —

al within the Poisson specification of Equation 3-21. However, it may well be that no
form of unobserved heterogeneity — other than that of the single gammaterm — allows the
observation probabilities to collapse to a closed-form solution. And, without a tractable
solution, one will need to rely on atechnique like the ssmulation of likelihoods to
approximate maximum likelihood estimation.

It is anticipated that the correlations of unobserved information are at least positive
for the current specification of demand types, and this belief is supported by correlation
results. For example, sample correlations of the ratios of observed trip-making to
average, optimal demands (predicted using the independent-negative-binomial s-with-
shared-parameters model, type v in Table 4-3c) are al positive — though none exceeds
0.155. These sample correlations also are observed to depend on similarity of demand
types: they all support ageneral trend of decrease with dissimilarity (for example falling
from 0.154 between the first and second contours, to 0.036 between the first and third
contours, to 0.003 between the first and fourth contours). Note, however, that thisisa
coarse way to estimate the correlation because the observed activity participation is highly
discrete (owing to the short sample period of the surveys).

In the short run, correlation may be less apparent because the phenomenon of trip
chaining produces a dependence among the number of trips taken to the more distant
activities (in addition to allowing the traveler to face a different set of trip costs than the
estimated models assume). For example, when one is analyzing stops (rather than tours)
and one observes at least one distant/far trip on a specific day for a specific household,

one may expect more far trips but fewer short/near trips that same day than the long-run
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optimal rates for that household would suggest. However, as the length of a survey

period increases (e.g., from one day to aweek or more), more balance in destination
choicesislikely, so the trip-chaining phenomenon is expected to affect parameter

estimates less.
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ENDNOTES:

S-Plus's symbolic differentiation capabilities are limited to general operands (e.g., multiplication,
logarithms); it will not automatically take derivatives of the gamma functions which exist in the
likelihood formulation used here. To facilitate the maximization process, entire derivatives may be
specified for the S-Plus minimization routine, minsum(); however, such derivatives must be specified
within a couple lines of code, which was not possible with the complex specification used here.

Unfortunately, due to reasons of proprietary information protection, the numerical derivatives that the
algorithm creates and uses for optimization are not available to the modeler; if available, these would
prove useful for speedier estimation of the variance-covariance matrix of parameter estimates as well as
for relative ease in checking the global probability of likelihood-maximizing parameter sets using Gan
and Jiang's (1997) suggested method.

The 1.638 value is computed using the difference of the variance and the mean of the total humber of
discretionary trips across households, divided by the s%uared mean. Thisissimply the solution using the
negative binomial’ s variance formula: 0 2= MU+ al” . Thisno-information dispersion-parameter
estimate for each of the X’ sindividually produces alphas of 2.4, 3.4, 5.0, and 10.0; in contrast, a solution
involving explanatory variablesin a Type 3 model specification (with cross-equation parameter
congtraints in effect) produces estimates of 1.5, 2.2, 2.8, and 7.4, all of which are statistically significantly
lower.

Note that the no-information situation modelseach X, asaconstant acrossall households,
independent of time and budget information. In contrast, a full-information model for this particular data
set produces alog-likelihood value of -32,749. The full-information’s likelihood-maximizing case occurs
when each X | isset to equal the observed number X, | and varianceis minimized (i.e., the over-
dispersion factor “a’ is zero).

The three additional restrictions on the constrained model are that the correlations are perfect between the
unobserved gamma errors terms of the first and the second, third, and fourth demands (implying perfect
correlation across all six distinct pairings of these demands unobserved gamma terms).

The pseudo-R? s for the other, comparable models estimated in this chapter are: 8.41% for the modified
trand og without intercepts (whose results are provided in Tables 4-2a and 4-2b), and 9.51% for the
modified translog with intercepts estimated on the tour data (whose results are shown in Tables 4-4a and
4-4b).

Observations of zero translate to full-information, Poisson rates of zero; and, since the probability one
observes zero tripsif the rate is zero is one, the log-likelihood is zero (rather than negative) for these
observations.

8 When the four equations are estimated separately, three more 4,'s are estimated than previously, six more

B’ s are estimated and nine more )’ s are estimated.

The hypothesis that the cross-equation demand-parameter constraints are valid, assuming that the model
alowing total independenceis valid, produces a p-value of 9.1e-27, which is certainly less than any
meaningful cut-off level for insignificance.

19 The estimates of “0” terms associated with the no-inf mlation og individual demands (denoted by i)
were computed using the following equation: a, = |0,” — U '; U

O

™ The easticities of demand with respect to wage also may be negligible because the wage data are
inferred (and assumed to be zero for households with no workers), so the variation in this variable may
not be really capturing wage differences. Moreover, workers may have relatively little choice over total
hours worked; their decision may be largely discrete in that they choose to work full- or part-time and
their hours are largely fixed from that decision.

12 The values shown in the table of value-of-time quartiles for the second model type considered come from
afirst-order approximation, where estimates of the marginal utility of time and income are simply
substituted into the ratio for a value of time; thisis the method used for al of the measures provided,
unless otherwise noted. A more refined, second-order estimator of the value of time in this model
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accounts for the positive correlation between the marginal utilities (which is estimated to range from +.10
to +.41 for the sample) and produces the following quartiles: $0.22, $8.05, $13.33, $21.86, $156.46. One
observes that even though there is significant correlation, the first-order value-of-time estimates lie close
to these second-order estimates.

3 sStandard errors of these val ue-of-time estimates were computed (using the methods described in the
Appendix, section A-6); and all the value-of-time estimates for this model are highly statistically
significantly different from zero, assuming the model specification and data are correct.

14 To add flexibility through additional identifiable terms, amodel which added the terms log(T )%,
log(Y)log(T4)? and log(Y )4 og(T ) to Equation 3-17'sindirect utility specification was also estimated. It
was hoped that this model would produce value-of-time results more consistent with expectations;
however, while the log-likelihood value rose significantly (from -46,218 to -46,012), al value of time
estimates across the 10,834 BAT S households remained negative, with a median value of -$6.49. Thus,
the problem may lie outside the specification of the time-based demand system, which can only identify
effects that interact with travel times and available time.

5 While quite reasonable, the estimates for the fifth model are probably too high. The average pre-tax wage
for working households in the BATS survey (for the 1989 tax year) was estimated to be $20.17; across all
households it was $16.99."> Post-tax values are likely to be from 20 to 35 percent less, and there may be
abias (estimated to be a positive nine percent, in Chapter Three) for not allowing income and
discretionary-time budgets to be endogenously determined.

16 Gan and Jiang (1997) have recently devised arelatively simple test for assessing the globalness of one’s
likelihood maxima; however, it relies on one's estimation of the likelihood’ s matrix of second derivatives,
which is rather tedious to compute for this particular model and thus was not used.

17 Poisson and gamma probabilities are not valid with negative means; for example, if A were negative,
probabilities would be negative for odd values of “k”, and the function /(x) requires a positive argument.
Besides, there is no such thing as negative counts of activity participation.

181t one were to add no new parameters by imposing the same over-dispersion term on each of the
independent negative binomials, the log-likelihood value for this particular data set is-42,981. This
resultsin a difference of log-likelihoods (from that of the constrained model) of over 3,000, representing
avery significant freeing of the model with no added parameters.
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Chapter Five: Hypothesis Testing and Cost-Benefit
Estimation

One can test a multitude of hypotheses with the model results. For example, given
fixed income and discretionary-time levels, istotal travel time by a household
independent of the travel-time environment? Is the total number of trips independent of
income or travel times? And are the time and budget constraints binding? One can aso
measure the impacts of changes in access to opportunities in both time and money units,
by inverting estimated indirect utility functions with respect to both constraint levels.

These hypotheses are tested and disbenefits estimated using the Type-Two model’s
parameter estimates (shown in Tables 4-2a and 4-2b) and structure (illustrated by
Equations 3-15 and 3-16). This particular model was chosen for these tests and
computations because of its apparent agreement with theory relative to many of the other
models' results (i.e., its positive value of time and marginal utility of income) and its
inclusion of the discretionary-time and income variables, which are an explicit part of
severa of the hypotheses posed and which produce the desired measures of disbenefits.

Hypothesis Testing using the Type Two Model
Stated in equation form, the hypotheses described in this chapter’ s introduction and

tested here are the following:
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o _ d(z xi*tij
d(Total Discretionary Travel Time) _ i

Hypothesisl ; =0,
d(Travel Time;) dt,
d(Discreti Activity Participati d(z Xi*j
Hypothesis2 (Discretionary Activity Participation) _ i - 0,0
d(Income) dy
d(Discreti Activity Participati d(zxij
Hypothesis3 (Discretionary Activity Participation) _ i -0,

d(Travel Time,) dt

i

Hypothesis4  Marginal Utility of Discretionary Time = ;TV =0,
d

Hypothesis5  Marginal Utility of Income = % =0.

Hypothesis 1

After studying avariety of aggregate data sets of travel-time expenditures across
regions and across countries, Zahavi and others (Zahavi 1979a & b, Zahavi and Talvitie
1980, Zahavi and Ryan 1980, Zahavi et al. 1981) have proposed that total travel time
expenditures are inelastic with respect to travel-time costs. However, Zahavi’'s
observations and conclusions (Zahavi 1979a & b, Zahavi and Ryan 1980, Zahavi and
Talvitie 1980, Zahavi et al. 1981) tend to be based on aggregate data and simple
correlations; so this hypothesisis particularly interesting to test here, where the
explanatory model is disaggregate, behaviorally based, and quite complex. However,
since the Type Two model data consider only discretionary-activity participation and
assume round-trip travel from one's home (without the chaining of trips into tours), the
test of thisfirst hypothesisis somewhat different from Zahavi et al.’s proposition.

The results of the test of Hypothesis 1 are shown below, in Table 5-1a.
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Table5-1a
Quartiles of the Estimates of the Derivative of Total Travel Time

for Participation in Discretionary Activities
with respect to Activity Access/Travel Times (units are dimensionless)

Derivative Based on Travel Time to the following Zone:
Quartiles: Immediate Near Moderate Far
Minimum 0.14 0.03 -0.90 -0.330
25% 1.02 0.20 -0.21 -0.088
Median 1.62 0.34 -0.15 -0.065
75% 2.32 0.50 -0.10 -0.046
Maximum 8.87 2.35 -0.023 -0.014

Evidently, total travel time to access discretionary activities increases when the travel
times to access the closer opportunities increase, indicating a dependence on these nearby
activities. But the derivatives tend to fall when the more distant opportunities become
more time-consuming to access, suggesting that people substitute nearer, less travel-time-
costly activities for those far activities. The effects are probably strongest for the nearer
activities since the dataindicate greater rates of activity participation in the closer iso-
opportunity contours: the mean rates across the observed set of households are: 1.09,
0.617, 0.234, and 0.189, for tripsto the immediate through the far zones, respectively.

Thereis aways uncertainty in estimates. These particular derivativesinvolve ratios
of random variables (the parameter estimates); and, using first-order Taylor series
approximations to the variance of the derivative functions (as described in Appendix
section A-7), the quartiles of the standard errors for these total-travel-time-derivative

estimates are provided in Table 5-1b.
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Table5-1b
Quartiles of the Standard Error Estimates of the Derivative of Total Travel Time

for Participation in Discretionary Activities
with respect to Activity Access/Travel Times (units are dimensionless)

Standard Errors of Based on Travel Time to the following Zone:
Derivative Quartiles: Immediate Near Moderate Far
Minimum 0.006 0.003 0.002 0.002
25% 0.028 0.018 0.009 0.007
Median 0.044 0.028 0.015 0.012
75% 0.062 0.042 0.024 0.017
Maximum 0.246 0.172 0.116 0.076

These results lead to the following T-statistics for this hypothesis test:

Table5-1c

Quartiles of the T-Statistics of the Derivative of Total Travel Time
for Participation in Discretionary Activities
with respect to Activity Access/Travel Times

T-Statistics of Based on Travel Time to the following Zone:
Derivative Quartiles: Immediate Near Moderate Far
Minimum 19.6 6.4 -15.0 -10.3
25% 35.9 11.3 -11.6 -6.6
Median 37.1 11.8 -9.7 -5.6
75% 37.7 12.4 -8.8 -5.0
Maximum 39.0 14.0 -7.4 -3.8

Interestingly, all household observations call for areection of Hypothesis 1, so the
results are not consistent with the hypothesis. Moreover, an ordinary least squares
regression of total travel time per household (using reported travel times from the BATS
data set) consistently produces statistically significant coefficients on three of the four
iso-opportunity access times, after controlling for household income and total time

availabilityl)
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Hypothesis 2

The estimated quartiles across the 10,834-household population for the derivative of
total daily discretionary-activity participation ( XT* ) with respect to income are the

following:

Table5-2a

Quartiles of the Estimates of the Derivative of Total Discretionary-Activity
Participation with respect to |ncome (units are daily activity number per dollar)

Derivative Minimum 0.25 Median 0.75 Maximum
Quartiles: -5.34E-04 -1.44E-05 -8.52E-06 -5.31E-06 -3.95E-07

While the results are negligible for this model, their consistently negative sign
suggests that total discretionary trip-making does not go up when income rises, ceteris
paribus. Note that Meurs' s models (1990) using the Dutch Mobility Panel data set
indicate that cross-sectional income elasticities of demand tend to be biased high (in the
positive direction), so actual, derivatives may even more negative. Some possible
explanations for this result are that high-income households work so hard that they are
too tired to take as many discretionary trips as others, they access higher-quality
opportunities to accomplish many demands at once, and/or they use their wealth to
purchase goods and services that enable them to avoid making trips.

The quartiles for these estimates’ T-statistics are the following:

Table5-2b

Quartiles of the T-Statistics of the Derivative of Total Discretionary-Activity
Participation with respect to Income (units are daily activity number per dollar)

Quiartiles of Derivative Minimum 0.25 Median 0.75 Maximum
T-Statistics: -23 -0.61 -0.36 -0.23 -0.02
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Few of the estimates are significant enough for us to reject the hypothesis, suggesting

that income plays little role in a household’ s rate of discretionary trip-making/out-of-
home activity participation. Thisis aremarkable result, given how influential one might
assumeincomeis. However, thisresult does not speak to income'srolein the
consumption of other, more material goods; it isin this other consumption, not modeled
here, that incomeis likely to substantially influence choice, as has been indicated in
results of the more typical system-of-demands analysis (see, e.g., Deaton 1987, Pollack
and Wales, 1978 & 1980, and Stone 1954).

Hypothesis 3

The quartiles for the derivatives of total discretionary-activity participation with
respect to the four different travel times sets are shown below, in Table 5-3a.

Table5-3a

Quartiles of the Estimates of the Derivative of Total Activity Participation
in Discretionary Activitieswith respect to Activity Access/Travel Times
(unitsaredaily participation rate per minute changein travel time)

Derivative Based on Travel Time to the following Zone:
Quartiles: Immediate Near Moderate Far
Minimum -0.157 -0.142 -0.096 -0.030
25% 0.005 -0.021 -0.017 -0.010
Median 0.039 -0.015 -0.008 -0.007
75% 0.092 -0.010 -0.004 -0.005
Maximum 0.917 0.048 0.011 -0.001
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The T-statistics for these estimates are as follows:

Table5-3b

Quartiles of the T-Statistics of the Derivative of Total Activity Participation
in Discretionary Activitieswith respect to Activity Access/Travel Times

Quatrtiles of Derivative Based on Travel Time to the following Zone:
T-Statistics: Immediate Near Moderate Far
Minimum -70.4 -40.4 -29.7 -27.0
25% 2.0 -11.2 -12.3 -11.1
Median 12.2 -8.4 -8.3 94
75% 19.2 -6.0 -5.2 -7.9
Maximum 34.8 3.3 25 -3.0

With the exception of household response with respect to the immediate zone's
travel times, it appears that the total discretionary-activity-participation response may be
largely negative, in a statistically significant sense. However, the magnitude of net
response for most travel timesis quite minor when compared with mean activity-
participation frequencies of 1.09, 0.62, 0.27, and 0.19 (for the four contours,
respectively), suggesting quite stable activity-participation rates. Thus, the results are
consistent with previous work, discussed in Chapter Two, in which trip frequency is
found to be insensitive to supply-side variables.

Additionally, Golob, Beckmann, and Zahavi (1981) reference works (e.g., Smith &
Schoener 1978 and Zahavi 1979b) which cause them to conclude that “when travel
speeds increase, travelers prefer to trade-off saved time for longer trips, rather than for
moretrips,” and “(w)hen incomes increase, travelers tend to purchase higher speeds (such
as by transferring from bus to car travel) and travel longer distances, instead of generating
more trips.” (p. 378) These characterizations suggest that one should expect to find
nearly constant activity participation levels, regardless of travel times and/or costs, which

is consistent with the results found here.
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In arelated test (but one that work-trip travel time as given), Kitamura (1984) applies

models of non-work activity choice and time allocation to estimate the effect of work-trip
travel time, with data from the 1977 Baltimore Travel Demand Data set. Kitamurafinds
this variable to not be statistically significant, in contrast to the other explanatory
variables considered, such as cars per driver, work duration, and gender. In some
contrast, Purvis et al. (1996) use work-trip duration in ordinary-least-squares models of
home-based shop/other and social/recreational trip generation, and their results indicate
an inverse relationship between work-trip duration and non-work home-based trip
frequencies (using a 1990 data set), suggesting a binding total-time budget.lzI
Hypothesis 4
The quartile estimates for the derivative of indirect utility with respect to

discretionary time budget are the following:

Table 5-4a

Quartiles of the Estimates of the Derivative of Indirect Utility
with respect to Discretionary Time (unitsare utility per daily hour)

Derivative Minimum 0.25 Median 0.75 Maximum
Quartiles: 0.117 0.439 0.616 0.914 1.558

As expected, these estimates of the shadow price of this constraint are strictly
positive. One cannot effectively comment on the magnitude of these derivatives or their
range of estimated values, given that utility is an ordinal measure and uniquely identified
only up to amonotonic transformation. However, one can estimate their T-statistics, and
the quartiles of these are the following:

Table5-4b

Quartiles of the T-Statistics of the Derivative of Indirect Utility
with respect to Discretionary Time (units are utility per daily hour)
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Quiartiles of Derivative Minimum 0.25 Median 0.75 Maximum
T-Statistics: 7.1 8.7 9.1 9.3 10.2

Fortunately, the standard errors are sufficiently small for these estimates that one can
be confident that the true marginal utilities of time are strictly positive, assuming the
model has been specified correctly.

Hypothesis 5

The quartiles for the marginal utility of income estimates are the following:

Table5-5a

Quartiles of the Estimates of the Derivative of Indirect Utility
with respect to Income (units are utility per annual dollar of income)

Derivative Minimum 0.25 Median 0.75 Maximum
Quartiles: 2.45E-05 8.86E-05 1.25E-04 1.86E-04 3.11E-03

Recall that this particular model was chosen in large part because it is one of the few
that has a positive value of time (thanksto its positive marginal utility of incomeq.
While the marginal utilities of income appear small in magnitude, indirect utility is not
scaled to any known dimension, so one cannot assume that the marginal utilities are
relatively small. The quartiles of the T-statistics for these estimates are a better way to
assess the magnitude of the marginal utility estimates, and they are provided below, in

Table 5-5b.
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Table5-5b

Quartiles of the T-Statistics of the Derivative of Indirect Utility
with respect to Income (units are utility per annual dollar of income)

Quiartiles of Derivative Minimum 0.25 Median 0.75 Maximum
T-Statistics: 4.9 6.6 7.2 7.6 9.7

These values cal for argection of the null hypothesis that the marginal utility of
income is zero or negative. Note that the sign of this result is not consistent with the
results of two of the other translog-based models, where marginal utilities of income were
estimated to be negative; but that discrepancy is likely to have much more to do with an
incomplete indirect utility specification than with the true shadow price on this constraint.

Cost-Benefit Analysis using the Type Two Model

Thanks to the microeconomic rigor of the model developed in this research, one also
can estimate the benefits and costs associated with avariety of policies. For example,
what are the equivalent variations in units of time and money of a policy which causes
travel timesto all opportunity contours to rise 50 percent? For purposes of illustration,
this particular environmental change is considered here for all sampled households — and
for a“typical” household facing different time and income budgets. The method is
illustrated using the estimation results of the Type 2 model.

In order to apply the method of equivalent variation (as discussed in Chapter Three's
section on Estimating Benefits and Costs), one must invert the indirect utility function
with respect to the budget level .El In the model developed in this research, there are two
budget levels, providing more information to policy-makers than strictly money-budget
models. However, one should be aware that the effects of unidentified, isolated income

terms which exist in the full, true indirect utility specification are not captured by the
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single time-setting system of demand equations estimated in this research. Thus,

inversion of the indirect utility function’s time-interacted, identified effects with respect
to the income variable may not tell the whole story. However, the equivalent variation
estimates in terms of time units are theoretically sound in this regard.

For the Type 2 model defined in Chapter Three (Equations 3-15 and 3-16), inversion

with respect to the time and income budgets produces the following expenditure

functions:
u_(zai +Z,Bij In(ti)ln(tj) +zin In(ti)ln(Y)j
e (T,u,Y) = exp j ! i , &
(Zyn In(t;) + yay |n(Y))
u_[zai +Zﬁij In(ti)ln(tj) +ZyiT In(t; ) In(T, )J
e (f,uT,)=exg — ” i
(Zyw In(t;) + Vv |n(Td)j
where"t." = Trav;-:'l Timeto | so — Opportunity Contour "i","Y" = Income_,

& "T,"= Discretionary Time Available.

Note that the quartiles of the expenditure functions for these sampled households at
their current indirect utility and travel-time levels are just the observed levels of income
and discretionary time (since one inverts the estimated indirect-utility formulawith
respect to these two variables). Using the Type 2 model parameter estimates (shown in
Table 4-2a), the quartiles of the first-order estimates of optimized utility levels for the

sample households are as follows:
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Quartiles of Indirect Utility Estimates
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Quartiles of Indirect Utility Estimates
across Household Sample:

Minimum

0.25

Median

0.75

Maximum

-52.5

17.9

30.9

39.3

76.8

The quartiles of the changesin indirect utility level estimates, following a 50-percent

increasein all travel times for all households are as follows;

Table5-6b

Quartiles of Indirect Utility Changes Following 50% Increasein Travel Times

Quartiles of Indirect Utility Drop
(following 50% travel-times increase):

Minimum

0.25

Median

0.75

Maximum

-19.0

-8.4

-7.0

-5.8

-1.5

Since utility does not enjoy an understood scale or dimension, it is generally more

useful to look at the equivalent variation associated with a change; thisis the amount of

money or time lost (or gained) that the change would be equivalent to, under existing

price/travel-time conditions. The quartiles for equivaent variation in units of money and

time are asfollows:

Table 5-6¢

Quartiles of Equivalent Variation, in Money and Time Units

Equivalent Variation Quartiles in Minimum 0.25 Median 0.75 Maximum
Dollars per Day: $ (409.18) $ (119.81) $ (85.30) $ (59.03) $ (4.23)
Equivalent Variation Quartiles in Minimum 0.25 Median 0.75 Maximum
Hours per Day: -51.5 -13.3 -9.8 -7.1 -2.6

All are negative changes, as expected, since everyone has to engage in some level of

activity participation outside the home and travel is almost always viewed as a cost; so

having to spend more time to participate in the same types of activitiesis expected to be a

disbenefit. The disbenefits are estimated to be substantial; the median equivalent

variation in daily income is negative $85.30, which means that the median amount a
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household would be willing to spend per day just to avoid travel-time increases of 50

percent is $85.30! This tranglates to over $31,000 per year or aroughly $300,000

premium for a home locati onEI

which provides such access, over one that faces 50 percent
longer travel times.

Moreover, the median amount of discretionary time such a change represents to the
sampled households is estimated to be 9.8 hours per day! In contrast to the same policy
being imposed in a money-expenditures environment, this level of equivalent variation is
much more than one would expect the household’ s travel time to increase. |If monetary
prices were to increase by 50 percent, one would need a proportional increase in income
to remain at the same level of utility. But, for the sample of 10,834 households, the
median of round-trip travel times multiplied by observed activity participation isjust 47.3
minutes per day (with amean of 1.42 hours). So, even if households were to continue
making the same number of trips to the same zones, the expectation is for a median
travel-time increase of just 24 minutes — which is nowhere close to the 9.8 hours of
equivalent variation. From these resultsit seems clear that how one experiences one’'s
timeisof great import (e.g., traveling versus leisure). And access to opportunitiesis
highly valued by households; households appear willing to spend a great deal of money
and/or time in order to avoid increases in travel times.

If one wishes to consider a specific set of household characteristics, for example a
low-income household versus a high-income household facing the same set of travel
times, one can get afeeling for the differences in these households' valuations of changes

in access to opportunities. As an illustration of this, consider four households which face

the median set of travel times for the San Francisco Bay Arearegion to the four iso-
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opportunity contours modeled: two of these households have the same, sample-median

amount of discretionary time, but face very significant differencesin their income

constraint, while the other two face the same, sample-median income constraint but not

the same discretionary-time constraint. How do their valuations of afifty-percent

increasein al travel times differ? The set of median travel times for the region along

with the different income and discretionary time constraints considered specifically here

(i.e., the tenth and 90th percentiles, as well as the median) are shown below.

Table 5-6d

Median Travel Timesand Low, Median, and High Budget L evelsfor Sample

(in minutes)

Median Travel Times to Access the Four Iso-Opportunity Contours:

Immediate
9.78

Near
17.02

Moderate
27.37

Far
42.67

Levels of Income and Discretionary Time Used:

Income: 10% $ 17,500
(1989 pre-tax $/year) Median $ 42,500
90% $ 87,500
Discretionary Time: 10% 17.93
(hours/day) Median 38.83
90% 73.63

The equivalent variation estimates which result from a 50-percent increase in travel

times are shown below. As expected, lower-income and lower-time households are less

able to place a high equivalent value on such a change.
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Table 5-6e

Comparison of Equivalent Variation Changesfor Specific Household Types

Comparison of Equivalent Variation Estimates for Low/High-Income and -Time Households:
(following a 50% increase in all travel times):

Low Income Household: $ (35.18) per day
High-Income Household: $ (165.00) per day
Low-Discretionary-Time Household: -5.21 hours per day
High-Discretionary-Time Household: -16.45 hours per day

It isinteresting to note that the differences in the measure of indirect utility estimated
for these different households are greater for the low-income and low-time households
(i.e, -7.3 and -8.0 are the utility differences for the low-income and low-time households
considered, versus-6.4 and -5.9 for the high-income and -time households). Since any
measure of utility isonly unique up to an order-preserving/monotonic transformation, we
actualy cannot tell if the low-income and low-time households “suffer” more from such a
change, but it is possible. These results may suggest that, even with similar utility or
welfare differences, the ability to place amonetary or time value on such changes can be
very different. Asapoint of comparison, the values of time which correspond to these
households are shown below; the resultsimply that time availability, rather than solely
money availability, plays a substantial role in time valuation.

Table 5-6f
Comparison of Time Valuation for Specific Household Types

Comparison of Value-of-Time Estimates for
Low/High-Income and -Time Households ($/hour):

Low Income Household: $ 5.00
High-Income Household: $ 26.79
Low-Discretionary-Time Household: $ 3178
High-Discretionary-Time Household: $ 5.96

Before leaving this chapter, the stochastic nature of the presented estimates deserves

some serious discussion. It isvery rare that the first-order estimates of functions of
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variables, such asindirect utility and expenditures as functions of estimated parameters,

arethe “best” estimates of these functions' mean values. For the benefit measures

considered here, this result can be written in the following form:

Expected Monetary Benefit = E,(EV, (f, T, u)) # EV, (T, T,u) generally,

& Expected Time Benefit = EE(EVT (f,Y,u|£)) # EV, (T,Y,u), generally.
Five:-1)

(Chapter

Expectation is not equal to the first-order estimates here thanks to correlation
between variables and non-linear transformations of variables; the biases these relations
create in such an estimate arise in important policy variables like equivalent variation and
should be accounted for wherever possible. McFadden (1996) discusses this general
estimation difficulty, which tends to be overlooked in the literature, and he suggests a

bounding of the typical cost/benefit measures generated by logit model estimates.
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ENDNOTES:

The parameter estimates are positive for the first and third contour’ s times, negative for those of the
second and fourth contour. The p-values which result from tests of the hypotheses that the true
parameters equal zero are 0.004, 0.632, 0.108, and 0.000 for the coefficients on access times to the first
through fourth contours, respectively.

Purvis et al. also point out that Goulias and Kitamura's work (1989) has found “a significant inverse
relationship between work trip frequency and shopping trip and social trip frequency” (Purvis et al. 1996,
pg. 3), aresult aso supported by Golob and McNally's work (1997).

All models were estimated maintaining the marginal utility of discretionary time positive, so it was only
this second condition of the sign on marginal utility of income that produces the sign on the value of time
estimates.

If amodel isinsufficiently specified with respect to one of the constraints, the expenditure function will
obviously be incomplete. Thisisa concern for the inversion of indirect utility with respect to the income
variable here, since all income effects may not be identified when applying Roy’ s I dentity exclusively in a
time setting. For example, the marginal utility of income was estimated to be negative in the Type 3
model of discretionary activity participation. Thus, those results lead to an estimate of the income
expenditure function whose value falls as utility rises; thisis a clearly unreasonable resullt.

The present value of a stream of 30 payments of $31,000 per year at a personal discount rate of ten
percent per year isjust over $292,000.
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Chapter Six: Limitations and Extensions

There are avariety of ways in which the models described here can be enhanced and
extended. For example, more specific demand types should prove useful and allowance
could be made for differences in preference structures as well as more flexible stochastic
specifications. Additionally, use of longitudinal data, recognition of intra-household
dynamicsin choices, and incorporation of scheduling constraints may prove useful.
These extensions are discussed here now.

Data Deficiencies

In their review of activity-based travel models, Bowman and Ben-Akiva (1996)
remark, “ The fundamental problem facing the activity based travel modeler is
combinatorial.” In other words, the high dimensionality of choice sets — particularly
when the dimensions of time and space are involved — can quickly lead to
computationally impractical models. The system-of-demand equations approach creates
the same problem: every consumption item of interest must be identified distinctly and
with a unique price; therefore, adequate incorporation of the time and space dimensions
can be difficult.

Since their purpose is primarily one of illustration, the models estimated here are
inherently limited in their scope. Of course, more detailed demand sets can be studied,
such as different trip types by different modes, different members of the household, and
different times of day to more, distinct zones. However, highly detailed demand studies
may be limited by the data. For example, existing travel datatend to be general in nature.
Many travel surveys divide discretionary tripsinto only six categories: social, personal

business, food shopping, non-food shopping, dining, and recreation. These and other
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categories lack information on the quality of activity. Moreover, employment and

interzonal travel time data are merely rough approximations — in addition to being highly
correlated across different job types, activity types, and mode types. Finaly, thereisthe
problem of sample size: more demand types means more than quadratic increasesin the
number of parameters requiring estimation for second-order-flexible functional forms —
creating less confidence in the resulting parameter estimates.

Modeling Expanded Choice Sets

Notwithstanding the described limitations, the research presented here can be
extended in several ways. Actual wage and unearned-income datawould be very
beneficia for the models described here because they alow the work-time and total-
income decisions to be endogenously determined without relying on coarse estimates (as
done here, in model Type 4). Data on activity-participation prices should also prove
useful, because their incorporation may substantially strengthen marginal-utility of
income estimates by allowing more model detailsin a system of demand equations
developed within a price context. And the simultaneous estimation of two systems of
demand equations (devel oped from the time and price versions of Roy’s Identity) should
be helpful for estimation of an entire indirect utility function and its resulting estimates of
income’'s marginal utility and a monetary expenditure function.

The use of a panel data set, where households are surveyed at various pointsin time,
may also prove useful, particularly if there is variation observed over time in households
travel-time environments. Chapter Five presents thisissue, citing arguments by Kitamura

(1996), Goodwin et al. (1990), and Becker (1965) against the use of cross-sectiona data.
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While data availability may place practical limitations on analysis of detailed demand

systems, the model presented hereis highly applicable in ways requiring far less data.
For example, an experiment across a set of locations differing only in their access costs to
afew specific activity types (e.g., access to different sizes or qualities of shopping centers
and/or parks) can, through the use of the methodologies described here, lead to an
analysis of the choices of households in a microeconomically rigorous way. The same
holds true for incorporating other types of demands, such as expenditures on in-home
entertainment equipment, telecommunications, or other personal goods. The system of
demand equations are derived as before, but the error-structure assumptions and
likelihood specification for these more continuous demand types should require more
flexibility.
Inclusion of Automobile Ownership in the Model

A difficulty with the stochastic specification used here (a multinomial distribution
conditioned on a negative binomial) is that many consumption choices, like car
ownership, are very distinct from trip-making decisions. Consider summing up cars
(long-life capital goodsq with short-run decisions (like the number of trips per week) and
assuming that the relative probabilities of optimal choices represent the relative means;
intuitively, this distributional assumption may seem highly unIiker.EI

However, one can always include automobile ownership and other, non-activity
demand types in the system of demand equations; the basic model structure described
here is sufficiently flexible to accommodate these, as long as one can identify the demand

level (by either observing variation inits“price” across observational units or by being

able to assume that no variations in its price occur across observations). It isthe desireto
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incorporate correlation in unobserved heterogeneity which complicates the specification;

however, model estimation using simulated likelihoods should allow for such
correlations.

L ocation Choice Decision

Location choice is also a decision which should be accommodated to achieve a more
complete model. In thisresearch’s present formulation, location is given so travel times
are taken as exogenous in the activity-participation decision. However, households
choose locations based partly on accessibility and expected travel expendituresE.| In other
words, different travel-time and travel-cost environments lead to different residential
location decisions and thus different activity participation choices; for long-run
predictions, one should consider travel costs' impacts on both the location decision and
activity participation (given location) in order to consistently estimate full travel-time
elasticities and welfare impacts of policies.

One may choose to model location choicein great detail (for example, over the
thousand-plus census tracts one typically encountersin a maor metro area) or more
coarsely, with far fewer zones employing general access/travel cost information. Since
travel costs faced are conditional on location choice and virtually all households choose a

single location, the entire problem may be described as in the following equation.
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whereL = LocationChoice, H = Housing AttributesChoice,

P = Pricesof locations, & P, = Pricesof housing attributes.
Six:-1)

Note that the set-up described in the above equation is not suitable for the system-of-
demand-equations approach taken in this research since disaggregate parallelsto Roy’'s
Identity can only identify optimal levels of continuous choices (where price variation is
observed across observations). Instead, one will probably need to model the location
choice decision using a random-utility discrete-choice model (e.g., McFadden 1974,
Quigley 1976, Lerman 1977), conditioning the current model on this decision and
maximizing the likelihood simultaneously. One possible set-up, based on a multinomial
logit for location choice, isillustrated by Equation 6-2. The optimal activity choicesin
this likelihood ( X ) cannot be identified without conditioning on location, but they can be
assumed to follow the model described in this dissertation, once location is given.

Givenchoiceof asinglelocation,
Prob(Chooselocation” |" & activities X) = Prob( )?‘ Location I) Prob( Location|)
e" (Chapter
2"
& v,, = maximized / indirect utility, given location choicel.
Six:-2)

whereProb( Locationl) =
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Modeling Activity-Participation Times

Duration modeling in a strict system-of-demand-equations context, allowing
integration back to an indirect utility specification and all the information that it provides
(e.g., expenditure functions and welfare measures), requires identifiability of demandsvia
an exogenous price or constraint. But when duration is a continuous variable facing no
binding constraints, the optimal level is not identifiable (using parallelsto Roy’ s Identity).
Without such identifying information, this research’ s modeling paradigm is insufficient
for strict estimation of this dimension of activity demand. The modeling of activity
durations has been studied using a system of Tobit regressions linked to binary logits
(e.g., Damm and Lerman 1981, Kitamura 1984) and is currently being analyzed with
hazard models of individual activities (e.g., Bhat 1996, Ettema et al. 1995b), but these
approaches typically lack flexibility and economic underpinnings and tend to be limited
in their predictive scope. Certainly, thereis much study to be donein thisarea. Idedly, a
single model can be devel oped which acknowledges the simultaneity of the various
decisions and permits estimation of all such choice variables.

Incor porating Different Preference Structures

Allowance for preference differences across households is another possible area of
extension. Many variables, such as day of week surveyed and age distribution of
household members, may provide good measures of such differences. Techniques known
as demographic scaling and tranglating (Pollack and Wales 1980) shift or scale
parameters according to functions of the demographic variables. These arelikely to be
useful, even when estimating homogeneity- or summability-constrained models.

However, demographic scaling and trandating can add substantially to the parameter set;
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more flexible techniques of incorporating demographic information are feasible when

such theory-imposed constraints do not apply, such asin the time-identified system of
demands studied here.

The techniques of permitting random variation in the parameters themselves, as used
by Train (1996), McFadden and Train (1996), and Mehndiratta (1996), and more flexible
correlation in the compounded error structure, as used by Yen et al. (1998), may also
prove useful by allowing additional unobserved heterogeneity across observations.
However, these methods require a simulation-of-likelihoods technique for parameter
estimation. Another possibility for consideration is the specification of tractably
integrated compounded error structures within ordered-choice models, such as that used
by Bhat and Singh (1998) in afull-information maximum likelihood estimation of alogit
and two probits—all related through errorsin the latent response variables.

Recognition of Other Constraints on Behavior

Intra-household dynamics and activity scheduling constraints were not addressed in
this model, though a suggestion was made for incorporating time-of-day effects by further
disaggregating the demand types. A household can spread its income among its different
members, but time cannot be traded except by making certain members perform specific
tasks; the balancing of the competing needs and preferences of a household’ s distinct
membersis an interesting problem and has been investigated by Golob and McNally
(1997). Since household members often coordinate their day-to-day activity
participation, short-period observations of demand will contain many short-term

dependencies; aflexible latent error structure may accommodate these effects.
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Certain constraints are likely to be critical in the choice and timing of activities. For

example, most shops close shortly after the end of the working day, so workers cannot
participate in the same range of weekday activities enjoyed by non-workers. The models
developed here can provide the input necessary for scheduling models like HAPP (Recker
1995), STARCHILD (Recker et al. 1986a, 1986b), and SMASH (Ettema et al. 1993,
1995a), where coupling, authority, and capability constraints (Hagerstrand 1970) are
accommodated explicitly. Alternatively, explicit incorporation of such constraintsin the
utility-optimization problem and their characteristics in the resulting indirect utility

function is yet another possible extension to these models.
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ENDNOTES:

! High-value, long-life capital goods (i.e., stocks, rather than flows) can be thought of as contemporaneous
decisions with other, short-life goodsif rental markets for such stocks exist and are perfectly competitive
(Dubin and McFadden 1984, p. 347). Thus, where the auto-leasing market is significantly competitive
with the auto-purchase market, one can reasonably incorporate auto ownership into the system of demand
equations.

If one assumes that the number of vehicles owned is distributed as a Poisson with mean equal to the
population mean (given a set of explanatory variables) times the same unobserved gammea-distributed
error term that trip-making depends on (for unobserved heterogeneity), one ends up with a system that
looks just like amultinomial conditioned on a negative binomial. The assumption of the same gamma
term does not seem too unreasonable if one believes that more trip-making typically means more
dependence on personal vehicles and probably a close-to-proportional increase in vehicle miles traveled.
Making this assumption produces the following likelihood:

R P X, Xa
X, ~ Negative Binomial| m P, = —T—A—-=—2-|,
el

Prob(Xy, Xz ooy Xi XAl ProPaeees Py rxT*vax):
Multinomial (X|p, X + X ,)Neg.Bin( X , + X;|X, +X;')

| (X # XD ( M(X,+ X; +m)

1 Pa P J(l‘ p )T (p)",
XA!” X! D F(Xa+ Xy +0 (M)

where X, =# Automobiles, p, :(X *x:*x ) B = (X *XJ{X )
A T A T

X; :ixi and X, :lexi*.
i=1

i=1

Thismodel structure was attempted, but it soon became clear that the dispersion property of the auto
ownership decision is very different than that found in the discretionary trip-making/activity-participation
observations. After controlling for travel time and budget variables using a reasonably flexible model
structure (e.g., that of the modified trandog), it was estimated that the variance of auto ownership isless
than the mean; so the assumption of a negative binomial appears implausible.

A different, but related, assumption for the incorporation of the auto-ownership decision which still
permits correlation in unobserved information may be that the number of autos owned is distributed as a
binomial and that as the number of trips made deviates from the average, so does the long-run, optimal
number of autos to own. The binomial’s scale and probability parameters could be defined as X; and

P auto -, cONditioned on the negative binomial of total number of trips ( X+ ), with P, specified as

Auto / Total rips - HOWever, this specification actually permits P, to be greater than one, and it

requires that the observed number of cars be less than or equal to the observed number of trips. These are
unreasonabl e requirements, unless one is surveying for a sufficiently long period that all households will
be making many trips.

Itisof interest to note that following a survey of residents of five San Francisco Bay Area neighborhoods,
Kitamuraet al. (1994) conclude that attitudinal characteristics explain most of the variance they observe
in respondents’ travel behaviors, rather than the demographic and the simple, rather subjective
neighborhood characteristics they attempt to control for. One could argue, however, that attitudes are
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substantially shaped by one's environment — in addition to the authors' point that people choose their
environments according to their preferences for travel and the like.
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Chapter Seven: Conclusions

It is axiomatic that there would be no travel absent demand for participation in
geographically separate activities. Yet, few existing models of travel behavior explicitly
accommodate the derived nature of travel demand. Moreover, thereisaneed for a
simultaneous-equations approach to a household’ s choice of out-of-home activity
participation while maximize household utility, subject to both time and money
constraints. In areview of activity-based travel demand research, Kitamura (1988) writes
that afull analysis of household travel demands “is an overwhelming problem. In fact no
model has been constructed that determines activity patterns on the sole basis of the
utility maximization principle.” (1988, pp. 20-21) The research presented here offersa
highly flexible and systematic approach to these problems, making use of utility theory as
abasisfor behavior.

Thisresearch alowsfor illumination of travel-related trade-offs by households. The
results include estimates of out-of-home-activity generation and distribution; income,
time, own- and cross-“price” elaticities; the variability of travel-time budgets and total
trip-making; and responses to changes in a variety of transportation-supply, land use, and
demographic variables. The research also provides a working statistical methodology for
simultaneous, closed-form estimation of cardinally ordered integer behaviors possessing
unobserved heterogeneity. These behaviors that are subject to time and income
constraints, within arigorous microeconomic structure, and their estimation readily yields
estimates of benefits and costs in units of both time and money.

The empirical results of this dissertation suggest that income has little effect on

manifest demand for discretionary activities (after controlling for travel timesand a
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household’ s time budget); this particular result does not imply, however, that income

does not exert a significant effect on the specific class of activity chosen or on monetary
expenditures while engaging in activities. The results also indicate that available time
exerts astrong, positive effect on all demands; yet the time-budget effects of travel-time
changes are sufficiently strong that cross-travel-time elasticities are often estimated to be
negative. The sections describing hypothesis tests and welfare analyses suggest that total
travel time expenditures (to access discretionary activities) fall with increasing travel
times and a household’ s time budget, not just itsincome, is an important determinant of
its value of time.

The methodol ogies devel oped and the results demonstrated here are not merely of
theoretical interest, but are meaningful to practitioners of transportation planning. They
theoretically and statistically advance the modeling of travel demand, and are shown here
to be empirically practical, relying on data sets typically available to metropolitan
planning organizations (MPOs). The methodologies also are applicable to common
policymaking situations because their inputs are both the travel times and costs that
distinguish opportunities for activity participation and the discretionary-time and money
budgets faced by households.

The models can be made more specific or general asdesired. For example, the goods
considered can be distinguished not only by distance and opportunity type but by travel
mode and time of day. The application also can belocal or regional. The methodology is
quite flexible (though data limitations may require aggregation of some goods where

more flexible functional specifications of demand are desired).



137
At their most elementary level, the models require information about interzonal

travel times, zona opportunity levels, income or wages, household sizes, and workers per
household — information common in forecast inputs for metropolitan planning.
Additional information about an area s resources and its popul ation’ s demographic
qualities can aso be examined, to distinguish across travel modes or to anticipate
preference differences based on observed characteristics. Promising extensions of the
methods illustrated in this dissertation include likelihood simulation — to allow more
flexible patterns of unobserved heterogeneity, inclusion of the residential location choice
— s0 this decision can be endogenously determined, and simultaneous estimation of a
second system of demand equations, derived using price variation.

In summary, the methods developed in this research are of theoretical interest and
practical use; they advance the art and science of travel-demand modeling while
providing insight into human preferences and the prediction of household activity-
participation and travel choices. The flexibility and behavioral rigor of the methods make

them a promising direction for travel demand theory and application to follow.
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A-1: List of Possible Functional Form Specifications

Cobb-Douglas:

u= l._l X,
=Nl

While satisfying regularity conditions globally (e.g., monotonicity/non-satiation of
preferences and strict quasiconvexity (implying that the matrix of cross-elasticities
is negative semi-definite), thisform is highly inflexible for systems of 3 or more
goods; it implies homothetic and additive preferences and thus restricts all
elasticities of substitution to equal one (Deaton 1974, Christensen et al. 1975).

Ston€’'s Linear Expenditure System (LES, 1954):
rl P
EDYL
PX, =R +ai(Y_Z:8j Pj)
i

st. Summability: > o, =1

V=

This system implies constant marginal expenditures (and demand) with respect to
income. Zero-degree homogeneity of demands and Slutsky symmetry are
automatic. Note that this functional form comes from a utility function which can
be written in linear logarithmic form, and is thus both additive and homothetic;
these properties imply that all resulting expenditure portions are constant, al
elasticities of substitution equal one (Christensen et al. 1975), and
uncompensated price derivatives of demand are symmetric. The number of
parameters requiring estimation is 2I-1 (where | is the number of distinct good
types being modeled).

" Note: An elasticity of substitution is the dimensionless version of the derivative of the ratio of two goods
with respect to their marginal rate of substitution (MRS). The MRS is a utility-constant measure of
substitution between two goods. The following equationsillustrate this definition:

dy

dX.

MRS, = - d y L = Rateof substituting X, for X, to keep utility constant.
dX;

- - X, MRS,
Elasticity of substitution; = :
X

d(MRs) x(xi j '
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Howe, Pollack, and Wale's Quadratic Expenditure System (QES, 1977):

ne e
B TNE

Pixi :biPi +ai(Y_zbij) +(Ci _ai)/]l_l Pj_ci (Y _Z‘,bkpk)2
i j k

s.t. Summability (& Homogeneity): > a, =1& > ¢, =1

Note that the LES is a special case of the QES and the QES does not impose
constant marginal budget shares. In both the LES and QES the number of
parametersis alinear function of the number of good-classes considered (i.e, 2I-1
& 3I-1).

Barten (1964) and Theil’s (1965) Rotterdam Model:
Starting fromtlog(X;) = a; +n7,,109(Y) +>_77, ; log(P,),
j

onecanarriveat:
wdlog(X;) = Bdlog(Y) = > y,dlog(P)),
j

whered log(Y) = > w,dlog(X),
j

B =wrny,&y; =\Ni,7ij*'
Notethat 77,; = IncomeElasiticity of i'thgood, &
; & /7”* = Uncompensated & Compensated Cross — Price Elagticities.

Summability: > B, =1& > y; =0,
j i

Homogeneity:z y; =0,& Symmetry: y; = y;.

The primary equation is estimated after replacing the differentials with finite
approximations and treating the parameters as though they are constants. (Deaton
& Muellbauer, 1980a) As noted by McFadden (1964), the Rotterdam model with
constant parameters is consistent with utility maximization only if the utility
function can be written in linear logarithmic form, which then, likethe LES, is
both additive and homothetic. Aswith the LES, these propertiesimply that all
resulting expenditure portions are constant and all elasticities of substitution equal
one (Christensen et al. 1975), cross-price elasticities equal one, and own-price
elasticities equal negative one (Deaton & Muellbauer 1980a).
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Johansen’s (Very) General Additive Utility Function:

sA( R

_ai

a,-1
-p | .

wherea; <1,5, >0,p, <

Uv
v -(snn) e
k
1

P a;-1
Y 1Uv /Bi Y_Y _Ioi
X, =yi(3"j +(Y-Y,) 2 — 0= L., 1

Z/?k (Y v pkj

Number of parameters requiring estimating is on the order of 41. This
specification is almost never used in practice, although specializations of this
function (e.g., Direct Addilog & LES) are used.

Leser (1941), Somermeyer et al. (1962), & Houthakker’s Direct Addilog (1960):

a i

zﬂ“’ ( W

Z ,Bk ak—l

st.,Bscallng (e.g.,z,B— 1).
Ifa, =a Ui, thisisCESsystem
Ifa, = OUi,thisisCobb- Douglassystem

o]

Christensen et al.’s Indirect Transcendental Logarithmic Utility Function:

v= K+Z,B In( )+Z(]/2),B” In( ) [zj
X, {%J [ai +;ﬁij In(P, /Y)j/(;aj +izj:ﬂij In(P, /Y)j,

st.Symmetry: 5, = B,
and Indentifiability: > a; +>_ B, =1, 0ij.
i ij

Summability and homogeneity are automatic. The number of independent
parameters for this specification (when symmetry isimposed) is |“+3 =2,
2
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Diewert’s Generalized Leontief:

where K :aj(Pj/Y); +Z|“ﬁj,(Pj /Y);(Pl/Y);

Note: Thisformulation isvery general and comes from Caves and Christensen
(1980); Diewert generally appears to have used less complex forms (e.g., Diewert
1974). Note that the constraint a, = OLli implies homothetic preferences here.

Deaton and Muellbauer’s Almost I deal Demand System:
- 1 .
eup)=a,+ a,In(R) +§Zykj In(P) In(P;) +uB, [ R* .
k ki k
v =e"(u, p) withrespect tou,

X, =2 @ + 3y, InP) + 4 InY/P) |

Vi :%(yij + yji)& In(P") =In(Pricelndex)
=a, +>.a,In(R) + >y In(P)In(R,),
k ik
summability: > a; =1 >y, =0,& > B =0,

homogeneity:. z Vi =0, & symmetry: y;, = y;;.
i

Note: In the typical set-up, AIDS aggregates “ perfectly” (without requiring
parallel expenditure expansion paths of different consumers/households) and
expenditure shares [w, = (x; R, /v)] can be estimated in alinear fashion (except for
the priceindex, P"), subject to linear constraints. In practice, “econometricians
typically use an arbitrary price index to calculate the (Y/ P")terms’ (Varian 1992,
pg. 213) and estimate the remaining parameters viaalinear system.
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A-2: Derivation of Roy’s I dentity

Roy’ s Identity (1943) derives from constrained maximization of adirect utility
function and can be generated for a general two-exogenous-constraints situation by
beginning with the following:

AMfT;le Utility(A,T,tA,Z)
trvl

st.P,A+B,A+P,Z<Y,> T +fA=T,and AT & Z 20.
k

This problem formulation results in the following Lagrangian equation and first-
order conditions for maximization:

L(A1T-1Z1/1Time7A Money):
U(A1T~1t‘_~’z)+AMoney(Y I:)A'A_F)trvl A_IESZZ) +/1 TInE(T _sz _t‘ij
k
L* = (P, Py P, 1Y, T) =
(AP B B 6 Y T] T BB B YT 2] BB BB VAT,
o[ av d. dL .
P, dp, dp, d ‘=A*f=fvx? = ey A 40
PA PA PA A z=7" I:)I
dL dv d. | dL ’ .
= = = + A=K T=T X dA = AMoneyA +01
dl:)travl,i dl:)trvl,i dl:)trvl,i dA 7=7" dF)terI
opt
e e X = A A 40
d, dt dy  dA [EATT Tt
opt *
dL :ﬂ :$+$ I xﬂ :/]Money +0, and
dy ~dY dY dA |ZATT gy
opt *
o _dv_d d| A
dT ~dT  dT dA [&577 " dT

With some minor manipulations of the above, one has the following relation as the
optimal number of times to participate in activity i:

dv dv dv

— E_ dPAq — dPtrvl,i
AT VY T

dT dy dy

Notethat dv/dP, =dv/dR,,, , sothereareonly two distinct ratiosin the above
relation; nevertheless, this relationship imposes many more constraints across parameter
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sets than would a single equality for each demand in a traditional, money-based system-
of-equations set-up. However, the above relationship may not be very rigorously applied
inits entirety because the purchase prices of activities ( P, ) and the travel prices (R, ;)

are not known/provided in most data sets, So many cross-equation parameter constraints
are concealed by unknown price levels and one may end up having to rely on many
constant terms, rather than the more interesting interactions of variables for explanatory
information.

Furthermore, the use of Roy’s Identity in identifying the optimal amount of timeto

be spent in each activity i (T") is not feasible when there are not clear “prices’ attached

to each time expenditure or clear minimum-time constraints, such as those DeSerpa
invokes (1971). For thisreason, the question of optimal time expenditures was not
considered in this research.



A-3: Description of Data Set Used

Bay Area Travel Surveys (BATS)
Usable Sample Size: 10,834 households, ~21,300 individuals

Types of Information Asked:
Demographic:
Age, gender, household income, education, employment, driver’slicense, ...
Location:
Census tract of residence and work
Tenure of dwelling unit (own vs. rent)
Travel Diaries:

1, 3, and 5-day activity diary on al household members age five and over;
~9,400 households surveyed for asingle day, and ~1,400 households
surveyed for three or five days

16 trip purposes, trip durations, travel modes and times and fares, parking at
destination)

Vehicle ownership

Other Datafor Use:
Interzonal travel times & zonal land-use and employment characteristics.
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Other Data Set Possibilities: 1994/1995 Portland Area Activity Surveys

Sample Size: 4,451 households, 10,048 individuals

Types of Information Asked:
Demographic:
Age, gender, income, education, employment, driver’slicensg, ...
Location:
Census tract of residence and work
Tenure of dwelling unit (own vs. rent)
Activity Participation:
2-day activity diary on al household members (24 activity types,
durations, inter-activities travel modes and times and fares, parking
at destination)
All out-of-home activity durations and all in-home activities of duration =
30 minutes
Vehicle ownership

Other Datafor Use:
Interzonal travel times & zonal land-use and employment characteristics.

Advantages.
Provides some weekend data (approximately 2,000 of the household-days surveyed
were a Saturday or Sunday, while close to 7,000 were weekdays).
Availability of land-use and travel-time data for the region.
Weaknesses:
29% of the reported trips lack either origin- or destination-zone infomration, so over
50% of the surveyed households have incomplete activity-location information,
essentially rendering them unusable.
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Other Data Set Possibilities: 1990 U.K. RAC Data (RAC 1995)

Sample Size: 392 Adults, 280 Households, 13 Different Towns/Areas
Types of Information Asked:
Demographic:
Age, Gender, Income, Education, Employment, Driver’s License, ...
Location:
How long living at current location; where lived previously & why moved
#Dwelling unitsin structure; Tenure & mortgage/rent/...
#Bedrooms, bathrooms, kitchens, ...; Nearby friends, relatives, ...
Activity Participation:
7-day activity diary on al household members (9 activity types, durations, inter-
activities travel modes and times and fares, parking at destination)
Hours per week in work & school
Household chores, types & hours/day
Child care, hours/day and trip needs for children
Travel Modes & Expenditures:
Vehicle ownership, parking availability at home location, ...
Expenditures on each vehicle (for insurance, maint., parking, & road taxes)
VMT per vehicle for one week
Primary travel modes to work, school, shop, ... & travel times
Availability of alternative modes (other than primary mode used)
Employer provision of parking & parking costs
Amount spent per week on transit
Distance, usual mode, & travel time to local newsagent, food store, doctor’s
office, rail station, & bus stop
Bus frequency to main shopping center
Non-Travel Expenditures:
Costs of groceries, rent/mortgage, & utilities per month
Information:
Knowledge of transit supply locally
Attitudes:
Toward driving, traffic, transit, & the environment
Toward personal-vehicle attributes (for car purchases)
Toward possible public travel-related policies
Advantages:
Covers aweek’ sworth of activity participation and trip-making for individuals.
Providesinformation that is likely to indicate taste differences among the
households, as well as information on dwelling-unit choice and other significant
consumption.
Weaknesses:
Very limited sample size.
Lack of local land-use and interzonal travel-time data.
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A-4: Description of Negative Binomial Distribution

In addition to its usefulness as the result of mixing a Poisson with agamma
distribution, a negative binomial represents the number of failures (“N”) before “m”
successes are achieved in a series of independent Bernoulli trials where the probability of

successis“ p . Thus, the distribution has the following properties:
r(k+m) £\Mm «\ K
Prob(N = k)= ———— 1- :
( ) F(m)!(k!)(p) ( p)
1_ *
E(N): M: mP,

and V(N)= mP(1+ P).

Note that the mean and variance equations of this distribution are quite similar to
those for a (positive) binomial, except that “Q”=1+P (vs. g=1-p). Recognize that negative
binomials do not require an integer “m”, so the likelihood functions specified here
incorporate gamma functions, rather than factorias, for their combinatorials. Thus,
“k+m-1 choose k” can be written as the following:

r(k+m)

Combo(k + m—-1,k) =W,

wherel (s) :'[e‘xxs‘ldx [=(s-1)! if sisinteger].
0

To show that the mean and the variance of the result of mixing a Poisson with a
gamma are the same as those for the negative binomials used in this research, the
following formulae are helpful:

If A, ~Gamma(m,%<*j,then
«\2
. X,
/'I/li:Xi &UAiZZ( )4,

andif X, ~ Poisson(A;),then
Hyx, :Uxiuiz =A.
SO, fy, = Hy, =X;",and

o’ =E,

2
Ty ] +V,

/jxl‘/]l

:E/Ii (Ai)+v/1i(Ai) :Xi* +(Xi*)4 :Xi* +0'(Xi*)2-



A-5: Examples of the Estimation Algorithms, as programmed in SPlus3.3

COMMAND FILE FOR MAXIMUM LIKELIHOOD ESTIMATION:
source("readData.s")
source("likelihood.s")

# starting values for estimation:

startPars <- list(
a=1,
al=-1,
a2=-1,
a3=-1,
ad=-1,

b11 =0,
b12 =0,
b13 =0,
b14 =0,
b22 =0,
b23 =0,
b24 =0,
b33 =0,
b34 =0,
b44 =0,

gl=1,
g2=1,
g3=1,
g4=1,

glT =1,
02T =1,
g3T =1,
04T =1) #gTY isfixed to equa +1 (for identifiability of other parameters)

ca("dimdatais",dim(dataMU),"\n")

# calculate the MLE's

origFitorigMU <- ms(

~negLogLikelihoodMU(x1,x2,x3,x4,t1,t2,t3,t4,dta Y ,days,a,
al,a?,a3,a4,b11,b12,b13,b14,b22,b23,b24,b33,b34,b44,91,02,93,94,
01T,92T,93T,g4T,gTY),
data = dataM U,
start = startPars,
control = list(maxiter = 400, scale=c(0.1,rep(100,22)), maxfcalls = 800, tol=1e-4, rel.tol=1e-5),
trace=T)

#report the parameter estimates and derivatives

start <- unlist(startPars)

final <- origFitorigM U$par

source("dLikelihoodMU.s")

vcov <- dLogL ikelihoodM U(origFitorigM U$par,dataM U)
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pvals <- 2* (1-pnorm(abs(origFitorigM U$par/sqrt(diag(vcov)))))
round(cbind(start,final ,sgrt(diag(vcov)),pvals),digit=5)
cat("TOTAL final function value:",origFitorigM U$value,"\n")

NEGATIVE LOG-LIKELIHOOD FUNCTION SPECIFICATION
(thisfile sourced from Command file as“ likelihood.s” , for the Type 2 Model specification):

BIG <- 1€10

SMALL <- 1e-10

pos <- function(x) {
X[X<SMALL] <- SMALL
x}

negL ogLikelihood <- function(x1,x2,x3,x4,t1,t2,t3,t4,dta,Y ,days,a,al,a2,a3,a4,
b11,b12,b13,b14,b22,b23,b24,b33,b34,b44,91,92,93,94,91T,92T,g3T,g4T,gTY ,type=2) {

nl <- pos((-V/t1)* (al+(b11*log(t1)+b12*log(t2)+b13*log(t3)+bld*log(t4))+gl*log(Y)+glT*log(dta)))
n2 <-pos((-1/t2)* (a2+(b12*log(t1)+b22*l0g(t2)+b23*10g(t3)+b24* log(t4))+g2*log(Y)+g2T*log(dta)))
n3 <-pos((-1/t3)* (a3+(b13*log(t1)+b23*0g(t2)+b33*10g(t3)+b34* log(t4))+g3*log(Y)+g3T*log(dta)))
n4 <-pos((-L/t4)* (ad+(b14*log(t1)+b24*|og(t2)+b34* | og(t3) +b44*1og(t4))+gd*log(Y ) +g4T*log(dta)))

v<-nl+n2+n3+nd
pl<- nl/v
p2 <- n2/v
p3 <- n3/v
p4 <- nd/v

d <- (/dta)*(g1T*log(t1)+g2T*log(t2)+g3T*log(t3)+g4T*log(t4)+gTY *log(Y))

maskl <- (N1<=SMALL)>0
mask2 <- (N2<=SMALL)>0
mask3 <- (N3<=SMALL)>0
mask4 <- (Nd<=SMALL)>0
nFail <- (sum(nMask <- (maskl & mask2 & mask3 & mask4)) > 0)
dFail <- (sum(mask5 <- (d<=SMALL)>0))
aFail <- (sum(mask6 <- (a<0)>0))
if(nFail | dFail | aFalil) {
cat("hitting a forbidden value\n")
if(nFail) {
cat(sum(nMask),"individuals had all n's <= 0\n")
badList <<- ¢(badList,list(c(1,counter,(1:length(nMask))[nMask])))

}
if(dFail) {
cat(sum(mask5b),"of d'swere <= 0\n")
badList <<- c(badList,list(c(5,counter,(1:length(mask5))[mask5])))
}
if(aFail) {
cat("awas <= 0\n")
}
if (sum(bigMask <- (nMask|mask5|mask6)) <= 10) {
index <- (1:length(bigMask))[bigMask]
cat("Maybe you should drop rows ",index,"\n")
}
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vaue<-BIG
}else{

xTstar <- v/d

XT <- X1+Xx2+x3+x4

# Negative Binomial’s Specification
m<-1/a
pStar <- 1/(days*xTstar*a+1)
logpStar <- log(pStar)

A0 <- lgamma(x1+1)+lgamma(x2+1)+lgamma(x3+1)+lgamma(x4+1)
A <- -x1*log(pl) - x2*log(p2) - x3*log(p3) - x4*log(p4)
B <- Igamma(m) - lgamma(xT+m)
C <- -xT*log(1-pStar) - m*logpStar
value <- AO+A+B+C
}

.value

}

ESTIMATION OF VARIANCE-COVARIANCE MATRIX OF PARAMETER ESTIMATES
(thisfile sourced from Command file as“ dLikelihood.s” , for the Type 1 Model specification):

source("psi.s*)

SMALL <-1e-10

pos <- function(x) {
X[X<SMALL] <- SMALL
x}

# estimate is a vector of the parameter estimates,
dLogLikelihoodMU <- function(estimate,myData) {
N <- dim(myData)[1]
P <- length(estimate)
deriv <- data.frame(matrix(0O,N,P))
names(deriv) <- names(estimate)

attach(myData)
XT <- X1+X2+x3+x4

estimate <- data.frame(t(estimate))

attach(estimate)

nl <- pos((-1/t1)* (al+(b11*log(t1)+b12*log(t2)+b13*log(t3)+bla*log(t4))+gl*log(Y)+glT*log(dta)))
n2 <- pos((-1/t2)* (a2+(b12*log(t1)+b22*0g(t2)+b23* log(t3)+b24*10g(t4))+g2*log(Y)+g2T*log(dta)))
n3 <- pos((-1/t3)* (a3+(b13*log(t1)+b23*l0g(t2)+b33*log(t3)+b34*10og(t4))+g3*log(Y)+g3T*log(dta)))
n4 <- pos((-1/t4)* (ad+(b14*log(t1)+b24*0g(t2)+b34* | og(t3)+bd4*1og(t4))+g4*log(Y)+g4T*log(dta)))

d <- (/dta)*(g1T*log(t1)+g2T*log(t2)+g3T*log(t3)+g4T*log(t4)+gTY *log(Y))

x1Star <- nl/d
x2Star <- n2/d
x3Star <- n3/d
x4Star <- n4/d
XTdtar <- x1Star + x2Star + x3Star + x4Star
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pStar <- 1/(days*a*xTstar+1)
m<-1/a

temp <- a*days* (XT/(1-pStar) - m/pStar)/(days*a*xTstar+1)"2 - XT/XTstar
M1 <- (x1/x1Star + temp)
M2 <- (x2/x2Star + temp)
M3 <- (x3/x3Star + temp)
M4 <- (x4/x4Star + temp)

termA <- (psi(m) - psi(xT+m) - log(pStar))/a*2

termB <- (days*xT/(1-pStar)-m/pStar)* xT star* days* pStar*2
deriv["a'] <- (termA + termB)

deriv["al"] <- -(M1/(t1*d))

deriv["a2"] <- -(M2/(t2*d))

deriv["a3"] <- -(M3/(t3*d))

deriv["a4"] <- -(M4/(t4*d))

deriv["b11"] <- -(M21*log(t1)/(t1*d))

deriv["b12"] <- -(M1*log(t2)/(t1*d))-(M2*log(t1)/(t2* d))
deriv["b13"] <- -(M1*log(t3)/(t1*d))-(M3*log(t1)/(t3*d))
deriv["b14"] <- -(M1*log(t4)/(t1*d))-(M4*log(t1)/(t4* d))
deriv["b22"] <- -(M2*log(t2)/(t2*d))

deriv["b23"] <- -(M2*log(t3)/(t2*d))-(M 3*log(t2)/(t3* d))
deriv["b24"] <- -(M2*log(t4)/(t2*d))-(M4*log(t2)/(t4* d))
deriv["b33"] <- -(M3*log(t3)/(t3*d))

deriv["b34"] <- -(M3*log(t4)/(t3*d))-(M4*log(t3)/(t4* d))
deriv["b44"] <- -(M4*log(t4)/(t4*d))

deriv["gl"] <- -(M1*log(Y)/(t1*d))

deriv["g2"] <- -(M2*log(Y)/(t2*d))

deriv["g3"] <- -(M3*log(Y)/(t3*d))

deriv["g4"] <- -(M4*log(Y)/(t4*d))

termA <- (M1*x1Star + M2*x2Star + M3*x3Star + M4*x4Star)/(d* dta)
termB <- log(dta)/d

deriv["glT"] <- -(termA*log(t1) + M1*termB/t1)

deriv["g2T"] <- -(termA*log(t2) + M2*termB/t2)

deriv["g3T"] <- -(termA*log(t3) + M3*termB/t3)

deriv["g4T"] <- -(termA*log(t4) + M4*termB/t4)

detach("estimate™)
detach("myData")
deriv <- as.matrix(deriv)
scale <- apply(deriv,2,sum)
deriv <- deriv / matrix(rep(scale,N),N,P,byrow=T)
vinv <- (t(deriv) %*% deriv)
diag(l/scale) %* % solve(vinv) %* % diag(1/scale)
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A-6: Example Algorithm for Travel-Time Cost Calculations, as programmed in
Matlab

MS = NUMZONES; %%% Numer of Zones (TAZS) in Region

empl = alljobs; %%% Vector of Opportunities per Zone

time = freeflowtimematrix; %%% Interzonal Travel Times

totTime = zeros(ms,1); %%% Total Time Vector from Origin Zones to Furthest
%%% Contour in 1so-Opportunity Contour

totEmp = zeros(ms,1); %%% Total Employment Vector

avgTime = zeros(ms,1); %%% Average Timeto Access Contour Vector

max T otEmp=200000;

fori=1:ms
while totEmp(i) < maxTotEmp
while totEmp(i) < maxTotEmp
mnindx = min(find(dist(i,:)==min(time(i,:))));
if (totEmp(i)+empl(i,mnindx)) < maxTotEmp
totTime(i) = time(i,mnindx);
totEmp(i) = totEmp(i) + empl (i,mnindx);
avgTime(i) = avgTime(i) + empl(i,mnlndx).* dist(i,mnlndx);
empl (i,mnindx) = 0;
time(i,mnindx)=inf;
else
pctZone = (maxTotEmp - totEmp(i))/empl (i,mnindx);
totTime(i) = totTime(i) + pctZone* (time(i,mnindx)-totTime(i));
avgTime(i) = avgTime(i) + pctZone.* empl (i,mnlndx).* time(i,mnindx);
empl (i,mnlndx) = empl (i,mMnindx)+totEmp(i)-maxTotEmp;
totEmp(i)=maxTotEmp;
end
end
end
avgDst = avgDst./maxTotEmp;
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A-7: Estimating the Variability in the Results

The results of most interest to researchers and policy-makers are the estimates of
elasticities, value of discretionary time, benefits and costs, and other transformations of
the underlying model’ s parameter estimates. Unfortunately, the variation of the output of
anon-linear function of variablesis generally very difficult to compute exactly, so the
results provided in this paper are based on a Taylor Series approximation technique called
“Propagation of Error” or the “DeltaMethod” (Rice 1995) shown here:

SnceY = f (6) = f (u, +9), where 8§ =RandomVariable,
then...

Y= (1) + (0 1) () 4 (0= 1) 1" (R ).
SOE(N) = E(F() = T (ko) +5 0,7 ()

andV (6) = 0, t'(14,)]” when Gisscalar.

When Gisavector, E(Y) = f (,) +%Z,: ot (1),
&V(Y)zizj:Ui,jfi(Zle)f;(ﬁe), |

2
whereo; ; = Cov(4,,0,), f, :i,& f. = df .
’ T dgdg,

dé,
In the research undertaken here, the g random variables represent various parameter

estimates of the models (i.e., the a's, s, ¥s, and 1/ s). The estimates of means provided
in the research are based on afirst-order Taylor series expansion around the mean (rather
than the more complex, second-order formula shown above), but the estimates of

variances as are shown above.
As an example of the use of the Delta Method, the expectation and variance of the

ratio of two variables can be estimated using the following:

IfY = f()?):%,then...

A A A 2A

o o
E(Y) = {le -2 ,ngl (second - order approximation)
X, /'IXZ /‘1X2
[

% (first — order approximation), &
X2

A A A 24a0 2
1 [ . 2U, O Uy T
lez _ Axl 12 ><i X, .

V(Y) =~
. iy, fy,?
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Note that the variance and expectation of linear combinations of variables can be
estimated with more exact formulae, where an approximation arises only because oneis
relying on on€e' s estimates of parameters and estimates of their asymptotic variances,
rather than their true values.

And the covariance of two linear combinations of variables can be computed using
the variance-covariance matrix of their combined vector. The formulae for all these
relations are the following:

E(BXZ,BZI‘ :732121&
VB X)=F 2, B=B5 R
& COV(Alll)d(,ﬁzl )2] = ,Bllzx Ez = 781'122 /—82’
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