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ScienceDirect
Beyond the transcriptome: comp
letion of act one of the
Immunological Genome Project
Charles C Kim1 and Lewis L Lanier2
The Immunological Genome Consortium has generated a

public resource (www.immgen.org) that provides a

compendium of gene expression profiles of �270 leukocyte

subsets in the mouse. This effort established carefully

standardized operating procedures that resulted in a

transcriptional dataset of unprecedented comprehensiveness

and quality. The findings have been detailed recently in a series

of publications providing molecular insights into the

development, heterogeneity, and/or function of these cellular

lineages and distinct subpopulations. Here, we review the key

findings of these studies, highlighting what has been gained

and how the knowledge can be used to accelerate progress

toward a comprehensive understanding of the immune system.
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Introduction
Unraveling the vast complexity of the immune system

remains an enormous challenge, but its function and

dysfunction underlie protection and pathology in a myr-

iad of diseases, making it a high-value research target.

Genome-scale systems biology approaches have become

increasingly accepted as a powerful complement to reduc-

tionist approaches, which excel at testing very specific

relationships but fail to capture unanticipated (and typi-

cally unmeasured) effects [1��,2]. In addition, these ‘glo-

bal’ approaches can more effectively address certain types

of questions. For example, akin to the comparison of

phylogenetics based on single ribosomal RNA sequences

[3] versus whole genomes [4], population relationships

and heterogeneity can be evaluated on a whole-genome

scale instead of being based on small subsets of mol-

ecules. Transcriptomics, the study of whole genome gene
www.sciencedirect.com
expression, is also a powerful approach for discovering

new molecules involved in known processes, as well as

involvement of known pathways in new processes. These

unexpected connections, which would otherwise go

undiscovered, are an important aspect of accelerating

our understanding of immune complexity.

Below, we summarize the major findings of the first

iteration of the Immunological Genome (ImmGen) Pro-

ject [5–8], which has obtained microarray-based transcrip-

tomes for most of the well-defined leukocyte subsets of

the C57BL/6 mouse. Projects within the Consortium

were categorized into the major leukocyte subdivisions

to leverage the expertise of individual labs, and the focus

of each study reflected the interests and questions of the

associated field. Here, we provide a perspective on the

types of insights that have been made through large-scale

transcriptome analysis, the ways in which these data can

be mined by the community, and what can be anticipated

from future studies.

Improved molecular definitions of leukocyte
subsets and relatedness
One of the most common threads running through the

studies was description of population signatures and

relatedness (Figure 1). In large part, this was a natural

extension of one of the early challenges faced by the

Consortium: how to choose leukocyte subsets for profiling

in the first place, and what constitutes a subset? Similar to

sequencing a genome, defining a baseline transcriptome

is to some degree immutable, in that the data will serve as

a resource for many years to come. Thus, faced with the

desire to choose the ‘best’ subsets, it became evident that

many subsets, both in their cell surface characteristics that

allowed their purification and their functions, remained

poorly defined.

There is no better example of this challenge than in the

myeloid compartment, where no single marker can clearly

distinguish all macrophage subsets from dendritic cell

(DC) lineages [9]. Previous transcriptome studies had

unsuccessfully attempted to find single population-defin-

ing markers and reached the conclusion that none existed

[10,11]. These studies, however, were based on data

pooled from multiple sources without standardized

sample preparation, raising the question of whether more

stringent quality control would improve sensitivity. As a

result, a significant focus of the ImmGen macrophage and

dendritic cell studies was the identification of improved

common and subset-specific phenotyping markers
Current Opinion in Immunology 2013, 25:593–597
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Figure 1

Principal components analysis for publicly available ImmGen populations. The top three principal components (PC), explaining the predominant trends

across populations, were calculated from the 15% most variable genes across all populations as previously described [15]. PC1 is enriched in genes

that distinguish innate from adaptive populations; PC2 is enriched in genes that distinguish progenitors from mature leukocytes.
[12�,13�]. Several new macrophage-enriched and DC-

enriched markers were identified, and new combinatorial

markers have been proposed, although similar to previous

studies, no single marker could definitively distinguish

these myeloid subsets. Although the widespread utility of

these new markers awaits further confirmation, it is clear

that these findings are not an endpoint, but are important

steps toward improved phenotypic and functional defi-

nition of myeloid subsets. Furthermore, it highlights the

need to better understand the vast diversity of myeloid

cell biology.

Other significant advances of the ImmGen Project were

the first genome-wide molecular definition of poorly

characterized leukocyte subtypes, their relationships to

other subsets, and new markers to aid in their identifi-

cation. For example, the Vg2+ subtype of immature

gamma delta (gd) T cells was found to be unusually

distinct from other subtypes, although this distinction

became less prominent upon maturation [14]. New cell
Current Opinion in Immunology 2013, 25:593–597
surface phenotyping markers were identified for memory

natural killer (NK) cells [15], which could previously only

be identified through allogeneic markers after adoptive

transfer [16]. Extensive overlap between molecular sig-

natures of NK and iNKT cells identified more extensive

commonalities than previously appreciated, and both

populations were also shown to exhibit a number of newly

discovered similarities to activated CD8+ effector cells

[15,17�]. Conversely, closely related subsets were found

to have unexpected complexity in their relationships; for

example, CD4� and CD4+ iNKT subsets in the spleen

were found to be more distinct from one another than the

same subsets in the liver [17�]. Fibroblastic reticular cells

in lymph node stroma were found to express high levels of

cadherin-11, providing an additional marker for their

discrimination from other stromal and hematopoietic cells

[18]. The same study also identified a previously unde-

fined population — the ‘double-negative cells’ (lacking

expression of gp38 and CD31) — as contractile pericytes

based on their expression profiles being enriched for
www.sciencedirect.com
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functions related to smooth muscle cells and cardiomyo-

cytes [18]. Together, these improved molecular defi-

nitions and surface phenotyping markers should greatly

accelerate our understanding of the heterogeneity within

these cell types and their distinct functional capacities.

New transcriptional correlates of
physiological processes
In contrast to the subsets described above, many leuko-

cytes have better defined cell surface phenotypes that

have facilitated their functional characterization. How-

ever, our understanding of common processes is largely

based on limited subsets of molecules identified through

genetics or biochemistry. Advantages of transcriptomics

include the ability to identify genes associated with a

process that may also be essential for viability (a limitation

of genetic screens), high sensitivity (a limitation of bio-

chemistry), and high-throughput. These characteristics

have allowed association of many new genes with other-

wise well-described processes.

In an excellent example of identifying new genes associ-

ated with well described processes, the well characterized

progression of CD8+ T cells through effector and memory

phases was defined with great molecular precision [19].

These T cells were profiled from 12 hours through 100

days postinfection during responses to infection with

Listeria monocytogenes (Lm) and vesicular stomatitis virus

(VSV), providing a detailed analysis of CD8+ T cell

activation through short-term effector, short-term mem-

ory, late effector-memory, and memory cell formation,

with new molecular markers identified for each stage.

This included transcription factors associated with each

stage, presenting a framework for understanding the

regulatory ‘decisions’ made throughout T cell activation.

Furthermore, the authors found that the response of

CD8+ T cells occurred surprisingly quickly (by 12 hours

postinfection), and that responses to Lm and VSV were

stereotyped, although different in their magnitude. Reas-

suringly, antigen-specific responses to Lm infection using

the ovalbumin-specific OT-I T cell receptor transgenic

system were found to be similar to those identified by Lm
antigen-specific H-2 tetramer staining, which had not

previously been investigated at the whole transcriptome

level. Comparisons similar to those for CD8+ T cells were

made for NK cells responding to mouse cytomegalovirus

infection, along with comparisons to their analogous

stages of CD8+ T cell responses, identifying conserved

mechanisms by which these effector populations respond

to infection [15].

In another example, the under-characterized lymph node

stromal cells revealed rich production of cytokines, che-

mokines, and growth factors, with new cellular source

assignments being made for some known stromal cell-

expressed genes (Il7 and Vegfa), but with the majority

being newly discovered genes [18]. In addition, thorough
www.sciencedirect.com
descriptions of stromal expression of important matrix-

contributing genes, such as integrins, collagens, proteo-

glycans, and laminins, were discovered and assigned to

specific stromal subsets, generating a rich resource for

discovering novel stroma–leukocyte interactions.

One final notable example was the mining of dendritic

cell transcriptomes to identify genes encoding immu-

nomodulatory receptors [13�]. These molecules are of

great interest for their role in the increasingly appreci-

ated process of immune homeostasis [20], which makes

them potential targets for therapeutic intervention.

Although their physiological relevance remains to be

proven, the knowledge of their expression itself has

revolutionized a functional screening-based process that

commonly requires years to decades into a focused

candidate-based approach that can be executed much

more rapidly.

Regulatory network modeling
Identification of differentially regulated genes can

reveal candidate effectors for a process, but large gene

lists often exceed our ability to perform secondary assays

to evaluate functional relevance. To address this, it is

useful to focus on identification of transcription factors

that may regulate a set of genes (often referred to as a

‘module’) involved in a biological process, and to work

down the regulatory hierarchy to identify specific effec-

tors. However, even this strategy can be daunting when

faced with dozens of candidate transcription factors.

A powerful approach that has demonstrated great utility

in addressing this problem is regulatory network mod-

eling [7,21–23]. Although there are differences in its

precise implementation, the general approach is to

identify covariance between the expression of transcrip-

tion factors with other genes across a large dataset.

Various metrics of similarity can be used to quantify

this covariance, and statistical thresholding allows

identification of putative regulatory interactions. This

approach is effective for large datasets, where subtle

covariance can become more apparent due to the large

number of samples and lead to the identification of ‘hub’

regulators.

The ImmGen dataset, due to its precisely standardized

methodology and large size, affords a unique opportunity

for regulatory network modeling. New methodology

specifically tailored to the data was developed and

applied across all subsets [7]. The network data were

used by many groups to identify regulators associated

with processes of interest, such as dendritic cell and gd T

cell development [13�,14], CD8+ T cell activation [19],

NK cell differentiation and activation [15], and macro-

phage identity [12�]. Testing the hundreds of predictions

made in these studies will be the topics of future study for

many years.
Current Opinion in Immunology 2013, 25:593–597
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Moving beyond the transcriptome
Owing to the practical limits of publication, the existing

analyses have barely scratched the surface of the infor-

mation generated. Opportunities exist for many individ-

uals to mine the data for new hypotheses or to support

existing ones, and the availability of user-friendly tools,

including some on mobile devices (www.immgen.org and

freely available from app stores), brings analysis of the

data within reach of researchers without bioinformatics

skills. It is arguable that the only way to maximize effec-

tive utilization of the data is through a concerted effort

from the entire community, rather than leaving analysis to

specialists who are not necessarily versed in the details of

a given biological system. It is important to consider that

many genes without known contributions to leukocyte

function have been glossed over in previous studies in

order to minimize speculation, but that these genes are a

rich source of further investigation.

During the course of ImmGen data generation, other

areas were explored that have not yet been described

in publications. One such subject is the important role of

natural genetic variation in modulating the response of

the transcriptome to external stimuli, which is broadly

recognized to occur, but more often studied in humans

than mice and is lacking a genome-wide, systematic

analysis. Although the ImmGen baseline compendium

was largely generated using a fixed genetic background

(C57BL/6), analysis is underway to chart the impact of the

natural genetic variation in mice on the transcriptome. In

a collaborative effort with The Jackson Laboratory,

expression data have been generated for two immune

cells types (bone marrow granulocytes and splenic CD4+

T cells) across 40 genotyped strains of the Mouse Phe-

nome Database. This analysis is revealing a significant

impact of genetic variation by identifying hundreds of

immune expression quantitative trait loci (commonly

known as eQTLs), which are currently being exploited

to enhance and refine the structure of gene regulatory

networks (Mostafavi S et al., in preparation).

In addition to deeper data mining, the numerous new

predictions already made by the ImmGen studies will

provide many testable hypotheses for years to come. In

parallel, additional transcriptome studies will continue,

generating an even more complete picture of leukocyte

function. Unlike the largely static primary sequence of a

genome, the ‘transcriptome’ is dynamic, responding to

environmental, developmental, and epigenetic cues. For

immunologists, these dynamics are often of primary in-

terest — the protective or pathological responses during

disease, immune responsiveness to pharmacological inter-

vention, or normal operation of any of a number of homeo-

static processes. Thus, although baseline profiles for many

resting leukocyte subsets have been obtained, we are in

the early stages of exploring the wide variety of possible

perturbed states, many of which can result in the
Current Opinion in Immunology 2013, 25:593–597
emergence of new leukocyte subsets not present at

steady-state. A second iteration of the ImmGen Project

to examine such perturbed states is currently underway,

but choosing a sliver that can serve as a representative of the

enormous possible search space remains a great challenge.

Importantly, the ImmGen effort has demonstrated that

careful standardization can produce high-quality data that

can far exceed that which can be generated by any single

lab. This is a key proof-of-principle in considering human

studies, where on top of the parameters described above,

the bounds of the search space are extended even further

by the genetic and environmental heterogeneity that will

be inherent in human studies. The inter-study compar-

ability of data from many prior studies has been poor due

to technical variation in sample preparation, so this will be

an important consideration as we move toward similar

undertakings with human samples. Many of these lessons

can also be applied to the execution of other systems

biology approaches that attempt to catalog posttranscrip-

tional aspects of cellular diversity, which could also reveal

additional layers of population heterogeneity.

Another technical consideration that has also emerged is

the applicability of deep sequencing to transcriptomics

studies. Technologies such as RNA-Seq have seen an

explosion of development in the years since the ImmGen

Project was initiated [24], and the ability of de novo

sequencing to discover new isoforms generated by alterna-

tive RNA splicing and non-coding RNAs makes it attrac-

tive for more completely describing transcriptomes.

However, there remain some major hurdles to widespread

adoption of deep sequencing for transcriptome analysis.

First, the cost of preparation for deep sequencing currently

exceeds that of microarrays on a per-sample basis.

Although these costs can be reduced by multiplexing

samples in lanes (‘indexing’ or ‘barcoding’), this procedure,

as typically employed, negates the potential sensitivity

advantages of deep sequencing. Second, the compu-

tational and personnel infrastructure required for analysis

of deep sequencing data far exceeds that required for large-

scale microarray analysis, which for large datasets can

already be substantial. Nonetheless, we anticipate that

future improvements will address these issues to make

RNA-Seq better suited to ImmGen-scale analyses.

In the grand scale of systems immunology, it is important to

remember that identifying steady-state transcriptomes is

but one step in understanding the complexity of cellular

diversity and function. Even with regard to transcription

alone, similar efforts will be required to understand histone

modifications and occupancy, methylation states, and site-

specific binding of transcription factors and their associated

complexes (contextualized in more detail in [2]) on a

subset-specific level. Technology has also advanced in

the area of single-cell analysis, with the first dedicated

commercial systems for single-cell transcriptomics
www.sciencedirect.com
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becoming available this year. Analyzing the genome-wide

transcriptome of individual cells of populations that are

observed to be homogeneous by a limited set of flow

cytometric markers is arguably the best approach available

for efficiently determining whether or not further levels of

subset heterogeneity exist. The technology faces a number

of challenges related to reproducibility, controlling for cell

cycle stage, and cost, and multiplying the existing �270

populations by the analysis of another 100-fold (i.e. 100

individual cells per population) is a daunting endeavor.

However, such a compendium would comprise a strong

foundation for many future studies, lending confidence to

investigators that the population under study is in fact

homogeneous, with an ultimate impact on the precision of

cell-targeted therapeutics.

Conclusions
The transcriptomes obtained by the ImmGen Consortium

are a significant step toward understanding leukocyte

population structure and heterogeneity in function. In

addition to these global phenomena, the association of

new genes with immunological processes of interest will

accelerate research in multiple areas. The lessons learned

from the undertaking demonstrate that similar approaches

for human immunology, either by microarrays or deep

sequencing technologies, are a feasible and worthwhile

goal for consortium biologists.
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