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In this dissertation, we study poset associahedra and the combinatorics surrounding them.

We provide a simple realization of poset associahedra and affine poset cyclohedra. Further-

more, we show that the f -vector of a poset associahedron depends only on the comparability

graph of the poset. We investigate a connection between certain poset associahedra and

the theory of stack-sorting. Finally, we show that when the poset is a rooted tree, the 1-

skeleton of the poset associahedron orients to a lattice. These lattices generalize both the

weak Bruhat order and the Tamari lattice.
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CHAPTER 1

Introduction

Convex polytopes related to combinatorial objects have been the subject of significant

research in the past few decades [AS94, BT94, CD06, Hai84, Sta86]. In this disserta-

tion, we study poset associahedra which are polytopes introduced by Galashin in [Gal23].

Poset associahedra arise as a natural generalization of Stasheff’s associahedra [Hai84, Pet15,

Sta97, Tam54], and were originally discovered by considering compactifications of the con-

figuration space of order-preserving maps P → R. These compactifications are generaliza-

tions of the Axelrod–Singer compactification of the configuration space of points on a

line [AS94, LTV10, Sin04]. Galashin constructed poset associahedra by performing stel-

lar subdivisions on the polar dual of Stanley’s order polytope [Sta86], but did not provide an

explicit realization. Various poset associahedra and cyclohedra have already been studied

including permutohedra, associahedra, operahedra [Lap22], type B permutohedra [FR05], and

cyclohedra [BT94].

Poset associahedra bear resemblance to graph associahedra, where the face lattice of each

is described by a tubing criterion. However, neither class is a subset of the other. When Carr

and Devadoss introduced graph associahedra in [CD06], they distinguish between bracketings

and tubings of a path, where the idea of bracketings does not naturally extend to any simple

graph. In the case of poset associahedra, the idea of bracketings does extend to every

connected poset.

In Chapter 1, we provide background on polytopes, posets, poset associahedra, and other

combinatorics relevant to the remainder of the dissertation. In the subsequent chapters,
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background is provided when it is only relevant to that chapter. In Chapter 2, we provide a

simple geometric realization of poset associahedra as a convex polytope. Chapter 3 is based

on joint work with Son Nguyen in which we show that the poset associahedron f -vector is

a comparability invariant. Chapter 4 is based on joint work with Colin Defant in which we

show that in the special case that the poset is a rooted tree, the 1-skeleton of the poset

associahedron orients to a lattice.

1.1 Notation

Throughout this dissertation, we use the following conventions:

1. [n] := {1, . . . , n}.

2. Sn is the symmetric group of order n!.

3. ⊔ denotes disjoint union.

4. ≃ denotes isomorphism.

1.2 Posets

“The biggest lesson I learned from

Richard Stanley’s work is,

combinatorial objects want to be

partially ordered!”

Jim Propp [Pro16]

Posets are a major topic of study within combinatorics. For a comprehensive study of

the topic, see [Tro92, Sta12]. A poset is a pair P = (X,⪯) where X is a set and ⪯ is a

relation on X such that the following three conditions hold:

2



• If a, b, c ∈ X such that a ⪯ b and b ⪯ c then a ⪯ c.

• If a, b ∈ X such that a ⪯ b and b ⪯ a then a = b.

• For all a ∈ X, a ⪯ a.

We call such ⪯ a partial order on X. Throughout this dissertation, we will frequently

abuse notation and identify X with P and for example, write x ∈ P instead of x ∈ X. We

will use ⪯ to refer to a partial order and if it is not clear from context which partial order

we are using, we will write ⪯P . If a ⪯ b and a ̸= b then we write a ≺ b. We say that c

covers a if a ≺ c and there does not exist b such that a ≺ b ≺ c. We denote that c covers a

by writing a ≺· c.

It is convenient to represent P pictorially via its Hasse diagram. The Hasse diagram is

the directed graph with vertex set X and edge set

{(a, b) ∈ X ×X | a ≺· b}.

We will draw Hasse diagrams with undirected edges, but where if a ⪯ b then a will be below

b. See Figure 1.1 for an example of a Hasse diagram.

1 2

3 4 5

Figure 1.1: A Hasse diagram of a poset with 1, 2 ⪯ 3, 4, 5

Definition 1.2.1. Let P = (X,⪯) be a poset and let n = |X|. A linear extension of P is a

bijection f : X → [n] such that if i, j ∈ X with i ⪯ j then f(i) ≤ f(j).

Definition 1.2.2. Let P and Q be posets. A function f : P → Q is called order-preserving

if for all x, y ∈ P, x ⪯P y implies f(x) ⪯Q f(y). An isomorphism is an order-preserving

bijection whose inverse is also order preserving.

3



Definition 1.2.3. Let P = (X,⪯P ) and Q = (Y,⪯Q) be posets with X ∩ Y = ∅. The

ordinal sum of P and Q is the poset

P ⊕Q := (X ⊔ Y,⪯P⊕Q)

where a ⪯P⊕Q b if and only if

• a, b ∈ X and a ⪯P b or

• a, b ∈ Y and a ⪯Q b or

• a ∈ X and b ∈ Y .

Example 1.2.4. We define three important posets relevant to this dissertation.

• The chain is the poset Cn := ([n],⪯Z). Observe that Cn ≃ Cn−1 ⊕ C1.

• The anti-chain An is the poset on n elements with no relations.

• The n-claw is A1 ⊕ An.

Definition 1.2.5. A lower set of a poset P is a subset S ⊆ P such that if x ∈ P, y ∈ S such

that x ⪯ y then x ∈ S. For x ∈ P , the lower set generated by x is the set

↓ x := {y ∈ P | y ⪯ x}.

Dually, an upper set is a subset S ⊆ P such that if x ∈ P, y ∈ S such that y ⪯ x then x ∈ S

and the upper set generated by x is the set

↑ x := {y ∈ P | x ⪯ y}.

1.2.1 Lattices

Definition 1.2.6. Let P be a poset and let x, y ∈ P . If the set (↓ x) ∩ (↓ y) has a unique

maximal element, we denote this element x ∧ y and call it the meet of x and y. If the set

(↑ x)∩ (↑ y) has a unique minimal element, we denote this element x∨ y and call it the join

of x and y. If x ∧ y and x ∨ y exist for all x, y ∈ P then we call P a lattice.

4





0
0
0






1
0
0






0
1
0






0
0
1






1
1
0






1
0
1






0
1
1






1
1
1




Figure 1.2: The Boolean lattice B3

Two lattices relevant to this dissertation are the weak Bruhat order on permutations and

the Tamari lattice.

We represent a permutation w in the symmetric group Sn via its one-line notation

w(1) · · ·w(n).

Definition 1.2.7. An inversion of w is a pair (i, j) such that 1 ≤ i < j ≤ n and w−1(j) <

w−1(i). Let Inv(w) denote the set of inversions of w. The (right) weak Bruhat order on

Sn is the poset Weak(Sn) = (Sn,≤), where for w,w′ ∈ Sn, we have w ≤ w′ if and only if

Inv(w) ⊆ Inv(w′).

For a proof that Weak(Sn) is a lattice, see [BB05]. See Figure 1.3 for the Hasse diagram

of Weak(S3).

Definition 1.2.8. Fix n ≥ 1. The Tamari lattice Tamn is a partial order defined on all

binary bracketings on a fixed word with (n+1) symbols. We define a partial order on Tamn

via the covering relations (AB)C ≺· A(BC) where A,B, and C can themselves be binary

bracketed expressions.
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123

213 132

231 312

321

((x0x1)x2)x3

(x0(x1x2))x3

(x0x1)(x2x3)
x0((x1x2)x3)

x0(x1(x2x3))

Figure 1.3: On the left is the Hasse diagram of Weak(S3) and on the right is the Hasse

diagram of Tam3.

For a proof that Tamn is a lattice, see [HT72]. See Figure 1.3 for the Hasse diagram of

Tam3.

1.3 Polytopes

“A related lesson that Stanley has

taught me is, combinatorial objects

want to belong to polytopes!”

Jim Propp [Pro16]

This chapter covers the basics of polytopes necessary for understanding the remainder of

this dissertation, and many results will be stated without proof. All results in this section

may be found in [Zie12], which one may consult for a more thorough exposition.

Definition 1.3.1. Let p ∈ Rn and let a ∈ R. The half-space hp,a is the set of points

hp,a := {x ∈ Rn | ⟨p, x⟩ ≥ a}.

The hyperplane Hp,a is the set

Hp,a := {x ∈ Rn | ⟨p, x⟩ = a}.

6



Definition 1.3.2. An H-polytope is a compact intersection of half-spaces.

Definition 1.3.3. A V-polytope is the convex hull of a finite number of points in Rn.

It is well-known that these two definitions are equivalent, see [Zie12, §1].

Definition 1.3.4. The dimension of a polytope P is the dimension of the affine span of P .

Definition 1.3.5. A face F of a polytope P ⊆ Rd is a subset F ⊆ P such that F = P ∩Hp,a

for some p ∈ Rn, a ∈ R such that P ⊆ hp,a. The set of all faces of P ordered by inclusion is

called the face lattice of P and is denoted L(P ).

Two polytopes are said to be combinatorially equivalent if they have isomorphic face

lattices. Let P be a d-dimensional polytope. The 0, 1, and (d − 1)-dimensional faces of P

are called vertices, edges, and facets respectively. The graph or 1-skeleton of P whose vertices

are equal to the vertices of P and whose edges are equal to the edges of P . We denote this

graph G(P ).

It is frequently interesting to orient the edges of G(P ). In particular, let p ∈ Rn be

generic with respect to P , i.e. for all edges {u, v} in the graph of P , ⟨p, u − v⟩ ≠ 0. Then

the orientation of G(P ) with respect to p has edge set

{(u, v) | {u, v} ∈ E(G(P )) and ⟨p, u− v⟩ > 0}.

Definition 1.3.6. A d-dimensional polytope is called simple if for all vertices v in the graph

of P , the degree of v is d.

Definition 1.3.7. The f -vector of a d-dimensional polytope P is the tuple (f0, . . . , fd) where

fi is the number of faces of dimension i and the f -polynomial is

f(z) =
d∑

i=0

fiz
i.

When P is simple, we additionally define the h-polynomial

h(z) =
n∑

i=0

hiz
i = f(z − 1).

7



Theorem 1.3.8. Let P be a simple d-dimensional polytope and let p ∈ Rn be generic with

respect to P . Orient G(P ) with respect to p. Then for all 0 ≤ i ≤ d,

hi = #{v ∈ V (G(P )) | outdegree(v) = i}.

Corollary 1.3.9. Let P be a simple polytope and let h(z) =
d∑

i=0

be its h-polynomial. Then

for all 0 ≤ i ≤ d we have hi ≥ 0 and hi = hd−i.

As h(z) is palindromic, one can further define the γ-vector (γ0, . . . , γ⌊d/2⌋) via

d∑

i=0

hit
i =

⌊d/2⌋∑

i=0

γit
i(1 + t)d−2i.

Example 1.3.10. The d-cube [0, 1]d is a simple polytope with

f(z) = (z + 2)d and h(z) = (z + 1)d and γ(z) = z⌊d/2⌋.

Theorem 1.3.11 ([Kal88]). Let P be a simple polytope. Then L(P ) is determined by G(P ).

Two important simple polytopes that have been studied extensively are permutohedra

and associahedra [Pos09, PRW08]. Permutohedra and associahedra are important special

cases of poset associahedra.

Definition 1.3.12. The n-th permutohedron Πn is the convex hull of all permutations of

the vector (1, 2, . . . , n).

Theorem 1.3.13. Orient Πn with respect to (1, 2, . . . , n). Then G(Πn) is isomorphic to the

Hasse diagram of Weak(Sn).

The associahedron was originally defined as a cell complex by Stasheff [Sta63] and has

since been given many polytopal realizations [CSZ15].

Definition 1.3.14. The n-th associahedron Assn is any polytope whose face lattice is iso-

morphic to the set of partial binary bracketings of a fixed word with (n+1) symbols ordered

by reverse inclusion.

One can obtain the Hasse diagram of Tamn as the oriented graph of the realization of

Assn given in [Lod04].
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1 2

3 4 5

Figure 1.4: The Hasse diagram seen in Figure 1.1 and the corresponding poset associahedron.

1.4 Poset Associahedra

We are now prepared to define poset associahedra, the central objects of study in this dis-

sertation. Poset associahedra were introduced in [Gal23]. We recall several definitions.

Definition 1.4.1. Let (P,⪯) be a finite poset. We make the following definitions:

• A subset τ ⊆ P is connected if it is connected as an induced subgraph of the undirected

Hasse diagram of P .

• τ ⊆ P is convex if whenever a, c ∈ τ and b ∈ P such that a ⪯ b ⪯ c, then b ∈ τ .

• A tube of P is a connected, convex subset τ ⊆ P such that 2 ≤ |τ |.

• A tube τ is proper if |τ | ≤ |P | − 1.

• Two tubes σ, τ ⊆ P are nested if σ ⊆ τ or τ ⊆ σ. Tubes σ and τ are disjoint if

τ ∩ σ = ∅.

• For disjoint tubes σ, τ we say σ ≺ τ if there exists a ∈ σ, b ∈ τ such that a ≺ b.

• A proper tubing T of P is a set of proper tubes of P such that any pair of tubes is

nested or disjoint and the relation ≺ extends to a partial order on T . That is, whenever

τ1, . . . , τk ∈ T with τ1 ≺ · · · ≺ τk then τk ̸≺ τ1. This is referred to as the acyclic tubing

condition.
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Figure 1.5: Examples and non-examples of proper tubings.

• A proper tubing T is maximal if it is maximal by inclusion on the set of all proper

tubings.

Figure 1.5 shows examples and non-examples of proper tubings.

Definition 1.4.2. For a finite poset P , the poset associahedron A (P ) is a simple, convex

polytope of dimension |P | − 2 whose face lattice is isomorphic to the set of proper tubings

ordered by reverse inclusion. That is, if FT is the face corresponding to T , then FS ⊂ FT if

one can make S from T by adding tubes. Vertices of A (P ) correspond to maximal tubings

of P .

When P is a chain on n + 1 elements, A (P ) recovers the associahedron Assn. When P

is the n-claw, A (P ) recovers the permutohedron Πn. See Figure 1.6 for the 2 dimensional

examples.
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Figure 1.6: On the left is the poset associahedron of the chain C4. On the right is the poset

associahedron of the 3-claw.

1.4.1 An interpretation of tubings

There is a simple interpretation of maximal proper tubings that explains all of the definitions

above in terms of generalized words.

We can understand the classical associahedron as follows: Let P = ({1, ..., n},≤) be a

chain. We can think of the chain as a word we want to multiply together with the rule

that two elements can be multiplied if they are connected by an edge in the Hasse diagram.

A maximal tubing of P is a way of disambiguating the order in which one performs the

multiplication. If a pair of adjacent elements x and y have a pair of brackets around them,

they contract along the edge connecting them and replace x and y by their product.
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b
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→
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ab
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→

abcd

e

f

→

abcde

f

→
abcdef

Figure 1.7: Multiplication of a word and of a generalized word

Similarly, we can understand the Hasse diagram of an arbitrary poset P as a generalized

word we would like to multiply together. Again, we are allowed to multiply two elements

if they are connected by an edge, but when multiplying elements, we contract along the

edge connecting them and then take the transitive reduction of the resulting directed graph.

That is, we identify the two elements and take the resulting quotient poset. A maximal

tubing is again a way of disambiguating the order of the multiplication. See Figure 1.7 for

an illustration of this multiplication. It is not hard to see that if one keeps track of which

sets have been identified during this process, then one recovers the definition of tubes and

tubings.

The perspective has seen some application in algebraic topology. In particular, one may

view the elements of a poset as operations with multiple inputs and multiple outputs where

the edges below an element in the Hasse diagram are its inputs and the edges above an

element are its outputs. Maximal tubings then correspond to disambiguating the order of

composition of these higher operations. This is discussed in [Sto23, Remark 7.1.3] where it

is shown that tubings form an operad governing properads and in [Lap22, Section 2.1] in the
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case that the Hasse diagram of P is a rooted tree.
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CHAPTER 2

A Realization of Poset Associahedra

This chapter is based on [Sac23]. In this chapter, we give a simple realization of A (P )

as a convex polytope in RP . The realization is inspired by the description of A (P ) as a

compactification of the configuration space of order-preserving maps P → R. In addition,

we give an analogous realization for Galashin’s affine poset cyclohedra.

2.1 Introduction

In addition to poset associahedra, Galashin [Gal23] also introduces affine posets, affine order

polytopes, and affine poset cyclohedra. In this chapter, we provide a simple realization of

poset associahedra and affine poset cyclohedra as an intersection of half spaces, inspired by

the compactification description and by a similar realization of graph associahedra due to

Devadoss [Dev09]. In independent work [MPPep], Mantovani, Padrol, and Pilaud found a

realization of poset associahedra as sections of graph associahedra. The authors of [MPPep]

also generalize from posets to oriented building sets (which combine a building set with an

oriented matroid).

We realize poset associahedra as an intersection of half-spaces. Let P be a finite poset

and let n = |P |. We work in the ambient space RP
Σ=0, the space of real-valued functions on

P that sum to 0. For a subset τ ⊆ P , define a linear function ατ on RP
Σ=0 by

ατ (p) :=
∑

i≺·j
i,j∈τ

pj − pi.
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Here the sum is taken over all covering relations contained in τ . We define the half-space hτ

and the hyperplane Hτ by

hτ := {p ∈ RP
Σ=0 | ατ (p) ≥ n2|τ |} and

Hτ := {p ∈ RP
Σ=0 | ατ (p) = n2|τ |}.

The following is our main result in the finite case:

Theorem 2.1.1. If P is a finite, connected poset, the intersection of HP with hτ for all

proper tubes τ gives a realization of A (P ).

2.1.1 Affine Poset Cyclohedra

Now we describe affine poset cyclohedra.

Definition 2.1.2. An affine poset of order n ≥ 1 is a poset P̃ = (Z,⪯) such that:

1. For all i ∈ Z, i ⪯ i+ n;

2. P̃ is n-periodic: For all i, j ∈ Z, i ⪯ j ⇔ i+ n ⪯ j + n;

3. P̃ is strongly connected : for all i, j ∈ Z, there exists k ∈ Z such that i ⪯ j + kn.

The order of P̃ is denoted |P̃ | := n.

Following Galashin [Gal23], we give analogous versions of Definition 1.4.1. We give them

only where they differ from the finite case.

Definition 2.1.3. Let P̃ = (Z,⪯) be an affine poset.

• A tube of P̃ is a connected, convex subset τ ⊆ P such that 2 ≤ |τ | and either τ = P̃

or τ has at most one element in each residue class modulo n.

• A collection of tubes T is n-periodic is for all τ ∈ T, k ∈ Z, τ + kn ∈ T .
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Figure 2.1: An affine poset of order 4 and a maximal tubing

• A proper tubing T of P̃ is an n-periodic set of proper tubes of P̃ that satisfies the

acyclic tubing condition and such that any pair of tubes is nested or disjoint.

Figure 2.1 gives an example of an affine poset of order 4 and a maximal tubing of that

poset.

Definition 2.1.4. For an affine poset P̃ , the affine poset cyclohedron C (P̃ ) is a simple,

convex polytope of dimension |P̃ | − 1 whose face lattice is isomorphic to the set of proper

tubings ordered by reverse inclusion. Vertices of C (P̃ ) correspond to maximal tubings of P̃ .

We also realize affine poset cyclohedra as an intersection of half-spaces. Let P̃ be an

affine poset and let n = |P̃ |. Fix some constant c ∈ R+. We define the space of affine maps

RP̃ as the set of bi-infinite sequences x̃ = (x̃i)i∈Z such that x̃i = x̃i+n + c for all i ∈ Z. Let

C ⊂ RP̃ be the subspace consisting of all constant maps. We work in the ambient space

RP̃/C where the constant c in the definition of affine maps is given by c = n2(n+1).

For a finite subset τ ⊆ P , define a linear function ατ on RP̃/C by

ατ (x̃) :=
∑

i≺·j
i,j∈τ

x̃j − x̃i.
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Again, the sum is taken over all covering relations contained in τ . We define the half-space

hτ and the hyperplane Hτ by

hτ := {p ∈ RP̃/C | ατ (p) ≥ n2|τ |} and

Hτ := {p ∈ RP̃/C | ατ (p) = n2|τ |}.

Remark 2.1.5. Observe that for any tube τ and k ∈ Z, hτ = hτ+kn.

The following is our main result in the affine case:

Theorem 2.1.6. If P̃ is an affine poset, the intersection of hτ for all proper tubes τ gives a

realization of C (P̃ ).

2.2 Configuration spaces and compactifications

We turn our attention to the relationship between poset associahedra and configuration

spaces. For a poset P , the order cone

L (P ) := {p ∈ RP
Σ=0 | pi ≤ pj for all i ⪯ j}

is the set of order preserving maps P → R whose values sum to 0.

Fix a constant c ∈ R+. The order polytope, first defined by Stanley [Sta86] and extended

by Galashin [Gal23], is the (|P | − 2)-dimensional polytope

O(P ) := {p ∈ L (P ) | αP (p) = c}.

Remark 2.2.1. When P is bounded, that is, has a unique maximum 1̂ and minimum 0̂,

this construction is projectively equivalent to Stanley’s order polytope where we replace the

conditions of the coordinates summing to 0 and αP (p) = c with the conditions p0̂ = 0 and

p1̂ = 1, see [Gal23, Remark 2.5].
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Figure 2.2: A vertex in O(P ) vs. A (P ).

Galashin [Gal23] obtains the poset associahedra by an alternative compactification of

O◦(P ), the interior of O(P ). We describe this compactification informally, as it serves as

motivation for the realization in Theorem 2.1.1.

A point is on the boundary of O(P ) when any of the inequalities in the order cone achieve

equality. The faces of of O(P ) are in bijection with proper tubings of P such that all tubes

are disjoint. Let T be such a tubing. If p is in the face corresponding to T and τ ∈ T then

pi = pj for i, j ∈ τ .

We can think of the point p in the face corresponding to T as being “what happens in

O(P )” when for each τ ∈ T , the coordinates are infinitesimally close. However, by taking

all coordinates in τ to be equal, we lose information about their relative ordering. In A (P ),

we still think of the coordinates in τ as being infinitesimally close, but we are still interested

in their configuration. Upon zooming in, this is parameterized by the order polytope of the

subposet (τ,⪯). We iterate this process, allowing points in τ to be infinitesimally closer,

and so on. We illustrate this in Figure 2.2. This idea is a common explanation of the

Axelrod–Singer compactification of O◦(P ) when P is a chain, see [AS94, LTV10, Sin04].

The idea of the realization in Theorem 2.1.1 is to replace the notions of infinitesimally

close and infinitesimally closer with being exponentially close and exponentially closer. For
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p ∈ L (P ), ατ acts a measure of how close the coordinates of p|τ are. We can make this

precise with the following definition and lemma.

Definition 2.2.2. For S ⊆ P and p ∈ RP , define the diameter of p relative to S by

diamS(p) = max
i,j∈S

|pi − pj|.

That is, diamS(p) is the diameter of {pi : i ∈ S} as a subset of R.

Lemma 2.2.3. Let τ ⊆ P be a tube and let p ∈ L (P ). Then

diamτ (p) ≤ ατ (p) ≤
n2

4
diamτ (p).

Proof. By the triangle inequality and as τ is connected, diamτ (p) ≤ ατ (p). For the other

inequality,

ατ (p) =
∑

i≺·j
i,j∈τ

pj − pi

≤
∑

i≺·j
i,j∈τ

diamτ (p)

≤ 1

4
n2 diamτ (p)

The inequality in the last line comes from the fact that there are at most n2

4
covering

relations in P , which follows from Mantel’s Theorem and the fact that Hasse diagrams are

triangle-free.

In particular, for p ∈ L (P ), if p ∈ Hτ , then {pi | i ∈ τ} is clustered tightly together

compared to any tube containing τ . If p ∈ hτ , then {pi | i ∈ τ} is spread far apart compared

to any tube contained in τ .
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2.3 Realizing poset associahedra

We are now prepared to prove Theorem 2.1.1. Define

A (P ) :=
⋂

σ⊂P

hσ ∩HP

where the intersection is over all tubes of P . Note that A (P ) ⊆ L (P ) as if i ≺· j is a

covering relation, then for p ∈ h{i,j}, pi ≤ pj.

Theorem 2.1.1 follows as a result of three lemmas:

Lemma 2.3.1. If T is a maximal tubing, then

vT :=
⋂

τ∈T∪{P}

Hτ

is a point.

Lemma 2.3.2. If T is a collection of tubes that do not form a proper tubing, then

⋂

τ∈T

Hτ ∩ A (P ) = ∅.

Lemma 2.3.3. If T is a maximal tubing and τ /∈ T is a proper tube, then ατ (v
T ) > n2|τ |.

That is, vT lies in the interior of hτ .

Lemma 2.3.1 follows from a standard induction argument.

Proof of Lemma 2.3.2. If T is not a collection of tubes that do proper tubing, then at least

one of the following two cases holds:

(1) There is a pair of non-nested and non-disjoint tubes τ1, τ2 in T .

(2) There is a sequence of disjoint tubes τ1, ..., τk such that τ1 ≺ · · · ≺ τk ≺ τ1.

The idea of the proof is as follows: For S ⊆ P , define the convex hull of S as

conv(σ) := {b ∈ P | ∃a, c ∈ S : a ≤ b ≤ c}.
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Observe that if p ∈ L (P ), then diamS(p) ≤ diamconv(S)(p). Take σ = conv(τ1 ∪ · · · ∪ τk).

One can show that σ is a tube, so Lemma 2.2.3 tells us that for each τi, diamτi(p) is very

small compared to n2|σ|. As the tubes either intersect or are cyclic, one can show this forces

diamσ(p) to also be small, so ασ(p) < n2|σ|.

More concretely, suppose that

p ∈
⋂

Hτi ∩ L (P ).

Note that for all i, |σ| > |τi| + 1 and diamτi(p) ≤ n2(|σ|−1). In case (1), let a, b ∈ σ. There

exists some x ∈ τ1 ∩ τ2, so

|pa − pb| ≤ |pa − px|+ |px − pb|

≤ diamτ1(p) + diamτ2(p)

≤ 2n2(|σ|−1)

< n2(|σ|).

Hence diamσ(p) < n2|σ|, so by Lemma 2.2.3, p /∈ hσ.

Now we move to case (2). Suppose there is a sequence of disjoint tubes τ1, ..., τk such that

for each i there exists xi, yi ∈ τi where xi ≺ yi+1 where we take the indices mod k. Then:

pyi − diamτi(p) ≤ pxi

pxi
≤ pyi+1

pyi+1
≤ pxi+1

+ diamτi+1

Furthermore, since τi and τi+1 are disjoint, |τi| ≤ |σ| − 2 and diamτi ≤ n2(|σ|−2). Combin-

ing these we get

pyi ≤ pyi+1
+ 2n2(|σ|−2).

Then we have:

py1 ≤ pyi + 2in2(|σ|−2) and

pyi + 2in2(|σ|−2) ≤ py1 + 2(k + 1)n2(|σ|−2).
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These yield

py1 − pyi ≤ 2in2(|σ|−2) and

pyi − py1 ≤ 2(k − i+ 1)n2(|σ|−2).

As i, k − i+ 1 ≤ k ≤ n
2
, we have |py1 − pyi | ≤ n2(|σ|−1). Finally, if zi ∈ τi, zj ∈ τj, then

|pzi − pzj | ≤ |pzi − pyi |+ |pyi − py1|+ |py1 − pyj |+ |pyj − pzj |

≤ 4n2(|σ|−1)

< n2|σ|.

Hence diamσ(p) < n2|σ|, and by Lemma 2.2.3, p /∈ hσ.

Proof of Lemma 2.3.3. Let T be a maximal tubing of P and let τ /∈ T be a tube. Define the

convex hull of τ relative to T by

convT (τ) := min{σ ∈ T | τ ⊂ σ}.

Let σ = convT (τ). T partitions σ into a lower set A and an upper set B where A and B

are either tubes or singletons. Furthermore, A and B both intersect τ . See Figure 2.3 for

an example illustrating this.

The idea of the proof is as follows: Let p = vT . By Lemma 2.2.3, diamA(p) and diamB(p)

are both very small compared to diamσ(p). Then for any a ∈ A, b ∈ B, |pa − pb| must

be large. As τ intersects both A and B, diamτ (p) must be large and hence p ∈ hτ . See

Figure 2.4 for an illustration of this. More precisely, we show that for any i ∈ A, j ∈ B,

pj − pi > (n2)|τ |, which implies that p lies in the interior of hτ .

Observe that:

∑

x≺·y

py − px =
∑

x≺·y
x,y∈A

(py − px)

︸ ︷︷ ︸
≤(n2)|σ|−1

< 1
8
(n2)|σ|

+
∑

x≺·y
x,y∈B

(py − px)

︸ ︷︷ ︸
≤(n2)|σ|−1

< 1
8
(n2)|σ|

+
∑

x≺·y
x∈A,y∈B

(py − px).
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Figure 2.3: An example illustrating the proof of Lemma 2.3.3.

A B
σ

τ

Figure 2.4: If diamA(p) and diamB(p) are small and diamσ(p) is large, then diamτ (p) is

large.

Fix i ∈ A and j ∈ B. By Lemma 2.2.3, for any x ∈ A, y ∈ B,

py − px ≤ pj − pi + diamA(p) + diamB(p)

≤ pj + pi + 2n2(|σ|−1).

Again, noting that the number of covering relations in σ is at most n2

4
we obtain:

∑

x≺·σy
x∈A,y∈B

(py − px) ≤
∑

x≺·σy
x∈A,y∈B

(pj − pi + 2(n2)|σ|−1)

≤ n2

4

(
pj − pi + 2(n2)|σ|−1

)

=
n2

4
(pj − pi) +

1

2
(n2)|σ|.
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Combining all of this we get:

∑

x≺·σy

py − px = (n2)|σ|

<
1

8
(n2)|σ| +

1

8
(n2)|σ| +

1

2
(n2)|σ| +

n2

4
(pj − pi)

≤ 3

4
(n2)|σ| +

n2

4
(pj − pi)

Then (n2)|σ|−1 < (pj − pi) and as |τ | ≤ |σ| − 1, p is in the interior of hτ .

Remark 2.3.4. A similar approach for realizing graph associahedra is taken by Deva-

doss [Dev09]. For a graph G = (V,E), Devadoss realizes the graph associahedron of G

by taking the supporting hyperplane for a graph tube τ to be

{
p ∈ RV |

∑

i∈τ

pi = 3|τ |

}
.

One difference is that Devadoss realizes graph associahedra by cutting off slices of a simplex

whereas we cut off slices of an order polytope. When the Hasse diagram of P is a tree, the

poset associahedron is combinatorially equivalent to the graph associahedron of the line graph

of the Hasse diagram. In this case, the two realizations have linearly equivalent normal fans.

If the Hasse diagram of P is a path graph, then both realizations have linearly equivalent

normal fans to the realization of the associahedron due to Shnider and Sternberg [Sta97].

2.4 Realizing affine poset cyclohedra

The proofs in the affine case are nearly identical to the finite case with some additional

technical components. The similarity comes from the fact that Lemma 2.2.3 still applies.

We highlight where the proofs are different. Let P̃ be an affine poset of order n.
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Define

C (P̃ ) :=
⋂

σ⊂P

hσ and

L (P̃ ) := {p ∈ RP̃/C | pi ≤ pj for all i ⪯ j}.

where the intersection is over all tubes of P̃ . Note that C (P̃ ) ⊆ L (P̃ ) as if i ≺· j is a

covering relation, then for p ∈ h{i,j}, pi ≤ pj. Theorem 2.1.6 follows as a result of 3 lemmas:

Lemma 2.4.1. If T is a maximal tubing, then

vT :=
⋂

τ∈T

Hτ

is a point.

Lemma 2.4.2. If T is a collection of tubes that do not form a proper tubing, then

⋂

τ∈T

Hτ ∩ C (P̃ ) = ∅.

Lemma 2.4.3. If T is a maximal tubing and τ /∈ T is a proper tube, then ατ (v
T ) > n2|τ |.

That is, vT lies in the interior of hτ .

Proof of Lemma 2.4.1. Let T be a maximal tubing and take any σ ∈ T such that |τ | = n.

Then restricting to P̃ |σ, Lemma 2.3.1 implies that

⋂

τ∈T
τ⊆σ

Hτ

is a point. However, as T is n-periodic,

⋂

τ∈T
τ⊆σ

Hτ =
⋂

τ∈T

Hτ .

Proof of Lemma 2.4.2. By Remark 2.1.5, we can assume T is n-periodic. The proof is almost

identical to the proof of Lemma 2.3.2. Define

L (P̃ ) := {p ∈ RP̃/C | pi ≤ pj for all i ⪯ j}.
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and note that

L (P̃ ) ⊆ RP̃/C
⋂

i,j∈P̃
i≺·j

h{i,j}.

Let

p ∈
⋂

Hτi ∩ L (P̃ ).

We again break into two cases:

(1) There is a pair of non-nested and non-disjoint tubes τ1, τ2 in T .

(2) All tubes in T are pairwise nested or disjoint and there is a sequence of disjoint tubes

τ1, ..., τk such that τ1 ≺ · · · ≺ τk ≺ τ1.

The only difference in the proof occurs in case (1). Here, it is possible that there exists

x ∈ τ1 ∪ τ2 such that x + n ∈ τ1 ∪ τ2 as well. In this case, the proof of Lemma 2.3.2 still

implies that diamτ1∪τ2(p) ≤ diamτ1(p) + diamτ2(p) ≤ 2n2n. However, |px+n − px| = n2(n+1).

Proof of Lemma 2.4.3. Let T be a maximal tubing and τ /∈ T be a proper tube. Let p = vT .

We claim that ατ (p) > n2|τ |.

The only difference from the proof of Lemma 2.3.3 is that τ may not be contained by

any tube in τ so convT (τ) may not be well-defined. In this case, there exists A ∈ T such

that |A| = n, A∩ τ ̸= ∅, and (A+n)∩ τ ̸= ∅. Here, (A+n) acts the same as B in the finite

case, except the argument is much simpler.

Let i ∈ A ∩ τ, j ∈ (A + n) ∩ τ . Observe that diamA(p), diam(A+n)(p) ≤ n2n and that

i+ n ∈ (A+ n). Then

|pj − pi| ≥ (pj − n2n)− pi

≥ pi+n − pi

= n2(n+1).
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Figure 2.5: O(P ) as a limit of A (P )

Hence diamτ (p) > n2|τ | and by Lemma 2.2.3, ατ (p) > n2|τ |.

2.5 Remarks and Questions

Remark 2.5.1. Let (P,⪯) be a bounded poset. In Remark 2.2.1, we discuss how O(P ) can

be realized as the set of all p ∈ RP such that p0̂ = 0, p1̂ = 1, and pi ≤ pj whenever i ⪯ j.

We can similarly realize A (P ) as follows: Fix 0 < ε < 1
n2 .

For a proper tube τ ⊂ P , let

h′
τ = {p ∈ RP | ατ (p) < εn−|τ |}.

Then A (P ) is realized as the intersection over all h′
τ with the hyperplanes

{p0̂ = 0} and {p1̂ = 1}.

Letting ε → 0, we obtain O(P ) as a limit of A (P ) as shown in Figure 2.5.

Remark 2.5.2. The key piece to the realizations in Theorems 2.1.1 and 2.1.6 is the linear

form ατ , where ατ acts as an approximation of diamτ . In particular, let τ be a tube and let

p ∈ L (P ). Then:
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• ατ (p) ≥ 0.

• ατ (p) = 0 ⇔ p|τ is constant.

• If σ ⊆ τ is a tube, then ασ(p) ≤ ατ (p).

However, there are many other options for choice of ατ that could fill this role. Some

other options include:

1. Sum over all pairs i ≺ j in τ .

ατ (p) =
∑

i≺j
i,j∈τ

pj − pi.

2. Let A and B be the set of minima and maxima of the restriction P |τ respectively.

ατ (p) =
∑

i≺j
i∈A,j∈B

pj − pi.

3. Fix a spanning tree T in the Hasse diagram of τ . Let E = {(i, j) | i ≺·T j} be the set

of edges in T .

ατ (p) =
∑

(i,j)∈E

pj − pi.

An advantage of this option is that we would have

diamτ (p) ≤ ατ (p) ≤ (n− 1) diamτ (p).

A similar realization can be obtained for each choice of of ατ .

Question 2.5.3. Postnikov, Reiner, and Williams [PRW08] found a statistic on maximal

tubings of graph associahedra of chordal graphs where

∑

T

tstat(T ) =
∑

hit
i.

In particular, they define a map T 7→ wT from maximal tubings of a graph on n vertices to

the set of permutations Sn such that stat(T ) = des(wT ), the number of descents of wT . It
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would be interesting to find a similar statistic on maximal tubings of poset associahedra and

affine poset cyclohedra. In light of Theorem 1.3.8, it may be possible to use our realization

to derive such a statistic.

Question 2.5.4. Is hA (P )(z) always real-rooted? Are the entries of the γ-vector always all

non-negative? If so, do they have a combinatorial interpretation?
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CHAPTER 3

The Poset Associahedron f-vector is a Comparability

Invariant.

This chapter is based on [NS23b] which was joint work with Son Nguyen. In this chapter, we

show that the f -vector of A (P ) only depends on the comparability graph of P . In particular,

this allows us to produce a family of polytopes with the same f -vectors as permutohedra,

but that are not combinatorially equivalent to permutohedra.

3.1 Introduction

Recall that the comparability graph of a poset P is a graph C(P ) whose vertices are the

elements of P and where i and j are connected by an edge if i and j are comparable. A

property of P is said to be comparability invariant if it only depends on C(P ). Properties of

finite posets known to be comparability invariant include the order polynomial and number

of linear extensions [Sta86], the fixed point property [DPW85], and the Dushnik–Miller

dimension [TMS76].

The following is our main result:

Theorem 3.1.1. The f -vector of A (P ) is a comparability invariant.

Theorem 3.1.1 may lead one to ask if C(P ) ≃ C(P ′) implies that A (P ) and A (P ′) are

necessarily combinatorially equivalent.

Definition 3.1.2. Let a = (a1, . . . , an) ∈ Zn with ai ≥ 1 for each i. Define the complete
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graded poset of type a to be the poset

Pa := {x11, . . . , x1a1 , x21, . . . , x2a2 , . . . },

where xij ≺ xi′j′ if and only if i < i′. That is, Pa is the ordinal sum of antichains.

Observe that C(Pa) is invariant under permutation of a. This observation, together with

Theorem 3.1.1, yields an immediate corollary.

Corollary 3.1.3. For any a, fA (Pa)(z) is invariant under permutation of a.

This class of examples is sufficiently rich to answer our question in the negative.

Theorem 3.1.4. Let m,n ≥ 2. Then A (P(m,1,n)) is combinatorially equivalent to the per-

mutohedron, but A (P(1,m,n)) is not.

3.2 Background

3.2.1 Flips of autonomous subsets

Definition 3.2.1. Let P and S be posets and let a ∈ P . The substitution of a for S is the

poset P (a → S) on the set (P − {a}) ⊔ S formed by replacing a with S.

More formally, x ⪯P (a→S) y if and only if one of the following holds:

• x, y ∈ P − {a} and x ⪯P y

• x, y ∈ S and x ⪯S y

• x ∈ S, y ∈ P − {a} and a ⪯P y

• y ∈ S, x ∈ P − {a} and y ⪯P a.

Definition 3.2.2. Let P be a poset and let S ⊆ P . S is called autonomous if there exists

a poset Q and a ∈ Q such that P = Q(a → S).
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Equivalently, S is autonomous if for all x, y ∈ S and z ∈ P − S, we have

(x ⪯ z ⇔ y ⪯ z) and (z ⪯ x ⇔ z ⪯ y).

Definition 3.2.3. For a poset S, the dual poset Sop is defined on the same ground set where

x ⪯S y if and only if y ⪯Sop x. A flip of S in P = Q(a → S) is the replacement of P by

Q(a → Sop).
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(a) An autonomous subset S of a poset P .
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(b) A flip of S.

Figure 3.1: An autonomous subset of a poset and a flip of the autonomous subset

See Figure 3.1a for an example of an autonomous subset and Figure 3.1b for an example

of a flip.

Lemma 3.2.4 ([DPW85, Theorem 1]). If P and P ′ are finite posets such that C(P ) = C(P ′)

then P and P ′ are connected by a sequence of flips of autonomous subsets.

In particular, a property is comparability invariant if and only if it is preserved under

flips.

Lemma 3.2.5 ([Gal23, Corollary 2.7]). The codimension of T ∈ A (P ) is equal to |T |.

By an abuse of notation, we also use A (P ) to refer to the set of proper tubings of P . Our

strategy for proving Theorem 3.1.1 is to give a bijection between the tubings of Q(a → S)
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(a) A proper tubing T on P .
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(b) ΦP,S(T )

Figure 3.2: A proper tubing and its image under ΦP,S

and of Q(a → Sop) that preserves the number of tubes in a tubing. See Figure 3.2 for an

example of the map.

3.3 Proof of Theorem 3.1.1

3.3.1 Proof Sketch

Let P = Q(a → S) and P ′ = Q(a → Sop). Our goal is to build a bijection ΦP,S : A (P ) →
A (P ′) such that for any T ∈ A (P ), |T | = |ΦP,S(T )|. Let T ∈ A (P ). We will describe how

to construct T ′ := ΦP,S(T ).

Definition 3.3.1. A tube τ ∈ T is good if τ ⊆ P −S, τ ⊆ S, or S ⊆ τ and is bad otherwise.

We denote the set of good tubes by Tgood and the set of bad tubes by Tbad.

All good tubes are also good tubes in P ′, and we add all good tubes to T ′. See Figure

3.3 for an example of Tgood and Tbad. It remains to handle the bad tubes.

Definition 3.3.2. A sequence of sets (A1, . . . , Ar) is called nested if Ai ⊆ Aj for all i ≤ j.
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Figure 3.3: Tbad (left), Tgood (middle), and Tgood on P ′ (right).

A decorated nested sequence is a nested sequence (A1, . . . , Ar) paired with a function

f : {1, . . . , r} → {0, 1}.

For brevity, instead of specifying f , we will instead mark Ai with a star if and only if f(i) = 1.

The key idea of defining ΦP,S is to decompose Tbad into a triple (L,M,U) where L and U
are decorated nested sequences of sets contained in P −S and M is an ordered set partition

of S. We build the decomposition in such a way so that we can recover Tbad from (L,M,U)
and Figure 3.4 for an example of the decomposition.

We build T ′
bad by applying the recovery algorithm to the triple (L,M,U) where M is

the reverse of M. We then add T ′
bad to T ′. See Figure 3.5 for an example of the recovery

algorithm applied to (L,M,U). See Figure 3.2b for the image of T under ΦP,S (including

Tgood).

3.3.2 Proof details

Definition 3.3.3. A tube τ ∈ Tbad is called lower (resp. upper) if there exist x ∈ τ −S and

y ∈ τ ∩ S such that x ⪯ y (resp. y ⪯ x). We denote the set of lower tubes by TL and the

set of upper tubes by TU .
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Lemma 3.3.4 (Structure Lemma). Tbad is the disjoint union of TL and TU . Furthermore,

TL and TU each form a nested sequence.

Proof. We first show that Tbad is the disjoint union of TL and TU . Suppose that τ ∈ TL∩TU ,

i.e. there exist x1, x2 ∈ τ − S and y1, y2 ∈ τ ∩ S such that

x1 ⪯ y1 and y2 ⪯ x2.

Then as S is autonomous, for all y ∈ S, x1 ⪯ y ⪯ x2. As τ is convex, this implies S ⊆ τ and

hence that τ is good. Therefore TL and TU are disjoint. Next observe that if τ ∈ Tbad, by

connectivity there exist x ∈ τ ∩ S and y ∈ τ − S such that x and y are comparable. Hence

τ ∈ TL ∪ TU so Tbad = TL ⊔ TU .

Finally, we show that TL is nested. The result on TU follows analogously. It suffices

to show that TL is pairwise nested. Let σ, τ ∈ TL. As T is a tubing, if σ and τ are not

nested, then they are disjoint. Suppose, for the sake of contradiction, that σ ∩ τ = ∅, and
let x1 ∈ τ − S, x2 ∈ σ − S, y1 ∈ τ ∩ S, and y2 ∈ σ ∩ S such that x1 ⪯ y1 and x2 ⪯ y2. Then

as S is autonomous, x1, x2 ⪯ y1, y2. Thus (σ, τ) and (τ, σ) are both edges in DT , so DT is

not acyclic, a contradiction.

We decompose TL (resp. TU) into a sequence of nested sets contained in P − S and a

sequence of disjoint sets contained in S as follows.

Definition 3.3.5 (Tubing decomposition). Let TL = {τ1, . . . , } where τi ⊂ τi+1 for all i. For

convenience, we define τ0 = ∅. We define a decorated nested sequence L = (L1, . . . ) and a

sequence of disjoint sets ML = (M1
L, . . . ) as follows.

• For each i ≥ 1, let Li = τi − S, and mark Li with a star if (τi − τi−1) ∩ S ̸= ∅.

• If Li is the j-th starred set, let M j
L = (τi − τi−1) ∩ S.

We define the sequences U and MU analogously. We make the following definitions.
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(a) TL is blue and TU is red.
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U = ({13, 15}∗, {13, 14, 15})

M = ({6}, {5}, {7}, {8, 9, 10, 11}, {12})

L = ({3}∗, {3}∗, {1, 2, 3}∗, {1, 2, 3, 4})

(b) L is blue, M is purple, and U is red.

Figure 3.4: The decomposition of Tbad.

• Let M̂ := S − ⋃
τ∈Tbad

τ.

• For sequences a and b, let the sequence a · b be b appended to a.

• For a sequence a, let a be the reverse of a.

• We define

M :=




ML · MU if M̂ = ∅

ML · (M̂) · MU if M̂ ̸= ∅

where (M̂) is the sequence containing M̂ .

• The decomposition of Tbad is the triple (L,M,U).

See Figure 3.4 for an example a decomposition.

Lemma 3.3.6 (Reconstruction algorithm). Tbad can be reconstructed from its decomposition.

Proof. Let M = (M1, . . . ,Mn). To reconstruct TL, we set τ1 = L1 ∪M1 and take

τi =




τi−1 ∪ Li if Li is not starred

τi−1 ∪ Li ∪Mj if Li is marked with the j-th star.
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For TU , we set τ1 = U1 ∪Mn and

τi =




τi−1 ∪ Ui if Ui is not starred

τi−1 ∪ Ui ∪Mn−j+1 if Ui is marked with the j-th star.

In each case, the efficacy of the algorithm follows easily from induction on i.

Definition 3.3.7 (Flip map for tubings). Let T = Tgood ⊔ Tbad. The flip map

ΦP,S : A (P ) → A (P ′)

sends T to a tubing T ′ = T ′
good ⊔ T ′

bad on P ′ where Tgood = T ′
good and T ′

bad has the decompo-

sition (L,M,U).

In Lemma 3.3.11, we show that applying the reconstruction algorithm to (L,M,U) indeed
yields a proper tubing T ′

bad of P ′. In Lemma 3.3.12, we show that Tgood ⊔ T ′
bad is a proper

tubing on P ′ and hence that ΦP,S is well-defined.

Observation 3.3.8. By construction, the decomposition of T ′
bad is (L,M,U), so applying

ΦP ′,S returns T . In particular, ΦP,S is a bijection.
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U = ({13, 15}∗, {13, 14, 15})

M = ({12}, {8, 9, 10, 11}, {7}, {5}, {6})

L = ({3}∗, {3}∗, {1, 2, 3}∗, {1, 2, 3, 4})

Figure 3.5: T ′
bad and its decomposition.

37



Definition 3.3.9. Let A = (A1, . . . , An) be a sequence of disjoint subsets of P . We say A

is weakly increasing if for all i < j we have (x ∈ Ai and y ∈ Aj) ⇒ y ̸≺ x.

Lemma 3.3.10. M is weakly increasing.

Proof. First we show that ML is weakly increasing. Indeed, suppose to the contrary that

1 ≤ i < j ≤ |ML| but that there exist x ∈ Mi and y ∈ Mj such that y ≺ x. As i < j, there

exists a tube τ ∈ TL such that x ∈ τ but y /∈ τ . Furthermore, as τ is a lower tube, there

exists z ∈ τ − S such that z ⪯ y. Then since τ is convex, y ∈ τ , a contradiction.

Next, we show that ML · M̂ is weakly increasing. Let x ∈ Mi and y ∈ M̂ such that

1 ≤ i ≤ |ML|. Then there exists a tube τ ∈ TL such that x ∈ TL. Again, there exists

z ∈ τ − S such that z ⪯ y. Then by the same convexity argument, if y ≺ x we have y ∈ τ ,

contradicting the definition of M̂ . Hence ML · M̂ is weakly increasing.

By symmetry, we have that M̂ ·MU is weakly increasing. It remains to show that for all

x ∈ ⋃
A∈ML

A and y ∈ ⋃
A∈MU

A we have y ̸≺ x.

Suppose to the contrary that there are such x and y. Then there exist σ ∈ TL and τ ∈ TU

with x ∈ σ and y ∈ τ . Furthermore, there exist a ∈ σ and b ∈ τ such that a ⪯ x and y ⪯ b.

But then we have a cycle in DT , a contradiction.

Lemma 3.3.11. T ′
bad is a proper tubing on P ′ such that |T ′

bad| = |Tbad|.

Proof. By construction, for all σ, τ ∈ T ′
bad, σ and τ are nested or disjoint. Furthermore,

observe that in the construction of T ′
L = (τ ′1, . . . ), if Li is empty then it is necessarily

starred. Thus for all i, we have τ ′i ⊊ τ ′i+1. Then |T ′
L| = |L| = |TL|. Similarly, |T ′

U | = |TU |.
Hence

|T ′
bad| = |TL|+ |TU | = |Tbad|.

It remains to show that DT ′
bad

is acyclic. It suffices to show that A :=
⋃

τ ′∈T ′
L
τ ′ and that

B :=
⋃

τ ′∈T ′
U
τ ′ do not form a directed cycle. Observe that as M is weakly increasing in P ,
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M is weakly increasing in P ′. Hence (A,B) is weakly increasing, so A and B do not form a

directed cycle.

Lemma 3.3.12. Tgood ⊔ T ′
bad is a proper tubing on P ′.

Proof. This is most easily seen by observing how ΦP,S interacts with quotients of good tubes.

Galashin [Gal23, Corollary 2.7] observes that faces of poset associahedra are products of poset

associahedra. In particular, given T ∈ A (P ) and τ ∈ T ∪ {P}, we define an equivalence

relation ∼τ on τ by i ∼τ j if there exists σ ∈ T such that i, j ∈ σ and σ ⊊ τ . Then the facet

corresponding to T is combinatorially equivalent to the product
∏

τ∈T∪{P} A (τ/∼τ ).

Let τ ∈ Tgood∪{P} be minimal such that S ⊆ τ . One may verify that ΦP,S on any tubing

containing Tgood is equivalent to applying ΦT/∼τ ,S/∼τ on the factor of T/∼τ in the product

decomposition. Then either Tgood = ∅ and ΦP,S is well-defined by Lemma 3.3.11 or ΦP,S is

well-defined by induction on the size of P .

We can finally prove Theorem 3.1.1.

Proof of Theorem 3.1.1. By Observation 3.3.8, ΦP,S : A (P ) → A (P ′) is a bijection. Fur-

thermore, for any tubing T ∈ A (P ), we have

|ΦP,S(T )| = |Tbad|+ |Tgood| = |T |.

Hence the f -vectors of A (P ) and A (P ′) are equal. By Lemma 3.2.4, the f -vector of A (P )

is a comparability invariant.

3.4 Proof of Theorem 3.1.4

Observation 3.4.1 ([Lap22, MPPep]). If the Hasse diagram of P is a tree, then A (P )

is combinatorially equivalent to the graph associahedron [PRW08] of the line graph of the

Hasse diagram of P .
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Proof of Theorem 3.1.4. By Observation 3.4.1, for any m,n ≥ 1, A (Pm,1,n) is combinatori-

ally equivalent to the permutohedron Πm+n.

However, for m,n ≥ 2, A (P1,m,n) has an octagon for a 2-dimensional face which per-

mutohedra never do. In particular, an octagon is a factor of the facet given by any tube

isomorphic to P2,2.

A (P(1,2,2)) A (P(2,1,2))

Figure 3.6: A (P(1,2,2)) has an octagonal face, but A (P(2,1,2)) does not.

3.5 Open questions

Question 3.5.1. In [Sta86], Stanley defines the order polytope and the chain polytope, with

the latter defined purely in terms of the comparability graph. He constructs a piecewise

linear volume preserving map between the two polytopes which sends vertices to vertices.

In particular, this shows that the number of vertices of the order polytope is a com-

parability invariant. Can a similar geometric map be defined on the realization of poset

associahedra in [Sac23]?

Question 3.5.2. More generally, can we define fA (P )(z) purely in terms of C(P )? It would

also be interesting to answer this question even for f0. Similarly, can
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Question 3.5.3. The flip map can be analogously defined for affine poset cyclohedra [Gal23],

where an autonomous subset S has at most one representative from each residue class. Again,

it preserves the f -vector of the affine poset cyclohedron. Does Lemma 3.2.4 (and hence

Theorem 3.1.1) hold for affine posets?
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CHAPTER 4

Operahedron Lattices

This chapter is based on [DS24] which was joint work with Colin Defant. In this chapter,

we study the special case of poset associahedra when the poset is a rooted plane tree.

This case was originally studied by Laplante-Anfossi in [Lap22], who called the poset

associahedron in this case an operahedron. He also defined a partial order on the vertex set

of an operahedron and asked if the resulting poset is a lattice. We answer this question in

the affirmative, motivating us to name Laplante-Anfossi’s posets operahedron lattices. In

this chapter, we use the terminology “maximal nesting” instead of “maximal tubing” to

maintain consistency with [Lap22]. Furthermore, for convenience, we make a slight change

in definition so that a maximal nesting includes the entire tree as an element.

The operahedron lattice of a chain with n+ 1 vertices is isomorphic to the n-th Tamari

lattice, while the operahedron lattice of a claw with n+1 vertices is isomorphic to Weak(Sn),

the weak order on the symmetric group Sn. We characterize semidistributive operahedron

lattices and trim operahedron lattices.

Finally we consider a special case of posets called broom posets. Let ∆Weak(Sn)(w◦(k, n))

be the lower set of Weak(Sn) generated by the permutation

w◦(k, n) = k(k − 1) · · · 1(k + 1)(k + 2) · · ·n.

Our final result states that the operahedron lattice of a broom with n+1 vertices and k leaves

is isomorphic to the subposet of Weak(Sn) consisting of the preimages of ∆Weak(Sn)(w◦(k, n))

under West’s stack-sorting map; as a consequence, we deduce that this subposet is a semidis-

tributive lattice.
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4.1 Introduction

In a recent breakthrough, Masuda, Thomas, Tonks, and Vallette [MTT21] found coherent

cellular approximations of the diagonals of associahedra. This allowed them to define a

topological cellular operad structure on the Loday realizations of associahedra. Motivated by

these results and independently of Galashin, Laplante-Anfossi [Lap22] defined an operahedron

of a rooted plane tree T in a nearly identical manner to A (T). Hence, operahedra are special

examples of poset associahedra. As the chain and claw are both rooted trees, operahedra also

generalize associahedra and permutohedra. Laplante-Anfossi constructed Loday realizations

of operahedra and found coherent cellular approximations of their diagonals. He then defined

a topological cellular operad structure on these Loday realizations.

Let PTn denote the set of rooted plane trees with n+1 vertices. We view a tree T ∈ PTn

with vertex set V as a poset (V,≤T), where the partial order ≤T is defined so that every non-

root vertex covers exactly one element. Thus, the root vertex is the unique minimal element

of T. In this context, a tube of T is a set of vertices that induces a connected subgraph of

T. Every tube τ has a unique minimal element under ≤T that we call the root of τ .

Let Broomk,n ∈ PTn denote the rooted plane tree obtained by identifying the unique

maximal element of the chain in PTn−k+1 with the root of the claw in PTk+1; we call

Broomk,n a broom. Alternatively, one way view Broomk,n as the ordinal sum of a chain on

n− k + 1 elements with an antichain on k elements. See Figure 4.1.

The preorder traversal of a rooted plane tree T is the ordering of the vertices of T obtained

by reading the root first and then reading the subtrees of the root, each in preorder, from left

to right. For example, every tree appearing in Figures 4.1 to 4.3 has its vertex set identified

with {0, 1, . . . , n} (for the appropriate n) so that the preorder traversal is 0, 1, . . . , n.

Let T ∈ PTn, and let us identify the vertex set of T with {0, 1, . . . , n} so that 0, 1, . . . , n

is the preorder traversal of T. A maximal nesting of T is a tubing of T that has n tubes.

Note that we allow the tubes to have size n + 1 and in particular, we will always have T
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Figure 4.1: On the left is the chain in PT4. In the middle is the claw in PT4. On the right

is the broom Broom3,7 ∈ PT7. We have identified the vertex set of each tree in PTn with

{0, 1, . . . , n} in a manner such that 0, 1, . . . , n is the preorder traversal of the tree.

an an element of a maximal nesting. Maximal nestings are clearly still in bijection with the

vertices of the operahedron of T. Let MN(T) denote the set of maximal nestings of T. Say

two maximal nestings of T are adjacent if they correspond to vertices that are adjacent in

the 1-skeleton of the operahedron of T. Suppose N and N ′ are adjacent maximal nestings

of T. Then there exist τ ∈ N \N ′ and τ ′ ∈ N ′ \N such that N \{τ} = N ′ \{τ ′}. Moreover,

the following are equivalent:

(1) Every element of τ \ τ ′ is less than every element of τ ′ \ τ in Z.

(2) Some element of τ \ τ ′ is less than some element of τ ′ \ τ in Z.

If these equivalent conditions hold, then we write N ⋖N ′. This defines the cover relations of

a partial order ≤ on MN(T), which allows us to view MN(T) as a poset. If T is a chain, then

MN(T) is isomorphic to the n-th Tamari lattice; if T is a claw, then MN(T) is isomorphic to

the weak order on the symmetric group Sn (see Figures 4.2 and 4.3).

Laplante-Anfossi introduced the posets MN(T) and posed the problem of determining

whether they are always lattices. Our first main result answers this question in the affirma-

tive.

Theorem 4.1.1. For every rooted plane tree T, the poset MN(T) is a lattice.
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Figure 4.2: On the left is the operahedron lattice of the chain in PT3, which is isomorphic to

the third Tamari lattice. On the right is the operahedron lattice of the claw in PT3, which

is isomorphic to the weak order on S3. Each tube is circled in blue.

In light of Theorem 4.1.1, we call MN(T) an operahedron lattice.

Let us say a rooted plane tree T contains a rooted plane tree T′ if T′ can be obtained

from T by contracting edges. The following result is a useful tool for understanding the more

refined structural properties of operahedron lattices.

Proposition 4.1.2. Let T and T′ be rooted plane trees. If T contains T′, then MN(T′) is

isomorphic to an interval of MN(T).

Using Theorem 4.1.2 and the fact that intervals of distributive lattices are distributive,

it is not difficult to check by hand that MN(T) is distributive if and only if n ≤ 2. This

characterization of distributivity is not too interesting, so we are naturally led to consider the

family of semidistributive lattices, which contains a more eclectic array of examples. Upon
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Figure 4.3: The operahedron lattice of the tree . We have identified the vertex set of

the tree with the set {0, 1, 2, 3, 4} so that 0, 1, 2, 3, 4 is the preorder traversal. Each tube is

circled in blue. Edges of the lattice corresponding to permutohedron moves are purple, while

edges corresponding to associahedron moves are orange.

46



inspecting Figure 4.3, one can check directly that the operahedron lattice of the tree

is not semidistributive. Because intervals of semidistributive lattices are semidistributive, it

follows from Theorem 4.1.2 that the operahedron lattice of a tree that contains cannot

be semidistributive; we will prove that this is actually the only obstruction to semidistribu-

tivity.

Theorem 4.1.3. Let T be a rooted plane tree. The following are equivalent.

(I) The operahedron lattice MN(T) is semidistributive.

(II) The operahedron lattice MN(T) is meet-semidistributive.

(III) The operahedron lattice MN(T) is join-semidistributive.

(IV) The tree T does not contain the tree .

(V) Every vertex of T that is not in the rightmost branch of T is covered by at most 1 element

of T.

When MN(T) is semidistributive, our proof of Theorem 4.1.3 provides a description of

its join-irreducible elements and its meet-irreducible elements (see Theorem 4.5.8).

Another generalization of the family of distributive lattices is the family of trim lattices,

which was introduced by Thomas [Tho06] (see also [DL23, DW23, TW19] for several notable

examples and remarkable properties of trim lattices). Our next result characterizes the rooted

plane trees whose operahedron lattices are trim.

Theorem 4.1.4. Let T be a rooted plane tree. The operahedron lattice MN(T) is trim if and

only if the root of T is covered by at most 2 elements of T and every non-root vertex in T is

covered by at most 1 element of T.

Remark 4.1.5. Defant and Williams [DW23] introduced the family of semidistrim lattices

and proved that semidistributive lattices and trim lattices are semidistrim. We have checked
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that the operahedron lattice of the tree (shown in Figure 4.3) is not semidistrim.

Since intervals of semidistrim lattices are semidistrim [DW23]*Theorem 7.8, it follows that

the operahedron lattice MN(T) of a tree T is semidistrim if and only if the five equivalent

conditions in Theorem 4.1.3 hold.

We denote by Sn the n-th symmetric group, which consists of the permutations of [n].

Let s : Sn → Sn denote West’s stack-sorting map (see Section 4.7 for the definition of this

map). West [Wes90] introduced this function as a deterministic analogue of Knuth’s stack-

sorting machine [Knu73]. It has now been studied vigorously in combinatorics and computer

science [Bon19, Bra06, Def20a, Def20b, Def22b, DEM20] and has found striking connections

with free probability theory [Def22c] and polyhedral geometry [Def23, NS23a, LMV23].

Let Weak(Sn) denote the (right) weak order on Sn. For w ∈ Sn, let ∆Weak(Sn)(w) be

the order ideal of Weak(Sn) generated by w, viewed as a subposet of Weak(Sn). Let

w◦(k, n) = k(k − 1) · · · 1(k + 1)(k + 2) · · ·n ∈ Sn.

Note that ∆Weak(Sn)(w◦(k, n)) = {u ∈ Sn : u(i) = i for all k + 1 ≤ i ≤ n}.

The final direction that we will explore connects West’s stack-sorting map with oper-

ahedron lattices of brooms. This line of investigation was initiated by Nguyen and Sack

[NS23a], who found that the h-vector of the operahedron of Broomk,n counts permutations

in s−1(∆Weak(Sn)(w◦(k, n))) according to the descent statistic.

Theorem 4.1.6. Fix positive integers k ≤ n. The operahedron lattice MN(Broomk,n) is

isomorphic to the subposet s−1(∆Weak(Sn)(w◦(k, n))) of Weak(Sn).

Our proof of Theorem 4.1.6 constructs an explicit isomorphism.

It is not obvious a priori that the subposet s−1(∆Weak(Sn)(w◦(k, n))) of Weak(Sn) is a

lattice, yet combining Theorems 4.1.3 and 4.1.6 yields the following even stronger corollary.

Corollary 4.1.7. Fix positive integers k ≤ n. The subposet s−1(∆Weak(Sn)(w◦(k, n))) of

Weak(Sn) is a semidistributive lattice.
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The remainder of the paper is organized as follows. In Section 4.2, we collect necessary

notation and terminology pertaining to posets, lattices, permutations, and rooted plane trees.

In Section 4.3, we prove that MN(T) is isomorphic to a different poset Θ(T×), and we prove

that this latter poset is a lattice, thereby establishing Theorem 4.1.1. Sections 4.4 to 4.6

are devoted to proving Theorem 4.1.2, Theorem 4.1.3, and Theorem 4.1.4, respectively. In

Section 4.7, we discuss the stack-sorting map and prove Theorem 4.1.6. We conclude the

paper with suggestions for future work in Section 4.8.

4.2 Preliminaries

We assume basic familiarity with the theory of posets (partially ordered sets); a standard

reference for this topic is [Sta12]*Chapter 3. All posets in this article are assumed to be

finite.

Let P be a poset with partial order ≤. For x, y ∈ P with x ≤ y, the interval from x to

y is the set [x, y] = {z ∈ P : x ≤ z ≤ y}, which we view as a subposet of P . If x < y and

[x, y] = {x, y}, then we say y covers x and write x⋖ y. For x ∈ P , let

∆P (x) = {z ∈ P : z ≤ x} and ∇P (x) = {z ∈ P : x ≤ z}.

A chain of P is a totally ordered subset of P . We often represent a chain of P as a sequence

x0 < x1 < · · · < xℓ; the length of this chain is the number ℓ. The height of P , which we

denote by height(P ), is the maximum length of a chain of P .

Suppose P1 and P2 are posets with partial orders ≤1 and ≤2, respectively. A map

φ : P1 → P2 is said to be order-preserving if φ(x) ≤2 φ(y) for all x, y ∈ P1 satisfying x ≤1 y.

The product of P1 and P2 is the poset P1 ×P2 whose underlying set is the cartesian product

of P1 and P2 and whose order relation ≤ is such that (x1, x2) ≤ (y1, y2) if and only if x1 ≤1 y1

and x2 ≤2 y2.

Let P be a poset with N elements. A linear extension of P is a word σ = σ(1) · · ·σ(N)
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such that P = {σ(1), . . . , σ(N)} and such that σ(i) ≤ σ(j) whenever i ≤ j in Z. Let L(P )

denote the set of linear extensions of P . For σ ∈ L(P ), we consider the strict total order

≺σ on P defined so that x ≺σ y if and only if x precedes y in σ. We also write x ⪯σ y to

mean x ≺σ y or x = y. It will be helpful to extend this notation to subsets of P as well.

For X, Y ⊆ P , we write X ≺σ Y if x ≺σ y for all x ∈ X and y ∈ Y . (Note that if X ≺σ Y ,

then X ∩ Y = ∅.) A consecutive factor of σ is a word of the form σ(a)σ(a + 1) · · ·σ(b) for
1 ≤ a ≤ b ≤ N . Given a set X, we write σ|X for the word obtained from σ by deleting the

entries from P \X.

We say a poset L is a lattice if any two elements x, y ∈ L have a greatest lower bound,

which is called their meet and denoted by x ∧ y, and a least upper bound, which is called

their join and denoted by x ∨ y. Let L be a lattice. An element of L is join-irreducible if it

covers exactly 1 element of L. Dually, an element of L is meet-irreducible if it is covered by

exactly 1 element of L. Let JL and ML be the set of join-irreducible elements of L and the

set of meet-irreducible elements of L, respectively. It is a basic fact that height(L) ≤ |JL|
and height(L) ≤ |ML|. We say L is extremal if height(L) = |JL| = |ML|. An element u ∈ L

is left-modular if for all v, w ∈ L satisfying v < w, we have (v ∨ u) ∧ w = v ∨ (u ∧ w). The

lattice L is called left-modular if it has a maximal chain whose elements are all left-modular.

We say L is trim if it is both extremal and left-modular. We say L is meet-semidistributive

if for all elements x, y, z ∈ L satisfying x∧y = x∧z, we have x∧y = x∧ (y∨z). We say L is

join-semidistributive if for all x, y, z ∈ L satisfying x∨ y = x∨ z, we have x∨ y = x∨ (y∧ z).

We say L is semidistributive if it is both meet-semidistributive and join-semidistributive.

If L1 and L2 are lattices, then their product L1 × L2 is a lattice, and

JL1×L2 = (JL1 × {0̂2}) ⊔ ({0̂1} × JL2), (4.1)

where 0̂1 and 0̂2 are the unique minimal elements of L1 and L2, respectively.

We represent a permutation w in the symmetric group Sn via its one-line notation

w(1) · · ·w(n). An inversion of w is a pair (i, j) such that 1 ≤ i < j ≤ n and w−1(j) < w−1(i).
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Let Inv(w) denote the set of inversions of w. The (right) weak order on Sn is the poset

Weak(Sn) = (Sn,≤), where for w,w′ ∈ Sn, we have w ≤ w′ if and only if Inv(w) ⊆ Inv(w′).

It is known [BB05] that Weak(Sn) is a lattice.

A rooted plane tree is a rooted tree in which the subtrees of each vertex are linearly

ordered from left to right. As before, we let PTn denote the set of rooted plane trees with

n + 1 vertices. We draw a rooted plane tree T with vertex set V as the Hasse diagram

of the poset (V,≤T) (so the root is at the bottom). Recall that for v ∈ V×, we write

∇T(v) = {v′ ∈ V× : v ≤T v′}.

Let T be a rooted plane tree with vertex set V and root vertex r. We write T× for the

poset obtained from T by deleting r. We can also view T× as a forest graph (via its Hasse

diagram). We let V× = V \ {r} denote the vertex set of T×. Define the rightmost branch of

T as follows. If T has only 1 vertex, then the rightmost branch of T is {r}. Now suppose

T has at least 2 vertices, and let r′ be the rightmost vertex that covers r. Let Tr′ be the

subtree of T with vertex set ∇T(r
′). Then the rightmost branch of T is {r} ∪ Br′ , where Br′

is the rightmost branch of Tr′ .

4.3 The Lattice Property

Let T be a rooted plane tree with vertex set V and root vertex r. As above, let T× be the

forest poset with vertex set V× = V \ {r}.

It will be useful to distinguish two different types of cover relations in MN(T). Suppose

N ⋖ N ′ is a cover relation in MN(T), and let τ ∈ N \ N ′ and τ ′ ∈ N ′ \ N be such that

N \ {τ} = N ′ \ {τ ′}. If τ and τ ′ have the same root, then we say N and N ′ are related by

a permutohedron move. If τ and τ ′ have different roots, then we say N and N ′ are related

by an associahedron move.

An ornament of T× is a subset of V× that induces a connected subgraph of T×. Every

ornament o has a unique minimal element vo; we say o is hung at vo. Let Orn(T×) denote
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the set of ornaments of T×. An ornamentation of T× is a function ϱ : V× → Orn(T×) such

that

• for all v ∈ V×, the ornament ϱ(v) is hung at v;

• for all v, v′ ∈ V×, the ornaments ϱ(v) and ϱ(v′) are either nested or disjoint.

An ornament ϱ(v) of an ornamentation ϱ is maximal if there does not exist v′ ∈ V×\{v} such

that ϱ(v) ⊆ ϱ(v′). Let O(T×) denote the set of ornamentations of T×. There is a natural

partial order ≤ on O(T×) defined so that ϱ ≤ ϱ′ if and only if ϱ(v) ⊆ ϱ′(v) for all v ∈ V×.

The poset O(T×) has a unique minimal element ϱmin and a unique maximal element ϱmax;

they are defined so that

ϱmin(v) = {v} and ϱmax(v) = ∇T(v)

for all v ∈ V×.

Proposition 4.3.1. Let T be a rooted plane tree. The poset O(T×) is a lattice.

Proof. The meet operation on O(T×) is given by

(ϱ ∧ ϱ′)(v) = ϱ(v) ∩ ϱ′(v)

for all v, v′ ∈ V×. The join ϱ ∨ ϱ′ is simply the meet of the set of upper bounds of ρ and ρ′

(this set is nonempty because O(T×) has a unique maximal element ϱmax).

In light of Theorem 4.3.1, we call O(T×) an ornamentation lattice.

Let us identify V with {0, 1, . . . , n} so that 0, 1, . . . , n is the preorder traversal of T. Then

the vertex set of T× is [n], so the set L(T×) of linear extensions of T× can be viewed as a

subset of Sn (a linear extension is just the one-line notation of a permutation). It follows

from [BW91]*Theorem 6.8 that L(T×) is an interval in Weak(Sn). In particular, L(T×) is

a lattice.
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In order to prove that MN(T) is a lattice, we will first embed it as a subposet of the

product lattice L(T×) × O(T×). Suppose N ∈ MN(T) is a maximal nesting of T. For

each v ∈ V×, let ϱN (v) be the largest tube in N whose root is v; if no such tube exists,

let ϱN (v) = {v}. This defines an ornamentation ϱN ∈ O(T×). There is a unique linear

extension λ̃N ∈ L(T) such that for every τ ∈ N , the elements of τ form a consecutive factor

of λ̃N . The first entry in the word λ̃N is the root vertex r. Let λN ∈ L(T×) be the linear

extension of T× obtained from λ̃N by deleting r.

Figure 4.4: Three maximal nestings of a tree in PT9. The top two maximal nestings cover

the bottom maximal nesting. The cover relation on the left corresponds to an associahedron

move, while the cover relation on the right corresponds to a permutohedron move.
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Figure 4.5: Applying Ψ to the maximal nestings in Figure 4.4 yields these three pairs, each

of which consists of an ornamentation (which we represent by circling the ornaments in red)

and a linear extension.

Remark 4.3.2. Suppose N ⋖ N ′ is a cover relation in MN(T). Let τ ∈ N \ N ′ and

τ ′ ∈ N ′ \ N be such that N \ {τ} = N ′ \ {τ ′}. Let v and v′ be the roots of τ and τ ′,

respectively. If N and N ′ are related by a permutohedron move (meaning v = v′), then

• ϱN = ϱN ′ ;

• λN |τ∩τ ′λN |τ\τ ′λN |τ ′\τ is a consecutive factor of λN ;

• λN ′ is obtained from λN by swapping λN |τ\τ ′ and λN |τ ′\τ .
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On the other hand, if N and N ′ are related by an associahedron move (meaning v ̸= v′),

then

• ϱN (u) = ϱN ′(u) for all u ∈ V× \ {v′};

• ϱN (v′) = τ ∩ τ ′;

• ϱN ′(v′) = τ ′;

• λN and λN ′ are equal and have λN |τ\τ ′λN |τ∩τ ′λN |τ ′\τ as a consecutive factor.

See Figures 4.4 and 4.5.

Let Θ(T×) be the set of pairs (λ, ϱ) ∈ L(T×) × O(T×) such that for every v ∈ V×,

the elements of ϱ(v) form a consecutive factor of λ. We will view Θ(T×) as a subposet of

L(T×) × O(T×). Note that (λN , ϱN ) ∈ Θ(T×) for all N ∈ MN(T). Thus, we can define a

map Ψ: MN(T) → Θ(T×) by

Ψ(N ) = (λN , ϱN ).

For example, if we apply Ψ to the maximal nestings in Figure 4.4, we obtain the pairs shown

in Figure 4.5.

Lemma 4.3.3. For T ∈ PTn, the map Ψ: MN(T) → Θ(T×) is a bijection.

Proof. Let (λ, ϱ) ∈ Θ(T×). We will show that there is a unique N ∈ MN(T) such that

λN = λ and ϱN = ϱ. This is trivial if n ≤ 1, so we may assume n ≥ 2 and proceed by

induction on n.

Let M be the set of vertices v ∈ V× such that ϱ(v) is a maximal ornament of ϱ. Let

v1, . . . , vm be the elements of M , listed in the order they appear in λ. For i ∈ [m], let Ti be

the subtree of T with vertex set ϱ(vi).

Fix i ∈ [m]. Let T×
i be the forest poset obtained from Ti by deleting its root vertex

vi. Let V×
i = ϱ(vi) \ {vi} be the vertex set of T×

i . Consider the ornamentation ϱi ∈ O(T×
i )
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obtained by restricting ϱ to V×
i . Let λi = λ|V×

i
. Note that (λi, ϱi) ∈ Θ(T×

i ). By induction,

we know that there is a unique Ni ∈ MN(Ti) such that λNi
= λi and ϱNi

= ϱi. For each

1 ≤ j ≤ m, it follows from the definition of Θ(T×) that the set τj = {0} ∪ ϱ(v1)∪ · · · ∪ ϱ(vj)

is a tube of T. Let

N = {τ1, . . . , τm} ∪ N1 ∪ · · · ∪ Nm.

Then Ψ(N ) = (λ, ϱ), and N is the unique maximal nesting of T with this property.

Consider a cover relation (λ, ϱ)⋖ (λ′, ϱ′) in Θ(T×). We say (λ, ϱ) and (λ′, ϱ′) are related

by a permutohedron move if ϱ = ϱ′ and there exist vertices p, q ∈ V× such that

• p and q are incomparable in T;

• every number in ϱ(p) is less than every number in ϱ(q) in Z;

• λ|ϱ(p)λ|ϱ(q) is a consecutive factor of λ;

• λ′ is obtained from λ by swapping λ|ϱ(p) and λ|ϱ(q).

For example, if (λ, ϱ) and (λ′, ϱ′) are the pairs on the bottom and the top right of Figure 4.5,

then (λ, ϱ) and (λ′, ϱ′) are related by a permutohedron move. In this example, the linear

extension λ′ = 891237456 is obtained from the linear extension λ = 812937456 by swapping

the consecutive factors λ|ϱ(1) = 12 and λ|ϱ(9) = 9. On the other hand, we say (λ, ϱ) and

(λ′, ϱ′) are related by an associahedron move if λ = λ′ and there exists t ∈ V× such that

ϱ(v) = ϱ′(v) for all v ∈ V× \ {t} and ϱ′(t) = ϱ(t) ∪ ϱ(t→), where t→ is the vertex in V×

appearing immediately after λ|ϱ(v) in λ. For example, if (λ, ϱ) and (λ′, ϱ′) are the pairs

on the bottom and the top left of Figure 4.5, then (λ, ϱ) and (λ′, ϱ′) are related by an

associahedron move. In this example, we have ϱ′(3) = ϱ(3) ∪ ϱ(6) because 6 is the vertex

appearing immediately after the consecutive factor λ|ϱ(3) = 3745 in λ.

Lemma 4.3.4. Let (λ, ϱ) ⋖ (λ′, ϱ′) be a cover relation in Θ(T×). Either (λ, ϱ) and (λ′, ϱ′)

are related by a permutohedron move, or they are related by an associahedron move.
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Proof. It suffices to show that ϱ = ϱ′ or λ = λ′. Indeed, if ϱ = ϱ′, then it is straightforward

to show that (λ, ϱ) and (λ′, ϱ′) are related by a permutohedron move, and if λ = λ′, then

it is straightforward to show that (λ, ϱ) and (λ′, ϱ′) are related by an associahedron move.

Assume by way of contradiction that ϱ < ϱ′ and λ < λ′.

Let M be the set of vertices v ∈ V× such that ϱ(v) is a maximal ornament of ϱ.

Let v1, . . . , vm be the elements of M , listed in the order they appear in λ. Then λ =

λ|ϱ(v1) · · ·λ|ϱ(vm). Suppose by way of contradiction that there is an index i ∈ {2, . . . ,m} such

that ϱ(vi) ≺λ′ ϱ(vi−1). Then there is a linear extension λ′′ ∈ L(T×) obtained from λ by swap-

ping the factors λ|ϱ(vi−1) and λ|ϱ(vi). We have (λ′′, ϱ) ∈ Θ(T×) and (λ, ϱ) < (λ′′, ϱ) < (λ′, ϱ′),

which contradicts the assumption that (λ, ϱ) is covered by (λ′, ϱ′) in Θ(T×). From this con-

tradiction, we deduce that for each i ∈ {2, . . . ,m}, there exist ℓi−1 ∈ ϱ(vi−1) and ri ∈ ϱ(vi)

such that ℓi−1 ≺λ′ ri.

Assume for the moment that ϱ(v1), . . . , ϱ(vm) are also the maximal ornaments of ϱ′. It

follows from the preceding paragraph that the elements of M appear in the order v1, . . . , vm

in λ′. For i ∈ [m], let Ti be the subtree of T with vertex set ϱ(vi). Let V
×
i = ϱ(vi) \ {vi} be

the vertex set of the forest T×
i . Let λi = λ|V×

i
and λ′

i = λ′|V×
i
, and note that λi, λ

′
i ∈ L(T×

i ).

Let ϱi and ϱ′i be the ornamentations in O(T×) obtained by restricting ϱ and ϱ′, respectively,

to V×
i . If there exists i ∈ [m] such that ϱi < ϱ′i and λi < λ′

i, then we can use induction to

find that (λi, ϱi) is not covered by (λ′
i, ϱ

′
i) in Θ(T×

i ); this then contradicts the assumption

that (λ, ϱ) is covered by (λ′, ϱ′) in Θ(T×). Otherwise, there exist distinct indices i, i′ ∈ [m]

such that λi < λ′
i, ϱi = ϱ′i, λi′ = λ′

i′ , and ϱi′ < ϱ′i′ . In this case, we can consider the linear

extension λ′′′ ∈ L(T×) obtained from λ by reordering the elements of ϱ(vi) into the order

they appear in λ′; we have (λ′′′, ϱ) ∈ Θ(T×) and (λ, ϱ) < (λ′′′, ϱ) < (λ′, ϱ′), which is again a

contradiction.

We may now assume that {ϱ(v1), . . . , ϱ(vm)} is not the set of maximal ornaments of

ϱ′. Thus, there exists j ∈ [m] such that ϱ′(vj) is a maximal ornament of ϱ′ and such that

ϱ(vj) ⊊ ϱ′(vj). Let k be the smallest index in [m] \ {j} such that ϱ(vk) ⊆ ϱ′(vj). Because λ
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is a linear extension, every number in ϱ′(vj) \ {vj} appears to the right of vj in λ. Therefore,

j < k.

Suppose k = j + 1. Let ϱ′′ be the ornamentation of T× such that ϱ′′(vj) = ϱ(vj) ∪ ϱ(vk)

and ϱ′′(v) = ϱ(v) for all v ∈ V× \ {vj}. Then (λ, ϱ′′) ∈ Θ(T×), and ϱ < ϱ′′ ≤ ϱ′. This implies

that (λ, ϱ) < (λ, ϱ′′) < (λ′, ϱ′), which is a contradiction. From this, we deduce that k > j+1.

For each i ∈ {j+1, . . . , k}, the set ϱ(vi) is contained in a maximal ornament of ϱ′, so the

assumption that ϱ′(vj) is a maximal ornament of ϱ′ guarantees that either ϱ(vi) ≺λ′ {vj} or

{vj} ≺λ′ ϱ(vi). If there exists i ∈ {j+1, . . . , k} such that ϱ(vi) ≺λ′ {vj}, then we can choose

this index i minimally to find that ri ≺λ′ ℓi−1, which is impossible. Therefore, {vj} ≺λ′

(ϱ(vj+1) ∪ · · · ∪ ϱ(vk)). This implies that vj ≺λ′ ℓk−1 ≺λ′ rk. Because vj, rk ∈ ϱ(vj) ⊆ ϱ′(vj)

and the numbers in ϱ′(vj) form a consecutive factor of λ′, this implies that ℓk−1 ∈ ϱ′(vj). It

follows that ϱ(vk−1) ⊆ ϱ′(vj), which contradicts the minimality in the definition of k.

It follows from Theorems 4.3.2 and 4.3.4 that N ⋖N ′ is a cover relation in MN(T) corre-

sponding to a permutohedron (respectively, associahedron) move if and only if Ψ(N )⋖Ψ(N ′)

is a cover relation in Θ(T×) corresponding to a permutohedron (respectively, associahedron)

move. This proves the following proposition.

Proposition 4.3.5. For T ∈ PTn, the map Ψ: MN(T) → Θ(T×) is a poset isomorphism.

The remainder of this section is devoted to proving that Θ(T×) is a lattice; our proof

relies on the following result due to Björner, Edelman, and Ziegler.

Proposition 4.3.6 ([BEZ90]). Let P be a finite poset with a unique minimal element and a

unique maximal element. Suppose that for all distinct x0, x1, x2 ∈ P satisfying x0 ⋖ x1 and

x0 ⋖ x2, the elements x1 and x2 have a least upper bound in P . Then P is a lattice.

Proof of Theorem 4.1.1. By Theorem 4.3.5, it suffices to prove that Θ(T×) is a lattice. Let

(λ0, ϱ0), (λ1, ϱ1), (λ2, ϱ2) be distinct elements of Θ(T×) such that (λ0, ϱ0) ⋖ (λ1, ϱ1) and

(λ0, ϱ0) ⋖ (λ2, ϱ2). We will prove that (λ1, ϱ1) and (λ2, ϱ2) have a least upper bound in
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Θ(T×); in light of Theorem 4.3.6, this will complete the proof. We consider three cases

based on whether the cover relations under consideration correspond to permutohedron or

associahedron moves. By swapping the roles of (λ1, ϱ1) and (λ2, ϱ2) if necessary, we may

assume that either the cover relation (λ0, ϱ0) ⋖ (λ1, ϱ1) corresponds to a permutohedron

move or both (λ0, ϱ0)⋖ (λ1, ϱ1) and (λ0, ϱ0)⋖ (λ2, ϱ2) correspond to associahedron moves.

Case 1. Assume that both of the cover relations (λ0, ϱ0) ⋖ (λ1, ϱ1) and (λ0, ϱ0) ⋖ (λ2, ϱ2)

correspond to permutohedron moves. Then ϱ0 = ϱ1 = ϱ2, and there are vertices p1, q1, p2, q2 ∈
V× such that for each i ∈ {1, 2},

• pi and qi are incomparable in T;

• every number in ϱ0(pi) is less than every number in ϱ0(qi) in Z;

• λ0|ϱ0(pi)λ0|ϱ0(qi) is a consecutive factor of λ0;

• λi is obtained from λ0 by swapping λ0|ϱ(pi) and λ0|ϱ(qi).

We will show that (λ1 ∨ λ2, ϱ0) ∈ Θ(T×), from which it will follow that (λ1 ∨ λ2, ϱ0) is the

least upper bound of (λ1, ϱ1) and (λ2, ϱ2). If p1, q1, p2, q2 are pairwise distinct, then λ1 ∨ λ2

is obtained from λ0 by swapping λ0|ϱ(p1) and λ0|ϱ(q1) and also swapping λ0|ϱ(p2) and λ0|ϱ(q2)
(these two swaps commute with each other). In this case, it is straightforward to see that

(λ1 ∨ λ2, ϱ0) ∈ Θ(T×). Now suppose p1, q1, p2, q2 are not pairwise distinct. Then either

p2 = q1 or p1 = q2; we may assume without loss of generality that p2 = q1. The linear

extension λ0 has λ0|ϱ0(p1)λ0|ϱ0(q1)λ0|ϱ0(q2) as a consecutive factor, and λ1∨λ2 is obtained from

λ0 by replacing this consecutive factor with λ0|ϱ0(q2)λ0|ϱ0(q1)λ0|ϱ0(p1). In this case, we once

again see that (λ1 ∨ λ2, ϱ0) ∈ Θ(T×).

Case 2. Assume that both of the cover relations (λ0, ϱ0) ⋖ (λ1, ϱ1) and (λ0, ϱ0) ⋖ (λ2, ϱ2)

correspond to associahedron moves. Then λ0 = λ1 = λ2, and for each i ∈ {1, 2}, there is

a vertex ti ∈ V× such that ϱ0(v) = ϱi(v) for all v ∈ V× \ {ti} and ϱi(ti) = ϱ0(ti) ∪ ϱ0(t
→
i ),

where t→i is the vertex in V× appearing immediately after λ0|ϱ0(ti) in λ0. We will show that
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(λ0, ϱ1 ∨ ϱ2) ∈ Θ(T×), from which it will follow that (λ0, ϱ1 ∨ ϱ2) is the least upper bound of

(λ1, ϱ1) and (λ2, ϱ2). If t1, t
→
1 , t2, t

→
2 are pairwise distinct, then the ornamentation ϱ1∨ϱ2 sends

t1 to ϱ0(t1)∪ϱ0(t→1 ), sends t2 to ϱ0(t2)∪ϱ0(t→2 ), and sends each vertex v ∈ V×\{t1, t2} to ϱ0(v).
In this case, it is straightforward to see that (λ0, ϱ1∨ϱ2) ∈ Θ(T×). Now suppose t1, t

→
1 , t2, t

→
2

are not pairwise distinct. Then either t2 = t→1 or t1 = t→2 ; we may assume without loss of

generality that t2 = t→1 . The ornamentation ϱ1∨ϱ2 sends t1 to ϱ0(t1)∪ϱ0(t2)∪ϱ0(t
→
2 ), sends

t2 to ϱ0(t2) ∪ ϱ0(t
→
2 ), and sends each vertex v ∈ V× \ {t1, t2} to ϱ0(v). In this case, we once

again see that (λ0, ϱ1 ∨ ϱ2) ∈ Θ(T×).

Case 3. Assume that the cover relation (λ0, ϱ0)⋖ (λ1, ϱ1) corresponds to a permutohedron

move while (λ0, ϱ0) ⋖ (λ2, ϱ2) corresponds to an associahedron move. Then ϱ0 = ϱ1, and

there are vertices p1, q1 ∈ V× such that

• p1 and q1 are incomparable in T;

• every number in ϱ0(p1) is less than every number in ϱ0(q1) in Z;

• λ0|ϱ0(p1)λ0|ϱ0(q1) is a consecutive factor of λ0;

• λ1 is obtained from λ0 by swapping λ0|ϱ(p1) and λ0|ϱ(q1).

Furthermore, λ0 = λ2, and there is a vertex t2 such that ϱ0(v) = ϱ2(v) for all v ∈ V× \ {t2}
and ϱ2(t2) = ϱ0(t2) ∪ ϱ0(t

→
2 ), where t→2 is the vertex in V× appearing immediately after

λ0|ϱ0(t2) in λ0. If p1, q1, t2, t
→
2 are pairwise distinct, then (λ1, ϱ2) is the least upper bound of

(λ1, ϱ1) and (λ2, ϱ2). Now assume p1, q1, t2, t
→
2 are not pairwise distinct. Then either q1 = t2

or p1 = t→2 .

Suppose first that q1 = t2. We have p1 < q2, and p1 and q2 are incomparable in T.

It follows that p1 is less than every number in ϱ2(t2) in Z. Note that λ0|ϱ0(p1)λ0|ϱ2(t2) is a

consecutive factor of λ0. Let λ
′ be the linear extension of T× obtained from λ0 by swapping

λ0|ϱ0(p1) and λ0|ϱ2(t2). Noting that λ1 ≤ λ′, we find that (λ′, ϱ2) is in Θ(T×) and is an upper

bound of (λ1, ϱ1) and (λ2, ϱ2). We claim that (λ′, ϱ2) is actually the least upper bound of
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(λ1, ϱ1) and (λ2, ϱ2). To see this, suppose (λ̂, ϱ̂) ∈ Θ(T×) is an upper bound of (λ1, ϱ1) and

(λ2, ϱ2); we will show that λ′ ≤ λ̂ so that (λ′, ϱ2) ≤ (λ̂, ϱ̂). Because λ1 ≤ λ̂, we must have

ϱ0(t2) ≺λ̂ ϱ0(p1). Because p1 and t2 are incomparable in T, none of the elements of ϱ0(p1)

can belong to ϱ̂(t2). On the other hand, since ϱ2(t2) ⊆ ϱ̂(t2) and (λ̂, ϱ̂) ∈ Θ(T×), we must

have ϱ2(t2) ≺λ̂ ϱ0(p1). It follows that λ
′ ≤ λ̂, as desired.

Now suppose p1 = t→2 and t2 ̸≤T q1. Because t→2 ∈ ϱ2(t2), we have t2 < t→2 = p1 < q1.

Note that λ0|ϱ2(t2)λ0|ϱ0(q1) is a consecutive factor of λ0. All of the elements of ϱ0(t2) are

incomparable to all of the elements of ϱ0(q1) in T, and an argument similar to the one

used in the preceding paragraph shows that (λ′, ϱ2) is the least upper bound of (λ1, ϱ1) and

(λ2, ϱ2), where λ′ is the linear extension of T× obtained from λ0 by swapping λ0|ϱ2(t2) and
λ0|ϱ0(q1).

Finally, suppose p1 = t→2 and t2 ≤T q1. Let ϱ′ be the ornamentation of T× such that

ϱ′(v) = ϱ0(v) for all v ∈ V× \ {t2} and ϱ′(t2) = ϱ0(t2) ∪ ϱ0(p1) ∪ ϱ0(q1). Noting that ϱ2 ≤ ϱ′,

we find that (λ1, ϱ
′) is in Θ(T×) and is an upper bound of (λ1, ϱ1) and (λ2, ϱ2). We claim

that (λ1, ϱ
′) is actually the least upper bound of (λ1, ϱ1) and (λ2, ϱ2). To see this, suppose

(λ̂, ϱ̂) ∈ Θ(T×) is an upper bound of (λ1, ϱ1) and (λ2, ϱ2); we will show that ϱ′ ≤ ϱ̂ so that

(λ1, ϱ
′) ≤ (λ̂, ϱ̂). To prove that ϱ′ ≤ ϱ̂, we just need to demonstrate that ϱ′(t2) ⊆ ϱ̂(t2). The

assumption that ϱ2 ≤ ϱ̂ already tells us that ϱ0(t2)∪ ϱ0(p1) = ϱ2(t2) ⊆ ϱ̂(t2). Hence, we just

need to show that ϱ0(q1) ⊆ ϱ̂(t2). Because t2 ≤T q1, we have {t2} ≺λ̂ ϱ0(q1). Since λ1 ≤ λ̂,

we also know that ϱ0(q1) ≺λ̂ {p1}. The elements of ϱ̂(t2) form a consecutive factor of λ̂, and

t2, p1 ∈ ϱ̂(t2). This shows that ϱ0(q1) ⊆ ϱ̂(t2), as desired.

4.4 Intervals

The purpose of this brief section is to prove Theorem 4.1.2, which states that if T contains

T′, then MN(T′) is isomorphic to an interval of MN(T).
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Proof of Theorem 4.1.2. It suffices to prove that MN(T′) is isomorphic to an interval of

MN(T) when T′ is obtained from T by contracting a single edge e. Let u and u′ be the

bottom and top vertices of e, respectively. Let Q be the subposet of MN(T) consisting of

the maximal nestings of T that contain the tube τ ∗ = {u, u′}. The map N 7→ N ∪ {τ ∗}
is a poset isomorphism from MN(T′) to Q, so Q has a unique minimal element Nmin and a

unique maximal element Nmax. Suppose N ∈ MN(T) is such that Nmin < N < Nmax; we

will prove that N ∈ Q.

Let T× be the forest poset obtained by deleting the root from T, and recall the poset

isomorphism Ψ: MN(T) → Θ(T×) from Theorem 4.3.5. Note that u appears immediately

before u′ in both λNmin
and λNmax . Note also that u′ belongs to both ϱNmin

(u) and ϱNmax(u)

and that ϱNmin
(u′) = ϱNmax(u

′) = {u′}. Because

Ψ(Nmin) < Ψ(N ) < Ψ(Nmax),

we have

λNmin
< λN < λNmax and ϱNmin

< ϱN < ϱNmax .

This implies that u appears immediately before u′ in λN , that u′ ∈ ϱN (u), and that ϱN (u′) =

{u′}. It follows from the recursive description of Ψ−1 in the proof of Theorem 4.3.3 that

τ ∗ ∈ N ; that is, N ∈ Q.

4.5 Semidistributivity

We now proceed to characterize the rooted plane trees T such that MN(T) is semidistributive.

Our proof will make use of the following result due to Barnard.

Proposition 4.5.1 ([Bar19]*Proposition 22).

• A finite lattice L is meet-semidistributive if and only if for every cover relation x ⋖ y

in L, the set ∇L(x) \ ∇L(y) has a unique maximal element.
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• A finite lattice L is join-semidistributive if and only if for every cover relation x ⋖ y

in L, the set ∆L(y) \∆L(x) has a unique minimal element.

Throughout this section, we will aim to apply Theorem 4.5.1 with L = Θ(T×), where

T ∈ PTn. We identify the vertex set V of T with {0, 1, . . . , n} so that 0, 1, . . . , n is the

preorder traversal of T. Recall that we write V× for the vertex set of T× (so V× = [n]). For

(λ, ϱ) ∈ Θ(T×), we will ease notation by writing ∆(λ, ϱ) and ∇(λ, ϱ) instead of ∆Θ(T×)(λ, ϱ)

and ∇Θ(T×)(λ, ϱ). We will separate the main pieces of our argument into four lemmas. The

reader may find it helpful to consult Theorem 4.5.4 while reading the proofs of Theorems 4.5.2

and 4.5.3 and to consult Theorem 4.5.7 while reading the proofs of Theorems 4.5.5 and 4.5.6.

Lemma 4.5.2. Let (λ1, ϱ1) ⋖ (λ2, ϱ2) be a cover relation in Θ(T×). If (λ1, ϱ1) and (λ2, ϱ2)

are related by an associahedron move, then the set ∇(λ1, ϱ1)\∇(λ2, ϱ2) has a unique maximal

element.

Proof. Because (λ1, ϱ1) and (λ2, ϱ2) are related by an associahedron move, we have λ1 = λ2,

and there is a vertex t ∈ V× such that ϱ1(v) = ϱ2(v) for all v ∈ V× \ {t} and ϱ2(t) =

ϱ1(t) ∪ ϱ1(t
→), where t→ is the vertex in V× appearing immediately after the elements of

ϱ1(t) in λ1. Let

A = {a ∈ ∇T(t) \ ∇T(t
→) : (a, t→) ̸∈ Inv(λ1)}.

Define an ornamentation ϱ∗ ∈ O(T×) by letting ϱ∗(a) = ∇T(a)∩A for all a ∈ A and letting

ϱ∗(v) = ∇T(v) for all v ∈ V× \ A.

Let K be the set of pairs (i, j) with 1 ≤ i < j ≤ n such that either i ∈ A and j ∈ ∇T(t
→)

or i ≤T j. There is a unique linear extension λ∗ ∈ L(T×) whose inversions are the pairs

(i, j) such that 1 ≤ i < j ≤ n and (i, j) ̸∈ K. Note that λ∗ is the unique maximal

element (in the weak order) of the set {σ ∈ L(T×) : (σ, ϱ∗) ∈ Θ(T×)}. We will prove that

(λ∗, ϱ∗) is the unique maximal element of ∇(λ1, ϱ1) \∇(λ2, ϱ2). Choose an arbitrary element

(λ̂, ϱ̂) ∈ ∇(λ1, ϱ1) \ ∇(λ2, ϱ2); we will prove that λ̂ ≤ λ∗ and ϱ̂ ≤ ϱ∗.
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Let us start by proving that ϱ̂ ≤ ϱ∗; to do so, it suffices to show that ϱ̂(a) ⊆ A for all

a ∈ A. Thus, fix a ∈ A. By the definitions of t→ and A, we must have either a < t→

and a ∈ ϱ1(t) or a > t→ and t→ ≺λ1 a. If a > t→ and t→ ≺λ1 a, then we must have

b > t→ and t→ ≺λ1 b for all b ∈ ∇T(a), so ∇T(a) ⊆ A. In this case, we certainly have

ϱ̂(a) ⊆ ∇T(a) ⊆ A, as desired. Thus, we may assume that a < t→ and a ∈ ϱ1(t). Since

ϱ1 ≤ ϱ̂, we have a ∈ ϱ1(t) ⊆ ϱ̂(t), so ϱ̂(a) ⊆ ϱ̂(t). Thus, in order to show that ϱ̂(a) ⊆ A,

it suffices to prove that ϱ̂(t) ⊆ A. As λ2 = λ1 ≤ λ̂ and (λ̂, ϱ̂) ̸∈ ∇(λ2, ϱ2), we know

that ϱ2 ̸≤ ϱ̂. We also know that ϱ2(v) = ϱ1(v) ⊆ ϱ̂(v) for all v ∈ V× \ {t}, so we must

have ϱ1(t) ∪ ϱ1(t
→) = ϱ2(t) ̸⊆ ϱ̂(t). Since ϱ1(t) ⊆ ϱ̂(t), we deduce that ϱ1(t

→) ̸⊆ ϱ̂(t), so

ϱ̂(t→) ̸⊆ ϱ̂(t). This implies that ϱ̂(t→) and ϱ̂(t) are disjoint (since they cannot be nested),

so t→ ̸∈ ϱ̂(t). Hence, ϱ̂(t) ⊆ ∇T(t) \ ∇T(t
→). Consider an arbitrary vertex x ∈ ϱ̂(t); we

will show that x ∈ A. We already know that x ∈ ∇T(t) \ ∇T(t
→), so we just need to prove

that (x, t→) ̸∈ Inv(λ1). Because the elements of ϱ̂(t) form a consecutive factor of λ̂ (since

(λ̂, ϱ̂) ∈ Θ(T×)), we cannot have t ≺λ̂ t→ ≺λ̂ x. Therefore, (x, t→) cannot be an inversion of

λ̂. Since λ1 ≤ λ̂, this implies that (x, t→) ̸∈ Inv(λ1), as desired.

We now show that λ̂ ≤ λ∗. Suppose instead that (i, j) ∈ Inv(λ̂)\Inv(λ∗). Then (i, j) ∈ K,

and we cannot have i ≤T j (since λ̂ ∈ L(T×)), so we must have i ∈ A and j ∈ ∇T(t
→). This

implies that i < t→ and (i, t→) ̸∈ Inv(λ1). Since t <T i, we deduce that t ≺λ1 i ≺λ1 t→.

Because t→ is the vertex appearing immediately after the elements of ϱ1(t) in λ1, this implies

that i ∈ ϱ1(t) ⊆ ϱ̂(t). Because (i, j) ∈ Inv(λ̂) and t <T j, we must have t ≺λ̂ j ≺λ̂ i. Because

(λ̂, ϱ̂) ∈ Θ(T×), the elements of ϱ̂(t) form a consecutive factor of λ̂; this consecutive factor

includes t and i, so j ∈ ϱ̂(t). We saw in the preceding paragraph that ϱ̂(t) ⊆ A, so j ∈ A.

This is a contradiction because A ⊆ ∇T(t) \ ∇T(t
→) and j ∈ ∇T(t

→).

Lemma 4.5.3. Let (λ1, ϱ1) ⋖ (λ2, ϱ2) be a cover relation in Θ(T×). If (λ1, ϱ1) and (λ2, ϱ2)

are related by an associahedron move, then the set ∆(λ2, ϱ2)\∆(λ1, ϱ1) has a unique minimal

element.
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Proof. Because (λ1, ϱ1) and (λ2, ϱ2) are related by an associahedron move, we have λ1 = λ2,

and there is a vertex t ∈ V× such that ϱ1(v) = ϱ2(v) for all v ∈ V× \ {t} and ϱ2(t) =

ϱ1(t) ∪ ϱ1(t
→), where t→ is the vertex in V× appearing immediately after the elements of

ϱ1(t) in λ1. Define an ornamentation ϱ∗ of T
× by letting ϱ∗(t) = {t→}∪{x ∈ ϱ1(t) : x < t→}

and letting ϱ∗(v) = {v} for all v ∈ V× \ {t}.

Let λ∗ be the linear extension 12 · · · (t − 1)µν of T×, where µ is the word obtained by

reading the elements of ϱ∗(t) in increasing order and ν is the word obtained by reading the

elements of {t, t+ 1, . . . , n} \ ϱ∗(t) in increasing order. It is straightforward to see that λ∗ is

the unique minimal element (in the weak order) of the set {σ ∈ L(T×) : (σ, ϱ∗) ∈ Θ(T×)}.
We will prove that (λ∗, ϱ∗) is the unique minimal element of ∆(λ2, ϱ2) \ ∆(λ1, ϱ1). Choose

an arbitrary element (λ̂, ϱ̂) ∈ ∆(λ2, ϱ2) \∆(λ1, ϱ1); we will prove that λ∗ ≤ λ̂ and ϱ∗ ≤ ϱ̂.

Let us start by proving that ϱ∗ ≤ ϱ̂; to do so, it suffices to show that ϱ∗(t) ⊆ ϱ̂(t). Thus,

let a ∈ ϱ∗(t). Because λ̂ ≤ λ2 = λ1, we must have ϱ̂ ̸≤ ϱ1. We have ϱ̂(v) ⊆ ϱ2(v) = ϱ1(v)

for every v ∈ V× \ {t}, so ϱ̂(t) ̸⊆ ϱ1(t). But ϱ̂(t) ⊆ ϱ2(t) = ϱ1(t) ∪ ϱ1(t
→), so there exists

an element b ∈ ϱ̂(t) ∩ ϱ1(t
→). Since t <T t→ ≤T b and ϱ̂(t) induces a connected subgraph

of T×, we must have t→ ∈ ϱ̂(t). If a = t→, then we have shown that a ∈ ϱ̂(t), as desired.

Now suppose a ̸= t→. By the definition of ϱ∗(t), we know that a < t→ and that a ∈ ϱ1(t). It

follows that (a, t→) is not an inversion of the linear extension λ1 = λ2, so (since λ̂ ≤ λ2) it

is also not an inversion of λ̂. This means that t ⪯λ̂ a ≺λ̂ t→. We know that t, t→ ∈ ϱ̂(t) and

that the elements of ϱ̂(t) form a consecutive factor of λ̂, so a must also be in ϱ̂(t).

Let us now prove that λ∗ ≤ λ̂. Suppose (i, j) is an inversion of λ∗. Then j must be

in the word µ, while i must be in the word ν. In other words, we have j ∈ ϱ∗(t) and

i ∈ {t, t+1, . . . , n}\ϱ∗(t). We saw in the preceding paragraph that ϱ∗(t) ⊆ ϱ̂(t), so j ∈ ϱ̂(t).

We have i < j ≤ t→, so it follows from the fact that i ̸∈ ϱ∗(t) that i ̸∈ ϱ1(t). Moreover,

the fact that i < t→ implies that i ̸∈ ϱ1(t
→). Therefore, i ̸∈ ϱ2(t). As ϱ̂(t) ⊆ ϱ2(t), we find

that i ̸∈ ϱ̂(t). Thus, we have shown that ϱ̂(t) contains t and j but not i. We also know that

t < i < j and that t <T j, so it follows from the definition of the preorder traversal that

65



t <T i. This implies that t ≺λ̂ i. However, ϱ̂(t) is a consecutive factor of λ̂ that contains

t and j but not i, so j ≺λ̂ i. This shows that (i, j) is an inversion of λ̂. As (i, j) was an

arbitrary inversion of λ∗, we deduce that λ∗ ≤ λ̂.

The preceding paragraphs show that every element of ∆(λ2, ϱ2) \∆(λ1, ϱ1) is greater

than or equal to (λ∗, ϱ∗). In particular, (λ∗, ϱ∗) ∈ ∆(λ2, ϱ2). Because t→ ∈ ϱ∗(t) \ ϱ1(t), we
have ϱ∗ ̸≤ ϱ1. It follows that (λ∗, ϱ∗) ̸∈ ∆(λ1, ϱ1). This shows that (λ∗, ϱ∗) is actually in the

set ∆(λ2, ϱ2) \∆(λ1, ϱ1), so it must be the unique minimal element of this set.

Example 4.5.4. Figure 4.6 portrays a cover relation (λ1, ϱ1)⋖ (λ2, ϱ2) in Θ(T×), where T×

is as depicted. This cover relation corresponds to an associahedron move. In the notation

of the proofs of Theorems 4.5.2 and 4.5.3, we have t = 4 and t→ = 7. The pairs (λ∗, ϱ∗)

and (λ∗, ϱ∗) constructed in the proofs of Theorems 4.5.2 and 4.5.3 are shown on the left and

right, respectively, in Figure 4.7.

Lemma 4.5.5. Suppose that every vertex of T that is not in the rightmost branch of T is

covered by at most 1 element of T. Let (λ1, ϱ1) ⋖ (λ2, ϱ2) be a cover relation in Θ(T×). If

(λ1, ϱ1) and (λ2, ϱ2) are related by a permutohedron move, then the set ∇(λ1, ϱ1) \ ∇(λ2, ϱ2)

has a unique maximal element.

Proof. Let B be the rightmost branch of T. Because (λ1, ϱ1) and (λ2, ϱ2) are related by a

permutohedron move, we have ϱ1 = ϱ2, and there exist vertices p, q ∈ V× such that

• p and q are incomparable in T;

• every number in ϱ1(p) is less than every number in ϱ1(q) in Z;

• λ1|ϱ1(p)λ1|ϱ1(q) is a consecutive factor of λ1;

• λ2 is obtained from λ1 by swapping λ1|ϱ1(p) and λ1|ϱ1(q).

The vertex p cannot be in B, so the sets ϱ1(p) and C = {v ∈ V× \ B : v ≤T p} are both

chains in T. Let u be the maximum element of ϱ1(p), and let z be the minimum element of
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Figure 4.6: A cover relation (λ1, ϱ1)⋖ (λ2, ϱ2) corresponding to an associahedron move.
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Figure 4.7: The pairs (λ∗, ϱ∗) (left) and (λ∗, ϱ∗) (right) constructed in the proofs of Theo-

rems 4.5.2 and 4.5.3, where (λ1, ϱ1)⋖ (λ2, ϱ2) is the cover relation shown in Figure 4.6.

C. Let

X = {x ∈ V× : z ≤ x < q and (x, q) ̸∈ Inv(λ1)}

and

Y = {y ∈ V× : z ≤ y < q and (y, q) ∈ Inv(λ1)}.

Because the elements of ϱ1(p) occur immediately before the elements of ϱ1(q) in λ1, we have

∇T(u) \ {u} ⊆ Y. (4.2)

Let ϱ∗ ∈ O(T×) be the ornamentation such that ϱ∗(x) = ∇T(x) \ (∇T(q) ∪ Y ) for all x ∈ X

and ϱ∗(w) = ∇T(w) for all w ∈ V× \X. Let

Ξ = {σ ∈ L(T×) : X ≺σ ϱ1(q) ≺σ Y }.

In the weak order, the set Ξ has a unique maximal element λ∗. Moreover, (λ∗, ϱ∗) ∈ Θ(T×).

We will prove that (λ∗, ϱ∗) is the unique maximal element of ∇(λ1, ϱ1) \ ∇(λ2, ϱ2). Choose

an arbitrary element (λ̂, ϱ̂) ∈ ∇(λ1, ϱ1) \ ∇(λ2, ϱ2); we will prove that λ̂ ≤ λ∗ and ϱ̂ ≤ ϱ∗.

Let us start by proving that λ̂ ≤ λ∗; to do so, it suffices to show that λ̂ ∈ Ξ. Because

ϱ1 = ϱ2, we have λ1 ≤ λ̂ and λ2 ̸≤ λ̂, so there must be an element of ϱ1(p) that precedes an
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element of ϱ1(q) in λ̂. We have ϱ1(p) ⊆ ϱ̂(p) and ϱ1(q) ⊆ ϱ̂(q), and the sets ϱ̂(p) and ϱ̂(q) are

disjoint because p and q are incomparable in T. The fact that (λ̂, ϱ̂) ∈ Θ(T×) implies that

ϱ̂(p) ≺λ̂ ϱ̂(q), so ϱ1(p) ≺λ̂ ϱ1(q). Consequently, {u} ≺λ̂ ϱ1(q). Let x ∈ X. If z ≤T x, then it

follows from (4.2) that x ≤T u, so {x} ≺λ̂ ϱ1(q). If z ̸≤T x, then (u, x) is an inversion of λ1,

so it is also an inversion of λ̂, and again {x} ≺λ̂ ϱ1(q). This shows that X ≺λ̂ ϱ1(q). Now let

y ∈ Y . Since (y, q) is an inversion of λ1, it is also an inversion of λ̂. Because the elements of

ϱ̂(q) form a consecutive factor of λ̂, we find that ϱ̂(q) ≺λ̂ {y}. As ϱ1(q) ⊆ ϱ̂(q) and y was an

arbitrary element of Y , this proves that ϱ1(q) ≺λ̂ Y . Hence, λ̂ ∈ Ξ.

Let us now prove that ϱ̂ ≤ ϱ∗. We have ϱ̂(w) ⊆ ∇T(w) = ϱ∗(w) for all w ∈ V× \ X.

Now consider x ∈ X; we will prove that ϱ̂(x) ⊆ ∇T(x) \ (∇T(q) ∪ Y ) = ϱ∗(x). The elements

of ϱ̂(x) form a consecutive factor of λ̂, and we know from the preceding paragraph that

{x} ≺λ̂ ϱ1(q) ≺λ̂ Y , so it suffices to show that q ̸∈ ϱ̂(x). This is immediate if x ̸≤T q,

so assume x ≤T q. Then x ≺λ1 q. By the definition of X, we must have x ̸≤T p, so

p ̸∈ ϱ̂(x). Since λ1|ϱ1(p)λ1|ϱ1(q) is a consecutive factor of λ1 and x ̸∈ ϱ1(p), we must have

(p, x) ∈ Inv(λ1) ⊆ Inv(λ̂). This implies that ϱ̂(x) ≺λ̂ {p} ≺λ̂ {q}, so q ̸∈ ϱ̂(x).

Lemma 4.5.6. Suppose that every vertex of T that is not in the rightmost branch of T is

covered by at most 1 element of T. Let (λ1, ϱ1) ⋖ (λ2, ϱ2) be a cover relation in Θ(T×). If

(λ1, ϱ1) and (λ2, ϱ2) are related by a permutohedron move, then the set ∆(λ2, ϱ2) \∆(λ1, ϱ1)

has a unique minimal element.

Proof. Because (λ1, ϱ1) and (λ2, ϱ2) are related by a permutohedron move, we have ϱ1 = ϱ2,

and there exist vertices p, q ∈ V× such that

• p and q are incomparable in T;

• every number in ϱ1(p) is less than every number in ϱ1(q) in Z;

• λ1|ϱ1(p)λ1|ϱ1(q) is a consecutive factor of λ1;

• λ2 is obtained from λ1 by swapping λ1|ϱ1(p) and λ1|ϱ1(q).
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The vertex p cannot belong to the rightmost branch of T, so ϱ1(p) (viewed as a subposet of

T) is a chain. Let u be the maximum element of ϱ1(p). Let

ZL = {i ∈ V× : u ≤ i ≤ q and i ⪯λ2 q} and ZR = {i ∈ V× : u ≤ i ≤ q and u ⪯λ2 i}.

Let ζL (respectively, ζR) be the word obtained by writing the elements of ZL (respectively,

ZR) in increasing order. Let λ∗ be the permutation

12 · · · (u− 1) ζL ζR (q + 1) · · · (n− 1)n.

It is straightforward to check that λ∗ ≤ λ2. Because L(T×) is an interval in the weak order

whose minimum element is the identity permutation, it must contain λ∗. Recall that the

unique minimal element ϱmin of O(T×) is defined so that ϱmin(v) = {v} for all v ∈ V×. Note

that (λ∗, ϱmin) ∈ Θ(T×) and that (λ∗, ϱmin) ∈ ∆(λ2, ϱ2). Because (u, q) ∈ Inv(λ∗) \ Inv(λ1),

we have (λ∗, ϱmin) ∈ ∆(λ2, ϱ2)\∆(λ1, ϱ1). We will prove that (λ∗, ϱmin) is the unique minimal

element of ∆(λ2, ϱ2) \∆(λ1, ϱ1). Choose an arbitrary element (λ̂, ϱ̂) ∈ ∆(λ2, ϱ2) \∆(λ1, ϱ1);

we know already that ϱmin ≤ ϱ̂, so we just need to prove that λ∗ ≤ λ̂.

Let (i, j) be an inversion of λ∗; our goal is to show that (i, j) is also an inversion of λ̂.

Because ϱ1 = ϱ2, we must have λ̂ ≤ λ2 and λ̂ ̸≤ λ1. This means that there is an inversion

(a, b) of λ̂ that is also an inversion of λ2 but not of λ1. We must have a ∈ ϱ1(p) and b ∈ ϱ1(q).

Then a ≤T u and q ≤T b, so a ⪯λ̂ u and q ⪯λ̂ b. Because (i, j) ∈ Inv(λ∗), we must have

i ∈ ZR and j ∈ ZL. This implies that (u, i) and (j, q) are not inversions of λ2, so they are

also not inversions of λ̂. Hence, j ⪯λ̂ q ⪯λ̂ b ≺λ̂ a ⪯λ̂ u ⪯λ̂ i. This shows that (i, j) is an

inversion of λ̂, as desired.

Example 4.5.7. Let ϱ1 = ϱ2 ∈ O(T×) be the ornamentation shown in Figure 4.8, where T×

is as depicted. In the tree T (which is obtained by adding a new root vertex to T×), every

vertex that is not in the rightmost branch is covered by at most 1 element. Let

λ1 = 1, 2, 4, 8, 9, 12, 13, 18, 22, 23, 25, 24, 16, 14, 5, 6, 19, 20, 17, 21, 3, 7, 15, 10, 11
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and

λ2 = 1, 2, 4, 8, 9, 12, 13, 18, 22, 23, 25, 24, 16, 14, 19, 20, 5, 6, 17, 21, 3, 7, 15, 10, 11.

Then (λ1, ϱ1) ⋖ (λ2, ϱ2) is a cover relation in Θ(T×) that corresponds to a permutohedron

move. In the notation of the proofs of Theorems 4.5.5 and 4.5.6, we have p = 5, q = 19,

u = 6, and z = 4. The sets X and Y defined in the proof of Theorem 4.5.5 are

X = {4, 5, 6, 8, 9, 12, 13, 14, 16, 18} and Y = {7, 10, 11, 15, 17}.

The sets ZL and ZR defined in the proof of Theorem 4.5.6 are

ZL = {8, 9, 12, 13, 14, 16, 18, 19} and ZR = {6, 7, 10, 11, 15, 17}.

The pairs (λ∗, ϱ∗) and (λ∗, ϱmin) constructed in the proofs of Theorems 4.5.5 and 4.5.6 are

shown on the top and bottom, respectively, in Figure 4.9. In the top image in Figure 4.9,

the sets X and Y are represented in green and purple, respectively.

We can now tie together all of the pieces established so far in this section to prove

Theorem 4.1.3.

Proof of Theorem 4.1.3. Recall that our goal is to prove the equivalence of the five items (I),

(II), (III), (IV), (V) listed in the statement of the theorem. By the definition of semidistribu-

tivity, item (I) holds if and only if items (II) and (III) both hold. It is also straightforward

to see that items (IV) and (V) are equivalent.

The Hasse diagram of the operahedron lattice of is shown in Figure 4.3. Upon

inspecting this figure, we find that the set of maximal nestings N of satisfying

≤ N and ̸≤ N
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Figure 4.8: An ornamentation of a forest poset T×. Every vertex of T that is not in the

rightmost branch of T is covered by at most 1 element.

does not have a unique maximal element. Therefore, it follows from Theorem 4.5.1 that

the operahedron lattice of is not meet-semidistributive. Similarly, the set of maximal

nestings N of satisfying

N ≤ and N ̸≤

does not have a unique minimal element, so it follows from Theorem 4.5.1 that the operahe-

dron lattice of is not join-semidistributive. Intervals of meet-semidistributive lattices

are meet-semidistributive, so we can appeal to Theorem 4.1.2 to see that item (II) implies

item (IV). Likewise, intervals of join-semidistributive lattices are join-semidistributive, so

item (III) implies item (IV).

Finally, it follows from Theorems 4.3.5, 4.5.1 to 4.5.3, 4.5.5 and 4.5.6 that item (V)

72



Figure 4.9: The pairs (λ∗, ϱ∗) (top) and (λ∗, ϱmin) (bottom) constructed in the proofs of The-

orems 4.5.5 and 4.5.6, where (λ1, ϱ1)⋖ (λ2, ϱ2) is the cover relation defined in Theorem 4.5.7

(with ϱ1 = ϱ2 appearing in Figure 4.8). In the top image, the elements of X are colored

green, while the elements of Y are colored purple.
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implies both items (II) and (III).

Remark 4.5.8. Suppose L is a semidistributive lattice. One can show that an element

j ∈ L is join-irreducible if and only if there exists a cover relation x ⋖ y such that j is the

unique minimal element of ∆L(y)\∆L(x). Likewise, an element m ∈ L is meet-irreducible if

and only if there exists a cover relation x⋖ y such that m is the unique maximal element of

∇L(x)\∇L(y). Therefore, if T is a rooted plane tree such that MN(T) (equivalently, Θ(T×))

is semidistributive, then our proofs of Theorems 4.5.2, 4.5.3, 4.5.5 and 4.5.6 provide explicit

descriptions of the join-irreducble elements and the meet-irreducible elements of Θ(T×) (and,

hence, also of MN(T)).

4.6 Trimness

We now prove Theorem 4.1.4, which characterizes the rooted plane trees whose operahedron

lattices are trim.

Proof of Theorem 4.1.4. The operahedron lattice of the claw (see the right side of

Figure 4.2) is not trim because its height is 3 and it has 4 join-irreducible elements. One can

check by hand that the operahedron lattices of the trees and are isomorphic to

each other. It is known [Tho06]*Theorem 1 that intervals of trim lattices are trim. Therefore,

it follows from Theorem 4.1.2 that if MN(T) is trim, then T does not contain or .

Consequently, if MN(T) is trim, then the root of T is covered by at most 2 elements of T

and every non-root vertex in T is covered by at most 1 element of T.

Now assume that the root of T is covered by at most 2 elements of T and that every

non-root vertex in T is covered by at most 1 element of T; we will prove that MN(T) is

trim. Let us identify the vertex set of T with {0, 1, . . . , n} so that 0, 1, . . . , n is the preorder

traversal of T. Let d be the largest element of [n] such that 1 ≤T d. If d = n, then T is a

chain, so MN(T) is a Tamari lattice, which is known to be trim. Therefore, we may assume
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d ≤ n−1. Then the root of T is covered by 1 and d+1. Let T1 and Td+1 be the subtrees of T

with roots 1 and d+1, respectively. Then T1 is a chain with d vertices, while Td+1 is a chain

with n− d vertices. It is known [TW19]*Theorem 1.4 that every semidistributive extremal

lattice is trim. Since we already know by Theorem 4.1.3 that MN(T) is semidistributive,

we just need to prove that MN(T) is extremal. It is also known [FJN95]*Corollary 2.55

that a semidistributive lattice has the same number of join-irreducible elements as meet-

irreducible elements. Therefore, appealing to Theorem 4.3.5, we see that it suffices to prove

that height(Θ(T×)) = |JΘ(T×)|, where JΘ(T×) is the set of join-irreducible elements of Θ(T×).

As mentioned in Theorem 4.5.8, an element (λ∗, ϱ∗) ∈ Θ(T×) is join-irreducible if and

only if it is one of the elements constructed in the proof of Theorem 4.5.3 or the proof of

4.5.6. Upon inspecting those proofs, we find that (λ∗, ϱ∗) is join-irreducible if and only if one

of the following (mutually exclusive) conditions holds:

(i) ϱ∗ is a join-irreducible element of O(T×), and λ∗ is the unique minimal element (in the

weak order) of the set {σ ∈ L(T×) : (σ, ϱ∗) ∈ Θ(T×)};

(ii) ϱ∗ = ϱmin, and λ∗ is a join-irreducible element of L(T×).

Note thatO(T×) is isomorphic toO(T1)×O(Td+1). Moreover, O(T1) (respectively, O(Td+1))

is isomorphic to the d-th (respectively, (n− d)-th) Tamari lattice. It is well known [Gey94,

Proposition 2.3] that the m-th Tamari lattice has
(
m
2

)
join-irreducible elements. Hence, it

follows from (4.1) that the number of pairs (λ∗, ϱ∗) satisfying the condition (i) is
(
d
2

)
+
(
n−d
2

)
.

The join-irreducible elements of L(T×) are the permutations of the form

12 · · · a (d+ 1)(d+ 2) · · · b (a+ 1)(a+ 2) · · · d (b+ 1)(b+ 2) · · ·n,

where 0 ≤ a ≤ d − 1 and d + 1 ≤ b ≤ n. The number of such permutations, which is also

the number of pairs (λ∗, ϱ∗) satisfying condition (ii), is d(n− d). Therefore,

|JΘ(T×)| =
(
d
2

)
+
(
n−d
2

)
+ d(n− d) =

(
n
2

)
.
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We are left to show that height(Θ(T×)) =
(
n
2

)
. Since the height of a lattice is always

at most the number of join-irreducible elements of the lattice, it suffices to construct a

chain in Θ(T×) of length
(
n
2

)
. The maximal element of L(T×) is the permutation λmax =

(d+ 1)(d+ 2) · · ·n 12 · · · d, which has d(n− d) inversions. Therefore, L(T×) has a maximal

chain λ0⋖λ1⋖ · · ·⋖λd(n−d) of length d(n−d), where λ0 = 12 · · ·n and λd(n−d) = λmax. Note

that

(λ0, ϱmin) < (λ1, ϱmin) < · · · < (λd(n−d), ϱmin) (4.3)

is a chain in Θ(T×). We have

height(O(T×)) = height(O(T1)×O(Td+1)) = height(O(T1))+height(O(Td+1)) =
(
d
2

)
+
(
n−d
2

)
,

where the last equality follows from the fact that the m-th Tamari lattice has height
(
m
2

)
.

Hence, O(T×) has a maximal chain ϱ0⋖ϱ1⋖· · ·⋖ϱM , where ϱ0 = ϱmin andM =
(
d
2

)
+
(
n−d
2

)
=

(
n
2

)
− d(n− d). For every ϱ ∈ O(T×), the pair (λmax, ϱ) is in Θ(T×). Therefore,

(λmax, ϱ0) < (λmax, ϱ1) < · · · < (λmax, ϱM) (4.4)

is a chain in Θ(T×). By concatenating the chains in (4.3) and (4.4), we obtain a chain in

Θ(T×) of length
(
n
2

)
.

4.7 Stacks and Brooms

Let W denote the set of finite words over the alphabet of positive integers in which no

letter appears more than once. West’s stack-sorting map is the function s : W → W defined

recursively as follows.1 As a base case, we define s(ϵ) = ϵ, where ϵ is the empty word. Now,

if σ ∈ W is nonempty, then we can write σ = LnR, where n is the largest letter in σ. With

this notation, we define s(σ) = s(L)s(R)n. For example,

s(316452) = s(31) s(452) 6 = s(1) 3 s(4) s(2) 56 = 134256.

1The stack-sorting map can also be defined via a procedure that sends a word through a stack in a
right-greedy manner. Alternatively, it can be defined using postorder and in-order traversals of decreasing
binary plane trees. See, e.g., [Bon19, Def22b].
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We usually restrict the stack-sorting map to the symmetric group Sn and view it as a

function s : Sn → Sn.

The following lemma is well known and follows readily from the definition of s.

Lemma 4.7.1. Let 1 ≤ a < b ≤ n. For σ ∈ Sn, we have (a, b) ∈ Inv(s(σ)) if and only if

there exists c ∈ [n] such that b < c and b ≺σ c ≺σ a.

Recall the definition of the broom Broomk,n from Section 4.1. Let

w◦(k, n) = k(k − 1) · · · 1(k + 1)(k + 2) · · ·n ∈ Sn.

Note that

∆Weak(Sn)(w◦(k, n)) = {w ∈ Sn : j ≤ k for all (i, j) ∈ Inv(w)}. (4.5)

Our goal in this section is to prove Theorem 4.1.6, which states that MN(Broomk,n) is

isomorphic to the subposet s−1(∆Weak(Sn)(w◦(k, n))) of Weak(Sn).

As usual, let us identify the vertex set of Broomk,n with {0, 1, . . . , n} so that 0, 1, . . . , n

is the preorder traversal. Consider a pair (λ, ϱ) ∈ Θ(Broom×
k,n). Let us write λ = w1 · · ·wn.

For each u ∈ [n], let Aϱ(u) = {j ∈ [n] : u ∈ ϱ(n + 1 − j)}. Let B(λ,ϱ)(wℓ) = Aϱ(wℓ) \
⋃n

i=ℓ+1Aϱ(wi). Let us write µ(λ,ϱ)(wℓ) for the word obtained by reading the elements of

B(λ,ϱ)(wℓ) in decreasing order. Finally, let

Ω(λ, ϱ) = µ(λ,ϱ)(wn)µ(λ,ϱ)(wn−1) · · ·µ(λ,ϱ)(w1) ∈ Sn.

Example 4.7.2. Let k = 4 and n = 9. Let λ = 123459867, and let ϱ be the ornamentation

of Broom×
4,9 depicted in Figure 4.10. Note that (λ, ϱ) ∈ Θ(Broom×

4,9). We have

Aϱ(1) = {9}, Aϱ(2) = {8, 9}, Aϱ(3) = {7},

Aϱ(4) = {6, 7}, Aϱ(5) = {5, 6, 7}, Aϱ(6) = {4, 7},

Aϱ(7) = {3}, Aϱ(8) = {2, 6, 7}, Aϱ(9) = {1, 6, 7},
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so

B(λ,ϱ)(w9) = {3}, B(λ,ϱ)(w8) = {4, 7}, B(λ,ϱ)(w7) = {2, 6},

B(λ,ϱ)(w6) = {1}, B(λ,ϱ)(w5) = {5}, B(λ,ϱ)(w4) = ∅,

B(λ,ϱ)(w3) = ∅, B(λ,ϱ)(w2) = {8, 9}, B(λ,ϱ)(w1) = ∅.

Therefore, Ω(λ, ϱ) = 374621598.

Figure 4.10: An ornamentation of Broom×
4,9.

Lemma 4.7.3. Fix positive integers k ≤ n, and let (i, j) be a pair such that 1 ≤ i <

j ≤ n. Let (λ, ϱ) ∈ Θ(Broom×
k,n). If j ≤ k, then (i, j) ∈ Inv(Ω(λ, ϱ)) if and only if

(n + 1 − j, n + 1 − i) ∈ Inv(λ). If j ≥ k + 1, then (i, j) ∈ Inv(Ω(λ, ϱ)) if and only if

n+ 1− i ∈ ϱ(n+ 1− j).

Proof. Let us write λ = w1 · · ·wn. Note that wr = r for 1 ≤ r ≤ n− k and that

{wn−k+1, . . . , wn} = {n− k + 1, . . . , n}.
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For m ∈ [n], let

ℓ(m) = max{s ∈ [n] : ws ∈ ϱ(n+ 1−m)}.

Then ℓ(m) is the unique element of [n] such that m ∈ B(λ,ϱ)(wℓ(m)). It follows that (i, j) is

an inversion of Ω(λ, ϱ) if and only if ℓ(i) ≤ ℓ(j).

If j ≤ k, then ϱ(n+1− i) = {n+1− i} and ϱ(n+1− j) = {n+1− j}, so wℓ(i) = n+1− i

and wℓ(j) = n+ 1− j. In this case, ℓ(i) ≤ ℓ(j) if and only if (n+ 1− j, n+ 1− i) ∈ Inv(λ).

Now suppose that j ≥ k+1. Then n+1−j ≤Broomk,n
n+1−i, so either n+1−i ∈ ϱ(n+1−j)

or ϱ(n+1− j) ≺λ ϱ(n+1− i). Hence, ℓ(i) ≤ ℓ(j) if and only if n+1− i ∈ ϱ(n+1− j).

Lemma 4.7.4. Fix positive integers k ≤ n. If (λ, ϱ) ∈ Θ(Broom×
k,n), then

s(Ω(λ, ϱ)) ∈ ∆Weak(Sn)(w◦(k, n)).

Proof. In light of (4.5), we must show that every inversion (a, b) of s(Ω(λ, ϱ)) satisfies b ≤ k.

Thus, assume by way of contradiction that there exists (a, b) ∈ Inv(s(Ω(λ, ϱ))) with b ≥ k+1.

According to Theorem 4.7.1, there exists c ∈ [n] such that b < c and b ≺Ω(λ,ϱ) c ≺Ω(λ,ϱ) a.

Let ℓ(b) and ℓ(c) be the unique indices such that b ∈ B(λ,ϱ)(wℓ(b)) and c ∈ B(λ,ϱ)(wℓ(c)). The

pairs (a, b) and (a, c) are both inversions of Ω(λ, ϱ), so we can appeal to Theorem 4.7.3 to

find that n + 1 − a ∈ ϱ(n + 1 − b) and n + 1 − a ∈ ϱ(n + 1 − c). This implies that the

ornaments ϱ(n+ 1− b) and ϱ(n+ 1− c) are nested; since n+ 1− c ≤Broomk,n
n+ 1− b, we

must have ϱ(n+ 1− b) ⊆ ϱ(n+ 1− c). It follows that

{u ∈ [n] : b ∈ Aϱ(u)} ⊆ {u ∈ [n] : c ∈ Aϱ(u)}.

Consequently, ℓ(b) ≤ ℓ(c). This implies that c ≺Ω(λ,ϱ) b, which is our desired contradiction.

Theorem 4.7.4 tells us that we actually have a map

Ω: Θ(Broom×
k,n) → s−1(∆Weak(Sn)(w◦(k, n))).

In light of Theorem 4.3.5, the following proposition implies Theorem 4.1.6.
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Proposition 4.7.5. Fix positive integers k ≤ n. The map

Ω: Θ(Broom×
k,n) → s−1(∆Weak(Sn)(w◦(k, n)))

is a poset isomorphism.

Proof. Let us first argue that Ω is a bijection. It is immediate from Theorem 4.7.3 that Ω is

injective. To prove surjectivity, let us choose an arbitrary

σ = σ(1) · · ·σ(n) ∈ s−1(∆Weak(Sn)(w◦(k, n))).

Let v1, . . . , vk be the elements of {n− k + 1, . . . , n}, listed so that

n+ 1− vk ≺σ · · · ≺σ n+ 1− v1. (4.6)

Let λ = 12 · · · (n − k)v1 · · · vk. Define an ornamentation ϱ of Broom×
k,n as follows. For

1 ≤ j ≤ k, we must define ϱ(n+ 1− j) = {n+ 1− j}. For k + 1 ≤ j ≤ n, let

ϱ(n+ 1− j) = {n+ 1− j} ∪ {n+ 1− i : (i, j) ∈ Inv(σ)}.

Let us first show that the map ϱ is indeed an ornamentation. Let j ∈ [n]; we will prove

that ϱ(n + 1 − j) induces a connected subgraph of Broomk,n. If 1 ≤ j ≤ k, then this is

obvious because ϱ(n + 1 − j) = {n + 1 − j}. Now assume k + 1 ≤ j ≤ n. Suppose i and i′

are vertices satisfying

n+ 1− j <Broomk,n
n+ 1− i <Broomk,n

n+ 1− i′ (4.7)

and n + 1 − i′ ∈ ϱ(n + 1 − j); we must show that n + 1 − i ∈ ϱ(n + 1 − j). The fact that

n+1− i′ ∈ ϱ(n+1− j) implies that (i′, j) ∈ Inv(σ). It follows from (4.7) that i′ < i < j and

that i ≥ k+1. Since s(σ) ∈ ∆Weak(Sn)(w◦(k, n)), we know that (i′, i) ̸∈ Inv(s(σ)). According

to Theorem 4.7.1, we cannot have i ≺σ j ≺σ i′. But we know that j ≺σ i′, so we must have

j ≺σ i. This shows that (i, j) ∈ Inv(σ), so n+ 1− i ∈ ϱ(n+ 1− j), as desired.
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We now must show that for all vertices j, j′ ∈ [n], the sets ϱ(j) and ϱ(j′) are either nested

or disjoint. Suppose j, j′ ∈ [n] are such that j ≤ j′ and ϱ(n + 1 − j) ∩ ϱ(n + 1 − j′) ̸= ∅;
we will show that ϱ(n + 1 − j) ⊆ ϱ(n + 1 − j′). If 1 ≤ j ≤ k, then this is immediate since

ϱ(n + 1− j) is a singleton set. Now suppose j ≥ k + 1. Then n + 1− j ∈ ϱ(n + 1− j′), so

(j, j′) ∈ Inv(σ). It follows that if i ∈ [n] is such that (i, j) ∈ Inv(σ), then (i, j′) ∈ Inv(σ).

Hence, ϱ(n+ 1− j) ⊆ ϱ(n+ 1− j′). This completes the proof that ϱ is an ornamentation.

If we can show that (λ, ϱ) ∈ Θ(Broom×
k,n), then it will follow from Theorem 4.7.3 that

Ω(λ, ϱ) = σ, which will prove that Ω is surjective. Thus, we must show that for every j ∈ [n],

the elements of ϱ(n+ 1− j) form a consecutive factor of λ. If 1 ≤ j ≤ k, then this is trivial

since ϱ(n+ 1− j) is a singleton set, so assume k + 1 ≤ j ≤ n. Referring to the definition of

λ, we see that we must demonstrate that the elements of the set Γ = {n + 1 − i : 1 ≤ i ≤
k and (i, j) ∈ Inv(σ)} form a prefix of the word v1 · · · vk. Thus, suppose 1 ≤ i < i′ ≤ k and

vi′ ∈ Γ. Then (n+1− vi′ , j) ∈ Inv(σ), so j ≺σ n+1− vi′ ≺σ n+1− vi (by (4.6)). It follows

that (n+ 1− vi, j) ∈ Inv(σ), so vi ∈ Γ.

We have shown that Ω is bijective. It is a straightforward consequence of Theorem 4.7.3

that Ω and Ω−1 are order-preserving.

4.8 Future Directions

In Theorems 4.1.3 and 4.1.4, we characterized the operahedron lattices that are semidis-

tributive and the operahedron lattices that are trim. We also mentioned in Theorem 4.1.5

that an operahedron lattice is semidistrim if and only if it is semidistributive. It is natural

to investigate other structural properties of operahedron lattices.

As mentioned in Section 4.1, operahedra are special examples of poset associahedra.

Laplante-Anfossi [Lap22] also noted that they are the graph associahedra of the line graphs of

trees. Graph associahedra were introduced by Carr and Devadoss [CD06] and further popu-

larized by Postnikov [Pos09] as examples of generalized permutohedra. It would be interesting
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to further investigate which poset associahedra or graph associahedra have 1-skeletons that

can be oriented in some natural way to produce lattices (say, using the realizations in [Sac23]

or [Dev09]). Barnard and McConville already have work along these lines [BM21], but there

are further avenues worth pursuing. For example, one could consider graph associahedra of

particular families of graphs such as block graphs or chordal graphs.

In order to understand the operahedron lattice of a tree T, we first had to introduce the

ornamentation lattice O(T×). While ornamentation lattices are generally less complicated

than operahedron lattices, it could still be interesting to consider ornamentation lattices in

their own right by asking more refined questions than those asked here about operahedron

lattices. For example, ornamentation lattices could provide a fruitful landscape for gener-

alizing results about Tamari lattices—which are ornamentation lattices of chains—such as

those in [Bar20, BCP23, Che22, CC23, CP15, Def22a, FN14, Hon22].

It is natural to ask if there are even stronger connections between operahedron lattices

and stack-sorting. In Theorem 4.1.6, we found an isomorphism between the operahedron

lattice of a broom and the subposet of Weak(Sn) consisting of the stack-sorting preimages

of a certain set of permutations. Are there families of trees more general than brooms for

which similar isomorphisms exist?
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