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Abstract

Nonlinear Optical Properties of the Chiral Weyl Semimetal RhSi

by

Dylan Rees

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joseph Orenstein, Chair

Nonlinear optical properties of materials offer a diverse and powerful experimental probe
into symmetry, electronic properties, and band structure. When paired with variable-
wavelength light sources, these techniques are enhanced with the capability of resolving
energy-dependent features. These properties are restricted to space groups that break in-
version symmetry, but this dependence on crystal structure provides an opportunity to gain
information about the material, and can help distinguish various electronic effects within a
crystal. This point is crucial to this work, where bulk and surface optical properties in the
Weyl semimetal RhSi are completely disentangled through symmetry considerations alone,
with no need to rely on conjectures or assumptions about spectral features.

Weyl semimetals are a class of materials of special interest in condensed matter physics
community within the last 10 years because their electronic band structures contain features
which are analogous to Weyl fermions, a class of chiral fundamental particles which have
not been observed in nature. While studied extensively experimentally, certain properties
of Weyl semimetals have eluded measurement and theories have gone unconfirmed. One
issue is that most Weyl semimetals only resemble an ideal model over a small energy range,
limiting the optical sources available to study them within a relevant photon energy. Weyl
semimetals may also contain trivial bands away from the Weyl fermion structures whose
properties can be difficult to disentangle from those of interest.

In this work, nonlinear optical properties of the Weyl semimetal RhSi are measured. In par-
ticular, the theory of the Quantized Circular Photogalvanic Effect [35] in Weyl semimetals,
a bulk property, is tested via measurements of terahertz generation and radiation. Precise
numerical agreement with the theory is ruled out for the material, although we find the qual-
itative features of the prediction to hold true. Similar measurements are made in order to
examine surface states on RhSi which have proven difficult to experimentally study with tra-
ditional transport and optical techniques. The bulk and surface properties are distinguished
by considering experimental geometry in concert with crystal symmetry and orientation.
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Chapter 1

Berry Curvature and Weyl
Semimetals

1.1 Berry curvature

Assume we have a system with a Hamiltonian that depends on a vector parameter k: H(k).
In general k can represent any physical quantity, such as magnetic field strength for example,
but we will focus on the case of crystals, where k will represent the momentum in reciprocal
space. For each k, the Hamiltonian has a set of eigenstates and energies

H(k)|n(k)〉 = εn|n(k)〉. (1.1)

We can consider what happens to the system if k(t) varies slowly over time. If the state
at t = 0 is |n(k(0))〉, then the system will stay in the n-th eigenstate, but will pick up an
overall phase as follows [6, 36, 67]

|ψn(t)〉 = eiγn(t)exp

(
− i
~

∫ t

0

dt′εn(k(t′))

)
|n(k(t))〉. (1.2)

The second phase factor is the dynamical phase as is present in any physical state. The
first phase, γn(t), is left for us to solve and without loss of generality we set γn(0) = 0 so
that |ψn(0)〉 = |n(k(t))〉. To find this phase, we can insert Eq. 1.2 into the time-dependent
Schrödinger equation:

i~
∂

∂t
|ψn(t)〉 = H(k(t))|ψn(t)〉. (1.3)

This gives us

i~
[
i
∂γn(t)

∂t
− i

~
εn(k(t))

]
|n(k(t))〉+ i~

∂

∂k
|n(k(t))〉 · ∂k

∂t
= εn(k(t))|n(k(t))〉 (1.4)

Applying 〈n(k(t))| to the left side of each equation yields

i~
[
i
∂γn(t)

∂t
− i

~
εn(k(t))

]
+ i~〈n(k(t))| ∂

∂k
|n(k(t))〉 · ∂k

∂t
= εn(k(t)) (1.5)
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Figure 1.1: Berry phase paths Two paths in k-space which will yield different Berry
phases. Open paths (left) result in gauge-dependent Berry phases. Closed paths (right)
result in gauge-independent Berry phases.

Simplifying gives
∂γn(t)

∂t
= i〈n(k(t))| ∂

∂k
|n(k(t))〉 · ∂k

∂t
. (1.6)

Integrating over time yields

γn =

∫
C
An(k) · dk (1.7)

where

An(k) = i〈n(k)| ∂
∂k
|n(k)〉 (1.8)

and C represents the curve traveled in k-space up to time t. The quantity An(k) is referred
to as the Berry connection or Berry potential.

Note that An(k) is not gauge-independent. If we add a k-dependent phase eiφ(k) to the
states such that our new states are eiφ(k)|n(k)〉, the Berry potential transforms as

An(k)
φ(k)−−→ An(k)− ∂φ

∂k
. (1.9)

Now let’s consider what this gauge dependence means. For a path that is open ended,
like C1 in Fig 1.1, the Berry phase γn will also be gauge-dependent and therefore not an
observable quantity. It will transform as

γn(k)
φ(k)−−→ γn(k) + φ(k1)− φ(k0). (1.10)

For a closed curve, like C2 in Fig 1.1, k0 = k1, so the Berry phase is gauge-invariant and
thus an observable quantity.



CHAPTER 1. BERRY CURVATURE AND WEYL SEMIMETALS 3

If we look back at Eq. 1.7, using Stokes’ theorem we can transform this into the integral

γn =

∫
S

Ωn(k) · dS (1.11)

where Ωn(k) = ∇k×An(k) is referred to as the Berry curvature and S represents any surface
that has C as its boundary. This equation is now only valid when C is a closed curve.

We can see easily that Ωn(k) is gauge invariant. Under a phase φ(k), the Berry curvature
transforms as

Ωn(k)
φ(k)−−→∇k × (An(k)−∇kφ)

= Ωn(k)−∇k ×∇kφ

= Ωn(k)

(1.12)

Since we know Ωn(k) is an observable quantity, we can ask what consequences it has on
a crystal. One of the most direct cases is that an electron in a crystal with nonzero Berry
curvature under an applied electric field E will experience what is called an anomalous
velocity [67]. The velocity of an electron at k in the n-th band is

vn(k) =
1

~
∂εn(k)

∂k
− e

~
E×Ωn(k). (1.13)

The first term is the normal band velocity, and the second term introduces a velocity that
is perpendicular to the electric field. This contributes to the anomalous Hall effect.

The Berry curvature can be considered analogous to a magnetic field in reciprocal space.
Just like a magnetic field, it is gauge-independent and can be written as the curl of a vector
potential, An(k), which is gauge dependent.

Berry curvature under inversion and time reversal symmetries

We can ask what constraints, if any, inversion and time reversal symmetry will enforce on
the Berry curvature. Applying the inversion operator to each side of the equation

Ωn(k) = ∇k × i〈n(k)| ∂
∂k
|n(k)〉 (1.14)

yields

Ωn(−k) = (−∇k)× i〈n(−k)|(− ∂

∂k
)|n(−k)〉. (1.15)

If the system under question is inversion-symmetric, then |n(−k)〉 = |n(k)〉 and we find that

Ωn(−k) = Ωn(k). (1.16)

Now apply the time reversal operator on Eq. 1.14:

Ωn(−k) = (−∇k)× (−i)〈n(−k)|(− ∂

∂k
)|n(−k)〉. (1.17)
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Figure 1.2: Basic Weyl semimetal model A basic model of a Weyl semimetal. There
are two nodes with opposite signs as in Eq. 1.19. Integration of the Berry flux through the
surface S will yield the Chern number of the first Weyl node, as in Eq. 1.23.

We find that
Ωn(−k) = −Ωn(k). (1.18)

Since Eqs. 1.16 and 1.18 are opposite constraints, a material must break either inversion
or time-reversal symmetry (or both) to have nonzero Berry curvature.

1.2 Weyl Semimetals

A Weyl semimetal is a material with a Hamiltonian of the form

H = ±~vFk · σ (1.19)

where
σ = (σx, σy, σz) (1.20)

is the Pauli matrix vector with

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

(1.21)

A band crossing occurs at k = 0, and the Berry curvature can be written as

Ωn(k) = ± k

2k3
. (1.22)
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BZ

Figure 1.3: Berry curvature in the Brillouin zone The total Chern number of all Weyl
nodes in the Brillouin zone must be zero. This can be seen by the fact that the total Berry
flux through the Brillouin zone boundary must be zero.

This is mathematically identical to the electric field from a point charge, meaning that unlike
with magnetic fields in real space, we can have Berry curvature monopoles in reciprocal space.
The location of the Berry monopole is at the band crossing point, k = 0, and is also called
a Weyl node. We can define the charge, also called the Chern number, of a Berry monopole
as

C =
1

2π

∫
S

Ωn(k) · dS = ±1 (1.23)

where S is a surface that encloses the point k = 0. The sign of the Chern number also gives
the chirality of the Weyl node. Fig. 1.2 shows a basic 1D model of a Weyl semimetal with
two nodes of opposite Chern numbers. An example of a surface S with nonzero Berry flux
is shown.

One restriction to Weyl semimetals is that the total Chern number of all nodes in the
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Inversion symmetry Time-reversal symmetry

Figure 1.4: Weyl node symmetries Under inversion symmetry, the existence of a Weyl
node at k implies the existence of a Weyl node at −k with opposite Chern number. Under
time-reversal symmetry, the existence of a Weyl node at k implies the existence of a Weyl
node at −k with the same Chern number.

Brillouin zone must be zero. We can prove this as follows. Assume you have some Brillouin
zone with Berry curvature Ω(k). To find the total Chern number of all Weyl nodes, we must
integrate as in Eq. 1.23 and pick our surface S to be the boundary of the Brillouin zone. At
some point k on S, there will be a Berry curvature Ω(k). If G is a reciprocal lattice vector,
then k −G is also on the Brillouin zone boundary with the same Berry curvature, but the
local surface normal vector dS will be opposite that of the point k. Thus for every point on
the Brillouin zone, there is another point which contributes equal and opposite Berry flux,
and the total surface integral is zero. Fig. 1.3 illustrates this, showing various sources and
sinks of Berry curvature represented by red and blue dots. This result can also be proven
more formally, as shown by Nielsen and Ninomiya [49]. As a result of this constraint, Weyl
nodes cannot be gapped independently and are thus topologically protected.

Let’s consider the effects of symmetry on Weyl semimetals. As we already know, hav-
ing a nonzero Berry curvature requires breaking at least one of inversion and time-reversal
symmetry. This requirement applies equally to a material being a Weyl semimetal since a
nonzero Berry curvature is a necessary feature.

If a material breaks time-reversal symmetry, but respects inversion symmetry, then
Ωn(−k) = Ωn(k). This tells us that if there is a Weyl node at k, there must be a Weyl
node of the opposite Chern number at −k. Conversely, if inversion symmetry is broken and
time-reversal symmetry is respected then the Berry curvature must be odd. Thus if there is
a Weyl node at k, there must be another Weyl node with the same Chern number at −k.
This may seem counterintuitive, but note that it is the Berry curvature that is even and
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Surface BZ

Bulk BZ

Figure 1.5: Fermi arcs in Weyl semimetals Weyl semimetals have surface states which
connect the projections of the bulk Weyl points onto the surface Brillouin zone. This can be
seen by considering the Berry flux through slices of the Brillouin zone between the nodes.

odd in these cases, not the Berry charge distribution which holds the opposite symmetry of
Ωn(−k). Due to the previous condition that the total Chern number of all Weyl nodes must
be zero, this means there must be two more Weyl nodes of opposite Chern number elsewhere
in the Brillouin zone for the time-reversal symmetric case1. These two symmetry cases are
illustrated schematically in Fig. 1.4.

Surface states in Weyl semimetals

Weyl nodes in a material necessitate the existence of surface states called Fermi arcs. We
can see this using the following argument. If we take slices of the Brillouin zone, as is shown
in Fig. 1.5, the slices can occur away from or between Weyl nodes of opposite charge. These
slices form 2D systems and have 2D band structures. When they do not intersect a Weyl

1There is an exception to this statement. If two nodes of opposite Chern number occur at time-reversal
invariant momenta, then the minimum number of Weyl nodes is reduced to 2. One node can occur at Γ,
and another of opposite charge at R in cubic Brillouin zones, for example. This is in fact the case for RhSi.
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node they are gapped. When the Berry flux through them is nonzero, as with the right
(pink) surface in Fig. 1.5, they then carry edge states at the Fermi energy [25, 65]. For each
slice between the nodes, there is a surface state somewhere on the edge. By combining each
of the edges of these slices, we form the collection of surface states called Fermi arcs which
are open ended and begin and end at the projection of the Weyl nodes onto the surface
Brillouin zone.
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Chapter 2

Nonlinear Optics

2.1 Basic description

Nonlinear optical effects refer to processes in media where a polarization is induced by an
externally applied electric field, often at optical frequencies, with a quadratic or higher power
dependence. Mathematically this is written as follows. If a time-dependent electric field E(t)
is applied to a medium, it will induce a polarization [7]

P(t) = ε0
(
χ(1)E(t) + χ(2)E(t)E(t) + χ(3)E(t)E(t)E(t) . . .

)
(2.1)

where χ(n) is a rank n+ 1 tensor. We can write this using vector and tensor indices and
Einstein notation as follows

Pi(t) = ε0

(
χ

(1)
ij Ej(t) + χ

(2)
ijkEj(t)Ek(t) + χ

(3)
ijklEj(t)Ek(t)El(t) . . .

)
(2.2)

For now we will assume ε0 = 1 for ease of notation. Individual terms on the right in
the above equation can be referred to as P

(1)
i (t), P

(2)
i (t), etc. The first term on the right

is related to the most commonly used optical properties like index of refraction n, optical
conductivity σ, and the dielectric constant ε. χ

(1)
ij is called the linear susceptibility. The rest

of the terms are nonlinear effects, named for the nonlinear dependence on E(t).

Inversion symmetry

Let us consider the properties of the tensors χ(n) under inversion symmetry. Consider P
(1)
i =

χ
(1)
ij Ej, where we have dropped the explicit time dependence on P and E. If we apply the

inversion operator to each side of this equation we get

−P (1)
i = χ

(1)
ij (−Ej) = −χ(1)

ij Ej. (2.3)
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We have learned nothing by doing this, thus there are no constraints on χ(1) under inversion
symmetry. Now do the same to the equation P

(2)
i = χ

(2)
ijkEjEk, which gives us

−P (2)
i = χ

(2)
ijk(−Ej)(−Ek) = χ

(2)
ijkEjEk. (2.4)

This tells us that
P

(2)
i = −P (2)

i = 0 (2.5)

and therefore
χ

(2)
ijk = 0. (2.6)

Thus χ
(2)
ijk can only be nonzero in media that break inversion symmetry. In fact, we find that

this is true for all even order nonlinear tensors χ(n). For odd n, χ(n) is allowed regardless of
the spatial symmetry, although constraints may be placed on the relative components of the
tensors depending on the space group. One example of this effect is that you cannot have
birefringence (a property of χ

(1)
ij in materials with 4-fold rotational symmetry. In this work,

we primarily measure properties related to χ
(2)
ijk. Some linear properties are used to aid us

in understanding our systems. For simplicity of notation, χijk should be understood as the

second order susceptibility χ
(2)
ijk.

General symmetry constraints

For a general operator O, the tensor χijk transforms as

χ′ijk = OiαOjβOkγχαβγ. (2.7)

O can be, for example, a rotation, a mirror, or a combination of these. If O is a symmetry of
the system, then all properties are invariant under the transformation and therefore χ′ijk =
χijk = OiαOjβOkγχαβγ which allows us to find the constraints on χijk if we know all the
symmetries the material in question. RhSi is in space group 198 and thus has 2-fold screw
symmetry about the x-axis, and a 3-fold rotational symmetry along the [111] direction.
These two symmetry operators can be combined to form new symmetry operations. We
will rely on these two symmetries along with the fact that RhSi has no mirror or improper
rotational symmetries later on.

2.2 Frequency considerations in nonlinear optics

Consider an optical electric field at frequency ω,

E(t) = E0e
iωt + c.c. (2.8)

The second order polarization is thus

P (2)(t) = χ(2)E(t)E(t)

= χ(2)
(
|E0|2 + E2

0e
2iωt + c.c.

)
.

(2.9)
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Figure 2.1: Second order susceptibility spectrum Schematic of fundamental and second
order susceptibility within a material. Light with frequency centered around ω produces elec-
tric fields in the material at dc and 2ω. These two effects are referred to as the photogalvanic
effect and second harmonic generation, respectively.

We now see there there is a time-independent (dc) second order polarization,

Pdc = χ(2)|E0|2 (2.10)

and a time-dependent one,
P2ω = χ(2)

(
E2

0e
2iωt + c.c.

)
. (2.11)

This field has frequency 2ω, twice that of the original optical beam. This means that second
order processes are comprised of two simultaneous effects, creation of a dc current, called
the photogalvanic effect (PGE), and creation of an alternating field at twice the frequency of
the fundamental light, referred to as second harmonic generation (SHG). These two effects
are illustrated schematically in Fig. 2.1. Here, the spectrum of the fundamental light (blue
curve) is a Gaussian centered at ω. This is the case for light originating from an ultrafast
pulsed laser. Because of the temporal isolation of light into short pulses, the spectrum has
some nonzero spread. This can be seen through a simple Fourier transformation of an ac
signal at ω with a Gaussian envelope function. For a continuous wave laser, the spectrum
would look like a Dirac delta function at ω, and second order processes would result in
exactly dc currents and continuous wave light at exactly 2ω. The two effects are further
illustrated in Fig. 2.2. In this work we will be focusing on the PGE.
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Figure 2.2: Second order effects Schematic of fundamental light striking a material and
producing second order effects. SHG light is radiated from the material with twice the
frequency and a photogalvanic current (black arrow) is produced. For fundamental light
with some frequency spread ∆ω, the photogalvanic current will have a small frequency and
thus radiate.

The difference of frequency between these two effects and the fundamental light makes
distinguishing them from linear properties easy. For SHG, spectral filters allow for blocking
of linear reflected light, so that we can isolate our detectors to light at 2ω. For a wide range
of frequencies, we can use traditional silicon or similar semiconductor based detectors to
measure the intensity of this light. We will later see that measurement of the PGE, which
often comes in frequencies near 1 THz, will require a more specialized detection scheme.
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Chapter 3

Bulk Photogalvanic Effects in RhSi

3.1 Photogalvanic effects and Weyl Semimetals

Photogalvanic effects, wherein photocurrents proportional to the light intensity appear in
the absence of an applied bias, are examples of responses allowed by symmetry in Weyl
semimetals that break inversion. In the circular photogalvanic effect (CPGE), the direction
of the current reverses on changing the photon polarization between left and right circular
[4]. The CPGE has been used effectively to probe broken symmetry states in a variety of
condensed matter systems [2, 30, 21, 20].

The first hint that topology can shape the CPGE amplitude [26] arose in the context
of the crossing of non-degenerate bands at the surface of 3D topological insulators such as
Bi2Se3. Fig. 3.1 illustrates how helicity-dependent photocurrent can arise in such a system
as a result of the correlation of the direction of an electron’s momentum with that of its spin
(or pseudospin). A photon with definite helicity induces a transition that flips the direction
of spin, and through spin-momentum locking creates a particle-hole pair that carries a net
current. Hosur [26] showed that the current associated with photoexcitation of an electron-
hole pair at momentum k was proportional to the Berry curvature, Ω(k). However, in this
two-dimensional (2D) system the net CPGE current vanishes on integration over k in the
presence of n-fold rotational symmetry (for n ≥ 3). Nonzero CPGE requires lowering the
symmetry by in-plane strain, magnetic field, or inducing photoexcitation at oblique incidence
[52].

Recently de Juan et al. [35] showed that, in contrast to the 2D case, rotational symmetry
does not cause CPGE to vanish for the 3D bandcrossings that define Weyl semimetals.
Instead, the CPGE current from a single Weyl node in the clean, non-interacting limit is
proportional to its quantized topological charge and fundamental constants e and h. In an
ideal system, this result is independent of material-specific properties and the frequency of
the excitation light over a band of wavelengths. The rate of current generation by circularly
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Empty state
Filled state

Figure 3.1: Photocurrents from a Weyl node Schematic illustrating selection rules for
optical transitions on a Weyl node with circularly polarized photons. With photon spin
s = +1 (−1), only transitions on the right (left) side of the node will be allowed, leading to
an asymmetric excited state and thus a photocurrent.

polarized light is described by the equation,

dji
dt

= iπ
e3

h2
Cβ̂ij[E(ω)× E∗(ω)]j (3.1)

where Trβ̂ij = 1 and C is the monopole charge (or Chern number) [35].
Although each Weyl node contributes a quantum of CPGE, this direct signature of topo-

logical charge is hidden in systems that retain mirror symmetry, which requires that nodes
of opposite charge are degenerate in energy. This leads to an exact cancellation of the CPGE
current for pairs of perfectly symmetric Weyl nodes. Despite this, nonzero CPGE is seen in
mirror symmetric Weyl semimetals such as TaAs [43, 62, 60, 22, 31, 41] as a consequence
of departures from symmetric dispersion that occur in real systems, for example curvature
or tilting of the Dirac cones [10]. However, in such systems the CPGE amplitude is not a
topological property uniquely related to the Berry monopole charge.

The properties of chiral Weyl semimetals, in which all mirror symmetries are broken,
are qualitatively different from mirror preserving materials such as TaAs [35, 11]. In chiral
structures, isolated Weyl nodes can occur at time-reversal invariant momenta. As a result,
they can be separated by wavevectors on the order of the full Brillouin zone, allowing for a
richer structure of Fermi arc surface states [8, 12, 64]. Of more direct relevance to the CPGE,
in chiral Weyl semimetals nodes with opposite topological charge need not be degenerate
in energy. Thus, it is possible for one node to lie near the Fermi energy, EF , while its
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Mirror symmetric No mirror symmetry (chiral)

Figure 3.2: Weyl nodes and mirror symmetry When mirror symmetry is present, nodes
of opposite chirality are degenerate, and thus produce equal and opposing CPGE contribu-
tions. In a chiral system, nodes can be degenerate and thus optical transitions near one node
can be Pauli blocked, leaving the CPGE from the other node unopposed.

oppositely charged partner is below. Transitions near the node below EF are Pauli blocked
at sufficiently low photon energy, and a quantized CPGE (QCPGE) arising from the Weyl
node near EF will emerge. This is illustrated in Fig. 3.2. This prediction [35, 11] motivates
measurements of CPGE as a function of photon energy to search for an energy window in
which overall Berry charge neutrality is frustrated by Pauli blocking, even if the precise
quantization suggested by Eq. 3.1 is modified by disorder or interaction effects.

Chiral semimetals can host multiple bandcrossings with monopole charges C larger than
one. Despite higher multiplicity and band curvature in these multifold fermion systems,
it was shown theoretically that approximate CPGE quantization continues to hold, with
corrections at low energy when spin-orbit interaction is included [12, 17, 34]. Further, the
magnitude of the CPGE is enhanced for multifold compared to Weyl fermions because of
the greater topological charge.

RhSi is a structurally chiral material proposed as an ideal candidate to exhibit a QCPGE.
The prediction of multifold fermion dispersion and exotic Fermi arcs [12, 64] was confirmed
by ARPES measurements in this compound and in isostructural materials [57, 63, 58]. The
CPGE is predicted to have an especially simple form in this family of compounds because
in their cubic space group, P213 (#198), the dimensionless anisotropy tensor β̂ij reduces to
the unit tensor multiplied by a scalar β = 1/3. Further, band theory predicts a large energy
splitting between the two nodes of opposite charge, such that the regime of Pauli blocking
extends to a photon energy of approximately 0.65 eV, well into the near-infrared range [17].
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Figure 3.3: Experimental apparatus (a) Schematic of experiment showing optical paths
and optical elements. PD, photodiode; BS, beam splitter; λ/2, half-wave plate; λ/4 quarter-
wave plate; WP, Wollaston prism. (b) Schematic showing flow of optical paths (red lines) and
electronic references (dashed black lines) and signals (black lines) resulting in the measured
value for the terahertz electric field. (c) 800nm optical pulses arrive at the photodiode at
5kHz, while the terahertz pulses arrive at 2.5kHz due to the optical chopper blocking every
other pulse in the pump arm of the experiment. This allows for direct comparison of the
electro-optical effect in ZnTe with the terahertz signal present and not present. A particular
time delay ∆t is chosen before taking a single measurement which is done by averaging a
certain number of pulses, typically in the range 5000−25000 depending on the signal strength
and noise level.

3.2 Experimental setup

In order to test the prediction of CPGE from an isolated Weyl point in RhSi, a experiment
requires control of incident photon energy across a region where transitions from one Weyl
point are blocked and a region where transitions from both Weyl points are allowed. This
allows for observation of the contrast between the two cases.

A schematic of the apparatus for photogeneration and detection of CPGE current in
the photon energy range from 0.48 to 1.1 eV is shown in Fig. 3.3. The component of
photogalvanic current parallel to the surface of the RhSi crystal radiates an electromagnetic
pulse into free space that is focused onto a ZnTe crystal for time-resolved electro-optic
sampling. This all-optical technique avoids artifacts from asymmetric electrical contacts
and laser-induced heating, and enables precise determination the direction of the current



CHAPTER 3. BULK PHOTOGALVANIC EFFECTS IN RHSI 17

Figure 3.4: Terahertz pulses An example of terahertz pulses measured from RhSi using
circularly polarized light at λ = 2000nm.

through measurement polarization of the pulse in the far-field. Fig. 3.4 shows typical pulses
measured with excitation photon energy 0.60 eV. The reversal of polarity between left and
right circular excitation is the defining property of the CPGE.

3.3 PGE Symmetry

Before examining the CPGE spectrum, we first tested that the CPGE and linear PGE
(LPGE) currents obey the polarization properties consistent with the space group symmetry
of RhSi. Because β̂ij is predicted to be diagonal, the CPGE current should obey the relation,
j ∝ β(E×E∗), and therefore be directed parallel to the wavevector of light, independent of
the crystal orientation. The direction of the LPGE current, on the other hand, depends on
both the light polarization and the crystal axes. For our measurements, in which the sample
was rotated by an angle φ about the normal to the (111) surface, the direction of the LPGE
surface current, θ, is predicted to rotate three times as fast, i.e. θ = 3φ. We can derive these
statements about CPGE and LPGE as follows.

CPGE

For cubic space group P213 the only nonvanishing elements of σijk have indices xyz and
permutations. The elements with even permutations of xyz are equal to σxyz and odd
permutations are equal to σ∗xyz. If we write σxyz = α + iγ where α and γ are both real, the
structure of the third rank tensor can be displayed in the form,
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σ(2) =



 0
0
0

  0
0

α + iγ

  0
α− iγ

0

 0
0

α− iγ

  0
0
0

  α + iγ
0
0

 0
α + iγ

0

  α− iγ
0
0

  0
0
0




(3.2)

where the element σijk is the kth element of the column vector in the ith row and jth column
of the matrix.

The circular photogalvanic current can be written in terms of the photon helicity,

ji ∝ βij(E× E∗)j. (3.3)

The second rank CPGE tensor is contracted from the third-rank conductivity tensor accord-
ing to the relation,

βij = σiklεjkl, (3.4)

where εjkl is the unit antisymmetric tensor. Substitution of the conductivity tensor for the
RhSi space group (Eq. 3.2) yields,

βij = iβδij, (3.5)

where δij is the Kronecker delta. Substitution of βij into Eq. 3.3 yields,

j ∝ iβE× E∗, (3.6)

which shows that for the case of space group P213 the CPGE current is always directed
parallel to the helicity vector, regardless of its direction with respect to the crystal axes.

LPGE

We use Rodrigues’ rotation formula to transform Eq. 3.2 into the basis where z′ is parallel
to the (111) direction in the crystal basis, which yields

σ(2) ∝



 −α√2
0
−1

  0

α
√

2

iγ
√

3

  −α
−iγ
√

3
0


 0

α
√

2

−iγ
√

3

  α
√

2
0
−α

  √3α
−α
0


 −α

iγ
√

3
0

  −√3α
−α
0

  0
0

2α




. (3.7)
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Figure 3.5: Photocurrent symmetry (a) Measurement of the THz polarization. Orange
and green curves show the vertical and horizontal components of the pulse as a function
of time. The reconstructed THz pulse (red curve) is then projected onto a plane, showing
the direction of linear polarization, θ. (b) Dependence of the angle of LPGE terahertz
polarization, θ, on angle of rotation of (111) face about the surface normal, φ, with pump
at normal incidence. The relation θ = 3φ predicted by the space group P213 symmetry
is confirmed. The CPGE signal is below measurement noise level in this geometry. (c)
Same as (b) except for 45◦ incidence. LPGE polarization again varies as θ = 3φ . CPGE
is horizontally polarized independent of the crystal orientation confirming that the CPGE
current is parallel to the pump wavevector. (d) Schematic showing that the resulting in
plane CPGE current is fixed by the plane of incidence of the pump light. The CPGE current
at normal incidence is normal to the surface of the sample and thus does not radiate into
free space.
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Using this tensor we can calculate the LPGE response for fixed linear pump polarization
as the crystal is rotated about the z′ (or (111)) axis by an angle φ. The crystal rotation
corresponds to the transformation σ′αβγ = Rαi(φ)Rβj(φ)Rγk(φ)σijk, where,

R(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 . (3.8)

If the pump polarization is fixed in the x′ direction, then the LPGE current depends only
on the tensor elements σ′xxx and σ′yxx and from Eqs. 3.7 and 3.8 we have,

σ′xxx = R3
xxσxxx +RxxR

2
xyσxyy +RxyRxxRxyσyxy +R2

xyRxxσyyx

∝
(
−
√

2 cos3(φ) + 3
√

2 cosφ sin2 φ
)

= −
√

2 cos(3φ)

(3.9)

and

σ′yxx = RyxR
2
xxσyxy +RyxR

2
xyσxyy +RyyRxxRxyσyxy +RyyRxyRxxσyyx

∝
(
−3
√

2 cos2 φ sinφ−
√

2 sin3 φ
)

=
√

2 sin(3φ).

(3.10)

From Eqs. 9 and 10 we obtain the dependence of the LPGE current on crystal rotation
angle,

j(φ) ∝ cos(3φ)x̂′ − sin(3φ)ŷ′. (3.11)

Eq. 3.11 implies that the angle, θ, of the LPGE current relative to the x′ axis is given by
θ = 3φ.

Results

Fig. 3.5(a) shows a typical measurement of the direction of the current, obtained by using
a linear polarizer to resolve the two orthogonal components of the electric field. Fig. 3.5(b)
shows the direction of the LPGE current as a function of φ for normal incidence, confirming
the relation θ = 3φ. In contrast, the CPGE signal is below measurement noise level at
normal incidence, consistent with the prediction that it flows directly into the bulk of the
crystal, with zero surface component and thus no measurable radiation. At 45◦ incidence
(Fig. 3.5(c)), the LPGE current exhibits the same θ = 3φ dependence and CPGE current is
now observed, with direction fixed to be horizontal and independent of φ. This latter result
is consistent with the expectation that the CPGE current is parallel to the wavevector of
the excitation light, because in this case the surface current direction is locked to the plane
of incidence (see Fig. 3.5(d)), independent of crystal orientation.
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a b

Figure 3.6: CPGE spectrum (a) CPGE amplitude βτ in units of πe3

3h2
×fs as a function

photon energy, showing abrupt quenching above 0.65 eV. (b) Schematic showing the surface
Sω in k-space defined by the available optical transitions at photon energy ~ω. For ~ω < EC ,
Sω encloses a single node and has integrated Berry flux C = ±4. Above EC it encloses two
topological nodes of opposite chirality and C = 0. The blue shaded region in (a) indicates
the region where Sω encloses only a single node.

3.4 CPGE Spectrum

Having confirmed that the polarization selection rules are consistent with crystal symmetry,
we turn to the dependence of the CPGE amplitude on photon energy ~ω in the range from
0.5 to 1.1 eV. We note first that this amplitude is proportional to the βτ product, where τ is
the momentum lifetime of photexcited carriers, rather than β itself. The reason is that the
dynamics are in the quasi-steady state regime of Eq. 3.1, in which τ is shorter than the ∼100
fs duration of the excitation pulse. This conclusion follows from the observation that the
THz emission waveform follows the envelope of the laser pulse, rather than persisting for an
observable momentum lifetime. The quasi-steady state regime is consistent with τ = 8 fs for
equilibrium carriers as determined from transport measurements (see Section 3.5). The τ of
photoinjected “hot” carriers can be expected to be at least as short as that of the equilibrium
ones.

Fig. 3.6(a) shows the dependence of βτ on pump photon energy. Converting the measured
THz emission to surface current and ultimately an absolute determination of βτ requires
accounting for multiple wavelength-dependent factors involving the photoexcitation source,
the linear optical response of RhSi at the pump laser and THz wavelengths, and the spectral
function of the THz detection optics. Propagation of systematic and statistical errors through
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a b

Figure 3.7: Reflectivity and optical conductivity (a) Measured reflectivity of RhSi. (b)
Optical conductivity determined by reflectivity measurements and Kramers-Kronig analysis
(blue curve). The Drude peak is used to infer that the scattering time has value τ = 8.6 fs.
The orange curve represents the optical conductivity from the Γ and R nodes alone [56].

these multiple factors suggests an order of magnitude uncertainty in the absolute surface
current.

The striking feature of the CPGE spectrum is the rapid decrease in βτ that occurs when
~ω exceeds 0.65 eV. Above this energy, βτ decays from its peak value by a factor of ∼200
as ~ω reaches 1.1 eV. This spectral feature cannot be accounted for by the aforementioned
wavelength-dependent conversion factors, as they vary smoothly through this energy range.

The photon energy at which the CPGE response decreases agrees with theoretical pre-
dictions [17, 34] based on a crossover in effective Berry monopole charge as a function of ~ω.
Fig. 3.6(b) illustrates this crossover, showing the evolution of the surface Sω in k-space de-
fined by the momenta where there are available optical transitions at energy ~ω. The CPGE
is proportional to the integrated flux of the Berry curvature through Sω [35], referred to as
C. For sufficiently small ~ω, Sω is a single surface enclosing the Γ-point and the total Berry
flux is equal to the topological charge at Γ, which is 4. For ~ω > EC a surface surrounding
the R-point appears such that Sω now encloses two nodes of opposite chirality, driving the
net Berry flux, and consequently the CPGE, to zero.

Although our observation of the predicted cutoff in the CPGE spectrum is suggestive
of an interpretation in terms of bandstructure topology, this tentative assignment comes
with several caveats. First, the photon-energy dependence of the hot carrier lifetime will be
reflected in the CPGE response, which as previously mentioned, is proportional to the βτ
product. Although we cannot measure τ(ω) directly as it is below our∼100 fs time resolution,
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we believe that it is unlikely to decrease sufficiently rapidly with energy to account for the
∼100-fold decrease in the CPGE response that begins when ~ω exceeds 0.65 eV. This would
require that τ decrease from its “cold carrier” value of 8 fs to ∼0.08 fs. Converting τ to mean-
free path l using the Fermi velocity vF ≈ 4.3×107 cm/s derived from DFT bandstructure [12]
yields l ≈ 3.5 nm, or about seven lattice constants, for electrons at the Fermi surface. Thus l
would have to decrease to less than 0.1 lattice constant to account for the entire decrease in
CPGE current as the photon energy is increased. Nevertheless, it is certainly possible that
the energy dependence of τ contributes to the observed CPGE photocurrent spectrum.

A further consideration for the interpretation of the CPGE spectrum is the possibility
that optical transitions, other than those originating from the Γ and R points, contribute to
photon absorption in the infrared range. To examine this possibility we measured the linear
optical conductivity, σ1(ω), throughout the spectral range of our photocurrent spectroscopy.
Figs. 3.7(a) and (b) show the normal incidence reflectivity measured at room temperature
and the corresponding σ1(ω) obtained by Kramers-Kronig analysis, respectively. Shown in
Fig. 3.7(b) as well is the predicted contribution from interband transitions near the Weyl
nodes [56], where the spectrum is smoothed assuming disorder and thermal broadening to
be ∼0.1 eV. From the comparison we see that σ1(ω) does indeed show contributions beyond
those expected from interband transitions near the Weyl nodes: a Drude component at low
energy and a peak near 0.8 eV that may be associated with the transitions near the M point
[12]. The spectra suggest that only ∼1/3 of the absorbed photons generate transitions near
the Γ and thus β is expected to be modified significantly from the universal value predicted
for an idealized chiral Weyl system.

Our room temperature measurements of linear conductivity have been confirmed by a
recent study of the temperature, T , dependence performed on samples from the same growth
as used in our experiments [44]. Based on the T dependence at low photon energies, it was
possible to resolve the intraband (Drude) and interband contributions and determine that
σ1(ω) is dominated by the interband contribution above a photon energy of ∼0.3 eV. From
this we conclude that the cutoff at 0.65 eV is not related to a crossover from intraband to
interband absorption. In addition, it was confirmed that σ1(ω, T ) increases throughout the
spectral range where we observe the rapid decrease of the CPGE amplitude. Overall, we be-
lieve that the linear conductivity data support the hypothesis that the CPGE spectral cutoff
can be understood as the onset of transitions whose contribution to the total photocurrent
is opposite in sign.

Finally, we believe that regardless of the underlying mechanism, our observation of CPGE
photocurrents in a chiral semimetal will stimulate new research directions into the interaction
of topological systems with light. For example, the CPGE photocurrent generated by light
at normal incidence flows directly into the bulk of crystal, but decays exponentially with
increasing depth. This is an unusual example of a longitudinal current created by a transverse
light field. Conservation laws suggest that this CPGE will cause charge and pseudospin to
accumulate, which would then couple to longitudinal excitations of the medium such as
plasmons and phonons. Thus it may be possible to control the amplitude and phase of these
collective modes through the polarization state of incident photons, which would be especially
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Figure 3.8: Crystal growth and diffraction Laue diffraction pattern of a (111) oriented
RhSi single crystal superposed with a theoretically simulated pattern. Inset shows picture
of the grown RhSi single crystal.

exciting when applied to chiral metals that become superconductors at low temperature.

3.5 Calibrating the CPGE Spectrum

Crystal Growth and Structure Refinement

Single crystals of RhSi were grown from a melt using the vertical Bridgman crystal growth
technique. Here the crystal growth was performed with an off-stoichiometric composition
with slightly excess Si. First, a polycrystalline ingot was prepared using the arc melt tech-
nique with the stoichiometric mixture of Rh and Si metal pieces of 99.99 % purity. Then
the crushed powder was filled in a custom-designed sharp-edged alumina tube and finally
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sealed inside a tantalum tube with argon atmosphere. The temperature profile for the crystal
growth was controlled with a thermocouple attached at the bottom of the tantalum ampoule
containing the sample. The sample was heated to 1500◦C and then slowly cooled to cold
zone with a rate of 0.8 mm/h. Single crystals with average dimension of ∼15 mm length
and ∼6 mm diameter were obtained. A picture of the grown crystal is shown in the inset of
Fig. 3.8. The crystals were analyzed with a white beam backscattering Laue X-ray diffraction
technique at room temperature. The samples show very sharp spots that can be indexed by
a single pattern, revealing excellent quality of the grown crystals without any twinning or
domains. A Laue diffraction pattern of the oriented RhSi single crystal superposed with a
theoretically simulated pattern is presented in Fig. 3.8. The structural parameters were de-
termined using a Rigaku AFC7 four-circle diffractometer with a Saturn 724+ CCD-detector
applying graphite-monochromatized Mo-Kα radiation. The crystal structure was refined to
be cubic P213 (#198) with lattice parameter, a=4.6858(9) Å.

Material Properties

Linear optical properties

We used the reflectivity measurements in the range .08eV - 3eV (Fig. 3.7(a)) and performed
Kramers-Kronig analysis to compute the complex index of refraction ñ = n + iκ. This
and the complex dielectric permittivity ε̃ = ñ2 are plotted in Fig. 3.9. We additionally
calculate σ1 = 2nκε0ω (Fig. 3.7(b)) along with α, ts, tp and θin (Fig. 3.11(a-b)) which are
the absorption coefficient, Fresnel transmission coefficients for s- and p-polarization, and the
angle of refraction for 45◦ angle of incidence. These are defined by

θin = arcsin
sin θi
n

α =
2ωκ

c

ts =
2 cos θi

cos θi + ñ cos θin

tp =
2 cos θi

ñ cos θi + cos θin

(3.12)

where θi = 45◦ is the angle of incidence of the pump light.
We compare the predicted optical conductivity of the Γ and R nodes in RhSi with our

measured σ1 in Fig. 3.7(b) and Fig. 3.10(a). The fraction of the total optical conductivity
that represents the predicted linear conductivity is shown in Fig. 3.10(b).
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a

b

Figure 3.9: Refractive index (a) The real and imaginary parts of the refractive index. (b)
The real and imaginary parts of the complex dielectric function.
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Scattering time (τ)

Using the measured value of σdc, the equilibrium scattering time can be inferred to be τ = 8.6
fs from σ1(ω) using the form for the Drude conductivity

σ1(ω) =
σdc

1 + ω2τ 2
. (3.13)

Terahertz index of refraction

The complex index of refraction at THz frequencies determines the impedance mismatch
between RhSi and free space. We can obtain an accurate estimate of ñ in this frequency
range from the dc conductivity. Given the value of τ determined in the previous section, the
THz emission lies in the low frequency limit of the optical conductivity, where ωτ � 1 and
σ(ω)→ σdc. In this regime, the complex permittivity at low frequency is

ε̃(ω) = − σ̃(ω)

iω
=
iσdc
ω
. (3.14)

The complex index of refraction is then given as,

ñ ≡ n+ iκ =

√
ε̃(ω)

ε0
= (1 + i)

√
σdc

2ε0ω
(3.15)

which at 1 THz is equal to 57(1 + i). Although the Kramers-Kronig analysis may be some-
what unreliable for photon energies less than ∼10meV, it agrees with our analysis and gives
ñ(1THz) = 51+57i, confirming that Eq. 3.15 is correct. When calculating βτ in our analysis,
we use ñ(ω) to find the frequency dependent transmission of the THz radiation from RhSi
into free space.

Inferring laser pulse length from emitted THz radiation

It is not feasible using conventional methods such as autocorrelation to characterize the pulse
length T of the laser over the entire wavelength range. Lacking a more precise method, we
use the THz time traces to estimate the pulse length at each wavelength, since the laser
does not necessarily produce the same pulse width across its available wavelength range. We
know that the photocurrent scattering time τ is much shorter than the pulse length, which
means that the instantaneous current follows the applied electric field squared. The effect
of the OAP collection filters, described in a later section, which modify the spectrum of
the terahertz radiation is to apply a second derivative to the pulse waveform, since for low
frequencies the transmission function’s leading term is ω2. By making this approximation
we find that the full width half maximum of the terahertz pulse t1 is related to T by the
equation

t1 =

√
1− 2W (

√
e/4)

2
T (3.16)
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a

b

Figure 3.10: Ideal conductivity (a) Here we compare the ideal Γ and R band conductivity,
σ1,ΓR, with the total conductivity of RhSi, σ1. (b) The fraction of σ1 which constitutes the
ideal Weyl conductivity.



CHAPTER 3. BULK PHOTOGALVANIC EFFECTS IN RHSI 29
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c d

Figure 3.11: Material properties (a) Power absorption coefficient α. (b) Fresnel transmis-
sion coefficient magnitudes |ts| and |tp|. (c) Angle of refraction for incident angle θi = 45◦.
(d) Pump pulse length T estimated from the emitted terahertz waveforms.

where W (z) is the Lambert W function, or product log. This allows us to calculate an
approximate pulse length for each wavelength. The results are presented in Fig. 3.11(d).
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Inferring the CPGE amplitude from the detected electro-optic
signal

In this section we describe the normalization factors needed to convert from signal at the
electro-optic detector to the CPGE saturation coefficient βτ . This process involves the
following three steps.

1. Determine the time-dependent electric field in the sample that arises from a photo-
generated surface current which depends on laser parameters (intensity at the sample)
and material parameters (β, τ , Fresnel coefficients, etc.).

2. Compute the Fourier transform of the terahertz pulse, then apply two filters to it.
The first is the frequency-dependent transmission of the radiation into free space,
1/(ñ(ω) + 1). The second is the transfer function of the collection optics, F(ω), that
quantifies the fraction of radiation that is collected by the system and transferred to
the ZnTe detection crystal.

3. Compute the inverse Fourier transform of the resulting spectrum, then convert the
resulting time-dependent electric field at the ZnTe surface crystal to signal at the
output of the biased photodetector scheme.

In order to obtain the value of βτ of RhSi, we assume β = β0 = πe3/3h2 and τ = 1 fs for
all pump frequencies in this calculation. Then, by dividing the amplitude of the measured
signal to the expected signal given all experimental parameters, we yield a value for βτ at
each pump frequency in units of (β0×fs).

1. Calculation of the radiated field from the sample

Assume we have some CPGE coefficient β. For circularly polarized light, CPGE is given by

dj

dt
= β|E|2. (3.17)

As laser light travels through a material at angle θin relative to the normal direction z,
its intensity decays according to the (power) attenuation coefficient along the direction of
propagation, rk = z/ cos θin:

|E|2 = E2
0e
−αrk
k . (3.18)

The sheet current density generation rate is then given by

dK

dt
=

∫ ∞
0

dz
dj

dt
sin θin

= βE2
0 sin θin

∫ ∞
0

dze
−αz/ cos θin
k

= β
1

2α
E2

0 sin 2θin

(3.19)
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a b

Figure 3.12: Surface THz transmission and collection filter (a) Fraction of terahertz
radiation transmitted from bulk into free space, determined by dc conductivity and optical
conductivity measurements. (b) Fraction of terahertz collected and collimated by the OAP.

and the saturation current density is

K = βτ
1

2α
E2

0 sin 2θin. (3.20)

The factor of sin θin represents the fraction of the current parallel to the surface, which is
what radiates into free space. Since the scattering rate τ is much less than the pulse length
T , the current amplitude follows the electric field squared amplitude and will radiate in the
THz regime. The radiated electric field amplitude can be found as follows. From Ampère’s
law we have

E ñ
c

= B = µ0
2
K

=⇒ E = µ0c
2ñ
K.

(3.21)

Using the Fresnel transmission coefficient t = 2ñ/(ñ+ 1), the external radiation is given by

Eext =
µ0c

2ñ
Kt =

Z0

ñ+ 1
K. (3.22)

Using Eq. 3.20 we get

ETHz
ext =

βZ0τ

2α(ñ+ 1)
E2

0 sin 2θin. (3.23)

The frequency dependence of the factor 1/(ñ(ω) + 1) is shown in Fig. 3.12(a). Now we must
express E0 in terms of the measured laser parameters average power P , repetition rate f ,
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spot size r0 and pulse duration T . At normal incidence the intensity of the electric field of
the pump laser at the surface of the sample is given by

I(r, t) =
cε0
2
E2(r, t) =

cε0
2
E2

exte
−r2/r20e−t

2/T 2

(3.24)

Integrating over space and time yields the relation

E2
ext =

2PZ0

π
√
πfTr2

0

, (3.25)

where we include a factor of 1/2 to account for 45◦ angle of incidence. This leaves us with
a peak THz electric field of

ETHZ
ext =

Z2
0βτtstpP sin 2θin

π
√
παfTr2

0(ñ+ 1)
(3.26)

which radiates into free space and eventually is detected through electro-optic sampling.
In order to experimentally determine the spectrum of βτ , each of the terms in the above
equation must be determined as a function of the pump frequency. As discussed earlier,
we calculate ts, tp, θin = arcsin 1/(

√
2n) and α = 2κω/c as a function of pump frequency

based on spectrally resolved reflectivity measurements and Kramers-Kronig analysis which
produces the complex index of refraction. These values are plotted in Fig. 3.11(a-c). The
laser power P is directly measured across the laser’s spectral range. We use a concave focal
length F = 50 cm mirror to focus light on the sample, gives a focused spot size of r0 = 2Fλ

πd

where d is the collimated beam diameter.

2. Radiation from the photoexcited region

The THz radiation emitted by the sample is collected by a 45◦ OAP which collimates the
beam. A second OAP then focuses it onto a ZnTe electro-optic sampling (EOS) crystal.
In order to calculate the fraction of radiated light collected by the OAP, we start with the
formula for the vector potential at location r from a current density described by j(r, t),

A(r, t) =
µ0

4π

∫
d3r′

j (r, tr)

|r− r′|
(3.27)

where tr is the retarded time. If we assume radiation at a specific frequency ω, the current
density in our experiment is given by

j (r, t) = J0x̂δ(z)e−x
2/2r20e−y

2/r20e−(t−x′ sin θi/c)
2/T 2

(3.28)

where the term x′ sin θi/c in the final exponential represents the phase delay across the pho-
toexcited spot due to off-normal incidence at angle θi = 45◦ (Fig. 3.13(a)). The coordinates
used in the calculation are shown in Fig. 3.13(b).
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ba

Figure 3.13: Filter calculation geometry (a) Illustration of photoexcited current at off-
normal incidence. The pump light (red shading) is cast onto the sample which excites a
current (orange shading). There is a time delay across the photoexcited region which affects
the radiated angle, as in a phased array antenna. (b) Illustration of the polar coordinate
system used in the filter calculation.

The retarded time at r is given by

tr = t− |r− r′| /c

= t− 1

c

√
r2 − 2r · r′ + r′2

≈ t− 1

c
r (1− r̂ · r′/r)

= t− r

c
+

r̂ · r′

c

= t− r

c
+

1

c
(sin θ cosφx′ + sin θ sinφy′) .

(3.29)

where the OAP is in the far field limit r′ � r.
The Fourier transform of the vector potential is

A(r, ω) =
µ0

4πr
j0x̂

∫
dteiωt

∫
dx′dy′e

− x2

2r20 e
− y2

r20 e−u
2/T 2

(3.30)
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where u = tr − x′ sin θi
c

= t− r
c

+ (sin θ cosφ− sin θi)
x′

c
+ sin θ sinφy

′

c
. This gives

A(r, ω) =
µ0

4πr
j0x̂e

−ω2T 2/4eiωr/c
∫
dx′e

− x′2

2r20 eiωx
′(sin θ cosφ−sin θi)/c

×
∫
dy′e

− y′2

r20 eiωy
′ sin θ sinφ/c

(3.31)

=
µ0

4
√

2r
r2

0

√
πj0x̂e

−ω2T 2/4eiωr/ce−
r20ω

2

2c2
(sin θi−sin θ cosφ)2e−

r20ω
2

4c2
sin2 θ sin2 φ (3.32)

The fraction of the total radiation captured by the OAP is given by

F(ω) =

∫
OAP

dθdφ sin θE(ω, θ, φ)

/∫
2π

dθdφ sin θE(ω, θ, φ). (3.33)

The second integral is integrated over the upper half-sphere (0 < θ < π/2) because we only
consider the radiation emitted away from the sample, not into it. All θ- and φ-independent
factors can be removed from the integrand, so we can use the form

E(θ, φ) ∝ cos θe−
r20ω

2

2c2
(sin θi−sin θ cosφ)2e−

r20ω
2

4c2
sin2 θ sin2 φ (3.34)

in the integrand. The integral depends on spot size, r0, which is variable across the spectral
range of the pump laser. We calculate this integral numerically for each pump wavelength.
F(ω) is plotted for several pump wavelengths in Fig. 3.12(b) as a function of ν = ω/2π. For
small wavelengths relative to the excitation spot size, the radiation emits at the specular
direction relative to the incoming pump light.

3. Electro-optic detection using ZnTe

The last step in the calibration is the conversion of the electric field at the surface of the
ZnTe crystal to the signal at the output of the biased photodetector scheme. Detection of
the THz field is performed through electro-optic sampling (EOS) in ZnTe (110). In this
technique the THz electric field induces transient birefringence, ∆n, in the ZnTe, which is
detected by a co-propagating probe beam at 800 nm. Our analysis is based on the detailed
studies of the EOS in technique presented in Refs. [3, 19]. For THz frequencies below 3 THz
we neglect dispersion in ZnTe and assume a real index n = 2.85 [47].

The transient birefringence generates a polarization rotation in the probe beam. We
measure the rotation using an optical bias scheme [9, 33] that yields a gain factor of 88
as compared with the conventional balanced detector measurement. In the conventional
scheme, the fractional change in the balanced output is given by,

∆V (τ)

V
=
ωn3r41

2c

∫ L

0

dz

∫ ∞
−∞

dtETHz(z, t)I0(z, t− τ) (3.35)
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where ω is the angular frequency of the probe pulse, c is the speed of light, L is the prop-
agation distance through the crystal, ETHz is the THz field strength, r41 = 4 pm/V is the
electro-optic coefficient of ZnTe at 800 nm, n = 2.85 is the index of refraction of ZnTe and

I0(z, t− τ) = I0 exp{−[z − vg(t− τ)]2/(vgTpr)
2} (3.36)

is the normalized intensity of the 800 nm probe beam with pulse duration, Tpr, which prop-
agates with group velocity vg.

THz transients with bandwidth less than 3 THz, Eq. 3.35 simplifies to,

∆V (τ)

V
=
ωn3r41L

2c

∫ ∞
−∞

dtETHz(t)I0(t− τ). (3.37)

Because the duration of the probe pulse is approximately 35 fs, much less that the time scale
of the THz transient, we make the approximation that I0(t− τ)→ δ(t− τ) to obtain [9]

∆V (τ)

V
=
ωn3r41L

2c
ETHz(τ). (3.38)

An additional factor of 2/(n + 1) is needed because the THz field is partially reflected at
the surface of the ZnTe. Finally, we substitute ETHz with the expression in Eq. 3.26 (after
applying the frequency dependent collection filters) and as discussed earlier set βτ = β0×1fs.
This gives an expected EOS signal for each pump frequency based on laser parameters,
material properties and the experimental geometry, and by comparing the measured value
with the expected value we obtain βτ in units of (β0×fs). The results are previously plotted
in Fig. 3.6.
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Chapter 4

Surface Photogalvanic Effects

4.1 Surface States

Despite the fundamental nature of the edge state in topological physics, direct measurement
of electronic and optical properties of the Fermi arcs of topological semimetals has posed
a significant experimental challenge, as their response is often overwhelmed by the metallic
bulk. However, laser-driven currents carried by surface and bulk states can propagate in
different directions in nonsymmorphic crystals, allowing for the two components to be easily
separated. Motivated by a theoretical prediction [13], we have measured the linear and
circular photogalvanic effect currents deriving from the Fermi arcs of the nonsymmorphic,
chiral Weyl semimetal RhSi over the incident photon energy range 0.45− 1.1 eV. Our data
are in good agreement with the predicted spectral shape of the circular photogalvanic effect
as a function of photon energy, although the direction of the surface photocurrent departed
from the theoretical expectation over the energy range studied. Surface currents arising from
the linear photogalvanic effect were observed as well, with the unexpected result that only
two of the six allowed tensor element were required to describe the measurements, suggesting
an approximate emergent mirror symmetry inconsistent with the space group of the crystal.

Protected edge states like the current-carrying edge state of the quantum Hall effect [24,
54] or the spin-momentum locked surface states of bulk topological insulators [18, 27] are a
universal property of topological matter. In Weyl semimetals, which host emergent, massless,
chiral Weyl fermions, the topological edge state comprises open Fermi surface arcs formed
of helicoidally dispersing, spin-momentum locked quasiparticles that are constrained to the
sample surface [65, 1]. The arcs connect the projections of opposite chirality Weyl nodes,
curving in complementary shapes on the 2D surface Brillouin zones on the opposite sides of
the crystal. The existence of these states has been confirmed by ARPES [69, 40, 68, 5] and
quasiparticle interference measurements [28] and have been shown to play a central role in
quantum oscillations [53, 45]. However, despite a number of predictions focused on the role
of the Fermi arcs in topological semimetal physics [32, 59, 61, 46, 23, 66], their transport
and optical properties have largely remained hidden, as they are often dominated by bulk
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Figure 4.1: RhSi Crystal Structure (a) Unit cell displayed with the (111) direction point-
ing out of the page, showing the three-fold rotational symmetry of the crystal. (b) Extended
RhSi structure, showing two alternate unit cells offset by (1/2, 0, 1/2). When the unit cell
marked by the orange frame is rotated 180◦ about the z axis, it is identical to the unit cell
marked by the black frame, illustrating the two-fold screw symmetry.

response functions. For example, experiments aimed at measuring the linear conductivity of
surface states run into difficulties because of shorting by the metallic bulk that lies below.

We will demonstrate experimentally that the second-order nonlinear conductivity, which
describes the strength and symmetry of the photogalvanic effects (PGEs), provides a means
to selectively probe surface state electronic properties in Weyl semimetals. The PGEs are
phenomena in which optical excitation generates a dc current that arises from intrinsic
breaking of inversion symmetry, rather than applied bias voltage or inhomogeneous doping
[42, 50]. A further defining property of PGEs is sensitivity of the direction of photocurrent, J,
to the polarization state of the optical electric field E, as described by the phenomenological
relation,

Ji = γijkEjEk + iβij(E× E∗)j. (4.1)

The first term on the right-hand side of Eq. 4.1 describes the LPGE in terms of the polar
tensor γijk and the second term corresponds to the CPGE in terms of the axial tensor βij.
Both PGE response tensors are zero in the presence of inversion symmetry.

As discussed in the previous chapter, the CPGE has received particular attention in
topological semimetals like RhSi because they crystallize in structures in which all mirror
symmetries are broken, forming a chiral medium [12, 64, 11, 17, 37, 48, 38, 14, 57, 60, 43,
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51, 39, 10, 52, 22, 29]. While the prediction of QCPGE is disrupted by the existence of
trivial bands in RhSi, the polarization selection rules for both CPGE and LPGE observed
on (111) faithfully follow constraints imposed by the symmetry of the bulk [55]. As we show
below, these constraints provide a route to selectively probe the Fermi arc surface states on
the (001) surface.

4.2 Symmetry Considerations

The space group of RhSi (#198) contains two operations: a 3-fold rotation about the (111)
direction and a nonsymmorphic screw symmetry in which a 2-fold rotation about the z
axis is combined with a translation by (1/2, 0, 1/2). Fig. 4.1 illustrates these symmetries
in the crystal structure. In describing bulk response functions, where perfect translational
symmetry is assumed, the screw operation imposes the same constraints on response tensors
as 2-fold rotation. The combination of the 3- and 2-fold rotational symmetry greatly reduces
the number of nonvanishing elements of the γijk and βij tensors that describe the bulk PGE
response. Only tensor elements γxyz = γyzx = γzxy of the LPGE response are nonzero,
and the CPGE tensor is purely diagonal with βij = βδij. Note that given the reduction of
the CPGE tensor to a scalar, Eq. 4.1 predicts that the CPGE current flows parallel to the
wavevector of excitation light, independent of the crystal orientation.

As discussed previously, light incident on the (111) surface verified the symmetry-based
predictions for the bulk response functions [55]. The CPGE signal was below the noise
level at normal incidence, consistent with the prediction that it flows parallel to the optical
wavevector and therefore does not radiate in the direction of specular reflection (Fig. 4.2). As
further confirmation, THz radiation from CPGE current two orders of magnitude above the
noise level was observed when the angle of incidence was set 45◦ from the normal direction,
where the bulk symmetry and measurement geometry imply a radiating CPGE current
parallel to the surface.

The experiments described below were stimulated by the prediction that the photogal-
vanic response to light normally incident on the (001) surface would be qualitatively different
than (111), directly revealing the presence of topologically protected surface states through
the observation of a surface current [13]. As discussed more in depth in a later section, for
the (001) face, the symmetry of the bulk predicts that LPGE as well as CPGE current flows
normal to the surface, in which case no radiation from PGEs is expected, as with CPGE on
the (111) surface. The crucial ingredient leading to the prediction of PGE currents parallel
to the (001) is the presence of a screw symmetry in the space group. Truncation of the
crystal at (001) disrupts the translational component of the screw operation and violates the
effective 2-fold symmetry. Consequently there is no operation, other than the identity, that
transforms the (001) surface to itself and all tensor elements disallowed by bulk symmetry
become allowed for surface-localized electronic states. In particular the six elements with
only x and y indices (i.e, γxxx, γxxy, γxyy, γyxx, γyxy and γyyy) are not forbidden, allowing
for in-plane photocurrent and specular THz radiation to be generated by light at normal
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Figure 4.2: Bulk CPGE Symmetry When circularly polarized light is incident on RhSi,
the bulk CPGE current will be directed perpendicular to the surface, with its sign deter-
mined by the incident light’s handedness. L and R refer to left- and right-handed circular
polarization and jb refers to the bulk CPGE current.

incidence.

4.3 Experimental Results

The apparatus used to observe short-lived surface-currents via their THz radiation is shown
in Fig. 4.3(a), and is similar to that used to probe bulk photocurrents in the previous chapter,
shown with additional details in Fig. 3.3. The excitation source was an optical parametric
amplifier pumped by an amplified Ti:Sapphire laser, producing wavelength tunable pulses
from 1150-2600 nm (0.48-1.1 eV) and pulse duration≈100 fs. In-plane photogalvanic currents
radiate THz pulses into free space that are focused onto a ZnTe crystal for time-resolved
electro-optic sampling of the THz transient (whereas the radiation due to through-plane bulk
photocurrents does not emerge from the sample) [55].

Figs. 4.3(b) and 4.3(c) show the experimental configurations used to measure the direc-
tion of the PGE currents for different polarization states of the normally incident radiation.
The incident light was chosen to be either left or right circularly polarized, or linearly polar-
ized with the plane of polarization rotatable through an angle θ (Fig. 4.3(b)). In addition,
the sample was also rotated about the optical axis by an angle φ (Fig. 4.3(c)). The crystal
axes were determined by Laue diffraction (Fig. 4.4) and the sample rotation stage was ini-
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Figure 4.3: Experimental Diagram for surface currents (a) Schematic of experiment
used to detect photogalvanic currents in RhSi via terahertz detection. Near infrared (NIR)
light with tunable wavelength and polarization is focused onto the (001) RhSi surface at
normal incidence. Terahertz radiation is collected and collimated using off-axis parabolic
mirrors. It passes through a wire-grid polarizer before being focused onto a ZnTe crystal.
Light with λ = 800 nm and variable time delay ∆t copropagates through the ZnTe for
electro-optical detection of the terahertz. PD, photodiode; WP, Wollaston prism; WGP
wire grid polarizer; λ/2, half-wave plate; λ/4, quarter-wave plate. (b) In one experimental
configuration, the sample is kept fixed while the pump polarization is rotated by angle θ.
The sample axes are set such that [100] and [010] are horizontal and vertical in the lab frame
respectively. (c) In the second configuration, the pump polarization is fixed at θ = 0 and
the sample is rotated by and angle φ.
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Figure 4.4: Laue Diffraction Pattern Laue diffraction measurement overlaid with the
predicted diffraction peaks of the 001 surface of space group 198.

tialized such that at φ = 0 (100) and (010) crystal axes are horizontal and vertical in the
laboratory reference frame, respectively. Samples from two different batches were used in
the experiments. A Flack parameter of -0.06(4) was measured for both samples, indicating
a very high enantiomeric purity [16]. Further details of the crystal characterization is given
in Table 4.1.

Figure 4.5(a) shows direct evidence for the generation of in-plane helicity-dependent
photocurrent at normal incidence on the (001) surface. The THz amplitude plotted on the
vertical axis is the difference in radiation generated by left and right circularly polarized
light ~ω = 0.8 eV and is thus a measure of the CPGE. The two plots show the dependence
of the horizontal (H) and vertical (V) components of the CPGE amplitude on the angle
of rotation, φ, of the sample about the optic axis. The fact that CPGE is observable at
normal incidence already suggests that in-plane photocurrent is generated. As Fig. 4.5(b)
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Table 4.1: Room temperature single crystal Refinement result for RhSi.

Formula RhSi

F.W. (g/mol); 131
Space group; Z P213 (No. 198); 4
a (Å) 4.6858(9)
V (Å3) 102.88(6)
Absorption Correction Multi-scan
Extinction Coefficient 0.22(1)
θ range (◦) 6.1-51.3
No. reflections; Rint 5013; 0.0341
No. independent reflections 392
No. parameters 9
R1; wR2 (all I) 0.0132; 0.0341
Goodness of fit 2.410
Diffraction peak and hole (e-/Å3) 0.760; -1.147

illustrates, the dipole radiation pattern for normally directed photocurrent has a node at the
angle of specular reflection from the surface and therefore does not directly generate THz
radiation, although weaker radiation from multiple scattering is possible. The proof that the
observed radiation does indeed arise from an in-plane CPGE current is the dependence of
the H and V components of the CPGE radiation on φ. The solid lines in Fig. 4.5(a) are fits
to A cos(φ− φ0) and A sin(φ− φ0), with φ0 ≈ 10◦ for both components. This dependence of
the CPGE amplitude on φ proves that as the sample rotates the CPGE current rotates as
well, maintaining an angle φ0 with respect to the (001) direction. This behavior is contrast
to a normally directed CPGE current, which would be independent of φ.

Having shown that a CPGE surface current is observed in violation of the restrictions
placed by the symmetry of the bulk, we next tested the theoretical prediction for the de-
pendence of CPGE amplitude and direction on ~ω. The surface bands responsible for Fermi
arcs in RhSi comprise two intertwined helicoids with opposite spin polarization, as illus-
trated schematically in Fig. 4.6 in a plot of energy vs. in-plane momentum [15, 57]. The
helicity-dependent in-plane CPGE current arises from spin-flip optical transitions between
the two helicoids, as indicated by the arrows in Fig. 4.6.

The comparison of theoretical and experimental measured spectra shown in Figs. 4.7(a)
and 4.7(b) strongly implicates transitions involving Fermi arc states as the origin of the
CPGE effect at the (001) surface. Fig. 4.7(a) compares the observed CPGE amplitude (closed
circles) as a function of ω with the spectra predicted using Wannier functions derived from
first principles calculations (solid lines) [13]. The two curves in Fig. 4.7(a) correspond to the
H and V components of the CPGE current, proportional to βxz and βyz, respectively. The
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a b

Figure 4.5: CPGE on (001) (a) Amplitude of CPGE for horizontally and vertically polar-
ized THz emission as a function of sample orientation φ. (b) Schematic showing directions
of bulk PGE (jb, red) and surface PGE (js, green) with normally incident light on the 001
surface of RhSi with the resulting radiation patterns. In general js has components in x and
y.

spectra were uniformly consistent between multiple points on the surfaces of the two samples
studied. Fig. 4.7(b) shows that the evident discrepancy between theoretical prediction and
experiment is resolved to a remarkable extent when the energy axis is scaled by a factor
of 1.25. Such an increase increase in the energy of optical transitions can be found when
screening effects beyond the local density approximation are considered 1.

To fully characterize the nonlinear response, we measured the response to linear polar-
ization, i.e., LPGE, in addition to the CPGE. Although Ref. [13] did not provide theoretical
predictions for the LPGE, the implication of that work is that since 2-fold rotational sym-
metry is broken at the surface, the six elements of γijk that contain only x and y indices,
forbidden in the bulk response, become allowed at the (001) surface. This symmetry-based
argument would then predict the existence of in-plane LPGE currents whose directions need
not correlate or align with the cubic axes of the crystal.

As was the case with circularly polarized light, THz radiation was readily observed at
normal incidence under photoexcitation with linearly polarized light. To determine the com-

1Rescaling of the energy by a factor 1.25 can be obtained when DFT/LDA theory is augmented by
inclusion of a certain amount of Hartree-Fock exchange using hybrid density functionals, for example in the
Heyd, Scuseria, and Ernzerhof (HSE) approach. G. Chang and M. Z. Hasan, private communication (2021).
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Figure 4.6: Helicoid Surface Bands Schematic of surface helicoid bands including a pho-
toexcitation of an electron at energy ~ω (red arrow) and the induced current (green arrow).

ponents of the LPGE tensor we resolved the THz amplitude into the H and V channels,
varying the polarization angle of the pump beam while keeping the sample fixed. Fig. 4.8(a)
shows the amplitude of the H and V components as a function of the angle of linear polar-
ization, θ. The solid lines are fits to A cos(2θ − θ0) + B. The six independently determined
parameters, i.e., the amplitude of the cosine component, A, offset angle θ0, and offset am-
plitude B for the H and V channels, are sufficient to determine the relative amplitude of all
six elements of γijk that contribute to an in-plane current at normal incidence. This can be
seen as follows.

Both THz polarizations were acquired at each pump wavelength before the wavelength
was changed. This required that the ZnTe crystal and THz polarizer be adjusted to select
for either horizontal or vertical emitted THz polarization. In the optical biasing scheme used
here [9, 33], this resulted in a small difference in the measured THz amplitude as the probe
and THz beams passed through slightly different positions on the ZnTe detection crystal
each time it was rotated. Through repeated measurements, we estimate that this error was,
on average, ∼ ±7.5% of the total THz amplitude. We have accounted for this error with
error bars on the plots of the LPGE parameters.

For a given pump wavelength, we rotate the polarization while the sample remains fixed,
and the electric field is given by E(θ) = E0(cos θ, sin θ). This gives photogalvanic currents

Jx =
(
γxxx cos2 θ + γxyy sin2 θ + 2γxxy cos θ sin θ

)
E2

0

Jy =
(
γyxx cos2 θ + γyyy sin2 θ + 2γyxy cos θ sin θ

)
E2

0 .
(4.2)
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a b

Figure 4.7: CPGE spectrum on (001) (a) CPGE spectral data for βxz and βyz compared
with theory from Ref. [13]. (b) Experimental data compared with theory after rescaling of
energy. Rescaling of the energy by a factor 1.25 is seen when DFT/LDA theory is augmented
by inclusion of a certain amount of Hartree-Fock exchange using hybrid density functionals,
for example in the Heyd, Scuseria, and Ernzerhof (HSE) approach.

For each terahertz polarization (H or V), the set of data has three free parameters,
illustrated simply by a sine wave plus an offset with parameters A, φ and C: A sin(2θ+φ)+C.
Thus, for two terahertz polarizations, we have six free variable and can thus determine the
tensor parameters γijk for ijk = xxx, xxy, xyy, yxx, yxy, yyy. Note that γixy = γiyx. Data
for multiple wavelengths is shown in Fig. 4.9.

We can determine the same set of six parameters by keeping the pump polarization fixed
at θ = 0 and instead rotating the sample axis about the surface normal by angle η. The two
terahertz components measured will be

Jx(η) =

[
γxxx cos3 η − (γxxy + γxyx + γyxx) cos2 η sin η

+ (γxyy + γyxy + γyyx) cos η sin2 η − γyyy sin3 η

]
E2

0 (4.3)

and
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a b

Figure 4.8: LPGE on (001) (a) Terahertz amplitude along x and y as a function of linear
pump polarization angle θ for λ = 2000nm. (b) Results of fitting data in (a) to general
LPGE tensor γijk.

Jy(η) =

[
γyxx cos3 η + (γxx − γyxy − γyyx) cos2 η sin η

+ (γyyy − γxxy − γxyx) cos η sin2 η − γxyy sin3 η

]
E2

0 . (4.4)

This allows us to use two different measurement methods to determine the same set of
parameters γijk.

Fig. 4.8(b) shows the relative amplitude of the six elements of γijk (normalized to γyxx) in
the photon energy range from 0.5 to 1.1 eV, along with error bars deriving from systematic
errors. A striking feature of the spectra is that the response at photon energies above ∼ 0.6
eV is dominated by two approximately equal components, γyxx ≈ γxxy, with the other four
close to zero, despite the fact that all six tensor components are in principle symmetry
allowed. We note that the vanishing of components with an odd number of x indices would
suggest a mirror symmetry x → −x. A CPGE current directed along the x axis would
be consistent with this symmetry. While the components appear to approximately obey
such a symmetry, we know of no mechanism which would enforce this. We performed AFM
measurements over two 5× 5 µm2 regions and two 1× 1 µm2 regions that reveal no patterns
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Figure 4.9: Full LPGE scans on (001) LPGE measurements on RhSi 001 surface as a
function of pump polarization angle for x and y components of terahertz.

in surface topography that could affect the amplitude of photocurrents (Fig. 4.10). A surface
variation of approximately 5 nm is observed.

In-plane mirror symmetry

Consider a general nonlinear tensor σ that describes the optical response in a material such
that Ji = σijkEiEk. We will consider the constrains on σ imposed by a symmetry of the
mirror operation

Mx =

(
−1 0
0 1

)
(4.5)

where we are restricting ourselves to 2D.
Under an operator O, σ will transform as
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Figure 4.10: AFM Four AFM measurements on RhSi (001) surface showing crystal topog-
raphy.
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σ′ijk = OiαOjβOkγσαβγ. (4.6)

When O is a symmetry of the material in question, the constraint σ′ijk = σijk is imposed.
For O = Mx, we arrive at the set of equations

σ′xxx = (Mx
xx)

3σxxx = −σxxx = σxxx (∗)
σ′xxy = (Mx

xx)
2Mx

yyσxxy = σxxy = σxxy

σ′xyy = Mx
xx(M

x
yy)

2σxyy = −σxyy = σxyy (∗) (4.7)

σ′yxx = (Mx
xx)

2Mx
yyσyxx = σyxx = σyxx

σ′yxy = Mx
xx(M

x
yy)

2σyxy = −σyxy = σyxy (∗)
σ′yyy = (Mx

yy)
3σyyy = σyyy = σyyy

The starred equations indicate elements that we find are equal to their own negative and
therefore must be zero. We can conclude that for mirror symmetry Mx, the elements σxxx,
σxyy and σyxy must be zero.

In conclusion, our measurements provide strong evidence in support of the prediction
[13] of a new path to selective probing of the topological surface states in Weyl semimetals.
We have observed LPGE and CPGE that arise selectively from surface states in chiral RhSi
by choosing a configuration in which the response of the bulk is forbidden by symmetry.
The CPGE spectrum, after a 25% rescaling of the energy axis, showed striking agreement
with the response predicted for transitions between the spin polarized helicoidal bands that
give rise to Fermi arcs [13]. LPGE measurements also probed the nonlinear response of
surface states. An unanticipated result was that over a broad photon energy range only two
elements of the nonlinear response tensor, γijk, were required to fit the data, despite the six
potentially nonzero elements expected by the C1 surface symmetry. This result presents a
challenge to theory of surface states in Weyl semimetals. Finally, the measurement scheme
demonstrated here offers a general approach to selectively probe surface states of topological
matter through the use of nonlinear optical effects in which the response of the bulk vanishes
by symmetry.
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