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RESEARCH ARTICLE Open Access

Trabectedin arrests a doxorubicin-resistant
PDGFRA-activated liposarcoma patient-
derived orthotopic xenograft (PDOX) nude
mouse model
Tasuku Kiyuna1,2,3, Yasunori Tome3*, Takashi Murakami1,2, Kei Kawaguchi1,2, Kentaro Igarashi1,2, Kentaro Miyake1,2,
Masuyo Miyake1,2, Yunfeng Li5, Scott D. Nelson5, Sarah M. Dry5, Arun S. Singh4, Tara A. Russell6, Irmina Elliott6,
Shree Ram Singh7* , Fuminori Kanaya3, Fritz C. Eilber6* and Robert M. Hoffman1,2*

Abstract

Background: Pleomorphic liposarcoma (PLPS) is a rare, heterogeneous and an aggressive variant of liposarcoma.
Therefore, individualized therapy is urgently needed. Our recent reports suggest that trabectedin (TRAB) is effective
against several patient-derived orthotopic xenograft (PDOX) mouse models. Here, we compared the efficacy of first-line
therapy, doxorubicin (DOX), and TRAB in a platelet-derived growth factor receptor-α (PDGFRA)-amplified PLPS.

Methods: We used a fresh sample of PLPS tumor derived from a 68-year-old male patient diagnosed with a recurrent
PLPS. Subcutaneous implantation of tumor tissue was performed in a nude mouse. After three weeks of implantation,
tumor tissues were isolated and cut into small pieces. To match the patient a PDGFRA-amplified PLPS PDOX was created
in the biceps femoris of nude mice. Mice were randomized into three groups: Group 1 (G1), control (untreated); Group 2
(G2), DOX-treated; Group 3 (G3), TRAB-treated. Measurement was done twice a week for tumor width, length, and
mouse body weight.

Results: The PLPS PDOX showed resistance towards DOX. However, TRAB could arrest the PLPS (p < 0.05 compared to
control; p < 0.05 compared to DOX) without any significant changes in body-weight.

Conclusions: The data presented here suggest that for the individual patient the PLPS PDOX model could specifically
distinguish both effective and ineffective drugs. This is especially crucial for PLPS because effective first-line therapy is
harder to establish if it is not individualized.
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Background
Pleomorphic liposarcoma (PLPS), a type of sarcoma, is a
rare and an aggressive variant of liposarcoma. PLPS is
a recalcitrant disease. Patients with PLPS develop an ele-
vated level of local recurrence and distant metastasis
with poor prognosis [1]. PLPS consists of approximately

10% of liposarcomas. PLPS has been investigated in soft
tissue sarcomas (STS) such as head and neck sarcoma as
well as bone sarcoma [2, 3] and has been demonstrated
in patients of all ages [4–7]. Wang et al. [8] reported 6
PLPS cases out of a total 89 liposarcoma cases between
2003 and 2017. All 6 patients underwent complete
tumor resection and only one patient received chemo-
therapy with ifosfamide and epirubicin [8]. A primary
PLPS in an 18-year-old male in the metaphysis of the
left tibia was reported by Tiemeier et al. [3]. The pa-
tient was treated with methotrexate, doxorubicin and cis-
platinum (MAP). Pathology results demonstrated extensive
(> 95%) tumor necrosis due to neoadjuvant chemotherapy.
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Chemotherapy and post-operative results after 12 months
showed no sign of recurrence [3]. Yan et al. [9] have shown
an 81-year-old Chinese woman with advanced PLPS who
was treated with apatinib after failure of chemotherapy
had good efficacy and low toxicity. Apatinib was also
used in patients with advanced sarcoma [10]. In search of
molecular biomarkers, Ghadimi et al. [11] tested 155 PLPS
patients using tissue microarrays, and identified several po-
tential therapeutic targets [11].
Surgical resection at present is the only effective thera-

peutic option for localized PLPS. In addition, radiation
and chemotherapy are largely ineffective for advanced
stages of this disease [11–14]. Thus, for patients, perso-
nalised and targeted therapy is necessary to overcome
the metastatic PLPS.
To accomplish this goal, our laboratory has developed

the patient-derived orthotopic xenograft (PDOX) nude-
mouse model for many tumor types [15–49]. Our
PDOX model is advantageous compared to subcutaneous
(s.c.)-transplanted patient-derived xenograft (PDX) models
in various aspects [50, 51]. In contrast to PDOX
model, s.c.-transplanted PDX models fail to develop an
advanced tumor stage and cannot retain the original
disease pattern generally observed in patients, PDOX
models metastasize because tumor tissues are engrafted
in the orthotopic sites of origin [50–52]. Importantly,
the metastasic form of PDOX model matches the
patient. Even though high technical skill, time commit-
ment, and more costly procedures are needed for the
PDOX models compared to traditional subcutaneous
PDX models, PDOX models are important for individ-
ual patients and can be used as a powerful tool in pre-
clinical modelling [50–52].
Trabectedin (TRAB) for patients with metastatic liposar-

coma has been approved by the FDA [53] and is marketed
by Janssen Pharma as Yondelis [54]. TRAB is a tetra-
hydroisoquinoline alkaloid compound, derived from
the Carribean sea tunicate, Ecteinascidia turbinate [7, 55].
TRAB is a promising antitumor agent [56–59]. Nteli et al.
[60] reported a durable response to TRAB in a patient
with high-grade uterine leiomyosarcoma. It was reported
that cells lacking a homologous recombination system
were more sensitive to TRAB [61]. Subsequently, Larsen
et al. [62] found that an interaction between a minor
groove (DNA), and transcription factors, or DNA-repair
molecules such as BRCA1, with TRAB alters the cell cycle
and induces cell death. TRAB also showed
anti-inflammatory and immunomodulatory properties
[62]. Several studies reported that a haplotype in the
BRCA1 gene could be utilized as a marker for predict-
ing TRAB effectiveness in patients with STS [63–65].
Angarita et al. [66] reported some efficacy of TRAB
to advanced STS patients who did not respond to
first-line chemotherapy.

Recently, we showed that TRAB is efficacious on several
PDOX models [25, 30, 32, 67]. Here, we tested the efficacy of
first-line chemotherapy, doxorubicin (DOX) [42], and TRAB
in a PDGFRA-amplified [68] PLPS PDOX model [69].

Methods
Mice
In the present study, athymic nu/nu nude mice, between 4
and 6 weeks old, were utilised [69]. Experimental proce-
dures and data collection were done as per as our previous
publications [22, 24, 30, 32, 38, 47, 69, 70]. Mouse housing,
feeding, surgical processes and imaging were conducted as
described in our previous publications [22, 24, 30, 32, 38,
47, 69, 70]. The mice were humanely sacrificed as described
in our previous publications [22, 24, 30, 32, 38, 47, 69, 70].
The mouse investigations presented here were done using
an AntiCancer, Inc. Institutional Animal Care and Use
Committee (IACUC)-protocol specifically approved for
this study as previously described [47] and as per as
principles and procedures provided in the National
Institute of Health (NIH) Guide for the Care and Use of
Animals under Assurance Number A3873–1 [47].

Patient-derived PLPS tumor
In this study, we used a PLPS tumor derived from a
68-year-old male patient diagnosed with a recurrent PLPS,
which has been described in our previous publication [69].
Details of surgical resection and chemotherapy given to
this patient have been previously described [69].

Establishing the PLPS PDOX model using the surgical
orthotopic implantation (SOI) technique
PLPS sample collection from the patient, performing sub-
cutaneous implantation in nude mice, harvesting tumors
from the mice, creating a space at the orthotopic site in
the biceps femoris to insert tumor fragments in the mice
and to establish the PDOX model and wound-closure pro-
cedures have been described in detail in our previous pub-
lications [22, 24, 30, 32, 38, 47, 69].

Treatment regime
All treatment procedures and data collection were done
as previously reported [22, 24, 30, 32, 38, 47]. PLPS
PDOX mouse models were randomized into three
groups as previously described [69]: Group 1 (G1), con-
trol (untreated); Group 2 (G2), DOX-treated (3 mg/kg,
i.v., weekly for 2 weeks); Group 3 (G3), TRAB-treated
(0.15 mg/kg, i.v., weekly for 2 weeks). In each group, 7
mice were used. Measurement of tumor width, length,
and mouse body weight was done as described in our
previous publications [22, 24, 30, 32, 38, 47, 69]. The
doses and treatment time were selected from our previ-
ous PDOX studies [22, 24, 30, 32, 38, 47, 69]. DOX was
selected because it is first-line therapy for PLPS.
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A formula to calculate the tumor volume has been
previously described [69]. All data are presented in the
results section as mean ± SD. Drug treatment was
started only when the tumor volume attained 50 mm3

[69]. The tumor volume ratio and the actual body weight
was measured as defined in our previous publications
[22, 24, 30, 32, 38, 47, 69]. Mice were sacrificed on day 15
in each drug-treatment group and tumors were resected
for further histological analysis as described in our previ-
ous publication [69].

Histopathological evaluation
All histological procedures, data collection, and analysis
were done as previously reported [22, 24, 30, 32, 38, 47, 71].

Statistical analysis
All statistical analyses were done using JMP pro version
12 [69]. The relative tumor volumes and relative body

weight of the mice are presented as mean ± SD [69]. The
Mann-Whitney U test was used to confirm the signifi-
cant differences for continuous variables. P values of less
than 0.05 were regarded as statistically significant.

Results
Drug efficacy in the PLPS PDOX mouse model
To test the efficacy of each drug in the PLPS PDOX
mouse model, two weeks following orthotopic implant-
ation, mice with tumors were randomized into three
groups to initiate treatment (Fig. 1). We found that in
the control group (G1-untreated) tumors grew more
than five times larger by day 14 compared to day 0
(tumor- volume ratio = 5.61 ± 2.14). In the DOX--
treated group (G2), on day 14, we could not observe a
significant reduction of tumor growth [69] compared to
the control group (tumor-volume ratio = 4.33 ± 2.57, p =
0.927). In contrast, TRAB (G3) treatment showed signifi-
cant tumor-growth inhibition on day 14 (tumor-volume
ratio = 1.60 ± 1.13, p = 0.0032 compared to the control).
In addition, on day 14, TRAB treatment also resulted in
more suppression of tumor growth than DOX treatment
(p = 0.0092) (Fig. 2). It took two weeks for the tumor to ini-
tially grow to 50 mm3. The tumor volumes at the end of
the experiment were: untreated control, 621 ± 297 mm3;
DOX, 507 ± 191 mm3; TRAB, 159 ± 95 mm3 (Fig. 3a).
Figure 3b shows representative images of tumors har-

vested from the biceps femoris at the termination point
on day 15. The control group had the largest tumors
and the TRAB groups had the smallest tumors (Fig. 3b).

Effect of drug treatment on body weight
We measured the mouse body weight pre-treatment (be-
fore) as well as post-treatment (after). We did not find

Fig. 1 Treatment protocol and quantitative drug efficacy. Treatment
protocol. G1: untreated control (n = 7); G2: treated with doxorubicin
(DOX) (3 mg/kg, i.v., weekly, 2 weeks, n = 7); Group 3, treated with
trabectedin (TRAB) (0.15 mg/kg, i.v., weekly, 2 weeks, n = 7). All
treated mice were sacrificed on termination day-15, and tumors
were resected for further histological evaluation

Fig. 2 Line graphs show relative tumor volume (tumor at any time point relative to day 0). *p < 0.05, **p < 0.01, Error bars: ±SD
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any significant differences in the body weight between
any treatment group (Fig. 4).

Effect of drug treatment on tumor histology
We analysed the tumor histology in the untreated (con-
trol) and treated tumors (treated with DOX or TRAB).
Photomicroscopy results showed that both the original
patient tumor and untreated control-group tumor had
enlarged and hyperchromatic nuclei with cytoplasmic
vacuoles that are usual in PLPS [69] (Fig. 5a and b). Fur-
ther, the untreated (control) PDOX tumor exhibits nor-
mal and viable cancer cells in nearly all areas [69]
(Fig. 4b). In contrast to the DOX-treated tumor that did
not show necrotic areas (Fig. 5c), the TRAB-treated tumor
(Fig. 5d) shows extensive necrosis (Fig. 5c).

Discussion
First-line systemic therapy for PLPS with an anthracycline,
such as a DOX-containing regimen, has a low response
rate [72] consistent with our results presented here. We
found that the PLPS PDOX showed resistance to first-line
therapy DOX, which is similar to our previous study [69].
In contrast, the PLPS PDOX was arrested by TRAB. This
suggests that PLPS PDOX model could specifically
recognize both effective and ineffective drugs for each pa-
tient [69].
TRAB is a novel marine-derived alkaloid [7, 73]. It

attaches covalently to the DNA minor groove and inter-
acts with transcription factors [74]. Recently, Pignochino
et al. [75] demonstrated TRAB and Poly [ADP-ribose]
polymerase 1 (PARP1 1) inhibition synergism in sarcomas.
Laroche et al. [76] tested the efficacy of a combination of

a b

Fig. 3 a Tumor volumes at the end of the experiment (day-15). b: Macro tumor images after treatment. All treated mice were sacrificed on day-15,
and tumors were resected for further histological evaluation. Images are representative of tumors harvested after orthotopic growth in the biceps
femoris. Scale bar: 10 mm

Fig. 4 Mouse body weight. Bar graphs show body weight of mice treated with each compound as well as the untreated control. Error
bars: ± SD. n.s.: not significant
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TRAB and rucaparib on STS and found that they were
also synergistic, enhanced apoptosis and blocked the cell
cycle. In addition, these combinations were more effective
than TRAB and rucaparib alone [76]. Further, they ob-
served that the combination of these two drugs resulted in
elevated γH2AX intranuclear accumulation, which is due
to DNA-damage induction [76]. In vivo results further
demonstrated that combining these two drugs signifi-
cantly improved disease-free survival with massive tumor
necrosis [77]. A few studies also showed that TRAB has
anti-tumor and anti-inflammatory activities [77, 78] and can
selectively lower monocytes, tumor-associated macrophages
(TAM), and angiogenesis [77]. It has also been demon-
strated that the therapeutic efficacy of TRAB in osteosar-
coma is increased in combination with a PD-1-blocking
antibody [79].
TRAB has been demonstrated as a therapeutic option in

STS [56, 57, 80–86], recurrent ovarian cancer [87], meta-
static breast cancer [88], solitary fibrous tumor (SFT)-PDXs
[89], desmoplastic small round cell tumor [90], juvenile
myelomonocytic leukaemia and chronic myelomonocytic
leukaemia [91]. Recently, we reported that TRAB is effica-
cious on an osteosarcoma cisplatinum-resistant lung metas-
tasis [67], a BRAF-V600E mutated melanoma [30, 32] and
a gemcitabine (GEM)-resistant pancreatic cancer [25].
Here we showed that TRAB was highly effective against

a PDOX model of PLPS with a PDGFRA activating

mutation [68] in comparison to DOX. The above results
together suggest the improved clinical prospect of PLPS
and the importance of individualized therapy with PDOX
models [70]. Experiments will be performed in the future
to compare TRAB with other first-line therapies of PLPS
such as docetaxel and ifosfamide. Whether TRAB will be
effective against unresetable PLPS is an experimental
question since drug sensitivity is highly specific for each
patient. It will be possible to answer this question in the
future with a PDOX model derived from a core-needle
biopsy.

Conclusions
Our results suggest that the PLPS PDOX model [69] can
precisely distinguish both efficacious and non-efficacious
drugs for each patient. These results are crucial for
PLPS, which is a heterogeneous group, where effective
first-line therapy is difficult to establish if it is not indi-
vidualized [69].
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