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2UC Davis Lung Center, One Shields Avenue, Davis, CA, USA
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4Department of Plant Sciences, University of California, Davis, Davis, CA, USA

Abstract

Analysis of volatile organic compounds (VOCs) can be an effective strategy to inspect the quality 

of horticultural commodities and following their degradation. In this work, we report that VOCs 

emitted by walnuts can be studied using gas chromatography-differential mobility spectrometry 

(GC-DMS), and those GC-DMS data can be analyzed to predict the rancidity of walnuts, i.e., 

classify walnuts into grades of freshness. Walnut kernels were assigned a class n depending on 

their level of freshness as determined by a peroxide assay. VOC samples were analyzed using 

GC-DMS. From these VOC data, a partial least square regression (PLSR) model provided a 

freshness prediction value m, which corresponded to the rancid class n when m = n ± 0.5. The 

PLSR model had an accuracy of 80% to predict walnut grade and demonstrated a minimal root 

mean squared error of 0.42 for the m response variables (representative of walnut grade) with the 

GC-DMS data. We also conducted gas chromatography-mass spectrometry (GC-MS) experiments 

to identify volatiles that emerged or were enhanced with more rancid walnuts. The findings of the 

GC-MS study of walnut VOCs align excellently with the GC-DMS study. Based on our results, 
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we conclude that a GC-DMS device deployed with a pre-trained machine learning model can be a 

very effective device for classifying walnut grades in the industry.
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machine learning; differential mobility spectrometry; mass spectrometry; peroxide value; rancidity

1. Introduction

Walnuts (Juglans regia L.) are among the top nut crop produced globally [1, 2]. Their 

kernels are known to have antioxidant qualities due to high levels of n-3 polyunsaturated 

fatty acids (PUFA). However, these nutritionally beneficial fats are prone to oxidation and 

hydrolysis, generating byproducts that cause off-flavors, rancidity, and a less desirable 

product. Oxidation of walnut phenols darkens the appearance of kernels, impacting 

marketability. Walnut researchers have demonstrated methods that reduce the likelihood 

of oxidation, such as drying walnuts immediately after harvest [3] or optimizing the relative 

humidity and temperature conditions during storage [4].

The walnut industry determines the degree of rancidity through analysis of free fatty acids 

and peroxide values from extracted walnut oil. These methods require sample preparation 

steps such as solvent extraction that are done in a laboratory and delay results. A more rapid 

technique to quantify rancidity at point-of-sampling would benefit the walnut industry by 

allowing growers or distributors to quickly sort walnuts in terms of a grade of product, e.g., a 

premium “freshest” product versus spoiled walnuts.

VOC-based studies have been very successful 0.4in determining the food quality or 

detecting the onset of the rancidification of foods, e.g., by detecting meat spoilage [5], 

diseases in potato tubers [6-8], and fungal disease in mango [9]. Lu et al. [10] adopted 

a gas chromatography-tandem mass spectrometry (GC-MS/MS) approach to study the 

contamination of fruits and vegetables with a wide range of pesticides. In a recent study, 

Grilo et al. conducted GC-MS experiments to evaluate potential oxidation markers of 

walnuts during a 28-week storage period [11]. In a different study, Grilo et al. [12] adopted 

the rancimat method [13] in differentiating oxidative stability of walnut kernels to inspect 

walnut deterioration.

Sophisticated VOC analysis instrumentations like gas chromatography and mass 

spectrometry, laser spectrometry, and differential mobility spectrometry (DMS) are being 

utilized with multivariate data processing tools for the quality check of a wide range of 

food products, including animal and plant products, beverages, and honey [14-17]. Among 

the existing technologies to analyze VOCs, gas chromatography-differential mobility 

spectrometry (GC-DMS) is gaining significant attention for several reasons. In particular, 

the functionality of DMS sensors at ambient temperatures and pressures and continuous 

miniaturization makes the GC-DMS an excellent candidate for lightweight and portable 

VOC analysis sensors. Furthermore, VOC samples can be collected from walnut kernels 

nondestructively and does not require sample preparation procedures.
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In a GC-DMS device, a GC column precedes the DMS to allow the pre-separation of volatile 

compounds before orthogonal separation and detections in DMS. In a DMS, VOCs are 

first ionized, then ions are distinguished by the variation of ion mobilities at a high and 

low electric field. DMS is a variation of ion mobility spectrometry (IMS) with two planner 

electrodes that establish an asymmetric waveform with an electric field of ~30 KV/cm at 

MHz frequency. A detailed comparison of conventional IMS and DMS, along with their pros 

and cons, can be found in the existing literature [18-21]. Because of the field dependence of 

ion mobility, ions tend to be dragged toward one of the two planner electrodes. Such drift 

is compensated by an additional constant voltage (which is known as compensation voltage, 

CV) to allow ions to pass through the electrode gap and reach the detector. Depending on the 

nature of ions, they are detected at different CVs. The details of the working principles of 

the DMS and their miniaturization are well reported in the literature [22-26].

A hyphenated GC and DMS works in series to result in orthogonal separation of VOCs in 

a 3-dimensional plot. Specifically, a GC-DMS device generates 3-dimensional biomarker 

plots with axes representing retention time, compensation voltage, and ion signal intensity. 

The easy sample preparation, simple operation techniques, and less constricted working 

conditions can make GC-DMS a viable technology for devising sensors that can be used to 

analyze walnut VOCs for industry applications.

In this work, we demonstrate volatile compounds emitted by walnuts can be analyzed 

with a GC-DMS device, and machine learning models can predict the grade of walnuts 

from GC-DMS data. The GC-DMS-based walnut VOC study has been verified using gold 

standard GC-MS data and peroxide values of different grades of walnuts. Our work will 

be a possible benchmark for developing a simpler machine learning-assisted walnut VOC 

analysis device that can be applied for industrial uses.

2. Materials and methods

2.1. Walnut samples

For our study, we used commercial walnuts that were kept as kernels for a certain number 

of months. The kernel-storage duration was used as a walnut rancidity index. Our rationale 

for grading the rancidity index based on the storage time is that it is reasonable to assume 

that rancidity should increase over time. All walnuts were stored with shells for five months 

prior to storing them as kernels. All walnuts were stored with shells for five months before 

storing them as kernels at room temperature for four different durations to create four grades 

of walnuts. The resulting four grades of walnuts are immediately stored at a very low 

temperature (−40°C) to minimize additional degradation. The details of all the walnuts of 

different grades are provided in Table 1.

2.2. Headspace (HS) GC-DMS data collection and analysis

We collected the HS gas chromatography-differential mobility spectrometry (GC-DMS) 

data for different grades of walnuts using a Sionex device (version 2.4.3, Sionex Corp., 

Bedford, MA). The GC-DMS device consists of a Carbopack X / Carbopack B sorbent 
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preconcentrator trap connected to a DB-XLB 10 m × 0.25 mm × 1.0 μm GC column 

interfaced to a DMS sensor.

The details of different grades of samples are described in section 2.1. Initially, we placed 

30 grams of walnut samples in a 500 mL borosilicate glass jar and kept them for 30 

mins at room temperature to allow walnut VOCs to equilibrate with the headspace. After 

equilibration of the walnut samples, the jar was connected to the inlet of the GC-DMS 

device using Teflon tubing and Swagelok fittings to establish a leak-free connection. A 

schematic of the experimental setup is shown (Figure 1).

Once the jar was connected to the GC-DMS device, the sample pump was run for a sampling 

time of 120 s to trap the VOCs into the device preconcentrator trap. The preconcentrator 

trap of the GC-DMS device performs the precontraction step by trapping and concentrating 

VOCs from the walnut jar onto sorbent material to facilitate improved limits of detections. 

Then the sample trap temperature (initially at 40 °C) was suddenly raised to 300 °C and kept 

at 300 °C for 180 s. The high temperature of the trap desorbs (releases) the entrapped VOCs, 

which then pass through the GC column for initial separation. The GC temperature was then 

ramped from 40 °C (initial temperature) to 140 °C within 600 s and kept at 140 °C for 670 s.

Once the VOCs travel through the GC column, they enter the DMS cell, and the GC 

eluent is mixed with the DMS carrier gas (filtered air) and passed through a 5 mCi 63Ni 

ionization source. Resulting ions travel through a varying electric field. The filter gap 

(distance between the two parallel electrodes) and the maximum field strength of the DMS 

were 500 μm and 110 Townsends, respectively. The compensation voltage (CV) of the DMS 

was scanned from −30 V to 10 V with a step size of 0.4 V. We performed the CV scan with 

a step duration, scan duration, and step settle time of 10 ms, 1000 ms, and 3 ms, respectively. 

The radiofrequency (RF) voltage (also known as separation voltage) was set to 700 V. The 

sensor temperature was set to 80 °C. After the completion of DMS CV scans for each GC 

run, we receive 3-dimensional GC-DMS plots of the VOCs of walnuts which were then 

processed and analyzed. We performed the process mentioned above five times to collect 

five sets of GC-DMS data for each grade of walnuts. It is worth noting that we did not reuse 

the same walnuts for replicate data collection.

We conducted GC-DMS data preprocessing with a lab-custom AnalyzeIMS (AIMS) 

software [27-31]. Specifically, we performed noise reduction of the data through the 

Savitzky-Golay filter. We performed baseline correction to separate the actual signals 

from interference effects or remove background effects. For baseline correction of 

the experimental data, we adopted asymmetric least squares smoothing algorithm. We 

performed principal component analysis (PCA) and partial least square regression (PLSR) 

analysis to study the feasibility of machine learning models to differentiate the VOCs of 

different grades of walnuts. It is worth noting that PCA creates variables without considering 

the response variable (grades in our study) [32]. On the other hand, partial least square 

regression (PLSR) takes the response variable while constructing the new predictor variables 

[32]. The root mean square error of the predicted values from the PLSR analysis is 

calculated as
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RMSE = 1
n ∑i = 1

n (yi − yi)2

(1)

in which MSE is the mean squared error, yi and y i are the actual and predicted values, 

respectively, and n is the number of samples. We adopted leave-one-out cross validation 

approach to check the robustness of our model. In particular, we split the dataset keeping 

one observation for testing and the rest of the data for training a model. We repeat the 

process for n times (where n is the total number of observations in the data set), and in this 

way, we get a less biased measure of test MSE compared to using a single test set. Since 

PLSR is a regression analysis, we use a tolerance limit to assign a specific grade. More 

specifically, if the predicted value lies within m ± 0.5, we assign the walnut grade to be m.

2.3. HS-SPME GC-MS data collection and analysis

GC-MS data allows the identification of compounds related to rancidity. These specific 

compounds allow a better understanding of the grades defined. For that, VOCs from walnuts 

were collected using modified methods based on literature [11, 33] that defines the main 

volatiles related to walnut oxidation. Specifically, we extracted volatiles from 2g of walnut 

kernels in 20 mL glass vials with a PTFE/silicone septum. After 10 mins of equilibration at 

40 °C, a DVB/CAR/PDMS solid-phase microextraction (SPME) fiber (Supelco, Bellafonte, 

PA, USA, MA) was exposed for 40 min to the headspace of the sample. VOCs were 

analyzed on a 7890B gas chromatograph (GC, Agilent Technologies) coupled to a 5977A 

quadrupole mass spectrometer (MS). Compounds were separated using a DB-5MS capillary 

column (30 m × 250 μm i.d., film thickness 0.25 μm,) and helium at a constant flow rate 

of 1 mL/min. Oven temperature started at 40 °C for 5 min, ramped at 5 °C/min to 120 °C, 

and then ramped at 15 °C/min to the final temperature of 280 °C, with a final holding time 

of 10 min. The injector temperature was 260 °C working in a split-less mode. VOCs were 

then measured with the MS operating in the electron impact mode with a transmission line 

temperature of 300 °C. Chromatograms were collected scanning from m/z 50 to 500.

Blank injections (no fiber) and blank SPMEs (using clean fiber) were injected throughout 

the sample sequence. Each sample of kernels was analyzed in triplicates, i.e., 3 SPME fibers 

per walnut sample. Data was analyzed using Agilent MassHunter Qualitative Analysis. 

The volatile compounds were tentatively identified using the NIST 2020 Mass Spectral 

Library. To extract the features of these samples, deconvolution and alignment of the GC–

MS data files were performed using recursive feature extraction methodology on Profinder 

(Version B.08.00, Agilent Technologies Inc.) and Mass Profiler Professional (MPP, V13.0). 

This process provides a peak table with samples in columns and variables or features in 

rows, while each entry in the table is peak areas or intensities corresponding to a sample 

and variable combination. The peak table was then cleaned by removing features that are 

missing two of the three replicates and appear in blank samples.
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2.4. Peroxide value (PV) measurement of walnut oils

The peroxide value (PV) is a standard chemical index for portraying the oxidative 

deterioration of oils. In the current work, we measured the PVs of walnut oils to correlate the 

PVs and walnut rancidity. Initially, ten walnuts were chopped into smaller pieces so that they 

could fit into the stainless steel test-cylinder-outfit of a bench-top hydraulic lab press (model 

#3925, Carver Inc., Wabash, IN). Oil (14 mL) was extracted and placed into a plastic 15mL 

freezer safe tube. The air in the tube was nitrogen flushed and capped before being stored in 

a −80°C freezer. For peroxide value (PV) analysis, frozen walnut oil was thawed fully, and 

5 ml of oil was analyzed for PV by titrating with sodium thiosulfate following the American 

Oil Chemists’ Society (American Oil Chemists’ Society, 2017) Official Method (Cd 8-53).

3. Results and Discussion

In our work, we measure VOCs emitted by walnut kernels of varying grades of rancidity/

freshness. VOCs were measured by GC-DMS and the resulting data were used to train and 

validate a PLSR model to predict walnut grade. Then, GC-MS analysis was conducted to 

confirm the GC-DMS results and to identify walnut compounds related to rancidity.

3.1. Gas chromatography/ differential mobility spectrometry (GC-DMS) plots of different 
grades of walnuts

In Figure 2, we report GC-DMS plots of the VOCs of the four different grades of walnuts 

studied. It is worth noting that grade 1 and grade 4 walnuts are the freshest and most rancid 

walnuts, respectively, and the other two grades (grade 2 and grade 3) have intermediate 

rancidity. We observe the separation of VOC ions in both the retention time (RT) and 

compensation voltage (CV) directions. With bare eyes, we see that the intensity of several 

ions (represented by peaks in GC-DMS plots) increases as rancidity increases (grade 1 to 

grade 4). To have a quantitative idea we plot the intensity changes of peak P1 and P2 as a 

function of rancidity index (RI) (Figure 3). Clearly, peak intensities for P1 and P2 increase 

as the rancidity increases.

3.2. Machine learning assisted classification of walnuts using GC-DMS data

While it is tempting to use several easily detectable by visual inspection peak intensities 

like P1 and P2 (Figure 2) as the only measure of walnut rancidity, this strategy can 

lead us to miss all the less visible but potentially relevant peaks. As such, we perform 

principal component analysis (PCA), a dimensionality reduction technique, to examine 

whether GC-DMS signals of walnut volatiles can be clustered based on their grades (Figure 

4). From Figure 4a, we observe that grade 1 and grade 2 walnuts tend to separate well 

from each other though they have slight overlaps. However, the PCs of grade 3 and grade 

4 overlap significantly and do not form discernible clusters. One plausible explanation of 

this finding is that grade 3 and grade 4 walnut were similarly rancid, resulting in similar 

GC-DMS profiles. Another reason may be that all the walnuts of a particular grade may not 

have become equally rancid. To check our arguments, we analyzed the VOCs of different 

grades of walnuts through GC-MS experiments and report the peroxide values (PV) of the 

considered grades of walnuts (section 3.3).
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It is worth noting that we expect excellent clustering through PCA analysis if we use walnuts 

with very distinct (grade 1 and grade 4 for our study) rancidity. Indeed, grade 1 (referred 

to as freshest) and grade 4 (referred to as most rancid) separate along PC1 (Figure 4b), 

and this works as a great reference for developing a machine learning model that is able to 

differentiate rancid and fresh walnuts based on their VOCs.

We now perform PLSR analysis of the GC-DMS data of the VOCs of different grades of 

walnuts to correlate the GC-DMS data and the walnut grades (Figure 5). We use nineteen 

sets of data for training the PLSR model and predict the class of another data point with 

the developed model. Specifically, we developed 20 different models with a leave-one-out 

approach, and we observed that our machine learning models could predict the walnut 

grades accurately for 80% of cases. It is noteworthy that no modeled data have been used 

for prediction purposes. We compare the actual class of walnuts and predicted class response 

variable of walnuts for the PLSR approach in Figure 5, and the root mean squared error 

of prediction was 0.42. Based on this tolerance-based predicted class (discussed in the 

methodology section), we observe that our machine learning model can predict the walnut 

grades accurately for 80 % of cases. We want to point out that even though our data set 

appears to be small in this pilot study, the classification accuracy of our machine learning 

model is reasonably good. One important observation of the PLSR analysis is that it aligns 

well with PCA analysis findings (Figure 4). In particular, since grade 3 and grade 4 walnut 

VOCs are similar, we do not observe excellent grade predictions for these classes. As such, 

we recommend that we should always use sufficiently distinct standard rancidity to develop 

machine learning models for walnut classification purposes.

It is noteworthy that the GC-DMS data collected as is did not provide identification 

information for the chemicals detected. Even though a GC-DMS device can identify specific 

chemicals and their concentration based on a pre-built library, that is beyond the scope of 

our current study. Instead, we used GC-MS for identifiable chemical information on walnut 

VOCs, and the findings are reported in the following section, which confirms GC-DMS 

experiment findings.

3.3. Verification of rancidity with Peroxide value measurement and gas chromatography-
mass spectrometry (GC-MS) study

The oxidative rancidity of walnut, related to the evolution of nut quality during storage time, 

is commonly measured by different parameters, such as peroxide value, fatty acid content, 

sensory analysis, or volatile content. These volatile compounds are mainly formed by the 

primary oxidation of fatty acids and their further break down into carbonyl compounds 

(alcohols, aldehydes, and ketones). Those smaller compounds are known to impact the 

flavor of the nuts [33, 34], and can be detected and identified using HS-SPME-GC-MS.

3.3.1. Evolution of peroxide value (PV) with walnut rancidity increment—We 

observed that the PVs of walnut oils increases as the rancidity increases, in general (Figure 

6). While all grades had some PV value overlap with neighbors, there was more overlap 

between grades 3 and 4. On the other hand, grade 1 and grade 4 walnut oil have very 

distinct PVs. Yet, per a one-way ANOVA (analysis of variance), all four grades had 
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significantly different mean peroxide values (p=3.5 × 10−20). Therefore, we can infer that 

the reference walnut grade samples for GC-DMS experiments and subsequent machine 

learning model building can be thoroughly investigated based on their PV values to get 

excellent predictions.

3.3.2. HS-SPME GC-MS study to predict walnut grade—An initial data 

visualization of the GC-MS data showed clear chromatographic differences among the VOC 

profiles of several grades of walnuts (Figure 7 and Figure 8). For example, the peak size of 

hexanal, the chemical with the highest intensity, increases considerably as the walnut grade 

changes from 1 to 4. In a similar way, we can identify 1-pentanol, acetic acid, or 1-octen-3-

ol; all reaching higher intensities at grade 4. There are several other compounds, which show 

no peaks in grade 1 while appear throughout the next grades, which are explained later in 

this section.

After the initial raw data check, we deconvolute and align the samples obtaining a raw 

dataset with 164 features (compounds). The raw data is then filtered, and the number of 

features reduces to 126, corresponding to potential marker compounds of the walnut grade. 

An exploratory PCA model of the filtered data (Figure 9a) shows good differentiation of 

walnut grades. The fresher nuts (grade 1) show major differences from the rest of grades 

(PC1 explained 72.54 %). The second principal component, PC2 (which explains 10.94 % 

variance), explains the differences between grades 2, 3 and 4, being grade 4, with higher 

rancidity, the one more differentiated of the rest. Grades 2 and 3 present more similarities 

between them.

The tolerance-based PLSR analysis (Figure 9b) of the GC-MS data results in a prediction 

accuracy of 66 %, and this accuracy is significantly lower than the GC-DMS based 

prediction. Three primary plausible reasons for such discrepancy can be: a) small sample 

sizes, b) different walnut samples were used for GC-MS and GC-DMS, and c) close 

rancidity among the grades. We summarize a group of 59 significant features in Figure 

8. These major features explained the walnut grades difference presented in the multivariate 

models (PCA and PLSR analysis in Figure 9) and are considered potential markers of the 

walnut grades.

We identified compounds with scores higher than 65% by comparison of our obtained 

mass spectra to the NIST 2020 mass spectral library. A heatmap shows the differences 

in intensities for each individual compound through the grades (Figure 8). We can also 

find compounds that are not detected in some of the cases, for example, alkanes like 2,5,9-

trimethyl-decane and 2,6,10,14-tetramethyl-heptadecane (compounds # 13 and 14) were 

only detected in grade 4 nuts, while compounds # 40 to 46 were only detected in higher 

grades, but not in walnuts of grade 1. Some of these compounds have been reported in the 

literature as compounds associated with the oxidation process of walnuts through time, such 

as 2-hexenal and (E)-2-pentenal [11]. Differently, only a few compounds like hexanoic acid 

and methyl 1-methylcyclopropanyl ketone were with higher intensities only in grade 1, when 

the walnuts were fresher, and the signal reduced afterward. In the case of toluene, it also 

appeared with a high signal in grade 1 to reduce its amount in grade 2; however, it increased 

again to its highest intensity in grade 3. Although most of the compounds presented higher 
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intensities at larger storage times, we find a lot of variability within intensities through 

grades 2, 3, and 4. This confirms the good ability to discriminate samples from grade 1 

compared to the rest of the grades shown in PC1 (Figure 9a). Also, several of the volatiles 

detected (compounds # 11 to 29) showed clear higher intensities when they reached grade 4. 

This matches with the enhanced ability to discriminate grade 4 from grades 2 and 3 when 

observed PC2 (Figure 9a). Some of these compounds can be found in literature as markers 

of oxidation process in walnuts, such as 2-pentyl-furan or (E)-2-octenal [11].

Based on the GC-MS data for different grades of walnuts, we see that the GC-DMS provides 

a comparatively better walnut grade prediction accuracy than GC-MS. Therefore, a machine 

learning model-integrated GC-DMS device can be an excellent fast, lightweight, and field-

deployable option to check the quality of walnuts or similar products.

4. Conclusions

In this work, we conducted GC-DMS experiments for detecting VOCs from different grades 

of walnuts and found that GC-DMS data can be used to develop a machine learning model 

to predict the grades of walnuts in storage with an accuracy of 80%. We observed that 

GC-DMS provides better accuracy in predicting the walnut grades compared to GC-MS 

(66%). The peroxide value evolution of different grades of walnut oils affirms our findings 

from the GC-DMS study. Therefore, a machine learning model-assisted GC-DMS device 

will be an effective tool for industrial purposes to differentiate grades of walnuts or similar 

products based on their storage time or rancidity.
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Figure 1: 
Schematic of a GC-DMS experimental setup to extract the 3-dimensional biomarker plot of 

walnut VOCs.
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Figure 2: 
Gas chromatography/differential mobility spectrometry (GC-DMS) plots of the volatile 

organic compounds emitted from four different grades of walnuts. Grade 1 was the freshest 

walnuts, and Grade 4 was the most rancid walnuts. Two boxes titled P1 and P2 are guides 

for eyes to follow the VOCs concentration changes as walnut grade changes.
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Figure 3: 
Intensity change of (a) peak 1 (P1) as a function of rancidity index and (b) peak 2 (P2) as 

a function of rancidity index. P1 and P2 represent the two ion peaks, as demonstrated in 

Figure 2. Rancidity indexes of 1, 2, 3, and 4 represent the grade 1 (freshest), grade 2, grade 

3, and grade 4 (most rancid) walnuts, respectively.
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Figure 4: 
(a) Scores of the first and second principal components (PC) resulting from the principal 

components analysis of the GC-DMS data of the VOCs of different grades of walnuts. G1, 

G2, G3, and G4 represent the grade 1, grade 2, grade 3, and grade 4 walnuts, respectively. 

PC1 and PC2 explained 73.48 % and 11.31 % of data variance, respectively. (b) Scores of 

the first and second principal components resulting from the principal components analysis 

of the GC-DMS data of the VOCs of rancid and nonrancid walnuts. G1 and G4 grades are 

marked as the freshest and most rancid walnuts. PC1 and PC2 explained 82.61 % and 8.27 

% of data variance, respectively.
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Figure 5: 
Comparison of actual and PLSR model predicted grade of walnuts. Two successive dashed 

lines set the window for a specific grade. The predicted value of 1 ± 0.5, 2 ± 0.5, 3 ± 0.5, 

and 4 ± 0.5 are considered to be grades 1, 2, 3, and 4, respectively.
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Figure 6: 
Variation of Peroxide value as the walnut rancidity changes.
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Figure 7: 
GC-MS chromatogram of different grades of walnuts. The chemical identity of numbered 

chemicals can be found in Figure 8.
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Figure 8: 
List of compounds detected in walnuts using HS-SPME-GC-MS. Compound names are 

listed with their corresponding formula, and score value (in %, based on spectra matching 

NIST library). Heatmap show changes of the individual compounds intensities for the fore 

grades defined by storage times. Intensity values are relative to the maximum intensity 

of the same volatile detected across all samples. Dark blue color represents lower values 

(0) and dark orange represents higher volatile intensities (1). Non-detected compounds are 

represented in grey color. Compounds with mass spectral match scores higher than 90% are 

highlighted with (*).
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Figure 9: 
(a) Scores plot of the first and second principal components resulting from the principal 

components analysis of the GC-MS data of different grades of walnuts. G1, G2, G3, and G4 

represent grade 1, grade 2, grade 3, and grade 4, respectively. (b) Comparison of measured 

and PLSR model predicted grade of walnuts.
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Table 1:

Description about different grades of walnuts. All grades have the same in-shell storage timing and different 

rancidity appears as a result of different as-kernel storage timing.

Walnut grade Storage in
shell
(months)

Storage as
kernels (months)

Total
storage
(months)

Available
walnuts
(grams)

Experimental
Sample size
(grams)

Grade 1 5 6 11 ~180 30

Grade 2 5 9 15 ~180 30

Grade 3 5 12 17 ~180 30

Grade 4 5 15 20 ~180 30
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