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ABSTRACT OF THE DISSERTATION

Nonlinear Inference in Partially Observed Physical Systems and Deep
Neural Networks

by

Paul J. Rozdeba

Doctor of Philosophy in Physics

University of California, San Diego, 2018

Professor Henry D. I. Abarbanel, Chair

The problem of model state and parameter estimation is a significant challenge

in nonlinear systems. Due to practical considerations of experimental design, it is

often the case that physical systems are partially observed, meaning that data is only

available for a subset of the degrees of freedom required to fully model the observed

systems behaviors and, ultimately, predict future observations. Estimation in this

context is highly complicated by the presence of chaos, stochasticity, and measurement

noise in dynamical systems.

One of the aims of this dissertation is to simultaneously analyze state and
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parameter estimation in as a regularized inverse problem, where the introduction of a

model makes it possible to reverse the forward problem of partial, noisy observation;

and as a statistical inference problem using data assimilation to transfer information

from measurements to the model states and parameters. Ultimately these two formu-

lations achieve the same goal. Similar aspects that appear in both are highlighted as

a means for better understanding the structure of the nonlinear inference problem.

An alternative approach to data assimilation that uses model reduction is then

examined as a way to eliminate unresolved nonlinear gating variables from neuron

models. In this formulation, only measured variables enter into the model, and the

resulting errors are themselves modeled by nonlinear stochastic processes with memory.

Finally, variational annealing, a data assimilation method previously applied

to dynamical systems, is introduced as a potentially useful tool for understanding

deep neural network training in machine learning by exploiting similarities between

the two problems.
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Chapter 1

Introduction

1.1 The Inference Problem

As computational capabilities and the availability of large data sets has grown

over the past several decades, the problem of state and parameter inference for con-

structing predictive models of time-evolving systems using data has become ubiquitous

in many fields of science. Many of these methods, falling under the umbrella of

data assimilation [2, 1, 43], have their roots in numerical weather prediction [22, 71];

other examples include applications in fields such as geophysics and climate model-

ing [10, 44, 20], biology [81, 48, 59, 36, 54] and astrophysics [4].

In the context of dynamical systems under which this dissertation falls, the

backdrop to the inference problem is a time-evolving system which is under observation,

and for which data about these observations may be collected. A model of the system

is chosen to reflect whatever knowledge of intuition the experimenter has about the

system’s properties. For example, in neurobiology it is common to conduct experiments

on single neurons where they are stimulated by a known input electrical current, and

the response of the cell is observed by measuring the electric potential across its
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membrane over time. In this case, there is a well-established point neuron model called

Hodgkin-Huxley [40] which models a neuron’s membrane voltage as a set of ordinary

differential equations (ODEs), that includes variables representing the opening and

closing action of “gating variables” that allow for the flow of charged ions into and

out of the cell. This model contains four variables evolving in time, called states, and

18 static, adjustable values called parameters. The goal is to use inference methods

to use recordings of the cell’s membrane potential to estimate parameter values, as

well as the state of all of the variables in the model, to then predict the cell voltage

further in time.

The Hodgkin-Huxley model is an example of a nonlinear system. These

nonlinearities complicate the inference task significantly [2, 1], and various methods

have been developed specifically to deal with these problems [2, 41, 15]. The problem

is essentially that there may be many sets of parameter values and model states which

look nearly equivalent or valid, given the observed data and the model, but many

of which may actually perform quite poorly when the model is eventually used to

make predictions. The situation is even more complex in chaotic systems,, which are

nonlinear systems that display extreme sensitivity to errors in initial conditions, so that

small errors in the estimated states and parameters might lead to drastically worsened

predictions. In fact, it will be shown in Chapter 3 that even the parameterization of

the inference method itself must be carefully chosen to maximize the model’s predictive

capabilities.

It is possible, in fact very likely, that the model chosen for the system will be

wrong, in the sense that it does not capture every single one of its possible properties

or behaviors. Dealing with model error is a significant challenge in data assimilation.

In climate systems, for example, errors arise due to unresolved dynamics resulting

from finite temporal and spatial resolution of observation and modeling, often due to
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practical limitations of measurement capabilities. One approach to solving the model

error problem is presented in Chapter 4, in which the model error itself is given a

model, with the goal of recovering the full range of behaviors observed in the true

system, but not in the model.

Another broad class of inference problems fall under machine learning [31, 53,

67], many of which have gained significant traction in recent years, especially the field

of “deep learning” which has, as the reader may know, become extremely popular in

industrial applications. While this may seem as a bit of a non-sequitur because we

have been discussing inference for dynamical systems, the final chapter presents recent

work which shows that the two problems share an equivalence. This equivalence is

exploited to show that a method of variational data assimilation may prove useful to

the neural network training problem.

This chapter will establish some of the basic concepts present in every data

assimilation problem, and introduce inference both as an inverse problem as well as

a statistical problem, although these two approaches are related. The variational

method for data assimilation used widely through the dissertation, which is a path

integral-based approach, is then defined at the end of the chapter.

1.1.1 States, Measurements, and Models

There are several important pieces to the problem of building and using

predictive models for physical systems which form the central theme of this dissertation.

First, all physical systems have a state, which for our purposes will usually be described

by a scalar quantity x, or a vector x ∈ RD, continuously parametrized by another

quantitiy s or set of quantities s1, s2, . . . (henceforth generically referred to as s for a
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single parameter or set of parameters). For example,

x(t) = (q1(t), q2(t), q3(t), p1(t), p2(t), p3(t))

where qi(t) is a position in the ith spatial coordinate, pi(t) is the corresponding

momentum, and the parameter t is time, could be used to describe the motion of a

ballistic object like a rocket being tracked as it flies through the high atmosphere, or

in low orbit. This kind of state is of particular interest to the rest of this discussion as

we will primarily be examining the problems of measurement and inference in physical

dynamical systems (where all that needs to be said, for now, is that a dynamical

system is a physical system which evolves in time). Eventually, we will see that

this sort of construction is also incredibly powerful in describing classification and

prediction machines in the context of machine learning, drawing a correspondence

between time and layers in neural network models.

Another kind of state, which has multiple parameters s and is called a field,

is useful for describing the configuration of extended physical objects which are also

changing in time:

ϕ (t,x) = (ϕ1(t,x), ϕ2(t,x), . . .) .

The individual field components might represent other properties of the system besides

position or momentum, and in fact position itself, x = (x1, x2, x3), is a parameter for

the field in addition to time. In a geophysical system these field components could be

fluid velocity, temperature, pressure, or any other number of important or relevant

physical quantities. In an example presented later in Chapter 2, a scalar field variable

σ(x) will be used to represent the distribution of electric charge on a three-dimensional

surface.
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Another important concept is that information about a physical state is gathered

from measurements through the act of observation. Measurements contain information

about a system that are “agnostic” on some level: the measuring device interacts with

the measured system some way, ultimately resulting in a number displayed on the

device’s readout. This viewpoint is not particularly useful for making predictions if

the measurements do not reflect the entire state of the system, especially if the system

is governed by nonlinear dynamics.

The third ingredient to the inference problem is thus a model, which is required

in order to interpret measurements as a dynamical variable which interacts with

other quantities in the system. Data assimilation extracts the information from

measurements and translates them into state and parameter values so that, eventually,

one can predict new observations of the system using the model.

1.2 Statistical Data Assimilation

Data assimilation is the process by which data, consisting of a time series of

observations of a physical system, is presented to a model in order to infer the true

values of the system’s state and parameters. Generally speaking, the goal is to use

these estimates to make predictions about the system in question. Data assimilation

is often necessary for many reasons, including:

• The observations are noisy, so the current state of the system is uncertain,

• There are fewer measured variables than model variables,

• The model parameter values are uncertain,

among others.
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Figure 1.1: Sketch of a data assimilation problem. Left: The observations (shown
in blue) comprise a 1-dimensional noisy time series Y =

{
y1, . . . ,yN

}
. These

are assumed to be the x variable of the Lorenz system (so yn = x(tn)), which
is a 3-dimensional ODE with state variables x, y, and z, and 3 parameters σ,
β, and ρ. The parameter values are unknown. Center: Data assimilation feeds
the observations into the model, generating a probability distribution P (X, θ|Y ),
conditioned on the observations, for model states and parameters. Right: The
estimates include a time series X =

{
x1, . . . ,xN

}
(shown in red), and parameters

θ, where xn = (x(tn), y(tn), z(tn)) and θ = (σ, β, ρ).

A sketch of a data assimilation problem is shown in fig. 1.1. In this example,

incoming data is a stream of noisy, 1-dimensional observations which are discrete in

time. The goal is to make accurate predictions of future observations of this same

quantity. The observed system is modeled using a dynamical system, which are ODE

models that describe the time evolution of a point in phase space - the vector space in

which the state of the observed system is defined. The state of the system is described

by the D-dimensional vector x(t), which evolves in time according to the model of

the system:

dx

dt
= f(x, t;θ), x ∈ RD (dynamical system). (1.1)

In this equation, θ is a collection of static parameters for the model. These parameters

control the types of behavior exhibited by the model. In nonlinear systems, these
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behaviors may change rapidly as θ is altered and the system undergoes a bifurcation.

In Chapter 5, it is shown that neural networks in machine learning share a similar

enough structure to dynamical systems that the data assimilation procedure presented

here carries over with only slight modifications.

Note that this is a vector equation for every state xi in the system, so each

variable has its own dynamical model fi These are functions of the entire state vector

x, however, so that in general the variables are coupled and they interact with each

other. This is how information is transferred from measured to unmeasured states in

data assimilation, although there are limitations to this information transfer when the

number of observed variables shrinks.

In order for data assimilation to work, it is assumed that the data Y is actually

a time series of observations of trajectories described by the model. The sketch in

figure 1.1 is a specific example of a case where the data consists of measurements of

the x variable in the Lorenz model [56]:

dx

dt
= σ (y − x) ,

dy

dt
= x (ρ− z)− y, dz

dt
= xy − βz. (1.2)

The model is an assumption in the sense that we don’t actually know, a priori, what

the other variables in the physical system are, because they are not observed.1 Thus,

the model must be chosen based on some knowledge or intuition about the system

in question. For example, if one sits and observes wave heights near a coastline for

some time, then choosing a geophysical fluid model to infer the state of the ocean at

some distance from the coastline is a reasonable assumption to make. On the contrary,

without a model, there is almost no reason to suspect that the other two states y

1In this case, the data was actually generated by sampling a solution to the Lorenz equations
with a known initial state and parameter values. This setup is what will later be defined as a twin
experiment, which is a powerful tool for testing data assimilation procedures.

7



and z even exist! Without the constraint imposed by choosing a model that links x,

y, and z together, it is equally reasonable to believe almost any trajectory that one

could imagine for the unobserved states. One could do equally poorly by choosing

a bad model for the system, however, where enforcing it too strongly might actually

be detrimental to inferring the true states of even the observed variables. From this

perspective, data assimilation may be alternatively thought of as an inverse process

to the act of measurement, where the model is introduced to regularize the inversion.

These competing interests are at the heart of data assimilation; dealing with them in

a quantitative way is part of the scope of this dissertation.

Ultimately, the purpose of selecting a model in the first place is to learn enough

about the observed system to make predictions about its future. In the Lorenz

example, one must know the state of all three variables x, y, and z, as well as all of

the parameter values σ, β, and ρ, in order to provide an initial condition for forward

integration of the system. Guessing any of these values is problematic because the

Lorenz model is chaotic, so that any errors in these guesses will grow rapidly in time.

This is where data assimilation comes into play: the goal is to transfer the

information available in the x observations (the data) into the model to infer the

values of y, z, σ, β, and ρ. Using the data assimilation approach that will be presented

later, the data shown in fig. 1.1 is sufficient to make this inference; the end result is the

3-dimensional trajectory shown in red, in addition to the inferred parameter values.

These two go hand-in-hand, however. With a poor guess for the parameters, the true

trajectory may not make any sense, and vice versa. Ultimately, the measure of success

in the real world is the accuracy of predictions made using these estimates, because

the true state and parameter values are never directly accessible for comparison with

the inferred estimates.

Ultimately data assimilation is a statistical procedure. The measurements
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contain noise, which blur the information about the true states of measured variables;

the number of measurements may be sufficiently low that many estimates may appear

equally valid as model solutions or parameter values; and the model itself may be

uncertain because of noise or, worse, missing pieces of the ODE model or unmodeled

variables.

In more specific terms, data comes in the form of a time series Y , which is a

“path vector” consisting of N L-dimensional discrete observations in time:

Y =
{
y1,y2, . . . ,yN

}
, yn ∈ RL (1.3)

where yn is shorthand for the vector (y1(tn), y2(tn), . . . , yL(tn)). The observations are

separated by a constant interval ∆t, so tn = t1 + (n− 1)∆t. The time series which we

assume to be indirectly observing, called X, is also a path vector but composed of

higher-dimensional vectors at each time if the observations are assumed to be partial:

X =
{
x1,x2, . . . ,xN

}
, xn ∈ RD (D ≥ L). (1.4)

Data assimilation is still useful if D = L: the true state of the system is not exactly

known because observation noise still induces uncertainty in the state values. Note

that this definition of the path variable X will usually be meant to include the model

parameters:

X =
{
x1,x2, . . . ,xN ,θ

}
, xn ∈ RD (D ≥ L), θ ∈ RDθ (1.5)

where Dθ is the number of parameters of the model. Beyond considerations of

notational convenience, inclusion of the model parameters into the path variable is

justified by the viewpoint that static parameters are also variables of the system, but
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which obey the dynamical equations:

dθ

dt
= 0. (1.6)

It should be noted that the more general case for data assimilation is that one

is observing a field φ that is a function of space and time governed by the partial

differential equation (PDE)

∂φµ(t, r)

∂t
= Fµ(φ, t, r) (1.7)

where µ is an index for the field components. F contains functions and spatial deriva-

tives of φ, as well as time t and spatial position r if the equations are inhomogeneous.

From a practical perspective, data assimilation is usually carried out numerically on

a computer rather than analytically. In this case it is natural to discretize the field

equation, for example using a finite difference method:

φµ(t, r) → φµ(t, i∆r1, j∆r2, k∆r3) (1.8)

where i, j, and k are indices that label nodes at discrete spatial locations separated

by ∆r1, ∆r2, and ∆r3. The dynamics are now defined for a set of discrete variables x,

governed by a set of ordinary differential equations (ODEs) in time:

dxi
dt

= fi(x, t;θ), (i = 1, . . . , D). (1.9)

x is the vector of D model states which evolve in time, and θ are the Dθ static param-

eters which should, in principle, be derived from the form of F . These equations also

inherit the explicit time-dependence of F as nonautonomous terms, which physically

10



might be due to an external forcing of the system.

Further discretizing the equations in time, one is left with a set of difference

equations g of the form

g(xn,xn+1, tn, tn+1;θ) = xn+1 − xn −
tn+1∫
tn

dt f(x, t;θ)

≡ xn+1 − F (xn,xn+1, tn, tn+1,θ). (1.10)

In practice, F is an approximation to the time integral using some numerical scheme,

for example with a Runge-Kutta method [68, 77, 51]. This is generally a necessity

because there may not be a closed form for F if f is nonlinear. Additionally, if the

scheme is explicit then F is only a function of quantities at time tn; later it will be

shown that the structure of the variational data assimilation method we use here can

be exploited to use an implicit discretization scheme in a very natural way.

It was already established that a model for the time evolution of the system

is required for inference, but there is another model implicitly present, which is the

measurement function h that connects the observations to the states. In general, this

function is nonlinear and stochastic:

y(tn) = h[x(tn), tn] + g[x(tn), tn] · ξn, h : RD → RL (1.11)

Here, the measurement noise is represented by ξn is a set of L random variables at

every observation time tn. The form for the measurement function given in eq. 1.11 is

quite general; for the duration of this dissertation, however, it will be assumed that h

is linear and independent of time, and that the measurement errors are additive, so
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that

y(tn) = Hx(tn) + ξn (1.12)

where ξni ∼ N(0, σ2
i ) is a Gaussian measurement noise term, just one possible example

of noise. In this formula, H is just an L×D matrix, which is defined for the duration

of this dissertation to be a direct observation.2 A direct observation is one for which

which xn` = yn` ; for example, in a 3-dimensional system in which the variables x1 and

x3 are observed:

yn = h(xn) =

1 0 0

0 0 1



xn1

xn2

xn3

+

ξn1
ξn3

 ≡ Hxn + ξn (1.13)

Estimating the full state of the system and its parameter values, X, is in

this sense an inverse problem of finding the inverse to the measurement function h.

However, inverting h is in general an ill-posed problem; for a direct observation it

essentially amounts to inverting a projection matrix. This is equivalent to the earlier

idea that without a model, anything is believable if it isn’t measured.

This inverse problem, however, can be “regularized” with the introduction of

a model for the system; this idea is further explored in Chapter 2 in the context of

linear systems. Choosing a model provides the extra information needed to carry out

this inversion, where this information comes in the form of coupled dynamics between

all of the desired state variables. Chapter 2 introduces some ideas about how this

inversion is affected by introducing the model. The next section will show how data is

transferred to the model in a stochastic process, leading to a variational form of data

2Including amplitudes A` 6= 1 is more general, but these amplitudes can be absorbed into the
dynamical equations. Thus, they are assumed to be equal to one throughout.
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assimilation that will mostly be used in Chapter 3 and beyond.

1.2.1 Data Assimilation as a Stochastic Process

The approach to data assimilation presented here is founded on the notion that

it is an inherently statistical problem: the values of the model states xn are unknown,

or known only up to a probability distribution, and the same may be said for the

model parameter values, θ. Noise in the observations induces additional uncertainty

in these estimates. Given a data stream Y , it is thus most appropriate to track

the time evolution of distributions of states rather than any individual trajectory.

If the parameters are unknown, they should also be estimated up to a probability

distribution.

Model

Data

x0 x1 x2 · · · xN · · ·

y1 y2 · · · yN

p0,1 p1,2 p2,3 pN−1,N Prediction

Figure 1.2: A sketch of the statistical data assimilation process. The transi-
tion probabilities from time tn to tn+1, pn,n+1, functionally contain the dynam-
ical equations f . At each time the state xn is informed by the observation yn.
At the end of the estimation window, a state is drawn from the distribution
P (xN |xN−1, . . . ,x0,yN , . . . ,y1) and used for forward prediction.

The form of this distribution is the result of modeling data assimilation as

a statistical process like the one shown in fig. 1.2. In this model, one considers the

process of time evolution of the model state x as a stochastic process with transition

probabilities pn,n+1, which is the probability of state xn+1 occurring given past values

of x. The probability of state xn+1 is additionally influenced by an observation at

that time, yn+1. Thus, it is appropriate to formulate data assimilation in terms of a

13



conditional probability distribution:

P (xn|xn−1, . . . ,x1,yn, . . . ,y1) ≡ P (xn|Xn−1, Y n) (1.14)

which is the probability distribution for the value of the current state, xn, conditioned

upon the states at all previous times, and all of the past measurements up to the

current time.

Alternatively, one might work with the joint distribution for the estimate of the

states and parameters over the entire trajectory, conditioned on an entire trajectory

of data; this is of the form

P (X,θ|Y ) = L(Y |X)Π(X,θ) (1.15)

where the likelihood, L, is where information from the data enters into P ; and the

prior, Π, contains the dynamical equations and is where the probability of the full

model state and parameters comes into play. Whereas filtering methods tend to

work sequentially in time with the conditional probability (1.14), variational methods

consider the joint probability (1.15). In nonlinear and chaotic systems, filtering

methods [22, 43, 41] tend to suffer from instabilities that accumulate as the sequential

data assimilation proceeds in time, whereas variational methods are more robust in the

face of these instabilities. The trade-off is that sequential methods are much cheaper

from a computational cost perspective. This section will focus on deriving the joint

distribution from the sequential one, because variational methods will be the tool of

choice for most of the numerical experiments considered in this dissertation.

It is perhaps simpler to start with the distribution for xn conditioned only on
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previous measurements, Y n (the path of measurements up to time n):

P (xn|Y n) =
P (xn, Y n)

P (Y n)

=
P (xn,yn, Y n−1)

P (yn, Y n−1)

=
P (xn,yn|Y n−1)P (Y n−1)

P (yn|Y n−1)P (Y n−1)

=
P (xn,yn|Y n−1)

P (yn|Y n−1)

P (xn|Y n−1)

P (xn|Y n−1)

≡ exp
[
CMI(xn,yn|Y n−1)

]
P (xn|Y n−1). (1.16)

It is useful to stop at this point to examine the distribution in terms of the CMI, or

conditional mutual information, between xn and yn conditioned on all the previous

measurements. This is a measure of how independent xn and yn are in the conditional

sense. If they are in fact statistically independent, then the CMI goes to zero and

P (xn|Y n) = P (xn|Y n−1) trivially.

Continuing with the derivation, the second term in the last line of (1.16) is

rewritten as a marginalized integral over the state at time xn−1:

P (xn|Y n−1) =

∫
dxn−1P (xn|xn−1, Y n−1)P (xn−1|Y n−1)

=

∫
dxn−1P (xn|xn−1)P (xn−1|Y n−1) (1.17)

where the first line was simplified by assuming the Markov property for the model

system. This is the correct assumption to make, because in most of the examples

considered here, the model of the system is an ODE which is local in time. In

Chapter 5, a multi-layer neural network model for machine learning is introduced

where the layers play an equivalent role to time, and layers are similarly connected

sequentially so that this Markov property holds there, too.
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Substituting this identity into the second term in the last line of (1.16) yields

P (xn|Y n) = eCMI(xn,yn|Y n−1)

∫
dxn−1P (xn|xn−1)P (xn−1|Y n−1) (1.18)

The last term in this integral, P (xn−1|yn−1), can be rewritten in terms of this identity

in a recursive process until all time points in the observation window have been

exhausted. This yields the expression

P (xn|Y n) = eCMI(xn,yn|Y n−1)

∫ n−1∏
m=0

dxmeCMI(xm,ym|Ym−1)P (xm+1|xm)P (x0|y0)

≡
∫ n−1∏

m=0

dxme−A(Xn,Y n) (1.19)

where A is the desired action of variational data assimilation. Note that P (x0|y0) =

P (x0) if no measurement is made at t = t0, which is just a prior distribution on the

initial state of the system.

The data assimilation action is thus defined as follows:

A(Xn, Y n) = −
n∑

m=0

CMI(xm,ym|Y m−1)−
n−1∑
m=0

logP (xn+1|xn)− logP (x0). (1.20)

This expression is somewhat simplified if the measurements are made independent

of each other in time, in which case CMI(xm,ym|Y m−1) = − logP (yn|xn). If the

measurements are modeled by a measurement function with additive noise,

yn = h(xn) + ξn ⇒ P (yn|xn) = Pξ(y
n − xn) (1.21)

which the distribution of the measurement noise. If this noise is Gaussian, then the
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final form for the CMI term is

n∑
m=0

L∑
l,k=1

(Rn
m)lk
2

(hl(x
n)− ynl ) (hk(x

n)− ynl ) . (1.22)

A Gaussian approximation is also made to simplify the model error. This is

equivalent to assuming additive noise in the dynamics, in which case:

xn = F (xn−1) + ηn (1.23)

which similarly allows the transition probability terms to be rewritten as

− logP (xn|xn−1) =
n∑

m=0

D∑
i,j=1

(Rn
f )ij

2

(
xn+1
i − Fi(xn)

) (
xn+1
j − Fj(xn

)
. (1.24)

This Gaussian approximation is also used throughout the dissertation as an approxi-

mation to the model error. In the limit that the observed system is deterministic, there

is assumed to be no model error, which is recovered in the Gaussian approximation

in the limit that Rf →∞. If there is model error, for example because the system

contains noise and the dynamics are described by a Langevin equation [91, 92], or if

the model is incomplete so that f does not fully capture the dynamics of the observed

system, then the deterministic limit is not appropriate. However, in the path integral

formulation presented in the next section, in which data assimilation is cast in terms

of expectation values of functions Φ(X) acting on paths of model trajectories and

parameters, it is sufficient that the ratio Rf/Rm � 1 to carry on with state and

parameter estimation. Additionally, it is shown in Chapter 3 that even in the case

where the model error is not Gaussian, it is possible to recover somewhat by carrying

out estimation with carefully chosen values of the coefficient Rf .
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1.2.2 Path Integral Formulation of DA

The action defined in the previous section allows one to compute expectation

values of quantities in the path space using a path integral formulation, based on

considerations in [27, 90]:

E [Φ(X)|Y ] =

∫
DX Φ(X)e−A(X,Y )∫
DX e−A(X,Y )

. (1.25)

These integrals represent the statistics of state and parameter estimates, which is

essentially the goal of data assimilation from a statistical perspective. Note that this

is not a “true” path integral, usually, because the states and measurements are defined

at discrete times. When X an Y are defined on a discrete grid of N time points:

∫
DX =

∫ N∏
n=1

D∏
i=1

dxni

Dθ∏
j=1

dθj (1.26)

so that this integral is actually taken in the D ×N +Dθ dimensional space of state

trajectories and parameters. However, it is still potentially very difficult to evaluate. It

is not particularly difficult to evaluate if the dynamical model, f , is linear; essentially

these integrals can just be done by hand, because the action is quadratic and thus the

integral is simply a Gaussian integral. When f is nonlinear, on the other hand, A

contains arbitrary non-quadratic terms and the integral is no longer Gaussian. In this

case, the expectation values must be estimated somehow.

Several methods exist for doing this approximation, including Monte Carlo

sampling [60, 39, 74]; here we focus on using the Laplace approximation [52, 5],

which turns the approximation into an optimization problem. Under the Laplace

approximation, integrals of a form such as (1.25) are dominated by the integral within

small regions near minima of A.

18



To see why this is true, first consider the integral in the denominator of (1.25)

for the Gaussian action, in which the measurement and model errors are assumed to

be Gaussian and independent of each other in time:

∫
DX e−A(X,Y )

=

∫
DX exp

[
−Rm

2

N∑
n=1

L∑
`=1

(xn` − yn` )2 − Rf

2

N−1∑
n=1

D∑
i=1

(
xn+1
i − Fi(xn,θ)

)2

]
. (1.27)

In the limit that Rf/Rm →∞ (the limit of deterministic dynamics), this integral is

dominated by contributions in small regions near minima of A, which are the peaks of

e−A(X,Y ). In Chapters 2 and 3, it is shown that this limit is detrimental to estimation

even when the model of the observed system is known exactly. However, the values of

Rf/Rm which are found to be optimal for minimizing path estimation error, as well

as prediction error, are of the order of 100 or 1000. The approximation still holds

validity in this regime, because contributions from the measurement error to the above

integral are exponentially suppressed compared to contributions from the model error.

If A contains just a single minimum located at X = X0, then

∫
DX e−A(X,Y ) '

∫
DX e−A(X0,Y )− 1

2
(X−X0)TA′′(X0,Y )(X−X0)+O(X3)

' e−A(X0,Y )

∫
DX e−

1
2

(X−X0)TA′′(X0,Y )(X−X0) (1.28)

where A′′(X0, Y ) is the Hessian of A evaluated at X0.3 This is now in the form of a

Gaussian integral, which may be evaluated explicitly as:

∫
DX e−A(X,Y ) ' e−A(X0,Y )

√
(2π)ND+Dθ

|A′′(X0, Y )|
. (1.29)

3Note that because this expansion is evaluated near a minimum of A, A′ = 0 and thus the
leading-order term is quadratic in (X −X0).
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The numerator of (1.25) is similarly approximated; again, if A(X, Y ) contains just a

single minimum in X, then

∫
DX Φ(X) e−A(X,Y ) '

∫
DX Φ(X0) e−A(X0,Y )− 1

2
(X−X0)TA′′(X0,Y )(X−X0)

= Φ(X0) e−A(X0,Y )

√
(2π)ND+Dθ

|A′′(X0, Y )|
. (1.30)

In the case of nonlinear systems, however, it is likely that A has many local

minima {X0, X1, . . . , XM}. The complex local minimum structure of A in chaotic

systems is explored in detail in [42, 47, 2]. If these minima are well-separated in the

path space, then the approximation that the integral is dominated by the peaks of

e−A(X,Y ) holds, and the above integral becomes

∫
DX Φ(X) e−A(X,Y ) '

M∑
m=1

Φ(Xm) e−A(Xm,Y )

√
(2π)ND+Dθ

|A′′(Xm, Y )|
. (1.31)

Combining the integrals of the numerator and denominator yields:

E [Φ(X)|Y ] '

∑M
m=1 Φ(Xm) e−A(Xm,Y )

√
(2π)ND+Dθ

|A′′(Xm,Y )|∑M
m=1 e

−A(Xm,Y )

√
(2π)ND+Dθ

|A′′(Xm,Y )|

. (1.32)

When A has a single dominant minimum X0, then the higher-action minima

may be neglected in this approximation. Comparing the action for X0 and the next-

highest minimum X1, the ratio e−A(X1,Y )/e−A(X0,Y ) = e−[A(X1,Y )−A(X0,Y )] � 1 when

A(X1, Y )� A(X0, Y ). The approximation in (1.32) thus simplifies to

E [Φ(X)|Y ] '
Φ(X0) e−A(X0,Y )

√
(2π)ND+Dθ

|A′′(X0,Y )|

e−A(X0,Y )

√
(2π)ND+Dθ

|A′′(X0,Y )|

= Φ(X0). (1.33)

Data assimilation in the path integral formulation is thus equivalent to the problem of
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maximum a posteriori estimation, where conditional expectation values E [Φ(X)|Y ]

are computed by finding the mode of A, X0, and evaluating Φ(X0). This is seen to be

true in an example chaotic system in Chapter 3 when a sufficient number of model

variables are observed.

On the contrary, when the number of variables is insufficient to produce a

well-separated minimum, expectation values should be estimated using the full form

of the approximation in (1.32). The evaluation of (1.32) is not difficult from a

theoretical perspective, but may be computationally expensive. The time complexity

of computing the determinant of an n× n matrix, using Gaussian elimination or the

LU decomposition, is O(n3) where n = ND +Dθ [68]. More efficient algorithms exist

for determinant calculation with sparse matrices [18, 17]. The Hessian A′′ is, in fact,

sparse because the off-diagonal derivatives ∂2A/∂xni ∂x
m
j are only nonzero when n = m,

m− 1, or m+ 1; the remaining derivatives involving parameters, such as ∂2A/∂xni ∂θj ,

are few in number in comparison, leaving most of the Hessian elements equal to zero.

In this dissertation, however, these expansions are not calculated explicitly in

underobserved systems, for example in Chapter 3. Rather, the quality of estimates

which are found to minimize A by searching the action surface, starting from a large

number of initializations of the minimization procedure, are selected from a distribution

of estimates found at various Rf/Rm values by assessing their ability to make accurate

predictions. It is found that a careful choice of Rf/Rm can produce estimates which

reduce the prediction error by an order of magnitude or more, albeit for relatively

short times compared to the case where L is sufficiently large in comparison to D.

As a future extension to this project, a more detailed analysis where the full Laplace

approximation is used is warranted to augment these estimates.
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1.3 Twin Experiments

Before moving on to the next chapter, it is worth describing the setting in

which many of the numerical experiments in this dissertation are performed. A

twin experiment is defined as a situation in which state and parameter estimation

is done with synthetic data generated by a known model. In the case of a system

modeled by ODEs, this amounts to integrating the (known) equations forward in

time, and simulating measurements by sampling the solution at discrete time intervals,

adding noise to each sample to simulate measurement error. This is, of course, not

a particularly realistic situation, but it is frequently used to validate the inference

method itself. This is because, if the result of inference is poor estimation or prediction,

with a twin experiment the source of the data is at least exactly known. This allows

one to study how the model f , the particular data trajectory Y , and the way in which

the estimation itself is carried out in a controlled fashion. The effects of changing f ,

Y , or aspects of the method are all explored in one way or another in this dissertation.
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Chapter 2

Inverse Problems and Dynamical

Regularization

In Chapter 1, a statistical view of data assimilation was used to derive a

discrete-time action A, serving as a cost function for state and parameter estimates

given a time series of data and a model for the observed system. A path integral

formulation was described in which the statistics of path estimates are computed

using integrals of path-space functions over the conditional probability distribution

P (X|Y ) ∼ e−A(X,Y ) of state and parameter sets given a trajectory of observed data.

The Laplace approximation is employed to compute these integrals, requiring the

identification of minima of A; these are peaks of the conditional distribution P (X|Y ),

making the Laplace approximation equivalent to maximum a posteriori estimation

methods from a Bayesian perspective.

At a fundamental level, however, data assimilation amounts to the inversion of

the measurement function h: the system’s state is to be computed from measurements.

In partially observed systems, this inversion is an ill-posed problem because the system

is underdetermined, requiring the construction of pseudoinverses to h that make the
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problem fully determined through the introduction of a model, which includes all

of the variables and parameters whose trajectories or static values the experimenter

wishes to infer. This chapter investigates the nature of this pseudoinverse construction

through the lens of regularization of linear inverse problems.

First, some theory is developed on how singular value decompositions (SVDs)

can be used to analyze regularization as a filtering problem. This will be followed by

an example in which noisy voltage measurements are used to estimate a static charge

distribution, establishing some general properties of regularization and choosing a

model, as well as a methodology for evaluating the quality of an estimate that will

become useful in Chapter 3. Finally, the concept of dynamical regularization is

introduced in the context of state estimation with noisy observations of a linear

oscillator. A spectral analysis of the pseudoinverse will provide insight into how the

introduction of a model affects state estimation. These results are summarized, ready

to be finally linked to the nonlinear problem examined in Chapter 3.

2.1 Measurement and Inference: Inverse Problems

The acts of observing a system, and inferring the state of the system from

observations, are problems which are inverse to one another. Mathematically speaking,

going back and forth between observations and the true state amounts to evaluating a

measurement function and its inverse. The act of observation is commonly referred to

as a forward problem, whereas the inverse problem is estimating the true state from

observations. In a sense the forward problem is easy: mathematically it corresponds

to applying a measurement function to the state of the system, which is just “plug-
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and-chug” once x is known:

y = h(x). (2.1)

y is the data collected from measurements of the system in question, whereas x is

the state of a model of the system. The function h is also a model, which models the

process of measuring x. It is usually referred to as the measurement function for the

system. The ultimate goal is to invert h to infer x from y; this is the inverse problem.

h is a function, or functional, of x which may be nonlinear and/or stochastic,

introducing some difficulties into the problem of inferring the full state of partially

observed systems that are elaborated upon throughout the dissertation. The true

state of the system is represented by the variable x, while y represents an observation

of x. These quantities are in bold to denote that they are in general vector quantities

or functions, where x ∈ RD, y ∈ RL, and h : RD → RL. Note that L is not necessarily

equal to D, corresponding to a partial observation of the system. The primary focus

of this dissertation will be on problems in which L < D.

The essential difficulty of the inverse problem is that the only accessible

information about the true state is that which is passed through h. The problem may

be underdetermined if h is rank-deficient, so that there is a large degree of degeneracy

in the choice of the unobserved states; or it may be overdetermined in which case

there is no solution to the inverse problem. Additionally, in the class of problems

considered here where h acts to smooth features of x, inverting h amplifies noise in

the measurements or errors in the measurement model, so that estimates of x will

contain artificial high-frequency components not present in the true system. Our

task is thus to modify the inverse problem by regularizing it, introducing a model to

provide the additional information from the data which is not immediately apparent
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from the observations themselves. The resulting estimates of x should be accurate

and stable to perturbations in y, and ultimately be useful for making high-quality

predictions of new observations. In the case of dynamical systems, this goal is cast as

finding estimates of the model state and parameters which predict accurately for as

far in the future, beyond the end of the estimation window, as possible.

2.2 Regularization of Inverse Problems

Linear inverse problems [38] are those in which the corresponding forward

problem, in this case the act of observation, is represented by a linear function(al)

h(x). When x and y are functions of continuous variables, the linear forward problem

is represented by an integral of the form:

y(s) =

∫
ds′ K(s, s′) x(s′) + noise = h(x) + noise (2.2)

where the integration kernel K defines the measurement model. s and s′ could

themselves be vectors, for example if they represent spatial position. One example of

a linear forward problem is the measurement of electric potential V at a point r in

the region surrounding an electric charge distribution ρ:

V (r) =
1

4π

∫
source

d3r′
ρ(r′)

|r − r′|
. (2.3)

This model is valid when the distribution is sufficiently isolated from other charges, as

well as any conductors or polarizable materials. The inverse problem is to estimate

ρ from observations of V . This example will be explored in detail in a subsequent

section.

While the problem of designing and implementing a measurement device,
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as well as actually making accurate and precise observations, may be a significant

experimental challenge, there is no theoretical complication in the sense that there

is no ambiguity once the measurement function is chosen and implemented. The

theoretical challenges arise in real system where either the observations have errors,

so g = h[f ] + η where η is a discrepancy defined on the same range as g; or if K is

rank-deficient, in which case there is not enough information present a priori to have

a unique solution to the inverse problem.

It is often natural to discretize forward and inverse problems, so that rather

than being continuous functions of the parameter(s) s, x and y exist on a grid and

the integral in (2.2) turns into a matrix acting on X; here, the “path vector” notation

established in Chapter 1 is used to denote the discretization of the vector x over

the coordinate grid. This is common practice, because continuous problems must

be discretized in some way to be solved on a computer. For physical or engineering

problems, this discretization is commonly done using finite differencing or a finite

element decomposition [68, 55].

In path space, the measurement function becomes a matrix acting on the true

state of the system:

Y = HX + ξ (2.4)

where ξ is the measurement noise for each element of Y ∈ RM in path space, and the

measurement function H ∈ RM × RN is, again, a matrix in path space. Here, M is

the number of measurements and N is the number of true states of the system.

The inference problem is to find a solution to HX = Y , but when M < N the

problem is underdetermined and there is not necessarily a unique solution. The inverse

problem is thus ill-posed for a partially observed system; the next step is to introduce

27



a model to cure this ill-posedness, described in the next section as a regularization of

the inversion.

2.2.1 Regularization as a Smoother

Consider the linear least-squares problem:

x(est) = argmin
x

(Ax− y)2

(x ∈ RN , y ∈ RM , A ∈ RM × RN) (2.5)

Here, y are the observed data points, and Ax = y is a model of the observed

system where x(est) is a noise-free estimate of the “true” signal. This is the essence of

many problems in science and engineering, for example signal reconstruction or image

processing from noisy data [70, 30]. Similar challenges arise here [38] to the formulation

of the inverse problem in terms of a matrix inversion when the minimization problem

is ill-posed because A is rank-deficient or ill-conditioned, or there is noise in the data.

This is not surprising, because these two formulations are actually equivalent in that

the solutions are the same.

A commonly used method for dealing with this ill-posedness is Tikhonov

regularization [79, 38], in which an extra term is introduced into the problem statement

in eq. (2.5):

x[γ] = argmin
x

{
(Ax− y)2 + γx2

}
. (2.6)

This is usually referred to as the regularized linear least-squares problem, where x[γ]

is an estimate of the true signal that is now dependent on the hyperparameter γ.

Introducing this regulating term has several effects: first, it acts as a low-pass filter
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by damping high-frequency components in the estimated signal, thus acting as a

smoother on the estimated solutions. Second, it tempers the ill-conditioning of A by

balancing its eigenvalue spectrum. Finally, regularization makes the inversion of A

well-defined if it is rank-deficient, which means there is a unique solution for x[γ]. A

more general form of Tikhonov regularization replaces γx2 with L(x− x0), where L

is a linear operator (in the discretized case, it is a matrix). This more general form of

regularization will be used later in analyzing a linear dynamical system, but for the

moment the simpler form in (2.6) is kept to examine the filtering properties of the

regularization term.

It is instructive [38] to write solutions to the regularized problem in terms

of the SVD of A, which leads to an expression for solutions x[γ] that highlight the

smoothing properties of regularization. To begin, the least-squares problem is recast

as a matrix problem. Rewriting (2.6) as a matrix equation,

x[γ] = argmin
x

∥∥∥∥∥∥∥
 A

√
γ

x−
y

0


∥∥∥∥∥∥∥

2

(2.7)

The equivalent linear algebra problem is

 A

√
γ

x =

y
0

 ⇒ x[γ] =
(
ATA + γI

)−1
ATy. (2.8)

What remains is to choose a value for γ. If it is too small, the estimate trusts

the data too much and will contain too much error due to noise. If it is too large,

then the solution is oversmoothed and important features in the data may have been
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eliminated. Rewriting A in terms of its SVD will highlight how this occurs:

A = UΣVT =
M∑
i=1

uiσiv
T
i (2.9)

where the columns of U ∈ RM × RM are the left-singular vectors of A; the columns

of V ∈ RN × RN are the right-singular vectors of A; and Σ ∈ RM × RN is a matrix

whose diagonal entries, σi, are the square roots of the non-zero eigenvalues of ATA

(and, consequently, AAT). If the singular values are ordered by value, and labeled

as σ1 ≥ σ2 ≥ . . . σM , then the singular vectors associated with the largest singular

values are associated with low-frequency components of the decomposition. Conversely,

the small-σ singular vectors are associated with high-frequency components of the

decomposition [38].

Substituting the SVD of A into the least-squares solution (2.8):

x[γ] =
(
VΣ2VT + γVVT

)−1
VΣTUTy

= V
(
Σ2 + γI

)−1
ΣTUTy

=
M∑
i=1

viϕ
[γ]
i u

T
i

σi
y, ϕ

[γ]
i ≡

1

1 + γ/σ2
i

(2.10)

where the ϕ
[γ]
i are referred to as Tikhonov filtering factors. Thus, singular vectors

of the SVD for which γ � σ become small with regularization, so that the series is

effectively truncated at whichever i this threshold is crossed. Keeping γ small (i.e.

γ � σ1) means that the estimate includes contributions from all the high-frequency

components of the SVD, while increasing γ filters these high-frequency contributions

first and tends to smooth the estimates.

This shows that Tikhonov regularization acts like a smoother on estimated

solutions to the linear least-squares inverse problem. It is important to note that
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the “model” in this case is x = 0, which is apparent from taking the limit γ → ∞

so that the term γx2 dominates over the original measurement model, Ax = y. In

the discussions that follow, models which are more motivated by the properties of

the observed system are introduced as regularization terms, while maintaining the

linearity of the regularization so that a spectral analysis of the pseudoinverse to the

measurement function may be performed.

2.2.2 Linear Inference in a Static System: Electric Charge

Distributions and Voltage Measurements

In this section, an example in which measurements of the electric potential

around an object with known size and geometry are used to estimate the distribution

of electric charge on its surface to illustrate some of the features of regularization in

a linear inverse problem. It is assumed that these distributions are static in time,

which avoids the additional complexities associated with modeling and estimating a

dynamical system, but maintains most of the essential features of the regularization

problem. It will be shown that incorporating some very simple, physically-reasonable

assumptions about the system into a regularization term makes this estimation feasible,

improving the quality of charge distribution estimates and, by extension, predictions

of new voltage measurements. Importantly, it is also shown that there is an optimal

regularization strength for maximizing estimation and prediction accuracy.

This problem is examined when the charge distribution is “glued” to two

different surfaces: on a rectangular plane embedded in three dimensions, and on the

surface of a sphere. Additionally, two kinds of regularization are considered, stemming

from two different models of the distribution: one in which the distribution is assumed

to not vary much from the average density, in which case them model is σ = σ̄; and

the other is that the distribution is smooth, enforced by ∇2σ = 0. In each case a

31



collection of M noisy measurements of the electric potential (or voltage) V constitute

the observations from which σ is to be estimated. While the charged objects under

observation are “real” physical objects and thus have charge distributions on their

surfaces modeled as continuous functions of the spatial coordinates, the estimation

problem is to be carried out on a computer and thus these distributions are naturally

discretized in space. This means that σ is estimated in patches on the surface, returning

a discrete sampling of σ rather than a continuous function as the result.

Without loss of generality, the plane is taken to line in the z = 0 plane with

side lengths of Lx = 1 and Ly = 1, oriented to be centered at x = 0, y = 0 and with its

edges aligned with the x and y axes. The spatial discretization of σ is in a rectangular

grid oriented in the x and y directions, with grid spacings δx and δy. As a matter

of terminology, the grid resolution in each direction is defined as Lx/δx and Ly/δy,

meaning that small grid spacings correspond to high resolutions and vice versa. On

the sphere, which sits centered at the origin and has a radius R = 1, the grid is also

“rectangular” but in the θ (polar) and φ (azimuthal) angular coordinates. This means

that the grid spacings, δθ and δφ, are defined on the angular coordinates and are

constant functions of θ and φ. The effect of this is that the grid is more concentrated

near the poles of the sphere than near the equator.

The actual charge densities themselves that will be “measured” in this example

are displayed in Figure 2.1; while in reality these distributions would be created by

some natural physical process, for the purposes of these numerical experiments they

are defined by the following functions:

Plane: σ(x, y) = σ0 cos
[
(0.83)2πx+

π

0.3

]
sin
[
(0.7)2πy − π

0.15

]
,

Sphere: σ(θ, φ) = σ0 Y21(θ, φ). (2.11)
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Figure 2.1: The true charge densities for the plane (left panel) and sphere (right
panel) in the inverse problem example of inverting voltage measurements for charge
density, V → σ. These surfaces are discretized with square grids in x, y and θ, φ,
respectively.

Y21 = 1√
2

(
Y −1

2 − Y 1
2

)
is a real-valued linear combination of spherical harmonics with

l = 2. For the sake of simplicity, σ0 is set to 1 (with units of charge/unit area).

These charge distributions naturally have an electric potential associated with

the electric field surrounding them. Measurements of the electric potential V are

modeled by Couloumb’s law, which says that given a static, confined charge distribution

ρ, the electric potential in the region surrounding the distribution is given by

V (r) =
1

4π

∫
source

d3x′
ρ(r′)

|r − r′|
. (2.12)

In the case of a charge distribution defined on a surface in three-dimensional space,

the integral in (2.12) simply changes into

V (r) =
1

4π

∫
surface

d2x′
σ(r′)

|r − r′|
(2.13)

where σ has dimensions of charge/unit area. Here, r is the location of the probe where

V is measured (which corresponds to s in (2.2)), and r′ is the location of the source
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charge density σ(r′). This is in the exact form of the generic linear measurement

modeled by eq. (2.2), with a source σ taking the place of f (the true state of the

system); the observation V in place of g; and the Couloumb kernel 1/4π|r− r′| acting

as the measurement kernel K. This gives rise to the following translation table to

relate to the more general quantities defined previously:

f(s′)→ σ(r′), g(s)→ V (r), K(s, s′)→ 1

4π|r − r′|
. (2.14)

While in this example, the true state of the system (σ) is actually known

exactly, in reality one must consider the situation where only noisy measurements

of V are accessible in an experiment. Despite the fact that one has access to this

normally “hidden” information in a twin experiment, ultimately one should base their

judgment on the quality of a state estimate by the predictions they produce. In this

case, the predictions are values of V at previously unmeasured locations r. This sets

up the twin experiment paradigm for validation of this method: the data are generated

using a known functional of σ, and the quality of estimates is judged by the errors of

estimation of σ, and the prediction error of novel V values.

As was stated previously, the estimation problem is to be carried out numerically

and thus should be discretized in space. We have already discussed the strategy of

discretizing σ on a grid covering either surface, but the M voltage measurements are

made at a collection of discrete points in space and thus the measurement function

requires no further discretization. This translates into the integral over the source

coordinates r′ being transformed into a sum over the discrete spatial grid, whereas

the voltage is evaluated at arbitrary points in space off of these grids, r. Furthermore,

the measurement function, represented by the Coulomb integral, is linear and thus

represented by a matrix operator in discrete coordinates. If we consider σj = σ(r′j)
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to be the charge density at point r′j, and Vi = V (ri) the measured voltage at point

ri, then the original integral representation of the forward problem (measurement)

transforms into:

V (ri) =
1

4π

∫
source

d2x′
σ(r′)

|ri − r′|
→ Vi =

∑
j

Kijσj. (2.15)

In matrix notation, the above equation will be written as V = Kσ.

This linear operator K is a matrix equal to the discretization of the Coulomb

integral operator. The choice of discretization for K is not unique; for example, if

the spatial discretization is to occur by quadrature with a grid defined on the spatial

coordinates of the source distribution, then the choice of this grid is by no means

trivial. In this example we simply choose to use rectangular grids, which the benefit

of not obscuring other important details of the inverse problem behind the complexity

of the grid construction.

Plane: V (ri) =
δx δy

16π

∑
j

[
σ(x′j, y

′
j)

D(ri, x′j, y
′
j)

+
σ(x′j, y

′
j + δy)

D(ri, x′j, y
′
j + δy)

+
σ(x′j + δx, y′j)

D(ri, x′j + δx, y′j)
+

σ(x′j + δx, y′j + δy)

D(ri, x′j + δx, y′j + δy)

]
,

≡
∑
j

Kijσj

D(ri, x
′
j, y
′
J) ≡

√
(xi − x′j)2 + (yi − y′j)2 + z2

i . (2.16)
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For the sphere:

Sphere: V (ri) = R2 δθ δφ

16π

∑
j

[
sin(θ′j) σ(θ′j, φ

′
j)

D(ri, θ′j, φ
′
j)

+
sin(θ′j) σ(θ′j, φ

′
j + δφ)

D(ri, θ′j, φ
′
j + δφ)

+
sin(θ′j + δθ) σ(θ′j + δθ, φ′j)

D(ri, θ′j + δθ, φ′j)
+

sin(θ′j + δθ) σ(θ′j + δθ, φ′j + δφ)

D(ri, θ′j + δθ, φ′j + δφ)

]
,

≡
∑
j

Kijσj

D(ri, θ
′
j, φ
′
j) ≡

√
(xi −R sin θ′j cosφ′j)

2 + (yi −R sin θ′j sinφ′j)
2 + (zi −R cosφ′j)

2.

(2.17)

The sum is performed over all of the patches on the plane with corners at (x′j, y
′
j); or

the patches on the sphere cornered at (θ′j, φ
′
j). Now that the forward problem is finally

in the form Vi =
∑

jKijσj, which is linear and discretized, the goal is to somehow

compute the solution to the inverse problem σi =
∑

jK
−1
ij Vj . As discussed previously,

there are potentially severe problems with this inversion that make the calculation

untenable or just impossible in the first place.

Regularizing the Inverse Problem V → σ

The problem of estimating the charge distribution σ from V is ill-posed.

One way to show this is by brute force (see top row of fig. 2.3), attempting the

inversion through linear least-squares without any regularization. In this context

linear least-squares is:

σest = argmin
σ

(Kσ − V )2 ⇐⇒ σest =
(
K>K

)−1
K>V . (2.18)

The discretized integration operator K does not, in general, have a well-defined or

unique inverse. If the problem is over- or under-determined, then K is not an invertible
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matrix. Because K>K has the same rank as K,
(
K>K

)−1
is also not well-defined. In

addition to this, K approximates an integral and thus tends to smooth the features of

σ, so inversion of K tends to amplify high-frequency components of the estimated

solution and thus may be extremely sensitive to perturbations in the data V . To

attempt to solve these problems, inversion of K is to be made well-defined through

regularization. This is done by adding additional terms to the cost function (2.18),

but the question remains of what appropriate regularization terms are.

Previously, in §2.2, it was shown that introducing Tikhonov [38] regularization

into an ill-posed inverse problem had the effect of filtering spurious high-frequency

components in the estimated solution that were the result of a rank-deficient measure-

ment function. This was done by analytically inserting the Tikhonov regularization

term, γx2, into the least squares cost function, and then rewriting the solution in terms

of the singular value decomposition (SVD) of the measurement function. Here we

examine the use Tikhonov regularization as a model of a nearly-uniform distribution;

additionally, a regularization term involving the Laplacian of the charge distribution

is used as a model of smoothness. It will be shown that both of these types of regular-

ization lead to fairly accurate estimates of σ with the right choice of regularization

strength γ.

When it is assumed that the distribution does not vary much from its average

value σ̄:

σ[γ] = argmin
σ

[
(Kσ − V )2 + γ (σ − σ̄)2] (2.19)

where σ̄ is the average charge density on the surface. The average charge density

is actually measurable in an experiment from the monopole moment of V , which is

known from measuring V at a sufficiently far distance from the distribution, thus
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further justifying the use of such a model. This is just Tikhonov regularization in its

more general form, L(x− x0) with L(x− x0) = γ (x− x0)T I (x− x0), and x0 = σ̄.

The second method, in which the Laplacian of σ, ∇2σ, is included to enforce

local smoothness of the distribution, will be referred to as Laplacian regularization.

The regularized cost function thus takes the form:

σ[γ] = argmin
σ

[
(Kσ − V )2 + γ

(
∇2σ

)2
]

(2.20)

where the Laplacian operator,

∇2 =
∂2

∂x2
+

∂2

∂y2
, (2.21)

is understood to be discretized in space. Here we choose to use a second-order finite

difference discretization scheme on the same grid over which σ is estimated:

∇2σ(x, y) ' σ(x+ δx, y) + σ(x− δx, y)− 2σ(x, y)

(δx)2

+
σ(x, y + δy) + σ(x, y − δy)− 2σ(x, y)

(δy)2 . (2.22)

Rather than discretizing the Laplacian over the surface of the sphere, only Tikhonov

regularization will be employed in that case. This will highlight some qualitative

features of the regularized inversion process, whereas a more quantitative analy-

sis involving estimation and prediction error will be done using the plane charge

distribution.

Figure 2.2 shows the evolution of charge distribution estimates as the Tikhonov

regularization strength increases when the number of voltage measurements M = 100

for the spherical distribution. These measurements are randomly distributed around

the sphere, within an outer shell ranging from r = 1.2 to r = 2. When γ is small

38



True Distribution Error(Regularized) Estimate
In

cr
ea

si
n

g
 R

eg
u

la
ri

za
ti

on

Figure 2.2: Measurements of the electric potential in the region surrounding
an electrically charged sphere are used to reconstruct the true distribution of
charge density. Left column: the true charge distribution. Center column: the
reconstructed distribution, estimated with a regularized inverse of the Coulomb
integral. Right column: squared estimation error (see text for definition). Going
from top to bottom, the coefficient on the regularization term increases, showing
γ = 5 × 10−4, 10−1, 1.5, and 8 × 102. Introducing an “optimal” amount of
regularization leads to an estimate with locally minimal and somewhat evenly-
distributed error.

the estimation errors are quite large, especially at the poles where the variations in σ

are the most rapid (apparently the increased resolution at the poles was not enough

to compensate for this). Conversely, when γ is large the regularization dominates

and, quite expectedly, the estimate of σ is fairly uniform and close to the average
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density of 0. It is in the intermediate regime that the original distribution is maximally

recovered.

For this model the choice of some intermediate γ value was logical. With no

model the problem is already known to be ill-posed. When γ is large, the distribution

estimates tend towards σ = 0, which is not a particularly useful result if one at all

believes that there is a non-uniform distribution on the surface. Essentially, the model

here is “wrong”, but if one is careful then the model can be enforced on the charge

estimates with just the right strength between undersmoothing at oversmoothing.

Later in the dissertation, this is shown to be an important consideration to take into

effect when the model is a chaotic dynamical system.

Estimation and Prediction for the Planar Distribution

A similar calculation was carried out to estimate the true planar distribution

from voltage measurements, but this time with Tikhonov as well as Laplacian regu-

larization. The estimation error is calculated as an average over the surface of the

squared discrepancies (σest − σtrue). The prediction error is similarly computed by

comparing predictions of electric voltage against a validation data set Vval, similarly

generated to the twin experiment data but which was not used for estimating the

distribution.

Fig. 2.3 shows the σ estimation and Vval prediction errors when using Tikhonov

and Laplacian regularization. The plane is divided into a Nx ×Ny = 32× 32 evenly

spaced grid so that σ is effectively a 1024-dimensional vector. To generate data for

estimating the charge distribution, V was randomly sampled at M points in the region

surrounding the plane, and integrating Couloumb’s law over a fine grid in comparison

to the estimation grid. A small amount of noise was additionally added to each

measurement to simulate measurement error in a real measurement. Estimates were
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Figure 2.3: Estimation (top row) and prediction (bottom row) errors for the
planar charge distribution, σ, and validation set voltages, Vval, respectively. The
left column shows errors when using Tikhonov regularization, where g(σ) = σ,
and the right column when using Laplacian regularization, with g(σ) = ∇2σ (the
Laplacian is discretized on the xy grid using finite differences). Note that both
methods achieve similar minimum levels of error. However, Laplacian regularization
is somewhat less sensitive to its value when considering prediction error.

compared to the true distribution σ at each grid point, and the squared error was

averaged over the plane. Predictions are done on a validation set of voltage values

“measured” at 1000 new locations (not part of the set from which σ was estimated).

It is apparent, yet again, from the estimation and prediction errors that one

must carefully choose the regularization strength to avoid problems with under- or

oversmoothing the solution. In this case, the voltage prediction errors were found to

be at least an order of magnitude smaller for intermediate γ values compared to the

regime of strong regularization. There did not seem to be any advantage to choosing

Laplacian regularization, however.
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It is not necessary to go into much more detail this. What is important is that

regularization has been established as a smoother through numerical experiments, and

has a significant effect on the quality of estimation and prediction. Furthermore, it is

seen that carefully selecting the regularization strength is necessary to produce an

optimal prediction. Here it is basically known that the model is wrong; in real settings,

however, it is not necessarily known how wrong the model is, or if it is wrong at all.

In a chaotic system in Chapter 3, this will be shown to warrant a careful numerical

analysis of the properties of the estimation and prediction problem, and that some

very general features of this problem carry over to the case where the regularization

term is a nonlinear function.

2.3 Data Assimilation in a Linear Dynamical Sys-

tem as a Regularized Inverse Problem

It will now be shown that the methods of regularization introduced in the

previous example are equivalent to state estimation in a linear dynamical system

using variational data assimilation. In the path integral formulation of variational

data assimilation, statistics of state and parameter estimates are computed using

high-dimensional integrals of the conditional distribution P (X|Y ) ∝ e−A(X,Y ), which

is a function of the action defined in Chapter 1. Under the Laplace approximation,

these integrals are computed using the peaks of this distribution, which correspond

to minima of the action. Model state and parameter estimation thus takes the form

of a regularized linear inversion like the one presented above, with the difference

being that spatial smoothness and uniformity were (perhaps reasonably) assumed as

properties of the true distribution under observation, leading to regularization terms

which minimized the L2-norm of σ and its Laplacian, ∇2σ.
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We now consider problems in which the corresponding assumption is that the

underlying process generating the observed time-series data is a dynamical system.

The corresponding term replacing ∇2σ, for example, will be one which minimizes

the error in the forward mapping F (xn,xn+1) = xn+1, which regularizes the inverse

problem by introducing information into the system in the form of constraints in

space and time. This form of regularization is henceforth referred to as dynamical

regularization.

In addition, the dynamical model is chosen to be the right model for the system,

in that it is the same model that was used to generate the data. Despite this fact, one

must also carefully choose γ so as to not oversmooth the estimates, leading to worsened

predictions. This carries over to the analysis of a nonlinear system in Chapter 3.

2.3.1 State Estimation in Linear Dynamical Systems

The observed system in this example is a linear oscillator with mass m and

oscillation frequency ω. The data consists of noisy observations of the oscillator’s

position over time. The system is modeled as a simple harmonic oscillator (SHO),

which is governed by the second-order ODE:

m
d2q

dt2
= −mω2q ≡ −kq. (2.23)

In this equation, k is the familiar spring constant if the oscillator is actually an object

with mass m connected to a totally stationary object by a spring. This system can

easily be rewritten as two first-order ODEs by defining a new variable v = q̇ (which is

43



just the velocity of the oscillator), in which case the dynamical equations become

dq

dt
= v,

dv

dt
= −ω2q

or
dx

dt
=

d

dt

q
v

 =

 0 1

−ω2 0


q
v

 ≡ Kx. (2.24)

When k > 0, K has imaginary eigenvalues and the system is thus a linear oscillator

with constant energy E = 1
2
mv2 + 1

2
mω2q2.

If the position is observed at regular intervals ∆t, with measurement noise

ξn ∼ N(0, σ2) in each observation, then Y is a path vector given by:

Y =
{
q1 + ξ1, q2 + ξ2, . . . , qN + ξN

}
. (2.25)

The measurement function, H, is a matrix which projects x to the position coordinate

at each observation time:

H =



1 0 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 0 1 · · ·
...

. . .


⇒ Y = HX + Ξ. (2.26)

where Ξ is the path variable for the measurement noise. By inspection it is clear that

H is highly singular: every other column is filled with zeros, meaning that the rank of

H is equal to just half the dimension of the space of the full trajectory, which is 2N .

The inverse problem X = H−1Y thus has no unique solution, and any pseudoinverse

for H which we construct will almost certainly be highly sensitive to perturbations in

the data. This last fact is problematic for the realistic situation in which the data is

noisy.
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The ill-posedness of this inverse problem will be solved through regulariza-

tion, similarly to the example presented above. The effect of regularization will be

examined analytically in terms of the eigenvalue decomposition of the regularized

inverse measurement operator, as well as the projections of the regularized estimates

of X and the data Y onto its eigenvectors. These results will be compared with a

numerical analysis which uses a prediction-based metric for assessing the optimality

of regularization that is analogous, again, to what was used previously in the static

charge problem.

The Regularized Problem

Similarly to the problem of static charge estimation from voltage measurements,

physical knowledge or intuition about the system under observation will be used to

construct regularization terms for the cost function, now equal to the discrete-time

action, A, defined in Chapter 1. The difference between this example and the previous

static charge example is that a dynamical model for the system based on the forces

acting on the oscillator (or, equivalently, the potential function for the system) is

already being considered as the model of the system, meaning that it is unnecessary

to make assumptions about the structure or composition of the system beyond the

dynamical model, given in (2.24).

Yet again, however, one needs to consider the fact that the inverse problem

is to be done numerically on a computer. The ODE model for the oscillator is

already “discretized” in space, but the data is sampled in discrete time, leading to a

discretization of model trajectories in time. Normally this requires approximating the
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forward integral with some numerically-computed forward mapping F :

xn+1 = xn +

tn+1∫
tn

ds f(x(s);θ) ' F (xn,xn+1;θ). (2.27)

When considering a linear system f , as is the case here, no approximation is necessary

because the above integral can be done analytically. For the sake of comparison to

later problems, however, which are nonlinear and thus F has to be estimated, we

maintain the position that numerical integration of f is necessary. For the purposes

of this example the trapezoid rule [68] is used for the discretization, giving:

xn+1 = xn +
∆t

2
K
(
xn + xn+1

)
. (2.28)

This method is implicit because xn+1 is a function of xn+1, which means that in order

to get xn+1 an algebraic equation must be solved, rather than simply plugging in the

values of the current state as is the case with explicit integration schemes. In this case

the equation happens to be extremely easy to solve:

xn+1 =

(
I− ∆t

2
K

)−1(
I +

∆t

2
K

)
xn. (2.29)

In general the inversion of eq. (2.28) to produce an analytic expression like eq. (2.29)

is not necessarily possible, in particular when the ODE system f(x) is not linear and

thus cannot be written in the form f(x) = Ax. Implicit methods must be solved

numerically for xn+1, using Newton’s method [68, 19] for example.

There is no need, however, to explicitly solve for xn+1 because the action treats

all xn in the model error sum equally as independent variables. This means that it is

only necessary to substitute the (implicit) expression for xn+1 − xn into the model
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error:

xn+1 − xn =
∆t

2
K
(
xn + xn+1

)
≡ g

(
xn,xn+1;θ

)
. (2.30)

This is also more in line with the analysis of nonlinear problems. An implicit method

for the action discretization is purposefully chosen because it does not need to be

solved explicitly, and implicit methods have the additional benefits of increase solution

stability compared to explicit methods of the same order.

In the action, the model error is a sum taken over time of the discrepancy g;

in this example the discrepancy at each time is given by (2.30), and the model error is

Rf

2

N−1∑
n=1

[
g
(
xn,xn+1;θ

)]2
(2.31)

where g2 =
∑

i gigi is a scalar. In this problem, g may be written as a matrix, and

by extension the path-space version, G, can be written as a (N − 1)D × (N − 1)D

dimensional matrix. One simply has to ensure that applying G to the path vector X

produces the right result, which means

G =
∆t

2



0 1 0 1 0 0 0 0

−ω2 0 −ω2 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 −ω2 0 −ω2 0 0 0 · · ·

0 0 0 0 0 1 0 1

0 0 0 0 −ω2 0 −ω2 0

...
. . .



. (2.32)
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Applying G to a path space state vector gives:

GX =
∆t

2

{
v1 + v2, −ω2

(
q1 + q2

)
, v2 + v3, −ω2

(
q2 + q3

)
, . . .

}
. (2.33)

Now, each term in the action is written in path space variables; and because

the measurement function and model for the observed system are both linear, all

terms are of the form V 2 =
∑

α VαVα where V is some arbitrary path space vector1:

A =
Rm

2
(HX − Y )2 +

Rf

2
(GX)2 ≡ Rm

2

∑
α

[(HX)α − Yα]2 +
Rf

2

∑
α

(GX)2
α .

(2.34)

Finally, because the location of the minima of A, Xmin = argmin
X

A, are unchanged by

multiplication of a constant factor, the action is rescaled as

A′ =
2

Rm

A = (HX − Y )2 +
Rf

Rm

(GX)2

≡ (HX − Y )2 + γ (GX)2

⇒ X [γ] = argmin
X

A′. (2.35)

Comparing this to the least-squares cost function in the static charge example, γ =

Rf/Rm again takes on the role of the regularization strength. Like that example, the

regularization couples system variables together and acts to remove the degeneracy of

state estimates which leads to non-uniqueness of solutions, but now it simultaneously

connects system variables in time.

Putting the estimation problem argmin
X

A′ in the form of a matrix problem

allows it to be studied using several distinct approaches. First, in terms of how the

1The sum is written with indices for the sake of clarity, but V 2 should be understood to be∑
α VαVα from now on
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regularization affects the construction of a pseudoinverse for H from the perspective of

its singular values and the resulting spectral decomposition of estimates X [γ] and the

data Y . These results can thus be analyzed in terms of the regularization acting as a

smoother on solutions. Second, estimation-error and prediction-error based metrics

for optimality of regularization strength are introduced to analyze the accuracy of

estimated solutions. This is treated purely as a numerical problem so that it is

readily extensible to problems with nonlinear models f , where H−1 cannot be written

analytically in terms of H and f .

Spectral Analysis of Dynamical Regularization

Starting from eqs. (2.35), in which state estimation is posed as a regularized

least-squares problem in the path-space state variable X, one may follow the procedure

in [38] , also presented in the introduction to this chapter, to write the solution in

terms of an analytical expression for the pseudoinverse of H:

X [γ] =
(
HTH + γGTG

)−1
HTY ≡ ρ(γ) Y. (2.36)

In the above expression, ρ(γ) =
(
HTH + γGTG

)−1
HT is a pseudoinverse of H formed

by introducing the regularization term γ (GX)2 into the least-squares cost function,

and thus is a function of the regularization strength γ. ρ is just a matrix in the discrete

path space, making it possible to examine the effects of regularization in terms of its

singular values and vectors, as well as the spectral content of state estimates X [γ],

as a function of γ. The advantage to starting with this kind of analysis for a linear

system is that the properties of the pseudoinverse of H can be studied independently

of a particular data set or state estimate. This luxury is not afforded when dealing

with nonlinear systems, where a construction of the pseudoinverse such as the one
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shown in (2.36). However, some ideas for how this kind of analysis could be possible

in a hybrid approach, combined with numerical optimization of A, are presented at

the end of this chapter.

The oscillation frequency ω in the model is first set equal to one, which is

generally possible for a simple harmonic oscillator under rescaling of time. This is

done to eliminate the need for choosing ω based on observation data, allowing for an

analysis that generalizes to oscillators with arbitrary ω. It should be noted, however,

that it is assumed observations are made frequently enough to satisfy the Nyquist

criterion [78, 66], beyond which state estimation would almost certainly be impossible.
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Figure 2.4: Eigenvalue spectrum for the regularized inverse of the measurement
operator in the simple harmonic oscillator problem, in which only the position of
the oscillator is measured.

First, the eigenvalue spectrum of the regularized inverse measurement operator

is examined as a function of the dynamical regularization strength, γ. Examining

the surface presented in figure 2.4, the eigenvalue spectrum of the regularized inverse

is split between very large values near 106 or 107 when γ is very small, and the

other half of the spectrum which is near 1. The regularized state estimates X [γ] are

linear combinations of projections of the data path vector Y (actually, HTY which

simply acts to double the length of Y without filling in the extra entries) onto the

eigenvectors of the inverse. Clearly, there is information which is destroyed by taking
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the measurement: in this case the small eigenvalues correspond to portions of the

measurement function which project the velocity to some negligibly small value. This

splitting is even more apparent in the right panel of figure 2.4. Note that there is

an intermediate value for γ near 1/2 where the two halves of the spectrum join, and

beyond which the larger eigenvectors begin to dominate again in comparison.
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Figure 2.5: Coefficients of the decomposition of X [γ] and HTY onto the eigen-
vectors of the regularized inverse measurement operator,

(
HTH + γGTG

)−1
. As γ

is increased, there is a dominant contribution that appears from a low-frequency
eigenvector corresponding to smoothing of the estimate.

Figure 2.5 shows the coefficients of the projections of HTY and X [γ] onto

the eigenvectors of the regularized inverse measurement function. The most notable

feature of this plot is that there is a strong peak in these coefficients that closely

follows a line in this plane. At low γ, this line is horizontal and located near the

highest-index eigenvector whose eigenvalue is not zero (more precisely, negligibly

small in comparison to the lower-index eigenvalues). As soon as the two halves of

the spectrum join, this peak begins to track a line that moves towards lower-index

eigenvectors until again becoming horizontal.

Clearly, in the intermediate regime the solution to the inverse problem is

changing significantly. Using the knowledge that the high-γ solutions are smoothed

by regularization, the horizontal line at high γ corresponds to a smoothed solution

dominating the estimate. It is suspected that the solutions in the intermediate regime
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Figure 2.6: Top row: position and estimation errors for a single instantiation of
the measurement noise. The measurement noise was drawn from the large-noise
(σ = 0.1 m) ensemble. Each point in the graphs represents the squared error in
the estimated path X [γ] at time tn, compared to the true solution. Bottom row:
KDE of γ values found to produce optimal estimates, and the position and velocity
prediction error (averaged). Note the second peak at high γ: occasionally there
was no locally optimal intermediate γ for estimation.

may prove better for estimation and prediction. While this was clearly the case for

the σ-estimation problem where the model was wrong, this is shown to still be true

with the “right” model in the next part of the discussion.

Numerical Analysis: Effects of Regularization on Prediction

The effect on state estimation and prediction error of adding in the dynamics

as a regulization term is shown in fig. 2.6. The estimation and prediction errors are

computed as time series over the estimation and prediction windows, at each value of
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the regularization strength γ:

εn =
(
q

[γ],n
est − qntrue

)2

(estimation error).

∆n =
(
q

[γ],n
pred − q

n
true

)2

(prediction error). (2.37)

with similar definitions for v. Note that when γ is small, the estimates closely

approximate the data, which is to say they inherit the noise in the data. This is

apparent from examination of εn, which fluctuates rapidly over the estimation window

(its average, though not shown, is approximately σ2 which is the RMS value of the

measurement noise in the data). As γ increases, these fluctuations disappear at a

critical value where smoothing takes over. Note that at the top of each estimation

error plot in fig. 2.6, which corresponds to the end of the estimation window, there

is a sharp drop in the estimation error for a narrow range of γ values. The location

of this local minimum is found to be dependent on the data, however, warranting a

statistical analysis of these local minima locations.

If such an experiment is repeated many times, with different random instantia-

tions of the measurement error, then this drop occurs frequently at an intermediate

value of γ just below γ = 200. This is evident from examining the bottom panel in

fig. 2.6, which shows the empirical distribution of γ values which minimize the estima-

tion error at the end of the estimation window, εN , over the ensemble of measurement

noise. However, this peak has a non-negligible width and a second peak is present at

slightly higher values of γ.

The prediction error is similarly impacted by the choice of γ. A local minimum

which is located near the peak of the distribution of optimal γ for estimation is

observed to produce a prediction which is orders of magnitude more accurate than at

neighboring γ. However, recall that the system in question is the simple harmonic
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oscillator. The motion of the system is periodic with no dissipation or instabilities, so

while errors in the initial condition estimate for prediction do not grow exponentially

in time (the case for chaotic systems), a slight error in the initialization translates to

an oscillator with a slightly different amplitude and phase. However, this difference

in amplitude or phase is propagated forward in time forever, so the prediction error

never recovers if the initialization is wrong. Similarly, choosing the optimal γ value

gives a prediction which never gets worse.

It should be noted that this value of γ does not reflect the size of the discretiza-

tion error of the scheme used for time disctreization, shown in (2.28). This error, equal

to |g|2, is several orders of magnitude smaller than the optimal γ−1. Thus, one must

consider a careful selection of γ for estimation and prediction beyond considerations

of the numerical discretization scheme.

2.3.2 Dynamical regularization for nonlinear systems

The above analysis was conducted for a linear dynamical system, but many of

the features of varying the regularization strength carry over to the nonlinear case.

This is shown in numerical experiments in Chapter 3. One pathway to studying a

nonlinear system in a similar fashion involves linearizing the model error to make

it approximately in the form of a Tikhonov regularizing term. Starting from the

nonlinear model error, where gn is the model discrepancy at time tn (for the Gaussian

action defined in (1.24), gn = xn+1−F (xn)), one may linearize the model error about
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a minimum of A, X = X0:

Rf

2

N−1∑
n=1

D∑
i=1

(gni (xn+1,xn))2 → Rf

2
[G(X)]2

' Rf

2
[G(X0) +G′(X0) (X −X0)]

2

=
Rf

2
[G(X0)−G′(X0) +G′(X0)X]

2

≡ Rf

2
[G′(X0)X +B(X0)]

2
. (2.38)

Under the change of coordinates Q ≡ G′(X0)X +B, the action in path variables may

be written as

A =
Rm

2

[
H(G′(X0))−1(Q−B)− Y

]2
+
Rf

2
Q2 (2.39)

and the (linearized) nonlinear problem is now in the form of Tikhonov regularization,

but for the estimation of Q rather than X. The main hurdle in such a linearized

analysis is that the regularized inverse to H is now dependent on X0 itself, so that

studying its properties requires minimization of A to find minima in the first place.

Additionally, it may be required to expand the regularization term beyond linear order

to properly capture the effects of nonlinearities in the model.

This provides the basis for the connection between dynamical regularization

with linear and nonlinear systems. In the next chapter, it is seen that there are similar

effects to varying the regularization strength Rf on estimation and prediction in a

chaotic system. In fact, the method is even more sensitive to the choice of γ ≡ Rf/Rm

as the number of measured model variables decreases, and one finds a significant

benefit to choosing the optimal value.

The analysis in the next chapter is performed entirely in terms of numerical

experiments, but as a future research direction it may be fruitful to examine the
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problem using the construction presented above. This is because it is unknown

exactly why introducing a particular number of measurements regularizes the system

sufficiently to reduce the number of local minima of A and makes the global minimum

so easy to discover through minimization. Additionally, it is not well understood why

estimates and, thus, predictions are so sensitive to γ (especially for low L), where

taking the deterministic limit γ →∞ is often highly detrimental. In the linear case,

introducing the model was seen to have the clear effect on the regularized inverse

of the measurement function of a recovery of the lost information associated with

an unresolved dynamical variable. It is speculated that this kind of analysis of the

nature of the measurement function itself in the nonlinear case would provide similarly

valuable insight to answering these questions.
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Chapter 3

Data Assimilation in Nonlinear

Systems

In the previous chapter, data assimilation in a partially observed linear dynam-

ical system was explored in the context of regularized inverse problems. A model of

the observed system was used to cure the ill-posedness of inverting a rank-deficient

measurement operator, acting as a projection of the full state of a linear oscillator

onto its position variable. Even in the case where the correct, known model of the

system was used, it was seen that the strength of the “dynamical regularization” term

introduced to regularize the inversion, γ, had to be carefully chosen to optimize for

prediction quality, rather than resorting to the deterministic limit γ →∞.

Using the variational data assimilation formulation discussed in Chapter 1, the

model is introduced into the action function, A, in an equivalent manner to the more

general procedure of Tikhonov regularization used to solve underdetermined linear

inverse problems. This allowed for a detailed study of state estimation formulated in

terms of a linear operator acting on measurements of the dynamical system, giving

additional insight into the effect of the model on state estimates beyond examining
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the solutions in terms of estimation or prediction errors.

This chapter explores variational data assimilation for chaotic dynamical

systems, in which case there is no equivalently simple reduction of the state and

parameter estimation problem. We resort to numerical methods for finding estimates

which minimize A, which will rely primarily on metrics that directly compare solutions

to observed data. It will be shown, however, that these methods are still powerful

tools for data assimilation, and similar considerations need to be taken into account

to properly regularize the problem for optimal prediction quality.

First, some of the difficulties inherent in data assimilation in nonlinear systems

will be discussed as background, motivating the use of an algorithm for minimizing A

that reliably produces high-accuracy state and parameter estimates from data. This

algorithm, referred to as “variational annealing” (VA) was introduced by Jack Quinn in

his Ph.D. dissertation [69] and improved upon in subsequent work by Ye, et al [87, 88].

This discussion is warranted as VA is used heavily in the remainder of this dissertation.

Next, numerical experiments will be used as examples to establish the efficacy of VA,

as well as properties of the action, and state and parameter estimates themselves, as

the inverse problem is increasingly regularized. Finally, a prediction-based metric will

be introduced to improve the accuracy of VA solutions, especially when the number

of observed variables is thought to be insufficient for reliable estimation, and to some

degree when the model contains a large number of unresolved dynamical quantities

present in the observed system.

3.1 Variational Annealing

In Chapter 1, the complex structure of the action function A for variational data

assimilation was discussed as a consequence of introducing a chaotic model. The surface
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of A becomes more complex as Rf is increased [42, 47, 2] (thus introducing the model

as a stronger constraint on solutions to argmin
X

A), posing a significant challenge to

using variational methods due to the difficulties associated with numerical optimization

of functions with many local minima in high-dimensional spaces [2]. Additionally, in

chaotic systems the global minimum of A, if it exists, becomes increasingly isolated as

the well structure around the minimum narrows and deepens. This is a consequence

of the fact that chaotic systems are extremely sensitive to perturbations in their

trajectory, as well as changes in model parameter values. Identifying the global

minimum is in general an NP-complete problem [63].

Variational annealing (VA) is an algorithm designed to alleviate some of these

difficulties by introducing the model error into A in a slow, controlled fashion. This

algorithm is described extensively in [88, 87], in which it is shown to be an effective

tool for characterizing the minimum structure of A, and for reliably finding low-action

minima or, in the case of a twin experiment, the global minimum as long as enough

variables are observed in the system. The algorithm is explained in this section, as well

as the particular implementation details used throughout much of this dissertation.

The example in the next section, in which VA is used to perform data assimilation in

a Lorenz 96 system, will illustrate how the algorithm works in practice.

Recall the definition of the discrete-time action for data assimilation presented

in Chapter 1:

A(X, Y ) =
Rm

2

N∑
n=1

L∑
`=1

[h` (xn)− yn` ]2 +
Rf

2

∑
n

D∑
i=1

gi(X)2 (3.1)

where, as a reminder, X is the path vector of model states at all times tn, n = 1, . . . , N

in the observation window, as well as model parameters θ; and Y is similarly the

path vector of measurements in the observation window. In the model error term, the
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sum over n is intentionally left ambiguous, along with the full path vector X rather

than xn at any particular time(s) tn, because g potentially acts on states at multiple

times simultaneously depending on the choice of numerical discretization of the action

integral. One potential issue for the numerics of minimizing A as it stands is that both

terms grow with N , and L (measurement error) or D (model error), meaning that A

could potentially grow very large as the system size increases. For the model error, this

is assuming that Rm is chosen to be equal to the variance in the measurement error at

a single time tn. It will be shown shortly that in VA, Rf is essentially a free parameter,

meaning that it can always be chosen to include N and D as normalization factors to

accommodate for different system sizes. However, to maintain the connection with the

constituent terms in the model error as a representation of the level of model error at

particular times tn, Rf is left independent of the system size, despite the equivalence

of the two pictures in VA.

The terms in A are thus slightly modified to include extra normalization factors

for N , L, and D:

A(X, Y ) =
Rm

NL

N∑
n=1

L∑
`=1

[h` (xn)− yn` ]2 +
Rf

ND

∑
n

D∑
i=1

gi(X)2 (3.2)

Now, when the “right answer” is plugged into A, the measurement error goes to 1 at

the global minimum assuming that the errors in the measurement device are Gaussian,

and that they were properly characterized by the experimenter. This is due to the

fact that 〈(xn` − yn` )2〉 = σ2
meas, so as long as one chooses Rm equal to the observed

inverse covariance of the noise then the expected value of the measurement error is

1. This means that the measurement error is now independent of system size, which

will be seen shortly to make the choice of “good” Rf values for VA easier for different

system sizes.
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Finally, because the location of the minima is unaffected by multiplying the

action by a constant, it is instructive to examine solutions and action levels as a

function of γ ≡ Rf/Rm, which indicates the relative size of the coefficients on the

model and measurement error terms in (3.2). The action levels, as well as estimation

and prediction errors, are generally plotted in terms of this ratio.

Now consider A when γ = 0, in which case there is effectively no model for the

system. Minimizing A thus becomes a routine linear least-squares minimization, but

only for the observed variables. The cost of setting Rf = 0 is that the minimization

problem is now completely degenerate in the unmeasured variables and parameters,

because there is no cost to altering their values. The solution is thus unique for the

measured variables, which simply become equal to the measurements (A is positive-

definite, and when xn` = yn` at all times tn, A = 0 uniquely), but the unmeasured

variables and parameters may take on any desired value. Thus, while A is extremely

easy to minimize when Rf = 0, the solutions are essentially worthless because they

tell nothing more about the observed system than what is already known, namely the

time series of observations Y .

One of the keys to the effectiveness of VA, which is a type of numerical

continuation algorithm [3], is the observation that when Rf is non-zero but small,

or more precisely Rf/Rm � 1, minimization of A is essentially linear least-squares

regression with a slight correction coming from the model error term, thus estimates

are not completely degenerate in the unmeasured variables and parameters. As Rf/Rm

is increased, these minima which were computed using the “easy”, nearly-least-squares

action, are tracked as the position of the minima move in path space.
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3.1.1 Variational Annealing Algorithm

Variational annealing is initialized by setting Rf/Rm � 1; practically speaking,

it is generally found to be sufficient to set Rf/Rm to a value like 10−6 as long as the

modified normalization of A shown in (3.2) is used. Rf is treated as a free parameter,

and over the course of VA it is increased to a large value such that Rf/Rm � 1 (on

the order of 108, practically speaking). The schedule under which Rf is increased is

chosen by defining Rf as a function of an algorithmic hyperparameter β (essentially

the algorithmic time for VA), specifically that Rf = Rf(β) = Rf(0)αβ. Rf(0) is the

initial value for Rf chosen so that Rf/Rm is small at the beginning of the procedure.

α > 1 so that Rf increases as β is increased, and for many problems 1.1 < α < 1.5

has been found to be adequate. Choosing α to be too small or too large can be

significantly detrimental; this will be elaborated upon following the definition of the

algorithm presented below.

An initialization for the path variable of model states and parameters must

also be chosen before starting VA. How to select a good initial path estimate Xinit

is described in more detail below, in §3.2.1. For the moment, it suffices to say that

the measured states should be set equal to the values of the measurements in Y at

all observation times, the unobserved states are drawn from random distributions

selected to reflect the size of the model attractor, and initial parameter guesses from

distributions that numerically encompass ranges of values thought to reflect the

system’s observed behavior.

Variational annealing proceeds by minimizing A with Rf = Rf(0), and X =

Xinit. The choice of numerical optimization routine is up to the user.1 The result

1Common choices may include a gradient-based method like nonlinear conjugate gradient; L-BFGS
which is a quasi-Newton method; or a more sophisticated method such as IPOPT, an interior-point
method for optimization with nonlinear constraint functions. §3.1.2 elaborates on the implementation
details used for the numerical experiments in this dissertation.
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of the optimization is the path estimate X [0], which is used to seed the next step of

VA where optimization is performed by increasing Rf to the value Rf(1) = αRf(0).

Again, the result of this optimization seeds the next step, and VA proceeds until the

final value Rf(βmax) is reached. βmax should be chosen according to the criterion

described above, which is that Rf (βmax)/Rm >> 1.

To summarize:

1. Set Rf = Rf (0) and X = Xinit.

2. Minimize A. Store the result; at step number β of the algorithm, this is the

path estimate X [γ(β)].

3. Multiply Rf by α, and minimize A starting from X [γ(β)].

4. Store the result, and return to step 3. Terminate this loop when β reaches βmax.

It has been shown previously [88, 87] that following this procedure makes VA

very effective at identifying global minima of A, and subsequently tracking them

through large values of Rf/Rm. This is in contrast to optimization performed with

hard constraints, exactly enforcing the dynamical model on estimated solutions, which

creates an extremely complex cost surface over x1 (the initial state in the trajectory)

and θ arising from instabilities associated with the chaotic dynamics in the estimation

window. Even if the minimization is weakly constrained, but Rf/Rm is not chosen to

be small enough initially, the minimization cannot identify the global minimum with

comparable frequency to using VA with a low initial value Rf (0)/Rm.

3.1.2 Implementation Details

For the numerical experiments described in this dissertation, the Hermite-

Simpson (HS) collocation method [80] is used to discretize the model error integral.
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HS is a high-order implicit discretization scheme which uses a midpoint approximation

at each triplet of times (tn, tn+1, tn+2). This gives rise to a specific definition for the

model error term in the discrete-time action:

1

ND

N−2∑
n odd

D∑
i=1

Rf,i

{
xn+2
i − xni −

δt

6

[
fi(tn, x

n) + 4fi(tn+1, x
n+1) + fi(tn+2, x

n+2)
]}2

+

{
xn+1
i − 1

2

(
xni + xn+2

i

)
− δt

8

[
fi(tn, x

n)− fi(tn+2, x
n+2)

]}2

. (3.3)

Note that in this construction, the midpoint times tn+1 are actually observation

times themselves. This simplifies matters somewhat for nonautonomous systems

with external stimulus functions, because it is only required to insert values for

measurements yn and stimuli sn, corresponding to nonautonomous terms in the ODEs,

into the action at the available observation times.

The numerical experiments themselves were carried out using VarAnneal [76], a

publicly-available Python package. While VarAnneal was written by the author of this

dissertation, it is primarily a front-end for computing derivatives of A using ADOL-C,

a widely-used implementation of automatic differentiation written in C++, developed

by Andreas Griewank and Andrea Walther [33] and maintained by the COIN-OR

project [32]. The Python front-end for ADOL-C used by VarAnneal is PYADOLC [83],

which is also a publicly-available software package. The optimization itself is performed

using L-BFGS-B as implemented in SciPy; L-BFGS-B is a bounded version of the

popular L-BFGS-B (Limited-Memory Broyden-Fletcher-Goldfarb-Shanno) algorithm,

which is a quasi-Newton method that approximates the inverse Hessian of A rather

than using a dense N × N matrix representation (hence, Limited-Memory). The

details of this method are elaborated in [8, 89, 62].

Automatic differentiation, or AD [84, 65], is a popular tool in many fields

of numerical optimization, used for computing derivatives of functions defined by
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complex computer codes in optimization problems. AD has the distinct advantages

that it does not require computing symbolic forms for the derivatives of cost functions,

but also does not use numerical approximations, so that derivatives may be efficiently

computed to any desired level of precision. This is a big advantage to using AD

in VarAnneal, because the action may be re-defined at the whims of the user with

little to no cost in additional coding, due to the definition of A and its derivatives

not being “baked in” to the code. In principle, this allows one to explore the effects

of introducing different kinds of errors into the action. This is outside the scope

of this dissertation, however, as all calculations are carried out using the Gaussian

action defined previously with HS discretization for the model error. Instructions for

installing and using VarAnneal are available in the GitHub repository in which it

is hosted. In particular, it is worth noting that VarAnneal includes two versions of

the code: one, used in this chapter and the next, for data assimilation in dynamical

systems modeled by ODEs; and the second version for training neural networks, which

will be used exclusively for the numerical experiments in Chapter 5.

3.2 Data Assimilation in a Chaotic System

The Lorenz 96 system was developed by Edward Lorenz in 1996 as a simple

model for numerical weather prediction [57]. The variables in this model are meant

to represent spatially-coupled atmospheric quantities which vary in time, such as

temperature or the vorticity of atmospheric fluid rolls. Essentially, it was developed

by Lorenz to study questions of predictability in complex dynamical systems. Despite

the simplicity of the model’s definition, it exhibits chaotic behavior under certain

parameterizations, and is thus widely used as a toy model in numerical studies of

chaos and data assimilation [86, 14, 45].
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The Lorenz 96, or L96, system is a polynomial ODE model defined in D

dimensions by the following equations:

dxi
dt

= xi−1 (xi+1 − xi−2)− xi +K, i = 1, . . . , D (3.4)

where the state index i is cyclic, so that i = D + 1 = 1. The parameter K represents

a constant external forcing parameter, which takes on the same value for each state

variable. It should be noted that this is a simplified version of the model originally

proposed by Lorenz [57], which contained an additional set of “fast” variables coupled

to the variables xi in the equation above. This simplified version, however, still displays

a large degree of complexity such as extensive chaos [45].

In this section, L96 will be used as an example system to display some general

features of data assimilation in chaotic systems, specifically with the use of an the

unconstrained path-integral formulation of DA presented in Chapter 1. Some of

the results presented here have been previously studied in [88, 87, 47], revealing

fundamental bounds on how sparsely such a system may be observed before state and

parameter estimation becomes intractable. Namely, when the number of observed

variables decreases below a particular level, finding accurate estimates appears to

become unreliable enough that data assimilation is impractical.

However, it will be shown that there are ways to counteract this intractability

to some extent by carefully studying the variational problem in terms of a prediction-

based metric for choosing estimates. The result is that one should counterintuitively

use solutions which do not strictly enforce a model of the observed system, even in a

twin experiment setting where the underlying model is known exactly. In the next

chapter, this methodology is briefly extended to a system with complex model errors

arising from missing dynamical components (in fact, the “full” L96 system including
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fast and slow variables).

3.2.1 Action Structure and the Effects on Estimation

This problem will first be studied as a twin experiment, where it is assumed

that the underlying dynamical model generating observed trajectories is exactly known,

namely Lorenz 96 as defined in (3.1) with D = 20 and K known to be equal to 8.17.

With this choice of model dimension and parameterization, the Lorenz 96 model is

chaotic, which is evident from the presence of positive Lyapunov exponents (the full

Lyapunov exponent spectrum is shown in figure 3.1). This fact is important to this

discussion, which aims to explore some difficulties of the state and parameter inference

problem in chaotic systems arising from the complex structure of the action.
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Figure 3.1: Lorenz 96 Lyapunov spectrum and phase space trajectories. Top
panel: The presence of positive Lyapunov exponents indicates that the system is
chaotic. Bottom panel: Chaos results in aperiodic behavior in the system.

A subset of L < D variables are actually observed to generate the data. The

observations are “direct” as defined in §1.13, meaning that the measurement function

h is simply a linear projection operator H : RD → RL with unit entries. It was

previously shown in [47] that about 40% of the L96 variables must be observed in

order to produce reliably accurate state and parameter estimates, meaning that one
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should expect some sort of threshold of observability near L = 8. This will be shown

to have an effect on the minimum structure of the action, and thus the reliability with

which accurate estimates can be found. The primary tool for exploring these effects is

variational annealing, using a large number of state and parameter initializations for

the algorithm.

Twin Data Generation

To produce twin data for this example, the L96 equations were integrated

forward in time from a randomly chosen initial condition in the 20-dimensional state

space, with D and K set equal to 20 and 8.17, respectively. As was discussed previously,

this choice of D and K makes the system chaotic. The initial condition for twin data

generation was chosen to lay within a box in the state space with side lengths of 20,

and centered at 0. This corresponds to the normal bounds of the L96 attractor, thus

in principle reducing the time required to integrate out transient behavior, as well

as the risk of producing solutions outside of the attractor’s basin of attraction. To

approximate the forward integral, a widely-used fourth order explicit Runge-Kutta

method [77, 51, 68], commonly called RK4, was used with a step size of ∆t = 0.001.

This integration step size is far lower than the time interval used to discretize the

action integral for VA, which also uses the higher-order Hermite-Simpson (HS) rule.

However, the discretization error in the HS method for the true solution, as well as

the lowest-action estimates, is on average calculated to be approximately 10−7 which

is much smaller than the typical γ−1 which optimized estimates or predictions.

After carrying out numerical integration of the model, the solution was saved

every 25 time steps so that ∆t = 0.025 for the data. This measurement frequency

was chosen based on prior observations while carrying out numerical experiments for

the work presented in [88, 87] that it is sufficiently small to find accurate state and
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Figure 3.2: An example of time series data collected from a solution to the Lorenz
96 system for a twin experiment, representing data for just one out of L measured
variables. The true solution is drawn in black under the measured data (in blue).

parameter estimates. Reducing the time step further was found to not appreciably

improve estimation accuracy or the reliability of producing well-separated low action

levels, and thus was chosen at this level as decreasing the time step needlessly increases

the complexity of the optimization procedure by increasing the dimension of the path

space. In order to simulate error in a measurement device, Gaussian noise was added

to the states at each time point with a chosen variance of σ2 = 0.25, where the noise

was independently drawn for each variable at every time.2 An example of such a time

series of twin data for one observed Lorenz 96 variable is shown in figure 3.2.

The measurements in this example are direct observations of the system

variables (defined in Chapter 1), giving rise to a measurement error term in A of the

2This i.i.d. property of the measurement noise avoids introducing additional complexities to the
problem associated with correlated noise; an interesting question to address, but outside of the
scope of this chapter, where the focus is on how L and the level of model error affect estimates and
predictions.
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form

A(X, Y ) =
Rm

NL

N∑
n=1

L∑
`=1

[
D∑
i=1

H`ix
n
i − yn`

]2

+ Model Error

=
Rm

NL

N∑
n=1

L∑
`=1

[xn` − yn` ]2 + Model Error (3.5)

and the model error uses the Hermite-Simpson discretization elaborated on in the

previous section. For the sake of simplicity, the measurement function H will not

appear explicitly in A in the case of direct measurements, and xn` is used as shorthand

for the measured variable corresponding to yn` at time tn instead.

Computing Action Levels with VA

Variational annealing was used to explore the cost structure of A for several

values of L, namely L = 5, 7, 8, and 10. These values were chosen based on the

observation for Lorenz 96 that approximately 40% of the system variables must be

observed in order to produce reliably accurate estimates of all the states and the

forcing parameter [47]. Thus, it is expected that a transition in the minimum structure

of A should be observed as L is swept through these values, which will be seen shortly

to be the case. The structure of the action for this problem was previously discussed

in [88, 87], but the analysis is performed again here as it is important to the discussion

of improving predictions later.

Each VA calculation was seeded by randomly choosing Ninit = 100 different

trajectories over the length of the observation window in the 20-dimensional phase

space, as well as a value for the forcing parameter K. For the measured model

components, the states were initialized to be equal to the data itself. The unmeasured

components were randomly drawn from a uniform distribution defined over the closed

interval [−10, 10] in each variable direction; at each time point the unmeasured
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variables are independently drawn from these uniform distributions. The forcing

parameter estimate was drawn from a uniform distribution on the closed interval

[6, 10].

These choices for the initializations are essentially motivated by a combination

of some knowledge of the model dynamics and solution structure, as well as on

empirical grounds. The state variable trajectories are observed to be bounded roughly

within the range [−10, 10]; whereas the parameter range [6, 10] encompasses a range

of chaotic parameterizations for Lorenz 96, which is something that needs to be

determined by actually studying the properties of solutions for varying K values. In a

twin experiment, the true values of all these quantities are known, of course; but in

the real world where data is collected by actually observing a system evolving in time,

and the model is chosen on physical grounds, this sort of thinking must be employed

in order to seed VA with reasonable estimates that are not hopelessly far from the

truth.

The results of carrying out variational annealing Ninit times are displayed in

figures 3.3 and 3.4, which shows the value of A tracked over the course of the algorithm

for all path vector initializations at the various chosen values of L. Also shown in

some panels is the expected value of the action for the global minimum at large γ.

Note that while minimization is carried out over discrete values of β, corresponding

to action values at discrete γ values, the action levels are displayed as solid lines to

track how different initializations jump between action values as γ increases.

The result is that a dominant action level only appears as L, the number

of observed variables, approaches the threshold value L = 8. This separation is

important if one wishes to approximate the discrete path space integrals E [G(X)|Y ] =∫
DXe−A(X,Y )G(X)/

∫
DXe−A(X,Y ): as was discussed in Chapter 1, under the Laplace

approximation, contributions to this integral are exponentially suppressed by the value
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Figure 3.3: Action levels for the D = 20 Lorenz 96 system, with various L values
corresponding to the number of measured state variables. Marked in red is the
expected RMS value of the measurement noise for the true solution, which is
reached by the global minimum estimate at high γ = Rf/Rm. Note the appearance
of a distinct lowest action level when L = 7, just below the expected threshold of
L = 8, at which point the lowest level splits off sufficiently from the higher levels to
dominate the path integral for calculating estimated state and parameter statistics.
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Figure 3.4: Detailed views of the action, as well as its constituent measurement
and model errors, for the L = 8 case. At low γ = Rf/Rm, the action is dominated
by model error, the result of estimated solutions closely tracking the data in
the measured components, effectively oscillating with high frequency about the
relatively smooth true solution. The measurement error dominates at high γ,
which reaches the expected RMS value (in red) of the measurement error when the
estimate “collapses” to the underlying smooth solution.
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of A. This means that a well-separated, low-action estimate will dominate the

approximation, and higher-action estimates may be neglected as their contribution

becomes negligible. In the L = 8 case, this becomes an accurate approximation

because the ratio eA1/eA0 between the lowest level, with A = A0, and the next-highest

level with A = A1, is slightly larger than 20 when γ is larger than 100 or so. Under

the assumption that the observed system exactly obeys the D = 20 Lorenz 96 model,

one should in principle use path estimates X [γ] for which γ � 1, in which case the

estimate associated with the A1 level is suppressed to contribute less than 5% to path

integral estimates. Assuming that this level of accuracy is deemed to be sufficient, the

estimates associated with the higher levels contribute ever more negligibly, allowing

one to neglect them as well.

Note that the lack of separation of levels, which is observed in the L = 5 case,

is not an entirely hopeless situation. In the next section, it will be shown that the

situation can be improved significantly if one uses a procedure to select estimates at

intermediate values of γ, rather than those corresponding to γ(βmax).

In order to glean some more information about the nature of the estimates as

they are tracked over the course of the annealing process, the values of the measurement

and model errors are displayed in figure 3.4 for the L = 8 case. Note that, at low

values of γ, the action is dominated by the model error. In fact, this is expected to be

the case: when γ � 1, Rm � Rf , corresponding to the measurements being enforced

in the path estimates much more strongly than the dynamical model. The estimates

of the measured variables closely track the data, so that at each measurement time,

(xnmeas − yn)2 ' 0.

The unmeasured variable estimates remain scattered about phase space, with

estimated solutions exhibiting high-frequency oscillations over the estimation window.

These high-frequency oscillations result from the measured variables tracking the noisy
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data, which appears to be a high-frequency signal oscillating about the true solution.

This artificially introduces high-frequency components into the entire trajectory

estimate, because the unmeasured variables are coupled to the measured ones through

the dynamics. While this is logically consistent with expectations resulting from the

structure of A, in the next section the estimates will be studied in more detail to

provide a more convincing argument for the occurrence of this phenomenon.

Comparing State and Parameter Estimates in Different Levels

While examination of the action levels provide motivation for which action level

estimates should be selected for using the Laplace approximation to compute statistics

of path estimates, the estimates themselves are examined here in order to provide

further justification for neglecting high-A estimates. Additionally, it will become

apparent that if estimation errors for the states and parameters are tracked during

annealing, new considerations appear regarding the value of γ at which estimates

should be selected, even when the global minimum of A is found. This will motivate

the topic of the next section, which establishes a criterion for selecting values for γ to

produce optimal estimates and, ultimately, predictions.

These estimates are plotted in figures 3.5 through 3.9. In each case, the

estimated trajectories for just one observed and unobserved variable (x1 and x2) are

shown; the effects of varying L and γ on the rest of the states in this system are similar

and thus omitted. In each figure, the true solution (from which the twin data was

generated) is displayed, as well as the estimated trajectory corresponding to all of the

action levels shown in figure 3.3. The lowest-action trajectory estimate is additionally

highlighted for clarity in each case. There are several important qualitative trends

for these estimates which shed additional light on why higher-action levels may be

neglected, as well as why it is important to take care in selecting the value of γ from
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Figure 3.5: State estimates for partially observed Lorenz 96 with γ � 1, for
various values of L (the number of observed model variables). The true solution
is marked by dashed black lines, the minimum-action estimate in thick solid gold,
and the higher-action estimates in thin blue. The model is weakly enforced in the
action compared to the measurements, leading to the observed variable trajectories
matching closely with data. The unobserved variable estimates have little to do
with the true solution, and inherit some of the high-frequency oscillations associated
with noise in the data. Additionally, there is little difference in the estimates for
different L values, reflecting the lack of information transfer from data to the model
regardless of the number of observations.
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Figure 3.6: State estimates for partially observed Lorenz 96 for various values of L
(the number of observed model variables), with γ increased slightly after a few steps
of variational annealing. The true solution is marked by dashed black lines, the
minimum-action estimate in thick solid gold, and the higher-action estimates in thin
blue. The model error is slowly being introduced as a stronger and stronger penalty;
estimates of the unobserved variables are beginning to more closely track the
true solution, especially the lowest-action estimates. When L = 5, the estimation
error is still significant, with the estimates at all action levels still having little
to do with each other indicating a high degree of near-degeneracy of solutions.
As L approaches 8, the minimum-action estimate begins to closely track the true
solutions; a weaker trend appears of the higher-A estimates beginning to track the
true state somewhat. When L = 10, even the higher action levels begin to track
the true solution well near the end of the estimation window.
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Figure 3.7: State estimates for partially observed Lorenz 96 for various values of
L (the number of observed model variables), with γ approaching the value where
the action begins to become independent of Rf/Rm. The true solution is marked
by dashed black lines, the minimum-action estimate in thick solid gold, and the
higher-action estimates in thin blue. When L ≥ 8, the lowest-action estimate
appears to be tracking the global minimum of the system, where the model error
goes to zero and the measurement error is 1 (the RMS value of the measurement
noise). Note that, when L = 5, the minimum-action estimate is actually tracking
the true solution quite closely near the end of the observation window.
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Figure 3.8: State estimates for partially observed Lorenz 96 for various values of
L (the number of observed model variables), with γ approaching the value where
state and parameter estimation error is often found to be at a local minimum,
especially when L = 5.. The true solution is marked by dashed black lines, the
minimum-action estimate in thick solid gold, and the higher-action estimates in
thin blue.
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Figure 3.9: State estimates for partially observed Lorenz 96 for various values
of L (the number of observed model variables), where γ has reached a high value
and the model is strictly enforced through the model error. The true solution is
marked by dashed black lines, the minimum-action estimate in thick solid gold,
and the higher-action estimates in thin blue. This is the deterministic limit of the
action, formally speaking. The minimum-action solutions continue to closely track
the true solution; however, it will be shown that the estimates of K and xN have
been hurt in this limit compared to a more intermediate value of γ ∼ 103.
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which estimates should be drawn in order to maximize prediction quality.

First consider the effect of different values for L in each case. Focusing on

estimates corresponding to a single value for γ, it is apparent that when L is low,

there is significantly more degeneracy in the solutions than for high L values. This is

indicated by the tangle of estimates corresponding to the higher action levels, which are

nearly valid trajectories over short stretches of time, but often stray significantly from

the true solution which is tracked much more closely by the lower-action estimates.

This explains why the action is higher for these sometimes-correct estimates. The

model error is accumulated over the course of the estimation window; sections of the

trajectory which differ significantly from the true solution as they tend to violate the

model, whereas the portions of time over which estimates are nearly correct contribute

negligibly to the error.

While in many cases these higher-action trajectories approach the true solution

near the end of the estimation window, and thus may appear to be usable for the

purposes of prediction because they provide an accurate seed for forward integration,

the parameter estimates have not been considered and, in fact, these higher-action

solutions tend to produce poor predictions in comparison.

On the other hand, examining the estimates as a function of γ reveals the

effects of introducing the model error term in A with increasing strength. When

γ = γ(0) = 10−6, the observed variable estimates closely track the data as expected.

Note that the data is not explicitly shown in these figures, but this tracking effect

is apparent from noting that the estimates themselves oscillate rapidly about the

true solution. The unmeasured variable estimates are essentially nowhere near the

true solution, and in some cases exhibit oscillatory behavior of a higher frequency

than is characteristic of the Lorenz 96 solutions with this choice of parameterization

(K = 8.17, as a reminder). Also note that increasing L does little to help state
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estimation quality; the model error is simply too weakly enforced for a significant

amount of information to be transferred to the model.

As γ increases, as shown in figure 3.6, the effect of introducing the model

error becomes apparent as the trajectories of the unmeasured state variables begin to

more closely track the true solution. This is somewhat true even for the high-action

levels when L ≥ 7, and when L = 10 these estimates come reasonably close to the

true solution even just a few steps into the annealing algorithm, when Rf/Rm ∼

7.6× 10−6. Note that the measured states continue to closely track the data, because

the measurement error penalty is still relatively large compared to that for the model

error. Signs of this are exhibited in the unmeasured variable estimates, which still

contain some high-frequency oscillatory components over portions of the estimation

window.

When γ reaches a value of approximately 10, shown in figure 3.7, the measured

variable estimates are seen to be nearly smoothed and close to the true solution, which

is the effect of the model error becoming a significant penalty comparable to the

measurement error. Also note that the near-degeneracy of estimates in the higher

action levels has been significantly reduced, especially for L ≥ 7 where it almost

becomes possible to count the number of distinct estimates. By this point, when

L = 10 there are essentially just two distinct solutions present in the x2 trajectory

(this may seem inconsistent with the action level plots shown previously, but remember

that there are 18 more variables in the system which are not displayed in these figures,

meaning that the other two solutions are still present but not visible upon inspection

of just x1 and x2).

What is perhaps surprising is that this degeneracy actually appears to increase

when γ reaches higher values, especially at the end of the annealing procedure when

γ ∼ 1011. The lowest-action estimate, however, remains close to the true solution even
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as the rest of the estimates begin to degenerate. This is in fact one of the primary

advantages to using variational annealing: as long as α is chosen to be small enough,

VA is able to effectively track estimate as Rf is increased, in particular the global

minimum estimate if L is large enough.

This analysis has established some of the features of state estimation as more

measurements are introduced into the action, as well as some of the effects of varying

Rf , the coefficient of the model error term. In particular, it is now more apparent that

high-action estimates may be neglected for estimating the discrete path space integrals

for computing estimate statistics when the threshold value of L = 8 measurements is

reached. Additionally, despite the fact that when L = 7, the global minimum estimate

corresponding to tracking of the true solution is not found by VA, there are signs

that the lowest level estimates may still be usable for prediction purposes. Finally,

increasing Rf is shown to first produce estimates which tend to collapse towards,

and then closely track the true solution; however, there are signs that beyond a

certain point the estimates are negatively impacted. This is readily apparent by visual

inspection of the high-action estimates, but not immediately so for the lowest-action

estimate.

A more careful analysis of the state and parameter estimates is required to

determine if, in fact, the minimum-A estimate is significantly impacted by increasing

Rf beyond a certain point. In the next section of this chapter, this is carried out by

examining the estimation errors of the lowest action levels as a function of γ. In some

cases the result will be surprising, leading to the final portion of this chapter in which

a new criterion for estimate selection is introduced, using a statistical analysis of the

estimates for many data samples collected from different trajectories on the Lorenz 96

attractor.
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3.3 Statistical Approach to Optimizing Predictions

with Sparse Observations

To begin this discussion, the model state and parameter estimation errors

are tracked during the annealing experiments carried out for the Lorenz 96 system

described in the previous section. In particular, these errors are always tracked for the

estimates corresponding to the minimum-action levels. When L = 8 or greater, this is

justified by the fact that these estimates, which in fact are the global minima of the

action, clearly dominate the Laplace approximation to discrete path space integrals.

For smaller L, this is also found to be a fruitful analysis: even though the lowest-action

estimates are not found to be clearly separated from the high-A ones (or, in the case

of L = 7, the lowest level does not correspond to the global minimum of A), it will

be shown that there is in fact a significant advantage to choosing estimates with a

particular Rf value that overwhelmingly tend to produce estimates that significantly

improve prediction accuracy.

When variational annealing is used for data assimilation, this provides the

distinct advantage that, even if other estimates are not considered in the Laplace

approximation, one may improve predictions by choosing the “right” value for Rf .

This is advantageous for practical reasons, because computing the series expansion in

the Laplace approximation requires separately computing the inverse Hessian of A,

as explained in Chapter 1. This computation is costly in terms of calculation time

and memory requirements, especially as the system size grows large: inverting a dense

Hessian matrix of size M ×M is an operation with a time complexity of O(M3). From

a theoretical perspective, however, these other estimates cannot be ignored because

they do contribute significantly to path space integrals. The suggestion of the author,

then, is to further develop this as a hybrid method, where considerations of optimal
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Rf values are combined with improving the accuracy of the Laplace approximation by

including higher action level estimates.

3.3.1 Tracking Estimation and Prediction Errors in Varia-

tional Annealing

The state and parameter estimates corresponding to the lowest action level

at every value of γ during annealing is henceforth referred to as X [γ]. While there

are, of course, Ninit different estimates at every γ, it is to be assumed that the lowest

action estimate is selected for the purposes of prediction; thus, X [γ] is to refer to the

lowest-action estimate without ambiguity.

In addition, rather than separately considering the estimation errors for each

L value separately, only the case when L = 8 is analyzed here. The lessons learned

from the L = 8 results are similar enough in each case, and later in the discussion the

prediction errors will be studied in greater detail to lead to the final result, in which

the statistics of estimates and predictions for a large collection of data samples are

used to motivate the Rf -selection criterion.

There are actually multiple estimation and prediction errors to consider. In

a more realistic setting, where the only data available to an experimenter is the

measurements of the state trajectories in the observation window, the only errors

that can actually be calculated are the errors which compare predictions to the data

(an error function comparing the measured states to data is not defined here; this is

just the value of the measurement error, which is already tracked during annealing).

However, when conducting such an analysis in a twin experiment setting, the true state

of the system is known for all of the model variables, as well as the true parameter

values. The estimation errors compared to the true state of the system are thus

examined in order to provide greater insight into how γ affects these errors, as well as
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stronger validation for the method itself.

These errors are defined as follows:

State estimation error: εnx(γ) =
1

D

D∑
i=1

[
(x

[γ]
est)

n
i − (xtrue)

n
i

]2

,

Parameter estimation error: εθ(γ) =
1

Dθ

Dθ∑
i=1

[
(θ

[γ]
est)i − (θtrue)i

]2

,

Data prediction error: ∆n(γ) =
1

L

M∑
m=1

L∑
`=1

[
(x

[γ]
pred)n−m` − yn−m`

]2

. (3.6)

The state and parameter estimation errors, as their name implies, are equal to the

squared discrepancies between the estimated states and parameters and their true

values. The prediction error compares the value of a prediction made using the

estimate of the full model state at the end of the estimation window, (x
[γ]
est)

N , as well

as the estimated parameter values θ
[γ]
est, to the data observed in the prediction window,

which is actually the only information available in a real experiment. Additionally,

the state variable errors are computed as time series rather than averaging over time;

in the prediction error, this allows one to readily see at which point the prediction

quality begins to decay. They are all implicitly functions of γ, as well, because the

values of the estimates depend on γ; the predictions thus are implicitly functions of

γ, too, because predictions are calculated by integrating forward in time from the

estimated state at the end of the observation window, (x
[γ]
est)

N , as well as the estimated

parameter values θ[γ].

In these errors, the definitions of N , L, and D are already known to the reader,

while Dθ is the number of model parameters. The sums over m, which are sums over

time, are introduced to smooth the errors when comparing estimates or predictions

to noisy data. It is instructive to introduce this smoothing so that the errors when

comparing to data do not oscillate rapidly in time, making the comparison closer
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to that with the (noiseless) true states. Finally, Npred is the number of time points

beyond the estimation window at which predictions are compared to data or the true

solution. Predictions always start at n = N + 1 (the first time point beyond the

estimation window) and terminate at n = N + 1 +Npred; prediction errors are also

defined starting at n = N + 1 and up to n = N + 1 +Npred.
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Figure 3.10: State and parameter estimation errors for the lowest-action path
estimate in the D = 20 chaotic Lorenz 96 system, when L = 8. Left panel: time
series of state estimation errors, as a function of γ = Rf/Rm. Center panel: state
estimation error at the end of the observation window; there is a barely-perceptible
local minimum near γ = 104; in other instances with a different data set Y , this
minimum is more pronounced. Right panel: the parameter estimation error; the
local minimum just above γ = 104 will often translate into greatly improved
prediction accuracy.

Figure 3.10 shows the state and parameter estimation errors for the lowest-

action estimate in the L = 8 case. These errors are computed using the same data

set that was used for annealing in the previous section, where all of the computed

action levels are shown in figure 3.4. The general features of the state estimation

error surface are expected when the analysis performed in the previous section, in

which state estimates were compared to data and the true solution, is taken into

consideration. At small γ values, the estimation error is relatively large because

the measured variable estimates match the data rather than the true solution, thus

contributing an expected value of 1 (the RMS value of the measurement noise); but

more importantly, the unmeasured variable estimates bear little resemblance to the
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true solution, which is why the error is closer to 10 near the smallest γ values. Note

that this error is also fairly constant over time. This is also unsurprising because

the dominant contributions to the error come from the unmeasured states, and with

γ � 1 the model is weakly enforced, so one should not expect there to be any sort of

structure in the time direction where the model forces estimates closer to the true

solution at some times compared others.

As γ increases, the estimation error surface undergoes a transition as γ is

increased past 1. The error becomes much smoother in time, and its value drops

significantly (in some cases by several orders of magnitude). This is the result of the

measured variable estimates collapsing towards the true solution, which contributes to

the smoothing effect as well as the decrease in the value of the error; the unmeasured

state estimates also tend to approach the true solution as γ approaches 1. The surface

appears to be relatively constant as γ is increased further; however, upon closer

inspection it will be seen that there is a local minimum in this error surface for an

intermediate value of γ, indicating a state estimate that will perform better for the

prediction stage.

The state estimation error is separately shown in figure 3.10 at the end of the

estimation window. The general features described in the previous paragraph hold

here as well, but the estimation at time N is “special” because it will be used to seed

a prediction forward in time, thus warranting closer inspection.

The local minimum feature for the parameter estimation error appears to be

much more drastic in comparison. The error drops by almost 10 orders of magnitude

from the beginning of the annealing process, and contains fairly narrow local minima

as a function of γ. As a reminder to the reader, however, this is a squared estimation

error, so the absolute value of the difference between the estimated parameter value

actually varies between approximately 3 (at the start of annealing) down to about
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10−4 at later stages. Additionally, the error in the local minimum located near γ = 105

corresponds to a difference in the absolute value of the error which is approximately

10−4.

These observed local minima in state and parameter estimation error may

appear to be small enough to be ignored. However, one must remember that this is a

chaotic system, which by definition is highly sensitive to perturbations in the state of

the system as well as its parameter values.
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Figure 3.11: Prediction error surface for L = 8 observed variables in the D = 20
chaotic Lorenz 96 system. Left panel: prediction error surface as a function of
γ and prediction time. Right panel: constant-time slices of the error. Note the
presence of a local minimum just above γ = 104, where prediction error is reduced
by a factor of 2 or 3 compared to those made with estimates at higher γ.

Examining the prediction errors as a function of γ in fact reveals that these

local minima have a significant enough effect that one must pay careful attention to

their existence. In figure 3.11, the prediction error surface compared to the data in

the prediction window is shown, along with constant-time slices so that the values of

the errors may be determined more precisely. Prediction quality is poor when seeded

using small-γ estimates; this is expected because the estimation error was high in this

regime for both the state variables and parameter value. When γ � 1, the prediction

quality is significantly improved; for the first second or so, ∆ is below 1, corresponding
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to a discrepancy of less than 5% compared to the true solution (in absolute value

terms).

Perhaps the most interesting feature of this prediction error surface is the long,

extended local minimum “valley” in γ near 104. Not coincidentally, this is the same

value at which a local minimum in estimation error was found previously. What is

perhaps surprising here is not that there is a local minimum in prediction error near

this value, but rather the time duration over which this minimum is maintained. This

is, however, consistent with the notion that trajectories in chaotic system are overly

sensitive to errors in the initial state of the trajectory and the model parameter(s).

These errors grow exponentially in time at a rate determined by the largest Lyapunov

exponent of the system. Thus, if the estimation procedure is able to “nail it” and

find just the right value for the state initialization and parameter value, then one

should expect this prediction to match the observed trajectory well for a long time in

comparison to even closely neighboring initializations.

Similarly, the prediction error surface for the other L values exhibit this local

minimum feature to one extent or another. These are shown in figure 3.12. It remains

fairly pronounced for the L = 10 case, but the error also remains low at larger γ

values. This reflects the fact that introducing more measurements into the action

transfers more information into the model through data assimilation, thus enhancing

the estimate precision. However, the picture appears to be even more interesting

when L is smaller than 8: the local minimum in ∆ is much more localized when

L = 7 compared to L = 8, so that predictions quickly lose their accuracy when γ is

not chosen within this narrow well. When L = 5, predictions are mostly of very low

accuracy across the surface of ∆. However, it should be noted that a local minimum

still exists just below γ = 103, even though it exists for a relatively short period of

prediction time. Despite its small size, this feature is still interesting if one considers
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Figure 3.12: Prediction error surfaces, all L values. When L < 8, it is seen that
there may be an even more significant advantage in choosing an estimate from the
“right” choice of γ compared to higher γ values. When L = 7, the local minimum
in prediction error stretches much further into the prediction window, and the
disadvantage to choosing higher-γ estimates is more pronounced. When L = 5,
predictions do not stretch very far in time with reasonable accuracy, but the local
minimum is still present and, it will be shown, consistently located.
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that this sort of analysis could be applied to an iterative data assimilation method, in

which new measurements are incorporated to improve on previous state estimates as

they become available. In other words, improving prediction accuracy for even a very

short period of time is worthwhile, especially if one is stuck with the situation where

only a small number of variables are practically observable.

3.3.2 Finding the Optimal Regularization Strength

In the previous section, it was shown that the errors in state and parameter

estimates, as well as predictions, are sensitive to the choice of Rf in the action. In

particular, these errors were shown to have a local minimum in Rf at a value which

(numerically speaking) is far below the limit of Rf/Rm = γ →∞. The local minima

in state estimation errors were not particularly deep, but importantly were highly

pronounced in the parameter estimation error εθ. This led to local minima in the

prediction error that were found to extend significantly further in prediction time than

the errors in predictions computed using estimates from neighboring γ values. This

minimum appeared to be especially pronounced and localized when L = 7, below the

expected threshold of L = 8 for producing useful estimates to seed predictions.

However, these error surfaces, in particular the locations of local minima, are

data-dependent. This means that if a different observed trajectory from the same

system is used for state and parameter estimation, which in the twin experiment

translates to using data generated by sampling a trajectory from the attractor at some

earlier or later time, the value of γ at which these local minima are located will change.

Thus, there is not just one “perfect” value of γ that can be used for prediction; rather,

it is more useful to study the system to develop probability distributions for optimal γ

values, and use them as a guide for selecting estimates at locally optimal γ given a

new data set.
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These distributions are empirically determined by repeating the above analysis

many times for S = 100 different data sets Y , and in each case recording the optimal

γ values for 1) minimizing state estimation error across the entire observation window,

2) minimizing parameter estimation errors, and 3) minimizing prediction error over

the entire prediction window. The remaining task essentially amounts to binning these

values in a histogram to generate an empirical probability distribution of optimal γ

values for prediction. Actually, to be more precise, the empirical distributions are

defined using a kernel density estimator, or KDE, with a Gaussian kernel function:

Gaussian KDE: P (γ) =
1

Sσ
√

2π

S∑
s=1

e−(γ−(γ(opt))ns )/2σ2

. (3.7)

where (γ(opt))ns is the optimal γ value found for data sample s (out of a total of S

examples) at time n in the estimation or prediction window (the parameters are

static in time, so the n index may be dropped in this definition). Choosing σ, or

the “bandwidth” of the KDE, is essentially equivalent to choosing the bin width in a

regular histogram. Various methods exist for choosing σ [72, 82, 50]. A KDE is used

rather than a histogram because it is defined by a smooth, integrable function. Thus,

the resulting distribution may be evaluated at any value of γ, and is also integrable

against other smooth functions.

The end result of this is shown in figures 3.13 and 3.14, which display the KDEs

of the empirically determined distributions of optimal γ values for state estimation

and prediction. Examining these distributions, it is clear that the local minima in

estimation and prediction errors found when examining a single data set was not

a one-off phenomenon. In each L case, there is a clear peak in distributions for

optimal state estimation and prediction at intermediate γ values; this holds true for

the parameter estimation error as well. An additional peak in the state estimation
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Figure 3.13: Empirical distributions of optimal γ values for model state estimation
and prediction. Going clockwise from the top left panel: L = 5, 7, 10, and 8. At
higher L values, where enough variables have been observed to consistently identify
the global minimum of the system, it is about equally likely that the optimal γ
value for estimation will be near 104, and near a much larger value (∼ 1011). The
peak near 104 becomes more dominant in the prediction window, however, As L
decreases, this optimal value is more reliably located at intermediate γ values, with
the high-γ peak essentially disappearing when L = 5.
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Figure 3.14: Empirical distributions of optimal γ values for parameter estimation.
This is shown for reference to compare with the result in figure 3.13. As L decreases,
the optimal γ value is more and more reliably located near 104, although the peak
at high γ is similar at all L values. This explains the discrepancy between the
high-γ peak in the estimation windows for L = 8 and 10, which disappears much
more quickly than the intermediate-γ peak in the prediction window.

errors is observed at high γ values when L = 8 and 10, an indicator that a sufficient

number of state variables have been observed to fully resolve the model, so that it is

often also likely that the γ →∞ limit is appropriate. These peaks seem to disappear

for lower L values, in which case the global minimum of the system was not identified.

In fact, the intermediate-γ peak is strongly dominant in the L = 5 case, where the

high γ peak seems to have all but disappeared.

The peaks in the parameter estimation distributions were similarly more well-

localized for smaller L values. In addition, for all L cases the peak at high γ appeared

to be much smaller compared to the intermediate γ peak. This is in contrast to the

state estimation error distributions, which have high-γ peaks for L = 8 and 10 that

are comparable to those at intermediate γ values. Note, however, that this high-γ

peak tends to disappear more rapidly. While high γ values may often be optimal

for state estimation, the parameter estimates are less likely to be accurate in this
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limit and, by extension, state predictions are less likely to be accurate. There is no

such ambiguity for lower L, but one needs to remember that the prediction errors are

generally higher in these cases despite the tight localization optimal-γ peaks.

These results are highly suggestive of a connection to the linear problem, in

which a similar phenomenon was observed when the model was right. Understanding

why this is so in this case demands a more direct analysis of the inverse problem in

terms of the effects of the model on the inversion of H; the framework for this analysis

is presented at the end of Chapter 1.

3.4 Regularization with the Wrong Model

i = 1

2

3
4

5

6

j = 1

2

3

4

Figure 3.15: Sketch of the Lorenz 96 model with fast and slow variables x and
w, respectively. The large circles represent the individual xi ∈ x, whose dynamics
obey the reduced L96 model studied in the previous chapter. The small circles
are the fast variables wj,i ∈ w; with weak coupling hx, they act like a background
perturbation on the slow system.. They have similar dynamics to the slow variables
but operate on a much faster time scale, have no explicit external forcing parameter
(K in the slow system).

Consider an extension to the previous example of data assimilation for a Lorenz

96 model, in which a set of additional fast variables w, with similar dynamics to the

“slow” model, but that oscillate with a much higher frequency, are coupled to the
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original system. Each of the Ds slow variables xi, i = 1, . . . , Ds, is coupled to its own

set of J fast variables wi,j, j = 1, . . . , J

dxi
dt

= xi−1 (xi+1 − xi−2)− xi +K +
hx
J

J∑
j=1

wj,i (slow system)

dwj,i
dt

=
1

ε
[wj+1,i (wj−1,i − wj+2,i)− wj,i + hyxi] (fast system). (3.8)

This is actually the model originally proposed by Lorenz [57]. A sketch of this system

for Ds = 6 and J = 4 is shown in figure 3.15, where the nodes represent the state

variables, and the vertices the couplings between state variables (couplings between

the fast variables are omitted for clarity of the diagram; they should be inferred by

the reader from the model equations in (3.8)).

In this example, the model used for estimate this system is purposefully chosen

to be wrong. While data for the twin experiment is generated with the larger Lorenz

96 system with fast and slow variables, the estimated model contains only the slow

variables. However, it will be shown that one may actually recover from this error

somewhat by using a similar analysis to the previous example, where estimates and

predictions are compared to observation as a function of the regularization strength

Rf/Rm. This harkens back to the example in Chapter 2 where charge distributions

were estimated from voltage data; there, the models introduced through regularization

were also wrong, but it was possible to produce reasonably accurate predictions with

the right regularization strength.

50 40 30 20 10 0 10

Figure 3.16: Lyapunov exponent spectrum for the Lorenz 96 system with fast
and slow variables (Ds = 20, J = 8).
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For the purposes of this analysis, the number of slow and fast variables (per

slow variable) are set to Ds = 20 and J = 8, respectively. The parameter values

are assigned at K = 8.17, ε = 0.1, hy = 1.0, and hx = −0.1. With these parameter

choices, the fast variables operate on time scales which are approximately 10 times

faster than the slow variables. Additionally, the model is observed to exhibit chaotic

behavior, indicated by the presence of positive Lyapunov exponents, shown in figure

3.16.

This model is used to generate data for a state and parameter inference

experiment, using a similar procedure to that presented in the previous section: the

model system is integrated forward in time from a randomly selected initial condition

in the D = Ds(1 +J) = 180 dimensional phase space, and after a period of integration

time set to allow the system to settle to its attractor after a period of transient

behavior, the trajectory is sampled every ∆t = 0.025 time units. Many such data

trajectories are collected for the purpose of carrying out a statistical analysis like the

one presented in the previous chapter.

Predictions are made starting from xN and using the estimated parameter

value in the model for each lowest-action estimate at all values of γ. The details of

this forward integration do not differ from the analysis of the previous section.

First, variational annealing was run with Ninit = 100 initializations using a

single data trajectory. The resulting action levels, as well as the measurement and

model errors, are independently plotted in figure 3.17. Without the knowledge that

the model is, in fact, wrong, it would appear that the estimation was highly successful.

There is only one action level present, and it converges to the global minimum value

of 〈A〉 = 1 at high Rf .

Things start to look interesting, however, when the prediction errors are

examined over the course of annealing. A much more pronounced minimum seems
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Figure 3.17: Action levels for estimation of the Lorenz 96 system with fast and
slow variables, using the Lorenz 96 system containing only slow variables as the
model. The slow system is fully observed, which leads to the identification of a
single estimate that appears to be the global minimum. This is deceptive, and care
must be taken to examine predictions as a function of γ to avoid the temptation of
using estimates sampled from A as γ →∞.
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Figure 3.18: Prediction errors using the D = 20 Lorenz 96 system containing
only slow variables, which is actually estimating the much larger system with 8
fast variables per slow variable. A local minimum in error consistently appears just
below γ = 104.
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to have appeared at an intermediate γ value than previously, and at high γ the

predictions are distinctly worse, uniformly. When the model was correct, it was the

case that predictions were of similar quality for about 1/4 of the prediction window at

high γ compared to the local minimum. Repeated calculation of this prediction error

surface, however, shows this to no longer be the case.
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Figure 3.19: Distributions of optimal γ values for state estimation and prediction
when the D = 20 Lorenz 96 system containing only slow variables is used to estimate
the full fast/slow system (left panel), and the slow system (right panel). Left: a
sharp peak appears just below γ = 104 in the estimation window, indicating that
estimates are consistently optimal near this value and there is never an advantage
to increasing γ to a very large value. Considering that the system appears to
be fully observed with L = 20, this should be a clear sign that the model of the
system is wrong in some way. Right: similarly to what was observed in the previous
chapter, it is equally likely that estimates drawn from the intermediate-γ action
will be optimal as from the high-γ action (depending on Y ).

If this analysis is carried out many times, the optimal γ distribution looks

much different than before. For comparison, the distribution for the L = 20 case in
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the slow system is shown alongside the KDE for the fast/slow version in figure 3.19.

The peak in the optimal γ distribution is near the value which might be expected

by looking at the prediction error in figure 3.18. While this local minimum would

often move to different γ values in the fully-modeled system, depending on the data

presented to the model, in this case the optimal value appears to be located within a

very narrow range of values. Additionally, there is found to essentially never be any

benefit to taking the γ →∞ limit.

The presence of unresolved system variables which are not contained in the

model is an obvious limitation of this framework. However, this analysis shows that

the situation is somewhat recoverable even with a partial model of the system if

the model error is introduced with the proper regularization strength, similar to the

voltage estimation problem when the model was also “wrong”. Additionally, through

a systematic characterization of the estimation problem in this system, it is found

that the choice of regularization strength Rf/Rm for optimizing prediction accuracy

is highly reliable, with the caveat that accurate predictions last for a short time in

comparison to using a complete model for the system.

While the examples presented here and in Chapter 2 were ones in which the

model was known to be wrong, and in fact one compare to the true model because

it was also known, in reality it is often the case that the model is known to only be

approximate but the unresolved dynamics are unknown. Thus, there is no way initially

to model these errors, and one would have to approximate them or compensate for

them in some way. This sort of characterization provides a method for doing this,

where the model error is effectively modeled as an additive stochastic forcing to the

dynamics (from the form of the Gaussian action), and predictions could be enhanced

for at least some short time window into the future.
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3.5 Conclusions

An extensive analysis of the estimation and prediction qualities associated with

state and parameter estimates in the chaotic D = 20 Lorenz 96 system motivates a

prediction-based criterion for selecting an optimal dynamical regularization, in the

language of Chapter 2, in which a model system is characterized by computing state

and parameter estimates, and their associated prediction errors, over an ensemble of

observed trajectories. Using a distribution of γ values which were found to be optimal

for comparing predictions with known future data, one is presented with a guide for

choosing the regularization strength. In the Laplace approximation for evaluating the

high dimensional integrals in the path space variational data assimilation formulation,

one is to use well-separated, low-action estimates, ideally the global minimum of

the action which is shown to exist for this problem when L ≥ 8. Furthermore, the

statistical interpretation of variational DA tells us that the limit Rf/Rm = γ →∞

in the action represents the limit of deterministic dynamical systems. It might be

expected, therefore, that estimates which are found by numerical optimization of A

should be selected from the limit Rf � Rm.

In Chapter 2, this was not found to be the case for a partially observed simple

harmonic oscillator model by examining 1) the spectral structure of the regularized

inverse measurement function, and 2) the state estimation and prediction error

surfaces when data is introduced. The regularized H−1 was found to have a strongly-

split eigenvalue spectrum at low γ values, indicative of a poorly regulated inversion.

Examining the projections of the data onto the eigenvectors of the regularized inverse

revealed well-defined track in the γ-(eigenvector) plane corresponding to the dominant

contribution to the estimate. An analysis of estimation and prediction errors for

varying regularization strengths was found to produce a well-defined distribution of

optimal regularization strengths at an intermediate value near γ = 100. This optimal
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regularization strength was found to correspond to a point in this structure that

indicated the transition between an undersmoothing and an oversmoothing regime

had just completed.

Because Lorenz 96 is a nonlinear system, only the error analysis of the previous

chapter could be mimicked. It was extended to empirically determine ensemble

distributions of optimal values of γ for estimation and prediction over the entire

estimation and prediction windows pictured in figures 3.13 and 3.14. This revealed

a qualitatively similar result, which is that it is often optimal to select estimates

X [γ] for which γ is within some intermediate range of values, rather than taking

the “deterministic limit”. In many cases, errors in the predictions were reduced by

a factor of 10 compared to those produced by neighboring-γ estimates. This effect

was especially pronounced for smaller values of L, in this case L = 5. Whereas

the predictions did not last for nearly as long of a time with any kind of reasonable

accuracy, compared to the higher-L cases, the location of the local minima in prediction

error were much more reliably located around a particular value for different data

inputs Y . Additionally, once the system has been characterized as in figures 3.13 and

3.14, it may be possible to use these distributions as a guide for optimal estimate

selection. For larger L, the advantages of choosing a intermediate γ value seem to

disappear: there are still apparently peaks near this intermediate value, but a strong

peak also appears at high values of γ. This is not unreasonable from theoretical

considerations, because it is assumed that as L increases, more information about the

data is introduced to the model, so that taking the deterministic limit may be in fact

be the more reasonable approach.

When the model of the system was wrong because it did not contain dynamical

equations for a large number of the system variables, careful regularization of the

problem provided a way to improve predictions for at least a short time. A similar
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effect was observed in Chapter 2 where accurate state estimates and, ultimately,

predictions were recovered within small ranges centered about some finite value of γ.

This prediction-based criterion may prove to be useful as variational DA

methods are applied to more fields, such as neurobiology and astrophysics, as well as

in larger and more complex problems in more traditional fields for data assimilation,

such as numerical weather prediction. When observing neurons in live networks, there

is almost certainly a significant portion of the model which is missing if one uses a

single-cell model for data assimilation as in [81, 48, 59]. Additionally, the method was

found to be more reliable for the low-L system. Underobserved systems abound in the

fields previously mentioned, making this potentially an even more fruitful application

if the observability situation becomes worse in new problems.

A framework for understanding why certain choices of regularization from the

viewpoint of inverting the measurement function was discussed in the conclusion to

Chapter 2 for nonlinear systems. Combining this analysis with the prediction-based

results could provide a much deeper level of insight into the nature of observability

and stability for estimated chaotic systems. In particular, for understanding the

value of measurements in a chaotic system; addressing the lower limits on how many

measurements are required; or, given that the regularization is representative of a

model error, why the optimal regularization chooses a particular value in terms of the

structure and dynamics of the model.
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Chapter 4

Reduced Models

The previous chapters presented a framework for model state and parameter

estimation in partially-observed systems using a variational method of statistical data

assimilation. In that context, a partial observation of L < D of a model’s D state

variables are used to infer the model’s full state and its parameter values for the

purposes of forward prediction.

Here, an alternative formulation is presented in which the model itself contains

only the L observed variables, and the remainder, which is the model error, is modeled

through a discrete, stochastic model reduction approach presented in [14, 58]. These

errors are treated as nonlinear stochastic processes, in general, with the hope of

recovering the full range of dynamical behavior observed in the original system. This

particular construction of the reduced model, based on the more general NARMAX

model, sidesteps the difficulty associated with carrying out model reduction with the

Mori-Zwanzig approach for continuous-time ODEs, but maintains some of the same

general features. A significant challenge is in deciding how the error themselves should

be modeled; this process is shown for a simple spiking neuron model, the Fitz-Hugh

Nagumo system. Finally, a general framework for neuron model reduction with more
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complex stochastic models is presented. While the author is not prepared to present

the results of preliminary work in this area, this introduction serves as the motivation

for future research directions.

4.1 Stochastic Model Reduction: An Approach to

Modeling Model Errors

In the approach to state and parameter inference that has been used up to

this point of the dissertation, one always assumes an ODE model for the system in

question,

dx

dt
= f(x, t;θ) (4.1)

where x ∈ RD and f : RD → RD, i.e. the system is D-dimensional; one uses

observations of x to estimate an initial condition for prediction, as well as values

for the model parameters θ. (It is implied from now on that f(x) = f(x, t;θ),

unless otherwise noted.) Only L of these variables are actually observed, and data

assimilation method is used to estimate the trajectories of the remaining D − L

variables and model parameters θ. The metric used to assess the quality of the model

is how well it can make predictions for the system, assuming one has reasonable

estimates for the initial conditions.

To begin the discussion on how a reduced modeling approach is used, consider

splitting up the ODE system into two pieces for the observed variables x, and the

unobserved variables y:

dx

dt
= f(x) + z(x,y),

dy

dt
= g(x,y) (4.2)
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In this construction, the “missing” dynamics are explicitly separated into an error

term z, without loss of generality. If one wishes to predict using such a model, it

requires estimating the states of x and y, and all of the parameters θf , θg, and θz,

then predicting forward from the estimated initial condition xN and yN at the end of

the observation window. In fact, this is just the variational data assimilation approach

of the previous chapters.

In the reduced modeling approach that is presented here, one constructs a

model which contains only observed quantities x, while simultaneously acknowledging

that a larger system is actually being observed, likely containint additional variables

required to accurately describe the observed system. This, again, requires modifying f

in some way to take into account dynamics of the full model containing the unmodeled

variables, except that now there is no explicit dynamical equation for y:

dx

dt
' f(x) + z(x) (4.3)

In other words, it is implicitly assuming that there are “hidden” variables present

in the observed system, but that we wish to model their influence without explicitly

including them in the model. The cost of such a construction is that z necessarily

contains memory terms which take into account the past values of the hidden variables.

This is because information takes time to propagate from one variable to another; for

example, if two quantities x1 and x2 are coupled linearly in their dynamics:

dx1

dt
= λ1 (x2 − x1) ,

dx2

dt
= λ2 (x1 − x2) (4.4)

then perturbations in x2 take a time of order 1/λ1 to propagate to x1, and vice versa.

The effect of memory can be explicitly shown in this linear system. Solving
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the x1 equation:

d

dt

(
x1e

λ1t
)

= λ1x2e
λ1t

⇒ x1(t) = x1(t0) e−λ1(t−t0) + λ1

t∫
t0

ds x2(s) e−λ1(t−s). (4.5)

If the system has evolved from the initial time t0 to some short time t later, when

t− t0 � 1/λ1,

x1(t) ' x1(t0) [1− λ1(t− t0)] + x2(t0) λ1(t− t0), t− t0 � 1/λ1 (4.6)

then x1(t) is, unsurprisingly, near its initial value, so the past behavior of x2 hasn’t

had time to influence x1 much. On the other hand, when t� t0, e−λ1(t−t0) becomes

small and

x1(t) ' λ1

t∫
t0

ds x2(s) e−λ1(t−s) (4.7)

so that x1 is now dominated by the memory term. The memory kernel decays

exponentially into the past, so that the system actually has a finite memory:

x1(t) ' λ1

t∫
t0

ds x2(s) e−λ1(t−s) ' λ1∆t x2(t− τ) [1− λ1∆t] (∆t = t− τ) (4.8)

where τ reflects how far into the past the system “remembers” x2 (the time beyond

which contributions of order (λ1∆t)2 can be ignored). Regardless, the memory term

dominates x1 when we are well beyond the initial time, so it must be taken into

account for an accurate, reduced description.

It is actually possible to use this memory property to develop a closed system
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for x1, which is a dynamical system for x1 that contains only x1 as a dynamical

variable. Following the same logic as above, but for x2:

x2(t) ' x2(t0) [1− λ2(t− t0)] + λ2x1(t0)(t− t0), t− t0 � 1/λ2. (4.9)

Suppose that one wishes to simulate x1 at regular times t0, t1, . . ., where each time

interval tn+1 − tn ≡ ∆t is small. Then,

x1(t1) = x1(t0) [1− λ1∆t] + λ1x2(t0)∆t,

x1(t2) = x1(t1) [1− λ1∆t] + λ1x2(t1)∆t

= x1(t1) [1− λ1∆t] + λ1 {x2(t0) [1− λ2∆t] + λ2x1(t0)∆t}∆t

... (4.10)

This is a dynamical system (now in the form of a difference equation, rather than an

ODE) for x1 which is a function of x1 alone, and is thus a closed system for x1. The

price we pay is that an initial condition is still required for x2, which is reflective of

the system’s memory of x2.

Discrete-Time Model Reduction

It is a far more complicated task to develop a reduced model for the more

general case in which the full model system is nonlinear and/or stochastic. If the full

system is split into observed and unobserved variables, x and y respectively,

ẋ = f(x,y), ẏ = g(x,y) (4.11)
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then in the reduced system,

ẋ ' f0(x) + z(x) (4.12)

the approximate dynamics f0 are obtained by a projection f → f0. This is almost

certainly not one-to-one when f and/or g are nonlinear functions. In order to fully

explore the solution space of the full model, then, z must be generalized to a nonlinear,

stochastic function of x [14].

The Mori-Zwanzig (MZ) formalism [21, 12, 91, 92] is one approach to calculating

expressions for the remainder term f0 and the error z. MZ yields an exact expression

for z containing a sum over noise and non-Markovian memory terms, which shows

the necessity of including memory in a reduced modeling approach. Carrying out the

calculations in the MZ formalism, however, is a difficult task, and there appears to be

no more than one successful attempt in the literature [13] at using it for a nonlinear

problem.

The formulation presented here follows a discrete-time model reduction ap-

proach developed by Chorin and Lu in [14, 58], where they showed that this approach

is a powerful tool even for chaotic systems; in particular, the model is shown to be

able to predict well in severely underobserved, chaotic systems. Here, one takes the

viewpoint that most real data assimilation problems are naturally cast as discrete-

time problems in the first place, especially since solutions are generally calculated

numerically on a computer. It uses a NARMAX (Nonlinear AutoRegressive Moving

Average with eXogenous inputs) model [6, 24], which has been widely used previously

in nonlinear system identification [11, 37]. Starting with a discrete system sidesteps

the difficulties associated with performing a reduction of the ODE system directly, à

la the Mori-Zwanzig procedure.
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First the dynamics are recast as a discrete forward mapping in time, which is

in the form of a difference equation:

xn+1 = xn + ∆t
[
R∆t(x

n) + zn+1
]

(4.13)

where R∆t is the time integral of f0:

R∆t(x
n) =

1

∆t

tn+1∫
tn

dt f0(x). (4.14)

In practice this integral is performed by numerical approximation, so the equality

above is not actually exact.

The remainder term, zn+1, absorbs the model error associated with the ap-

proximate projection mapping f → f0. By our previous logic, such a reduced model

should have memory and contain stochastic elements. It should also be nonlinear if

the model is to mimic the full dynamical range of the full system [14]. The NARMAX

formulation has these properties, giving the remainder z the form1:

zni =

p∑
j=1

ai,jz
n−j
i +

r∑
k=1

s∑
j=1

bi,jkQi,j(x
n−j) +

q∑
j=1

ci,jξ
n−j
i + ξni

≡ Φn
i + ξni . (4.15)

Note that the sums in this model are actually in time: zn−ji , for example, is the

i-th component of z but j steps into the past. These sums are where the memory

of the model explicitly appear. In addition to having a memory term for the error

itself, which is the first term in (4.15), the model allow for nonlinearities through

the functions Qi,j; exactly how these functions are to be chosen will be shown in a

1This is the equation for just one component of z; every component zi has its own set of NARMAX
parameters ai, bi, and ci, as well as its own noise term ξi ∼ N(µi, σ

2
i ).

110



simple example later, but note that they should be motivated by knowledge of the

physics of the full system. Finally, the stochastic part of the model is in the third and

fourth terms, for which there is also explicitly a memory term. Note that the third

term is not the only place where memory of the noise enters the model: memory of

the noise enters implicitly through the first and second terms, which are otherwise

deterministic.

This formulation introduces a new set of parameters into the model that must

be estimated from data: the NARMAX coefficients a, b, and c, as well as the noise

parameters µ and σ. In order to estimate these parameters, one introduces the notion

of a probability distribution for the model parameters conditioned on a time series of

data. The MLE minimizes the negative log-likelihood of this distribution, which is

given by:

− lnL(θ|x1:N) =
N∑

n=M

|zn − Φn(θ)|2

2σ2
+
N −M

2
lnσ2 (4.16)

where θ = {a, b, c, µ, σ} and M = max {p+ 1, r, q}. This function can be minimized

using any number of numerical optimization methods; we take advantage of the fact

that the coefficients a, b, and c enter linearly into the model to precondition the

estimate using the LSE (least-squares estimator).

Note that, despite the appearance of a “new” variable z, (4.13) is still a closed

system for x. Simply use the definition of z component-wise in terms of x

zni =
xni − xn−1

i

∆t
−R∆t,i(x

n−1) (4.17)

on the right-hand side of (4.15), and substitute back into the original definition (4.13).
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This yields:

xni = xn−1
i + ∆t

{
R∆t,i(x

n−1) +

p∑
j=1

ai,j

[
xn−ji − xn−j−1

i

∆t
−R∆t,i(x

n−j−1)

]

+
r∑

k=1

s∑
j=1

bi,jkQi,j(x
n−j) +

q∑
j=1

ci,jξ
n−j
i + ξni

}
. (4.18)

It may still be useful to keep track of z separately for the purposes of analyzing

the error in the reduced model, i.e. where the reduced model is the most “wrong”.

This knowledge can aid in improving the model, whether through the introduction of

additional Q terms, or adjusting the lengths of the memory in each term (p, q, and r).

Once the parameters of NARMAX have been selected by MLE on an observed

data trajectory, it can ultimately be used for prediction, with a different approach

for short-term vs long-term forecasts. For short-term predictions, the Gaussian noise

terms in (4.15) are initialized such that ξ1 = · · · = ξq = 0; then, ξq+1, . . . , ξm are

estimated using equation (4.15), where m = max {p, r, q} + 1. This provides the

necessary initialization for the first step in prediction, but beyond this step the

prediction depends on the particular initializations of future values of ξ. Thus, an

ensemble of predictions is made with different realizations for ξ, which may then be

compared directly with each other, or analyzed statistically in the noise ensemble

distribution.

Long-term forecasts do not require this careful initialization of ξ; as long as the

system is ergodic, then the autocorrelation functions should become independent of the

initialization after some sufficient time [14]. An ensemble of long term forecasts may

appear to differ significantly from each other if one simply compares the discrepancy

between them over time. However, it is often still of interest to study the statistics of a

solution over long times rather than the exact trajectories. In the simple FHN neuron

model example presented below, the distribution of voltage values as well as interspike
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intervals (the times between neighboring spikes) are examined and compared to the

statistics of the full model.

4.2 Data Assimilation with a Reduced Model

The ultimate goal of constructing a reduced model like the one in eq. (4.13),

with a model error z defined in (4.15), is to model and predict time series of a physical

system with observed variables x ∈ RL. This is a problem of data assimilation,

where the parameters to be estimated from observed time series are the NARMAX

coefficients a, b, and c. Additionally, we must estimate a good initial condition for the

reduced model from observations, where “good” in this context means:

1. Producing accurate short-term predictions of new time series, and

2. Reproducing the statistics of the observed system faithfully.

The second consideration here is new, compared to the variational approach used in

previous sections and chapters. The observed system is in a sense inherently stochastic

now, under the assumption there are unmeasured variables in the system for which

we have no model. Thus, the best one can ever hope to do in long-term predictions

is to get the statistics right. Exactly which statistics are important varies from

system to system; for example, one may simply wish to correctly reproduce the mean

trajectories 〈xi〉, or their variances 〈x2
i 〉 − 〈xi〉

2. In the neuron example presented

below, the statistics of the interspike interval are of particular interest in neurobiology

and computational neuroscience [35, 46, 85, 9].
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4.2.1 Stochastic FitzHugh-Nagumo: A Low-Dimensional Neu-

ron Model

An example of a relatively simple, low-dimensional model for a spiking dy-

namical system, the FitzHugh-Nagumo (FHN) model [28, 64], is considered as a

candidate for discrete stochastic model reduction. FHN is a simplified biological

neuron model which exhibits some basic characteristics of more detailed models like

the Hodgkin-Huxley (HH) model [40]. Important features of the HH model include,

of course, spiking behavior, as well as a spike frequency which is dependent upon

the magnitude of the injected current stimulating the cell. In the HH model, spiking

behavior is explained by the presence of “gating variables”, which represent the non-

linear bulk response of the voltage-activated protein gate structures present in the

cell membrane. Extensions of the HH model abound in the literature, including the

addition of calcium-dependent gating variables [23], synaptic structures [16], as well

as nonadditive stochastic elements which describe the complex statistics of random

opening and closing of individual ion gates in the membrane [29]. While many of

these cases would surely provide solid motivation for a reduced model study, to the

knowledge of the dissertation author there are no examples of the literature of this

approach being applied to neuron models. Thus, this discussion starts small by

considering the heavily simplified FHN model and establishing some results of the

NARMAX model reduction method.

To wit, FHN is actually an approximation to HH. To understand how, consider

the full Hodgkin-Huxley model system:

V̇ = gNam
3h (ENa − V ) + gKn

4 (EK − V ) + gL (EL − V ) + I(t)

ẋ =
x∞(V )− x
τx(V )

, x ∈ {m,h, n} (4.19)
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where V is the neuron’s membrane potential; m and h are the activation and deac-

tivation gating variables, respectively, for the sodium (Na+) current; and n is the

activation gating variable for the potassium (K+) current. Rinzel made the observation

in [73] that τm is small compared to τh and τn for all V ; thus, m ≈ m∞(V ) throughout

the model’s trajectory through phase space. This approximation is valid because τm

corresponds to a very fast relaxation time for the m equation in (4.19), so m closely

“tracks” m∞ compared to h and n. Additionally, Krinsky and Kokoz in [49] found

that n ≈ α + βh, where α and β are empirically determined constants which fit this

approximation on a model trajectory. Rinzel’s approximation effectively removes m as

a dynamical variable from HH; Krinsky and Kokoz’s approximation further reduces it

by one variable.

This effectively leaves two variables behind in the model: V , the membrane

voltage; and w, which is a linear combination of the old gating variables. The FHN

model, which is a further reduction from the current state of the reduced HH model,

is based on the simple observations that in the remaining (V,w) phase plane, the

V̇ = 0 nullcline is approximately cubic, and the ẇ = 0 nullcline is approximately

linear. Thus, we see now that the FHN model is a good approximation to HH when

the m variable is fast compared to h and n, and when the model is operating near

the nullclines in the phase space. When the model spikes, however, it is far from a

nullcline; the consequence of this is that spike shape cannot be modified significantly

by altering I(t), whereas in HH it can.

What remains is the FHN model, a 2-dimensional ODE which contains a single

“voltage” variable, u, and a “gating” variable w:

u̇ = u− u3

3
− w + I(t), ẇ =

u+ a− bw
τ

(4.20)
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This model is an ideal candidate for the NARMAX model reduction scheme, as it

is polynomial in u and w. The nonlinear Q functions in NARMAX can thus be

reasonably restricted to contain only polynomial terms in u. This is shown to be true

later in the analysis by more direct means.

It is of great interest in particular to study how this model behaves under

stochastic forcing. Real neurons exhibit many effects of stochasticity in their behavior:

• Real neurons spike anomalously when the injected current is below the spiking

threshold, and when other effects such as rebound spiking are taken into account,

• They have their spikes anomalously terminated above threshold,

• They exhibit phase drift, in which the interval between spikes fluctuates like a

random variable, and

• They show effects reminiscent of stochastic resonance.

In this study, a white noise signal is injected into the FHN model. This is actually

quite artificial from the perspective of sources of noise in nature. A real neuron may

exhibit stochastic behavior due to noise in the gating variables, which is properly

represented by multiplicative noise in a Langevin equation description [29]; or what

appears to be stochastic behavior in a network when there are a large number of

unknown inputs from other neurons. Regardless, this example is still illustrative in

establishing model reduction as a technique for neuron systems, especially in the

analysis of the complicated statistics of spike timings.

The purpose of analyzing a reduced NARMAX model for FHN is thus to gain

a grasp on how one could reduce a more complex neuron model using the NARMAX

construction. FHN is much simpler to analyze than Hodgkin-Huxley, as it does not

require the inclusion of nonlinear Q terms in the NARMAX representation. However,
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it still shares important dynamical properties with HH like the dependence of spike

frequency on the amplitude of I(t). The gating variable, as we shall see, is simple to

remove from FHN and replace with memory terms containing u alone. Eventually the

gating variables must all be removed from HH if one is to construct a reduced model

of an HH-like system, because the gating variables are not directly observable. The

view taken here is thus that reducing HH is essentially a harder version of reducing

FHN, and should be studied after FHN reduction is well-understood.
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Figure 4.1: Examples of FHN model trajectories. In the top panel, the cell is held
well above treshold with a DC injected current. A small amount of noise is added
to this signal, causing the phenomenon known as ”phase drift” in which the spiking
frequency fluctuates over time. The bottom panel shows a very different behavior,
induced by holding the cell just slightly below threshold with a DC current that
has a much larger noise signal added to it. The result is a cell that appears to fire
”anomalously” given that the injected current is nominally too small to produce
spikes.

Before moving on, it is worth examining what solution to the FHN equations

look like under a fairly simple form of stochastic forcing. In figure 4.1, the FHN system

is subjected to a DC current with a small amount of noise added to it:

I(t) = IDC + η(t),

〈η(t)〉 = 0, 〈η(t)η (t′)〉 = σ2δ(t− t′). (4.21)
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The statistics of η means this is uncorrelated Gaussian (white) noise. In particular,

in fig. 4.1, the values of IDC and σ2 are set in such a way as to “coax” two different

behaviors from the FHN neuron. In one case, IDC is set to be well above the threshold

level for spiking, and σ is small so that large random fluctuations in the injected

current are rare enough that the interruption of (nearly) monotonic spiking behavior

is rarely seen. However, this small noise does have a measurable effect on the phase

dynamics of the cell, where the time intervals between spikes are seen to oscillate

about a mean value.

In the second case the model displays more complicated behavior. The constant

term in the injected current is set to be just slightly below the threshold value so that

the model would not normally spike on its own, but the noise is set to be large enough

that random fluctuations in the current often temporarily push the neuron over the

threshold for long enough that a spike occurs. While the white noise model used here

is, again, almost certainly inadequate for describing the stochastic forcing of a realistic

neuron, this case is studied because the model acts as a nonlinear filter for the input

noise, thus in principle generating nontrivial statistics for the voltage or firing times.

The goal is to test if the reduced model is able to reproduce these statistics.

Identifying Stochastic Memory Terms with NARMAX Model Reduction

In the FHN model, the gating variable w is considered to be unobservable on

biological grounds, so its dynamical equation in (4.20) must thus be removed to form

a reduced model which contains only the observable voltage variable, u. Consider
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solving the w equation by separation of variables:

ẇ =
u+ a− bw

τ

⇒ w(t) = w(t0) e−
b
τ

(t−t0) +
a

b

(
1− e−

b
τ

(t−t0)/τ
)

+
1

τ

t∫
t0

ds e−
b
τ

(t−s)u(s). (4.22)

We see that w(t) has an exponentially decaying dependence on its initial condition

w(t0), tends to equilibrate towards a/b for t� t0, and its dynamics have a memory of

u which is of a time equal to approximately τ/b in the past. This solution is fairly

simple because of the linear dependence of ẇ on w, but this actually a general feature

of gating variable dynamics in neuronal models. The difficulty arises in the nontrivial

dependence of the gating variable dynamics on voltage; in this model ẇ is also linear

in u, so the solution to the ẇ equation is in the form of a linear operator acting on u.

This model will thus be much simpler to reduce than those containing more realistic

gating variable dynamics, in which ẇ would depend nonlinearly on u.

In the u̇ equation of FHN,

u̇ = u− u3

3
− w + I(t),

there is a term linear in w which must be removed if we are to obtain a reduced

model containing u alone. Consider a very basic approximate forward mapping for

this equation:

un+1 = un +

tn+1∫
tn

dt u̇

' un + ∆t

[
un − (un)3

3
− wn + In

]
. (4.23)
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This indicates that a discrete model, at the very least, requires a term which is linear

in the immediate past state of w. Equation (4.22) says that this can be represented as

a linear operator on past values of u. Thus, it is reasonable to replace w in the discrete

reduced model with terms which are linear in the past values of u. This motivates the

choice of a single Q(xn−j) = un−j for the NARMAX representation. It remains to

choose p, q, and r. These different choices should be analyzed by comparing estimates

to data, as well as the trajectories of short-term predictions and statistics of long-term

predictions. However, as stated previously, this analysis considers only the case where

p = q = r. It was found that setting q > 1 led to instability in the solutions, which

is almost certainly due to the effect of the memory term in amplifying the noise in

the signal. p and r were also set to 1 because no significant advantage was found in

increasing these values further.

To identify terms in the NARMAX representation that should be used for

modeling the FHN system, once again a twin experiment is performed by generating

synthetic data from the original FHN system. Again, this is done by integrating the

FHN system forward in time. The injection of a noise term into the voltage equation

requires that a stochastic integration method be used to generate these solutions. In

both cases a Milstein [61] method of strong order 1.5 was used with an integration

time step of ∆t = 0.001. The data is saved with the coarser time step of ∆t = 0.1 for

N = 106 time steps. Two such trajectories are saved, where one is used for training

the NARMAX parameters by the ML estimation approach described in the previous

section, and the other as a validation set for testing the estimated NARMAX model

through prediction. Only the first half of the training set is used for estimating the

NARMAX parameters, while the second half is saved as a separate validation set for

later. Samples of the trajectories for the two noise level cases are shown in figure 4.1.

One caveat in this case, however, is that the NARMAX method becomes very
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unstable when there is noise in the measurements, due to the presence of the memory

terms which tend to amplify noise signals. Some preliminary work has been conducted

by the author with his collaborators in this project, Alexandre Chorin and Fei Lu,

but it remains an ongoing research problem. Thus, the twin experiment is carried out

using noiseless synthetic data.

We thus examine the success of a reduced model in two regimes of FHN

parameterization and forcing, which produce very different traces that will require

reparameterizing the reduced model accordingly. In both cases, the injected current

is constant in time, and a stochastic forcing is additionally introduced to model the

effects of the neuron’s environment as well as channel noise. A Gaussian noise term is

added to a constant injection I = I(t), where the statistics of the noise are given by

〈η(t)〉= 0, 〈η(t)η(t′)〉= σ
2
cδ(t− t′)

Altering the values of I and σ define the two cases under consideration:

1. I > Ithr, σc = 0.03: The model exhibits nearly monotonic spiking but with phase

drift. The noise is small enough that anomalous spiking or spike termination is

rare, but the interval between spikes is now a random variable.

2. I . Ithr, σc = 0.07: The injected current is just below threshold, so that with

no additional forcing the voltage is constant, but a small positive perturbation

will induce a spike. This is known as the excitable case, and when this level of

stochastic forcing is introduced the spiking behavior is seemingly random.

4.2.2 Numerical Methods and Results

The NARMAX parameters were estimated using the synthetic data generated

by the procedure described in the previous section. Minimizing the likelihood function
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L was done by preconditioning the solutions with the iterative least squares algo-

rithm, which was repeated until the least squares estimator was found to stabilize.

This preconditioned estimate was used as the seed for numerical optimization of L.

Derivatives of L were computed using PYADOLC [83], a Python wrapper around

the ADOL-C [33, 32] library for automatic differentiation. The minimization was

performed using L-BFGS [8, 89, 62] as implemented in ALGLIB [7].

The resulting parameter estimates for the two cases are shown in table 4.1.

In both cases, a value of µ, the bias term, was estimated to be near 0. This is not

terribly surprising, because the true value for the DC current I was known in the

estimation step. A bit more surprising were the small sizes of b1, which meant that

the linear term for the immediate past value of u is neglected as a contribution to the

model. The values of σ were close to the values used to generate the twin data, which

is a good check on the validation of the procedure.

Finally, the results of short- and long-term predictions are compared to the

training and validation data sets. In one case, the predictions is tested against the

second half of the training set, while in the other it is compared to the validation

set. The short term predictions were repeated over an ensemble of realizations for

the measurement noise. The long term predictions were carried out by integrating

the NARMAX model for a long time, and then directly computing statistics of the

trajectory. The trajectories of the short-term predictions are shown in figure 4.4, while

the long-term statistics are displayed in figures 4.2 and 4.3. These distributions were

computed using a kernel density estimator (KDE), which was defined previously in

a1 b1 c1 µ σ

Scenario 2 0.9992 −7.990× 10−4 -0.9991 −5.581× 10−4 0.2988
Scenario 3 0.9992 −7.982× 10−4 -0.9991 −5.583× 10−4 0.6990

Table 4.1: NARMAX parameter values in scenarios 1-3.
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(3.7).

The interspike intervals were calculated by choosing a threshold value of 1,

above which the model was considered to be in the onset of a spike. A criterion was

set to ignore the trajectory as it decreased down back past 1 so that spikes would not

be counted twice. This same method for counting spikes was applied to the predictions

as well as the synthetic data used for training or validation.

4.2.3 Discussion

The reduced model for the FHN model with stochastic forcing was found to

be a partial success by comparing the predictions made by the model with the time

series data used to train the model, as well as a separate set of validation data which

was generated by the same system, but with different initializations for the noise and

the states u and w. Short term predictions were not successful: the model tended to

spike almost immediately after initialization, even in the case where the trajectory

was initially relatively flat (case 2).

However, some important general features of the trajectories were maintained

from the original model in both cases. In case 1, the reduced model spiked nearly

monotonically, but clearly exhibited phase drift based on the observed interspike

interval distribution shown in figure 4.3, which was seen to have a finite width. The

model for case 2 exhibited “anomalous” spiking just as the model used to generate the

training data did. In fact, the empirical distribution of predicted interspike intervals

matches that of the training and validation data with high accuracy. It was unclear

why, in case 1, there is such a large mismatch in the two distributions when comparing

to the continuation of the training set. This most likely warrants a simple re-checking

of the calculation for errors.

The distributions of the predicted voltages themselves were found to be excellent
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Figure 4.2: Observed distributions of the voltage variable u, calculated for long-
term predictions using NARMAX (blue dashed line) and the original FHN system.
In both cases (low- and high-noise systems), the reduced NARMAX model is able
to recreate the original system’s statistics well.
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Figure 4.3: Interspike interval distribution comparison between full and reduced
NARMAX models. Approximate distributions were computed from data using a
Gaussian KDE; the legends in each figure indicate the number of spike pairs used to
compute the KDE. In the cases shown in the top-left panel and the bottom panels,
the distribution in the NARMAX model was a reasonably close match with the full
model. In case 2 (high-noise), the NARMAX model did not appear to fully capture
the tails of the distribution in the original system. The number of observed spike
pairs is relatively low in each case, however; more experiments should be conducted
to confirm if this is a failure of the NARMAX model, or a result of sampling error.
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Figure 4.4: Ensemble predictions using the reduced model, vs a single time series
from the full FHN model. Note that, in both cases above, the reduced model tends
to spike immediately, but retains the qualitative features of the original model.

matches to the distributions for the training and validation data. This is less surprising

than the result for the ISIs, but serves as a good validation check for the reduced

models. The voltage in the full FHN model, in both cases of stochastic forcing, was

found through preliminary calculations (not shown) to have a stationary distribution

in the long-time limit. The larger discrepancies in the ISI distributions may be due to

the fact that ISI does not have a stationary distribution over long times (this was not

checked); but may also be due to sampling error since the number of spikes contained

within the training and validations sets only numbered in the several hundreds.

The stochastic model reduction method presented in this chapter has thus

been established for the reduction of neuron models. While the FHN model is not

exceedingly complex, and does not contain strong nonlinearities or complex noise

dynamics, it serves as a useful example for thinking about model reduction for more

realistic neuron models like Hodgkin-Huxley, or even a slightly less complex model

like Morris-Lecar but with the inclusion of channel noise. If these extensions to more

complex models prove to be useful for prediction, this would already be a success

because the nonlinear NARMAX formulation is generally well suited to reduced models
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of nonlinear systems.

Additionally, despite poor performance for short-term prediction, the reduced

model was found to reproduce long-term statistics of the voltage and, more interestingly,

the interspike intervals. These are important properties of a neurobiological system

to preserve in a model, thus likely being of interest in biology and computational

neuroscience.

A final comment is on two worthwhile extensions to this reduced modeling

method: modifying it to be stable in the presence of measurement noise, so that

it is more generally applicable in realistic experiments where measurement noise is

almost always present; and also extending it so that the parameters of the dynamical

model f0 which enters into the NARMAX definition can be estimated, beyond just

estimating the coefficients of the NARMAX expansion.

4.3 Nonlinear Gating Variable Equations

Preliminary work has been performed on model reduction for neuron models

with nonlinear gating variable equations. Successful reduction of such models is

critical for modeling real neurons. FHN has some limitations in approximating the

Hodgkin-Huxley model, discussed in the introduction to the previous section; beyond

this the hope is to use this formalism to model more realistic sources of stochastic

neuronal behavior, like gating variable noise.

FHN was still a useful starting point for this more general problem. The

simplest models of neuron models with nonlinear gating variable dynamics are of the
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form

dV

dt
= f(V, x1, x2, . . .) + I(t),

dx1

dt
= g1(V )− x1hi(V ),

dx2

dt
= g2(V )− x2h2(V ), . . .

(4.24)

where f is usually polynomial in the gating variables x1, . . .; gi and hi are nonlinear

functions of V for gating variable xi. Despite their nonlinear dependence on V , these

equations are still in a form that can be solved using separation of variables:

xi(t) = e−
∫ t ds hi(V (s))

[
xi(0) +

∫ t

ds1 gi(V (s1))e
∫ s1 ds2 hi(V (s2))

]
. (4.25)

In FHN the integral in brackets was greatly simplified and only depended linearly on

past values of the voltage; no such simple statement can be made for arbitrary gating

variable dynamics.

However, we consider the Morris-Lecar (ML) model as a starting point for

constructing a reduced model that incorporates an approximation to this more com-

plicated integral. This is a model with a single gating variable, and is defined as

follows:

dV

dt
= gCam∞(V ) (ECa − V ) + gKn (EK − V ) + I(t) = f(V, n) + I(t) + z

dn

dt
=
n∞(V )− n
τn(V )

x∞(V ) =
1

2

[
1 + tanh

(
V − V T

x

V S
x

)]
(x ∈ {m,n}) , τn(V ) =

τ 0
n

cosh
(
V−V Tn

2V Sn

) .
(4.26)
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Using substitution of variables to solve for n(t) yields

n(t) = e−
∫ t ds [1/τn(V (s))]

[
n(0) +

∫ t

ds1
n∞(V (s1))

τn(V (s1))
e
∫ s1 dss[1/τ(V (s2))]

]
. (4.27)

Approximating the integrals in the above expression using the “right-side-rule” Rie-

mann sum approximation yields

n(tn) = e−∆t/τn(V (tn))

[
n(tn−1) +

n∞(V (tn))

τn(V (tn))
∆t

]
(4.28)

where ∆t = tn − tn−1. Such an expression may be substituted into a discretized

forward integration of the V̇ equation, thus providing the form of the nonlinear term

in the NARMAX construction.

What is surprising is that this simple construction appears to reproduce the

spiking statistics of a ML model with channel noise [29]:

dV

dt
= gCam∞(V ) (ECa − V ) + gKn (EK − V ) + I(t) = f(V, n) + I(t) + z

dn

dt
=
n∞(V )− n
τn(V )

+

[
n∞(V ) + (1− 2n∞(V ))n

NKτn(V )

]1/2
dW

dt
χn(n)

x∞(V ) =
1

2

[
1 + tanh

(
V − V T

x

V S
x

)]
(x ∈ {m,n}) , τn(V ) =

τ 0
n

cosh
(
V−V Tn

2V Sn

) .

χn(n) =


Ae−B/[1−(2n−1)2], 0 < n < 1

0, otherwise

(4.29)

The noise in this model is multiplicative because it depends on n and V . Despite this

fact, the reduced form of ML proposed for the deterministic model appears to recreate

the spiking statistics of the multiplicative noise model, even though the functional

form of the noise is not taken into account in the construction of the model. While

the author is not prepared to report on these results yet, it opens an avenue of inquiry

129



for the reduction of arbitrary neuron models, even if the observed system contains

nontrivial multiplicative noise statistics. Additionally, ML just serves as a stepping

stone for more complex neuron models containing additional gating variables, many

of which follow the general form of (4.29).
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Chapter 5

Deep Learning as Statistical Data

Assimilation

5.1 Introduction

Thus far this dissertation has focused primarily on the application of data

assimilation (DA) methods to solving nonlinear inference problems in physical dynam-

ical systems. The use of variational and stochastic model reduction methods for state

and parameter estimation in partially observed, chaotic dynamical systems, as well as

in a simple stochastic spiking neuron model, was explored in some detail. In the case

of variational DA, insights from linear inverse problems were used to develop a method

for estimate selection to improve prediction quality of model estimates in nonlinear

systems. These problems all had a similar overall structure, in which information is

transferred from a time series of observations to a model of the observed system using

to estimate the properties and dynamical state of a proposed physical model for the

observed system. The models considered were in the form of (stochastic) ordinary

differential equations (ODEs and SDEs), where physical properties manifested as
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model parameters, and the primary concern in estimating the state was to generate a

set of initial conditions for prediction of the system’s future state by way of forward

integration in time.

In this final chapter, variational data assimilation is expanded to encompass

a seemingly unrelated problem, which is the training and analysis of deep neural

network (DNN) models for machine learning (ML). ML has rapidly grown as a field

over the past several decades alongside advancements in computational capabilities

and developments in deep learning [67, 31, 53]. The process of DNN training shares

a surprising number of features with our previous task, which may equally well be

re-framed as “training” a dynamical system to recognize the physical properties of an

observed system from time series data, with the goal of choosing the optimal system

based on its ability to predict forward in time from a large collection of partial, noisy

initial conditions. This latter task is essentially the same as generalization in ML

model training.

In this chapter it is shown that variational DA in dynamical systems and

deep neural network training are essentially equivalent statistical physics problems.

Numerical experiments with neural network training using variational assimilation

are presented to argue the utility of this equivalence. Ultimately, it is shown that DA

may be a powerful tool for gaining a deeper understanding of the training problem in

ML, and by extension a potential supplement to existing training algorithms such as

backpropagation.

5.2 Deep Neural Network Training

Deep neural networks (DNNs) [53, 31] are a class of neural network models

which contain more than one hidden layer of neurons. One type of DNN is the multi-
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Figure 5.1: Diagrammatic sketch of the data classification process using a multi-
layer perceptron, an example of a deep neural network. In this construction, the
input data is assumed to be a measurement of the state of the input layer, x1; this
propagates through “synapses” to the hidden layers, and is then projected into
the 2-dimensional output layer which is measured as yN . The vertices represent
synapses, defined by the activation function a and the weights wn. The input data
is finally classified by choosing just one element of the label.

layer perceptron (MLP) [67, 31], itself a nonlinear extension of the older perceptron

model first described by F. Rosenblatt in 1958 [75]. MLPs are neural networks that

consist of layers of “neurons” connected by “synapses”, in which neuron i in layer

n is assigned a single real-valued activity variable xni . The synapses are defined by

activation functions which transfer these activities forward through the layers of the

network. In the formulation presented here, these activation functions act on weighted

sums of the activities in layer n to produce an activity in neuron i in layer n+ 1:

xn+1
i = a

(∑
j

wn+1
ij xnj

)
≡ a (zni ) . (5.1)
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Several widely-used choices for these activation functions are described in [67, 31, 53];

a common choice is the sigmoid function:

xn+1
i = σ(zni ) =

1

1− e−zni
. (5.2)

The parameters of this model are the weights at each layer, wn, which set the strengths

of synaptic connections between one layer and the next. To preface the remainder of

this discussion, training a neural network amounts to adjusting the network weights

so that the model accurately predicts labels assigned to a collection of input data sets.

For example, when neural networks are used in image recognition tasks, the input

data is the pixel values that define the image, and the output is a label for the image.

Examples of this image recognition task are described in [34, 26, 25].

A collection of K labeled data/label pairs are presented to the network at

the input and output layers, respectively. These pairs are denoted by y1
(k) (the kth

example of input data) and yN(k) (the label for the kth example of input data). It

is generally assumed that these data pairs are noisy; in connection with the theory

behind data assimilation, y1
(k) = h(x1

(k)) + ξ is a measurement of the input layer

corresponding to the kth data example, and ξ is the noise in the input data. Similarly,

the data at the output layer xN(k), y
N
(k), is a measurement of the label for the data.

Note that it was necessary to append example indices k to the activities in addition to

the data pairs, because each input to the network generates a distinct set of activities

throughout the layers. However, no such index is used for the network weights. This

is because the goal of training a network is to identify a single collection of weights

that describes the entire class of data represented by the K examples. This eventually

allows for the prediction of labels for newly-presented input data which is unlabeled.

In a gradient based approach to training, these weights are “learned” by
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minimizing a cost function that compares the activity at layer n to the data at layer

n. It is common to use a least-squares metric for this cost function:

CK =
1

2KLN

K∑
k=1

N∑
n=1

L∑
i=1

Rn
m

(
xn(k),i − yn(k),i

)2
. (5.3)

In the machine learning context, data is typically only available for the input and

output layers, so Rn
m is only nonzero when n = 1 or N . The optimization is carried

out subject to the activation function defined in (5.1). The minima of CK are network

activities and synaptic weights which identify locally optimal machines for the labeling

task.

In general, this cost function contains many local minima. The activation

functions are nonlinear, and because the network model contains so many parameters

and activation states, CK is riddled with local minima corresponding to nearly-

equivalent classification machines. In general there should also be a large number of

local minima associated with suboptimal machines. Identifying the global minimum,

if it exists, is an NP-complete problem [63].

To further complicate this task, the assumption that there is no error in the

activation function model creates a strong constraint on the optimization. This led to

difficulties with identifying low-action minima, or perhaps the global minimum, in the

dynamical systems data assimilation problem; the similarities with the structure of

this problem creates the expectation that there will be a similar difficulty encountered

here. In the field of deep learning, strategies exist for dealing with these problems to

some degree. In this chapter, it is shown that the neural network training problem is

nearly equivalent to variational data assimilation with dynamical systems, warranting

an extension of the DA method presented earlier in this dissertation to encompass

NN training and sidestep these difficulties with an alternative approach.
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5.3 Establishing the Equivalence with Data Assim-

ilation

Consider the gradient-based approach to training when the strong model

constraint on minimizing CK is relaxed to allow for model errors at each layer in the

network. Adding the model error into the cost function as a penalty term:

AML(X, Y ) = CK(X, Y ) +
Rf

2NKD

K∑
k=1

N−1∑
n=1

D∑
i=1

[
xn+1

(k),i − a(zn(k),i)
]2

(5.4)

where zn(k),i is the weighted sum over all the neurons in layer n defined in (5.1). The

notation used in this definition of the extended cost function is highly suggestive: X and

Y are defined as path vectors consisting of the ensemble of network states and weights,

and the ensemble of labeled data pairs; and the new cost function AML is defined as

the action of machine learning. Note that the original cost function is recovered when

Rf/Rm → ∞ (Rm is included in the definition of CK), in correspondence with the

same limit of the data assimilation action which enforces the dynamical model of the

observed system as a hard constraint on path estimates.

This action for the path integral approach to variational data assimilation in

dynamical systems, denoted separately here as ADS, was already derived in Chapter 1.

In that approach, the probability distribution P (X|Y ) for the model state and parame-

ter estimates conditioned on the measurements Y =
{
y1,y2, . . . ,yN

}
made within the

observation window [t1, tN ] at discrete times t1, t2, . . . , tN is used to calculate statistics

of state and parameter estimates. Under the Laplace approximation this becomes

an optimization problem, in which estimates with low, well-separated action values

dominate. Such estimates are chosen to define the estimated model, which is finally

used to make predictions beyond the end of the estimation window. This procedure is
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essentially equivalent to validation by prediction in machine learning.

Finally, in the dynamical systems case, if the measurements are “direct” and

independent from one another in time with Gaussian errors, with an error covariance

equal to Rn
m,` for the measurement of state x` at time tn; and the model errors are

taken to be Gaussian as well with inverse noise covariances Rn
f,i, then the action takes

on the following functional form:

ADS(X, Y ) =
N∑
n=1

L∑
`=1

Rn
m,`

2
[xn` − yn` ]2 +

N−1∑
n=1

D∑
i=1

Rn
f,i

2

[
xn+1
i − fi (xn;θ)

]2
(5.5)

Comparing AML with ADS establishes the near-equivalence of the data as-

similation and network training problems under the substitution of time with layer

number. The main difference between these two problems is that data is presented

to a model as a time series in data assimilation, whereas the data is an ensemble of

K pairs of input/output data in machine learning. In data assimilation, introducing

a model error into ADS thus acts as a smoother for state estimates; as more data is

introduced to the system, more information about the solution becomes available and

the estimates tend to “collapse” to trajectories about which the noisy data signal

oscillates. It is unclear to the author whether or not Rf should act as a smoothing

parameter for neural networks as well.

This equivalence motivates the use of variational annealing (VA), as it was

presented in Chapter 3, for the neural network training task. The ultimate goal of

training is to produce optimal neural network architectures for predicting labels of

new data inputs, requiring accurate estimation of the conditional expectation values

of functions G(X) acting on the paths of activations and weights. Estimating these

expectation values using the Laplace approximation presented in Chapter 1 requires

finding minima of AML. While the machine learning action, AML is not a convex
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function in path space, it is sufficient to use minima which are well-separated in action

from others with a much lower value of AML. These minimum action paths, X0,

dominate the approximation because the next-higher action path, X1, contributes less

by a factor of exp [AML(X1)− AML(X0)], and is thus exponentially suppressed.

Here it will be shown through numerical experiments using VA in the twin

experiment setting that AML is not convex, but that a dominant minimum-action path

may appear. This is expected to provide accurate approximations to the expectation

values of path space functions, especially once sufficient information has been trans-

ferred to the model as data is presented to it. In the twin experiment, a collection

of input/output pairs are generated by a neural network with a known architecture.

The network that is trained by VA has a similar architecture, but contains a smaller

number of hidden layers. The results of estimation and prediction using the estimated

network are explored as the number of hidden layers, and thus the complexity of the

network, as well as the number of examples presented to the networks are varied.

5.4 Training the Multi-Layer Perceptron

Here, a network with N = 100 layers and D = 10 neurons per layer, with

sigmoid activation functions, is constructed to generate synthetic data. Another net-

work, which is called the estimated network, is constructed with a similar architecture,

except that N < 100 and is varied. In both cases the networks have one input and

output layer, and N − 2 hidden layers. The data-generating network is assigned

synaptic weights drawn from a uniform distribution on the interval [−0.1, 0.1].

After assigning the weights to the data-generating network, a large collection

of input/output pairs is created by generating inputs x1
(k) which are fed to the input

layer of the data-generating network. This generates a corresponding output xN(k).
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Additionally, a small amount of Gaussian noise is added to each input and output,

with mean 0 and variance 0.0025, which defines the data ensemble {y1
(k),y

N
(k)}. These

pairs are saved for training and validating the estimated networks, where in each

experiment K of these pairs are used for training, and a separate set of Kval are used

to validate the network through prediction. In each case, all elements of y1
(k) and yN(k)

are presented to the estimated network during training, corresponding to L = D = 10

or full observation. The effects of reducing L to be less than D are not explored

here, although this may lead to interesting consequences or applications. One idea,

for example, is to use training to fill “gaps” in input data, such as in increasing the

resolution of input images.

The model of the estimated network is purposefully chosen to have a smaller

number of layers than the data-generating network to test the limitations of a “wrong”

model. As N increases, thus increasing the complexity of the network model, it is

expected that its ability to predict will improve as it approaches the size of the true

network. Additionally, for a given estimated network size, the number of training

pairs K is varied. The expectation is that introducing more data will provide more

information about the true network to the estimated network and, thus, improve its

ability to predict the outputs of new input data in the validation set.

With data presented to only the input and output layers, the machine learning

action becomes

AML(X, Y ) =
1

K

K∑
k=1

{
Rm

2L

L∑
i=1

[(
x1

(k),i − y1
(k),i

)2
+
(
xN(k),i − yN(k),i

)2
]

+
Rf

ND

N∑
n=1

D∑
i=1

[
xn+1

(k),i − ai

(
D∑
j=1

wnijx
n
(k),j

)]2
 . (5.6)

It should be noted again that there is only a single set of weights in this action for
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the K training data pairs, so that the end result is just one network architecture to

use for prediction purposes. Using the same weights for each data pair k requires a

distinct configuration of activations for each pair; this is reflected by indexing the

activations xn(k) by k.

In variational annealing, Rf/Rm = γ is initially chosen equal to 10−8, and

Rf (β) = Rfα
β with α = 1.1. The implementation of VA is similar to that described

in Chapter 3: VarAnneal [76] uses ADOL-C to evaluate derivatives of AML, and

the optimization is carried out with the L-BFGS-B [8, 89, 62] algorithm. Note that,

because the activation functions are already in the form of a forward mapping, the

Hermite-Simpson approximation does not need to be employed in defining the model

error. The action is simply of the form AML in 5.6.

Finally, the K ×D×N network activations and D2× (N − 1) weights must be

initialized before beginning the VA training procedure. The weights were randomly

drawn from the uniform distribution on the interval [−0.1, 0.1], while the activations

were drawn from uniform distributions on the interval [0.4, 0.6].

5.4.1 Validation by Prediction

The weights in the estimated network are set by training, after which it is

validated in a prediction step, where a separate set of Kval data pairs not seen by

the network during training are used. These Kval pairs are chosen from the larger

data set generated earlier by the N = 100 network (thus, the estimated network is

making predictions on new data inputs from the same system it was estimating during

training). The validation set inputs are fed to the input layer of the estimated network,
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and the average prediction error is calculated as

E2 =
1

LKval

Kval∑
k=1

L∑
i=1

(
xN(k),j − yN(k),j

)2
. (5.7)

All L = 10 inputs are presented at the input layer.

5.4.2 Training and Validation Results

Training the estimated network was tested with N = 10, 20, and 50 layers,

and each of these networks was presented with K = 1, 2, 5, and 10 examples of

input/output pairs. VA was initialized with Ninit = 100 paths in each case according

to the choice of initialization values presented earlier.

The results of training with variational annealing are displayed in figures 5.2

through 5.4. Each initialization is tracked over the course of annealing, so that each

plot contains as many as Ninit = 100 distinct action levels. In all three cases, presenting

just one example to the network is insufficient for identifying a distinct lowest action

level; using the Laplace approximation to compute conditional expectation values

of activations and weights most likely fails in this case. Additionally, the extremely

small magnitude of the action for all of the levels indicates overfitting. This is true if,

through training, the networks are arranged in weight configurations such that the

data of the input and output pair are matched exactly by the estimated activations

through the model.

This would explain why the measurement error term is so small, but for AML

to be small the model error must also be small. It is suspected that this occurs

because for an estimated network with N layers, there are N ×D activation states

and (N − 1) × D2 weights which are all allowed to vary freely, meaning that the

network is probably “flexible” enough to arrange itself into a valid configuration
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Figure 5.2: Action levels for training the activations and weights in the N = 10
estimated network with D = 10 neurons per layer, starting VA at Rf/Rm = 10−8

with Ninit = 100 randomly chosen initial network configurations, using synthetic
data generated from an N = 100, D = 10 network. Top left: K = 1 examples are
presented during training. There is no dominant, well-separated minimum, and
the action is near zero for all estimates (a sign of overfitting to the single example).
Top right: With K = 2 examples, different initializations to VA all eventually
approach A = 1, becoming independent of Rf when Rf/Rm � 1. Bottom left:
Only one action level remains for K = 10 examples when Rf/Rm � 1. Bottom
right: Zoomed-in view of the K = 10 action levels for large Rf/Rm, highlighting a
single remaining action level.
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Figure 5.3: Action levels for training the activations and weights in the N = 20
estimated network with D = 10 neurons per layer, starting VA at Rf/Rm = 10−8

with Ninit = 100 randomly chosen initial network configurations, using synthetic
data generated from an N = 100, D = 10 network. The result of training is
qualitatively similar to the N = 10 case, with K = 1 (top left), K = 2 (top right),
K = 5 (bottom left), and K = 10 (bottom right) input/output pairs presented
during training.

143



Figure 5.4: Action levels for training the activations and weights in the N = 50
estimated network with D = 10 neurons per layer, starting VA at Rf/Rm = 10−8

with Ninit = 100 randomly chosen initial network configurations, using synthetic
data generated from an N = 100, D = 10 network. Here, the K = 1, 2, and 10
training pair cases are overlaid

(according to the model) to accommodate almost any single input/output pair during

training. However, this configuration is specifically the one which was able to describe

a particular input/output relationship, and there is no guarantee that such a network

will be good at predicting the output of any other, new input. It is in fact shown

below that the prediction error is about twice as large when the network is trained

with just one example, compared to a larger number K.

When K = 2 and thus a second example is presented for training, there are

still many distinct action levels for small Rf/Rm, but they mostly collapse to just one

value by the end of the annealing. The value of the action also appears to become

mostly independent of Rf/Rm when it is large. In the dynamical systems case, this

was expected to happen for the global minimum, which tracks the true solution during

annealing and, thus, the discrepancy function g of which the model error is composed

goes to zero. The measurement error approaches an expected value equal to the RMS

value of the measurement noise in this limit. This also appears to be the outcome in the
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K = 2 case described here. The ML action is normalized such that the expected value

of the measurement error is 1 when the model error goes to zero and is independent

of Rf as it becomes large.

This indicates that the nature of the global minimum changes when more than

one example of data is presented to the network. When K = 1, it appears that the

network has enough flexibility to describe the input/output relationship between the

noisy output and the noisy input, even when Rf/Rm becomes large and thus the

model is strongly enforced on solutions. This is actually not dissimilar from what

might happen in a dynamical system if, say, samples from just two neighboring time

points are presented during estimation: if the model states and parameters are all

allowed to vary, then it is likely a choice of parameterization exists which is able to

exactly describe that single time step, even when the data is noisy. Finding the true,

noiseless solution requires introducing a longer time series of data. With enough data

the global minimum of the action is located on the true state of the system, at which

point the solution is smoothed by the enforcement of a dynamical system.

Similarly, in the neural network case the global minimum appears to be the

estimate which exactly describes the noisy input/ouput pairs when too few examples

are presented, but the introduction of more data pushes this minimum into a different

configuration which is suspected to eliminate the noise from the data. To show this,

the estimates should be compared to the noiseless input/output pairs generated by

the N = 100 network to see if the estimation error becomes small. This was not

performed in this experiment; however, the theoretical argument remains compelling.

As more examples are introduced, the action similarly increases towards 1 and

eventually becomes independent of Rf/Rm, but the action levels also start to cluster

together more tightly. This indicates that introducing more examples reduces the

number of local minima, so that there exist fewer valid network configurations which
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also match the input/output pairs well. This probably also means that the problem

of over-fitting with K = 1 is reduced more and more as K increases.

Finally, the prediction capabilities of each estimated network were tested with

new data pairs from the validation set. Again, this data was generated by the same

N = 100 network as the training data. Each estimated network was presented with

Kval = 100 data inputs, where the output was calculated by evaluating the transfer

functions layer-by-layer. The resulting outputs were compared to the outputs in the

validation data, using the error function defined in (5.2).

Figure 5.5: Prediction errors in the validation step for the N = 10, 20, and 50
estimated networks (in these plots, lf = N and M = K). In each case the lowest-
action network configuration was used to predict with Kval = 100 input/output
pairs, and the errors were averaged over Kval and the output activations. The
prediction errors tend to decrease as more data is introduced to the estimated
networks during training.
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The results are displayed in figure 5.5. In each panel, the prediction error as

a function of Rf/Rm is plotted for a given estimated network size N (in these plots,

N = lf and K = M). It is seen that increasing the number of training pairs decreases

the prediction error in the N = 20 and N = 50 networks, with a similar trend for the

N = 10 network, which is another indicator that introducing more examples gives the

estimated network more information about the true network.

5.5 Conclusions

In this chapter, an equivalence between variational data assimilation for dy-

namical systems and neural network training in machine learning was established.

A machine learning action, AML, was derived as an extension of the typical L2 cost

function used in other training approaches such as backpropagation, where the strong

constraint of exact enforcement of the activation functions in the neural network was

relaxed and introduced as a penalty, as in the data assimilation action ADS. Numerical

experiments showed that variational annealing, an algorithm for computing minima

of the action, identifies what is suspected to be the global minimum of the action.

The change in the structure of the action as more examples of data are

introduced during training, in addition to changing the number of layers, was an

indicator of the prediction capabilities of a given network, verified by prediction

using a validation set of novel input/output pairs. A small number of layers and

data examples was shown to be required to achieve small prediction errors for data

generated by a much larger network. VA thus provides a potentially useful approach

to network training which successfully estimates network with low prediction error,

but is also potentially a tool for addressing questions about how much information or

how complex of a network is required for this to be true.
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This chapter was adapted from Henry D. I. Abarbanel, Paul J. Rozdeba, and

Sasha Shirman, Machine Learning; Deepest Learning as Statistical Physics Problems,

which is currently under review for publication, with the permission of the authors.

The dissertation author was a co-author of this paper.
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