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ABSTRACT OF THE DISSERTATION 

The Effects of Executive Functioning, Demographics, and School Factors on Mathematics 

Achievement Growth During Elementary School: A Multilevel, Multivariate, and Longitudinal 

Analysis 

 

by 

 

Mahmut Gundogdu 

 

Doctor of Philosophy, Graduate Program in Education 

University of California, Riverside, June 2019 

Dr. Lee Swanson, Co-Chairperson 

Dr. Gregory J. Palardy, Co-Chairperson 

 

This study examines how gains in mathematics achievement are related to executive processing 

functions and student sociodemographic characteristics across schools’ national representative 

longitudinal sample of children in kindergarten (K) followed through grade four in the Early 

Childhood Longitudinal Study of 2010.   

Mathematics trajectories were nonlinear, with greater gains in early versus later grades and small 

drops each summer. Children entering K with lower math demonstrated steeper gains over time. 

Relative to Caucasian children, Hispanic and African American children entered K with lower 

math. Hispanic children had higher growth rates whereas African American children had lower 

growth rates.  Girls entered K with higher math, but boys gained more over time.  Lower SES 

was associated with lower math but also steeper increases.  Demographic factors explained a 

larger proportion of between-school differences in mathematics achievement than within-school 

differences in initial levels and long-term gains but not summer drops (66.23% versus 8.11% of 

variance at K; 17.02% versus 4.55% of variance in gains; 20% versus 0% of variance in summer 
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drops).  Similarly, shaped trajectories and demographic effects were found for working memory, 

while the cognitive flexibility trajectory (measured only from 2nd grade) was a more linear.  

Critically, just as lower math scores in K were associated with steeper growth, lower working 

memory in K was also associated with steeper trajectories. In addition, positive associations were 

observed between working memory and math in K, trajectories of working memory and cognitive 

flexibility were strongly associated with trajectories of mathematics achievement. A similar 

pattern was observed for cognitive flexibility.  These inclusions of demographic covariates did 

not alter these associations.  Overall, these findings bolster the independent importance of 

executive function and sociodemographic factors, with the latter explaining a large amount of 

between-school variability. Education stakeholders such as teachers, school administrations, and 

school district can rely on the research findings in designing practical models of teaching 

mathematics that will take into consideration the role of sociodemographic factors as well as 

executive functioning among students, thereby improving their overall performance. 
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CHAPTER 1 

INTRODUCTION 

 The purpose of this chapter is to discuss the importance of understanding the role of 

Executive Function (EF) on mathematics achievement when critical demographic characteristics 

are accounted for over a five-year period during early childhood education. This will be discussed 

in the context of the present literature. The theoretical perspectives to best understand this 

investigation are the comparisons between learning models that describe the trajectory of 

academic achievement when considering variances that result from demographic characteristics. 

The concern for mathematics achievement is not limited to educators, education researchers and 

policymakers receiving media attention. Concluding the chapter will be an explanation of the 

need for this investigation in the context of the present literature, how this investigation will 

contribute to the current conversation of mathematics achievement, the importance of the project, 

and the proposed research questions that will make contribute to the literature.        

The Influence of Executive Function (EF) on Mathematics Achievement 

Mathematics achievement is influenced by a host of cognitive processing functions that are in 

turn influenced by the learning opportunities made available through demographic characteristics. 

This investigation aims to study the influence of these variables using a longitudinal design to 

account for the nested nature of the educational system. It uses data collected during the critical 

period of early childhood education. Executive function is reported as the center for cognitive 

processing and is composed of a series of sophisticated and well-coordinated processing 

functions. Thus, a bottom-up review of the literature will be used to introduce the subject here 

briefly. EF is credited with facilitating the function of a myriad of basic tasks related to 

mathematics achievement. This central processing system is also critical in understanding more 

complex processes such as academic growth during a child’s early education when the executive 
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function skills are developing and the child is learning basic reading and mathematics skills 

(Diamond, 2013; Geary, 2013; Swanson & Alloway, 2012). Understanding the processes 

associated with EF and how they influence problem solving and academic achievement has been 

the focus of education researchers. Therefore, it is important to use a different methodology to 

replicate and better understand the previous findings between the relationship between EF and 

mathematics achievement. To do so requires understanding sources of variability between 

individuals, such as demographic characteristics, that are critical to understanding the findings 

reported in the literature. This investigation plans to expand on previous findings by closely 

considering the relationships between the different factors that influence mathematics 

achievement over time, during the critical period of the early childhood education.    

In a review of the literature, Zelazo (2015) pointed out that, at a basic level, EF facilitates the 

processes related to academic achievements such as attention and behavior. Using the iterative 

reprocessing (IR) model as a reference, Zelazo (2015) pointed out that EF refers to 

neurocognitive skills that researchers have deemed important for aspects of everyday functioning. 

That is, any task that is successfully completed, from counting and reading a book, to long-term 

goals (e.g. career goals), has been attributed to EF successfully filling its role. More specifically, 

these central processes are critical in directing an individual’s basic aspects of the self (e.g. 

thoughts, emotion and behavior) that allow for learning experiences (Tourangeau, Nord, Lê, 

Sorongon, Hagedorn, Daly, & Najarian, 2017; Carlson, Zelazo, & Faja, 2013; Diamond, 2013; 

Zelazo, 2015). Because EF is a series of critical cognitive functions/processes that allow for 

mathematics achievement, it will therefore be an important factor to consider to better understand 

the relationship between mathematics achievement and the role of demographic characteristics.   

EF has a long history of being considered important for the basic skills (e.g.  attention) to 

perform academic activities such as mathematics successfully. EF processes are considered 
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central to learning and academic performance. Any shortcomings in these functions will likely 

stem from demographic characteristics or, in more severe cases, a diagnosis of a learning disorder 

in an academic subject (Zelazo, 2015). A reading disorder, for example, is manifested as a deficit 

in one of the processes that compose EF (Swanson, Mink, & Bocian, 1999). Similarly, 

mathematics learning difficulties have unique deficits that occur in the processes related to EF 

(Geary, 2013; Swanson & Alloway, 2012).   Low achievers in mathematics have also been found 

to have shortcomings in different processes related to EF (Geary, 2011; Swanson & Alloway, 

2012). These conclusions make EF a reliable indicator of effective learning, performance, and 

achievement. Because of the complexity of its functions, EF is represented by three distinct and 

unique mental processes that work independently to control/inhibit, hold in memory space, or 

reiterate, depending on the task, an individual’s cognitive functioning (Zelazo, 2015). The names 

of these EF’s are working memory, inhibitory control, and cognitive flexibility (Miyake, 

Friedman, Emerson, 2000; Zelazo, Muller, Frye, & Marcovitch, 2003). Each function is 

responsible for memory capacity, attention, and solutions to novel problems, respectively. The 

following will be a brief discussion of EF’s functions, how these processes relate to mathematics 

performance, and how they might be influenced by demographic characteristics during early 

development.  

This study broadens the focus of previous investigations that considered the effects of 

cognition (e.g. executive function) on mathematics achievement. An emphasis will be given to 

the influence of demographic variables that highlight the variability between groups. Because 

grade level is an indicator of critical periods for learning mathematics (Clark, Pritchard, & 

Woodward, 2010; Monette, Bigras, Guay, 2011), special attention will be given to the possible 

associations and changes over time between executive function and mathematics achievement. Of 

critical importance here is the overall EF-math relationship over the early childhood education 
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period and the strength of the relationship when accounting for demographic characteristics (e.g. 

gender, race/ethnicity, SES, and grade level). An additional exploratory question that will be 

considered in this investigation is whether the EF-math relationship may vary because of 

demographic characteristics. 

Demographic Differences in Mathematics Achievement and Executive Function 

 Demographic characteristics provide a source of variance that makes for unique 

experiences in all aspects of everyday life. In relation to academic achievement, these 

characteristics allow researchers to understand the differences between individuals and 

performance groups and address the setbacks or difficulties in underperforming groups. One 

example is the Monette et al., (2011) investigation that replicated the relationship between 

academic achievement and executive function while accounting for confounding variables. Some 

of those variables were socio-economic status, gender, ethnicity, and school grade. These are 

variables that have been found to impact mathematics achievement in different ways. Socio-

economic status is important because it influences the degree to which families can provide the 

necessary resources and experiences to ensure the typical development of the child at different 

grade levels. 

The gender disparity in mathematics at a later age and in the STEM fields overall is a 

significant and quite complex phenomenon (Halpern, Benbow, Geary, Gur, Hyde, & 

Gernsbacher, 2007). Also, it is worth noting that studies have not found differences when looking 

at the relationship between gender and overall EF for early grade levels (Monette, Bigras, & 

Guay, 2011). Some researchers have found ethnic differences in mathematics performance, while 

others attribute the differences to characteristics that carry more weight (e.g., SES). Thus, 

ethnicity will be included in this study. Because early childhood education is a critical period of 

development for many basic skills (Diamond, 2013; Zelazo, 2015), the fourth characteristic that 
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will be considered here is grade level. Because so much of EF and mathematics achievement 

depend on the child’s development, accounting for grade level will likely reveal the associations 

between these variables across the data time points. By taking this approach, the importance of 

demographic characteristics is addressed, and methodological precautions are taken to account for 

context between the relationship of academic performance and executive function. The following 

chapter will give a more detailed account on the importance of the demographic variables 

described by the literature. 

Concern for Mathematics Achievement 

 Mathematics achievement has been a concern for many populations beyond researchers, 

teachers, and policymakers. Bundled with STEM education, mathematics achievement is 

regularly discussed in the media in several contexts from No Child Left Behind (NCLB) to its 

importance in basic academics. Internationally, the United States is regularly compared in 

mathematics performance and achievement to other developed nations (Hyde & Mertz, 2009). 

Given the importance of mathematics achievement and the implication for career options and 

SES (Morgan, Li, Farkas, & Cook, 2017), researchers have been studying this area for the better 

part of the late 20th century. Indeed, all aspects of mathematics achievement have been under 

scrutiny. Anything from teaching mathematics, student mathematics performance, and 

mathematics achievement have been compared to other developed nations. This is one of the 

reasons researchers, educational institutions, and government agencies spend resources to better 

understand mathematics in academic institutions (Ashcraft & Krause, 2007). It is also important 

to note that, in all levels of education, mathematics continues to be prioritized in the United States 

(National Mathematics Advisory Panel, 2008).  At the individual level, learning difficulties affect 

children at an early age (Geary, 2013; Swanson & Alloway, 2012).  These conditions influence 

the trajectory of an individual’s academic experience and even career choice. Given the 
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importance of mathematics at different levels of society and at the individual level, it is more 

important to use the resources made available by technological advancements that improve on 

sample size, longitudinal information, methodological, and quantitative approaches to better 

inform learning at an early age.    

Purpose of Investigating Factors that Influence Mathematics Achievement 

The purpose of this study is to contribute to the literature by building on previous 

investigations, closely considering demographic characteristics (Little, 2017; Monette, Bigras, & 

Gray, 2011), and focusing on the relationship between executive functioning and mathematics 

achievement over a five-year period (Morgan, Farkas, & Wu, 2009). Like other work, this 

investigation will be framed in the context of comparing the longitudinal learning models that 

explain differences in academic performance (Morgan, et al., 2009). While substantial work has 

been done in this area, this remains an arguably open issue due to the difficulty of acquiring a 

large, representative sample, inaccessibility of continuous data from early academic years, and 

methodology to account for the nested nature of educational institutions. This investigation aims 

to better understand potential discrepancies found in other studies and contribute to the literature 

by replicating previous findings on the relationship between EF and mathematics achievement. 

Another purpose of this investigation is to highlight the normative development between EF and 

mathematics performance as influenced by demographic characteristics. In the interest of 

conducting a methodologically sound investigation, demographic characteristics will be used to 

better understand the sources of variability between individuals and performance groups. Of 

interest here are gender, ethnicity/race, and socio-economic status. These demographic 

characteristics will be carefully investigated for influence over mathematics achievement 

throughout early childhood education. This investigation will closely consider factors that have, 

at times, been dismissed, or have not been considered longitudinally. In an effort to expand on 
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previous literature closely and explore the growth trajectory of mathematics achievement, this 

investigation will be guided by mathematics skill growth models (Aunola, Leskinen, Lerkkanen, 

& Nurmi, 2004). Using the ECLES-K:2011 Child Session investigation data will facilitate 

answers to research questions through the benefit of a large sample size and multiple waves of 

data collected with information that was not previously accessible to education researchers. This 

investigation will allow researchers, educators, and policymakers alike to better understand 

growth learning patterns and use that information to address potential mathematic achievement 

deficits during the critical period of early childhood education.   

Benefits for Better Understanding Mathematics Achievement 

 The implications for this investigation are at different levels of analysis. The first benefit 

of this investigation is that it combines methodology from recent education research that has 

informed mathematics achievement. With the use of a large sample of nationally representative 

students from the United States over a five-year period, the dataset used here provides a wealth of 

information not available to social scientists and education researchers until recently. Another 

benefit to this investigation, when compared to other longitudinal inquiries, is that this 

investigation looks at the normative growth patterns at the beginning of formal education when 

basic skills are being developed (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004).  Secondly, 

access to cognitive performance variables, mathematics achievement outcomes, and demographic 

characteristics over time will give better insight into the relationship among these variables. Thus, 

the combination of access to growth data and variables that account for mathematics achievement 

allow for a more thorough investigation of the influences of mathematics achievement. This 

investigation aims to contribute to the understanding of mathematics achievement during the 

critical years of early childhood education.   
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Research Questions to Better Understand Mathematics Achievement 

A series of research questions were developed based on the previous literature and theory 

reviewed. These research questions aim to improve our understanding of mathematics 

achievement over the early childhood education period. 

1. What is the average math achievement growth trajectory from kindergarten through fourth 

grade, accounting for the nesting of students within schools, and summer loss?   

2. To what degree do gender, racial, or socioeconomic status differences account for variation in 

the intercepts, slopes, and summer drops in the mathematics trajectories at the student and 

school levels?   

3. Is executive functioning associated with change in math achievement over this period? 

4. Which student sociodemographic characteristics are most strongly associated change in math 

achievement, and to what degree does controlling for student sociodemographic characteristics 

alter the association between executive functioning and change in math achievement? 

5. To what degree does math achievement growth vary among schools, controlling for 

demographics? 

Overall, this study aims to expand upon previous literature by further examining the 

relationship between executive functioning and mathematics performance, as well as the role of 

several key demographic variables. While much work has been done in this area, this remains an 

open issue as the findings have varied from study to study. This study hopes to expand upon the 

existing literature by exploring more complex relationships between demographics, executive 

functioning, and mathematics performance. We know there is evidence for racial, gender, and 

SES differences in mathematics performance, and that EF is a critical predictor of academic 

performance, but seldom have these factors been considered in the same investigation. This 

investigation will study the normal growth in math learning and EF trajectories in grade levels K-
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5. Other investigations have studied similar age groups with a focus on learning difficulties 

(Morgan, Farkas, & Wu, 2009; Morgan, Li, Farkas, Cook, Pun, & Hillemeier, 2017). However, 

this investigation will focus on the typical development of cognition and mathematics 

achievement in children grades K-4. Another contribution is that no other investigation has 

studied the 5-year growth trajectories of typical growth in mathematics achievement and EF. This 

dissertation will address that gap in the literature. The following chapter will discuss in greater 

detail the previous literature and theory relevant to this investigation’s research questions and 

hypothesis.  
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CHAPTER 2 

LITERATURE REVIEW 

 In this chapter, there will be a thorough literature review on the importance of 

mathematics achievement and the factors that contribute to success in that domain. First, there 

will be a discussion on the reasons why children perform poorly in mathematics. Following will 

be a discussion on the cumulative growth model and lag models. These theoretical models 

provide different perspectives for understanding growth in mathematics achievement and 

performance and provide context for understanding the achievement gap. Factors to consider in 

the literature when describing mathematics achievement are gender differences, racial 

differences, and socioeconomic differences. These demographic characteristics provide the 

context for understanding differences in academic performance and mathematics achievement. 

Because this investigation seeks to explore as many factors available to understand mathematics 

performance, executive functioning and its components will also be thoroughly reviewed. The 

role of the cognitive domain in learning mathematics is critical to understanding overall 

mathematics performance. The chapter will conclude with a summary of the literature that 

describes how the different factors that affect mathematics performance interact and how time 

affects these interactions. 

Assumptions Concerning Mathematics Performance and Low Achievers 

First, it is important to clarify some assumptions about mathematics performance. Under 

the umbrella of STEM, mathematics and science achievement are among the academic topics that 

frequently make the news, with the general conclusion being that the United States underperforms 

(Ashcraft & Krause, 2007). Similarly, student academic performance is relatively low in the 

United States compared to many of its counterparts. In addition to this, there is the necessity of 

experts in the fields of education and social science, as in any technological society, to better 
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understand academic achievement. All of these reasons highlight the importance of examining 

mathematics performance, and specifically attempting to zero in on the reasons behind poor 

performance in mathematics among students in the United States (Ashcraft & Krause, 2007). 

Some research suggests children perform poorly due to learning disabilities that interfere with 

their ability to learn math. Other explanations suggest that poor performance is due to economic 

disadvantages that do not allow for the opportunities for proper academic development. It is 

therefore even more important to investigate mathematics achievement during the critical period 

of early education.  

For example, it has been found that kindergartners that underperform in mathematics are 

less likely to attend college as adults, own their own home, be employed, or live in higher income 

neighborhoods. The same research also suggests that exhibiting poor math skills increases the 

likelihood of lower wages and lowers employability for adult workers more than other factors, 

such as low IQ and poor reading skills (Morgan, Li, Farkas, Cook, Pun, Hillemeier, 2017). 

Research also suggests that cognitive factors also play a role, such as a child’s EF skills, where 

cognitive flexibility and working memory predictably account for educational achievement later 

in life. Therefore, a child’s EF is a strong predictor of academic achievement. This investigation 

aims to assess whether a child’s cognitive flexibility and working memory impact academic 

achievement in mathematics, and their subsequent growth, by accounting for as many factors as 

possible. The following sections of this chapter explore current and past research to determine 

whether measures of working memory and cognitive flexibility can be used, and to what extent 

these measures can predict a child’s math achievement throughout their education.  

Achievement in Mathematics 

 Mathematics achievement can be attributed to several factors related to cognition and 

demographic characteristics. How, and to what degree, these factors contribute to the 
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achievement of mathematics is not clear. The literature offers contrasting views on the process by 

which children become proficient in mathematics. Identifying proficiency is clear for typical 

achieving and high achieving groups. However, individuals with difficulty or a more severe 

disability in mathematics are more challenging to identify (Geary, 2013; Swanson & Alloway, 

2012). One approach has been the use of discrepancy formulas and other exclusionary criteria 

that have traditionally been utilized to differentiate between individuals who display math 

difficulties and those who underperform in mathematics as a result of demographics-related 

disadvantages. This realization excludes the notion that mathematics difficulties, overall, might 

be due to low IQ (Geary, 2013; Swanson & Alloway, 2012). Therefore, it is the case that math 

difficulties occur in individuals who perform poorly in math achievement assessments relative to 

the IQ of these same individuals. On the other hand, using a discrepancy formula to identify 

learning disabilities is considered increasingly untenable (Morgan, Farkas & Wu, 2009). 

Researchers have concluded that identifying mathematics achievement requires an array of skills 

related to the cognitive processes that allow individual differences in performance is less 

understood (Clark, Pritchard & Woodward, 2010).  

 Math proficiency allows an individual to actively reason problem elements in order to 

arrive at a possible solution. When solving a problem, an individual must represent information as 

part of the working memory process and shift attention adequately to problem elements (e.g., the 

different components of a problem). On the other hand, there are aspects of mathematics ability 

that are dependent on factual knowledge that can be readily retrieved from an individual’s long-

term memory. Mathematics is an inherently effortful academic domain that makes explicit 

demands on EF abilities of very young children during a critical part of academic development 

(Blair & Razza, 2007).  
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 Because the skills being developed are critical, young children who experience learning 

difficulties in math are at risk for having fewer societal and educational opportunities throughout 

subsequent years. Kindergartners who perform poorly on math assessments are less likely to 

attend college, own their own home, be employed, or live in higher-class neighborhoods. 

Learning difficulties in math are also associated with a child’s increased risk for feelings of 

isolation, inferiority, and socio-emotional maladjustments (Morgan, et al., 2017). The inability to 

be proficient in math is a large obstacle when it comes to societal opportunity. For instance, 

having poor math skills is associated with lower income earnings and employability more than 

any other factor, such as low IQ or poor reading skills. Typically, a child is believed to have math 

difficulties if their performance is between the 25th -30th percentile on mathematics assessments 

(Morgan, Farkas & Wu, 2009, p. 307).  

Executive Function 

 Executive functioning refers to the interdependent processes that orchestrate the 

regulation of emotion, behaviors, and cognitions (Zelazo, 2015). Zelazo, Muller, Frye, and 

Marcovitch (2003) view EF as a functional construct associated with the psychological processes 

required for task-oriented demands (p. 2). According to Monette, Bigras, and Guay (2011), EF is 

a set of processes that typically include working memory, planning, flexibility, concept 

formation, and fluency. EF skills are neurocognitive skills that require higher cognitive processes 

and task-oriented focus (Zelazo, 2015). Furthermore, Clark, Pritchard, and Woodward (2010) 

define EF as a series of processes required for complex problem solving and task-oriented 

behavior (p. 1177). For the purpose of this investigation, EF refers to cognitions that allow for the 

required mental strain of problem solving for children to successfully solve mathematics 

problems.   
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 EF is a strong predictor of academic achievement. Previous findings have shown that 

preschool is a critical period for the development of EF, specifically around the age of four when 

the organization of the cognitions critical to EF reportedly takes place (Monette, Bigras & Guay, 

2011, p. 159). Other findings report that the cognitions in preschool predict later scholastic 

achievement (Monette, Bigras & Guay, 2011). Little (2017) found that EF skills also help an 

individual focus on goal attainment, a critical component of academic success. These skills are 

commonly referred to as the “air traffic control system of the brain” (p. 103), where instincts and 

thoughts are processed and sorted throughout the brain. The processing that occurs is a result of 

three different skills that make up EF: working memory, cognitive flexibility, and inhibitory 

control (Zelazo, 2015). Several researchers have posited these skills to be the main components of 

EF (Monette, Bigras & Guay, 2011).  Working memory and cognitive flexibility are the processes 

that will be critical for this investigation.  

Executive Function Skills 

 The components of EF, that is, working memory and cognitive flexibility, work together 

to facilitate problem-solving. These skills play a critical role when making inferences, 

characterizing problems, and keeping plans and goals in mind (Zelazo, 2015). The manifestation 

of strong EF is observed in young children with the skills to maintain attention, plan better, 

remember and apply instructions, and multitask. Deficits in these skills result in difficulties with 

learning because they interfere with a child’s classroom success. For example, both cognitive 

flexibility and working memory deficits have been found to interfere with a child’s 

comprehension monitoring, where a child may struggle to integrate and hold information in their 

long-term memories while also attempting to make and process inferences. The literature has 

produced substantial evidence to suggest that children who exhibit learning difficulties have 

poorly developed EF skills (Morgan et al., 2017).  
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Working Memory 

Tasks that rely on working memory have been characterized as maintaining mental 

information while simultaneously working on a task (Colom, Flores-Mendoza, Quiroga, & 

Privado, 2005). This skill or function is distinct from tasks that only require the use of short-term 

memory, as tasks involving the use of just short-term memory only necessitate maintaining 

information without having to process it. The role of working memory on mathematics 

specifically as well as cognitive functioning more generally, cannot be understated. Within the 

resource sharing model, a trade-off exists between storage and processing (Daneman & 

Carpenter, 1980). While focusing on reading, Daneman and Carpenter posit that differences in 

comprehension may be due to individual variation in working memory capacity, and created a 

test which places large stresses upon both processing and storage in order to further explore this 

trade-off. They found that the scores on their listening span task correlated with other reading 

comprehension measures that had correlations of similar strength (Daneman & Carpenter, 1980). 

The importance of working memory extends beyond task completion.  Previous research 

has reported a relationship between short-term memory, working memory, and general 

intelligence. One such study conducted by Colom, Flores-Mendoza, Quiroga, and Privado (2005) 

found a strong association between short-term memory and working memory. Working memory 

was found to be a strong predictor of general intelligence compared to short-term memory. It was 

also found that the relationship between working memory and general intelligence is attenuated 

by short-term memory, suggesting that the short-term memory component of working memory 

moderates this relationship. Within this study, working memory was measured using the ABCD 

and the Alphabet tasks, which were modeled after the CAM battery. Additionally, quantitative 

working memory was measured using the Mental Counters and Computation Span tasks. Spatial 

working memory was measured using the dot matrix and letter rotation tasks. A similar study 
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served to further explore the relationship between short-term memory and working memory 

(Colom, Shih, Flores-Mendoza, & Quiroga, 2006). Here, the authors continued to examine the 

extent to which working memory and short-term memory overlap by using a set of 12 memory 

span tasks, with half of these tasks serving to measure short-term memory, and with the other half 

measuring working memory. Within this study, verbal working memory was measured using the 

ABCD and alphabet tasks, with quantitative working memory measured using the mental 

counters and computation span tasks. Spatial working memory was measured using the dot matrix 

and letter rotation tasks. The results of this study found that short-term memory and working 

memory largely overlapped, and that the limitations underlying these domains were largely 

shared (Colom, Shih, Flores-Mendoza, & Quiroga, 2006).  

Given the importance of working memory in information processing, it is therefore 

important to consider this domain a critical factor for academics and mathematics performance. 

Indeed, according to Morgan, et al., (2017), deficits in working memory, or information 

processing, may impede a child’s academic performance. This is due to the fact that mathematics 

tasks require children to manipulate and store information. On the other hand, researchers found 

that deficits in cognitive flexibility may not be as important during the early years in determining 

academic performance. For example, during the early years of education, few classroom tasks 

require multi-step problem solving and thus place fewer demands on cognitive flexibility deficits. 

The next section will discuss the current literature on the EF component of cognitive flexibility.  

Cognitive Flexibility 

Cognitive flexibility refers to thinking about a task in several ways (Zelazo, 2015).  

According to Little (2017), cognitive flexibility is an individual’s ability to switch their attention 

or perspectives. It is an important feature of EF that allows for different perspectives towards 

daily demands (Handbook of Behavioral Neuroscience, 2016). Another way of interpreting this 
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function, according to Diamond (2013), is that cognitive flexibility is the ability to think outside 

the box and see one item or aspect from a different perspective. Therefore, this function refers to 

an individual’s flexibility and quickness at adapting to changing circumstances (Diamond, 2013).  

Cognitive flexibility has been defined as "the readiness with which the person's concept 

system changes selectively in response to appropriate environmental stimuli" (Scott, 1962: 405). 

It has also been defined as "the ability to shift between response sets, learn from mistakes, devise 

alternative strategies, divided attention, and process multiple sources of information 

concurrently" (Anderson, 2002: 74). Cognitive flexibility relates to the ability of an individual to 

change their working strategies based on a change in task demands (Singer, Ellerton, & Cai, 

2015). This skill is composed of three main constructs: cognitive variety, cognitive novelty, and 

change in cognitive framing. Cognitive variety relates to the amount of diversity in mental 

templates for problem-solving, which are associated with cognitive pathways or perspectives. 

Cognitive novelty relates to an individual’s focus during study and content mastery and the 

incorporation of additional external perspectives. Cognitive framing relates to persistence when 

attempting to solve a new problem using an old method (Singer, Ellerton, & Cai, 2015).  

Cognitive flexibility is also an important indicator of development as it improves over 

time for individuals. While infants frequently exhibit perseverative behavior, this declines in 

childhood, becoming rare in adolescence. The ability to rapidly switch between different response 

sets is first seen among children aged approximately three or four years, while children of this age 

still have trouble when faced with rules of increased complexity. Even seven-year-old children 

have difficulty switching behavior when there are multiple dimensions, though this limitation has 

been found to improve between seven and nine years of age. Cognitive flexibility then continues 

to improve during adolescence. The ability to learn from mistakes and produce different strategies 
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to solve a problem is first seen in early childhood and continues to develop as children age 

(Anderson, 2002). 

Factors Influencing the Development of Executive Function 

EF skills develop within an environmental context, especially throughout early 

childhood. Brain development can be impaired by toxic stress, ultimately impacting the 

development of the skills that make up EF. On the other hand, stimulating and rich environments 

provide the necessary experiences for proper development of EF (Little, 2017). Established 

structures and routines in a child’s life, for example, help promote EF skills. However, not all 

children are raised in an environment that promotes and encourages routines and structures, 

making the environment an important factor in academic achievement. Later in the chapter will 

be a discussion of the environmental factors that have been deemed important for the proper 

investigation of the relationship between mathematics achievement and the executive function. 

The Relationship Between Executive Function and Mathematics Achievement 

 The literature has reported a direct association between a child’s mathematical skills and 

their EF skills. For example, studies show that inhibitory skills in preschool can predict a child’s 

mathematical ability (Bull, Espy & Wiebe, 2008). Furthermore, studies have shown a distinct 

association between executive function skills and concurrent math performance (Clark, Pritchard 

& Woodward, 2010). Research also suggests an association between academic achievement and 

EF. Math skills, however, are most closely linked to working memory (Monette, Bigras & Guay, 

2011). Morgan et al., (2017) found that deficits in both cognitive flexibility and working memory 

in kindergarten increase the risk of math difficulties in the first grade. Worth pointing out is the 

strong association between the risk of deficits in working memory. Thus, these researchers 

suggests that multi-component interventions may help young children with math difficulties, 

especially with deficits in working memory.  
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 Blair and Razza (2007), for example, found a moderate to strong relationship between 

mathematical ability and EF. This finding is consistent with the neuroscientific literature 

suggesting that there is an association between neural substrates for the functions of EF, 

numerical ability, and quantitative reasoning (p. 658). Furthermore, on a sociological level, the 

relationship between mathematical ability and EF are consistent with the historical evidence 

which indicates a shift in mathematics curriculum during the early elementary grades. Historical 

reviews of United States public school textbooks show a pattern of visual-spatial working 

memory and pattern completion problems that demand the use of EF to complete different 

components of a problem (p. 658).   

Growth Trajectories 

Previous research has focused specifically on changes in development over time.  One 

study by Morgan and colleagues (2009), using data from the ECLS-K, examined the relationship 

between mathematics difficulties in kindergarten and growth trajectories from the first through 

fifth grade. This investigation found an important association between these metrics. Specifically, 

persistent mathematics difficulties were associated with the lowest growth rates in later grades. 

Children exhibiting mathematics difficulties in either the spring only, or the fall only in their 

kindergarten year, had the second and third lowest growth rates, respectively. This suggests that 

the capacity and performance of mathematics difficulties in kindergarten is a predictor in later 

mathematics proficiency (Morgan, Farkas, & Wu, 2009). The study also found changes in growth 

over time based on mathematics difficulties, suggesting an interaction between mathematics 

difficulties and time on mathematics performance. Specifically, the greatest degree of growth was 

found over time among children who did not exhibit mathematics difficulties at either time point, 

with the lowest growth over time evidenced among those exhibiting mathematics difficulties in 

both the spring and fall. They suggest the importance of early interventions among children 
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exhibiting mathematics difficulties to help increase their mathematics performance as elementary 

school students. A child’s developmental trajectory is defined by interactions between 

development, exposure to learning, experiences, and mental development (McClelland, Cameron, 

Duncan & Bowles, 2014, p. 3).  

Monette, Bigras and Guay (2011) attempted to determine if EF in young children was 

associated with first-grade school achievement. EF measures were administered to 85 

kindergartners, 46 girls and 39 boys aged 5-6 years old. School achievement was measured at the 

end of first grade. The researchers reported that a child’s first-grade reading/writing and math 

skills were associated with kindergarten EF. However, only working memory was reported to 

contribute to overall school achievement. The researchers believe the relationship between math 

achievement and working memory is determined by the problems in mathematics. For instance, 

children typically handle math problems using mental models (i.e., visuospatial representations) 

instead of symbolic language; skills that develop as the individual matures and continues 

throughout the critical period of early childhood education.   

While several studies have shown an association between young children’s inhibitory 

skills and mathematics achievement, the relationship is less clear in older children. The current 

consensus in the literature suggests a close link between working memory and mathematics 

achievement. It is unclear, however, whether these abilities contribute to the identification and 

prediction of later mathematical skills. Bull, Espy and Wiebe (2008) examined whether measures 

of working memory and short-term memory in preschool children could account for future 

academic achievement. Children were assessed using cognitive measures and reading and 

mathematics assessment outcomes. Researchers found that the visual-spatial and short-term 

memory span predicted math ability at 7 years of age. The EF skills were found to predict 
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learning in general, but not a specific domain. EF, as an overall process, can be used as a 

predictor of a child’s future academic achievement.   

Theoretical Models for Understanding Growth in Mathematics Achievement 

 The current literature proposes two theoretical models that describe how students gain 

their mathematical knowledge and the resulting mathematical achievement. These models 

propose that students gain knowledge, but due to demographic characteristics and outcomes in 

achievement, result in different performing groups. The cumulative growth model predicts a 

continued achievement gap. Alternatively, the lag model expects that students who underperform 

early on will have rapid growth and catch up to their higher-achieving peers. The following is a 

description of the two models that will be implicitly tested in this investigation.  

Cumulative Growth Model 

 The cumulative growth model explains how children gain their understanding of 

mathematics. Throughout their ongoing interactions with parents, siblings, teachers, peers, and 

others, children continually extend and refine their early mathematical understandings. Their 

learning is typically completed through information instruction, such as helping a child learn how 

to count, educational material such as songs, etc., which are provided to children during preschool 

years. Research has shown that children who enter kindergarten with mathematical knowledge 

continue to increase their knowledge, while children with less mathematical knowledge learn 

mathematical concepts at a slower rate. One clear manifestation of this model shows that children 

who experience an early onset of math difficulties will continue to display math difficulties as 

they progress through elementary school (Morgan et al., 2009).  

Lag Model 

According to the lag model, children who enter kindergarten with less educational 

training are more likely to increase their mathematical skills and knowledge more rapidly than 
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children entering kindergarten with higher levels of math knowledge. Consequently, children 

with lower levels of math skills begin to catch up to their peers with higher level math skills. This 

process occurs when children with lower math skills start to receive systematic instruction, which 

helps children who have experienced learning difficulties prior to entering kindergarten. Over 

time, the magnitude of the gap between higher and lower skilled children should decrease instead 

of increasing or remaining constant. More severe cases of children with early onset of math 

difficulties may not even display symptoms when they are older because the deficit has been 

addressed. Thus, according to the lag model, deficiencies during early education—if properly 

addressed—may not predict academic achievement throughout the child’s education. Several 

studies have supported the lag model, indicating some children who enter kindergarten with low 

levels of math skills display moderate to rapid growth in math skills as they get older (Morgan, 

Farkas & Wu, 2009). While this is an accepted model, the lag model does make it difficult to 

understand how math skills prior to entering school impact later education.  

 The models discussed above are theoretical descriptions of growth in mathematics 

achievement and performance. Evidence supporting both theoretical models has been found in the 

literature (see Morgan, Farkas & Wu, 2011). This investigation will use the models to guide the 

research questions to better understand instances where the cumulative growth model and lag 

model apply. Understanding how these models can be applied in the context of this investigation, 

and under what circumstance, will inform the best way to target student learning in mathematics 

and academic performance. The theoretical models discussed also make the case that learning 

experiences outside of school, such asin the home or through social interactions, are key to 

learning and therefore mathematics achievement. The following sections will discuss the 

importance of accounting for gender differences, racial differences, and socio-economic 

differences.   
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Gender Differences 

    The complexity of gender as a demographic characteristic has confounded researchers 

studying academic achievement.  Indeed, researchers have written articles on gender in relation to 

mathematics performance and EF where the findings have not been clear and sometimes 

conflicting. In one such paper, Halpern et al., (2007) reviewed the literature to answer the tough 

question of how gender differences affect performance in science and mathematics. The 

researchers reported some insights into potential gender differences, though they emphasized that 

the report should be interpreted with caution. The authors noted that, developmentally speaking, 

infants should not show differences in EF because they have not had many experiences. However, 

with a large enough sample, they found that female infants performed better on EF tasks. At later 

grade levels, gender differences have been reported in the literature when looking at the 

performance of EF (Bull et al., 2008). In elementary school, female participants again 

outperformed male participants in reading tasks. In relation to the visuospatial sketchpad, male 

students outperformed female students as early as preschool (Levine, Huttenlocher, Taylor, & 

Langrock, 1999). Halpern et al., (2007) also reported that while differences are observed in EF at 

an early age, and while male students tend to mostly represent the higher performing groups in 

preschool mathematics, there is no clear evidence that males are better in overall mathematics 

performance. Despite the perceived disadvantage, female elementary school students outperform 

male students in mathematics. The researchers did note a pattern, where female students are 

expected to outperform male students in specific mathematics tasks related to computational 

knowledge and speed during the early grades of elementary school. That the differences in gender 

due to mathematics performance and EF are not clear cut reflects the complexity of gender in 

attempting to explain achievement differences. Including gender as a covariate and as a 
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moderator will provide insights into the potential differences and how these differences are likely 

to vary across time in relation to EF and mathematics achievement.  

Other research has also indicated gender differences in mathematics and science 

achievement, with boys having significantly higher achievement compared to girls. Perhaps most 

notably, an expansive meta-analysis conducted using data from the National Assessment of 

Educational Progress focused on gender differences in mathematics and science achievement 

scores for American students during the 1990-2011 period (Reilly, Neumann, & Andrews, 2015). 

Achieving a total sample size of nearly three million students, the results of this study found 

small but reliable gender differences in mathematics and science achievement scores, with 

females having significantly lower scores than males. The researchers also investigated whether 

gender differences were similarly present in high achievers in these areas of study (Reilly, 

Neumann, & Andrews, 2015). Gender differences were found to not significantly change based 

on grade level with respect to science, though gender differences were found to significantly 

increase depending on grade level with respect to mathematics achievement scores. Additionally, 

there was no significant effect of year, nor was there an interaction between year and grade level, 

indicating that gender differences were relatively consistent across time (Reilly, Neumann, & 

Andrews, 2015). This investigation contradicts the Halpern et al. (2007) review, though it is 

consistent with the Levine et al. (1999) findings.    

Other research has found substantial changes in gender differences over time on 

performance. Focusing on science test scores more generally, research examining changes over 

the course of childhood education illustrate growing effect sizes between males and females. For 

example, effect sizes have been found to be the smallest in the cases of youngest students, with 

5th graders having an effect size of d = 0.10 (Maerten-Rivera, Myers, Lee, & Penfield, 2010), 

with this increasing to d = 0.26 in the case of 10th grade students (Mau & Lynn, 2000), and 
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increasing further to d = 0.28 with respect to 12th graders (Mau & Lynn, 2000). These findings 

suggest that age moderates the effect of gender on test scores. It is therefore important to include 

gender in the model during the critical years of development (k-4th grade) to explores the 

potential differences in gender performance.  

To explain differences in mathematics achievement, it is important to consider factors 

affecting academic performance. For example, mathematics anxiety is defined as the self-

imposed pressure that influences the processing of information (e.g., numbers), therefore 

affecting the overall solution of a math problem in academic contexts (Passolunghi et al., 2016). 

Other investigations have also reported gender differences in math performance and anxiety. 

These findings reported that males are more likely than females to choose majors that lead to 

STEM careers (Halpern et al., 2007). It has also been suggested that individuals with math 

anxiety will be more likely to have negative attitudes about their capabilities at solving 

mathematics problems (Lent et al., 1991). These negative attitudes may then serve to increase 

math anxiety and math avoidance (Passolunghi et al., 2016). It has also been suggested that 

poorer math performance among females has the effect of reducing their confidence and interest 

in math and science, which will negatively impact their career choices by pushing them away 

from these areas (Ganley, Vasilyeva, & Dulaney, 2014). These findings are important because 

research has also found math anxiety to be associated with reduced short-term memory as well as 

poorer working memory (Passolunghi et al., 2016). Overall, a large body of literature exists 

suggests that anxiety serves to reduce the capabilities of working memory (Peters, 2015). 

Stereotype threat has also been suggested as a possible reason behind the gender differences seen 

in mathematics performance (Ganley et al., 2013). Stereotype threat relates to individuals being 

impacted by an unconscious fear of behaving in a way which would serve to confirm a negative 

stereotype relating to their performance in some specific domain. With respect to mathematics, 
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this would consist of the stereotype that males perform better than females. However, studies that 

have tested for the potential of stereotype threat as being a factor in the differences in 

mathematics performance based on gender have not yet revealed any evidence for this being a 

factor. This may be since stereotype threat is only relevant in very specific circumstances, or that 

it acts as a pervasive, all-encompassing factor (Ganley et al., 2013). 

Consistent with previous findings, it is expected that gender differences will be observed 

in this investigation. It is further expected that male students will outperform female students in 

overall mathematics. If differences are observed in other assessments related to EF, the findings 

will potentially reveal more information about gender performance.   

Racial Differences 

The literature has reported contradictory findings on racial differences in mathematics 

achievement and EF performance. For example, Little (2017) found that racial gaps in cognitive 

flexibility and working memory were narrower than the gaps found in academic achievement. 

This was especially true for Hispanic students who were between kindergarten and second grade. 

For instance, the gap between White students and Hispanic students on the Numbers Reversed 

task dropped from 0.59 to 0.27 standard deviations (Little, 2017, p. 104). In mathematics 

performance, the gap between White students and Hispanic students was marginally narrow, from 

0.64 to 0.54 standard deviations (Little, 2017). Thus, according to this study, there are racial 

differences in EF skills reported in the literature for young children. In another investigation, 

Hooper, Roberts, and Sideris (2010) examined the social-behavioral predictors of math skills and 

math trajectories between Caucasian and African American students. The results of the study 

reflect the contribution of early math skills to later academic performance in both Caucasians and 

African Americans. Thus, the findings from this study suggest that there is not a racial difference 

when it comes to academic achievement in math. 
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In another investigation, however, Sonnenschein and Sun (2017) assessed the relationship 

between a child’s early math skills and their parent’s knowledge of the child’s development. The 

study used the Early Childhood Longitudinal Study-Birth Cohort in order to assess the 

differences between Asian, Latino, Black and White children’s early math skills at the entry of 

kindergarten. In addition, the researchers wanted to investigate if the parental understanding of 

development and experiences at home accounted for the relationship between race and 

mathematics skills (Sonnenschien & Sun, 2017). Knowledge of the child’s development by the 

parents was assessed when the child was 9 months old. The experiences at home, such as home 

enrichment and literacy, were assessed during preschool. White and Asian children entered 

kindergarten with higher math scores than Latino or Black children. There were also significant 

differences regarding the frequency of engaging in home enrichment and literacy activities. Thus, 

the association between math scores and race/ethnicity was mediated by their parents’ knowledge 

of their home literacy activities and development. Researchers stress the importance of educating 

parents on educationally relevant activities and how to foster a child’s math skills by engaging in 

such activities to close the racial/ethnic gap in mathematics.  

Not unlike previous findings, it is expected that racial differences will be observed on the 

EF tasks and manifest in the mathematics achievement outcome measures. Because development 

is critical for performance, the differences between the groups are expected to be observed as 

early as kindergarten and continue throughout the investigation.  

Socioeconomic Differences 

 The literature has pointed out that a child’s risk of developing math difficulties is likely 

due to their standard of living manifested in a lack of opportunities to learn. According to 

Morgan, Farkas, and Wu (2009), for example, children from low-income households are more 

likely than children from high-income households to display poor math skills. On the other hand, 
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some studies have yielded contradictory results. One study reported that children from low-

income areas were not more likely to exhibit math difficulties than children from higher income 

areas. Researchers suggest the contradictory findings are due to methodological limitations. For 

example, only a few studies have investigated the direct impact that a child’s socioeconomic 

status has on mathematical learning without using the reported income or education of the parent 

or guardian. Instead, the impact of socioeconomic status has been measured indirectly through 

information gathered from the academic institution the child attends and their eligibility for a free 

lunch.  

The racial differences in mathematics performance can be explain by considering 

differences in EF because of SES. Children from lower SES generally perform lower on EF tasks 

(Zelazo, 2015). Little (2017) explored the socioeconomic and racial differences in young children 

regarding EF. The researcher used the Numbers Reversed task and the Dimensional Change Card 

Sort (DCCS) to measure working memory and cognitive flexibility, respectively. Performance 

differences were reported in cognitive flexibility and working memory skills during the first year 

of kindergarten because of SES. The results of the study showed that students in the top quintile 

for socioeconomic status scored higher than the students in the lowest quintile on the Numbers 

Reversed task. It is important to note that the same result was found for race. While these gaps 

did decrease over time, the decrease in working memory was much more pronounced than 

cognitive flexibility. Furthermore, the socioeconomic status gaps between measures of academic 

achievement and measures of working memory are similar at kindergarten entry. That being said, 

performance differences in mathematics that are due to socioeconomic status are stable by the end 

of the second grade and decrease universally for working memory (Little, 2017).  

 

 



29 

 

Other Factors Influencing Mathematics Performance 

 There are other factors that can be associated with math achievement in young children. 

Other studies have identified risk factors associated with math difficulties including poor reading 

skills, entering kindergarten too young, and inattentiveness. These factors can also impact a 

child’s math achievement. Furthermore, children are more likely to have mathematical difficulties 

if they repeatedly perform poorly on math knowledge measures instead of a single instance of 

underperformance (Morgan, Farkas & Wu, 2009, p. 308). While the summary on factors that 

influence mathematics achievement is not meant to be exhaustive, it shows that there are a myriad 

of factors that are important. Other factors are being explored and found by researchers to play a 

critical role in mathematics achievement. What is important here is to use the data that are 

available to best explain mathematics performance.  

Applications and Implications 

The importance of mathematics was highlighted earlier in this chapter. Mathematics and 

science are a mainstay of any technological society, and to stay competitive in the modern world, 

excelling in these areas is critical. However, American schools have not been found to excel in 

teaching either mathematics or science, with performance among American students being sub-

par (Ashcraft & Krause, 2007). Ashcraft & Krause (2007) highlight the importance of working 

memory in everything relating to arithmetic and mathematics. They state that little research has 

been done examining math processing beyond that of basic arithmetic, which leads to a large gap 

in our knowledge relating to the relationship between EF and mathematics as it relates to 

anything more advanced than basic arithmetic problems (Ashcraft & Krause, 2007). 

Conclusion 

Math proficiency requires an individual to actively reason problem elements to arrive at a 

possible solution. Previous research has found a direct association between a child’s 
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mathematical skills and his or her EF skills. Throughout their ongoing interactions with parents, 

siblings, teachers, peers, and others, children continually extend and refine their early 

mathematical understandings. Mathematical skills and achievement, however, are not 

homogenous. Differences in mathematical skills and achievement are reflected when children 

enter kindergarten and have higher math achievement outcomes at the end of the first grade. On 

the other hand, research also suggests that children with lower math skills catch up to their 

higher-achieving peers when they start to receive systematic instructions.  

As discussed, mathematical skills and mathematical achievement are most closely linked 

to the functions that make up working memory. The relationship between mathematical ability 

and EF are consistent with the historical evidence that indicates a shift in mathematics curriculum 

during the early elementary grades. In other words, the development that occurs in EF in early 

childhood is associated with the growth in learning and achievement of mathematics. One study 

reported that a child’s first-grade reading/writing and math skills were directly associated with 

previous performance (e.g., kindergarten EF). However, of all the skills associated with EF, only 

working memory contributed to school achievement. Furthermore, researchers also found that 

children with high EF performance were more likely to perform well in math assessments at an 

early school age. Lastly, findings from several studies provide empirical support to address 

learning difficulties in young children through remediating the EF deficit, specifically working 

memory. Thus, while cognitive flexibility did impact a child’s mathematics achievement, 

working memory was reported to have the greatest impact on academic achievement.  

To account for environmental factors influencing academic performance, researchers 

have reported that poor performance can result from any economic disadvantages in the child’s 

family that result in fewer learning experiences. Research has shown that environments that 

provide less opportunities for a child to learn mathematics can delay a child’s math acquisition 
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skills, which is remediated when the child enters school. However, there is a lack of consensus 

amongst researchers on whether math or EF skills are impacted by gender, race or socioeconomic 

status. Scholars have identified a gender gap in math skills in kindergarten and in first grade. 

These studies also suggest that a child’s risk of developing math difficulties is due to their 

standard of living. Another contributing factor to the gender gap is from teachers favoring males 

during the earlier school years. Other studies have identified risk factors associated with math 

difficulties that include having poor reading skills, entering kindergarten too young, and 

inattentiveness. Regarding racial differences, research suggests that racial gaps in cognitive 

flexibility and working memory are narrower than the gaps found in academic achievement. It is 

worth pointing out, however, that the differences in cognitive flexibility and working memory 

skills at school entry are largely a result of SES. 

Overall, deficits in working memory may impede a child’s academic achievement. Also, 

children from lower SES typically exhibit lower levels of EF skills. Academic achievement is 

most closely associated with the working memory function of EF. Due to the level of complexity 

of preschool/kindergarten math, research has shown that a child does not need to exhibit complex 

cognitive functioning skills to find math solutions. Cognitive flexibility is required in later years, 

however, with more advanced math problems that require more thought processes. Thus, working 

memory has been found to be the best predictor of a child’s later educational attainment. 
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CHAPTER 3 

METHODS 

 Chapter 3 will discuss the theoretical background that has guided this investigation, 

detailed information about the data, assessments used to collect the data, and the methodological 

approach. An explanation for the data, variables of interest, and statistical approach used for the 

analysis will follow. The contrasting learning models used in this investigation in combination 

with the availability of the ECLS-K: 2011 dataset allowed for the unique opportunity to answer 

the proposed research questions. How the data was coded will be explained, from participant 

selection and missing data to selection of data time points. To address the hierarchical nature of 

the data, statistical equations describing the multilevel statistical analysis will be used to guide the 

reader through the analyses.   

Conceptual Framework/ Theoretical Comparison of Mathematics Growth Learning Models 

The theoretical framework that guides the research questions for this investigation are the 

cumulative growth model and the lag growth model used previously to learn about populations 

with learning difficulties (Morgan, Farkas, 2009), and described before in previous work (Aunola, 

Leskinen, Lerkkanen, & Nurmi, 2004). These models provide theoretical accounts that describe 

growth in mathematics learning achievement and performance.  

The cumulative growth model hypothesizes that children gain insight into mathematics 

via experiences that result from demographic characteristics (e.g., gender, grade level, ethnicity, 

and SES). More specifically this model proposes that growth in mathematics learning results from 

social interactions with family members at home and with peers and instructors at school 

(Morgan & Farkas, 2009). This account is not unlike the zone-of-proximal-development 

described by Vygotsky (1987). The cumulative growth model, as the name suggests, predicts that 

the knowledge that one enters preschool with is built upon. Morgan and Farkas, (2009) make the 
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case that those individuals with more knowledge are more likely to pick up mathematics skills 

faster and be more skilled and knowledgeable in mathematics. Similarly, individuals who start off 

preschool with less skill in mathematics will be behind those that are better prepared.  

 In contrast to the cumulative model is the lag model. The lag model is presented as 

another possibility that speaks to the benefits of the educational system, such as high-quality 

preschool programs (Welch, Nix, Blair, & Nelson, 2010). From this point of view, students start 

at different performance levels as a result of demographic characteristics. However, instead of the 

achievement gap remaining, the students who “lagged” behind gain performance ability and 

eventually perform at the same level as their peers. Morgan and Farkas (2011) point out that in 

the best-case scenario, students who at one point showed symptoms of a learning difficulty 

should perform average.  

In a review of the literature, Morgan and Farkas (2011) point out that there is limited 

evidence for the cumulative performance model and the lag performance model. There is 

evidence in the literature to support the model that argues for the achievement gap, and the model 

that argues for overtime closure of the achievement gap. Previous investigations that studied 

growth trajectories in mathematics performance, however, have typically looked at two to three 

years of academic growth. This investigation aims to start the investigation at preschool and 

continue to the fourth grade to expand the test of mathematics performance growth models.  The 

learning growth models will, therefore, guide the longitudinal questions, the expected outcomes, 

and statistical analysis approach.   

Data Source / Participants 

 The Early Childhood Longitudinal Studies (ECLS) program includes three overall 

investigations. ECLS is sponsored by the National Center for Education Statistics (NCES), a 

program that is part of the United States Department of Education’s Institute of Education 
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Sciences (IES). The other studies in the Early Childhood Longitudinal Study (ECLS) program are 

the Early Childhood Longitudinal Study, Kindergarten Class of 1998–99 (ECLS-K) and the Early 

Childhood Longitudinal Study, Birth Cohort (ECLS-B) (Tourangeau et al. 2017). This 

investigation was made possible because of the most recent dataset that includes the early 

childhood longitudinal study, Kindergarten Class of 2010-2011 (ECLS-K:2011). The dataset is an 

across-the-board bank of information that contains wide-ranging topic areas from learning, 

development, school readiness and information about growth and change to cognition, social and 

physical development, experiences, and educational outcomes. All participants started when they 

were five years of age (e.g., 2010-2011 school year) when the children were in kindergarten.  The 

sampling continued through the spring of 2016 when most of the participants were in the fifth 

grade (Tourangeau et al. 2017). The total sample size is 18,170 participants. Data were collected 

in the United States from 90 primary sampling units (counties or groups of counties) with an 

emphasis on ensuring that metropolitan and other areas, and both public and private schools were 

represented in the data collection. The total number of schools sampled was 1,310. A total of 23 

students were randomly selected from each school. The sample included children from different 

racial/ethnic and socioeconomic backgrounds (Tourangeau et al. 2017).  This included first-time 

Kindergarteners and repeating Kindergarten students. In addition, data were collected from 

sources other than children, such as parents/guardians, classroom teachers, special educators, 

school administrators, and, for Kindergarteners only, before- and after-school care providers. This 

investigation will focus on the child data.   

 Because the purpose of the assessment was to better understand skill and knowledge 

development, assessments occurred at multiple time points. Children participated in the 

investigation via direct assessment, which lasted approximately 60-80 minutes. From 

Kindergarten through second-grade, children were assessed for reading, math, executive function, 
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science, and height and weight. When the participants reached the third grade, the assessment 

session was a child questionnaire. The first wave of data collection started in Fall 2010 and 

Spring 2011 for the Kindergarten year. The second wave occurred Fall 2011 and Spring 2012 for 

First grade. The third wave occurred Fall 2012 and Spring 2013 for second grade. The fourth 

wave occurred in Spring 2014 for third-grade. The fifth wave of data collection occurred in 

Spring 2015 for fourth grade. The final fifth-grade data collection wave occurred Spring 2016. 

All available time points will be included in the present analyses, which will account for the 

greater spacing of the annual repeated measures in later grades versus biannual repeated measures 

in earlier grades. Analyzing both the Spring and Fall data from earlier grades maximizes the 

information available early in development when more rapid changes may be occurring. The 

models described below will also allow for detection of a loss in gains over the summer when 

students do not receive formal instruction. All available subjects in the ELCS-K data will be 

analyzed.  

Other information related to demographic characteristics (e.g., children’s race/ethnicity, 

household poverty status, parents’ highest level of education, family type, and primary home 

language) was collected via interviews with parents during the first wave of the investigation. 

Most of the parent or guardian interviews were conducted by telephone or in person. The 

respondent to the parent interview was the individual who identified as knowing the most about 

the child’s care, education, and health.  In some instances, the parent interview was fully 

translated into Spanish before data collection began and could be administered by bilingual 

interviewers if parent respondents preferred the interview in Spanish. Because it was cost 

prohibitive to do so, the parent interview was not translated to other languages. In those cases, 

parents who spoke other languages were interviewed using an interpreter. 
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Measures and Procedures 

Dependent Variables 

Because the focus of this investigation is mathematics achievement, this assessment will 

be used as the outcome or dependent variable. Mathematics achievement is a unidimensional 

assessment that included topic areas such as number properties and operations, measurement, 

geometry, data analysis and probability, and algebra. As the participants got older, questions from 

more advanced topics increased in number and more basic questions decreased. IRT based scores 

were calculated in the form of theta scores that range from -8 through 8 and measure how 

children perform in different mathematics topics. Theta scores were equated over age/grade to 

provide a developmental scale that can be used to measure gains over time.  

Independent Variables 

 As a predictor of mathematics achievement, EF is composed of several assessments that 

measure the different domains. Participants were tested for the cognitive flexibility component of 

working memory. Demographic characteristics were also used to predict mathematics 

achievement. The literature and critical current work have informed the use of these variables in 

understanding mathematics achievement. Note that inhibitory control is not considered further 

since it was not measured throughout the entire length of the investigation. 

 Cognitive Flexibility. An individual’s ability to see a task or aspect of a problem from 

differing perspectives is a useful skill and refers to what researchers call cognitive flexibility 

(Diamond, 2013). Cognitive flexibility is more commonly known as an individual’s ability to 

‘think outside the box’ and is a skill that is widely assessed by researchers who study children’s 

academic achievement (Zelazo, 2015). This skill is frequently investigated by researchers in a 

wide array of contexts, such as task switching and set-shifting tasks (Diamond, 2013). The 

Dimensional Change Card Sort (DCCS) will be used throughout this investigation to assess 
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children’s cognitive flexibility. The task will allow researchers to determine whether cognitive 

flexibility measures can predict a child’s mathematical achievement. 

Cognitive flexibility was measured throughout the entire investigation (e.g., Kindergarten 

through 5th grade). The assessment used to measure this domain was the dimensional change card 

sort (DCCS) from the NIH Toolbox. This task involves sorting pictures such as a sailboat or 

rabbit. The pictures are sorted into one or two categories consistent with the rules provided. This 

investigation will use scores for the total or entire assessment. During the first two years (e.g., 

Kindergarten through 1st grade) of the investigation, participants were given the physical version 

of the DCCS. The combined accuracy for the physical version reflects accuracy and ranges 

between 0-18, where a higher score indicates greater cognitive flexibility. A computerized 

version of the DCCS was created for second graders by the National Institute of Health Toolbox 

for the Assessment of Neurological and Behavioral Function (NIH Toolbox). The computerized 

version of the DCCS makes the test age appropriate for older children (Tourangeau, Nord, Le & 

Wallner-Allen, 2017). However, it is not seen as an age-appropriate tool for participants in the 

first grade and younger. Only children aged eight and older were given the computerized version 

of the DCCS that was used for later data collection waves (e.g., 2nd through 5th grade). For this 

version of the assessment, overall score ranges were between 0-10, with a higher score indicating 

greater accuracy and reaction time. It is acknowledged that the DCCS was scaled differently for 

different grade years (e.g., Kindergarten through 1st grade and 2nd through 5th grade) with the 

same population across the duration of the investigation. Because of this change in scaling, the 

analysis using DCCS scores will be limited to the period beginning in Fall of the second grade. 

As an instrument of cognitive flexibility, the DCCS is appropriate for subjects of 3-85 

years of age. To make the assessment age appropriate, the DCCS is administered at different 

starting points with 40 different trials. The assessment starts with the participant sorting pictures 
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based on a given dimension (e.g., color). This starting point is termed the pre-switch trial and the 

first part of the test consists of five such trials. Subsequently, there are five trials (post-switch 

trials) where the participant sorts items based on different dimensions (e.g. shape). The 

complexity of the assessment starts when the participant is asked to sort the pictures using 

different dimensions (e.g., color or shape) with a total of 30 mix trials. To account for age, 

participants under age eight start the assessment with pre-switch trials and participants over age 8 

start with the mix block trials. Equal points are given for correctly applying the rule at the 

respective trial (e.g., pre-switch or post-switch trials). When obtaining the final score from the 

physical and computerized version of the DCCS, it is important to note that the computerized 

version allows for more accurate time information, as it captures trial data in milliseconds. Thus, 

accuracy, and not time, will be the best indicator of cognitive flexibility for the DCCS data 

(Tourangeau, Nord, Le & Wallner-Allen, 2017).   

Administering the DCCS requires the administrator to determine that the participant can 

demonstrate an understanding of the task, which consists of 8-24 trials. The test administrator 

instructs participant on the identification rules for the pictures (e.g., color or shape). Four practice 

trials are administered with the test administrator’s instructions. During these beginning trials, the 

stimulus is sorted by shape. Successfully sorting 3 out of 4 trials will lead to practice sorting 

stimulus according to color. If the participant does not apply the rule correctly, then another 

practice round will be administered. Only if the participant successfully completes the trials will 

they be administered the DCCS (Tourangeau, Nord, Le & Wallner-Allen, 2017).  The actual 

scored DCCS is composed of 30 separate trials. A scoring algorithm obtained from the NIH 

Toolbox was used to obtain the scores. The final score for the DCCS ranges between zero and 

ten. The participants’ score accuracy (0 to 5 units) and reaction time (0 to 5 units) factored into 

the final scores (Tourangeau, Nord, Le & Wallner-Allen, 2017, p. 3-17). Accuracy that is at 80 
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percent or less will lead to an overall score based on the participant’s accuracy. Accuracy that is 

greater than 80 percent results in an overall score that combines both reaction time and rule 

application accuracy (Tourangeau, Nord, Le & Wallner-Allen, 2017). The overall accuracy score 

can range between 0 to 5. The forty outcomes of 40 trials was reduced to a maximum score of 

five. This means that the participant earns a total of 0.125 points (5 points/40 trials) for each 

correct trial. In the event that only 30 mixed block trials are administered, five pre-trial points and 

five post-trial points (a total of 10 points), the overall accuracy for the DCCS is computed as 

follows: 

  DCCS accuracy score = .125 * # of correct responses 

Working Memory. Working memory, a component of EF, is a cognitive function that is 

composed of the ability to retain and manipulate information. This domain is an ideal measure for 

researchers to assess executive function and academic achievement. Working memory has been 

previously used to predict academic achievement. Working memory was assessed throughout the 

entire investigation (e.g., Kindergarten through 5th grade), via the Woodcock-Johnson III numbers 

reversed subtest. The test yields four scores (e.g., age standard score, age percentile score, grade 

standard score, and grade percentile score). The scores indicate performance relative to peers’ 

grade-normed scores and age-normed transformation data. For this test, the participant is shown a 

series of numbers and asked to repeat the numbers, in reverse order, with increasing difficulty or 

length. For this investigation, the pre-calculated age standard score will be used in the analysis. 

The standard score reflects the participant's performance in comparison to age and grade level 

average, with a mean score of 100 and a standard deviation of 15 (Tourangeau, Nord, Le & 

Wallner-Allen, 2017, p. 3-28). The numbers reversed subtest scores were also computed as z-

scores using the participant’s W score, with a z-score having a mean of zero and a standard 

deviation of one (Tourangeau, Nord, Le & Wallner-Allen, 2017, p. 3-28). Z-scores that were 
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standardized across grade level (e.g., Kindergarten through 5th grade) were used in this 

investigation. 

Because the numbers reversed subtest yields different outcome scores, the preferred 

outcome score can vary depending on the investigation. Grade or age percentile rank or 

standardized scores may be better suited for analyzing data for one time-point. A W score is better 

suited for longitudinal analysis. The W score is a standardized score that is produced from the 

Rasch ability scale (Tourangeau, Nord, Le & Wallner-Allen, 2017, p. 3-25). It provides a 

common scale that represents both difficulty and ability of the task. The W scale is most useful 

for measuring growth. It has a mean of 500 and standard deviation of 100. The mean average of 

the WJ III is set for a child at 10 years of age. Participants younger than 10 years are expected to 

have a W score lower than 500, while older children should have a W score greater than 500. The 

W score is expected to increase as the child develops with age. A child’s W score increasing from 

430-440 indicates growth. The W score is an equal-interval scale score that is suited for both 

regression and correlation analyses. The higher the W score, the better they performed at 

reiterating more difficult number sequences (Tourangeau, Nord, Le & Wallner-Allen, 2017, p. 3-

26). However, the W score does not reflect the child’s pattern of responses; it only  reflects the 

total number of correct answers (p. 3-26). Thus, the W score is not an indication of the number of 

sequences the child correctly answers (Tourangeau, Nord, Le & Wallner-Allen, 2017).   

The Numbers Reversed subtest was created to be administered during early childhood 

education (e.g., K-5th grade) (Tourangeau, Nord, Le & Wallner-Allen, 2017) and is meant to tap 

into the participant’s working memory. The subtest consists of the backward digit span task. The 

backward digit span task consists of the participant having to reiterate in reverse order a sequence 

of the number shown (Tourangeau, Nord, Le & Wallner-Allen, 2017, p. 3-24). If a child was 

presented with a series of numbers (e.g., “3…5”), the correct answer would be stated in reverse 
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order (e.g., “5…3”). Participants were administered the Numbers Reversed task for two-number 

sequences five times. The Numbers Reversed task ends when three consecutive number mistakes 

are made. Individuals who answered correctly were given up to five, three-number, sequences. 

The sequences then become increasing longer, up to a maximum of eight numbers, until the 

participant makes three consecutive mistakes (Tourangeau, Nord, Le & Wallner-Allen, 2017).  

The average score for the Numbers Reversed subtest is 403 for children who have not yet 

developed their working memory skill. As the child’s working memory develops, the child’s 

WJIII Numbers Reversed subtest measures can be compared to the child’s baseline W score. The 

participant’s fall and/or spring kindergarten W score can then be compared to other participants’ 

scores to determine growth in future assessments (Tourangeau, Nord, Le & Wallner-Allen, 2017, 

p. 3-27). Researchers are cautioned when interpreting the raw score of zero (which is a 403 in W 

score) because it is not an accurate measure of a child’s working memory ability.  For example, in 

one study that administered the Numbers Reversed subtest to kindergarteners in the Fall semester, 

roughly forty percent of the participants had not developed their working memory skills and were 

therefore given a score of 403 (Tourangeau, Nord, Le & Wallner-Allen, 2017, p. 3-27). As the 

participant’s skills developed, the following Spring semester, only twenty percent of the students 

were not able to score above the lowest score scalable. The following academic year, fall 

semester, when participants were in the first grade, that number had dropped to less than thirteen 

percent for children who scored the lowest score scalable. Only six percent of children scored the 

lowest during the Spring semester of their first-grade year. It is not clear, on the other hand, how 

close some of these children were to scoring higher on the Number Reversed subtest 

(Tourangeau, Nord, Le & Wallner-Allen, 2017).  

One factor contributing to children scoring 403 or less (0 in raw score) is the fact that the 

practice items were improperly administered by the assessors, resulting in some of the children 
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not fully understanding specific aspects of the Numbers Reversed subtest. During field 

observations in one study, it was noted that there were inconsistencies with how the practice 

items were administered when the children did not answer the first practice item correctly. 

However, it is difficult to determine to what extent the practice items being improperly 

administered to the children affected the results of the study. Consequently, proper administration 

of practice items may impact the performance for some of the participant’s score. It is therefore 

important for researchers to decide how to handle scores of 403 or less during analyses. This 

decision should be based on the analytical goals of both the researcher and the study.  

Demographic Characteristics 

Gender. Information about the child’s gender was collected from the respective schools 

at the time of sampling. The information was stored in the study’s administrative database and 

collected again from the parents in the fall kindergarten parent interview. This information was 

further confirmed by parents in the spring kindergarten parent interview and then asked again in 

the later round of interviews if the data were either missing or had never been confirmed by the 

parent (Tourangeau et al. 2017). 

Race. Information about the participants’ race was collected from the parents as part of 

the parent interview. This parent information was cross-checked with the school to ensure 

consistency. The parents provided the participants’ race during the kindergarten academic year 

(2010–11). In the spring of 2012, the spring of 2013, the spring of 2014, and the spring of 2015, 

parents were asked to provide information on the child’s ethnicity and race in case the 

information was missing or had not been confirmed by a parent/guardian in a previous data 

collection wave (Tourangeau et al. 2017). 

During the parent interview, respondents were asked to indicate whether their child 

belonged to one or more of the following races: White, Black or African American, American 
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Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander. In addition, each 

parent was asked to identify whether the child was Hispanic or Latino. Hispanic and race were 

used to create eight mutually exclusive categories: White, not Hispanic; Black or African 

American, not Hispanic; Hispanic, race specified; Hispanic, no race specified; Asian, not 

Hispanic; Native Hawaiian or Other Pacific Islander, not Hispanic; American Indian or Alaska 

Native, not Hispanic; and Two or more races, not Hispanic. For this study, a race variable has 

been created with the categories of African American, Asian American, White, Hispanic, and 

Other.  

 Socioeconomic Status. Socio-economic status is defined based on a government 

assigned classification. One critical classification is poverty status. Poverty status was created 

based on household income and the total number of household members. To get this information, 

the parents of the participants were asked to report their household income based on a standard 

list of categories. A classification of poverty was given based on exact income and household 

size. This was done using the weighted 2010 census poverty thresholds. A classification below 

the federal poverty level is a two person household that earns an income below $14,220. If the 

same household earns more than $14,220 but less than $28,440, then their classification is at the 

poverty level. A household above an income of $28,440 was given a classification above the 

poverty level (Mulligan, McCarroll, Flanagan, & Potter, 2014).  

Statistical Analysis 

A series of descriptive statistical analyses will be conducted on variables of interest in 

order to present an initial illustration of the ECLES- K: 2011 dataset used for this study. First, 

frequency tables will be constructed for all categorical measures included in this investigation, 

with the sample sizes and percentages of response reported for each response category (Holcomb, 

2016). Following this, means and standard deviations will be calculated and reported for all 
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continuous measures of interest included within this study. The descriptive statistics will then be 

followed by fitting models to address the study’s research questions.  Summary statistics for time-

varying variables will be presented for each measurement period in the data.   

To review, the research questions of interest for this investigation consist of the 

following: 

Research Question 1: What is the average math achievement growth trajectory from kindergarten 

through fourth grade, accounting for the nesting of students within schools, and summer loss?   

Research Question 2: To what degree do gender, racial, or socioeconomic status differences 

account for variation in the intercepts, slopes, and summer drops in the mathematics trajectories 

at the student and school levels?   

Research Question 3: Is executive functioning associated with change in math achievement over 

this period? 

Research Question 4: Which student sociodemographic characteristics are most strongly 

associated change in math achievement, and to what degree does controlling for student 

sociodemographic characteristics alter the association between executive functioning and change 

in math achievement? 

Research Question 5. To what degree does math achievement growth vary among schools, 

controlling for demographics? 

 In all cases, linear mixed effects models (LME) will be used to account for the nested 

structure of the data. The first source of clustering is due to the repeated measures (fall of 

kindergarten through spring of fourth grade) nested within students.  The second level of 

clustering is due to students nested within schools. LME modeling allows researchers to account 

for the nested structure of the data, including the nesting of time points within cases (Raudenbush 

& Bryk, 2002).  LME is preferred to traditional regression modeling because of the fact that 
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observations are not treated as independent and standard error estimates are less biased, thus 

producing more precise inferences than other approaches. 

The LME models to be tested will include random effects for the subject and school.  In 

addition, the effect of time will be treated as randomly varying between students.  This yields a 

more complicated error structure that no longer assumes zero correlations between cases.  When 

the effect of time is allowed to be individual-specific, the within-individual error covariances are 

not only non-zero but also a function of time (Fitzmaurice, Laird & Ware, 2011). In addition, 

LME models are more robust to missing data than AN(C)OVA models because a missing time 

point does not require dropping all the observed time points for that individual (Raudenbush & 

Bryk, 2002).   

Because of the large sample size and number of random effects in the models, the LME 

models will be estimated using the hpmixed procedure in SAS v. 9.3. The first measurement for 

each subject will be coded as one to indicate baseline, which, on a log scale, becomes zero.  All 

subsequent measures will be coded in increments of 1/12.  That is, time will be coded as follows: 

- GradeK-September = 0/12  

- GradeK-October = 1/12  

- GradeK-November = 2/12  

- GradeK-December = 3/12 

- GradeK-March = 6/12 

- GradeK-April = 7/12 

- GradeK-May = 8/12 

- Grade1-September = 12/12 

- Grade1-October = 13/12 

- … 

- Grade4-May = 56/12 
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An additional variable, drop, will be incorporated into the models that coded as zero for Grade K, 

1 for Grade 1, 2 for Grade 2, etc.  The purpose of this variable is to introduce a loss upon grade 

transition (summer), with the assumption the amount of loss is equal at each transition. 

The research questions will be addressed using the following models: 

Research Question 1: What is the average math achievement growth trajectory from kindergarten 

through fourth grade, accounting for the nesting of students within schools, and summer loss?   

 The first research question only considers the typical trajectory of math achievement after 

accounting for student and school random effects.  This model will be used to establish baseline, 

unadjusted trends against which subsequent models can be compared.   

The model that will be fit is the following: 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + +𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

Here, 𝑀𝐴𝑡𝑖𝑠 is the value of math achievement at time t for the ith student in school s. 𝑏1 is the 

value of the average linear trajectory (after a natural log transform), and 𝑏2 represents the dip in 

the fall due to summer loss. 𝑢0𝑠  is the school random effect, 𝑢1𝑖𝑠 is the student (nested in school) 

random effect, 𝑢1𝑠 is the school-level random effect for time, 𝑢1𝑖𝑠 is the student-level random 

effect for time, 𝑢2𝑠 is the school-level random effect of summer drop, and 𝑢2𝑖𝑠 is the student-level 

effect for random drop.  The time and drop random effects account for differences in trends and 

summer drop between schools and students.   The final term is remaining error.  The random 

effects matrices at the school and student levels will be treated as unstructured, allowing 

covariances between random effects to be estimated, and independent between levels. 

As will be discussed in greater detail in the next chapter, the choice of using a natural log 

transformation for time is based on two considerations.  First, although a quadratic functional 

form is a common way to capture nonlinear trends, it introduces the complications in both 
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interpretation and estimation due to the requirement of an additional random effect at both the 

student and school levels.  Second, based on graphical evaluations of trends, the log transform 

appears to accurately capture nonlinearities.  Although in theory there may be student and school-

level differences in the (log) trajectories and summer drop effects, estimation problems can occur 

if estimates of the variance components approach zero.  This is often manifest in random effects 

correlations near unity.  Hence, the results will report models that constrain some of the variance 

components to zero along with change in model fit statistics so that the reader can see the 

implications for overall inferences of fixed effects when changing assumptions about the random 

effects. 

Research Question 2: To what degree do gender, racial, or socioeconomic status differences 

account for variation in the intercepts, slopes, and summer drops in the mathematics trajectories 

at the student and school levels?   

This second research question focuses on whether there are gender, racial, and 

socioeconomic status differences in mathematics achievement performance. In order to test these 

associations, an MLM will be conducted which will include these demographic measures as 

independent variables and mathematics achievement performance as the dependent variable, with 

the data being clustered within subject and school. The results of this analysis will determine 

whether there are any significant differences in mathematics performance as a result of these 

demographic measures.  The model will be the following: 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏16𝑏𝑙𝑎𝑐𝑘𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏17ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏18𝑎𝑠𝑖𝑎𝑛𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏19𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏20𝑠𝑒𝑠𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 
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Coefficients 𝑏3 through 𝑏8 represent the main effects of each demographics variable, or the effect 

when time = 0 (fall of kindergarten year).  Coefficients 𝑏9 through 𝑏14 are the interactions with 

time, which estimate how much the trajectories vary as a function of each demographics variable.  

Coefficients 𝑏15 through 𝑏20 are the interactions with summer drop, which estimate how much 

the effect of summer drop varies as a function of each demographics variable.  The random 

effects 𝑢0𝑠 through 𝑢2𝑖𝑠 summarize how much the intercept, trajectory, and summer drop vary at 

the student and school levels net of any variability captured by the demographics.   

When an interaction is significant, the fixed effect will be examined graphically by 

plotting the trajectory for each value of the demographic variable.  This will facilitate 

interpretation given that, with a logged time variable, the rate of change will depend on the time 

point. 

Research Question 3: Research Question 3: Is executive functioning associated with change in 

math achievement over this period? 

The analysis of the third research question research question will progress sequentially by first 

modeling EF and then correlating the predicted random effects of the EF model with the 

predicted random effects of the math achievement model.  The following model will be fit to 

working memory: 

𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

The model terms are interpreted in the same manner as those in the model of math achievement 

described for research question one.  However, whereas the first two research questions focused 

on fixed effects and variance components (along with their covariances), the third research 

question is interested in knowing if the student-specific and school-specific variability in EF is 

associated with the student-specific and school-specific variability in math achievement.  To 
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determine if this is the case, the best linear unbiased predictions (BLUPs) of the student and 

school specific random effects will be estimated and saved for both EF and math achievement.  

They will then be combined into a single data file, and a correlation matrix of predicted values 

will be estimated. 

Specifically, correlation between the 𝑢0𝑖𝑠 term from the EF equation and the 𝑢1𝑖𝑠 term 

from the math equation will indicate if early EF is associated with larger math gains among 

students. This represents the association most directly related to the research question. In 

addition, the other random effects correlations at both the student level and school level will also 

be presented for completeness. The correlation between the predictions from the two 𝑢0𝑖𝑠 terms 

(one from each model) will indicate the size of the association between initial levels of math and 

EF at the student level (do kindergartners with high EF tend to have higher math achievement?).  

The correlation between the predictions of the two 𝑢1𝑖𝑠 terms will indicate the size of the 

association between the EF and math trajectories at the student level (do increases in EF tend to 

go along with increases in math achievement?).  The correlation between the predictions of the 

two 𝑢2𝑖𝑠 terms will indicate the size of the association between the EF and math summer drop 

effects at the student level (do increases in drop in EF tend to go along with increases in drop in 

math achievement?). The correlation between the 𝑢0𝑖𝑠 term from the math equation and the 

𝑢1𝑖𝑠 term from the EF equation will indicate if early math achievement is associated with larger 

gains in EF.   

The same correlation matrix will be assessed at the school level.  Specifically, the 

correlation between the predictions from the two 𝑢0𝑠 terms (one from each model) will indicate 

the size of the association between initial levels of math and EF at the school level (do schools 

with high EF in kindergarten tend to have higher math achievement in kindergarten?).  The 

correlation between the predictions of the two 𝑢1𝑠 terms will indicate the size of the association 
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between the EF and math trajectories at the school level (do schools demonstrating increases in 

EF tend to also have students demonstrating increases in math achievement?).  The correlation 

between the predictions of the two 𝑢2𝑠 terms will indicate the size of the association between the 

EF and math summer drop effects at the school level (do schools with larger summer drop in EF 

also tend to have larger summer drop effects in math achievement?).  The correlation between the 

𝑢0𝑠 term from the EF equation and the 𝑢1𝑠 term from the math equation will indicate if early EF is 

associated with larger math gains between schools.  The correlation between the 𝑢0𝑠 term from 

the math equation and the 𝑢1𝑖 term from the EF equation will indicate if schools having higher 

early math achievement tend to show larger gains in EF.   

This process will be repeated using DCCS scores.  However, because the scaling of 

DCCS changed in the second grade, the model will only be fit using data starting from grade two.  

In addition, since most of the subsequent data collection occurred in the spring, there will be no 

summer drop variable included in the model.  The specification will be the following: 

𝐷𝐶𝐶𝑆𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠

+ 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

For these models, time will be rescaled so that second grade equals 1 (zero on the log 

scale).  As with working memory, the random effects will be predicted and then correlated with 

the random effects from a math achievement model fit to the same period.   

Research Question 4: Which student sociodemographic characteristics are most strongly 

associated change in math achievement and to what degree does controlling for student 

sociodemographic characteristics alter the association between executive functioning and change 

in math achievement? 

The final research question is similar to the last except that the models now incorporate 

demographics.  For working memory, the model of interest is the following: 
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𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏16𝑏𝑙𝑎𝑐𝑘𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏17ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏18𝑎𝑠𝑖𝑎𝑛𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏19𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏20𝑠𝑒𝑠𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

The DCCS model, fit only to the data beginning in second grade, will be the following: 

𝐷𝐶𝐶𝑆𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖

+ 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖 + 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠

+ 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

 The focus of interpretation for both outcomes will again be on the correlations between 

the random effects predictions with the research question addressed most directly by the 

correlation between the EF scores in kindergarten and the math achievement trajectory.  The 

primary difference from the prior research question is that the random effects are now estimated 

net of any variance explained by the inclusion of the demographics variables. 

In a supplementary analysis, a model of math achievement will be fit that includes both 

demographics and the EF measures (separate models for working memory and cognitive 

flexibility).  The purpose will be to determine if EF adds significantly to the explanatory power of 

the model.  Whereas the other models corresponding to research question four are interested in 

the association between intercepts and trajectories, these final models will assess how much EF 

directly affects math achievement.  The model including working memory will be the following: 
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𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏16𝑏𝑙𝑎𝑐𝑘𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏17ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏18𝑎𝑠𝑖𝑎𝑛𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏19𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏20𝑠𝑒𝑠𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏21𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑚𝑒𝑚𝑜𝑟𝑦𝑡𝑖𝑠 + 𝑢0𝑠

+ 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

The focus of interpretation will be on 𝑏21, the coefficient corresponding to the effect of working 

memory.  In addition, the model fit will be compared to what was obtained in the model that 

excludes the working memory fixed effect. 

 For DCCS, the model will be the following: 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝐷𝐶𝐶𝑆𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠

+ 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

Here the focus of interpretation will be the estimate of 𝑏15, the fixed effect for cognitive 

flexibility.  The model fit will be compared against a model of math achievement estimated 

without the DCCS variable using the same sample (beginning in second grade). 

Research Question 5. To what degree does math achievement growth vary among schools, 

controlling for demographics? 

For each of the models corresponding to research questions 3 and 4, a table will be presented 

showing the amount of variability explained at both the student and school levels by inclusion of 

demographics. The final research question returns to these tables and focuses specifically on how 

much between-school variability remains. In addition, boxplots of the predicted random effects 

will be presented for the models with and without demographics in order to visualize the 

reduction in variability. This information helps to understand how much school quality matters 
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for math achievement outcomes after taking into account student characteristics that cannot be 

targeted by policy. 

Additional Model Considerations 

  Assumptions and Diagnostics. LME makes the assumption that, conditional on the fixed 

and random effects, the individual-level variance is normally distributed with a mean of zero and 

constant variance.  It also assumes that the variance components at each level are distributed 

multivariate normal and uncorrelated between levels.  Another assumption is that the 

relationships between independent variables and the outcome are linear in the coefficients and 

that outliers do not have a disproportionate effect on the results. 

 The first assumption will be tested using a q-q plot of the level-1 residuals, where the 

residuals should follow a 45o line.  A plot of standardized residuals by predicted values will be 

used to assess for non-constant variance, with evidence of heteroskedasticity occurring if the 

spread of the residuals gets larger or smaller across the range of predicted values.  Boxplots of 

residuals by school will also be examined to determine if there are systematic differences in 

variance by the highest level of grouping. 

 The appropriateness of the functional form (linearity) will be assessed by looking at plots 

of each independent variable (x-axis) and the outcome (y-axis) and fitting a loess line to the data.  

A loess line, unlike a linear regression line, is allowed to curve and follow the density of the data.  

If the line shows substantial curve, the variable will be transformed appropriately, either using a 

log or polynomial transformation. 

 The sample size will be large, so it is unlikely that outliers will have a large influence on 

the results.  Nonetheless, standardized individual-level residuals will be calculated, and cases 

with a value greater than +/- 4 will be investigated to determine if they should be included or 

excluded.   
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CHAPTER 4 

RESULTS 

Tables 1 and 2 present descriptive statistics for the main study variables.  Separate 

descriptive statistics are presented for the unweighted sample, the sample after applying the 

survey weights, and finally the sample with survey weights after imputing missing values.  

Missing data imputation was carried out in SPSS v. 25.  Imputation was done in “wide format”, 

i.e., with a single record per child and repeated measures over time represented as distinct 

variables (e.g., ma.1 to ma.8 to represent math at the eight waves of data collection). Thus, the 

imputation accounted for correlations among the repeated measures over time within person 

(dependence within child).  The imputation model included repeated measures on math, working 

memory and dccs (total scores prior to grade 2 and scores using RT from grade 2 onwards), as 

well as race, gender, and SES.  In addition, to also account for dependence within schools, school 

means were calculated for math, working memory, DCCS total scores (< grade 2), and DCCS 

overall scores w/ RT information (grade 2+) and these were included in the imputation model. 

This was done because otherwise failing to include information on between-school differences 

would lead to artificial deflation of the school-level variance component. The student-level 

weights were re-scaled to sum to the number of children within the school, as recommended in 

the Stata manual. 

The descriptive statistics in Tables 1 and 2 use the original, raw survey weights. Table 1 

contains the variables measured on an interval scale and that, apart from SES, vary over time.  

Table 2 shows that the weights were more consequential for the demographics, but imputation 

does not have much effect on the distribution of race or gender.  To maximize power, the model 

results reported in this chapter are based on the weighted and imputed values.   
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Modeling the Primary Outcomes 

The first step in the analysis is to determine the appropriate functional forms for the 

student trajectories.  Figure 1 presents three panels summarizing the math achievement 

trajectories for a random sample of 50 students (a larger number would make the graph difficult 

to read).  The scores have been standardized to have zero mean and unit variance due to the fact 

that the three primary outcomes (math achievement, working memory, and cognitive flexibility) 

are measured on very different scales.  Having a common metric will facilitate comparing random 

effects between outcomes later in the chapter. 

The first panel of Figure 1 shows the observed scores at the different time points 

connected by a separate line for each student.  There appears to be nonlinearity in the trends, with 

somewhat steeper slopes at the beginning of the series that level off in later years.  There are two 

common ways to model this type of nonlinearity, by specifying time as a second-order 

polynomial or by using a base-e log transform of the time variable.  The second panel shows the 

lines modeled using the quadratic specification, and the final panel shows the natural log version.  

Visually, both approaches appear to be capturing the nonlinear trend. 

There are practical reasons to prefer the log version to the polynomial.  The polynomial 

requires two terms to be fit, the linear parameter (time) and the acceleration parameter (time 

squared).  This means that it will be necessary to include both terms in the student-level and 

school-level random effects, which increases the number of variance components and covariances 

to be estimated at each level.  Attempts to fit the polynomial specification in Stata and R (lme4) 

using all of the data resulted in non-convergence or singular solutions, only SAS’s proc hpmixed 

was able to produce results (after nearly an hour of run time for the model without 

demographics).  In addition, interpretation of the random effects becomes more difficult, 

especially when comparing random effects between outcomes.  This is because the association 
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between the math achievement and executive function trajectories need to be summarized with 

two separate correlations, and neither time nor time-squared by themselves tell the complete 

story.  For these reasons, and because the natural log transformation still captures the observed 

nonlinearity, the polynomial specification will not be used. 

Figure 2 presents similar graphs to Figure 1 but for working memory.  The individual 

trajectories are a little messier compared to math achievement.  However, the polynomial and 

natural log fits show that the typical trajectory is again nonlinear.  The same caveats about 

estimation and interpretation complications exist for the polynomial specification.  Again, as both 

the log and polynomial models capture diminishing returns over time, and because the natural log 

is easier to fit and interpret, the quadratic approach will not be used. 

Figure 3 shows the trends for cognitive flexibility, with measures beginning in the second 

grade and no fall measures in the third or fourth grades.  The polynomial and log fits both 

produce relatively linear trends.  However, to be consistent with the prior outcomes, the natural 

log version will be used.  This puts the time variable on the same scale for math achievement and 

cognitive flexibility when comparing their respective random effects. 
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Figure 1:  Plots of math achievement trajectories for random subsample of 50 students.  First panel is the observed 
trajectories.  Second panel is the polynomial fit to the subsample.  Third panel is the natural log fit to the subsample. 
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Figure 2: Plots of working memory trajectories for random subsample of 50 students.  First panel is the observed 
trajectories.  Second panel is the polynomial fit to the subsample.  Third panel is the natural log fit to the subsample. 
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Figure 3 : Plots of cognitive flexibility trajectories for random subsample of 50 students.  First panel is the observed 
trajectories.  Second panel is the polynomial fit to the subsample.  Third panel is the natural log fit to the subsample. 
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Research Question 1: What is the average math achievement growth trajectory from kindergarten 

through fourth grade, accounting for the nesting of students within schools, and summer loss?   

The first step to answering research question 1 is to determine how to model the random 

effects.  In theory, the intercept, the log trajectory, and summer drop may all vary at both the 

student and the school level.  This is captured in the following model: 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

The school random effects are summarized with an unstructured 3x3 matrix with variance 

components on the diagonal and covariances on the off-diagonals.  The student-level random 

effects are similarly summarized and assumed to be independent of the school-level effects.  

However, overparameterized models – that is, those with too many random effects relative to the 

variability in the data – can produce near singular solutions in which the variance component 

estimates are near zero and/or correlations between random effects approach one.  The extent to 

which this occurs varies across the three outcomes (math achievement, working memory, and 

cognitive flexibility).  For this reason, each outcome will be summarized with four models.  The 

first will be the full model presented above.  Based on some evidence that the drop variable has 

minimal variability at the school level, a second model will be fit that removes this term. 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

A third model will be presented removing drop from the student-level as well. 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑟𝑡𝑖𝑠 

Finally, a model with only a random coefficient for time at the student level will be fit. 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 
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The interpretation will focus where possible on the fully specified model with all random 

effects.  However, the other three models are presented for the reader concerned about the size of 

the variance components and covariances (reported as correlations) in the tables.  Information 

criteria (AIC and BIC) are also presented so that the reader can evaluate the degradation in model 

fit that occurs from constraining some of the variance components to be zero.  The change in 

these statistics from one model to the next is also reported. 

Table 3 presents the results from fitting growth models to the math achievement outcome 

that do not include any demographics.  The first model represents the full specification with 

random intercepts, growth trajectories, and summer drop values estimated at the student and 

school levels.  The time variable is scaled so that log(time) = 0 in kindergarten, and the math 

achievement outcome has been scaled to z-scores.  The fixed effects results show a significant, 

positive trend (b = 1.751, p < 0.001) over time after accounting for a significant negative drop in 

fall semester (b = -0.051, p < 0.001) as well as school and student random effects.   

The student-level random effects show that individuals with lower starting trajectories 

tend to have more positive trajectories, as evidenced by the negative correlation (r = -0.411).  

Likewise, those with lower than average starting points tend to have a more negative summer 

drop (r = 0.183).  Students with higher than average trajectories were much more likely to have 

more negative summer drops (r = -0.856).   

The school level random effects show that schools having lower than average starting 

values tended to have higher than average trajectories (r = -0.581).  Schools with lower than 

average starting values also had more negative summer drops (r = 0.421).  Summer drop and 

trajectories were negatively associated (r = -0.919), which indicates that those with higher than 

average trajectories had more negative summer drops. 
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The next part of the table presents the amount of variability in the intercept, trajectory, 

and summer drop that exists at the school level relative to the student level.  Initial scores (the 

intercept) and trajectories were most variable at the student level.  For the intercept, 22.8% of 

variability existed at the school level, while 29.9% of growth variability was attributable to 

schools.  The variability in summer drop was equally distributed between school and student 

levels. 
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Note that the correlation estimates between log time and summer drop were very high at 

both the student and school levels.  This may accurately capture the strength of the association or 

may be due to estimates approaching the boundary of the parameter space given the relatively 

small summer drop variance component estimates (0.005 at both the student and school levels).  

Models 2 and 3 therefore incrementally remove the school-level and student-level summer drop 

variables.  Because doing so reduces the size of the school-level trajectory random effect, Model 

4 removes that term as well.  However, the direction of the remaining random effects correlations 

are unchanged by these model alterations, and the fixed effects terms are the same across 

specifications.  Thus, it is possible to have confidence in the overall inferences derived from the 

first model.  To facilitate interpretation, Figure 4 displays the model-implied trajectory of math 

achievement for the average student.   

 

 

 

Figure 4: Model trajectory of math achievement based on model with no demographics. 
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Research Question 2: To what degree do gender, racial, or socioeconomic status differences 

account for variation in the intercepts, slopes, and summer drops in the mathematics trajectories 

at the student and school levels?   

The primary model of interest is the full model from the prior section that also introduces 

demographics as follows. 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏16𝑏𝑙𝑎𝑐𝑘𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏17ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏18𝑎𝑠𝑖𝑎𝑛𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏19𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏20𝑠𝑒𝑠𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

Coefficients 𝑏3 through 𝑏8 represent the main effects of each demographics variable, or the effect 

when time = 0 (fall of kindergarten year).  Coefficients 𝑏9 through 𝑏14 are the interactions with 

time, which estimate how much the trajectories vary as a function of each demographics variable.  

Coefficients 𝑏15 through 𝑏20 are the interactions with summer drop, which estimate how much 

the effect of summer drop varies as a function of each demographics variable.  The random 

effects 𝑢0𝑠 through 𝑢2𝑖𝑠 summarize how much the intercept, trajectory, and summer drop effects 

vary at the student and school levels net of any variability captured by the demographics.  As was 

the case in the prior section, this model is the focus of interpretation.  However, alternative 

models that incrementally constrain 𝑢2𝑠, 𝑢2𝑖𝑠, and 𝑢1𝑠 to zero will also be presented as 

alternatives.  Table 4 presents the results from the models.  The results show a significant positive 

main effect for log time (b = 1.768, p < 0.001).  The main effect for summer drop is negative (b = 

-0.045, p < 0.001).  At the start of the series, scores tend to be lower for blacks (b = -0.161, p < 

0.001) and Hispanics (b = -0.219, p < 0.001) but higher for females (b = 0.024, p < 0.01) and 

those with higher SES (b = 0.244, p < 0.001). 
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The positive trajectory observed for the main effect tends to be less positive for black 

students (b = -0.139, p < 0.001), slightly more positive for Hispanics (b = 0.094, p < 0.001), 

slightly less positive for females (b = -0.052, p < 0.001), and less positive as SES increases (b = 

0.073, p < 0.001).  The negative main effect for summer drop tends to be more negative for 

Hispanics (b = -0.023, p < 0.001) but less negative for blacks (b = 0.014, p < 0.05), Asians (b = 

0.026, p < 0.01), and those with higher SES (b = 0.02, p < 0.001). 

Turning to the random effects, net of demographics effects, students who start out higher 

tend to have lower trajectories (r = -0.402) and less negative summer drop effects (r = 0.143).  

The association between the trajectory and summer drop is large and negative (r = -0.859).  At 

the school level, schools with higher starting levels tend to have less steep trajectories (r = -

0.548) and less negative summer drop effects (r = 0.298).  The correlation between summer drop 

and trajectories is very strongly negative (r = -0.927). 

Even after controlling for demographics, the bulk of variability in intercepts, trajectories, 

and summer drop effects are mostly at the student level.  10% of variability in starting scores (for 

white males with SES = 0) is attributable to school effects.  27.1% of trajectories is associated 

with school effects.  A little less than half of the summer drop, or 44.4%, can be attributed to 

schools.  

Table 5 summarizes how much the variance components are reduced after adding in the 

demographics variables. The first numeric column is the variance component estimates from the 

models without demographics, and the next column is the variance components from the models 

with demographics. The first panel of the table corresponds to Model 1, or the model with all 

variance components and covariances estimated. The demographics have much more of an 

impact on the school-level variances relative to the student-level variances.  Demographics fixed 

effects reduce the student-level intercept variance by 8.11%, while the school-to-school intercept 
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variability is reduced by 66.23%.  For time, the student-level variance is reduced by 4.55% while 

the school variance is reduced by 17.02%. Finally, the summer drop variance at the student level 

is unaffected by demographics, while the school-level variance is reduced by 20%.    

Table 5    
Variance Explained - Math Achievement   
Model No Demographics With Demographics % Explained 

Model 1    
Student Level    
   Student - Var(Intercept) 0.261 0.235 8.11 
   Student - Var(Log Time) 0.11 0.105 4.55 
   Student - Var(Drop) 0.005 0.005 0.00 
School Level    
   School - Var(Intercept) 0.077 0.026 66.23 
   School - Var(Log Time) 0.047 0.039 17.02 
   School - Var(Drop) 0.005 0.004 20.00 

    
Model 2    
   Student - Var(Intercept) 0.27 0.24 10.90 
   Student - Var(Log Time) 0.14 0.14 5.56 
   Student - Var(Drop) 0.01 0.01 10.00 
School Level    
   School - Var(Intercept) 0.07 0.02 63.64 
   School - Var(Log Time) 0.01 0.01 14.29 

    
Model 3    
Student Level    
   Student - Var(Intercept) 0.253 0.229 9.49 
   Student - Var(Log Time) 0.041 0.039 4.88 
School Level    
   School - Var(Intercept) 0.067 0.024 64.18 
   School - Var(Log Time) 0.008 0.006 25.00 

    
Model 4    
Student Level    
   Student - Var(Intercept) 0.264 0.238 9.85 
   Student - Var(Log Time) 0.048 0.044 8.33 
School Level    
   School - Var(Intercept) 0.047 0.012 74.47 

 

Changing the number of random effects estimated does little to impact the estimates of 

the fixed effects.  Figure 5 presents a summary of the trajectories estimated from the fixed effects.  
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Because the intercept, trajectories, and summer drop all vary according to gender, race, and SES, 

the figure is faceted according to the demographics variables to provide a sense of the substantive 

effect of each interaction. 

 

Figure 5 : Model trajectories of math achievement by race, gender, and SES.  Low SES defined as 1.5 standard 
deviations below the mean.  High SES defined as 1.5 standard deviations above the mean. 

Research Question 3: Is executive functioning associated with change in math achievement over 

this period? 

The third research question requires first coming up with specifications for the two executive 

functioning models.  The working memory model will be determined following the same steps as 

were used for math achievement.  First, a model with all possible random effects is specified. 

𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

Additional models will then be fit to account for concerns that variance components and their 

correlations are too close to the boundary values.  These three models are the following: 



70 

 

𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑟𝑡𝑖𝑠 

𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

The cognitive flexibility outcome will be modeled slightly differently due to the fact that the 

DCCS instrument was not administered until the second grade.  Specifically, the drop variable 

will be removed from both fixed and random effects specifications.  The primary model will be 

𝐶𝐹𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

In the presence of small school-level effects on trajectories, the following model will also be fit: 

𝐶𝐹𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

Table 6 presents the results for the working memory models. Based on the first model (but 

consistent across random effects specifications), the overall trajectory is significant and positive 

(b = 1.311, p < 0.001).  The effect of summer drop is also significant and tends to reduce scores 

(b = -0.06, p < 0.001).   
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 The random effects show that higher starting scores tend to be associated with lower 

trajectories at the student level (r = -0.549), while higher starting scores are associated with a less 

negative effect of summer drop (r = 0.182).  The trajectory and drop variance components are 

strongly negatively associated (r = -0.867), indicating that those with higher starting values 

exhibit greater negative drop effects.  A similar pattern happens at the school level.  Schools with 

higher scores in fall of kindergarten show weaker trajectories (r = -0.691) as well as the least 

negative effects of summer (r = 0.26).  The association between trajectories and summer drop is 

strongly negative (r = -0.84).  Figure 6 presents a visualization of the modeled trajectory. 
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Figure 6:  Model trajectory of working memory based on model with no demographics. 

The bulk of the variability in working memory scores, trajectories, and summer drop 

effects occur at the student level.  18.5% of the variability in intercepts is due to school-level 

factors.  12.9% of the trajectory variance is associated with school effects.  15.4% of summer 

drop effects are associated with schools. 

To specifically address the research question, the random effects from the math 

achievement model were correlated with the random effects of the working memory model.  This 

was performed by fitting each model, estimating the best linear unbiased predictors (BLUPs) of 

the student- and school-level random effects, and then correlating them. Table 7 presents results 

at the student level, and Table 8 presents results at the school level. 

Model 1 in Table 7 corresponds to the model with all possible random effects included 

and is the focus of interpretation.  Given the very high correlations between trajectories and 

summer drop within the math achievement and working memory models already described, the 

correlations for the remaining three models are also presented for reference.  The results show 
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that higher starting scores on working memory tend to be associated with weaker math 

achievement trajectories (r = -0.105). Equivalently, lower starting scores in working memory tend 

to be associated with greater improvements in math achievement. In addition, the correlations 

show that higher scores in kindergarten on working memory tend to be strongly associated with 

higher scores in kindergarten on math achievement (r = 0.711).  Higher starting scores on 

working memory tend to be associated with more negative math achievement summer drops (r = 

-0.081).  Higher working memory trajectories are associated with higher math achievement 

trajectories (r = 0.238) but more negative summer drop effects (r = -0.200).  Less negative 

summer drop effects for working memory tend to be associated with more negative math 

achievement intercepts (r = -0.25), weaker math achievement trajectories (r = -0.185), and less 

negative math achievement summer drops (r = 0.257). 
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Table 8 presents the same information for school-level random effects.  The story is very 

similar. Schools with higher working memory intercepts are associated with having lower math 

achievement trajectories (r = -0.374).   The two random intercepts are strongly, positively 

correlated (r = 0.849), indicating that those whose working memory scores are high at baseline 

also tend to have higher math achievement.  Higher working memory intercepts are also 

associated with less negative summer drops (r = 0.266).  The working memory trajectory is 

positively associated with the math achievement trajectory (r = 0.457) but negatively associated 

with math achievement summer drop (r = -0.379).  Executive functioning summer drop tends to 

be less negative when math achievement baselines are higher (r = 0.124) but more negative when 

math achievement trajectories are higher (r = -0.33).  Both summer drop effects are positively 

associated (r = 0.339). 

Table 9 turns to presenting results for modeling cognitive flexibility. For this model, time 

has been rescaled to make zero = second grade.  Thus, the intercept fixed effect is the estimated 

average cognitive flexibility score at the start of the available series.  The log time fixed effect is 

positive and highly significant (b = 0.777, p < 0.001).  At the student level, there is a large, 

negative association between the random intercept and random trajectory (r = -0.873).  This is 

repeated at the school level (r = -0.954).  Only 11.4% of the variability in baseline values is 

attributable to schools.  Only 4.9% of variability in trajectories is attributable to schools.  Figure 7 

presents a visualization of the trajectory. 

Table 10 presents the correlations in student-level random effects between math 

achievement and cognitive flexibility.  The association between the cognitive flexibility intercept 

and math achievement trajectory is negative and significant (r = -0.255).  Lower levels of 

cognitive flexibility in kindergarten mean that math achievement will improve more over time. 

The two intercepts are strongly correlated (r = 0.522), indicating that higher cognitive flexibility 
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scores among students at baseline go along with higher baseline math achievement.  The math 

achievement intercept and executive functioning trajectories are negatively associated (r = -

0.469), and both trajectories are positively related (r = 0.230). 

 

Table 9     
Mixed Models of Cognitive Flexibility - No Demographics 

  Model 1 Model 2   

Effect Estimate SE Estimate SE 

Fixed Effects     
   Intercept -0.539*** 0.0148 -0.54*** 0.0118 

   Time (Log) 0.777*** 0.0086 0.778*** 0.0074 

Random Effects         

   Student - Var(Intercept) 0.824   0.856   

   Student - Cor(Intercept, Log Time) -0.873   -0.881   

   Student - Var(Log Time) 0.313   0.328   

   School - Var(Intercept) 0.106   0.044   

   School - Cor(Intercept, Log Time) -0.954   --   

   School - Var(Log Time) 0.016   --   

   Residual 0.371   0.371   

Percentage Variance at School Level     
   Intercept 11.4%  4.9%  
   Log Time 4.9%  --  
Model Fit         

   -2 Res Log Likelihood 133647   133801   

   Δ -2 Res Log Likelihood --  154  

   AIC  (Smaller is Better) 133661   133811   

   Δ AIC --  150  

   BIC  (Smaller is Better) 133694   133835   

   Δ BIC --  141  

Note.  *** p < 0.001 

      



77 

 

 

Figure 7: Model trajectory of Cognitive Flexibility based on model with no demographics.  In the statistical model, time 
was rescaled so that grade 2 = zero. 

 

Table 10 
    

Correlations between Math Achievement and Cognitive Flexibility  

Student-Level Random Effects - Unadjusted Models 

 
MA Intercept 

MA Log 

Time 

EF 

Intercept 

EF Log 

Time 

Model 1 
    

   MA Intercept 1 
   

   MA Log Time -0.508 1 
  

   EF Intercept 0.522 -0.255 1 
 

   EF Log Time -0.469 0.230 -0.940 1 

Model 2 
    

   MA Intercept 1 
   

   MA Log Time -0.517 1 
  

   EF Intercept 0.548 -0.248 1 
 

   EF Log Time -0.470 0.226 -0.946 1 

Note.  All correlations significant at p < 0.05. 
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A similar story occurs for the school-level random effects, as shown in Table 11.  The 

cognitive flexibility intercept and math achievement trajectory are negatively associated (r = -

0.206).  cognitive flexibility and math achievement intercepts are strongly, positively correlated 

(r = 0.710).Higher cognitive flexibility trajectories are associated with lower math achievement 

intercepts (r = -0.713) and but positively associated with math achievement trajectories (r = 

0.212). 

Table 11     

Correlations between Math Achievement and Cognitive Flexibility  

School-Level Random Effects - Unadjusted Models 

 MA Intercept 

MA Log 

Time EF Intercept 

EF Log 

Time 

Model 1     

   MA Intercept 1    

   MA Log Time -0.374 1   

   EF Intercept 0.710 -0.206 1  

   EF Log Time -0.713 0.212 -0.995 1 

Model 2     

   MA Intercept 1    

   EF Intercept 0.668  1  
Note.  All correlations significant at p < 0.05. 

 

The very high correlation between the cognitive flexibility intercept and trajectory at both 

the student and school levels suggest that pathologies in the numeric optimization occurred due to 

estimates at the parameter space boundary.  For this reason, a second model is provided that 

constrains the school-level random trajectory to be zero.  However, the same issue occurs at the 

student level.  Constraining the student-level random trajectory to zero would not allow for any 

inferences about how the math achievement and cognitive flexibility trends go together, so no 

further model is provided.  However, it is advised that the results be taken with the caveat that the 

estimates may not be fully reliable. 
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Research Question 4: Which student sociodemographic characteristics are most strongly 

associated change in math achievement and to what degree does controlling for student 

sociodemographic characteristics alter the association between executive functioning and change 

in math achievement? 

The final research question is similar to the last except that the models now incorporate 

demographics.  For working memory, the model of interest is the following: 

𝑊𝑀𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏16𝑏𝑙𝑎𝑐𝑘𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏17ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏18𝑎𝑠𝑖𝑎𝑛𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏19𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏20𝑠𝑒𝑠𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

As was the case for math achievement, additional models with fewer random effects will also be 

presented.  The model for cognitive flexibility is similar but removes summer drop from both 

fixed and random effects. 

𝐶𝐹𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏3𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏4ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏5𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏6𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏7𝑠𝑒𝑠𝑖 + 𝑏8𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏9𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏10ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏11𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏12𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏13𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠

+ 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

 

The model results for working memory are presented in Table 12.  All of the 

demographics variables play a role in the fixed effects.  The main effect of log time is positive 

and significant (b = 1.255, p < 0.001), which corresponds to the expected trajectory for a white 

male with the SES scale equal to zero (a little above the mean).  The main effect for summer drop 
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is negative and significant (b = -0.062, p < 0.001). The demographics main effects show that 

working memory scores in kindergarten tend to be significantly lower for blacks (b = -0.294, p < 

0.001), Hispanics (b = -0.306, p < 0.001), and slightly lower for Asians (b = -0.071, p < 0.05).  

Females tend to have higher scores in kindergarten (b = 0.074, p < 0.001), as do those with higher 

SES (b = 0.314, p < 0.001).  Hispanic trajectories tend to be more positive relative to white 

students (b = 0.138, p < 0.001), while higher SES tends to reduce the strength of the trajectories 

(b = -0.169, p < 0.001).  The negative effect of summer drop is somewhat less for blacks (b = 

0.044, p < 0.01), those of other races (b = 0.044, p < 0.05), and those with higher SES (b = 0.03, p 

< 0.001).  The effect is more strongly negative for females (b = -0.019, p < 0.05).  Figure 8 

presents a graph summarizing the trajectories based on the fixed effects. 

Turning to the random effects, students who begin with higher intercepts tend to have 

less positive trajectories (r = -0.54) but less negative summer drop effects (r = 0.178).  The 

trajectory and summer drop effects are negatively associated (r = -0.870).  These patterns also 

occur at the school level.  Schools with higher starting values in kindergarten tend to have lower 

trajectories (r = -0.581) and less negative summer drop effects (r = 0.302).  Summer drop and 

trajectories are negatively related (r = -0.918).     

Table 13 shows the amount of variability between students and schools that is explained 

by the inclusion of random effects.  As was the case for math achievement, demographics fixed 

effects reduce the school-level variance components more than the student-level variance 

components.  Demographics reduce the student-level random intercept by 8.11%, while the 

school-level random intercept is reduced by 72.5%.  The trajectory variance is reduced by 2.39% 

for students and by 26.47% for schools.  Neither the student-level nor the school-level summer 

drop variance is affected by demographics. 
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Figure 8:  Model trajectories of working memory by race, gender, and SES.  Low SES defined as 1.5 standard deviations 
below the mean.  High SES defined as 1.5 standard deviations above the mean. 
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Table 14 presents the correlations between math achievement and working memory 

random effects at the student level.  Model 1 represents the model that includes all possible 

random effects, the remaining models are presented for reference.  Based on the Model 1 results, 

the working memory intercept has a negligible association with the math achievement time 

trajectory (r = -0.076). That is, after controlling for demographics, working memory in 

kindergarten is a weak predictor of the subsequent growth in math achievement. The working 

memory intercept random effects are highly correlated with the math achievement intercepts (r = 

0.688) such that higher baseline scores on one tend to appear with higher scores on the other.  The 

working memory intercept has a small negative association with the math achievement summer 

drop effect (r = -0.15).  The working memory trajectory is negatively associated with math 

achievement intercepts (r = -0.106) and math achievement summer drop (r = -0.202) but is 

positively related to math achievement’s trajectory (r = 0.236).  Summer drop in working 

memory is negatively associated with math achievement’s intercept (r = -0.273) and the math 

achievement trajectory (r = -0.197) but positively associated with the math achievement summer 

drop (r = 0.292). 

Table 15 presents the results for the school-level random effects, where the patterns are 

similar to Table 12.  The working memory intercept is negatively associated with the math 

achievement trajectory (r = -0.178), indicating that school-level working memory scores in 

kindergarten tend to go with weaker math trajectories. The working memory intercept is highly, 

positively correlated with the math achievement intercept (r = 0.622); there is little association 

with math achievement summer drop (r = 0.029).  The working memory trajectory is negatively 

associated with the math achievement intercept (r = -0.202) and math achievement summer drop 

(r = -0.296) but positively associated with the math achievement trajectory (r = 0.331).  Executive 

functioning summer drop has a scant relationship with the math achievement intercept                 
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(r = -0.023), a stronger negative association with math achievement trajectories (r = -0.296), and a 

medium-sized association with the math achievement summer drop random effect (r = 0.33). 
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Table 16 presents the results from the model of cognitive flexibility.  The fixed effects 

show a significant main effect of log time (b = 0.761, p < 0.001), corresponding to the trajectory 

for a white male student with a value on the SES scale equal to zero.  Blacks tend to have lower 

starting scores relative to whites (b = -0.439, p < 0.001), as do Hispanics (b = -0.166).  Females 

tend to have higher values at the start of the series (b = 0.174, p < 0.001), as do those with higher 

SES (b = 0.221, p < 0.001).  Trajectories for blacks tend to be more positive relative to whites (b 

= 0.219, p < 0.001), as is the case for Hispanics (b = 0.121, p < 0.001) and Asians (b = 0.121, p < 

0.001).  Females tend to have less positive trajectories (b = -0.109, p < 0.001) as do those with 

higher SES (b = -0.111, p < 0.001).   

Based on the random effects estimates, students who have higher starting values tend to 

have less positive trajectories (r = -0.868).  This is also the case for schools (r = -0.967).  Model 2 

constrains the school-level trajectory to zero given that the correlation between random effects 

was so close to unity.  This does not impact the fixed effects results.  Figure 9 displays the 

trajectories faceted by gender, race, and SES. 

Table 17 displays the amount of reduction in variance components after including the 

demographics fixed effects.  The student-level intercept is reduced by 4.25% while the school-

level intercept is reduced by 52.83%.  The trajectory variance at the student level is reduced by 

3.83% while the school-level trajectory variance is reduced by 75%. 
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Table 16     
Mixed Models of Cognitive Flexibility - with Demographics 

  Model 1 Model 2   

Effect Estimate SE Estimate SE 

Fixed Effects     
   Intercept -0.518*** 0.0177 -0.516*** 0.0167 

   Time (Log) 0.761*** 0.0127 0.76*** 0.0125 

   Black -0.439*** 0.0314 -0.447*** 0.0302 

   Hispanic -0.166*** 0.0256 -0.17*** 0.0248 

   Asian -0.036 0.0382 -0.04 0.0373 

   Other Race 0.013 0.041 0.017 0.0407 

   Female 0.174*** 0.0179 0.176*** 0.0179 

   SES 0.221*** 0.0126 0.227*** 0.0123 

   Time (Log) X Black 0.219*** 0.0236 0.228*** 0.0233 

   Time (Log) X Hispanic 0.121*** 0.0195 0.123*** 0.0193 

   Time (Log) X Asian 0.121*** 0.0312 0.122*** 0.0311 

   Time (Log) X Other Race 0.006 0.0331 0.001 0.0331 

   Time (Log) X Female -0.109*** 0.0146 -0.11*** 0.0146 

   Time (Log) X SES -0.111*** 0.0098 -0.117*** 0.0098 

Random Effects         

   Student - Var(Intercept) 0.789   0.801   

   Student - Cor(Intercept, Log Time) -0.868   -0.872   

   Student - Var(Log Time) 0.301   0.304   

   School - Var(Intercept) 0.05   0.027   

   School - Cor(Intercept, Log Time) -0.967   --   

   School - Var(Log Time) 0.004   --   

   Residual 0.371   0.371   

Percentage Variance at School Level     
   Intercept 6.0%  3.3%  
   Log Time 1.3%  --  
Model Fit         

   -2 Res Log Likelihood 132931   132965   

   Δ -2 Res Log Likelihood --  34  

   AIC  (Smaller is Better) 132945   132975   

   Δ AIC --  30  

   BIC  (Smaller is Better) 132978   132998   

   Δ BIC --  20  

Note.  *** p < 0.001.    
 

 

 

 

 

 

 



88 
 

 

 

Figure 9: Model trajectories of cognitive flexibility by race, gender, and SES.  Low SES defined as 1.5 standard 
deviations below the mean.  High SES defined as 1.5 standard deviations above the mean. In the statistical model, 
time was rescaled so that grade 2 =zero. 

 

Table 17    
Variance Explained - Cognitive 

Flexibility    

Model 

No 

Demographics 

With 

Demographics 

% 

Explained 

Model 1    

Student Level    

   Student - Var(Intercept) 0.824 0.789 4.248 

   Student - Var(Log Time) 0.313 0.301 3.834 

School Level    

   School - Var(Intercept) 0.106 0.05 52.830 

   School - Var(Log Time) 0.016 0.004 75.000 

     

Model 2    

Student Level    

   Student - Var(Intercept) 0.856 0.801 6.425 

   Student - Var(Log Time) 0.328 0.304 7.317 

School Level    

   School - Var(Intercept) 0.044 0.027 38.636 
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Table 18 presents the correlations between cognitive flexibility and math achievement 

random effects at the student level.  Higher cognitive flexibility intercepts are negatively related 

to math achievement trajectories (r = -0.265).  Both intercepts are strongly, positively related (r = 

0.539).The cognitive flexibility trajectory is negatively associated with math achievement starting 

values (r = -0.451) and positively related to math achievement trajectories (r = 0.235). 

 

Table 18     

Correlations between Math Achievement and Cognitive Flexibility  

Student-Level Random Effects - Adjusted Models 

Random Effect MA Intercept MA Log Time EF Intercept EF Log Time 

Model 1     

   MA Intercept 1    

   MA Log Time -0.548 1   

   EF Intercept 0.539 -0.265 1  

   EF Log Time -0.451 0.235 -0.936 1 

Model 2     

   MA Intercept 1    

   MA Log Time -0.558 1   

   EF Intercept 0.537 -0.259 1  

   EF Log Time -0.453 0.232 -0.941 1 

Note.  All correlations significant at p < 0.05. 
 

 

Table 19 turns to correlations in the school level random effects.  The cognitive 

flexibility intercept is negatively associated with the math achievement trajectory (r = -0.211).  

Both intercepts are positively related (r = 0.525). The cognitive flexibility trajectories tend to be 

weaker when math achievement scores start higher (r = -0.527).  The two trajectories are 

positively associated at the school level (r = 0.213). 
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Table 19     

Correlations between Math Achievement and Cognitive Flexibility  

School-Level Random Effects - Adjusted Models 

Random Effect MA Intercept MA Log Time EF Intercept EF Log Time 

Model 1     

   MA Intercept 1    

   MA Log Time -0.632 1   

   EF Intercept 0.525 -0.211 1  

   EF Log Time -0.527 0.213 -0.999 1 

Model 2     

   MA Intercept 1    

   EF Intercept 0.516   1   

Note.  All correlations significant at p < 0.05. 

  

To conclude this chapter, one final analysis is presented.  The prior models for this 

research question estimated effects on math achievement and EF separately in order to correlate 

the random effects between outcomes.  However, this does not answer how much EF affects math 

achievement directly.  To answer this question, Tables 20 and 21 present results for models of 

math achievement that include, in addition to demographics, the EF measures of working 

memory and cognitive flexibility, respectively.  The fixed effects estimates of EF represent how 

much a unit increase in EF affects math achievement. The model fit section of the tables shows 

the change in the model fit statistics relative to a model without the EF measure.  (For DCCS, this 

is the math achievement model fit only to data beginning in grade 2). 
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The model that includes working memory as a fixed effect is the following: 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏16𝑏𝑙𝑎𝑐𝑘𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏17ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏18𝑎𝑠𝑖𝑎𝑛𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠

+ 𝑏19𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏20𝑠𝑒𝑠𝑖𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏21𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑚𝑒𝑚𝑜𝑟𝑦𝑡𝑖𝑠 + 𝑢0𝑠

+ 𝑢0𝑖𝑠 + 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢2𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑢2𝑖𝑠𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

 For DCCS, the model will be the following: 

𝑀𝐴𝑡𝑖𝑠 = 𝑏0 + 𝑏1𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏2𝑑𝑟𝑜𝑝𝑡𝑖𝑠 + 𝑏3𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑏4𝑏𝑙𝑎𝑐𝑘𝑖 + 𝑏5ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖 + 𝑏6𝑎𝑠𝑖𝑎𝑛𝑖

+ 𝑏7𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖 + 𝑏8𝑠𝑒𝑠𝑖 + 𝑏9𝑔𝑒𝑛𝑑𝑒𝑟𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏10𝑏𝑙𝑎𝑐𝑘𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏11ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏12𝑎𝑠𝑖𝑎𝑛𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠

+ 𝑏13𝑜𝑡ℎ𝑒𝑟 𝑟𝑎𝑐𝑒𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏14𝑠𝑒𝑠𝑖𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑏15𝐷𝐶𝐶𝑆𝑡𝑖𝑠 + 𝑢0𝑠 + 𝑢0𝑖𝑠

+ 𝑢1𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑢1𝑖𝑠𝑙𝑛(𝑡𝑖𝑚𝑒)𝑡𝑖𝑠 + 𝑟𝑡𝑖𝑠 

 

 Table 20 shows a significant effect of working memory across model specifications.  A 

one unit increase in working memory is associated with a 0.07 unit increase in math achievement 

(p < 0.001).  This results in a substantial improvement to model fit.  As Model 1 shows, both BIC 

and AIC – presented in smaller-is-better form – decrease by 2,396.   
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Table 21 presents the results from fitting the model using cognitive flexibility as the 

measure of EF and compares the model fit to what was obtained from a math achievement model 

fit without DCCS to the same data.  The results are similar to what was observed for working 

memory.  A unit increase in DCCS is associated with a significant increase in math achievement 

(b = 0.032, p < 0.001).  The improvement in model fit is also large.  Both the AIC and BIC 

decreased by 478 relative to the model without cognitive flexibility.  Note that the magnitude of 

this change is smaller vis-à-vis working memory due to the smaller number of data points. 
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Table 21     

Mixed Models of Math Achievement Including Cognitive Flexibility   

  Model 1 Model 2   

Effect Estimate SE Estimate SE 

Fixed Effects     

   Intercept 0.228*** 0.0087 0.227*** 0.0083 

   Time (Log) 0.825*** 0.0046 0.825*** 0.004 

   Black -0.274*** 0.0154 -0.267*** 0.0149 

   Hispanic -0.163*** 0.0124 -0.166*** 0.0121 

   Asian 0.06*** 0.0178 0.066*** 0.0174 

   Other Race -0.004 0.0193 -0.009 0.0193 

   Female -0.041*** 0.0084 -0.04*** 0.0085 

   SES 0.192*** 0.006 0.195*** 0.0059 

   Time (Log) X Black -0.048*** 0.008 -0.054*** 0.0072 

   Time (Log) X Hispanic 0.022*** 0.0065 0.025*** 0.006 

   Time (Log) X Asian 0.032** 0.0102 0.026** 0.0096 

   Time (Log) X Other Race -0.018 0.0103 -0.013 0.0102 

   Time (Log) X Female -0.038*** 0.0045 -0.039*** 0.0045 

   Time (Log) X SES -0.003 0.0032 -0.006* 0.003 

   DCCS 0.032*** 0.0014 0.032*** 0.0014 

Random Effects         

   Student - Var(Intercept) 0.215   0.218   

   Student - Cor(Intercept, Log Time) -0.476   -0.49   

   Student - Var(Log Time) 0.029   0.032   

   School - Var(Intercept) 0.014   0.01   

   School - Cor(Intercept, Log Time) -0.586       

   School - Var(Log Time) 0.003       

   Residual 0.033   0.033   

Percentage Variance Explained at School Level     

   Intercept      6.1 %           4.4 %   

   Log Time      9.4 %  --  

Model Fit         

   -2 Res Log Likelihood 20765   20943   

   Δ -2 Res Log Likelihood from prior model   178  
   Δ -2 Res Log Likelihood model without WM -478  -480  
   AIC  (Smaller is Better) 20779   20953   

   Δ AIC from prior model   174  

   Δ AIC from model without DCCS† -478  -480  
   BIC  (Smaller is Better) 20812   20976   

   Δ BIC from prior model   164  

   Δ BIC from model without DCCS† -478   -480   

Note.  *** p < 0.001. ** p < 0.01. * p < 0.05.  † MA model fit to DCCS subsample. 
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Research Question 5: To what degree does math achievement growth vary among schools, 

controlling for demographics? 

Table 5 above summarized the change in variance components from the model without 

demographics to the model that includes them. Student characteristics – gender, race, and SES – 

account for quite a bit of the between-school variability in math achievement both in terms of 

starting levels (66.23% of variance explained) as well as for log growth (17.02% of variance 

explained). To visualize this change, Figure 10 presents boxplots of the predicted school-level 

random effects. Focusing on Model 1, the variability in the boxplots clearly decreases for the 

predicted random intercepts. The range of predicted values is also reduced for log time, with 

fewer predictions at the very high end of the distribution. The upshot is that school quality 

continues to matter, especially for trajectories over time. However, a sizable proportion of 

differences in school outcomes can be attributed to the demographic profile of the students 

attending. 

The correlations between math achievement and executive functioning that were reported 

above lead to the expectation that similar patterns will emerge for the EF measures. Indeed, as 

was shown above in Table 13, demographics explained a substantial percentage of between-

school differences in student scores in kindergarten (75.2%) and a smaller but still notable 

percentage for variability in trajectories (26.47%). Figure 11 visualizes these changes. Looking at 

Model 1, the spread in the intercept random effects becomes much smaller after adjusting for 

controls. For log trajectories, the width of the box becomes smaller, meaning that the interquartile 

range is more constrained around the median. School quality matters for executive functioning 

over time, but much of the between-school differences are again attributable to the student milieu 

in those schools. 
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Table 17 above shows the amount of variance explained for the cognitive flexibility 

measure, and Figure 12 provides boxplot summaries. Demographics again are closely related to 

school-level variance. Including the student-level characteristics in the model reduces the 

variance component for the intercept by over half (52.83%) and the variance component for the 

log trajectory by three-quarters (75%). These results are based on a much shorter timeframe vis-à-

vis the math achievement and working memory measures, but the story is similar to what was 

seen for math achievement and working memory.  

 

 

Figure 10: Boxplots of school-level random effects predictions (BLUPs) for math achievement by model. Boxplot on left 
of each panel shows distribution of random effects from model that does not adjust for demographics, boxplot on 
right shows distribution after controlling for demographics. 
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Figure 11: Boxplots of school-level random effects predictions (BLUPs) for working memory by model. Boxplot on left 
of each panel shows distribution of random effects from model that does not adjust for demographics, boxplot on 
right shows distribution after controlling for demographics. 
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Figure 12: Boxplots of school-level random effects predictions (BLUPs) for cognitive flexibility by model. Boxplot on left 
of each panel shows distribution of random effects from model that does not adjust for demographics, boxplot on 
right shows distribution after controlling for demographics. 
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CHAPTER 5 

DISCUSSION 

The results of the analysis conducted for this study are discussed in this chapter, and 

conclusions are drawn based on these findings. First is a summary, along with a discussion on 

how the results answer each of this study's four research questions and how these results support 

or fail to support the findings of previous work conducted in this field. This is followed by a 

discussion of the limitations present within the study, along with possibilities for future research. 

Finally, a series of conclusions are delineated based on the findings. 

Summary of Results 

This study focused on the examination of the following research questions: 

Research Question 1: What is the average math achievement growth trajectory from kindergarten 

through fourth grade, accounting for the nesting of students within schools, and summer loss?  

The analyses conducted in relation to this research question found a positive and 

significant trend over time after accounting for a significant decrease at the start of the fall 

semester and school and student random effects. Additionally, students with lower scores in 

kindergarten generally had trajectories that were more positive, while those with below average 

starting points had a more negative drop in summer. This drop was more pronounced among 

those with above average trajectories. 

At the school level, lower average starting values were associated with above average 

trajectories and larger decreases in summer, and above average trajectories were associated with 

more negative drops in summer. These results departed from that of previous literature, which 

found that early mathematics difficulties were associated with the lowest growth rates in later 

grades (Morgan, Farkas, & Wu, 2009), thought it supported the lag model as opposed to the 

cumulative growth model (Morgan, Farkas & Wu, 2009). The shape of the math achievement 
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trajectory was nonlinear, with the strongest average improvements occurring in early grades and 

weaker improvements in each successive year. 

Research Question 2: To what degree do gender, racial, or socioeconomic status differences 

account for variation in the intercepts, slopes, and summer drops in the mathematics trajectories 

at the student and school levels?  

With respect to the second research question, these models also found a significant 

increase in math achievement over time and a significant decrease over summer. The fixed effects 

results found significantly reduced scores for Blacks and Hispanics and significantly increased 

scores for females and those with higher SES at the outset of the series. The increase in scores 

over time was reduced for Blacks, females, and those with higher SES, and slightly increased for 

Hispanics, while the summer drop was more pronounced for Hispanics and less pronounced 

among Blacks, Asians, and those with higher SES. 

Based on the random effects, higher student starting scores were associated with reduced 

trajectories and less pronounced drops during summer, while there was also a large, negative 

association between trajectory and summer drop. Additionally, schools with higher starting 

values had lower trajectories and less pronounced summer drops, with the association between 

summer drop and trajectory being strong and negative. Comparing the variance components 

between the models with and without demographics found that, after controlling for 

demographics, most of the variability in intercepts, trajectories, and summer drop was at the 

student level. 

Research Question 3: Is executive functioning associated with change in math achievement over 

this period? 

With respect to the third research question, the models of working memory and cognitive 

flexibility found a significant, positive trajectory with a significant summer drop. Higher starting 
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scores were again associated with reduced trajectories and a less pronounced effect of the summer 

drop. A strong, negative association was found between trajectories and summer drop. Most of 

the variability in working memory scores in kindergarten, trajectories, and summer drop existed 

at the student level. 

The random effects from the working memory and cognitive flexibility were then 

predicted and correlated with the predicted random effects from the math achievement 

model.  This analysis found a strong, positive correlation between kindergarten working memory 

and math achievement, with negative, weaker associations found between kindergarten working 

memory and math achievement trajectories and summer drops. Higher working memory 

trajectories were associated with improved math trajectories and worse summer drops. Less 

pronounced summer drops for working memory were associated with reduced math intercepts, 

reduced math trajectories, and less pronounced summer drops. Similar results were found at the 

school level.  These results answer the research question affirmatively: math achievement and 

working memory tend to start and evolve together. 

Cognitive flexibility was found to significantly and substantially improve over time, with 

higher starting scores being strongly associated with reduced trajectory at both the student and 

school levels. When correlating the random effects from the cognitive flexibility model with the 

random effects predicted from the math achievement model, a strong association was found 

between math achievement and cognitive flexibility at baseline. A negative association was found 

between the cognitive flexibility intercept and math achievement trajectory. A negative and 

moderate association was indicated between the math achievement intercept and executive 

functioning trajectories, with these two trajectories themselves being positively related. Similar 

results were found at the school level.  These results again show that executive function is related 

to math achievement. 
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Research Question 4: Which student sociodemographic characteristics are most strongly 

associated with change in math achievement, and to what degree does controlling for student 

sociodemographic characteristics alter the association between executive functioning and change 

in math achievement? 

Regarding the fourth and final research question, a significant, positive effect was found 

over time for both working memory and cognitive flexibility, with a significant, negative summer 

drop, after controlling for demographics. Kindergarten working memory scores were significantly 

reduced for Blacks, Hispanics, and Asians, and were increased for females and those with higher 

SES. Trajectories were increased for Hispanics relative to whites and were reduced for those with 

higher SES. The summer drop was also found to be less negative among Blacks, those of other 

race, and those with higher SES, with the effect being more pronounced for females. Higher 

intercepts were also associated with lower trajectories along with less pronounced summer drops, 

with the association between trajectory and summer drop being negative and strong, with these 

patterns also appearing at the school level. Demographic fixed effects were found to reduce 

school-level variance more than student-level variance, as was found in the case of math 

achievement. 

Next, at the student level, a strong, positive association was found between the working 

memory and math achievement intercepts after controlling for demographics. The working 

memory intercepts had a minimal association with math achievement trajectory along with a 

small, negative association with summer drop. The working memory trajectories had a weak, 

negative association with math achievement intercept along with math achievement summer 

drop.  The association was positive for the math achievement trajectory. Additionally, summer 

drop in working memory had a negative association with the math achievement intercept and 

trajectory. The association with math achievement summer drop was positive. School-level 
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results were similar to those found at the student-level.  However, while the size of the 

correlations at the student-level were similar between the adjusted and unadjusted models, the 

correlations at the school-level tended to be smaller in the adjusted model.  That is, although math 

achievement and working memory trajectories tend to move together, the size of the association 

for schools is diminished once one controls for demographics.  This result coincides with the 

finding that demographics reduces more school-level variability than student-level variance. 

Regarding cognitive flexibility, significant improvement was again found over time, with 

starting scores being reduced for Blacks and Hispanics as compared with Whites. Starting scores 

were also higher for females and those with higher SES. Trajectories were more positive for 

Blacks, Hispanics, and Asians as compared with Whites, with trajectories being reduced for 

females and those with higher SES. Students with higher starting values tended have lower 

trajectories. The inclusion of demographics fixed effects reduces the variance in intercepts at the 

student level minimally, while over 50% of the school level variance was accounted for once 

demographics were included. The student-level trajectory variance is also reduced minimally, 

with the school-level trajectory variance was reduced by 75%. 

Next, a strong, positive association was found between the cognitive flexibility and math 

intercepts, with higher cognitive flexibility intercepts being negatively and weakly associated 

with math trajectories. Additionally, the cognitive flexibility trajectory is negatively associated 

with math starting values, and positively associated with math trajectories. The school-level 

results mirrored these findings.  The inclusion of demographics did less to affect the school-level 

variance components than was the case with working memory. This may be due to the reduced 

time period available for cognitive flexibility, as improvements in math achievement and 

executive functioning (measured with working memory) both showed the greatest acceleration in 

prior grades. 
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Research Question 5. To what degree does math achievement growth vary among schools, 

controlling for demographics? 

 Examining the amount of school-level variability in math achievement explained by 

demographics revealed that student-level characteristics (gender, race, SES) accounted for a great 

deal of between-school differences. Indeed, the variance components at the school level were 

reduced much more than the student-level variance components. This is indicative of the 

importance of the school’s overall demographic make-up for math achievement outcomes, both in 

kindergarten and the over-time trajectories. A similar story was found for both executive 

functioning outcomes. Nonetheless, school demographics did not account for all between-school 

differences, which leaves a role for school quality above and beyond the make-up of its students. 

Discussion 

Regarding the answers to these research questions, first, with respect to Research 

Question 1, excluding demographics, a significant growth trajectory was found (b = 1.751, p < 

0.001) after accounting for summer drop and school and student random effects. With 

demographics, this effect is nearly the same. In addition, results found this trajectory to not be 

linear but to decrease over time, with larger and larger decreases evident year after year. 

In relation to this study’s second research question, intercepts were decreased for Blacks 

and Hispanics, but were increased for females and those with higher SES. The results for race 

corresponded with previous literature, which found minorities like Hispanics and Blacks to have 

reduced mathematics performance as compared with Whites and Asians (Sonnenschien & Sun, 

2017). This may be explained by Blacks and Hispanics having reduced working memory and 

cognitive flexibility as compared with Whites (Little, 2017), and may also suggest the continuing 

importance of the parents in explaining racial differences in mathematics skills (Sonnenschien & 

Sun, 2017). 
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The SES result also corresponded with past literature, with children coming from low-

income households having poorer math skills compared to those from high-income households 

(Morgan, Farkas, and Wu, 2009). This may be explained by those with higher SES having 

improved working memory and cognitive functioning (Little, 2017) and as those from lower SES 

backgrounds have fewer opportunities to learn (Morgan, Farkas, & Wu, 2009) and also generally 

have reduced EF (Zelazo, 2015). 

The improved scores for females are supported by some previous literature (Halpern et 

al., 2007), but not others (Reilly, Neumann, & Andrews, 2015). These results for gender do not 

indicate any support for the perceived disadvantages among females leading to poorer 

mathematics achievement and speak to the apparent complexity pertaining to the association 

between gender and achievement. They do, however, fail to support earlier research which has 

suggested that anxiety among females may lead to reduced mathematics performance (Lent et al., 

1991; Passolunghi et al., 2016; Peters, 2015), and also fail to support the explanation of 

stereotype threat as the basis behind gender differences in mathematics performance (Ganley et 

al., 2013). 

Additionally, the mathematics performance trajectory was less positive for Blacks, 

slightly more positive for Hispanics, slightly less positive for females, and less positive among 

those with higher SES. The higher scores among females at the outset combined with a reduced 

trajectory departs from previous literature which found gender differences to significantly 

increase over time (Levine et al., 1999; Reilly, Neumann, & Andrews, 2015). The effect of 

summer drop was more negative among Hispanics, but less negative among Blacks, Asians, and 

those with higher SES. More closely answering this research question with respect to the 

reduction in variance, the addition of these demographic measures had a substantially greater 

impact in reducing school-level variances as compared with student-level variances. Specifically, 
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the introduction of these demographics reduced the variance of the student-level intercept by 

8.11%, while variance in the school-level intercept was reduced by 66.23%. With respect to 

slopes, student-level variance was reduced by 4.55%, while school-level variance was reduced by 

17.02%. Regarding variance in the summer drop, this was unchanged at the student level, but 

reduced by 20% at the school level. 

Regarding the third research question, scores in kindergarten on working memory had a 

strong association with scores in kindergarten on math achievement (r = 0.711). Higher initial 

scores on working memory were also associated with weaker math trajectories (r = -0.105) along 

with more severe summer drops (r = -0.081). While improved working memory trajectories were 

associated with improved math achievement trajectories (r = 0.238), they were also associated 

with more severe summer drops (r = -0.200). Less severe working memory summer drops were 

also associated with reduced math achievement intercepts (r = -0.25), reduced math trajectories 

(r = -0.185), and less severe math summer drops (r = 0.257). Results for school-level random 

effects were found to be very similar. 

A strong correlation was found between math scores and cognitive flexibility at the 

student level (r = 0.522), with a negative, significant association found between the cognitive 

flexibility intercept and the math trajectory (r = -0.255). A moderate, negative association was 

found between the math intercept and executive function trajectory (r = -0.469), with both 

trajectories positively but weakly associated (r = 0.230). Again, school-level random effects 

results were very similar. 

These results concorded with that of previous literature. First, previous research has 

found a positive relationship between EF and academic achievement (Monette, Bigras & Guay, 

2011; Morgan, et al., 2017), with EF being composed of the skills of working memory, cognitive 

flexibility, and inhibitory control (Monette, Bigras & Guay, 2011; Zelazo, 2015). Other research 



107 
 

has found EF skills to positively impact goal attainment, which contributes to academic success 

(Little, 2017), while others have found a direct, positive link between EF and mathematics 

performance (Blair and Razza, 2007; Bull, Espy & Wiebe, 2008; Bull & Scerif, 2011; Clark, 

Pritchard & Woodward, 2010; Monette, Bigras & Guay, 2011; Morgan et al., 2016), especially 

working memory (Monette, Bigras & Guay, 2011), with deficits in EF associated with deficits in 

mathematics performance (Morgan, et al., 2017). All of these previous results were upheld in this 

study. 

With regard to the fourth research question, trajectories were found to be more positive 

for Hispanics as compared with Whites, with higher SES being associated with lower trajectories. 

The summer drop was less severe for Blacks, those of other race, and those with higher SES, with 

a more severe drop for females. 

With respect to Research Question 5, sociodemographics accounted for a large degree of 

between-school differences, with the variance components primarily being reduced at the school 

level. This suggests the importance of the school’s demographic composition in math 

achievement outcomes, with the results suggesting similar importance in relation to executive 

functioning outcomes. With respect to executive functioning, Morgan et al. (2017, 2019) found 

that reduced executive functioning predicts mathematics difficulties later in schooling. This 

finding was confirmed in the present study, while this study also explored how 

sociodemographics at the individual as well as the school level serve to impact math trajectories 

and the role of EF in mathematics achievement over time. 

Limitations 

Several limitations are present in this study. First, limitations are present based on the 

method of sampling that was used in the ECLS-K methodology. These data can be used to 

produce estimates that are nationally representative of school and teacher characteristics, but only 
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regarding the kindergarten, or base-year, data. These data do not allow for nationally 

representative estimates to be calculated in grades later than kindergarten. This limits the 

generalizability and external validity of the results obtained. Specifically, the results relating to 

the models included within this study did not only incorporate data from the kindergarten year but 

include the following years of data for the purposes of modeling trajectories as well as changes in 

the trajectory and impacts that other variables have on the trajectories. Based on the inclusion of 

this larger set of data, the results cannot be generalized to the larger population except for the 

results obtained specifically on the initial kindergarten data. Due to this, any other results 

obtained can only tentatively be generalized to the larger population, which serves to limit the 

external validity of the study and the results obtained. 

A second limitation of this study is that since it is based on observational data, it is very 

difficult to test for causality. Because of this, whether any variable has a causal impact on any 

other variable cannot be definitively determined based on the results obtained in this study. For 

this to be determined, an alternate methodology would need to be used, such as a cross-lagged 

panel structural equation modeling. However, these are difficult to implement with random 

effects, while the random effects were essential to addressing the research questions. 

Third, despite being nationally representative of at least the kindergarten level, the results 

found cannot be applied to any country other than the United States or any time period other than 

that included within the data used for this study. While these results pertaining to the kindergarten 

data specifically can be generalized to that of the larger population, the results cannot be expected 

to hold true for any other country or any other time period before or after that which was included 

within the study's data. The extent to which these relationships hold or do not hold in these other 

locations or time periods cannot be determined based on this study’s results. 
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Fourth, this study was also limited because of the number and nature of the variables 

included in the analyses conducted. Regarding outcomes, math achievement was the primary 

focus. Therefore, these results do not speak to the impact of these same independent variables on 

other areas of achievement scholastically, or about other important outcomes such as reading. 

Similarly, with respect to the independent variables included within this study, this set of 

predictors were also fairly limited in scope. The variables that were included in the model were 

chosen to be consistent with prior theory. However, the extent to which other important 

demographic variables, other variables associated with executive functioning, or measures 

relating to other forms of cognitive processing may impact this or other outcomes is unknown. 

Future Research 

These limitations can also be drawn upon in order to provide recommendations for future 

research. First, the sampling methodology associated with the data analyzed in this study was 

described as a limitation, with only the kindergarten-level data being nationally representative 

and allowing for only these results obtained to be generalized to the larger population. Since these 

data were only nationally representative at the kindergarten level, as multiple years of data were 

incorporated into these analyses, this indicates that the results obtained in the study in the models 

conducted cannot be generalized to any larger population, which limits the external validity 

associated with this study. Future research using data which is nationally representative in all 

years of administration would allow for the generalization of all results to the larger population 

and would substantially improve the external validity of the study. 

Secondly, the issue of causality was raised as another limitation of the study as the 

models used in this study did not allow for the determination of causality between the 

independent and dependent variables. Specifically, other designs may be more appropriate for 

testing for causality, with these including such methods as panel regression cross-lagged panel 



110 
 

structural equation modeling, or marginal structural models. Future studies could seek to also 

determine causality by seeing how well the results replicate using one of these alternative 

designs. This would allow for expansion of this area of study and further growth through the 

further exploration of the relationships between these independent and dependent variables. 

The third limitation discussed consisted of these data being specific to the United States 

and to a certain time period, and not being generalizable to any other country or time period 

before or after that which was included in the data analyzed in this study. Future research could 

examine these same relationships and use the same models while focusing upon data that was 

collected in another country or another time period. This would allow for a determination of 

whether the results found in this current study hold in other countries and cultures, while the 

analysis of data from other time periods would allow for the determination of whether these 

results hold in time periods before or after that which was focused upon in this study. This would 

allow for a conclusion of whether these results are generally consistent or generally inconsistent 

across countries, cultures and time periods. 

Finally, the fourth limitation discussed related to the number and nature of the variables 

included in the study. The specific limitations mentioned consisted of the inclusion of only 

mathematics achievement as an outcome variable of interest as well as the limited scope of the 

independent variables included in the study. Future research could expand upon this study by 

examining other outcome variables above and beyond math achievements, such as reading or 

scientific reasoning. With respect to the independent variables, the set of demographic variables 

focused upon in this study could be expanded upon in future research, with additional relevant, 

non-demographic predictors added to the models. This would also allow for the expansion of this 

area of study by determining whether these same predictors impact other outcomes in the same 



111 
 

way, as well as through the determination of how other independent variables impact 

mathematics achievement as well as other related outcomes. 

Conclusion 

The goal of this study was to examine the relationship between executive functioning and 

mathematics performance, expanding upon this area of literature, as well as to examine the 

relationship between demographic variables and mathematics performance. Findings have varied 

across studies, and by using a large national dataset, this study hoped to clarify some of these 

discrepancies. Additionally, this study aimed to add to this area of research by modeling the 

relationships between these variables in more complex, and more realistic ways than have been 

done in the past. While previous research has examined the relationship between demographics, 

executive functioning, and mathematics performance, these measures have rarely all been 

incorporated into a single cohesive study. Additionally, this study also adds to this body of 

literature by examining five-year growth trajectories in mathematics achievement and executive 

functioning together, modeling the association between the intercepts and slopes of both 

trajectories. 

The relationship between the demographic variables of interest, executive functioning, 

and mathematics performance were examined comprehensively, serving to expand upon this area 

of research and allowing for future examination of the relationships between these measures in 

more complex and realistic ways. These findings also helped to clarify the relationships between 

these measures in cases where previous research found differing results. As the present study 

incorporated a large, national data set, these discrepancies in previous literature were likely due to 

the use of smaller, more specific data sets or due to the use of more specific models. Additionally, 

this study was also successful in examining the relationship between demographics, executive 

functioning, and mathematics performance within the context of a single study. 
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Regarding purely new findings, these related most strongly to the analyses conducted in 

relation to this study’s fourth research question. Previous research was identified and discussed in 

this study’s literature review as well as in this chapter which related to Research Questions 1 

through 3. These novel findings in relation to Research Question 4 found trajectories relating to 

math achievement that were more positive for Hispanics as compared with Whites, and with 

higher SES associated with lower trajectories. These results indicate that while all races had a 

positive trajectory for math achievement, Hispanics were found to increase more rapidly in their 

achievement as compared with whites. Summer drop was found to be less severe for Blacks, as 

well as for those of other race, and those with higher SES, and a more severe drop found among 

females. These results indicate that Blacks and those of other race are impacted less negatively 

from the cessation of schooling over the summer, while this was also true among those of higher 

SES. Additionally, the cessation of schooling was also found to have a more severe impact 

among females as compared with males. 

Implications of the Results to Educational Practice 

Overall, the findings of this study highlight the importance of executive functioning as 

well as demographic differences in mathematics performance as well as the trajectory of 

mathematics performance. These findings can be implemented by school districts, schools, and 

teachers to create targeted programs that assist students who are more likely to have lower 

mathematics performance, as well as those who are more likely to improve their mathematics 

performance more slowly over time. Additionally, the results of the study, if summarized and 

made available to parents, could be used to educate them on the factors impacting mathematics 

performance and the improvement in mathematics performance over time. Specifically, they 

could be provided to them as a recommendation to spend additional time assisting their children 

with mathematics, or to hire a tutor, for example, if their child is among those who are predicted 
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to have lower mathematics performance or to have reduced improvement in mathematics 

performance over time. Regarding the findings in relation to the summer drop, while a large body 

of literature already exists finding similar effects, this study helps to reinforce the importance of 

the negative impact of the cessation of schooling during summer. Specifically, the results of this 

study would strongly suggest the importance of year-round schooling, which could be achieved 

through the extension of the school year, or individually, by parents, through their own private 

and individual continuation of school through home-study, the use of tutors, etc. The importance 

of mathematics and a country excelling within this field was highlighted earlier in this 

dissertation, and all the results found can be seen as highly relevant to this issue and goal. By 

considering the results of this study and properly implementing programs that can help American 

students excel in mathematics, they will not only have brighter futures, but this will also allow 

America itself to continue to excel in mathematics, science, technology, and engineering on the 

global stage. 
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