UC Irvine
ICS Technical Reports

Title

Correctness of program transformations via the weakest pre-condition formalism of
Dijkstra

Permalink
https://escholarship.org/uc/item/3h12g5sg
Author

Kibler, Dennis

Publication Date
1976-07-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3h12q5sg
https://escholarship.org
http://www.cdlib.org/

CORRECTNESS OF PROGRAM
TRANSFORMATIONS VIA THE
WEAKEST PRE-CONDITION
FORMALISM OF DIJKSTRA

Dennis Kibler

TECHNICAL REPORT #90
July 1, 1976

Correctness of Program Transformations via the

Weakest Pre-condition Formalism of Dijkstra

Dennis Kibler

July 1,1976

TR #90

ragye ¢«

Abstract: Dijkstra’s weakest pre-condition formalism for
proving correctness of programs is modified and extended to
show the validity of several source-to-source
transformations. Examples of the method developed include
transformations involving goto elimination, loop fusion and
splitting, distribution over conditionals, commutativity of
statements, and removal of the empty statement.

Software errors are taking an increasing percentage of
the computer dollar. Empirical evidence suggests that half
of all programming errors are simple clerical ones (Boehm
1), e.3. exceeding array bounds, changing data types, using
the wrong format, etc. Also the amount of software produced
per programmer, measured in the number of lines of code per
day, appears to be independent of the 1level of language
used. One approach that both increases the productivity of
a programmer and decreases the number of errors, is to allow
the programmer to use an abstract very high level language
which protects him from clerical details. This abstract
program is then either automatically translated into a lower
language form or, more realistically, the translation is
guided by the programmer in an interactive way. Moreover
transformations might be suggested by the system which could
massage the program into one which required less storage,
executed faster, or was more pleasing to the eye. A
transformational system of this sort is being developed by

Standish et al (2,3).

A programmer manipulating his work through a series of
transformations needs to be assured that the changes made do

not invalidate his work, i.e. do not introduce any new

Page 3

errors. The entiré transformational system rests on the
fact that a correct program will be transformed into another
correct program which performs the same task. Not only must
a transformation map a program into another syntactically
valid program, but the image program must be semantically
equivalent to the original program. We will assure the
syntactic wvalidity of a transformation and concentrate on
the problem of showing that it preserves correctness. To

this aim we adopt the framework of Dijkstra (4).

Before introducing Dijkstra’s ideas perhaps it would be
useful to discuss what we mean by proving a program correct.
Immediately we are struck with the fact that wnen we prove a
program 1is correct, we are not guaranteeing that it will
will execute properly. We are, however, increasing our
belief that the program will run properly. For example, if
one uses Floyd s assertion method then one is implicitly
assuming the correctness of 1i)predicate calculus, 1ii)
machine implementation of instructions, and iii) the
compiler. But this 1is not a new story. 1In mathematical
theories one always starts with axioms and definitions and
builds from there. Since our belief in the validity of
predicate calculus and of machine execution is great, a
proof of correctness gives us confidence in a program. If a
program that had been proven to be correct did not run, one

would suspect a compiler error.

Page 4

Dijkstra’s idea for defining semantics is to associate
with each program construct or mechanism S a predicate
transformer, written wp(S,R), which maps an arbitrary
predicate R into the predicate wp(S,R) and wp(S,R) is the
weakest pre-condition such that its validity followed by the
executions of S guarantees the validity of R.
Alternatively, one could define wp(S,R) in the Hoare
formalinm by demanding that it satisfy the following two

contraints:
i) {wp(S,R)kS {r{ ang
ii) if{pl s {kRithen P3wp(S,R).

Dijkstra would say that if the input predicate implied
wp(program, output predicate) , then the program is
semantically valid. We wish to define the semantic validity
of a transformation. A block is a sequence of statements
with a single entrance and exit. Two blocks S and S° are
semantically equivalent iff wp(S,R)=wp(S’,R) for all
predicates R and the blocks have the same entrance and exit
points. Notice that if a program is semantically valid and
it contains a block S which is semantically equivalent to a
block S, then the new program formed by replacing S by S°
is also semantically valid. Actually the new program
program is valid as long as wp(S,R)2>wp(S’,R). A
transformation T preserves correctness if for all predicates
R, wp(S,R)Fwp(T(S),R). A transformation is equivalence

preserving (and so may be applied in either direction) if

Page 5
for all predicates R, wp(S,R)=wp(T(S),R).

Before we can prove that a particular transformation is
semantically valid, the semantics of the particular
programming language must be defined. 1In figure 1. we give
the semantics of some simple program constructs. Also
listed in this figure are some general 1laws or properties
about the weakest pre-condition which will aid wus in
verifying the correctness of transformations. The validity

of these properties is established by Dijkstra in (4).

Example 1. Simplifying Conditionals
Consider the transformation of
if B then (if A then S1 else S2) else S2
into

if BAA then S1 else S2.

The computation of the weakest pre-conditions proceeds
as follows, with the numbers referring to figure 1.
wp(if B then (if A then S1 else S2) else S2,R)
ﬁ (by 5a)
BAwp(if A then S1 else S2,R)V~¥BAwp(S2,R)
D by sa)
BAQAWP(SL,R)v ~A Awp(S2,R) N ~BAWD(S2,R)
i;(by distribution)
BAAAwWP(S1,R)V BAAAwp(S2,R) V~Bawp(S2,R)
@, (since BA~AVwB= w~ (AAB))

BAAAwpP(S1,R)V ~(BAA)AWP(S2,R)

Page 6

Q(by 5a)

wp(if BA A then S1 else S2,R).

This computation has shown that the transformation is
an equivalence and that no enabling conditions are
necessary. If the two predicates are not equal then any
predicate which implies their equality will be a sufficient
enabling condition. Hence the weakest pre-condition

calculation will also suggest enabling conditions.

Example 2. Commutativity of Statements

The transformation of S1;S2 into S2;S1 requires that
wp(Sl,wp(S2,R))=wp(S2,wp(S1,R)) for all R. In general there
is no way to prove this so it becomes the enabling
condition. To discuss a particular example of this
transformation let Sub(T,X1,Y1,X2,Y2,...) denote T where X1

has been replaced by Yl, X2 has been replaced by Y2, etc.
| Now if S1 is X:=X+1 and S2 is X:=X+3 then
wp(S1;S2,R)
§ by 2)
wp(S1l,wp(S2,R))

SS(by 1)

wp(S1,Sub(R,X,X+1))
Y by 1)
Sub (Sub(R,X,X+1) ,X,X+3)
SS(bY simple manipulation)

Sub(R,X,X+4)

Page 7

Similarly one checks that wp(S2;S1,R) is Sub(R,X,X+4) so the
predicates are equal and the statements may be commuted. If
however S1 were X:=6*Y and S2 were Y:=6*X then
wp(S1;S2,R)=Sub(R,Y,36*Y,X,6*Y) while
wp(S2;S1,R)=Sub(R,X,36*X,Y,6*X). Since these expressions

are not equal the statements may not be permuted.

Example 3. Generation of Enabling Conditions
One transformation listed in (3) maps
while B do empty into empty.
Let us compute the weakest pre-condition of each statement.
From figure 1. we easily see that wp("empty",R)=R. The
computation of the while form is somewhat more complicated
in general, but in this instance is fairly simple. By 6
H(@,R)=~BAR. Again by 6 we have that H(1,R)=BA H(@,R)V~BA
H(d,R) VH(O,R). But this reduces to H(1l,R)=~BAR. By a
simple inductive argument we find that H(k,R)=~B A R. Hence
the weakest pre-condition of the while form above is A BAR.
In order that these two predicates be equal we require the
enabling condition aB. But note that the original left
hand side is really an infinite 1loop unless B is true.
Hence by a straightforward application of Dijkstra’s methods
we discover an error in the catalogue and the correcting

enabling condition.

Example 4. Movement over Conditionals

Consider the transformation of

Page 8

if B then C; if not B then D
into
if B then C else D.
Let us now apply the rules contained in figure 1. to
calculate the weakest pre-condition of each program
fragment.
wp(if B then C;if not B then D;R)

ﬁ(by 2)

wp(if B then C,wp(if not B then D,R))
{, (by 5b)
wp(if B then C,BAwp(D,R) v BAR)
E (by several simplifications)
BAwWp (C,BAR)VBawp (C,~#BAwp (D,R)) V#Bawp (D, R)
If BAwp(C,R)=wp(C,BAR) then we say that B is invariant with
respect to C. We assert that if B is invariant with respect
to C then so is not B (see appendix for proof). In order to
carry on the calculation we assume that B is invariant with
respect to C. Hence BAwp(C,BAR) simplifies to Bawp(C,R) and
BAwp (C,~Bawp(D,R) simplifies to wp(C,BA~Bawp(D,R)) which is
F. Now the weakest pre-condition of the entire first
program fragment reduces to Bawp(C,R)v~Bawp{D,R) which is
exactly the weakest pre-condition of the second fragment.
Hence wunder the enabling condition of the invariance of B
with respect to C, the two program fragments are equivalent
and the transformation is valid.
Transformations such as

while false do S

Page 9

into
empty
or
S ; if B then C else D
into
if B then (S;C) else (S;D)
can be shown to be correct by analogous manipulations of the

weakest pre-condition.

Example 5. Loop Splitting

We wish to show the equivalence of the fragments
for I:=1 to n+m do S(I)
and
for I:=1 to n do S(I);
for I:= n+l to n+m do S(I)
We define the semantics of "for I:=1 to n do S(I)" to be the
semantics of the composition "S(1);S(2);...S(n)". With this
interpretation the verification that the above program
fragments have the same weakest pre-conditions is a
triviality. By enlarging this interpretation we could treat
arbitrary fixed increments in a loop.
Example 6. Goto Elimination
We wish to prove that the following transformation is

valid

Page 10
B:S B:S .

The defintion of a semantically valid transformation
contained two constraints. One of these we have ignored
since it has always been satisfied up to now. We demanded
that the code pieces each have only one entrance and one
exit and that these points were the same for each of the two
fragments. In the current case this means that an enabling
condition is that the label A never be the destination of a
goto other than the one under consideration. Since wp (go

to,R)=R , the fragments are easily seen to be equivalent.

Example 7. Transforming the While Statement

Let Sl be the construct "while B do S" and 1let S2 be
the construct "if B do S; while B do S". To show the
equivalence of these two constructs we must show that
wp(S1,R)=wp(S2,R) for all R. Handling the while statement
is somewhat complicated so the proof will be divided into
two cases.

Case 1. Assume B is not initially true.

By 6 we have that wp(S1,R)=H(k,R) for some Kk where
H(8,R)=RA~B and for k greater than zero, H(k,R)=BAwp(S1,RWw~BA
H(k-1,R) v H(8,R). In the case that B is false this
simplifies to H(k,R)=~BAH(k-=1,R)vH(@,R). If we let k be one
we see that H(1,R)=H(@,R). By a simple inducrtive argument
we have H(k,R)=H(0,R) for all k so wp(Sl,R)=vBAR. Using

this fact we simplify wp(S2,R) to wp(if B then S,vBaR) which

Page 11

easily reduces (by 5b) to~BaR. Hence in the case that B is
false, S1 and S2 are equivalent program fragments.

Case 2. Now we assume that B is initially true.

It suffices to show that B wp(S1l,R)=B wp{S2,R).
BAawp(S2,R)
Y (by 2)
BAawp(if B do S,wp(while B do S,R))
SS(by 6)
Bawp(if B do S,H(k,R) for some k)
s&(by property 5)
BAwp(if B do S,H(s,R)) for some s
{} (since H(8,R)AB=F)
BA(wp(if B do S,H(s,R)) for some s,vH(@,R))
) (by definition of H(k,R))
B H(s+l,R) for some s
1&(since H (@, R)AB=F)
BAH(s,R) for some s
{) (since H(8,R)nB=F)
Bawp(S1,R).
This completes the proof for the second case, so the two

program fragments are equivalent.

Conclusions.

In this paper we have seen many examples of verifying
the correctness of transformations via calculation of the

weakest pre-condition. After doing a few calculations of

Page 12

this sort, the method seems clear and straigntforward. The
proofs are short and even suggest the enabling condition
when the calculated pre-conditions are not egual. This
treatment can probably be extended to include array
variables, and with more difficulty, arbitrary structures.
The extension to include procedures and especially recursive

procedures may be completely unwieldy.

Acknowledgement: I would like to thank Tim Winkler for

directing me to the ideas of Dijkstra as presented in A

Page 13

Figure 1.

General Properties of Program Mechanisms
Property 1. wp(S,F)=F.
Property 2. if Q<R then wp(S,Q)=>wp(S,R).
Property 3. wp(S,Q)Aawp(S,R)=wp(S,QAR).
Property 4. wp(S,Q)vwp(S,R)= wp(S,QvR).
Property 5. If for each non-negative integer r there is a
predicate C(r) and for each r, C(r) implies C(r+l) then

wp(S, for some r, C(r))= wp(S,C(s)) for some s.

Semantic Definitions of some Program Mechanisms
1. Assignment: wp(x:=y,R)=sub(x,y,R).
2.Concatenation: wp(S1;S2,R)=wp(S1l,wp(S2,R)).
3.Empty statement: wp(empty,R)=R.
4.Goto: wp(goto,R)=R.
5.Conditionals:a) wp(if B then S1 else S2,R)=
BAwWp(S1,R)V ~#B AWP(S2,R).
b) wp(if B then S,R)=Bawp(S,R)V ~ BAR.
6.Iteration: wp(while B do S,R)=H(k,R) for some k, where
H(0,R)= RA~B
H(k,R)=wp(if B then S,H(k-=1,R)JV H(0O,R)
=BA wp(S,H(k=1,R))V~B AH(k=1,R)V H(Z,R).

(note H(k,R) implies H(k+l,R)).

Page 14

Appendix
Lemma: If B is invariant with respect to C then B
is also invariant with respect to C.
Proof: We are given that Bawp(C,R)=wp(C,BaAR) and would like
to show that~Bawp(C,R)=wp(C,~BAR). The proof reduces to two
computations. First we calculate ~Bawp(C,R).
wBAwp (C,R)
ﬂ;(since Bv~B=T)
~Bawp (C, (Bv~¥B)AR)
@(by property 4)
~Bawp(C,B R)va~Bawp(C,~BaR)
{S(by’invariance of B)
~BABrwp (C,R)V~Bawp (C ,~BAR)
1} (immediately)
~ BAawp (C,~ BAR) .
Now we simplify wp(C,~BAR).
wp (C,» BAR)
Q&(since Bv~B=T)
(Bv~B) Awp (C,~ BAR)
sy(by invariance of B)
~Bawp(C,~BAR) V wp(C,BA~BAR)
1}(since wp(S,F)=F)
~ Bawp (C,~BAR) .
These simplifications show that B is invariant with respect

to CI

Page 15

Bibliography

l.Boehm,B.W.,Software and its Impact:A Quantitative
Assessment,P.4946,Rand Corp.,Santa Monica,
Ca.,Dec.1972.

2.Standish,T. ,Harriman,D. ,Kibler ,D.,and Neighbors,J.,
The Irvine Program Transformation Catalogue
Dept. of Information and Computer Science,Univ.,
Irvine.Ca.,(Jan.1976).

3.Standish,T.,et al, Improving and Refining Programs by
Program Manipulation,Dept. of Information and
Computer Science, Univ. of Ca. at Irvine,Ca.
(Feb.1976).

4.Dijkstra,E.W.,A Discipline of Programming ,Prentice-

Hall, Englewood CIiffs, N.J.,(1976).

5.Dbahl,0.-J.,Dijkstra,E.W., and Hoare,C.A.R.,
Structured Programming, Academic Press, London,
(1972).

6.Manna,S.,Mathematical Theory of Computation,McGraw-
Hill Inc.,(1974).

