
UCSF
UC San Francisco Previously Published Works

Title
Frontotemporal dementia: a bridge between dementia and neuromuscular disease

Permalink
https://escholarship.org/uc/item/3h01b9sf

Journal
Annals of the New York Academy of Sciences, 1338(1)

ISSN
0077-8923

Authors
Ng, Adeline SL
Rademakers, Rosa
Miller, Bruce L

Publication Date
2015-03-01

DOI
10.1111/nyas.12638
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3h01b9sf
https://escholarship.org
http://www.cdlib.org/


Frontotemporal dementia: a bridge between dementia and 
neuromuscular disease
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2Department of Neurology, Mayo Clinics, Jacksonville
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Abstract

The concept that frontotemporal dementia (FTD) is a purely “cortical” dementia has largely been 

refuted by the recognition of its close association with motor neuron disease, and the identification 

of transactive response DNA-binding protein 43 (TDP-43) as a major pathological substrate 

underlying both diseases. Genetic findings have transformed this field and revealed connections 

between disorders that were previous thought clinically unrelated. The discovery of the C9ORF72 

locus as responsible for majority of hereditary FTD, ALS and FTD-ALS cases and the 

understanding that repeat-containing RNA plays a crucial role in pathogenesis of both disorders 

has paved the way for development of potential biomarkers and therapeutic targets for these 

devastating diseases. In this review, we summarize the historical aspects leading up to our current 

understanding of the genetic, clinical and neuropathological overlap between FTD and ALS, and 

include brief discussions on chronic traumatic encephalopathy (CTE) given its association with 

TDP-43 pathology, increased dementia risk and reports of ALS in CTE patients. Additionally we 

describe other genetic associations between dementia and neuromuscular disease, such as 

inclusion body myositis with Paget’s disease and frontotemporal dementia (IBMPFD).
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Introduction

Frontotemporal dementia (FTD) is a progressive neurodegenerative condition characterised 

by selective involvement of the frontal and temporal lobes, that is associated with changes in 

behaviour, personality, frontal executive deficits and language dysfunction. Previously 

classified as a “cortical dementia”, it is now clear that FTD often occurs in association with 

motor neuron disease (FTD-MND) and amyotrophic lateral sclerosis (ALS).1 As will be 

described, the recent discovery of a gene that can cause both FTD and ALS, C9ORF72, has 
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transformed the way that these two conditions are being considered, from both a mechanistic 

and therapeutic perspective. Similarly, mutations in the valosin containing protein gene 

(VCP) cause, FTD, ALS, inclusion body myopathy and Paget’s disease of bone 

(IBMPFD).2,3 In this review we describe the clinical, genetic and pathological features of 

FTD subtypes linked to neuromuscular disease and discuss the implications of these findings 

for future therapeutic efforts for these conditions.

The first description of FTD came from Arnold Pick in 1892, who reported upon a patient 

with progressive aphasia and anterior temporal lobar atrophy.4 Neuropathological findings 

of argyrophilic neuronal inclusions (also known as ‘Pick bodies’) in a patient with this 

syndrome were later reported by Alois Alzheimer in 1911.5 Once considered rare, FTD is 

now recognized as the second most common early-onset dementia under 65 years of age,6 

and there is clinical and neuropathological evidence that FTD also occurs in the very old.7 

The term FTD is used to describe patients with three distinct clinical syndromes in whom 

non-Alzheimer’s disease pathology is expected. These FTD subtypes include behavioral 

variant FTD (bvFTD), a disorder with prominent behavioral abnormalities and two language 

variants - semantic variant primary progressive aphasia (svPPA) and non-fluent variant PPA 

(nfvPPA). The most common FTD subtype, bvFTD, manifests with disinhibition, 

compulsive or perseverative behaviour, overeating, apathy and emotional blunting. Cortical 

atrophy is most severe in the frontal and anterior temporal lobes, often worse on the right 

than on the left side. The svPPA patients exhibit loss of conceptual knowledge for words 

(left-sided degeneration) or faces and people (right-sided degeneration) due to selective 

involvement of the anterior temporal lobes. nfvPPA is characterized by agrammatic, non-

fluent language output and apraxia of speech.8

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that targets motor 

neurones in the brain and spinal cord, leading to paralysis and ultimately death within 3 

years from onset.9 It is now understood to be a complex multisystem neurodegenerative 

disease10 due to the fact that areas other than the motor cortices of the brain undergo 

degeneration. While various genes involved in familial forms of ALS have been identified, 

roughly 90% of cases of ALS are sporadic. The early literature on ALS beginning in the 

1880s, recognized that dementia often accompanied ALS,11 although this association was 

largely neglected until recent years. More than 100 years after the findings of Marie and 

Reynolds, AJ Hudson rekindled awareness of the links between ALS and dementia writing 

about ALS and dementia on Guam, and ALS and dementia in specific families.12 This 

dementia-ALS- parkinsonian syndrome found on Guam has almost completely 

disappeared,13 leaving questions about its etiology unanswered, although genetic and 

environmental etiologies have been suggested. In 1993 mutations in superoxide dismutase 1 

gene (SOD1) became the first known genetic cause of familial ALS.14 These mutations 

account for approximately 10% of all familial ALS cases. While this mutation causes ALS, 

an association with FTD is uncommon15 and therefore not the focus of this review.

The modern age in FTD-MND began in 1990 when Mitsuyama16 reported 71 patients with a 

presenile dementia and motor neuron disease. The strong association between dementia and 

MND and the large number of cases reported by Mitsuyama,16 marked a paradigm shift for 

the field. Around the same time, Neary and colleagues described four patients with rapidly 
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progressive dementia in association with clinical features of MND. The pattern of dementia 

indicated frontal lobe dysfunction, and was confirmed with evidence of reduced tracer 

uptake in the frontal lobes on SPECT imaging. Autopsy of 2 patients revealed frontal lobe 

atrophy and spinal cord changes consistent with MND, with clinical and pathological 

changes distinctive from those seen in AD.17 This work helped clarify that ALS was 

associated with a specific type of dementia associated with frontal lobe dysfunction.

The realization that FTD-MND had distinctive neuropathology began in the 1980s with the 

first reports of ubiquitin-positive immunoreactive inclusions in the cytoplasm of motor 

neurons (including familial ALS cases).18,19 Additionally, evidence of ubiquitin-positive 

inclusions in the extra-motor cortex was shown in both pure ALS patients20 and ALS 

patients with dementia.21 These ubiquitin-positive inclusions became the pathological 

hallmark of the combined FTD-MND syndrome. Despite this plethora of reports, there was 

controversy surrounding the concept of a link between both diseases, particularly with the 

neuromuscular community, due to the conventional view of MND as a disease confined to 

the motor system. With the report of Lomen-Hoerth and colleagues22 that 15% of patients of 

FTD suffered from ALS, it became apparent that these two conditions were strongly linked. 

Especially important in the determining the link between FTD and MND was the 

identification of the transactive response DNA-binding protein 43 (TDP-43) in 2006 as the 

major inclusion protein associated with ubiquitinated inclusions in the vast majority of ALS 

patients, and in the most common pathological subtype of FTD, now referred to as 

frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP).23,24 The 

significance of this finding was initially challenged by traditional members of the ALS 

community, entrenched in SOD1 mouse models of ALS where TDP-43 was not present. 

Yet, the strong association between FTD, ALS and TDP-43 is now widely accepted.

Epidemiology

The high rate of FTD misdiagnosis has made it challenging to determine its exact prevalence 

and incidence, and only a few studies have attempted to do so. European studies estimated 

the prevalence of FTD at 15–22 per 100,000 inhabitants aged 45–64 years, similar to the 

prevalence of early-onset AD in this age group.6,25,26 A Dutch study found a lower 

prevalence of FTD relative to AD at 9.4 per 100,000 in an older age group ranging from 60–

69 years, consistent with some pathological series.27 Two studies reported incidence of FTD 

at 3.5–4.1 cases per 100,000 person-years in the age group 45–64 years,28,29 with no 

obvious gender differences.27,29–31 The mean age of onset of FTD is typically in the fifth to 

seventh decades of life32 with approximately 10% having an onset over 70 years.33. Onset 

may begin as early as the third decade and as late as after the ninth decade; with the 

prevalence in older age groups likely to be underestimated.34 Median survival in FTD has 

been estimated at 6–11 years from symptom onset and 3–4 years from diagnosis.35–37 In our 

centre, bvFTD has been found to be associated with the shortest survival (median 8.7 years 

from onset), svPPA with the longest survival (11.9 years) and nfvPPA with intermediate 

survival (9.4 years),36 contrasting with that of Hodges et al. who reported the longest 

survival in nfvPPA (mean 10.6 years from onset) followed by bvFTD (8.2 years) and SD 

(6.9 years).35 The wide range of disease duration (2–20 years) is likely to reflect the wide 

differences in underlying pathology.33,35 Survival appears to be shorter and decline more 

Ng et al. Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rapid compared to Alzheimer’s disease,36 and across centres, the presence of MND is 

associated with early mortality (2.4–4.9 years from onset and 1.2–1.4 years from 

diagnosis).35,36

The frequency of FTD in ALS patients varies in the literature, with symptoms of FTD seen 

in 5–50% of ALS patients.1,22,38 Similarly, approximately 15% of FTD patients develop 

clinical symptoms of motor neuron dysfunction.1 Other studies have reported the incidence 

of FTD in patients with bulbar-onset ALS as high as 48%.39 While the exact phenotype and 

natural history of impaired cognition in ALS remain unclear due to heterogeneity in patient 

ascertainment and methods used to assess cognition, current estimates suggest that more 

than half of patients with ALS have cognitive impairment. In two large epidemiologic 

studies, the occurrence of mild cognitive impairment has been reported in up to 36% and 

51% of patients with sporadic ALS, respectively.40,41 Thus, reports of the frequency, 

severity, and type of cognitive impairment in ALS patients vary substantially, and large 

population-based clinical studies of the prevalence and natural history of cognitive decline 

in ALS need to be performed.

In addition to familial associations between ALS and FTD, sporadic cases of FTD in 

association with ALS also seem to be common,42 although the prevalence and etiology for 

this co-association remains understudied. In some instances, FTD precedes ALS by many 

years; in others, ALS precedes FTD.43 It has been noted that a percentage of ALS patients 

with no previous diagnosis of FTD have early behavioural changes preceding the onset of 

the symptoms of ALS. Although the behavioural changes may not justify a diagnosis of 

FTD, the changes can be noticeable, disturbing to the family, and undiagnosed.44 Several 

suggested risk factors for dementia in ALS include older age, male sex, low education, 

family history of dementia, low forced vital capacity, pseudobulbar palsy, and bulbar site of 

onset,22,39,40,45 but these associations have not been reported consistently.

Pathological substrates underlying the link between frontotemporal 

dementias and neuromuscular disease

Frontotemporal lobar degeneration (FTLD)

Frontotemporal lobar degeneration, or FTLD, is the common underlying pathology of 

clinical FTD subtypes, as well as syndromes including ALS, progressive supranuclear palsy 

(PSP) and corticobasal degeneration (CBD). FTLD can be divided into two major subtypes: 

FTLD with tau-positive inclusions (FTLD-tau); and FTLD with ubiquitin-positive and 

TDP-43-positive but tau-negative inclusions (FTLD-TDP).46 Roughly 90% of FTD 

syndromes show either TDP-43 proteinopathy (50%) or tauopathy (40%).47 Consensus 

opinion currently recognises five major pathological subtypes of FTLD (FTLD-tau, FTLD-

TDP, FTLD-FUS, FTLD-UPS and FTLD-no inclusions or FTLD-no inclusions).46 FTLD-

TDP appears to be the primary pathology underlying the overlap between FTD and motor 

neuron disease, and as such, will be the focus of this pathological discussion.
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FTLD-TDP - History and classification

In 2006, two papers by Sampathu et al and Mackenzie et al were published, each describing 

pathological heterogeneity in cases of FTLD with ubiquitin-positive, tau-negative inclusions 

(FTLD-U).48,49 Shortly thereafter, further work by Neumann et al. led to the identification 

of the transactive response DNA-binding protein with MW 43 kD (TDP-43) as the 

ubiquitinated pathological protein in most cases of FTLD-U as well as the majority of 

sporadic ALS and some familial ALS cases.23 TDP-43 pathology is present in 90% of 

ubiquitin-positive FTLD cases and non-SOD1 ALS cases with FUS-positive inclusions 

accounting for the majority of remaining ubiquitin-positive TDP-43 negative 

inclusions.23,50,51 A fourth FTLD-U subtype with TDP-43 pathology was described, 

associated with the familial syndrome of inclusion body myopathy with Paget’s disease of 

bone and FTD caused by mutations in the VCP gene, as described earlier.52 As a result, 

cases of FTLD with TDP-43 pathology are now designated as FTLD-TDP and the term 

FTLD-U is no longer recommended.24 The two different classification systems for FTLD-U/

FTLD-TDP, however, continued to be a source of confusion and to resolve this issue, the 

principal authors of the original two papers proposed a new classification for FTLD-TDP 

pathology to provide a single harmonized system. At autopsy, most FTD-ALS cases have 

neuronal cytoplasmic inclusions immunoreactive for both ubiquitin and TDP, previously 

classified as FTLD-TDP type 3 according to the Mackenzie classification24,53 or type 2 

according to the Sampathu classification,48 but now known as FTLD-TDP type B in the new 

harmonized classification.54

FTLD-FUS, FTLD-UPS and FTLD-ni

Approximately 6–20% of FTLD disorders are not associated with TDP-43 or tau pathology, 

but are characterized by ubiquitin-positive, TDP-43/tau negative inclusions. Many such 

cases have shown immunoreactivity with the fused-in-sarcoma (FUS) antibody,50,55 but 

none of the FTLD-FUS cases had FUS gene mutations.56 The FUS protein is involved in 

DNA repair and regulation of RNA splicing,57 and vermiform or C-shaped morphology of 

the intranuclear inclusions appear to be pathognomic of this subtype.55 FTLD-FUS cases are 

characterized by a young age at onset, behavioural variant of FTD, negative family history 

and caudate atrophy on MRI.55,58 FUS-positive inclusions are also found in patients with 

neuronal filament inclusion disease (NIFID), who mainly present with a behavioural variant 

of FTD, rapid clinical course, negative family history and pyramidal and/or extrapyramidal 

symptoms.59 Altogether, these studies represent a continuum in which FUS pathology has 

been consistently reported in rare subgroups of FTLD in the absence of TDP-43 and tau-

positive inclusions. Finally, cases of ubiquitin-positive, TDP-43 and FUS-negative 

inclusions have been termed FTLD-UPS cases. Most of these cases carry a CHMP2B 

mutation,60 but a few do not.56

Genetics underlying the link between frontotemporal dementias and 

neuromuscular disease

Recent advances in genetics have furthered our insight into the clinical and pathological link 

between the frontotemporal dementias and neuromuscular disease. Out of all the relevant 

genes and genetic mutations identified in the last few years, the most important discovery 
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remains that of the C9ORF72 locus on chromosome 9p, responsible for a majority of the 

hereditary cases of FTD, ALS and FTD-ALS. Before the identification of C9ORF72, only 

20–30% of familial ALS cases were explained by mutations in the superoxide dismutase-1 

gene (SOD1), and the genes encoding TDP-43 (TARDBP) and fused in sarcoma (FUS). 

Mutations in TARDBP are responsible for 4–6% of cases of non-SOD1 familial ALS and 1% 

of apparently sporadic ALS.61 On rare occasions mutations in TARDBP cause FTD or 

corticobasal syndrome.62 Mutations in FUS are causative of approximately 1 and 4% of 

apparent sALS and fALS respectively.

About 40% of patients with bvFTD have a positive family history, but a family history of 

dementia is much lower in patients with svPPA and nfPPA.33,63–66 In 10% of all FTD 

patients, family history is consistent with an autosomal dominant inheritance.33,64,66 The 

majority of families with autosomal dominant FTD have a mutation in one of three genes; 

the microtubule-associated-protein-tau gene (MAPT), the progranulin gene (GRN) and the 

C9ORF72 gene. The co-occurrence of ALS and MND were very low in GRN carriers.67 In 

another study of 97 gene carriers, although information was sparse on some patients with 

MND, the authors concluded that MND is a bona fide feature of some cases of PGRN+ 

FTLDTDP.68 In other families with tau mutation MND is reported in a subset of patients.69 

Because MAPT and GRN are so rarely associated with MND they are not discussed further 

in this review.

C9ORF72 or “C9FTLD/ALS”, Chr9p21.2

Historical aspects of the C9ORF72 discovery—A locus on chromosome 9 in the 

9p21.2-p13.3 region, first described in two independent reports by Vance et al. and Morita et 

al. in 2006,70,71 was found to contain a gene likely responsible for a substantial proportion 

of autosomal dominant FTD-ALS cases. Subsequently, linkage to the same chromosome 9p 

region was found in additional independent FTD-ALS kindreds.72–74 defining a shared 

candidate region of 7.7 Mb containing 52 candidate genes.75 In 2011, Boxer et al described 

a new FTD-ALS family definitively linked to chromosome 9p with novel clinical, 

neuroimaging and neuropathological findings. A consistent and unique aspect of the 

neuropathology was the presence of some NCI and neurites that labelled for ubiquitin and 

p62 but not TDP-43, suggesting that some protein in addition to TDP-43 was contributing to 

this clinico-pathological entity.76 Soon afterwards, two groups independently identified the 

cause of the chromosome 9 linked FTD and ALS to be an expansion of a GGGGCC 

hexanucleotide repeat in the chromosome 9 open reading frame 72 gene (C9ORF72) (now 

commonly known as C9FTLD/ALS), publishing their findings in Neuron.77,78 The 

GGGGCC hexanucleotide repeat is located between two five prime non-coding exons of 

C9ORF72 (a gene involved in RNA metabolism). This important discovery raised new hope 

with clinicians and researchers by providing novel avenues for studying the pathogenesis of 

ALS and FTD.

Epidemiology of C9ORF72 repeat expansions—While a repeat length of greater 

than 30 has arbitrarily been defined as pathogenic in some studies; it remains unknown how 

many repeats are truly needed to cause disease. In most healthy individuals, repeat lengths 

with a maximum of 20 repeats are found; whereas in FTD and ALS patients disease-
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associated expansions of a few hundred to several thousand repeats have been identified 

using southern blotting techniques. Most research laboratories now use PCR-based methods 

combining amplicon-length analysis and repeat-primed PCR to determine the presence of 

pathogenic repeat expansions as recommended by a blinded international study.79 Using 

these methods, many cohorts of FTD patients have now been screened, and it has been 

established that the C9ORF72 expansion is the most frequent mutation associated with 

familial cases of FTD and ALS-FTD, accounting for roughly 25% of familial FTD,80 about 

40% of familial ALS,78 and 6% of sporadic FTD cases. Frequency varies widely across 

different populations, with the highest frequencies in geographically isolated populations 

such as Finland (29%)78 probably due to a founder effect, and the lowest frequency found in 

the Netherlands (2.2%).80 The mutation is most frequently found in Caucasian populations, 

although the expansion has recently been shown in a few Chinese cases, one with sporadic 

FTD and two kindreds with familial ALS–FTD.81,82

In ALS, C9ORF72 repeat expansions are even more common. In a Northern England 

population, C9ORF72 expansions were found to be present in 43% of ALS cases with an 

identifiable family history and in 7% of apparently sporadic cases.83 The frequency varies 

globally: C9ORF72 expansions were found in 61% of familial ALS and 19% of sporadic 

ALS patients in Finland, 22% of familial ALS cases in Germany and only 3.4% in 

Japan.80,84 Prevalence has been found to be as high as 83% and 73% in Belgian and 

Swedish cohorts, respectively.77,78,80,85–88 The apparent correlation of expansion frequency 

with distance from Scandinavia is consistent with a suggested common founder carrying the 

pathogenic mutation approximately 100 (or even more than 250) generations ago in 

Northern Europe, with this expansion then spreading across the globe.80,88

Estimates suggest that C9ORF72 expansions are rarely penetrant at <35 years, 50% 

penetrant by 58 years, and usually >95% penetrant at 80 years,80,89 although the penetrance 

may not actually reach 100% at 80 years, as carriers of the expansion without the clinical 

phenotype have been reported over the age of 80 years.90 The high frequency of sporadic 

FTD and ALS patients carrying C9ORF72 repeat expansions provides further support for 

the idea of reduced penetrance, even at old age, and suggests that other genetic and 

environmental factors may contribute to the disease penetrance and presentation. Finally, 

two Italian studies investigated the possibility of anticipation in C9ORF72 carriers, and 

found that C9ORF72-related FTD families showed possible evidence of anticipation with a 

mean difference in age of onset between the parent and offspring of 9.8 years; with age of 

onset 7 years earlier in the subsequent generation in Italian ALS cases.89,91 Chio et al91 

stress that care is required in interpreting these data because of the small cohort studied and 

because the individual kindreds were not sufficiently detailed to detect an effect beyond two 

generations. Southern blot analysis to confirm repeat expansion size was not performed in 

their cohort at the time due to lack of sufficient quantities of DNA required.

Clinical phenotypes of C9FTLD/ALS—The age at onset and disease duration appear to 

be highly variable in C9ORF72 repeat expansion carriers, even within a single family. The 

age at onset ranges from 27 to 83 years, with disease duration varying between 3 and 264 

months.80,92,93 C9ORF72-related ALS cases tended to have an earlier age of onset and 

shorter disease duration compared with ALS patients who do not carry the expansion, 
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although this was not found in all cohorts.83,94 With regards to prognosis, data suggests 

C9ORF72-related ALS has a shorter survival than non-C9ORF72 ALS.83,94,95 Gender may 

also play a role as male C9ORF72-related ALS cases have been reported to have a younger 

age of onset than non-C9ORF72 ALS cases.96

C9ORF72-related FTD most commonly presents with the behavioural variant syndrome, but 

memory complaints are reported at presentation by one-half of the patients in one study.97 

C9ORF72 mutation patients also appeared to have a higher prevalence of psychosis, 

hallucinations (both visual and auditory) and delusions, compared with sporadic FTD 

patients.98 A British study found that one-third of the C9ORF72-related FTD cases 

presented with psychosis, compared to only 4% in the non-C9ORF72 cases.99 Similarly, a 

very high psychosis rate was found in a San Francisco cohort.100 Therefore, the presence of 

psychiatric symptoms in the context of FTD-ALS should prompt consideration of a 

C9ORF72 repeat expansion.101 nfvPPA is the second most common FTD variant associated 

with C9ORF72 expansions, while svPPA has rarely been associated with C9ORF72 

expansions.97,99

The clinical phenotype of C9ORF72-related FTD appears to be somewhat similar to FTD 

caused by mutations in GRN and MAPT, but there are subtle differences across these genes. 

One study showed that the C9ORF72- related FTD cases showed an earlier age of onset than 

GRN mutation carriers, whilst survival was similar..102 In our experience, C90RF72 tends to 

cause less frontotemporal atrophy than do the other genes, but often show subtle parieto-

occipital, thalamic and cerebellar atrophy. All ALS regional phenotypes may be associated 

with C9ORF72 repeat expansions, but the most frequent phenotype (over 40%) appears to 

be bulbar-onset ALS,83 higher than the expected frequency of 19–30%.103 Millecamps et al. 

compared phenotypic differences between C9ORF72-related ALS and other ALS-causing 

genes, and found that C9ORF72-related cases had a significantly higher incidence of bulbar 

onset compared to ALS cases with mutations in SOD1, TARDBP, FUS and other familial 

ALS cases.104 Other phenotypes such as progressive muscular atrophy (PMA) and primary 

lateral sclerosis (PLS) form part of the MND spectrum of disease; however, screening for 

the C9ORF72 expansion found the expanded repeats at relatively low frequencies in PMA 

(1.6%) and PLS (0.9%) patients.105 ALS cases with the repeat expansion show a higher 

incidence of dementia or a family history of dementia than do cases without an 

expansion.83,86,95 Disease duration of C9ORF72-related ALS is significantly shorter than in 

patients with mutations in SOD1, TARDBP or other familial ALS cases, but does not differ 

from FUS mutation cases. There is an older age of onset in C9ORF72-related ALS 

compared to SOD1 and FUS-related ALS, but not when compared with TARDBP and other 

familial ALS cases.104

Finally, many C9ORF72 gene carriers have a long prodrome of psychiatric disease with 

symptoms that range from childishness, borderline personality, antisocial personality 

disorder and bipolar illness.106 How the frontal, ventral striatal, thalamic and cerebellar 

changes in gene carriers contribute to the psychiatric symptomatology remains unknown. 

Also, C9FTLD/ALS phenotypes show higher association with other neurological motor and 

phenotypes. Motor associations include parkinsonism that is distinctive from idiopathic 

Parkinson’s disease (PD).78,83,107,108 Despite a slight over-representation of parkinsonism in 
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C9ORF72-related ALS cases, studies have failed to detect C9ORF72 repeat expansions in 

patients with a pure Parkinson’s disease clinical phenotype,109,110 suggesting a pathogenesis 

distinct from classical idiopathic Parkinson’s disease characterized by alpha-

synucleinopathy. Interestingly, neurodegeneration has been seen in the substantia nigra of 

C9ORF72-related ALS cases, providing a clue to this motor association.107

Neuropathology of C9ORF72-related diseases—Neuropathological studies in 

C9ORF72 repeat expansions are characterized by TDP-43 pathology in various 

neuroanatomical regions. Pathological TDP-43 proteins are ubiquinated, 

hyperphosphorylated and N-terminal truncated23,111, and TDP-43 pathology in C9ORF72 

expansion cases have been shown to consist of compact and granular neuronal cytoplasmic 

inclusions (NCI), dystrophic neurites (DN), glial cytoplasmic inclusions (GCI) and variable 

presence of neuronal intranuclear inclusions (NII). TDP-43 pathology is found consistently 

in the frontal and temporal cortices (in carriers with clinical FTLD and FTD/ALS 

syndromes), pyramidal motor system (carriers with clinical ALS), and frequently in other 

limbic (hippocampus and amygdala), brainstem (midbrain/substantia nigra) and subcortical 

structures (striatum and thalamus)112,113. In many cases (FTD/ALS or clinical ALS more 

than clinical FTD), some TDP-43 immunoreactive neuronal and glial inclusions were 

present in the ventral grey matter of the spinal cord and/or brainstem motor nuclei, with the 

morphology of NCIs in lower motor neurons consisting of bundles of filaments, compact 

round bodies and diffuse cytoplasmic granules113.

C9ORF72 expansion cases with clinical ALS show pathology indistinguishable from typical 

sporadic ALS, with predominant degeneration and TDP- 43-positive NCI and pre-inclusions 

of variable morphology in upper motor neurons and lower brainstem and spinal cord motor 

neurons, with the extramotor cortex, hippocampus and subcortical regions usually mildly or 

not affected at all93. Clinical phenotype appears to correlate strongly with the degree of 

TDP-43 pathology and degenerative changes in the respective CNS regions114. The pattern 

of neocortical TDP-43 accumulation in the majority of C9ORF72 cases is consistent with 

FTLD-TDP type B pathology115(according to the 2011 Mackenzie classification)54 with 

compact NCI in all cortical layers and relatively few DN and NII113,114. Concomitant Type 

A TDP-43 pathology (usually associated with clinical bvFTD or nfvPPA) has also been 

found more frequently than expected in C9 expansion cases99,112–114, with the suggestion 

that as type A TDP-43 pathology is also seen in other neurodegenerative diseases such as 

AD, additional type A pathology in C9ORF72 cases may develop in genetically susceptible 

patients with advancing age113.

Apart from the consistent presence of TDP-43, another highly characteristic pathological 

feature of patients with C9ORF72 expansions is the significant presence of NCI in the 

cerebellar granule cell layer, hippocampal pyramidal neurons and neocortex that stain 

positive for proteins of the ubiquitin proteasome system (UPS) including ubiquitin, 

ubiquilins and p62, but are negative for TDP-4393,112,113,116. The presence of ubiquitin 

immunoreactive lesions is interesting, as similar pathology was originally described in 

patients with UBQLN2 mutations that result in X-linked ALS and ALS/FTD117. This UPS-

positive, TDP-43-negative pathology is the result of unconventional, repeat-associated non-

ATG initiated (RAN) translation of sense and antisense transcripts118,119 with the 
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abnormally expanded repeat in C9ORF72. Translation of the transcripts with the expanded 

repeat in the six alternate reading frames is predicted to generate five different polypeptides, 

each composed of dipeptide repeats (DPR): glycine-alanine (GA), glycine-proline (GP), 

glycine-arginine (GR), alanine- proline (AP) and arginine-proline (RP), that have been 

shown to be a major component of p62 inclusions in C9ORF72-related FTLD120. The 

potential pathomechanism of DPRs in C9ORF72-related disease is discussed further below.

Neuropathology of ALS and FTD-ALS—Delineation of motor neuron pathology is 

critical for those patients in whom there is no ante-mortem evidence of ALS, but features of 

FTLD are found concurrently with one or more aspects of the neuropathology of ALS. 

Neuropathological hallmarks of ALS include intracellular inclusions like bunina bodies 

(small eosinophilic neuronal inclusion arranged in beaded chains), ubiquitinated inclusions, 

and hyaline conglomerates.121,122 Cases of ALS with FTLD show signs of spongiform 

degeneration in frontal and precentral gyrus (cortical layers II and III) and diffuse 

subcortical gliosis.122,123 Neuronal loss in the anterior cingulate gyrus as well as in the 

substantia nigra and amygdala are also observed.122 Pathologically, sporadic ALS, FTD-

ALS and familial ALS (with or without SOD-1 mutation) have been characterized by 

ubiquitin-positive inclusions; with all groups also showing TDP-43 positive inclusions, with 

the exception of familial ALS with SOD-1 mutations.124 These data suggest a pathological 

overlap between ALS and FTD, specifically ALS without SOD-1 mutations, due to presence 

of both ubiquitin and TDP-43 positive inclusions in both types of disorders. Familial ALS 

with SOD-1 mutations are ubiquitin-positive but TDP-43 negative,124 implying that 

neurodegeneration in SOD-1 mutations may exclude TDP-43 accumulation. Additionally, 

larger numbers of sALS and fALS need to be assessed for FUS pathology, as FUS-positive 

immunoreactivity has been reported in LMNs in familial ALS,57 while the majority of 

sporadic ALS cases seem to be related to TDP-43 pathology.125

Potential pathogenic mechanisms of C9ORF72-related disease—The rapid 

development over the last three years in research into the pathogenicity of C9-related disease 

has been accelerated by knowledge derived through the study of other repeat expansion 

disorders. Likely mechanisms for toxicity include large repeat-containing RNAs, which 

form nuclear RNA foci. Sense and antisense transcripts of the expanded repeat aberrantly 

interact with various RNA-binding proteins, inhibiting them from binding to their actual 

targets, resulting in the formation of discrete RNA foci. These foci have the capacity to 

sequester select RNA-binding proteins, thereby impairing their function and probably 

leading to widespread changes in protein expression. Another potential mechanism is the 

loss of C9ORF72 function due to decreased C9ORF72 mRNA expression as a result of 

abnormal DNA and histone methylation. While the functions of C9ORF72 are unknown, 

there is increasing evidence that it binds to lysosomal membranes.

A third potential mechanism includes repeat-associated non-ATG (RAN) translation of the 

bidirectional expanded repeat GGGGCC and CCCCGG transcripts as described above. The 

abnormal production of dipeptide repeat proteins (DPRs) collectively referred to as C9RAN 

proteins, form neuronal inclusions throughout the central nervous system of C9FTLD/ALS 

patients, initially thought to be contributing to neurodegeneration. Of note, all C9RAN 
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proteins, but especially poly(GA), poly(GP) and poly(GR), are among the proteins making 

up many TDP-43 negative, p62-positive inclusions described earlier that are found 

characteristically in the cerebellum and hippocampus in C9ORF72 expansion carriers.120 

Even with the highly consistent pattern of DPR pathology in C9ORF72 cases regardless of 

the clinical phenotype, the apparent lack of association of DPR pathology with degenerative 

changes suggest that DPR proteins may not play a direct role in neurodegeneration in 

C9ORF72 cases, and its pathomechanistic role currently remains unclear114. It has been 

suggested that DPR proteins may be a potentially protective response that has also been seen 

in other neurodegenerative diseases such as Huntington’s disease114.

Molecular genetic disease modifiers in C9ORF72-related disease—Given the 

large clinical variability associated with C9ORF72 repeat expansions it is interesting that 

there appears to be a higher than expected coincidence of repeat expansions found in 

individuals carrying other genetic variants of ALS, i.e. oligogenic inheritance,126 suggesting 

that another ‘hit’ increases disease susceptibility or lowers age at onset. Oligogenic 

inheritance has also been reported in FTD, with the C9ORF72 expansion being identified in 

patients carrying GRN and MAPT mutations.127,128 Overall more than twenty patients have 

been described that harbour mutations in C9ORF72 in combination with changes (rare 

variants or mutations) in other ALS- and/or FTD-associated genes.129 While some of these 

may merely represent benign polymorphisms, it is anticipated that at least some of these 

mutations act as disease modifiers, thereby contributing to the pleiotropy encountered in 

patients with C9ORF72 mutations.

In fact, TMEM106B genotypes were identified as the first genetic factor modifying disease 

presentation in C9ORF72 expansion carriers.130 TMEM106B was first identified in 2010 as 

a risk factor for FTD-TDP in a genome-wide association study of patients with autopsy-

proven FTD-TDP, as well as GRN mutation carriers.131 This association appeared to be 

stronger in the GRN mutation carriers than in the autopsied patients, with the major risk 

allele rs1990622 associated with an earlier age at onset. It was hypothesized that 

TMEM106B affects risk for FTD-TDP by modulating GRN levels.131,132

Two major international multi-site studies published earlier this year (Gallagher et al. and 

van Blitterswijk et al.) looked for similar associations in C9ORF72 carriers, namely with 

regards to disease risk, age at onset and age at death. 130,133 Both studies had seemingly 

conflicting results that can be explained by methodologic differences - Gallagher et al 

calculated the odds ratio (OR) for disease risk for the major allele (T) and found an 

increased disease risk (OR>1) for carriers of the major allele, with a surprising association 

with later age at onset and age at death. In contrast, they reported that the TMEM106B 

genotype did not affect age at onset or death in their FTLD-TDP cases who were negative 

for GRN mutations or C9ORF72 expansions. 133 On the other hand, van Blitterswijk et al 

calculated the OR for the minor allele (G), which appeared to protect C9ORF72 carriers 

from developing FTD (OR<1), but not MND (there was no apparent difference in 

TMEM106B genotype frequencies in ALS C9 carriers compared to controls).130 An allelic 

model was used by Gallagher et al for analysis of disease risk, but van Blitterswijk et al used 

a recessive model respective to the minor allele as it proved the best fit. Nonetheless, both 
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found that TMEM106B single nucleotide polymorphisms were strongly associated with 

disease risk.

Using a dominant genotypic model in the survival analysis, Gallagher et al. found that the 

minor allele homozygotes present with a significantly lower age at onset and age at death 

which the authors suggest may be due to a complex interplay between the TMEM106B 

genotype, C9ORF72 expansion, and manifestation as either ALS or FTD. Van Blitterswijk 

et al. grouped all C9ORF72 expansion carriers including ALS cases for their age at onset 

analysis and had similar findings which did not reach statistical significance. Essentially, the 

combined results of about 400 C9ORF72 carriers from both groups indicate that 

TMEM106B is a major disease modifier for FTD, independently of whether the disease is 

caused by pathogenic mutations in GRN or C9ORF72. Whether it affects disease risk in the 

C9ORF72 expansion carriers by affecting C9ORF72 levels or by other mechanisms remains 

to be determined.

The role of the repeat length in determining disease onset and presentation has also been 

studied. Van Blitterswijk and colleagues determined the size of the hexanucleotide 

expansion in different parts of the CNS in frozen autopsy specimens from patients with 

MND, FTD or both.134 Importantly, they noted that the expansion was polyclonal within the 

CNS, with variable expansion sizes in different regions. Independent of the clinical 

phenotypes, the repeat lengths were larger in the frontal lobes and spinal cord than in the 

cerebellum. They identified a positive correlation between age at onset and repeat length in 

the frontal cortex in FTD patients. Assessment of cerebellum samples from the overall 

cohort found that longer repeat size appeared to present a survival disadvantage, whereas 

expansion size in other parts of the CNS or blood leukocytes did not appear to correlate with 

prognosis.134 Importantly, the repeat length did not influence the clinical disease 

presentation.

Other genes associated with ALS

TARDBP mutations, Chr1p36.22—Since the discovery of mutations in the TAR DNA 

binding protein 43 (TARDBP or TDP-43) gene on chromosome 1 in 2008, over 3,000 ALS 

patients have been screened for mutations in this gene. TARDBP mutations have a 

prevalence of 4–6% in familial ALS and 1% in sporadic ALS, with differences in prevalence 

evident geographically.61 Screening of family members of sporadic ALS patients reveals 

healthy TARDBP mutation carriers, implying that the penetrance is incomplete, with some 

carriers remaining neurologically intact at an advanced age.126,135–137 Cognitive deficits are 

rarely found in ALS patients with TARDBP mutations. To date, mutations have been found 

in two French fALS patients with dementia,138 one Norwegian fALS patient with FTD,139 

one patient with FTD, PSP, and chorea140 and only one patient with isolated FTD.62 These 

cases demonstrate that TARDBP mutations can cause sporadic and familial ALS, but rarely 

FTD-ALS or isolated FTD.

FUS mutations, Chr16p11.2—So far, 58 mutations of the FUS gene have been 

identified, with a mutation frequency of approximately 4% in fALS and <1% in sALS 

patients. Most of the mutations are missense, but splicing, in-frame insertions and deletions 
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as well as two nonsense mutations have been identified in ALS patients. FUS mutations 

have been associated with a juvenile onset of the disease. Cognitive impairment is rarely 

seen with ALS caused by FUS mutations: only three cases had FTD features141 and two 

other Parkinsonism and dementia.141,142 Van Langenhove et al performed mutational 

analysis in 122 patients with FTD and 15 patients with FTD-ALS, and identified one novel 

missense mutation in one FTD patient; but the biologic relevance of this mutation remains 

uncertain.143

Other genes associated with FTD

VCP mutations, Chr9p13.3—Valosin-containing protein (VCP), is a member of the 

AAA-ATPase gene super family (ATPase associated with diverse cellular activities), with 

multiple cellular functions, including acting as a molecular chaperone in endoplasmic 

reticulum-associated protein degradation. VCP also participates in the stress response, in 

programmed cell death, and it interacts with the ubiquitin-proteasome system. VCP is 

located on chromosome 9p13.3, and mutations result in an autosomal dominant disorder 

associated with FTD called inclusion body myopathy with Paget’s disease of bone and FTD 

(IBMPFD) Pathologically, mutations in this gene are associated with FTLD-U (ubiquitin 

positive, tau-negative) and are characterized by numerous neuronal intranuclear inclusions 

and relatively few neuronal cytoplasmic inclusions;52 the ubiquinated inclusions are not 

composed of the mutated VCP protein, but rather TDP-43. The neuropathology is now 

classified as TDP-43 type D.144 VCP-linked ALS is characterized by P62-, ubiquitin-, and 

TDP-43-positive inclusions.145 Pathologically, affected muscles display hallmarks of IBM - 

atrophic, angulated muscle fibres with frequent rimmed vacuoles, and TDP-43- and/or VCP-

immunoreactive sarcoplasmic inclusions in the absence of inflammation. Paget’s disease of 

bone typically shows characteristic radiologic findings or an elevation in serum alkaline 

phosphatase level and is confirmed by typical findings in bone biopsy.144,146 Diagnosis of 

IBMPFD should be considered if an individual has two or more of the following features: 

progressive myopathy, Paget’s disease of bone, and FTD. Heterogeneity in clinical 

phenotypes may manifest as IBM in about 90% of patients, Paget’s in 50%, and FTD in 

about one-third of cases.147

Rarely, VCP mutations are associated with sporadic amyotrophic lateral sclerosis (ALS), 

familial ALS, or familial FTD-ALS.148 A possible link between VCP and motor neuron 

disease was first reported by Johnson and colleagues in 2010 when they identified a 

p.R191Q amino acid change in VCP in an Italian family with autosomal dominant ALS. 

Subsequently, they screened a cohort of 210 fALS and 78 autopsy-proven ALS cases for 

VCP, and identified 4 additional mutations; suggesting that VCP mutations may account for 

1–2% of fALS cases, and providing evidence directly implicating defects in the 

ubiquination/protein degradation pathway in motor neuron disease.149 Further screening of 

ALS and ALS-FTD cases by Koppers and colleagues confirmed that VCP mutations are a 

rare cause of fALS, with their role in sALS, if present, appearing to be very limited.145 

Similar conclusions were reached when analyses in British, Australian and Chinese fALS 

and sALS cohorts did not detect any known VCP mutations.150–152
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CHMP2B mutations/FTD-3, Chr3p11.2—Mutations in the charged multivesicular body 

protein 2B (CHMP2B) gene, a rare cause of ALS, have only been described to cause FTD in 

individuals from Danish and Belgian ancestry. A large Danish family with autosomal 

dominant FTD caused by mutation in CHMP2B on chromosome 3 has been followed closely 

by a multinational and multidisciplinary research group for more than two decades. Signs 

and symptoms typical of bvFTD are the most common feature associated with this mutation. 

Late in the disease course, a motor syndrome typically develops, with features of 

parkinsonism, dystonia, myoclonus and pyramidal signs, leading to a bedridden state. None 

of the patients up to that point, however, had clinical signs of motor neuron impairment, but 

none had EMG testing. While clinically demented family members have shown severe and 

generalized cognitive impairment except for preserved episodic memory, perhaps in keeping 

with known sparing of the hippocampus in the disease, the study of preclinical symptoms 

indicate predominantly frontal lobe involvement in subjects with the mutation, years before 

overt dementia symptoms manifest.153 Neuropathologically, ubiquitin- and p62-positive 

neuronal cytoplasmic inclusions (NCIs) are observed in the dentate granule cell layer of the 

hippocampus and to a lesser extent in the frontal cortex. These inclusions are negative for 

both TDP-43 and FUS, leading to the classification of FTD-3 as FTLD-UPS.60

Five CHMP2B missense mutations in eight individuals have been identified in a range of 

FTD-MND spectrum disorders.154 Cox et al. screened 433 MND patients (of which 40 were 

of the primary muscular atrophy (PMA) subtype in the North of England for CHMP2B 

mutations and identified three distinct CHMP2B missense mutations in four patients. 

Interestingly, all four patients suffered from PMA.155 In essence, the early clinical picture of 

FTD caused by CHMP2B mutations is similar to bvFTD, while neuroimaging and 

neuropathological findings are somewhat distinct. Mutations in the CHMP2B gene are also 

known to be associated with MND, primarily the PMA subtype. More work, however, is 

required to fully assess the role and importance of CHMP2B missense mutations in FTD and 

MND.

Other genes in the ALS-FTD spectrum

SQSTM1 mutations, Chr5q35—The sequestosome 1 (SQSTM1) gene is located on 5q35 

and encodes p62, a multifunctional protein that interacts with misfolded and ubiquitinated 

proteins and acts as a cargo receptor for the degradation of ubiquitinated proteins through 

autophagic or proteasomal pathways. Mutations in SQSTM1 result in Paget disease of 

bone.156 There is evidence of p62 involvement in neurodegeneration, with SQSTM1 

knockout mice developing memory impairment associated with the accumulation of 

hyperphosphorylated tau and neurofibrillary tangles.157 Increased p62 immunoreactivity has 

also been found in several neurodegenerative disorders, such as AD, dementia with Lewy 

bodies, FTLD, Parkinson disease (PD), and Huntington disease (HD).158 Similarly, C9-

related FTD or ALS cases have been shown to contain abundant neuronal p62-positive 

inclusions.112 SQSTM1 mutations have been identified in patients with familial (<2%) and 

sporadic ALS (4%).159 This was further confirmed by Rubino et al. in an Italian cohort that 

found this mutation in patients with either FTD or ALS but not in healthy controls.160 A 

French cohort identified 4 heterozygous missense mutations in 4 unrelated families with 

FTD, with 1 family showing clinical symptoms of FTD-ALS.161 Although the frequency of 
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the mutations in their series of familial cases was low (3.8%), it was close to the frequency 

found by Rubino and colleagues (1.8%). Both studies support a pathogenic role for the p62 

protein in FTD disorders.

UBQLN2 mutations, ChrXp11.21—Mutations UBQLN2 which encodes ubiquilin-2, a 

member of the ubiquitin protein family, have been shown to cause dominant X-linked ALS 

and ALS-dementia,117 and also rarely sporadic ALS.162 Ubiquilins mediate proteasome-

dependent protein degradation, and ubiquilin-2 mutations may disrupt proper clearance of 

misfolded or damaged proteins, leading to impaired cellular functioning, especially in motor 

neurons that are vulnerable to protein accumulation. UQBLN2 mutations affect proline 

residues in a unique 12-unit PXX tandem-repeat domain within the UBQLN2 protein, 

although mutations outside of this region occur and are associated with more FTD-

predominant phenotypes.163,164 UBQLN2-positive inclusions have also been observed in 

non-UBQLN2-linked ALS, accumulating in P62-positive aggregates with variable TDP-43 

co-localization117 and also in the setting of FUS mutations.165 Staining for UBQLN2 in 

C9ORF72-linked disease reveals dystrophic neuritis with focal swellings, dot-like stipples, 

and irregular aggregates in the molecular layer and CA1-CA4 region of the hippocampus; 

neuronal inclusions in the granular layer of the cerebellum; and dystrophic neurites and 

aggregates in the neocortex; which is absent in cases without the expansion.166 These 

findings hint at common downstream pathways, possibly involving the ubiquitin proteasome 

system, in UBQLN2- and C9ORF72-linked ALS.

Age at disease onset varies widely, from the late teens to the seventh decade, possibly earlier 

in males than females, with average disease duration of less than 4 years. Symptoms of FTD 

may precede motor manifestations. Data on the frequency of UBQLN2 in different 

populations and disease phenotypes is still very limited,162 with almost no reports of the 

mutation causing pure dementia. Based on a screening of 206 ALS and FTD patients, 

however, Synofzik and colleagues reported 3 novel UBQLN2 mutations, accounting for 

1.2% (2/161) of ALS and 2.2% (1/45) of FTD patients, including a patient with pure FTD. 

All mutations were located in highly conserved domains outside the PXX repeat region and 

not observed in 1450 ethnically matched control X chromosomes. Of note, all affected 

patients presented with apparently sporadic disease.164 Essentially, UBQLN2 mutations are 

rare in Central European ALS and FTD patients, but may contribute significantly to patients 

with seemingly sporadic disease.

FTD-ALS linked to Chromosome 16p12.1–12.2

While C9ORF72 mutations account for a substantial proportion of familial FTD-ALS cases, 

several C9ORF72-negative families remain. Dobson-Stone et al167 identified a large 

European-Australian family with autosomal dominant inheritance of dementia and/or ALS, 

with affected members developing either ALS or dementia; some of those with dementia 

also had ALS and/or extrapyramidal features. Neuropathology was most consistent with 

FTD with type B TDP pathology, but with additional phosphorylated tau pathology 

consistent with corticobasal degeneration. DNA samples were negative for mutations in all 

known dementia and ALS genes, including C9ORF72 and FUS. Genome-wide linkage 

analysis provided highly suggestive evidence of a locus on chromosome 16p12.1–16q12.2, 
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responsible for an unusual cluster of neurodegenerative phenotypes. This region overlaps 

with a separate locus on 16q12.1–q12.2 reported in an independent ALS family, indicating 

that this region may harbour a second major locus for FTD-ALS.167

Shared cellular pathways between ALS and FTDs—The ALS- and FTD-linked 

genes discussed earlier can be separated into 2 functional groups: those associated with 

RNA processing, and those involved in protein degradation pathways. There is strong 

evidence for the involvement of TDP-43 and FUS proteins in RNA-related pathways: both 

are RNA processing proteins with roles in multiple steps of RNA regulation including RNA 

transcription, splicing, transport, translation and microRNA production.168 In the neurons of 

FTD/ALS patients with either TDP-43 or FUS pathology, the defining protein relocates 

from the nucleus to the cytoplasm and forms aggregates,169,170 which may cause 

cytotoxicity via 3 possible mechanisms: loss of normal nuclear function leading to 

dysregulation of nuclear RNA processing; gain of extraneous cytoplasmic RNA binding 

activity; or aggregation-dependent toxicity.171 The major difference between the two 

proteins appears to be that of loss of nuclear relocalization as a primary feature of FUS 

mutations, in contrast to increased aggregation propensity that may be the major feature of 

TARDBP mutations.

The cell has two major pathways for protein recycling: the ubiquitin proteasome system, 

where proteins are targeted for destruction within the proteasome by the addition of poly-

ubiquitin residues, and macro-autophagy, where proteins and organelles are sequestered 

within autophagosomes which fuse with lysosomes leading to the degradation of vesicle 

cargo. The possible involvement of the ubiquitin proteasome system in neurodegeneration is 

highlighted by the ubiquitination of aggregates in multiple disorders, and through the 

presence of mutations in UBQLN2 and VCP in ALS and FTD. Four genes (UBQLN2, 

SQSTM1, OPTN and VCP) linked to ALS and/or FTD have strong links to protein 

degradation pathways, and TDP-43 aggregations appear to be degraded through both 

autophagy and the ubiquitin proteasome system, meaning both pathways could be of 

relevance to ALS/FTD pathogenesis.172

It is also possible that both pathways converge in the pathogenesis of FTD-ALS. One 

possibility is that impairment of protein degradation pathways lead to protein aggregation, 

which may result in abnormal RNA-binding protein (TDP-43 or FUS) function. Of note, the 

pathology in patients carrying VCP, OPTN and UBQLN2 mutations is dominated by 

abnormal cytoplasmic levels and aggregations of TDP-43;117,144,173 this hypothesis, 

however, has not been shown in cases with FUS. It has been demonstrated that VCP and 

TDP-43 interact genetically and that VCP mutations lead to redistribution of TDP-43 to the 

cytoplasm in vitro and in vivo, replicating the major pathology observed in IBMPFD and 

other TDP-43 proteinopathies. Once cytoplasmically localized, TDP-43 and VCP appear to 

interact and enhance neurotoxicity and aggregation.174 Similarly, both TDP-43 and FUS 

have been shown to be intrinsically aggregation prone, with an initial seeding reaction 

important for wild-type and mutant TDP-43 aggregation.175,176 A further mechanism in 

which defects in protein degradation could lead to accumulation of TDP-43/FUS is through 

stress granules, through either the ubiquitin proteasome system or through autophagy 

inhibition, leading to the sequestration of RNA binding proteins and perhaps formation of 
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TDP-43/FUS ubiquitinated aggregates.177,178 Alternatively, it is possible that a primary 

alteration in RNA processing leads to a secondary impairment in protein degradation, with 

depletion of TDP-43 being shown to lead to an inhibition of autophagy.179 As such, loss of 

TDP-43 function can be linked to the ubiquitin-specific autophagy pathways that have been 

evident in SQSTM1 VCP, OPTN and UBQLN2 mutations. Impaired function of mutant 

TDP-43 and FUS could impair either ubiquitin-specific or general protein clearance 

pathways in the cell through dysregulation of RNA processing.179

Chronic traumatic encephalopathy (CTE), tau, TDP-43 and motor neuron 

involvement

For many decades an association between trauma and dementia was noted in boxers. A very 

slowly progressive dementing condition, with behavioral changes, amnesia and Parkinsonian 

features, named “dementia-pugilistica”, was eloquently described by Martland in the 

1920s.180 More recently, progressive cognitive decline, depression, anxiety, suicidality, 

disinhibition and memory disturbance was described in a subgroup of retired National 

Football League players. Labelled “chronic traumatic encephalopathy”, this disorder is 

characterized by the massive aggregation of tau in the amygdala, orbital-frontal and dorsal-

lateral frontal cortex, with the presence of these aggregates across all six cortical layers.181 

Additionally, many patients exhibit the aggregation of other misfolded proteins, particularly 

TDP-43. Other individuals show features of Parkinson’s disease with alpha-synuclein 

aggregates, and still others show Alzheimer’s disease changes with plaques and tangles.182 

One possible confounder is that head trauma may be a risk factor for multiple degenerative 

disorders including FTD, AD, CTE and PD.182 It has also been suggested that the increased 

prevalence of late-life cognitive impairment in retired NFL players may reflect diminished 

cerebral reserve.183 While the risk factors, clinical features, and neuropathological substrates 

of CTE are still unknown, this entity is an important and not rare risk associated with 

repeated head trauma. It has been shown that a significant number of retired NFL players 

fulfil criteria for mild cognitive impairment,183 but larger, controlled studies are needed to 

confirm exact prevalence. Finally, there is a link between FTD-like syndromes and ALS in 

the NFL players. The precise clinical features and risk factors for CTE-related ALS are 

unknown. McKee noted that the NFL players with ALS disseminated TDP-43 from cortex 

to brainstem and spinal cortex.184 Given the overwhelming clinic-pathological links 

involving tau and TDP-43, CTE offers a unique opportunity to explore the relationship 

between FTD, ALS and traumatic brain injury.

Further potential links between dementia and neuromuscular disease

ATXN2 (SCA2), Chr12q24.12

Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant cerebellar ataxia with often 

prominent extra-cerebellar features such as opthalmoplegia, pyramidal and extrapyramidal 

signs, neuropathy and cognitive impairment in some patients.185 It is a polyglutamine 

disease caused by CAG repeat expansions in ATXN2 exon 1.186,187 A few long-standing 

SCA cases have been described to develop features of MND and a subsequent rapidly 

progressive course.188 The identification of the SCA2 gene product ataxin-2 as a modifier of 
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TDP-43 toxicity in yeast and Drosophila189 has led to genetic studies investigating the role 

of ATXN2 mutations in ALS, with several studies showing intermediate-range CAG repeat 

expansions (27–33 repeats) to be more frequent in ALS patients than in controls.189–192 The 

repeat expansions associated with ALS are interrupted CAA-CAG sequences as opposed to 

the pure CAG repeat expansions typically associated with SCA2.193 No expanded repeats 

have been identified to date in patients with FTLD.194 Cases that have been described 

include a single family carrying the mutation with both typical ALS and typical SCA2,195 

and another family with fully pathological ATXN2 CAG repeat expansion and two different 

phenotypes of classical SCA2 and FTLD-ALS without ataxia.196 Neuropathology of the 

FTD-ALS case in the second family revealed prominent polyglutamine and p62-positive 

intranuclear neuronal inclusions in the pontine nuclei with pronounced neocortical and 

spinal TDP-43 pathology.

Most recently, Lattante and colleagues screened a large French cohort of ALS, FTD, FTD-

ALS and PSP patients for ATXN2 CAG repeat lengths, including over 300 patients with 

C9ORF72 expansion carriers, and found a significant association with intermediate repeat 

size (>29 repeats) in patients with fALS, sALS and familial FTD-ALS.197 Interestingly, 

23% of their intermediate-repeat ATXN2 carriers had co-occurrence of pathogenic C9ORF72 

expansions, all in the FTD-ALS and fALS subgroups, suggesting that ATXN2 polyQ 

expansions may act as a strong modifier of the FTD phenotype in the presence of a 

C9ORF72 expansion, leading to an FTD-ALS clinical phenotype. In the cohort of C9ORF72 

carriers, 3% also carried an intermediate ATXN2 repeat length, whereas PSP and FTD 

patients had ATXN2 repeat lengths similar to those of controls. Similarly, a multicentre study 

on C9ORF72 carriers led by van Blitterswijk suggested that intermediate ATXN2 expansions 

possibly act as disease modifiers in C9ORF72 expansion carriers, the effect being most 

profound in probands with MND or FTD/MND (2.1% vs 0% in controls, p=0.013). ATXN2 

expansion frequency was similar in probands with FTD and controls.198

In conclusion, ATXN2 repeat expansions can cause either SCA or ALS, but also a 

neuropathological overlap syndrome of SCA2 and FTLD/MND presenting clinically as pure 

FTLD-ALS without ataxia. ATXN2 intermediate repeat length has been shown to be a strong 

risk factor for ALS and FTD-ALS,197 as well as being a disease modifier in C9ORF72 

repeat expansions with intermediate repeat length rendering C9ORF72 carriers more 

susceptible to development of MND.198 More studies, however, are needed to validate this 

growing body of evidence.

Polyglucosan body disease (Adult-onset), GBE1 Chr3p12.3

Adult polyglucosan body disease (APBD) is a rare neurogenetic disorder that is 

characterized by onset >40 years with neuromuscular signs of polyneuropathy, myelopathy, 

with more than half displaying cognitive involvement that may be cortical or subcortical in 

nature. MRI reveals cortical atrophy, and white matter changes that are bilateral, 

periventricular and symmetric. Diffuse atrophy is also seen universally in the medulla and 

spinal cord. EMG shows evidence of motor and sensory axonal loss,199,200 with symptoms 

progressing over one to two decades leading to functional and cognitive decline. 

Neuropathologically there is intracellular accumulation of polyglucosan bodies in the central 
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and peripheral nervous systems and in other tissues, leading to demyelination and 

gliosis.201–203 Most patients with APBD have an allelic form of glycogen storage disease 

type IV (GSD-IV) caused by glycogen branching enzyme (GBE) deficiency.204 Diagnosis is 

confirmed by a significant reduction of GBE enzymatic activity in peripheral blood 

leukocytes or cultured skin fibroblasts. The majority of patients are of Ashkenazi Jewish 

descent,205 and the disease is likely to be underdiagnosed or misdiagnosed.206,207 Farmer et 

al. reported an individual with clinical bvFTD and no clinical evidence of neuromuscular 

disease, in who autopsy revealed two distinct neuropathologic diagnoses of APBD and 

FTLD-TDP. This was the first reported case of both diseases coexisting within a single 

individual.208 Bit-Ivan and colleagues are also in the process of reporting a case of APBD 

with GBE1 haploinsufficiency and concomitant FTLD.209 It remains unclear if these 

findings are coincidental in these patients, or if pathogenic pathways intersect to promote 

these coexisting pathologies.

Hexosaminidase A GM2 gangliosidosis (late-onset Tay-Sachs disease) Chr15q23

Late-onset Tay-Sachs (LOTS) disease is an autosomal recessive, progressive lysosomal 

storage disorder caused by a partial deficiency of beta-hexosaminidase A (HEXA) activity. 

Deficient levels of HEXA result in the intracellular accumulation of GM2-ganglioside, 

resulting in toxicity to nerve cells. Clinical manifestations primarily involve the CNS and 

lower motor neurons, and include ataxia, weakness, spasticity, bulbar symptoms, dystonia, 

seizures, and cognitive decline.210 It is prevalent among Ashkenazi Jews, but rare cases have 

been reported among non-Jewish people, often in association with private or unique 

alleles.211 In contrast to the classic infantile form of TSD, which usually leads to death 

between 3 and 5 years of life, patients with LOTS have a more protracted clinical course. 

The adult-onset form manifests in late childhood or teens (and in other cases much later), 

with signs of cerebellar and anterior horn cell involvement that may be evident early on. Of 

note, some patients have prominent neuropsychiatric problems such as bipolar disorder and 

depression.212 Psychosis has been reported in 30% to 50% of LOTS and many are 

misdiagnosed with schizophrenia. Mood disorders are present in more than 25% and 

cognitive impairment in more than 20%.213 Neuropsychological assessment has found 

evidence of impairment in executive function and memory without clinical evidence of 

dementia.214 While pathology is separate entirely from the ALS-FTD spectrum, a clinical 

presentation of motor neuron involvement with prominent psychosis and cognitive 

impairment should prompt a consideration of LOTS, particularly in patients of Ashkenazi 

Jewish descent.

Conclusion and future directions

Both FTD and ALS are etiologically complex diseases with genetic and presumably 

environmental factors contributing to their onset. Both share clinical, genetic, 

neuropathological features and neurodegenerative pathways, suggesting that they may be 

part of a common disease spectrum. The recent, rapid advances made in our understanding 

of C9ORF72-related disease, especially with the theory that repeat-containing RNA is 

crucial to disease pathogenesis, allows the development of biomarkers to aid in 

identification of presymptomatic persons at-risk, aid in accurate diagnosis and disease 
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monitoring especially in the context of clinical trials; as well as the development of potential 

therapeutic strategies for an otherwise devastating familial disease. Additionally, the 

increasingly recognized entity of CTE has added to the growing body of evidence that 

environmental factors are at play as much as inherited ones in the pathogenesis of FTD-ALS 

syndromes. It is also of particular interest that TDP-43 and p-62 pathology have been 

discovered in other inherited conditions such as SCA2, with FTD-ALS spectrum diseases 

reported in conjunction with inherited metabolic conditions such as adult polyglucosan 

disease and late-onset Tay-Sachs disease. Whether these associations are merely 

coincidences remain to be determined. From a larger perspective, the frontotemporal 

dementias have proven themselves to not be a bridge exclusively to ALS, but rather to a 

widening spectrum and variety of neuromuscular diseases, most of which we have attempted 

to summarise in this review.
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