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Lexical Access Using a Neural Network

Alan H. Kawamoto and James A. Anderson
Department of Psychology
Brown University
Providence, RI 02906

Introduction

To understand language, one must first be able to access items
in an internal lexicon and retrieve the semantic properties of the
token specified graphemically or phonemically. In recent years, a
number of different models of this process have been proposed.
These include Morton’s logogen model (Morton, 1982), Marslen-
Wilson and Tyler’s interactive model (Marslen-Wilson and Tyler,
1978) and the McClelland and Rumelhart’s interactive activation
model (McClelland and Rumelhart, 1981).

One aspect of lexical retrieval that has received a great deal of
attention recently is the problem of lexical disambiguation. Despite
the fact that almost every common word is a homograph or
homophone, we almost always access the appropriate one.
Although syntactic, semantic, and pragmatic cues constrain the
choice to the appropriate one, all meanings seem to be activated
initially. A model of lexical memory must account for these
properties. With the interest in natural language parsing by
computers, a number of AI researchers have also pursued the
problem of lexical disambiguation. Recent work by Hirst (1983)
describes one recent approach which considers psychological data in
the implementation and provides a review of recent Al attempts to
resolve this problem.

204



The-Brain-State-in-a-Box

Neural network: The model presented here is part of a
continuing effort of Anderson and his colleagues (for recent reviews,
see Anderson et al.,, 1977; Anderson, 1983) to simulate aspects of
memory and categorization using a network of neuron-like elements.
The use of a large number of interacting elements functioning
simultaneously reflects the large degree of parallelism found in the
nervous system. This overcomes the inherent slowness of the
individual components and the noisy operating environment.
Although we do not make any claims regarding these elements as
realistic manifestations of neurons, we do believe that the major
constraints imposed by the nervous system have been taken into
account. We assume that (1) nervous system activity can be
represented as the simultaneous activity of a group of neurons, (2)
activities of single neurons are coded by their firing frequency
(above and below steady state levels) and bounded by a maximum
and minimum level, (3) memory is distributed rather than localized,
with each neuron participating in each memory trace, and (4)
synapses associate activity in one element with another by
incrementing connection weights by a proportion of the product of
values dependent on pre- and post-synaptic activity.

In our system, learning results in modification of the synaptic
weights coupling two neurons. The entire set of couplings is given
by the matrix A, where an element a; is the synaptic weight
coupling neuron i to neuron j. Unlike” previous studies where
learning occurred in an unsupervised environment, our current
efforts are directed toward systems which learn with a "teacher."
To begin a learning trial, a stimulus is chosen from the learning set
described in the following section and scaled so none of the elements
are saturated. The resulting activity pattern is presented to the
network and successively iterated by the scheme

x, +1 = BOUND[(A + aDx,]
where a is a decay constant and
BOUND limits the activity.

The activity after tau iterations, x, ,, is compared with the desired
output, X, provided by the "teacher." Rather than simply learning
a proportion of the outer-product of x, , (the product of each neuron
with every other neuron), a proportion of the outer-product of (X -
X4ay) 1S learned. This error-correcting scheme limits the amount of
learning allowed on any given trial and as the current state
approaches the desired state, less learning occurs. In fact, if the
current state is equal to the desired state, no learning occurs.
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Stimulus coding: Although a number of modelling attempts
use non-overlapping stimulus representations, each neuron
contributes to every stimulus representation. In the simulations
below, each lexical entry is 64-dimensional and is formed by
concatenating subvectors compriging its graphemic, phonemic,
syntactic, and semantic (GPYS) fields. Each field is a
16-dimensional Walsh-Hadamard vector and each distinct value of a
given field is represented by a unique Walsh-Hadamard vector. In
these initial attempts, the six words shown in table 1 were learned.
The 4 hex values are a shorthand notation where each value
represents the corresponding Walsh-Hadarmard vector. Thus, as
seen in the table, all nouns have identical values in the third field,
and likewise for verbs. The only other case with identical values in
the same field for more than a single lexical entry is the homograph
wind. To simulate the different frequencies of occurrance in
language, each stimulus is represented a different number of times
in the learning set. Desk is the most frequent, and agaris the least.
Furthermore, for the homograph wind, the noun will be regarded as
the dominant homograph because of its greater frequency relative
to the verb.
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Simulation Results

In our simulations, we present part of a given lexical entry and
allow the output of the network to be fed back until all elements
reach saturation. We take the number of iterations required for all
elements to saturate as a measure of reaction time (RT). In all
cases, the graphemic field is presented with each element in this
field fully saturated. In some cases, activity is also present in the
syntactic or semantic fields.

Another method probes the semantic field and measures the
activity of the current state relative to a number of different
meanings. Because all the meanings are mutually orthogonal in the
stimulus coding scheme used here, the dot product of the activity in
this field with a particular meaning yields a measure of the degree
to which that meaning is activated.

Lexical access: Two of the most important observations
regarding retrieval from the lexicon are the effects of frequency and
hints on RT. Both of these properties can be observed in Table 2.
These results show the number of iterations required for the test
stimulus to be correctly regenerated after 200, 500, 1000, 2000,
and 5000 learning trials, as well as with a "hint."

The frequency effect is manifested in two ways. First, the
greater the frequency, the sooner the word is correctly regenerated.
We see that desk and rent, with relative frequencies of 4 and 3,
respectively, are learned by the first 200 trials, Lurk, with a
relative frequency of 2 is learned by 500 trials, and rant, with a
relative frequency of 1, is not learned until 5000 trials.
Furthermore, until RT reaches some asymptotic level (probably as a
result of asymptotic learning), the greater the frequency of
presentation, the faster the RT.

The second major property of lexical access, the decrease in RT
with contextual cues, has also been simulated. To simulate
contextual cues, the semantic field of the entry (with the magnitude
of each element in the subvector equal to 0.5) is also presented
initially. As seen in the last column of table 2, the presence of
these cues decreased the RT for every word except lurk. In
addition, we have found that as the input becomes more degraded
(reversing the activity of a number of elements in the graphemic
field), the RTs increase.

Lexical ambiguity: In our approach, ambiguous words are
treated in the same fashion as all other words. However, use of the
dot-product measure described above after each successive iteration
allows the time-course of activation of the semantic field to be
revealed. As in the properties of lexical access in general, both
frequency and context affect which meaning of a homograph is
accessed initially. With no context, the more frequent (dominant)
homograph’s meaning is initially accessed. With the appropriate
contextual cue, the less frequent (subordinate) homograph’s
meaning is also accessed. As in the results of Simpson (1981), we
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find that if the appropriate contextual cue is not large enough, the
more dominant homograph's meaning is accessed.

However, recent studies reported by Swinney (1982) indicate
that both meanings are initially activated, independent of context.
As seen in figure la, with no context, both the dominant and
subordinate meanings are activated initially. Even with a
contextual cue biasing a particular interpretation, both meanings
are still activated (see figures 1b and 1c). Even when the syntactic
field is specified, again both appropriate and inappropriate meanings
are initially activated as seen in figure 2.

Summary

In this study, we present a method of learning, storing, and
retrieving stimuli constructed as lexical entries. Our formulation
allows the different fields comprising a word to interact through
coupling weights. It is this property which allows the reconstruction
of the entire word from a part of the stimulus. Appropriate hints,
implemented as partial activity in fields other than the graphemic
one, decrease RTs. In addition, the same scheme wused for
unambiguous words is used for ambiguous ones. When presented
with a homograph, the dominant one is accessed initially. However,
when given sufficiently large cues, the subordinate homograph can
also be accessed. Moreover, we have been able to show that despite
conflicting cues for one of the homographs, both meanings are
activated initially. We feel that this approach is quite promising
and are currently exploring more realistic coding schemes and
enlarging the lexicon.

Acknowledgements

Financial support for some of this work was provided by a
grant from the National Science Foundation to J. A., administered
by the Memory and Cognitive Processes section (Grant
BNS-82-14728) and by the United States Office of Naval Research
(Contract N00014-81-K-0136) to the Center for Neural Science,
Brown University. We would like to thank the Center for Cognitive
Sciences, Brown University, for computing facilities used in our
simulations.

208 .



References

Anderson, J.A., 1983. Cognitive and psychological computation with
neural models. L.E.E.E. Transactions on Systems, Man, and
Cybernetics SMC-13: 799-814.

Anderson, J.A., J.W. Silverstein, S.A. Ritz, and R.S. Jones, 1977.
Distinctive features, categoraical perception, and probability

learning:  Some applications of a neural model.
Psychological Review 84, 413-451.

Hirst, G., 1983. Semantic interpretation against ambiguity. TR
CS-83-25, Department of Computer Science, Brown
University. Providence, RI.

McClelland, J.L. and D.E. Rumelhart, 1981. An interactive
activation model of context effects in letter perception: Part

1. An account of basic findings. Psychological Review 88,
375-397.

Simpson, G.B., 1981. Meaning dominance and semantic context in
the processing of lexical ambiguity. Journal of Verbal
Learning and Behavior 20: 120-136.

Swinney, D.A., 1982. 'The structure and time-course of
information interaction during speech comprehension:
Lexical segmentation, access, and interpretation’. in J.
Mehler, E.C.T. Walker, and M. Garrett (Eds.), Perspectives
on Mental Representation. Hillsdale, N.J.: Erlbaum,

Tyler L. and Marslen-Wilson W.D., 1982. ’Speech comprehension
processes’. in J. Mehler, E.C.T. Walker, and M. Garrett
(Eds.), Perspectives on Mental Representation. Hillsdale,
N.J.: Erlbaum.

209



LEXICON
lexical entry code rel. fregq.
WIND \wind\ n.; weather 4285 3
WIND \wlnd\ v.; rotate 491C 2
DESK \desk\ n.; furniture 2D83 4
AGAR \agar\ n.; gelatin E78A 1
RANT \rant\ v.; yell 9C1D 3
LURK \lurk\ v.; hide CF1E 2

Table 1.

Complete lexicon giving Walsh-
Hadamard coding representation
and relative frequency.

21J



211

RTs AS A FUNCTION OF LEARNING

word 200 500 1000 2000 5000 hint*

WIND 85 33 19 17 20 11
DESK 32 15 11 11 11 10
AGAR XX XX xx XX 23 13
RANT 48 22 13 12 12 10
LURK XX 77 18 11 11 11
XX error

* after 5000 learning trials

Table 2. RTs as a function of learning (200,
500, 1000, 2000, and 5000 learning
trials, and effect of hints).
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Fig. 1. Time course of activation of meanings
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elements in the graphemic field are
saturated, and the magnitudes of ele-
ments in the semantic field (rotate)

are (a) 0.0, (b) 0.05, and (c) 0.2.
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ACTIVATION OF MEANINGS
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