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Abstract

Semi-Parametric Estimation in Network Data and Tools for Conducting Complex
Simulation Studies in Causal Inference

by

Oleg A Sofrygin

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark Van Der Laan, Chair

This dissertation is concerned with application of robust semi-parametric methods to
problems of estimation in network-dependent data and the conduct of large-scale simula-
tion studies for causal inference research in epidemiological and medical data. Specifically,
Chapter 1 presents a modern semi-parametric approach to estimation of causal effects in a
population connected by a single social network. The connectivity of the population units
will typically imply that the observed data on these units is no longer independent and
identically distributed. Moreover, such social settings typically result in highly dimensional
data. This chapter contributes to current statistical methodology by presenting an approach
that allows valid estimation and inference and addresses the statistical issues specific to such
networked population datasets. The framework of semi-parametric estimation, called the
targeted maximum likelihood estimation (TMLE), is presented. This framework improves
upon the existing methods by offering robustness, weakened sensitivity to near positivity vi-
olations, as well as the ability to deal with high-dimensionality issues of social network data.
In particular, this approach relies on the accurate reflection of the background knowledge
available for a given scientific problem, allowing estimation and inference without having
to make unrealistic assumptions about the structure of the data. In addition, this chapter
generalizes previous work describing estimation of complex causal parameters, such as the
direct treatment effects under interference and the causal effects of interventions on social
network structure. Although the past decade has produced many contributions towards esti-
mation of causal effects in social network settings, there has been considerably less research
on the topic of variance estimation for such highly-dependent data. This chapter presents an
approach to constructing valid inference, providing a variance estimator that is scalable to
very large datasets with highly-connected observations. The efficient open-source software
implementation of these methods also accompanies this chapter. Chapter 2 presents open-
source software tools for conduct of reproducible simulation studies for complex parameters
that emerge from application of causal inference methods in epidemiological and medical
research. This simulation software is build on the framework of non-parametric structural
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equation modeling. This chapter also studies simulation-based testing of statistical meth-
ods in causal inference for longitudinal data with time-varying exposure and confounding.
It contributes to existing literature by presenting a unified syntax for non-parametrically
defining complex causal parameters, which can be used as the model-free and agnostic gold
standard for comparison of different statistical methods for causal inference. For instance,
this chapter provides various examples of specification and evaluation of causal parameters
that arise naturally in longitudinal causal effect analyses when using marginal structural
models (MSMs). The application of these newly developed software tools to replication of
several previously published simulation studies in causal inference are also described. Chap-
ter 3 builds on the work described in Chapter 2 and addresses the issue of dependent data
simulation for causal inference research in social network data. In particular, it provides
a model-free approach to test the validity of various estimation procedures in simulated
network-settings. This chapter first outlines a non-parametric causal model for units con-
nected by a network and provides various applied examples of simulations with social network
data. This chapter also showcases a possible application of the highly scalable open-source
software implementation of the semi-parametric estimation methods described in Chapter 1.
In particular, a large scale social network simulation study is described, and the performance
of three dependent-data estimators from Chapter 1 is examined. This simulation study also
examines the problem of inference for network-dependent data, specifically, by comparing
the performance of the dependent-data TMLE variance estimator from Chapter 1 to the
true TMLE variance derived from simulations. Finally, Chapter 3 concludes with a simu-
lation study of an HIV epidemic described in terms of a longitudinal process which evolves
over a static network in discrete time-steps among several highly inter-connected communi-
ties. The abstracts of the three works which make up this dissertation are reproduced below.

Chapter 1: This chapter describes the robust semi-parametric approach towards estima-
tion and inference for the sample average treatment-specific mean in observational settings
where data are collected on a single network of connected units (e.g., in the presence of
interference or spillover). Despite recent advances, many of the currently used statistical
methods rely on assumption of a specific parametric model for the outcome, even though
some of the most important statistical assumptions required by these models are most likely
violated in the observational network data settings, resulting in invalid and anti-conservative
statistical inference. In this chapter, we rely on the recent methodological advances for the
targeted maximum likelihood estimation (TMLE) for data collected on a single population
of causally connected units, to describe an estimation approach that permits for more real-
istic classes of data-generative models and provides valid statistical inference in the context
of such network-dependent data. The approach is applied to an observational setting with
a single time point stochastic intervention. We start by assuming that the true observed
data-generating distribution belongs to a large class of semi-parametric statistical models.
We then impose some restrictions on the possible set of the data-generative distributions
that may belong to our statistical model. For example, we assume that the dependence
among units can be fully described by the known network, and that the dependence on
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other units can be summarized via some known (but otherwise arbitrary) summary mea-
sures. We show that under our modeling assumptions, our estimand is equivalent to an
estimand in a hypothetical IID data distribution, where the latter distribution is a function
of the observed network data-generating distribution. With this key insight in mind, we
show that the TMLE for our estimand in dependent network data can be described as a
certain IID data TMLE algorithm, also resulting in a new simplified approach to conducting
statistical inference. We demonstrate the validity of our approach in a network simulation
study. We also extend prior work on dependent-data TMLE towards estimation of novel
causal parameters, e.g., the unit-specific direct treatment effects under interference and the
effects of interventions that modify the initial network structure.

Chapter 2: This chapter introduces the simcausal R package - an open-source software
tool for specification and simulation of complex longitudinal data structures that are based
on non-parametric structural equation models. The package aims to provide a flexible tool
for simplifying the conduct of transparent and reproducible simulation studies, with a par-
ticular emphasis on the types of data and interventions frequently encountered in real-world
causal inference problems, such as, observational data with time-dependent confounding,
selection bias, and random monitoring processes. The package interface allows for concise
expression of complex functional dependencies between a large number of nodes, where each
node may represent a measurement at a specific time point. The package allows for specifi-
cation and simulation of counterfactual data under various user-specified interventions (e.g.,
static, dynamic, deterministic, or stochastic). In particular, the interventions may represent
exposures to treatment regimens, the occurrence or non-occurrence of right-censoring events,
or of clinical monitoring events. Finally, the package enables the computation of a selected
set of user-specified features of the distribution of the counterfactual data that represent
common causal quantities of interest, such as, treatment-specific means, the average treat-
ment effects and coefficients from working marginal structural models. The applicability of
simcausal is demonstrated by replicating the results of two published simulation studies.

Chapter 3: The past decade has seen an increasing body of literature devoted to the es-
timation of causal effects in network-dependent data. However, the validity of many classical
statistical methods in such data is often questioned. There is an emerging need for objective
and practical ways to assess which causal methodologies might be applicable and valid in
such novel network-based datasets. In this chapter we describe a set of tools implemented
as part of the simcausal R package that allow simulating data based on the non-parametric
structural equation model for connected units. We also provide examples of how these simu-
lations may be applied to evaluation of different statistical methods for estimation of causal
effects in such data. In particular, these simulation tools are targeted to the types of data
and interventions frequently encountered in real-world causal inference research in social net-
works, such as, observational studies with spill-over or interference. We developed a novel R
language interface which simplifies the specification of network-based functional relationships
between connected units. Moreover, this network-based syntax can be combined with the
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syntax for specifying longitudinal data structures, allowing for simulations of network-based
processes that evolve in time (e.g., contagion in epidemic modeling). We provide various ex-
amples of simulation studies that involve units connected by various network models. These
simulations were designed to mimic the types of studies one might conduct in real life with
the aim of answering specific causal public health questions. We also demonstrate one appli-
cation of these new tools by conducting a simulation study that compares the performance
of three estimators of the counterfactual mean outcome in a network-dependent data setting.
Finally, we describe a simulation study with longitudinal data that mimics a spread of HIV
epidemic over time for highly inter-connected communities.
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Chapter 1

Semi-Parametric Estimation in
Network Data

1.1 Introduction

Motivation
In this chapter we are concerned with estimation and inference for the sample average treat-
ment effect [80] in an observational setting that involves members of a single connected
network. Valid statistical inference in such settings presents a number of significant chal-
lenges. For example, the frequently made assumption of independence among units is gen-
erally violated when data is collected on a population of connected units, since the network
interactions will often cause the exposure of one unit to have an effect on the outcomes of
other connected units. In general, statistical methods for estimation and inference in obser-
vational network data are faced with three key challenges that set such data apart from the
classical statistical methods for independent observational data: (i) the outcome for each
unit can be a function of the treatment assignments of other units that are connected to
the unit through its network, an occurrence referred to as interference or spillover [57, 113];
(ii) the outcome of each unit can be a function of the baseline covariates of other units that
are connected to the unit through its network, sometimes referred to as network-correlated
outcomes [9]; and (iii) the observed exposure allocation for each unit can be a function of the
baseline covariates of other units. As a result, the sample units are not independent, and, in
fact, one only observes a single draw from the true data generating distribution. Therefore,
classical statistical methods that assume independence among the observed outcomes will
be often overly optimistic and invalid for quantifying the variability of estimators in such
data. In addition, many of the current estimation procedures for observational network data
assume a particular class of parametric or restrictive classes of semi-parametric models for
the observed data-generating distribution, which makes these methods highly susceptible to
bias due to model misspecification [26, 27].

Targeted maximum likelihood (or minimum loss-based) estimation (TMLE) [67, 66] is a
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general framework for constructing asymptotically linear and efficient substitution estima-
tors, that belong to a much larger class of semi-parametric models, while providing asymp-
totically valid statistical inference. Recently, the TMLE framework has been extended to
estimation of treatment effects in dependent observational data [63], where the dependence
among units is described by the network of connections formed by these units (e.g., social or
geographical networks). Our aim will be to provide an accurate reflection of the background
knowledge available for a given scientific problem, while still being able to perform valid sta-
tistical estimation. Thus, we start by assuming a realistic semi-parametric statistical model
for the generating distribution of observed network data, which places minimal restrictions
on the set of such possible data-generating distributions. The first objective of this chapter
is to apply the TMLE framework to estimation of causal effects in single time-point obser-
vational network data. Our next objective is to verify the practical validity of our approach
with a simulation study. We demonstrate that consistent estimation and valid asymptotic
inference of the sample average treatment effects for a single time point stochastic interven-
tions is possible in this larger class of semi-parametric models, even in observational network
data where the dependence between units is induced by the known network structure.

Brief review of relevant literature
The literature on networks and causal inference in network data is rapidly evolving. However,
the existing statistical methods for performing estimation and inference for causal effects in
networks are limited and the literature on this subject has only recently started to develop
[63, 130, 83, 128, 120]. Our review is not intended to be exhaustive, instead, we focus on
the key aspects and challenges of statistical estimation of treatment effects in observational
network data. Most of the recently proposed approaches can be categorized as relying on
either the assumption of randomized exposures across units [107, 4, 18, 133, 2, 3, 121, 69, 25,
9], or on parametric modeling of the outcome as a particular function of the unit’s network.
Some of the parametric approaches applied in the network settings include generalized linear
models (GLMs) and generalized estimating equations (GEEs) [26, 27], methods which have
important limitations [70, 127, 129, 125, 83]. For one, GLMs and similar modeling tech-
niques require making strong, simplifying modeling assumptions about the underlying data
generating process. Hence, model misspecification for GEEs and GLMs in the network data
settings is a major cause of concern. Perhaps more importantly, performing valid statistical
inference with GLMs and other similar statistical techniques generally requires independence
of the observational units, an assumption that is unlikely to hold due to the very nature of
the network data. It has also been previously described that application of such standard
statistical procedures to dependent data will result in invalid and generally anti-conservative
statistical inference [70, 83].

In addition, a few promising methodological approaches to estimation in network data
have begun to emerge in recent years. For example, [4] proposed a Horvitz-Thompson
estimator in a randomized study settings, defined the so-called “network exposure model”
and derived the finite sample estimator of the variance. However, such methods are of limited
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utility in observational settings. Other proposed approaches for identification and estimation
of treatment effects in networks include stochastic actor-oriented models [119], and a linear
Bayesian modeling approach that can accommodate for network uncertainty [121]. Another
recently proposed approach applied the semi-parametric framework of targeted maximum
likelihood estimation to the observation network data settings [63], yielding valid asymptotic
inference, while allowing for a much larger and realistic class of data-generative models. We
apply the latter approach in the sections that follow.

Contributions and organization of this chapter
We start by describing the type of data that may arise in an observational study on a pop-
ulation of connected units. Consider a study in which we observe a sample of N dependent
units. For each unit we collect baseline covariates, a binary exposure, and a one-dimensional
outcome of interest. We denote the sample by the random vector O = (W,A,Y)∼P0, where
W = (Wi)Ni=1 is a vector of baseline covariates across all units, A = (Ai)Ni=1 is a vector of
exposures, Y = (Yi)Ni=1 is a vector of outcomes, and P0 belongs to a large semi-parametric
model. We assume each Wi has finite support, each Ai is binary, and Yi is either binary (e.g.,
indicating survival beyond a specific time point, or the success of a particular intervention)
or bounded (e.g., a count of the number of times an event of interest has occurred during the
follow-up period, or a continuous measure of a biomarker level at the end of the study). For
each unit i in the sample, we also collect the information on other units in {1, . . . ,N}\{i}
that are connected to (or influence) i. These units are referred to as “i’s friends”, and this
set is denoted by Fi ⊆ {1, . . . ,N}. It is assumed that Fi is recorded at baseline, along with
other baseline covariates, and it is assumed fixed. Additionally, we allow |Fi|, the number
of friends for unit i, to vary in i, but assume that this number is bounded by some known
global constant K that doesn’t depend on N . The vector F = (Fi)Ni=1 is then referred to
as the “network profile” of O. For example, in an experiment evaluating the effects of in-
troducing a new service to an online social network, for each unit, Fi could denote the set
of all online friends of i, whose exposure status may influence i’s outcome. Alternatively,
in a study of the effects of early HIV treatment initiation, Fi could be the set of all sexual
partners of unit i. We allow for the following types of between-unit dependencies: (i) the
unit-level exposures can depend on baseline data of itself and other units, and (ii) unit-level
outcomes can depend on baseline and exposure data of itself and other units. An important
ingredient of our modeling approach is to assume that the dependence of each unit i on
other units is fully described by the network. Specifically, we assume that the dependence
of i’s treatment and outcome on other units is limited to the set of i’s friends. A second
important ingredient is the assumption that these dependencies can be accurately described
with some known summary measures, which map the data collected on friends of each unit
into a summary that has the same dimension for all units.

We now wish to estimate and perform valid inference for the sample-average of the unit-
specific mean outcomes, given as 1/N∑N

i=1E [Eg∗ (E(Yi |A,W) |W)], where theN exposures
are assigned according to some user-specified stochastic intervention g∗. That is, g∗ is a
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fixed conditional density for drawing exposures A, given baseline covariates W. Under
additional causal assumptions, this statistical quantity will be equal to the sample average
of the expected counterfactual outcomes, defined as the expected outcomes which would
have been obtained if the units in the sample had actually been treated according to the
treatment regime specified by g∗ [63]. We note that the definition of intervention g∗ is kept
general, allowing for any static, dynamic, or stochastic single time point interventions. We
also note that the definition of the statistical parameter can be extended to multiplicative or
additive sample average treatment effects [80, 6]. Additionally, our statistical parameter is
defined with respect to a given network profile F and given sample size N , and thus should
be regarded as a type of a data-adaptive statistical parameter [65], since its true value
is allowed to change for different sample sizes and different network structures. Finally,
we note that the statistical parameter defined in this manner has a generally meaningful
statistical interpretation, even when the required causal assumptions do not hold, and our
focus is only on the aspects of statistical estimation of such parameters in the context of the
semi-parametric modeling framework.

The main contributions of this chapter are as follows: We start by pointing out that
our statistical parameter can be represented in a novel way, in light of the fact that it
depends on the joint distribution of the observed data only via a mixture of the unit-specific
distributions, and we will use P̄ to denote this mixture distribution. In particular, we
show that our dependent-data parameter can be represented as a mapping Ψ̄ from mixture
P̄ , giving our parameter an alternative interpretation as a G-computation formula for the
mean of the iid outcomes generated from the post-intervention distribution under some fixed
stochastic intervention ḡ∗, i.e., Ψ̄(P̄0) = EȲḡ∗ . This mixture representation then also leads
us to conclude that the estimation of Ψ̄(P̄0) should only be concerned with estimation of the
relevant factors of the mixture P̄ and we use this fact to provide a self-contained description
of the semi-parametric estimation framework in network-dependent data developed by [63].
As we will show, this new mixture representation implies that our statistical parameter
can be estimated by simply ignoring dependence among units and treating them as if they
are independent and identically distributed (iid), suggesting that a large class of iid-data
estimators is applicable to estimation problems such as the one we describe in this chapter.
Based on this key insight, the dependent-data TMLE from [63] is then presented as a typical
iid-data TMLE. We also apply the new mapping Ψ̄ for performing statistical inference,
presenting a new robust asymptotic variance estimator which improves upon the previously
proposed estimator from [63] in that it remains conservative even under the outcome model
misspecification and no longer requires the assumption of complete independence among
baseline covariates. We then conduct a simulation study to provide a proof of concept for
our framework and to assess the feasibility of unbiased estimation and inference in finite
sample observational network data. We also compare the performance of TMLE to other
statistical procedures using a newly developed R package tmlenet [116]. Finally, this chapter
generalizes the previously described dependent-data TMLE framework to allow estimation of
novel causal parameters. In particular, we describe the TMLE for estimating the treatment
effect under arbitrary unit-specific stochastic interventions on N groups of friends, which
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may be incompatible with the existence of a single multivariate stochastic intervention on
all N units of study, e.g., interventions that characterize the direct treatment effect under
interference. We also extend our framework to allow estimation of parameters defined by
interventions that statically or stochastically modify the initial network structure.

The rest of the chapter is organized as follows: We start by formally describing the
observed network data, defining the statistical model, and defining the statistical parameter
of interest in Section 1.2. Next, in Section 1.3, we describe an alternative representation
of our statistical parameter as a mapping from some mixture distribution, derived as a
function of the actual observed data distribution. In Section 1.4, we describe the iid TMLE
algorithm for estimating the dependent-data sample-average treatment effects under single
time-point stochastic intervention g∗. We then proceed by proposing a new estimator of the
asymptotic variance for this TMLE in Section 1.5. Next, we describe a simulation study that
examines the finite sample performance of the proposed TMLE, and that of the new variance
estimator, in Section 1.6. We then describe in Section 1.7 how our framework generalizes to
estimation of parameters indexed by arbitrary collections of stochastic interventions or by
interventions on the network structure. We conclude with a discussion of the relative merits
and limitations of our proposed approach in Section 1.8.

A note on notation
Throughout this chapter we use the bold font capital letters, such as O, to denote random
vectors that include observations on all N units, and bold font small letters, such as o,
to denote their corresponding fixed values. For example, A will denote the vector of N
exposures, i.e., A = (A1, . . . ,AN ). We will also use the standard font capital letters with a
subscript to denote the unit-specific observations, i.e., Ai will denote the exposure for the
unit i. Finally, we will use the over-bar symbol to denote mixture distributions across all
N units, as well as their corresponding random variables. For example, P̄W will denote
the mixture of N unit-specific distributions of baseline covariates Wi, for i = 1, . . . ,N , i.e.,
P̄W = 1/N∑N

i=1Pi,0, and W̄ will denote a random variable distributed according to P̄W .
The only exception to this rule will be Q̄, which will denote the conditional expectation
of the unit-specific outcome Yi, as well as the conditional expectation of the mixture-based
outcome Ȳ , which happen to be equal under our statistical model.

1.2 Statistical model and parameter
Suppose PN0 is the true data generating distribution forN observed and connected units, with
O = (W,A,Y) ∼ PN0 denoting the random vector for these N units and Oi = (Wi,Ai,Yi),
for i= 1, . . . ,N . The network profile F is assumed recorded at baseline, i.e., F ∈W. We also
assume all Yi are bounded random variables. Let M denote a statistical model containing
PN0 . Since O represents a network of dependent units, we observe only a single draw from
PN0 , and as a result, are unable to estimate PN0 from this single observation O. We now
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proceed by making a series of statistical assumptions, which will allow us to learn the true
distribution of O based on this single draw. In particular, we introduce these assumptions
by making restrictions on the set of possible distributions that belong M. We will then
define our statistical quantity of interest as a mapping Ψ from M into the real line R.

Following [63], we make the following set of statistical assumptions for any PN0 ∈M:

A1. Conditional on F, eachWi depends on at mostK other observations in W = (W1, . . . ,WN ),
i.e., if (Wj : j ∈ Si) is the set of all observations dependent with Wi then maxi |Si| ≤K
and K must not depend on N ;

A2. A = (A1, . . . ,AN ) are independent, conditional on W;

A3. Y1, . . . ,YN are independent, conditional on (A,W).

These assumptions imply the following likelihood for PN ∈M:

pN (O) =
 N∏
i=1

pYi|A,W(Yi |A,W)
 N∏

i=1
pAi|W(Ai |W)

pW(W).

We also assume conditional independence implied from the known network structure:

A4. Assume that conditional distributions P (Yi | ·) only depend on (Aj ,Wj : j ∈ F ∗i ), for
F ∗i = Fi∪{i}, and similarly, P (Ai | ·) depend on (Wj : j ∈ F ∗i ).

We now introduce the dimension reducing assumptions for these conditional distributions.
Specifically:

B1. Assume that each P (Ai | ·) is a function of some fixed-dimension summary measure
wsi ((Wj : j ∈F ∗i )), and each P (Yi | ·) is a function of fixed-dimension summary measures
asi ((Aj ,Wj) : j ∈ F ∗i ) and wsi ((Wj : j ∈ F ∗i )). We assume wsi (·) and asi (·) are known
functions that map into Euclidean set of constant (in i) dimension that does not depend
on N , where asi map into some common space As, and wsi map into some common space
Ws.

Formally, these summary measures for i= 1, . . . ,N are defined as:

W s
i = wsi (W) = wsi (Wj : j ∈ F ∗i ) ∈Ws,

Asi = asi (A,W) = asi ((Aj ,Wj) : j ∈ F ∗i ) ∈ As,

where above we also introduced the shorthand notationW s
i andAsi , for wsi (W) and asi (A,W),

respectively. As an example of such summary measures, an investigator conducting a social
networks study might be willing to assume that the outcomes Yi depend on (A,W) only
through summary measures (asi (A),wsi (W)), where asi (A) = (Ai,Aci) and wsi (W) = (Wi,W

c
i )

and Aci is some one dimensional summary of exposures of i’s friends and W c
i is some one

dimensional summary of baseline covariates of i’s friends, where Aci is the same function
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in i and W c
i is also the same function in i. If one is unwilling to make such strong di-

mensionality reducing assumptions, one could instead assume asi (A) = (Aj : j ∈ F ∗i ) and
wsi = (Wj : j ∈ F ∗i ), without assuming a particular functional form of asi and wsi . By filling
the empty spots in asi (·) and wsi (·) with missing values one would assure that all summaries
(asi (·),wsi (·)) are of constant dimension across i and that the information on the number of
friends of i is also captured. In summary, we allow Asi and W s

i to be arbitrary functions
of the units’ network, as long as their dimension is fixed, common-in-i, and doesn’t depend
on N . Applying these summary measures to the observed data, we obtain the following
likelihood:

pN (O) =
 N∏
i=1

p(Yi |Asi ,W s
i )
 N∏

i=1
p(Ai |W s

i )
p(W).

We are now ready to make the final set of restrictions on M. Specifically:

C1. Assume that all Yi are sampled from the same distribution QY with density given
by qY (Yi |as,ws), conditional on fixed values of the summary measures (Asi ,W s

i ), for
i = 1, . . . ,N . Similarly, assume that all Ai are sampled from the same distribution
given by density g(Ai |ws), conditional on some fixed value of the summary measures
W s
i = ws, for i= 1, . . . ,N .

We also assume (without loss of generality) that the densities g and qY are well-defined with
respect to some dominating measure. Using the previous example of the summary measures,
i.e., W s

i = (Wi,Wj : j ∈ Fi) and Asi = (Ai,Aj : j ∈ Fi), this assumption implies that the units
i and j will be subject to the same conditional distributions for drawing their treatment
and outcome, if i and j have the same number of friends, same individual covariate and
treatment values, and the same values for the covariates and treatments of their friends.
This implies that its possible to learn the common-in-i densities QY and g from a single
(but growing) draw O from PN0 as N →∞, resulting in a well-defined statistical estimation
problem. We denote the joint density of conditional network exposures A given W by
g(A |W), with above assumptions implying the factorization g(A |W) = ∏N

i=1 g(Ai |W s
i ).

We denote the joint distribution of W by QW(W), making no additional assumptions of
independence between W = (W1, . . . ,WN ) and we assume qW is a well-defined density for
QW, with respect to some dominating measure. This final set of assumptions defines our
statistical model M, where M describes the set of all possible distributions PN for the
observed dependent data O.

We now introduce the notation P = PQ,G, for Q ≡ (QW,QY ) and we assume the dis-
tributions QW and QY are unspecified beyond the above modeling conditions A1, A3,
A4, B1 and C1. We also note that observed exposure model for G may be a restricted
to incorporate the real-world knowledge about the true conditional treatment assignment,
for example, when the common-in-i g(Ai|W s

i ) is known, such as in a randomized clinical
trial. This defines the statistical parametrization for the data-generating distribution of O
in terms of the distributions Q and G, and the corresponding statistical model is defined
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as M = {PQ,G : Q ∈ Q,G ∈ G}, where Q and G denote the parameter spaces for Q and
G, respectively. In particular, we denote Q0 as Q evaluated at PN0 . Applying this newly
introduced notation results in the likelihood:

pN (O) =
 N∏
i=1

qY (Yi |Asi ,W s
i )
 N∏

i=1
g(Ai |W s

i )
qW(W). (1)

We define an intervention of interest by replacing the conditional distribution G with
a new user-supplied intervention G∗ that has a density g∗ that we assume is well-defined.
Namely, G∗ is a multivariate conditional distribution that encodes how each intervened
exposure, denoted as A∗i , is generated conditional on W. We note that static or dynamic
interventions on A correspond with degenerate choices of g∗ (e.g., [102, 104, 105, 41, 136]),
while non-degenerate choices of g∗ are often referred to as stochastic interventions (e.g., [31,
106, 75, 137, 63]). We assume that A and A∗ belong to the same common space A and we
make no further restrictions on G∗. We also define A∗si := asi (A∗), where A∗si denotes the
random variable implied by the summary measure asi (·) mapping from an intervened exposure
vector A∗, for i = 1, . . . ,N . Finally, we define the post-intervention distribution PQ,G∗ by
replacing G in PQ,G with a new user-supplied distribution G∗. We use O∗ = (Wi,A

∗
i ,Y

∗
i )Ni=1

to denote the random variable generated under PQ,G∗ and its likelihood is given by:

pNQ,G∗(O∗) =
 N∏
i=1

qY (Y ∗i |A∗si ,W s
i )
g∗(A∗ |W)qW(W). (2)

The latter distribution PQ,G∗ is referred to as the G-computation formula for the post-
intervention distribution of O under stochastic intervention G∗ [103] and it is a parameter
of PN .

Our target statistical quantity ψ0 is now defined as a function of this post-intervention
distribution (2). Specifically, it is given by:

ψ0 = Ψ(PN0 ) = Eq0,g∗

 1
N

N∑
i=1

Y ∗i

 ,
which is an expectation of the sample-average of N outcomes among dependent units i =
1, . . . ,N , where the expectation is evaluated with respect to the post-intervention distribution
PQ,G∗ . We view Ψ(PN0 ) as a mapping from the statistical modelM into R, and we note that
ψ0 is defined conditionally on the observed network structure, F and is also indexed by N .
We also define Q̄(Asi ,W s

i ) =
∫
y yqY (y|Asi ,W s

i )dµ(y) as the conditional mean evaluated under
common-in-i distribution QY , and Q̄0 as Q̄ evaluated at PN0 . Note that our dimension
reduction assumptions imply that EPN0 [Yi |A,W] = Q̄0(Asi ,W s

i ). We also note that our
parameter ψ0 only depends on PN0 through Q̄0 and QW,0, and with a slight abuse of notation
we will interchangeably use Ψ(PN0 ) and Ψ(Q̄0,QW,0). Thus, the parameter ψ0 is indexed
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by N , F and G∗ and can be written as:

ψ0 = 1
N

N∑
i=1

∫
a,w

Q̄0(asi (a,w),wsi (w))g∗(a |w)qW,0(w)dµ(a,w),

with respect to some dominating measure µ(a,w).
One might also be interested in a target quantity defined as a contrast of two stochastic

interventions. For example, one may define ΨG∗1(PN0 ) and ΨG∗2(PN0 ) as the above target
parameter evaluated under stochastic interventions G∗1 and G∗2, respectively, then defining
the target quantity as ΨG∗1,G∗2(PN0 ) = ΨG∗1(PN0 )−ΨG∗2(PN0 ). The average treatment effect
over N connected units is then a special case of ΨG∗1,G∗2(PN0 ) for interventions G∗1,G∗2 defined
as g∗1(1N |w) = 1 and g∗2(0N |w) = 1, for any w ∈W . We will focus on the estimation of the
statistical parameter ψ0 defined for one particular G∗, noting that all of our results naturally
generalize to contrasts or any other quantities that can be expressed as Euclidean-valued
functions of a collection {ΨG∗(PN0 ) : G∗ ∈ G∗}, for a finite set of stochastic interventions
G∗.

We note that by making additional untestable assumptions, one can interpret ψ0 as a
causal quantity that measures the sample-average of the expected counterfactual outcomes
in a network of N connected units under intervention G∗, as was previously shown in [63].
However, these additional causal assumptions put no further restrictions on the above de-
scribed probability distribution PN0 , so that our statistical modelM remains the same. Since
M contains the true data distribution PN0 , it follows that ψ0 will always have a pure statis-
tical interpretation as the feature Ψ(PN0 ) of the data distribution PN0 . For the estimation
problem at hand, the causal model plays no further role: even when one does not believe any
of the untestable causal assumptions, one might still argue that the statistical parameter ψ0
represents an effect measure of interest controlling for all measured confounders. Finally, we
note that the assumption A1 can be dropped entirely, by defining the target parameter ψ0
conditionally on the observed baseline covariates W, as shown in [63].

1.3 Target parameter as a mapping applied to a
mixture model

The above defined target parameter Ψ(PN0 ) can be represented as an alternative (and equal)
mapping Ψ̄(P̄0), where P̄0 is defined as a mixture of N unit-specific components of the
joint data-generating distribution PN0 . This leads us to another way of thinking about the
estimation of our target parameter, suggesting that the problem of estimating ψ0 should only
be concerned with estimating the relevant components of the mixture P̄0. We first apply the
summary measures W s

i =wsi (W) and Asi = asi (A,W) to the observed data O, mapping it into
a dataset of N dependent summary observations, denoted Os = (Os1, . . . ,OsN ) and referred to
as the “summary data”. We assume each Osi = (W s

i ,A
s
i ,Yi) is distributed according to P si,0,

where P si,0 is implied by the joint distribution PN0 of O and the i-specific summary measures
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(wsi (·),asi (·)). We assume that each P si,0 has a well-defined density psi,0 with respect to some
dominating measure. As before, the set of all possible distributions of O is given by the
statistical model M= {PQ,G : Q ∈ Q,G ∈ G}, and for a given PN ∈M, we first define its
implied mixture P̄ and its relevant factors, and we then describe the new mapping Ψ̄(P̄ )
in Theorem 1.3.1. Our next goal is to present the efficient influence curve (EIC) for this
mapping Ψ̄(P̄0), which we do in two steps in Theorems 1.3.2 and 1.3.3.

Mapping ψ0 = Ψ̄(P̄0) for the mixture distribution P̄0.

Let Os be the sigma-algebra for the union of the unit-specific supports of Osi , for i= 1, . . . ,N .
For a set A ∈Os, define the mixture distribution P̄ (A) as a finite mixture of N unit-specific
summary distributions P si with constant weight 1/N , i.e., P̄ := 1/N∑N

i=1P
s
i . Let Ōs denote

the random variable drawn from such P̄ and we assume that P̄ has a well-defined density
p̄ := 1/N∑

psi . Note that p̄ can be factorized as follows:

p̄(Ōs) = p̄(Ȳ , Ās, W̄ s)
= q̄Y (Ȳ | Ās, W̄ s)ḡ(Ās | W̄ s)q̄W (W̄ s),

and we now describe in detail the above factors of p̄.
First, let QW s

i
denote the marginal distribution of the i-specific baseline summary mea-

sure W s
i , with density qW s

i
(W s

i ) defined as the marginal of the joint density psi (Yi,Asi ,W s
i ).

The distribution Q̄W can then be defined as a finite mixture of these i-specific marginal
distributions QW s

i
, and the density of Q̄W can be defined as follows:

q̄W (ws) := 1
N

N∑
i=1

qW s
i
(ws).

We let W̄ s denote a random variable drawn from the mixture distribution Q̄W , noting that
W̄ s belongs to the same common space Ws as all wsi (W), for i = 1, . . . ,N . Similarly, we
let Hi denote the i-specific joint distribution of the summaries (Asi ,W s

i ), with its density
hi(Asi ,W s

i ) implied by psi (Yi,Asi ,W s
i ). We also let H∗i denote the joint distribution of the

summaries (A∗si ,W s
i ), where A∗si is determined by the user-supplied stochastic intervention

G∗A∗|W and the i-specific summary measure asi , and we denote the density of H∗i as h∗i .
We also assume that these i-specific densities hi(as,ws) and h∗i (as,ws) are well-defined with
respect to some common dominating measure µa,w. We now define the mixture distribution
H̄ as a finite mixture of i-specific Hi, with its corresponding mixture density defined as
h̄(as,ws) := 1/N∑N

i=1hi(as,ws), and we let (Ās, W̄ s) denote the random variables drawn
jointly from H̄. Next, we define an analogous mixture distribution H̄∗ as a finite mixture of i-
specific distributions H∗i , with its mixture density given by h̄∗(as,ws) := 1/N∑N

i=1h
∗
i (as,ws),

and we let (Ā∗s, W̄ s) denote the random variables drawn jointly from H̄∗. Finally, we note
that these mixture densities h̄ and h̄∗ can be factorized as follows:

h̄(as,ws) = ḡ(as|ws)q̄W (ws),
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h̄∗(as,ws) = ḡ∗(as|ws)q̄W (ws),
where ḡ is a factor in the above factorization of the likelihood of Ōs, namely, ḡ is the density
for the conditional distribution of Ās given W̄ s, denoted as Ḡ; ḡ∗ is the density for the
conditional distribution of Ā∗s given W̄ s, denoted as Ḡ∗; and q̄W is the previously defined
marginal density for the mixture Q̄W . In a similar manner one can define the conditional
distribution of Ȳ given (Ās, W̄ s), denoted as Q̄Y , with its density denoted as q̄Y , which
completes the description of the three factors of p̄(Ōs). We also define a statistical model
M̄ as the space of all possible distributions {Q̄Y , Ḡ, Q̄W} and we note that each P̄ ∈ M̄ is
implied by some PN ∈M. We also note that when (W,A) are discrete, one can obtain the
following intuitive analytic expressions for the above defined densities qW s

i
, hi and h∗i :

qW s
i
(ws) =

∫
w
I(wsi (w) = ws)qW(w)dµw(w),

hi(as,ws) =
∫

a,w
I(asi (a,w) = as,wsi (w) = ws)g(a|w)qW(w)dµa,w(a,w),

h∗i (as,ws) =
∫

a,w
I(asi (a,w) = as,wsi (w) = ws)g∗(a|w)qW(w)dµa,w(a,w),

where µw and µa,w are some dominating measures. The new mapping ψ0 = Ψ̄(P̄0) for our
target parameter is now presented in the following theorem.

Theorem 1.3.1. Let PN ∈M and let P si denote the i-specific summary data distribution
of Osi = (W s

i ,A
s
i ,Yi). Let P̄ ∈ M̄ be the above defined finite mixture of these N unit-specific

distributions P si and M̄ is the above defined mixture model. Let Ōs = (W̄ s, Ās, Ȳ )∼ P̄ denote
one sample drawn from P̄ . The likelihood of Ōs is given by:

p̄(Ōs) = qY (Ȳ | Ās, W̄ s)ḡ(Ās | W̄ s)q̄W (W̄ s),

where ḡ and q̄W are the previously defined factors of p̄; qY is the density of QY ∈M pre-
viously defined in Section 1.2, i.e., qY is the common-in-i conditional density of Yi given
(Asi ,W s

i ). Due to the modeling assumptions on M, qY is also the conditional density of Ȳ
given (Ās, W̄ s). It follows that Ψ(PN )≡ Ψ̄(P̄ ), where the new mapping Ψ̄(P̄ ) is given by:

Ψ̄(Q̄, Q̄W , ḡ∗) = EQ̄W

[
Eḡ∗ [Q̄(Ā∗s, W̄ s) | W̄ s]

]
=
∫
ws∈Ws,as∈As

Q̄(as,ws)ḡ∗(as |ws)dQ̄W (ws)

= 1
N

N∑
i=1

EQWs
i

[
Eḡ∗ [Q̄(Ā∗s,W s

i ) |W s
i ]
]

= 1
N

N∑
i=1

∫
wsi ,a

s
Q̄(as,wsi )ḡ∗(as |wsi )dQW s

i
(wsi ),

and we let Q̄(as,ws) := EQY [Ȳ | Ās = as, W̄ s = ws]. With the slight abuse of notation we
interchangeably write Ψ̄(Q̄, Q̄W , ḡ∗) and Ψ̄(P̄ ), to emphasize the fact that Ψ̄ depends on P̄
only through Q̄, Q̄W and ḡ∗.
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Proof. First, we show that that qY is indeed the conditional density of Ȳ , given (Ās, W̄ s)
under P̄ . To see this, note:

p̄(ws,as,ys) = 1
N

∑
i

psi (ws,as,y)

= 1
N

∑
i

psi (y|ws,as)hi(ws,as)

= qY (y|ws,as) 1
N

N∑
i=1

hi(ws,as),

where by the assumptions in Section 1.2 we note that the distribution P (Yi|W s
i ,A

s
i ) is given

by a common distribution QY with density qY , from which the above result follows as
claimed. The equivalence Ψ(PN ) ≡ Ψ̄(P̄ ) then follows directly by applying the definitions
of ḡ∗, Q̄W and Q̄.

The above theorem implies that the estimator of ψ0 can be obtained from the estimators
of Q̄0 and Q̄W,0. It also gives us an alternative interpretation for our target parameter
ψ0. Namely, the mapping Ψ̄(P̄0) happens to be equal to the parameter given by the G-
computation formula for the mean outcome EȲḡ∗0 , under stochastic intervention ḡ∗0 and
the observed data (W̄ s, Ās, Ȳ )∼ P̄0. That is, we take the above defined conditional density
ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0) as if this was a known user-supplied stochastic intervention on
Ās given W̄ s, treating ḡ∗0 as fixed we then evaluate EȲḡ∗0 by first replacing ḡ0(Ās|W̄ s) factor
of p̄(Ōs) with ḡ∗0, then taking the expectation of Ȳ under such modified post-intervention
distribution P̄ ∗. We also recognize that ḡ∗0 will be generally unknown, since it depends
on the true distribution of the data via QW,0. Nonetheless, expressing the dependent-
data parameter as some function of the mixture P̄0 implies that the estimation of this
parameter can be accomplished by simply treating the observed dependent units as if they
are independent and identically distributed (iid) (see Lemma 1.4.1 from Section 1.4 for a
specific case of estimating ḡ0 component of mixture p̄). Hence, whenever we are concerned
with estimating any parameter of P̄0, such as ψ0 given above, we can ignore the dependence
among units Osi , i= 1, . . . ,N , immediately providing us with an iid-analogue estimator for ψ0,
and in our case we will undertake the iid targeted maximum likelihood estimation (TMLE)
approach, as described in Section 1.4. Among a class of iid-analogue estimators for ψ0, we
can choose an estimator which would be efficient for iid data, and in our case, we will show
that such an analogous efficient iid TMLE will also be semi-parametrically efficient in our
dependent data model.

The efficient influence curve
The efficient influence curve (EIC), frequently referred to as the efficient score or canoni-
cal gradient, is a key ingredient in semi-parametric efficient estimation, because it defines
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the linear approximation of any efficient and regular asymptotically linear estimator, and
therefore provides an asymptotic bound for the variance of all regular asymptotically linear
estimators [12]. Furthermore, as discussed in Section 5 of [63], even for dependent data
problems such as ours, the EIC still characterizes the limiting normal distribution of the
MLE, thus establishing that if we want to construct an estimator that is asymptotically
equivalent to the MLE, we need to study the EIC of our target parameter. Due to local
asymptotic normality of the log-likelihood, as was argued in [123], the normal limiting distri-
bution implied by the MLE is still the optimal limit distribution in the convolution theorem
for efficient estimators. Our first result provides the EIC D̄N for a data-adaptive parameter
Ψ̄N (Q̄0, Q̄W,0) := Ψ̄(Q̄0, Q̄W,0, ḡ

∗
N ) indexed by fixed ḡ∗ = ḡ∗N , where ḡ∗N is an estimator of the

true density ḡ∗0. We will refer to D̄N as the iid-EIC, since it is a direct analogue of the
iid-data EIC for the parameter EȲḡ∗ . We then present the EIC D̄ for our actual parameter
of interest Ψ̄(Q̄0, Q̄W,0, ḡ

∗
0), defined with respect to the true density ḡ∗0.

EIC for data-adaptive parameter indexed by fixed stochastic intervention ḡ∗N

We now replace ḡ∗0 by a fixed density ḡ∗, set equal to some data-dependent estimator ḡ∗N of ḡ∗0,
which is then treated as fixed. This allows us to define the data-adaptive target parameter
Ψ̄N (Q̄0, Q̄W,0), indexed by such fixed ḡ∗, as EQ̄W,0

[
Eḡ∗=ḡ∗N [Q̄0(Ās, W̄ s) | W̄ s]

]
. From iid

results for parameters defined under fixed stochastic interventions, such as those described
in [75], it immediately follows that the efficient influence curve for parameter Ψ̄N (P̄0) at
P̄0 ∈ M̄ and Ōs ∼ P̄0 is given by:

D̄IID(P̄0)(Ōs) = ḡ∗

ḡ0
(Ās |W̄ s)

[
Ȳ − Q̄0(Ās, W̄ s)

]
+
[
Eḡ∗=ḡ∗N [Q̄0(Ās, W̄ s) | W̄ s]− Ψ̄N (Q̄0, Q̄W,0)

]
.

In other words, we have obtained an efficient influence curve for the mean outcome of Ȳ under
stochastic intervention ḡ∗, for one observation Ōs ∼ P̄0. We will thus refer to D̄IID(P̄0)(Ōs)
as the iid-EIC, due to just described iid-data interpretation of parameter Ψ̄N (P̄ ). However,
we don’t get to observe Ōs, instead, our observed data is Os = (Os1, . . . ,OsN ), where Osi ∼P si,0.
Nonetheless, it follows that the EIC for the actual data-adaptive parameter Ψ̄N (P̄0) at
PN0 ∈ M and the observed data model Os ∼ PN0 is given by the sum of these iid-EICs,
evaluated at i-specific observations Osi and scaled by 1/N , i.e, the EIC for parameter Ψ̄N (P̄0)
is given by 1/N∑N

i=1 D̄
IID(P̄0)(Osi ) and we also present this EIC in the following theorem.

Theorem 1.3.2. Suppose our parameter of interest is defined by the mapping Ψ̄N (P̄ ), where
P̄ ∈ M̄ and ḡ∗ is fixed. The efficient influence curve D̄N (PN )(Os) for Ψ̄N (P̄ ), evaluated at
PN ∈M and one observation Os (consisting of N dependent units) is given by

D̄N (PN )(Os) = 1
N

N∑
i=1

([
ḡ∗

ḡ
(Asi |W s

i )
(
Yi− Q̄(Asi ,W s

i )
)]

+
[
Eḡ∗ [Q̄(Asi ,W s

i ) |W s
i ]− Ψ̄N (Q̄, Q̄W )

])

= 1
N

N∑
i=1

(
D̄Yi(Q̄, ḡ)(Osi ) + D̄W s

i
(Q̄, Q̄W )(W s

i )
)
,
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where

D̄W s
i
(Q̄, Q̄W )(W s

i ) = Eḡ∗ [Q̄(Asi ,W s
i ) |W s

i ]− Ψ̄N (Q̄, Q̄W )

=
∫
as
Q̄(as,W s

i )ḡ∗(as|W s
i )− 1

N

N∑
i=1

∫
as,ws

Q̄(as,wsi )ḡ∗(as|wsi )QW s
i
(ws).

Proof. See Appendix B of our technical report [114].

EIC for parameter under true ḡ∗(g∗,QW,0).

We now consider our actual target parameter Ψ̄(P̄0) := Ψ̄(Q̄0, Q̄W,0, ḡ
∗
0), obtained by replacing

fixed ḡ∗ := ḡ∗N in ΨN (Q̄0, Q̄W,0) with true density ḡ∗0 := h̄(G∗,QW,0)/q̄W (QW,0). As a result,
the EIC for the parameter Ψ̄(Q̄0, Q̄W,0, ḡ

∗
0) will contain an additional contributing term

Dḡ∗(PN0 )(W) due to ΨN (Q̄0, Q̄W,0)−Ψ(Q̄0, Q̄W,0, ḡ
∗
0). This additional contribution is derived

in Appendix C of our technical report [114]. The final EIC for our actual parameter Ψ̄(P̄ ) is
given by D̄(PN )(O) = D̄N (PN0 )(Os)+D̄ḡ∗(PN0 )(W) and is provided in Theorem 1.3.3 below.
We note that the resulting EIC provided here is to same estimating function proposed in
Section 11 of technical report [64] for estimation of ψ0 in a model that does not assume
independence of W = (W1, . . . ,WN ).

Theorem 1.3.3. Suppose our parameter is given by the mapping Ψ̄(P̄ ) defined in Section
1.3. The efficient influence curve for Ψ̄(P̄ ) is given by:

D̄(PN )(O) =D̄N (PN )(Os) + D̄ḡ∗(PN )(W)

= 1
N

N∑
i=1

([
ḡ∗

ḡ
(Asi |W s

i )
(
Yi− Q̄(Asi ,W s

i )
)]

+
[∫
as
Q̄(as,W s

i )ḡ∗(as|W s
i )− Ψ̄(Q̄, Q̄W )

])

+ 1
N

N∑
i=1

[∫
as
Q̄(as,W s

i )g∗i (as|W)−
∫
as
Q̄(as,W s

i )ḡ∗(as|W s
i )
]
,

where
g∗i (as|W) =

∫
a
I(asi (a,W) = as)g∗(a|W)dµa(a),

Ψ̄(Q̄, Q̄W ) = 1
N

N∑
i=1

∫
as,ws

Q̄(as,wsi )ḡ∗(as|wsi )QW s
i
(ws),

and D̄(PN ) above can be further simplified as:

D̄(PN )(O) = 1
N

N∑
i=1

([
ḡ∗

ḡ
(Asi |W s

i )
(
Yi− Q̄(Asi ,W s

i )
)]

+
[∫
as
Q̄(as,W s

i )g∗i (as|W)− Ψ̄(Q̄, Q̄W )
])

= 1
N

N∑
i=1

(
D̄Yi(Q̄, ḡ)(Osi ) + D̄g∗i

(Q̄, Q̄W )(W)
)
.
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Proof. See Appendix C of our technical report [114].

Suppose that ḡ∗/ḡ is uniformly bounded on a set that contains (W s
i ,A

s
i ) with probability

1, for all i. Using similar analysis to the one conducted in [63], we can show that D̄ above
is a doubly robust estimating function for parameter ψ0 = Ψ̄(P̄0), in the sense that,

P0D̄(Q̄, ḡ0,ψ0) = P0D̄(Q̄0, ḡ,ψ0) = P0D̄(Q̄0, ḡ0,ψ0) = 0,

where P0f =
∫
f(o)dPN0 (o) denotes the expectation of f under distribution PN0 , and Q̄ =

(Q̄, Q̄W ). This implies that any estimator that solves this equation is going to be consistent
if: (1) Q̄W,N is consistent for Q̄W,0 and (2) at least one of the two estimators Q̄N or ḡN is
consistent for Q̄0 or ḡ0.

1.4 The Targeted Maximum Likelihood Estimation
(TMLE)

We had found a new representation for our target parameter Ψ(PN0 ) = Ψ̄(Q̄0, Q̄W,0), which
shows that our parameter ψ0 depends on PN0 only as a function of its mixture, P̄0, and in
particular, its a function of Q̄Y and Q̄W . Demonstrating that our parameter can be written
as a mapping Ψ̄(Q̄, Q̄W ) is hence the first step in estimation of ψ0. It implies that the
estimation of ψ0 should now only be concerned with estimating the relevant factors of P̄0
and we proceed by following the usual Targeted Maximum Likelihood Estimation (TMLE)
template. For the description of the TMLE framework in iid data with static interventions,
we refer to [67, 49, 66], and for the TMLE in iid data with stochastic intervention, we refer
to [75].

We note that our TMLE for estimating ψ0 will be described in terms of the iid esti-
mators of the relevant factors of P̄0, namely, the estimators Q̄N , ḡN , ḡ∗N and Q̄W,N of Q̄0,
ḡ0, ḡ∗0 and Q̄W,0, respectively. Our next step is then to create a targeted estimator Q̄∗N
of Q̄0 by updating the initial estimator Q̄N , defining the TMLE ψ∗N as the corresponding
plug-in estimator for the mixture mapping Ψ̄(Q̄∗N , Q̄W,N ). We define the targeted update
Q̄∗N based on the loss function for Q̄0 and the least favorable fluctuation submodel through
Q̄0 in terms of ḡ0 and ḡ∗0. The model update Q̄∗N is defined in a way so that its score
generates the efficient influence curve D̄ presented in Theorem 1.3.3. That is, the targeted
estimator Q̄∗N updates Q̄N by: (1) using the estimated weights ḡ∗N/ḡN , (2) using a paramet-
ric submodel {Q̄N (ε, ḡ∗N/ḡN )} through the initial estimator Q̄N = Q̄N (0, ḡ∗N/ḡN ) at ε = 0,
where {Q̄N (ε, ḡ∗N/ḡN )} is referred to as the least-favorable submodel, (3) fitting ε with the
standard parametric MLE, with εN denoting this fit, and finally, (4) defining the targeted
(updated) estimator as Q̄∗N := Q̄N (εN , ḡ∗N/ḡN ). The TMLE ψ∗N of ψ0 is then defined as the
corresponding substitution estimator ψ∗N = Ψ̄(Q̄∗N , Q̄W,N ). We also note that this TMLE is
actually the usual iid TMLE algorithm for estimating the quantity EYḡ∗ under fixed (data-
adaptive) ḡ∗, treating observations Osi , for i = 1, . . . ,N as if they are iid. Finally, we note
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that the TMLE we present here is a semi-parametrically efficient estimator for ψ0, since
its algebraically equivalent to the TMLE presented in [63], as we discuss in more detail in
Appendix E of our technical report [114]. Thus, the TMLE ψ∗N solves the empirical score
equation given by the efficient influence curve D̄ from Theorem 1.3.3, implying that ψ∗N also
inherits the double robustness property of this efficient influence curve.

The estimator Q̄W,N for Q̄W,0

We define an estimator Q̄W,N of Q̄W,0 by first defining the empirical counterpart QW,N

of QW,0 that puts mass one on the observed W = (W1, . . . ,WN ), which then implies that
the empirical distribution QW s

i ,N
of QW s

i ,0 will put mass one on its corresponding observed
W s
i =wsi (W), for i= 1, . . . ,N . Hence, for each ws ∈Ws, the empirical counterpart Q̄W,N (ws)

of Q̄W,0(ws) may be defined as follows:

Q̄W,N (ws) := 1
N

N∑
i=1

I(W s
i = ws).

The initial (non-targeted) estimator Q̄N of Q̄0

We assumed there is a common model Q̄0 across all i and Yi are conditionally independent
given (Asi ,W s

i ), for all i. Consequently, the estimation of a common Q̄N can proceed by
using the pooled summary data (W s

i ,A
s
i ,Yi), i = 1, . . . ,N , as if the sample is iid across i

and one can rely on the usual parametric MLE or loss-based cross-validation for estimating
Q̄N , as described in [63]. Given that Yi can be continuous or discrete for some known range
Yi ∈ [a,b], for i= 1, . . . ,N , the estimation of Q̄0 can be based on the following log-likelihood
loss,

L(Q̄)(Y |As,W s) =−
N∑
i=1

log
{
Q̄(Asi ,W s

i )Yi(1− Q̄(Asi ,W s
i ))1−Yi

}
,

or the squared error loss

L(Q̄)(Os) =−
N∑
i=1

(
Yi− Q̄(Asi ,W s

i )
)2
.

Thus, fitting Q̄N for common Q̄0 =E[Yi |Asi ,W s
i ] amounts to using the summary data struc-

ture (W s
i ,A

s
i ,Yi), for i= 1, . . . ,N . In other words, we use the entire sample of N observations

for predicting Yi. For example, for binary Yi, Q̄N can be estimated by fitting a single logistic
regression model to all N observations, with Yi as the outcome, (W s

i ,A
s
i ) as predictors, and

possibly adding the number of friends, |Fi|, as an additional covariate. After fitting Q̄N , one
generates a vector of unit-specific prediction values, (Q̄N (Asi ,W s

i ))Ni=1, which are then used
to build an updated version Q̄∗N of Q̄N .
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Estimating ḡ∗0 and ḡ0

We now describe a direct approach to estimation of ḡ0 that relies on Lemma 1.4.1 below. This
lemma states that a consistent estimator ḡN of ḡ0 can be obtained by taking a pooled sample
(Asi ,W s

i ), for i= 1, . . . ,N , and using the usual iid maximum likelihood-based estimation, as
if we were fitting a common-in-i conditional density for Asi given W s

i and treating (Asi ,W s
i )

as independent observations. For example, if each component of Asi is binary, and |Asi | = k
for all i, the conditional distribution for ḡ0 could be factorized in terms of the product
of k binary conditional distributions. Each of these binary conditional distributions can
be estimated with the usual logistic regression methods. We also refer to Section 1.6 for
a running example that describes in detail this direct estimation approach. Suppose now
that g0 is known, as will be the case in a randomized clinical trial (RCT). We note that
this aforementioned approach to estimating ḡ0 can be easily adopted to incorporate the
knowledge of true g0. That is, one could proceed by first simulating a very large number of
observations (Asj ,W s

j )Mj=1 from (g0,QW,N ), with QW,N that puts mass one on the observed
W, and then fitting the maximum likelihood-based estimator for ḡ0, as if we were fitting a
common model for Asi given W s

i , based on this very large sample that is treated as iid.
As discussed in the previous section, ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0) will generally be

unknown and hence will also need to be estimated from the data, in particular, since ḡ∗0
depends on the true distribution of the data via QW,0. Therefore, we propose estimating
ḡ∗0 by using the same method as for for estimating ḡ0 in case when g0 is known. Namely,
we propose replacing known g0 with known g∗ and then simulating a very large number of
observations (A∗sj ,W s

j )Mj=1 from (g∗,QW,N ), then using the same maximum likelihood-based
approach to obtain an estimator ḡ∗N of ḡ∗0, treating this simulated sample as if iid. Finally,
even when g0 is unknown, such as in an observational study on N connected units, one
could obtain a better estimator of ḡ0 by utilizing the conditional independence assumptions
for observed exposures Ai, given W s

i , for i = 1, . . . ,N . Similar to estimation of Q̄N , this
allows us to use loss-based cross-validation and machine learning methods to obtain a good
approximation gN (a|ws) for common-in-i density g0(a|ws), resulting in an estimator gN of
the joint density g0. We can now repeat the above described procedure for estimating ḡ0 when
g0 is known, except using such data-adaptively estimated gN instead of g0. In this manner,
one can obtain sufficient approximations to true ḡ0 and ḡ∗0, by fully utilizing the actual model
knowledge for g0 and the actual knowledge of g∗. Finally, we use these fits to evaluate ḡ∗N/ḡN
at each observed (Asi ,W s

i ), yieldingN predictions (ḡ∗N (Asi |W s
i )/ḡN (Asi |W s

i )), for i= 1, . . . ,N,
which will then be used as unit-level weights during the TMLE modeling update of the
estimator Q̄N .

Lemma 1.4.1. (Lemma 2 in [63]). Let the density ḡ0 be defined as

ḡ0(ās | w̄s) := h̄0(ās, w̄s)/q̄W,0(w̄s),

where q̄W,0 and h̄0 are as previously defined in Section 1.3. Let Hg be a set of functions that
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contain true ḡ0, then

ḡ0 = arg max
ḡ∈Hg

EPN0

{
1
N

∑
i

log ḡ(Asi |W s
i )
}
.

A consistent estimator ḡN for ḡ0 can be obtained by plugging in the empirical counterpart of
PN0 above, resulting in an estimator:

ḡN = arg max
ḡ∈Hg

 1
N

N∑
i=1

log ḡ(Asi |W s
i )

 .
That is, ḡN is the maximum likelihood estimator of ḡ0 that uses the pooled sample (Asi ,W s

i ),
for i= 1, . . . ,N , treating the dependent N units as iid.

Proof. See Appendix A of our technical report [114].

The TMLE algorithm ψ∗N for N connected units
Having defined the estimators Q̄N , ḡN , ḡ∗N and Q̄W,N , the TMLE ψ∗N is obtained by first
constructing the model update Q̄∗N for Q̄N , as described in step 1. below, and then evaluating
ψ∗N as a substitution estimator for the mapping Ψ̄, as described in step 2. below.

1. Define the following parametric submodel for Q̄N : LogitQ̄N (ε) = ε+ LogitQ̄N and
define the following weighted log-likelihood loss function:

Lw(Q̄N (ε))(Os) =−
N∑
i=1

log
{
Q̄N (ε)(Asi ,W s

i )Yi(1− Q̄N (ε)(Asi ,W s
i ))1−Yi

} ḡ∗N
ḡN

(Asi |W s
i ).

The model update Q̄∗N is defined as Q̄N (εN ) = Expit
(
LogitQ̄N + εN

)
, where εN min-

imizes the above loss, i.e., εN = argminεLw(Q̄N (ε))(Os). That is, one can fit εN by
simply running the intercept-only weighted logistic regression using the pooled sample
of N observations (W s

i ,A
s
i ,Yi), for i= 1, . . . ,N , with outcome Yi, intercept ε, using off-

sets LogitQ̄N (Asi ,W s
i ), predicted weights ḡ∗N (Asi |W s

i )/ḡN (Asi |W s
i ) and no covariates.

The fitted intercept is the maximum likelihood fit εN for ε, yielding the model update
Q̄∗N ,which can be evaluated for any fixed (as,ws), by first computing the initial model
prediction Q̄N (as,ws) and then evaluating the update Q̄N (εN ).

2. The TMLE ψ∗N = Ψ̄N (Q̄∗N , Q̄W,N ) of ψ0 is defined as the following substitution estima-
tor:

ψ∗N = 1
N

N∑
i=1

∫
as
Q̄∗N (as,W s

i )ḡ∗N,NPMLE(as |W s
i )dµ(as),

where ḡ∗N,NPMLE is a NPMLE substitution estimator for ḡ∗0 := h̄∗(G∗,QW,0)/q̄W (QW,0),
obtained by plugging in the user-defined G∗ and the empirical counterpart QW,N for
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QW,0 which puts mass one on observed W = (W1, . . . ,WN ). Hence, the estimator
ḡ∗N,NPMLE is defined as follows:

ḡ∗N,NPMLE(as|ws) = 1/N∑
ihi(G∗,QW,N )(as,ws)

1/N∑
iQW s

i ,N
(ws) ,

for each (as,ws)∈ (As,Ws). The above TMLE ψ∗N might require evaluation of ḡ∗N,NPMLE
for every possible as(a,W) in the support of A∗, and hence could be computationally
challenging to implement in practice, especially for non-degenerate g∗ and multivari-
ate (asi : i = 1, . . . ,N). However, we also note that the above TMLE ψ∗N takes on the
following algebraically equivalent form:

ψ∗N = 1
N

N∑
i=1

∫
a
Q̄∗N (asi (a,W),wsi (W))g∗(a |W)dµ(a),

which does not require computing ḡ∗N,NPMLE . For non-degenerate g∗, the latter ex-
pression for ψ∗N can be closely approximated by sampling from g∗ and performing
Monte Carlo integration. That is, we propose evaluating ψ∗N by iterating the following
procedure j = 1, . . . ,M times: (1) Sample N observations A∗j = (A∗j,1, . . . ,A∗j,N ) from
g∗(a|W), conditionally on observed W = (W1, . . . ,WN ); (2) Apply the summary mea-
sure mappings, constructing the following summary dataset (A∗sj,i,W s

i ), for i= 1, . . . ,N ,
where each A∗sj,i := asi (A∗j ,W); and (3) Evaluate the Monte Carlo approximation to ψ∗N
for iteration j as:

ψ∗j,N = 1
N

N∑
i=1

Q̄∗N (As∗j,i,W s
i ).

The Monte Carlo estimate ψ̄∗N of ψ∗N is then obtained by averaging ψ∗j,N across j =
1, . . . ,M , where M is chosen large enough to guarantee a small approximation error
to ψ∗N . Finally, we note that one could substantially reduce the computation time of
this algorithm by simply re-using the summary datasets (A∗sj,i,W s

i ) that were already
constructed while performing direct estimation of ḡ∗0 from Section 1.4.

1.5 Asymptotic normality and inference for the
TMLE

Having defined the TMLE ψ∗N = Ψ̄(Q̄∗N , Q̄W,N ) for our parameter Ψ̄(Q̄0, Q̄W,0), our goal
now is to conduct inference. However, we start with an asymptotic analysis of the process
(ψ∗N − Ψ̄N (Q̄0, Q̄W,0)), where Ψ̄N (Q̄0, Q̄W,0) is a data-adaptive target parameter indexed by
fixed ḡ∗N . We then show that our results can be easily extended to allow inference for our
original parameter of interest Ψ̄(Q̄0, Q̄W,0) defined with respect to true ḡ∗0.
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As described in the Appendix D of our technical report [114], TMLE Ψ̄(Q̄∗N , Q̄W,N ) is
constructed to solve the following empirical score equation:

1
N

N∑
i=1

D̄N (Q̄∗N , Q̄W,N , ḡN )(Osi ) = 0,

where D̄N (Q̄, ḡ) is the EIC for the data-adaptive parameter Ψ̄N (Q̄) := EȲḡ∗=ḡ∗N (Theorem
1.3.2). Using the identity for D̄N (Q̄, ḡ) shown in the Appendix D of [114], we have that:

Ψ̄N (Q̄)− Ψ̄N (Q̄0) =−P̄0D̄
N (Q̄, ḡ) + R̄2(Q̄, Q̄0, ḡ, ḡ0),

where we use the notation Q̄= (Q̄, Q̄W ) and R̄2 is second order term provided in Appendix
D of [114]. Since P̄0 is defined as a mixture 1/N∑

iP0,i, and combined with the fact that
our TMLE solves the above efficient score equation, we obtain:

Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0) = 1
N

∑
i

[
D̄N (Q̄∗N , ḡN )(Osi )−P0,iD̄

N (Q̄∗N , ḡN )
]
+ R̄2,N .

By having fast enough rates for ḡN and Q̄∗N , one can show that R2,N = oP (N−1/2) and by
the empirical process and asymptotic equicontinuity analysis conducted in [63], using the
same conditions as in Theorem 2 of [63], it follows that this empirical process applied to
estimated D̄N is up to oP (N−1/2) equal to the empirical process for the fixed limit, where
we use D̄N

0 (Osi ) to denote this limit and we have:

Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0) = 1
N

∑
i

[
D̄N

0 (Osi )−P0,iD̄
N
0
]
+oP (N−1/2).

Finally, using the analogue analysis to the one conducted in [63], we can show that the above
process converges to a normal limiting distribution at

√
N rate, with its asymptotic variance

given by the following limit:

σ2
0,ḡ∗ = lim

N→∞

1
N

∑
i,j

R(i, j)E[D̄N
0 (Osi )D̄N

0 (Osj)],

for (i, j) ∈ {1, . . . ,N}2 and R(i, j) = 1 when Fi ∩Fj 6= ∅, and R(i, j) = 0 otherwise, and we
always have that R(i, i) = 1, for all i = 1, . . . ,N . We also refer to Theorem 2 in [63] for the
full list of assumptions required for asymptotic normality of

√
N(Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0)).

The above result provides us with inference for the parameter Ψ̄N (Q̄0) (i.e., the data-
adaptive parameter indexed by ḡ∗N ). We now perform the derivation which will also allow us
to conduct inference for the parameter Ψ̄(Q̄0) defined with respect to true ḡ∗0. Specifically, by
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applying the same arguments as above, we can perform the following asymptotic expansion:

Ψ̄N (Q̄∗N )− Ψ̄(Q̄0)
=Ψ̄N (Q̄∗N )− Ψ̄N (Q̄0) + Ψ̄N (Q̄0)− Ψ̄(Q̄0)

= 1
N

∑
i

[
D̄N

0 (Osi )−P0,iD̄
N
0
]
+ 1
N

∑
i

[
D̄ḡ∗

0,i(Osi )−P0,iD̄
ḡ∗

0,i
]
+oP (N−1/2)

= 1
N

∑
i

[
D̄i,0−P0,iD̄i,0

]
+oP (N−1/2),

where the contribution Dḡ∗

0 = 1/N∑
i D̄

ḡ∗

0,i above was defined in the EIC in Theorem 1.3.3.
We also note that the above expansion must hold for our TMLE Ψ̄(Q̄∗N , Q̄W,N ), since is
solves the score equation given by:

1
N

N∑
i=1

D̄ḡ∗

i (Q̄N , ḡ∗NPMLE,N )(W) = 0.

By using the same set of arguments as before, we can now conclude that the above process
will converge to a normal limiting distribution, i.e.,:

√
N(Ψ̄N (Q̄∗N )− Ψ̄(Q̄0))⇒d N(0,σ2

0),

with σ2
0 given by the following limit:

σ2
0 = lim

N→∞

1
N

∑
i,j

R(i, j)E[D̄0(Osi )D̄0(Osj)],

which includes additional terms D̄ḡ∗

i,0 and we assumeR(i, j) = 1 when Fi∩Fj 6= ∅, andR(i, j) =
0 otherwise, and we always have that R(i, i) = 1, for all i= 1, . . . ,N . We also note that this
TMLE Ψ̄N (Q̄∗N ) will achieve the semi-parametric efficiency bound if both Q̄N and ḡN are
consistent for Q̄0 and ḡ0, under regularity conditions stated in [63], meaning that such an
estimator is locally efficient at PN0 .

Having a consistent estimator of σ2
0 would yield asymptotically valid confidence intervals

for ψ0. A reasonable approach to estimating σ2
0 is to plug in the estimates Q̄N = (Q̄N , Q̄W,N ),

ḡN , ḡ∗N and Ψ̄(Q̄∗N ), obtaining the plug-in estimator D̄N for D̄0, and then evaluate the above
expectations E[D̄N (Osi )D̄N (Osj)] with respect to their empirical counterparts, resulting in
an estimator σ2

N of σ2
0. We thus arrive at the following estimator of σ2

0:

σ2
N = 1

N

∑
i,j

R(i, j)
[
D̄N (Osi )D̄N (Ōj)

]
,

where

D̄N (Osi ) =D̄(Q̄N , ḡN , ḡ∗N ,ψ∗N )(Osi )

= ḡ
∗
N

ḡN
(Asi |W s

i )
[
Yi− Q̄N (Asi ,W s

i )
]
+
[
Ψi(Q̄N ,QW,N )− Ψ̄N (Q̄∗N )

]
,
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for
Ψi(Q̄N ,QW,N ) =

∫
a
Q̄N (asi (a,W),wsi (W))g∗(a |W)

and

Ψ̄N (Q̄∗N ) = 1
N

N∑
i=1

∫
a
Q̄∗N (asi (a,W),wsi (W))g∗(a |W).

Given an estimator σ2
N , one can construct a 95% confidence interval (CI) ψ∗N ±1.96σN/

√
N ,

which, under the assumption of consistency of σ2
N for σ2, will have correct asymptotic cov-

erage. We note that the this estimator does not require assuming that W1, . . . ,WN are
independent, beyond the modeling assumptions on QW,0 ∈M from Section 1.2. Further-
more, we know from the results in iid data that the such EIC-based confidence intervals
will generally provide correct coverage when Q̄N and ḡN are correctly specified, and will be
conservative if only ḡN is specified correctly. Thus, we would expect our estimator σ2

N to be
also conservative when the model for Q̄0 is misspecified, analogous to the result from the iid
data, and we also test the validity of this conjecture with a simulation study.

1.6 Simulation study
We performed a network simulation study evaluating the finite sample bias and variance
of the TMLE presented in Section 1.4. We also evaluated the finite sample coverage of
the confidence intervals described in Section 1.5. In addition to TMLE, we also used the
Inverse Probability Weighted (IPTW) estimator and the G-computation substitution esti-
mator, where both of these estimators are defined below. All estimation was performed in
R language [96] using a stand-alone package tmlenet [116]. The results are reported for
networks consisting of N = 500 and N = 1,000 observations. The estimation was repeated
by sampling 10,000 datasets. Due to computing time limitations, each unit in the network
was allowed to be connected to at most two other units (at most two friends in Fi, for each
i = 1, . . . ,N). However, we note that since the same estimand would generally be obtained
only once when using the actual observed data, one should be able to employ the tmlenet
R package for estimation in more realistic network datasets where observed units may have
much higher degrees of connectivity. The data generating distribution used in these simula-
tions is described in more detail in Appendix 1.10. Briefly, we first sampled N iid baseline
covariates, W = (W1, . . . ,WN ). For each unit i, we then generated Fi by first sampling its
size, |Fi|, uniformly from {0,1,2}, followed by uniform sampling without replacement of Fi
from the population of N − 1 units (all units, except i). The network-induced dependence
among units was then simulated in the following manner. Each treatment Ai was sampled
as a Bernoulli random variable, with its probability of success depending on the baseline
covariate values of units in Fi∪{i}. Similarly, each outcome Yi was sampled as a Bernoulli
random variable, with its probability of success depending on the baseline covariate values
and treatments of units in Fi∪{i}. The probability of success for each Ai was defined as a
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logit-linear function of the 2-dimensional summary (Wi,
∑
jWj : j ∈ Fi), given as:

P0(Ai = 1 |W s
i ) = expit(α0 +α1Wi+α2

∑
j∈Fi

Wj).

Similarly, the probability of success for each Yi was defined as a logit-linear function of the
4-dimensional summary (Wi,

∑
jWj ,Ai,

∑
jAj : j ∈ Fi), given as:

Q̄0(Asi ,W s
i ) = expit(β0 +β1Ai+β2

∑
j∈Fi

Aj +β
′
1Wi+β

′
2
∑
j∈Fi

Wj).

In contrast, the estimation of the common-in-i Q̄0 and the mixture density ḡ0 was based
on non-parametrically defined summary measures, i.e., we let W s

i = (|Fi|,Wi,Wj : j ∈ Fi)
and Asi = (Ai,Aj : j ∈ Fi), such that, for all i, |W s

i | = 4 and |Asi | = 3. Whenever unit i
had fewer than 2 friends (|Fi|< 2), the remainders of W s

i and Asi were filled with zeros
to ensure the same summary measure dimensionality across i. The common-in-i model
Q̄N for Q̄0 was then estimated by fitting a logistic regression model to a pooled sample
of N units, using covariates (Asi ,W s

i ). The estimation of the conditional mixture density
ḡ0(as |ws) proceeded as follows. First, for any (as,ws) ∈ (Ās×W̄s), such that as ∈ {0,1}3
and as = (as(1),as(2),as(3)), we factorized P (Ās = as | W̄ s = ws) as:

P (Ās = as | W̄ s = ws) = P (Ās(1) = as(1), Ās(2) = as(2), Ās(3) = as(3) | W̄ s = ws)
= P (Ās(1) = as(1) | W̄ s = ws)
×P (Ās(2) = as(2) | Ās(1) = as(1), W̄ s = ws)
×P (Ās(3) = as(3) | Ās(1) = as(1), Ās(2) = as(2), W̄ s = ws).

We then fit three separate logistic regression models, each estimating one of the factors in
the above factorization, as if we were fitting common-in-i models using an iid sample of
N observations (Asi ,W s

i ). That is, the first factor P (Ās(1) = 1|W̄ s) was fit as if we were
estimating a common-in-i model P (Asi (1) = 1|W s

i ) for N iid observations (Ai,W s
i )Ni=1 (note

that Asi (1) =Ai). Similarly, the second factor was fit as if we were estimating a common-in-i
model for P (Asi (2) = 1|Ai,W s

i ), and so on. The resulting three fits were then combined in
order to obtain the estimate ḡN (as|ws) of ḡ0(as|ws). We estimated ḡ∗0 in a similar way,
except that we first sampled a large dataset of observations (A∗i ,Wi) from g∗ and QW,N , for
i = 1, . . . ,mN , then constructed the summary data W s

i = (Wi,Wj : j ∈ Fi), A∗si = (A∗i ,A∗j :
j ∈ Fi), and finally estimated ḡ∗N by factorizing P (Ā∗ = as |W̄ s = ws) into three factors and
fitting three logistic regressions to a pooled sample (A∗i ,Wi) of mN observations.

The stochastic intervention g∗(A|W) was defined as a common-in-i intervention g∗p on
each Ai, which assigned Ai = 1 with some constant probability p, i.e., P (A∗i = 1) = p. Our
target parameter was then defined as the sample-average of N outcomes under g∗p, where
we use ψ0(g∗p) to denote the parameter’s true value. In our simulations we then estimated
a discrete dose response curve {ψ0(g∗p)} for p ∈ [0,0.1, . . . ,0.9,1]. We also truncated the
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observation-specific weights ḡ∗N (as |ws)/ḡN (as |ws) when their values exceeded 105. Finally,
the confidence intervals for the TMLE were constructed based on variance estimator σ2

N from
Section 1.5. Lastly, we compared σ2

N with an alternative asymptotic variance estimator σ̃2
N

presented in [63], which requires the consistency of Q̄N and ḡN and is given by:

σ̃2
N = 1

N

 N∑
i=1

ḡ∗N
ḡN

(Asi ,W s
i )(Yi− Q̄N (Asi ,W s

i ))
2

+ 1
N

N∑
i1,i2=1

fW,i1fW,i2I(Fi1 ∩Fi2 6= ∅),

for

fW,i =
∫
a
Q̄N (asi (a),wsi (W ))g∗i (a|W )−

∫
w

[∫
a
Q̄N (asi (a),wsi (W ))g∗i (a|w)

]
QW,N (w).

IPTW (Horvitz-Thompson) estimator
The IPTW estimator is based on the TMLE weights ḡ0/ḡ∗0 from Section 1.4 and is defined
as the weighted average of the observed outcomes Yi, weighted by ḡ∗N/ḡN :

ψIPTW,N = 1
N

N∑
i=1

Yi

[
ḡ∗N
ḡN

(Asi |W s
i )
]
,

where ḡN is an estimator of the conditional mixture ḡ0(G0,QW,0) defined in Section 1.3
and ḡ∗N is an estimator of ḡ∗0(G∗,QW,0), also defined in Section 1.3. The estimators ḡN
and ḡ∗N are described in general in Section 1.4 and are also described above for the case of
non-parametrically defined summary measures. We also conducted inference for ψIPTW,N
by relying on the same ideas described in Section 1.5. That is, we used the iid-data influence
curve IC(P̄0) of ψIPTW,N in a model that assumes ḡ∗0 and ḡ0 are known, characterizing the
asymptotic variance of ψIPTW,N by the following limit:

σ2
IPTW,0 = lim

N→∞

1
N

∑
i,j

R(i, j)EP0 [IC(P̄0)(Oi)IC(P̄0)(Oj)],

with R(i, j) = 1 when Fi∩Fj 6= ∅, and R(i, j) = 0 otherwise. Replacing the unknown compo-
nents of P̄0 in IC(P̄0) with corresponding estimates, we then obtained the following estimator
σ2
IPTW,N of σ2

IPTW,0:

σ2
IPTW,N = 1

N

∑
i,j

[
R(i, j)(Yi

ḡ∗N
ḡN

(Asi |W s
i )−ψIPTW,N )(Yj

ḡ∗N
ḡN

(Asj |W s
j )−ψIPTW,N )

]
,

for IC(P̄0)(Osi ) = Yi [ḡ∗0/ḡ0] (Asi |W s
i )−ψ0. We then constructed 95% CIs as ψIPTW,N ±

1.96σ2
IPTW,N/

√
N .
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G-computation estimator
The G-computation substitution estimator ψGCOMP,N = Ψ(Q̄N ,QW,N ) for ψ0 is based on
the un-targeted model Q̄N for the common-in-i conditional expectation of Yi, as a function of
the summary data (Asi ,W s

i ). Given stochastic intervention g∗, the G-computation estimator
is obtained as:

ψGCOMP,N = 1
N

N∑
i=1

∫
a
Q̄N (asi (a,W),W s

i )g∗(a |W)

where QW,N is a NPMLE that puts mass 1 on observed vector W. Evaluation of this
estimator is equivalent to the Monte Carlo integration procedure described for the TMLE
ψ∗N in Section 1.4, except that we use the initial estimator Q̄N for Q̄0 instead of its targeted
version Q̄∗N . The asymptotic variance of ψGCOMP,N was not estimated and no CIs were
constructed.

Results
Our simulations compared three different model specification scenarios for Q̄0 and ḡ∗0/ḡ0:
“(a) Q and ḡ∗/ḡ correct” indicates that the models for both estimators, Q̄0 and ḡ∗0/ḡ0, were
correctly specified; “(b) only ḡ∗/ḡ correct” indicates that the model for the estimator of Q̄0
was misspecified, while the model for the estimator of ḡ∗0/ḡ0 was specified correctly; finally,
“(c) only Q correct” indicates that the model for the estimator of Q̄0 was specified correctly,
while the model for the estimator of ḡ∗0/ḡ0 was misspecified. Figures 1.1 and 1.2 present
the simulation results for finite sample bias and empirical variance. Bias was plotted as
the estimate minus the true parameter value (ψN (g∗p)−ψ0(g∗p)), with different stochastic
interventions g∗p presented on the x-axis as “% Treated”. Overall, our simulation results
suggest that TMLE performs well in finite samples with dependent observations. We were
able to demonstrate the double robustness property of TMLE, with it being unbiased in each
of the three considered scenarios. Our results also indicate that the other two estimators
are unbiased for scenario (a), but can perform poorly in alternative scenarios (b) and (c).
Overall, we found the IPTW estimator to be the most variable and also most susceptible to
near-positivity violations.

The coverage results are presented in Figures 1.3-1.5, where we plotted the 95% CI
coverage for various asymptotic variance estimators, along with the mean CI length. We
first compared the TMLE coverage of our proposed variance estimator, σ2

N , from Section 1.5
to the TMLE coverage based on the iid variance estimate σ2

IID,N that made no adjustments
for correlated observations, i.e., σ2

IID,N is the EIC-based variance estimator that assumes
data are iid. Our results in Figure 1.3 indicate that σ2

IID,N tended to under-estimate the
variance of TMLE, resulting in CIs that were too narrow for both sample sizes. We expect
the coverage issues for σ2

IID,N to become even more pronounced when the between-unit
dependence increases, as may be the case in more realistic network scenarios with units
having much higher degrees of connectivity.
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TMLE IPTW G-COMP
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ψ
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−
ψ
0

TMLE IPTW G-COMP

(a) Q and ḡ∗/ḡ correct

Figure 1.1: Empirical distributions for TMLE, IPTW and G-COMP, centered at the truth
and estimated over 10,000 simulated data sets of size 500 (top row) and size 1,000 (bottom
row) for scenario (a) - correctly specified Q and ḡ∗/ḡ. Colored ribbons mark the 2.5th to
97.5th percentile ranges of the estimands. The centered IPTW estimates outside the range
of ±1 were removed.

In addition, the CIs for our dependent-data variance estimate σ2
N become conservative

when Q̄N was misspecified. The latter result was expected based on the predictions from
the semi-parametric efficiency theory for iid data. In Figure 1.4 we compared the coverage
of IPTW with that of TMLE. Finally, we compared the TMLE coverage for our dependent-
data variance estimate σ2

N to the alternative asymptotic variance estimate σ̃2
N from [63].

The simulation results of this comparison in Figure 1.5 show nearly identical coverage under
correctly specified Q̄N . However, when Q̄N is misspecified, the two estimators behaved
differently, with σ̃2

N showing slightly lower coverage for some sections of the estimated dose
response curve. We also note that near positivity violations will generally increase the
variability of our estimators. In particular, one would expect the near positivity violations
to be more pronounced closer to the tail-ends of the discrete dose response curve {ψ0(g∗p)},
namely, for values of p close to 0 or 1. Indeed, this is also demonstrated in our simulations,
where we noted increasing variability of all estimators closer to the edges of the estimated
dose response curve, which also contributes to a small drop in coverage.
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(c) only Q correct

Figure 1.2: Empirical distributions for TMLE, IPTW and G-COMP, centered at the truth
and estimated over 10,000 simulated data sets of size 500 (top row) and size 1,000 (bottom
row) for scenarios: (b) - only ḡ∗/ḡ correctly specified; and (c) - only Q correctly specified.
Colored ribbons mark the 2.5th to 97.5th percentile ranges of the estimands. The centered
IPTW estimates outside the range of ±1 were removed.



CHAPTER 1. SEMI-PARAMETRIC ESTIMATION IN NETWORK DATA 28

S
im

N
50

0
S
im

N
10

00

0.
93

0.
94

0.
95

0
25

50
7
5

10
0

0
25

50
75

1
00

%
T

re
at

ed

CICoverage

T
M

L
E

C
I

(σ
2 N

)

T
M

L
E

C
I

(σ
2 I
I
D
,N

)

(a
)
Q

an
d
ḡ
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1.7 Intervening on groups of friends and intervening
on network

Estimation for an arbitrary collection of stochastic interventions
We now show that the estimation framework presented thus far can be easily adapted to
the estimation of the sample-average treatment effects for an arbitrary collection of i-specific
stochastic interventions g∗Fi , where each g∗Fi may intervene on the treatments of i’s friends
in addition to intervening on the treatment of i itself. A collection of such interventions
involving all units, {g∗Fi : i= 1, . . . ,N}, generally cannot be described by a single intervention
g∗ on A = (A1, . . . ,AN ) given W = (W1, . . . ,WN ). For example, consider the problem of
estimating the direct average treatment effect in a network of N connected individuals,
where we define each g∗Fi by intervening on a unit-specific treatment, Ai, setting it to a
constant (zero or one), but leave unchanged the distribution of Aj for i’s friends j ∈ Fi
intact. That is, we assume the intervention for each Aj is stochastically sampled from its
observed distribution G0(Aj |W s

j ) or instead deterministically set to its observed value aj .
This type of direct effect parameter has been previously explored in spillover studies, for
example, in the study of the effects of deworming among rural Kenyan primary schools by
[72] and in its replication study by [30]. We are interested in estimation of the following
target parameter,

ψ0 = Ψ(PN0 ) = 1
N

N∑
i=1

Eq0,g∗Fi

[
Y
g∗Fi
i

]
,

defined as the average of expectations of Y
g∗Fi
i , where each outcome Y

g∗Fi
i is generated under

the i-specific post-intervention distribution that replaces the observed treatment allocation
for i and j ∈ Fi with g∗Fi as just described. Clearly the collection of such i-specific interven-
tions across all N units is incompatible with a single joint stochastic intervention g∗ on A
given W, since the intervention g∗Fj for j 6= i and j ∈ Fi requires setting Aj to a constant one
or zero, while the intervention g∗Fi requires that Aj is randomly sampled from g0 or is set to
aj . Nonetheless, this target parameter ψ0 remains well-defined with respect to a collection
{g∗Fi : i= 1, . . . ,N}, and we may apply the same arguments as in Section 1.3, noting that ψ0
can be equivalently written as:

ψ0 = 1
N

N∑
i=1

∫
a,w

Q̄0(asi (a,w),wsi (w))g∗Fi(a|w)qW,0(w)dµ(a,w)

= 1
N

N∑
i=1

∫
as,ws

Q̄0(as,ws)h∗i,0(as,ws)dµ(as,ws)

=
∫
as,ws

Q̄0(as,ws)h̄∗0(as,ws)dµ(as,ws),

where h∗i,0(g∗Fi ,qW,0) is the density determined by g∗Fi(a|w), qW,0 and the i-specific summary
measures asi (a,w),wsi (w), and h̄∗0 is a mixture of h∗i,0, defined as h̄∗0(as,ws) := 1/N∑N

i=1h
∗
i,0(as,ws).
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We also note that when (W,A) are discrete, one obtains:

h∗i,0(as,ws) =
∫

a,w
I(asi (a,w) = as,wsi (w) = ws)g∗Fi(a|w)qW,0(w)dµa,w(a,w).

Thus, this new target parameter Ψ(PN0 ) can still be represented by an equivalent mixture
mapping Ψ̄(P̄0) from Theorem 1.3.1 and hence, the efficient influence curve of this new
Ψ(PN0 ) is given by the same D̄ from Theorem 1.3.3. In the above, we also assumed that such
i-specific densities h∗i,0(as,ws) are well-defined with respect to some common dominating
measure µa,w, with h̄∗0 being factorized as h̄∗0(as,ws) = ḡ∗0(as|ws)q̄W,0(ws), which provides
the definition of ḡ∗0. Hence, the TMLE framework from Section 1.4 can be directly applied
to estimation of these types of parameters, with the only modification that we now require
that each i-specific summary A∗si is sampled conditionally from its i-specific intervention g∗Fi
on A given W. In particular, we use Lemma 1.4.1 to obtain a reasonable approximation for
ḡ∗0 by modifying it’s direct estimator from Section 1.4 in the following manner: First, obtain
a large simulated dataset of i-specific summaries (A∗si ,W s

i ), for i= 1, . . . ,N , where each A∗si is
derived by sampling (Ag∗Fi ,W) from (g∗Fi ,QW,N ) and then applying the summary measure
mapping asi (A

g∗Fi ,W). Next, fit an estimator ḡ∗N of ḡ∗0 by treating the simulated sample
(A∗si ,W s

i ) as iid, applying the same maximum likelihood-based approach as earlier. Similarly,
the Monte Carlo evaluation step for the TMLE ψ∗N from Section 1.4 is modified to take into
account these i-specific interventions g∗Fi . That is, instead of sampling (A∗,W) from g∗, each

Monte Carlo iteration j now consists of sampling A
g∗Fi
j = (A

g∗Fi
j,1 , . . . ,A

g∗Fi
j,N ) from g∗Fi(a|W), for

each i = 1, . . . ,N , conditional on the observed W, with a resulting dataset of N summary
observations (A∗sj,i,W s

i ) constructed by applying the i-specific mappings A∗sj,i := asi (A
g∗Fi
j ,W),

for i= 1, . . . ,N .

Estimation for interventions on the network structure F
Overview. Observed network data structure. We note that our framework can be
also applied to estimation of the effect of intervening on the network structure. Suppose
that we observe at baseline some initial network F0 = (F 0

1 , . . . ,F
0
N ) for the community of

N connected units and we are treating F0 as fixed. As before, we are assuming that the
maximum number of friends for each unit (i.e., the dimensionality of each F 0

i ) is bounded by
some constant K that doesn’t depend on N . We then collect data on N baseline covariates
W = (W1, . . . ,WN ), followed by a random draw of another network profile F = (F1, . . . ,FN )
and the outcomes Y = (Y1, . . . ,YN ), where each Fi is now based on the initial network F 0

i .
Thus, the observed data on N connected units is given by O = (F0,W,F,Y) and we assume
the exposure for each unit i is given by the set Fi. Since we are interested in interventions
which will modify the observed network profile F (e.g., adding or removing some friends in
each Fi) it is natural to allow Fi to be random, but driven by i’s own covariates and the
covariates of i’s friends from F 0

i . Thus, we assume that the i-specific conditional distribution
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GFi,0 for Fi given (F0,W) only depends on the initial network offset F 0
i and the baseline

covariates (Wi,Wj : j ∈F 0
i ). Furthermore, we assume its conditional density gFi,0(Fi |F0,W)

is well-defined. We also assume that QY,0, the common-in-i conditional distribution of Yi
given W, depends only on (Wi,Wj : j ∈ Fi), i.e., units j from this newly drawn friend set Fi.

Network interventions and target parameter. We follow the framework outlined in
Section 1.2 and define the intervention on a network profile F as a user-supplied density
g∗(F∗ |W) that replaces the observed conditional density g0(F |W), where we also as-
sumed that the initial network offset F0 is included in W. Alternatively, we could also
follow Section 1.7 and define our intervention as a collection of the user-supplied i-specific
densities {g∗Fi : i = 1, . . . ,N}, where each g∗Fi(F

∗
i |W) replaces the true i-specific density

gFi,0(Fi |W). As noted in Section 1.7, a collection of such i-specific stochastic interventions
generally cannot be described by a single multivariate intervention g∗ on F = (F1, . . . ,FN )
given W = (W1, . . . ,WN ) and may result in an incompatible network intervention. Nonethe-
less, these are still well-defined interventions and we note that the target parameter indexed
by such i-specific interventions g∗Fi(F

∗
i |W) is still well-defined. We also note that the types

of interventions we will consider will generally use the current network sets Fi as inputs,
to produce intervened network sets F ∗i . Therefore, we are concerned here with stochastic
interventions which depend on the current sets Fi. Even if the intervention itself is a de-
terministic function of Fi (e.g., always remove the first friend), it is still stochastic by the
nature of its dependence on Fi.

As a motivating example, consider an intervention defined for i = 1, . . . ,N that removes
certain friends j ∈ Fi of each unit i when δ(Wj)≥ r, where r is some pre-defined cutoff value
and δ(Wj) is some user-defined function mapping Wj in R (e.g., δ(Wj) characterizes the
baseline “risk-profile” of j). This intervention defines the post-intervention distribution that
replaces QY,0(Wj : j ∈ Fi), i.e., the observed conditional distribution of Yi given W, with
a new distribution QY,0(Wj : j ∈ F ∗i ), where F ∗i is the intervened friend set such that the
unit k ∈ F ∗i only if k ∈ Fi and δ(Wk) < r. We now define our statistical parameter as the
sample-average of the expected outcomes under the i-specific post-intervention distributions
that replace each observed network allocations gFi,0 with such intervention densities g∗Fi :

Ψ(PN0 ) = 1
N

N∑
i=1

Eq0,g∗Fi

[
Y
g∗Fi
i

]
.

Statistical model and dimension reduction assumptions. We have described how
the interventions on the networks sets Fi fit within our previously outlined framework in
Section 1.2, where Fi defines the exposure for each unit i. Our next step is concerned with
dimensionality reduction, where we define the appropriate summary measures (W s

i ,A
s
i ), for

i = 1, . . . ,N , and then model conditional distribution of Yi as a fixed-dimensional function
of (Wi,A

s
i ). In order to be able to intervene on Fi we have to assume that the conditional

distributionQY,0 depends on all W through anN dimensional set (WjI(j ∈Fi) : j= 1, . . . ,N).
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That is, we have so far assumed that QY,0 is a function of (Wi,Wj : j ∈Fi). Replacing Fi with
the intervened friend set F ∗i implies that QY,0 becomes a function of (Wi,Wj : j ∈ F ∗i ). In
that sense, Yi depends on all W, except that for most j, we have I(j ∈ Fi) = 0 and hence Wj

makes no real contribution to QY,0, unless j ∈ Fi. In summary, we change the dependence of
Yi on particular Wj in W by changing the composition of the set Fi and we only intervene
on the way Yi may depend on a particular Wj through indicators I(j ∈ Fi), for j = 1, . . . ,N .
This also implies that the conditional distribution of the outcome Yi is now truly a function
of the entire N dimensional set W = (W1, . . . ,WN ), making estimation of QY,0 particularly
challenging. Thus, we first need to make additional simplifying assumptions which would
allow us to estimate QY,0.

For convenience, we now assume that i ∈ F 0
i , i ∈ Fi and i ∈ F ∗i , for all i = 1, . . . ,N (i.e.,

i is always connected to itself). Assume that the i’s network draw Fi is always a finite
dimensional augmentation of the initial network offset F 0

i . That is, the set of possible
realizations of Fi is restricted to be within some close proximity of F 0

i . We note that
the network profile F can be viewed as an N ×N adjacency matrix of indicators and our
assumptions imply that rather then allowing F to be any possible realization of an N ×N
adjacency matrix, we restrict F to finite-dimensional perturbations of matrix F0, allowing
F to only change locally as a function of F0 and W. For example, rather than allowing Fi
to draw any new friend j ∈ {1, . . . ,N}\i, one may assume that Fi is restricted to drawing a
new friend j only when j is in a set F 0+

i := ∪j∈{Fi∪i}F
0
j . In this case we are assuming that

in the new network realization Fi can only add friend j if i and j had at least one friend
in common at baseline (i.e., there was at most 2nd degree of connectivity between i and j).
Such an assumption implies that Fi is no longer of dimension N , but is rather of a fixed
dimension that only depends on K. The set of possible network interventions on Fi, namely,
each intervened F ∗i , is now similarly restricted to realizations of the same finite-dimensional
set F 0+

i .
Having defined Fi as a realization of the finite dimensional set F+

i , we define the unit’s
exposure Ai, for i = 1, . . . ,N , as a finite-dimensional set of indicators (I(j ∈ Fi) : j ∈ F 0+

i ),
namely, each Ai is a binary vector of the common-in-i dimension K+, with each non-zero
entry in Ai denotes which units in F 0+

i are actual friends of i. The i-specific network
intervention A∗i can be defined by directly intervening on the indicators I(j ∈ Fi) in Ai. We
define the baseline summary measure W s

i :=wsi (W) as a finite dimensional set (Wj : j ∈F 0+
i ),

for i = 1, . . . ,N . Additionally, we define the exposure summary measure asi (Ai,W s
i ) that

depends on (Ai,W s
i ) only as a function of the set (WjI(j ∈ Fi) : j ∈ F 0+

i ), i.e.,

Asi := asi (Ai,W s
i ) = asi (WjI(j ∈ Fi) : j ∈ F 0+

i ),

for i = 1, . . . ,N , and we assume each asi (·) maps into Rd, for a common-in-i dimension d.
Next, we model the conditional probability of the outcome Yi as a common-in-i function
QY,0 that depends on (A,W) only as a function of the summary Asi , for i = 1, . . . ,N . Note
that the crucial assumption that asi (·) is a function of (WjI(j ∈ Fi) : j ∈ F 0+

i ) allows us to
take full advantage of the dimensionality reduction due to asi (·) and still define the target
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parameters which actually correspond to the effects of intervening on the observed network
realization F. We may also assume that Yi depends on some common-in-i summary w̃s(Wj :
j ∈ F 0+

i ) = w̃s(W s
i ) that is unrelated to the new network draw Fi, and hence would not be

affected by an intervention F ∗i on Fi. Note that such modeling restrictions on Fi now make
it possible to estimate our parameter Ψ(PN0 ).

With a slight abuse of notation, we use gFi,0(Ai|W) to denote the conditional density of
Ai given W, and similarly, we use g∗Fi(A

∗
i |W) to denote the i-specific stochastic intervention

on Ai, implied by F ∗i . We also note that due to our modeling assumptions for the conditional
distribution of Fi given (F0,W), we have that gFi,0(Ai|W) = gFi,0(Ai|W s

i ) and g∗Fi(Ai|W) =
g∗Fi(Ai|W

s
i ), which also leads to the following representation of our target parameter:

Ψ(PN0 ) = 1
N

N∑
i=1

EQWs
i
,0

[
Eg∗Fi

[
Q̄0(asi (A∗i ,W s

i ), w̃s(W s
i )) |W s

i

]]

= 1
N

N∑
i=1

∫
ai,w

s
i

Q̄0(asi (ai,wsi ), w̃s(wsi ))g∗Fi(ai|w
s
i )qW s

i ,0(wsi )dµ(ai,wsi )

= 1
N

N∑
i=1

∫
as,ws

Q̄0(as, w̃s(ws))h∗i,0(as,ws)dµ(a,ws)

=
∫
a,ws

Q̄0(as, w̃s(ws))h̄∗0(as,ws)dµ(as,ws)

=
∫
a,ws

Q̄0(as, w̃s(ws))ḡ∗0(as|ws)q̄W,0(ws)dµ(as,ws)

= Eq̄W,0

[
Eḡ∗0

[
Q̄0(Ās, w̃s(W̄ s)) | W̄ s

]]
.

This shows that the new target parameter Ψ(PN0 ) can be represented by an equivalent
mixture mapping Ψ̄(P̄0) from Theorem 1.3.1. Consequently, the efficient influence curve of
this new Ψ(PN0 ) is given by the same D̄ from Theorem 1.3.3. It follows that the estimation
procedure described in Section 1.4 remains unchanged when estimating this new parameter
Ψ(PN0 ). As before, we also assume that the i-specific densities h̄∗0(as,ws) are well-defined with
respect to some common dominating measure, and that h̄∗0 can be factorized as h̄∗0(as,ws) =
ḡ∗0(as|ws)q̄W (ws).

As we describe in an example below, given a particular context, one might assume that
the summary measures Asi are of lower dimensionality than the identity mapping (WjI(j ∈
Fi) : j ∈ F 0+

i ). For instance, one may be able to define some low-dimensional summaries
of (I(j ∈ Fi)Wj : j ∈ F 0+

i ), which incorporate various features of unit i’s network and the
covariates of i’s friends. One then has to assume that the conditional outcome model QY,0
for each Yi depends only on such low-dimensional features. Furthermore, if aYi (·) and w̃s(·)
depend only on some subset of (Wj : j ∈ F 0+

i ), then W s
i can be also redefined as a summary

of lower dimension that only includes the subset of (Wj : j ∈ F 0+
i ) or the specific features of

this subset. The direct estimation of the conditional mixtures ḡ0 and ḡ∗0 is then performed
conditional on this lower-dimensional summary W s

i .
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Example. Suppose that we gather some initial data on a network of sexual partners (F0 =
F 0

1 , . . . ,F
0
N ) in a community-based observational study of HIV risk factors. For each unit

i, we measure the baseline covariates, Wi, which may include baseline HIV infection status
(Hi) along with various risk factors. We also assume that after some period of time the
network of sexual partners on each unit was measured again. This new network realization
for unit i is denoted as set Fi and it defines our exposure of interest. Suppose that several
months later data was collected on the binary outcome Yi which indicated whether subject i
contracted HIV during the follow-up period. Our scientific question of interest is to determine
the expected incidence of HIV under a hypothetical intervention on the network of sexual
partners of each unit i. We note that our dimension reduction assumptions imply that the
set of possible realizations of i’s partners in a new network draw Fi is restricted to units who
were already connected to i at baseline through a common partner, the set we previously
denoted as F 0+

i . The exposure Ai is defined as a vector of indicators I(j ∈ Fi) based on the
set of all possible partner realizations j ∈ F 0+

i . We now assume that QY,0, the conditional
probability of unit i contracting HIV, depends on i’s baseline covariates (Wi) and the total
number of i’s current partners (nFi := ∑K+

j=1Ai(j)). We also assume that QY,0 depends on
the covariates of i’s current partners in Ai only as a function of a lower-dimensional summary
measure. For example, we suppose that the risk of contracting HIV for unit i also depends
on the proportion of the total number of i’s partners who had HIV at baseline (pHi :=
(1/nFi)

∑
j∈FiHj), as well as the proportion of i’s partners with high-risk as determined

by δ(Wj) > r1, i.e, the summary pRi = (1/nFi)
∑
j∈Fi I(δ(Wj) > r), where δ(·) maps the

covariates in Wj into a real line. We now suppose that the exposure summary is defined as
Asi := (nFi,pHi,pRi), and the baseline summary is defined as W s

i := (Wi, δ(Wj) : j ∈ F 0+
i ).

We also consider individual interventions g∗Fi on Fi that replace the observed partners of i in
Fi with another set of partners F ∗i . For example, we consider the i-specific intervention g∗Fi
that decreases the total number of i’s partners by stochastically removing some j ∈ Fi, where
this probability of removing a partner j ∈ Fi can be a function of j’s baseline risk-profile
δ(Wj). Such an intervention g∗Fi implies a new exposure set A∗i and an intervention-specific
summary A∗si := (nF ∗i ,pH∗i ,pR∗i ), where nF ∗i :=∑K+

j=1A
∗
i (j), pH∗i := (1/nF ∗i )∑j∈F ∗i Hj and

pR∗i := (1/nF ∗i )∑j∈F ∗i I(δ(Wj)> r). One can now directly apply the TMLE framework from
Section 1.4 to estimate the sample-average of the expected outcomes Yi under such network
interventions gF ∗i , for i = 1, . . . ,N . In particular, we first need to estimate the conditional
mixtures ḡ0(Asi |W s

i ) and ḡ∗0(A∗i |W s
i ) using the direct estimation approach, which then allows

us to evaluate the clever covariate based on N predictions [ḡ∗N/ḡN ] (Asi |W s
i ). We then proceed

to fit a common-in-i initial model Q̄N for the regression of Yi given (Asi ,Wi), followed by the
TMLE update Q̄∗N for Q̄N .



CHAPTER 1. SEMI-PARAMETRIC ESTIMATION IN NETWORK DATA 37

1.8 Discussion
In this chapter we describe a practical application of the TMLE framework towards the goal
of estimation of the sample-average treatment effects in network-dependent data. Our first
objective was to assume a realistic semi-parametric data generating model, which reflected
the types of between-unit dependence one may encounter in real-life observational network
study, for example, when the study units are connected via a social or geographical net-
work. Our approach included a number of statistical assumptions, such as, the assumption
of a certain conditional independence of outcomes and the assumption of fixed-dimension
summary measures, which allowed us to perform estimation and inference in sample size
one problems. Having defined our semi-parametric statistical modelM, we also defined our
target of estimation Ψ(PN ) as a mapping from the joint distribution PN on N connected
units, for PN ∈M. We then showed in Section 1.3 that this target parameter depends on the
joint distribution of the data only as a function of the mixture distribution P̄ , where P̄ was
given as a mixture of the unit-specific components Pi of PN . While this gave us a novel iid
interpretation for our target parameter, such mixture mapping representation also implied
that our estimation problem was reduced to the problem of estimating the relevant factors of
the mixture P̄ . We have argued that such dependent-data parameters can then be estimated
by simply ignoring the dependence between connected observations (e.g., Lemma 1.4.1), sug-
gesting that an entire class of the iid data estimators, such as the iid TMLE algorithm we
described in this chapter, may be applied for estimation in dependent data models. That is,
we presented the dependent-data TMLE from [63] as a typical iid-data TMLE, with an un-
usual caveat that our iid-data stochastic intervention ḡ∗0 depends on the true distribution of
the observed data. We also used the efficient influence curve (EIC) for our target parameter,
to provide a simple and consistent estimator of the true asymptotic variance of our TMLE.
Our proposed variance estimator took into account the known network structure, making
adjustments for correlated outcomes of connected units. We assessed the validity of our
inferential framework with a finite sample network simulation study. In particular, the finite
sample performance of our proposed TMLE was compared to the parametric G-computation
estimator and the IPTW estimator. Lastly, we assessed the finite sample coverage of our
estimated asymptotic confidence intervals, e.g., comparing our dependent-data inference to
one that ignores the dependence among units (i.e., using the EIC-based variance estimator
that treats units as iid). While our simulation results do not necessarily show as low of a
coverage as one would expect from the latter iid variance estimator, we nonetheless observed
coverage that was consistently below the expected 95%, and was not improved by increasing
the sample size. Moreover, we expect coverage for such iid variance estimators to become
increasingly worse as one moves towards more realistic network scenarios characterized by
denser networks and higher levels of between-unit dependence. We leave this topic to be
explored in future simulation studies.

We extended the dependent-data TMLE framework first described in [63] towards the
estimation of a much larger class of parameters, such as the direct effect under interference.
We have also shown that our framework can be extended to define interventions on the
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network itself. In particular, in Section 1.7 we described how one can estimate the post-
intervention outcomes for interventions that statically or stochastically modify the initial
network structure F0. Furthermore, we no longer require complete independence of the
baseline covariates for conducting valid statistical inference for our TMLE. Finally, we believe
our work provides an important proof of concept, demonstrating that estimation and valid
statistical inference for dependent data collected from a single network are possible in this
large class of semi-parametric models.

We note that the TMLE update Q̄∗N presented in this chapter differs slightly from the one
described in [63] in terms of its suggested parametric submodel fluctuation, {Q̄N (ε) : ε}, with
the latter TMLE update being based on the following parametric submodel: LogitQ̄N (ε) =
LogitQ̄N + εḡ∗0/ḡ0. Both of these fluctuations result in TMLEs with equivalent asymptotic
properties, as both updates solve the same empirical score equation. However, the two
may differ in their finite sample properties. In particular, the TMLE we present here may
be less sensitive to practical positivity violations, while providing similar bias reduction
as the TMLE from [63]. We also note that the TMLE update presented here may be
less computationally intensive, since it only requires N evaluations of the clever covariate
[ḡ∗N/ḡN ] (Asi |W s

i ), for i= 1, . . . ,N . The TMLE algorithm proposed in [63] may require com-
puting ḡ∗N/ḡN (asi |W s

i ) for every asi in the support of A∗si , for i = 1, . . . ,N (i.e., all asi such
that g∗si (asi |W s

i )> 0) due to its specific parametric submodel update.
We now note a few possible directions for future research. First, additional simulation

studies should explore the performance of our TMLE in more complex networks, such as,
networks generated from the preferential attachment model with power law node degree
distribution [7] or networks generated under the small world model [135]. Second, it would be
of interest to study how our proposed framework may be applied to estimate the change in the
observed sample-average outcome when an intervention is applied to another community with
a different network structure and different distribution of baseline covariates, a notion known
as transportability [91, 8, 90]. Third, it is of scientific interest to explore how our estimation
framework can be extended to real-world problems in which data on only a subsample of the
full network is available. Moreover, the network structure on the observed units themselves is
frequently not fully known, in which case it may be necessary to incorporate the uncertainty
introduced by inferring the network structure from the observed data [45]. Finally, future
work will investigate the estimation of causal parameters in longitudinal settings where the
effect of a single time point intervention can propagate over time through the network, as is
typically the case when one describes contagion in social networks [34, 122].
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1.10 Chapter apendix

Data generating distribution for a simulation study
We implemented a simulation with observed data consisting of N dependent units O =
(F,W,A,Y), where F = (F1, . . . ,FN ) is a vector of friends for each unit, W = (W1, . . . ,WN )
is a vector of baseline covariates, A = (A1, . . . ,AN ) is a vector of binary treatments and
Y = (Y1, . . . ,YN ) is a vector of binary outcomes. The data for each unit i = 1, . . . ,N is
generated as,

Wi ∼Ber (0.35)
|Fi| ∼ U (0,1,2)

Fi | |Fi| ∼ Sample|Fi| ({1, . . . ,N}\i)
Ai |W,Fi ∼Ber (g0 (Wi,(Wj : j ∈ Fi)))

Yi | A,W,Fi ∼Ber
(
Q̄0 (Ai,Wi,(Aj ,Wj : j ∈ Fi))

)
,

where Fi ∈ {1, . . . ,n} is a set of of unit indices of size |Fi| randomly sampled without replace-
ment, Ai is generated conditionally on the entire vector of baseline covariates W and Yi is
generated conditionally on W and all treatment assignments A.

We generate A with g0 that depends on unit and unit’s friends’ baseline covariates,

ḡ0 (Wi,(Wj : j ∈ Fi)) = expit
−1.2 + 1.5Wi+

∑
j∈Fi

0.6Wj

 ,
with Q̄0 defined as

Q̄0 (Ai,Wi,(Aj ,Wj : j ∈ Fi)) = expit
−2.5 + 1.5Wi+ 0.5Ai+

∑
j∈Fi

1.5Wj +
∑
j∈Fi

1.5Aj

 .
Notation index
• O = (W,A,Y): the observed data on N units

• W = (W1, . . . ,WN ): the observed baseline covariates on N dependent units

• F = (F1, . . . ,FN ): the observed network on N units (“network profile”)

• A = (A1, . . . ,AN ): the observed exposures on N dependent units

• A∗ = (A∗1, . . . ,A∗): intervened exposures sampled under conditional distribution G∗,
given W
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• Y = (Y1, . . . ,YN ): the observed outcomes on N connected units

• W s
i = wsi (W), Asi = asi (A,W): fixed-dimension summary measures, dimensionality is

the same across all i.

• Os = (Ws,As,Y): observed summary data, where Ws = (W s
1 , . . . ,W

s
N ) , As = (As1, . . . ,AsN ),

for i= 1, . . . ,N

• O∗s = (Ws,A∗s,Y∗): summary data sampled from post-intervention distribution un-
der stochastic intervention g∗, with A∗s = (A∗s1 , . . . ,A∗sN ) and Y∗ = (Y ∗1 , . . . ,Y ∗N )

• PN0 : true joint distribution of the observed data O

• pN0 : true joint density of the observed data O

• QW,0: true joint distribution of N observed baseline covariates W

• qW,0: true joint density of N observed baseline covariates W

• G0(A |W): joint conditional distribution for the observed exposures A, given baseline
covariates W

• g0(A |W): joint conditional density for the observed exposures A, given baseline
covariates W

• G0(Ai |W s
i ): common-in-i conditional distribution for the observed exposure Ai, given

the i-specific summary measure of the baseline covariates

• g0(Ai |W s
i ): common-in-i conditional density for the observed exposure Ai, given the

i-specific summary measure of the baseline covariates

• G∗(A∗ |W): user-specified distribution of the intervened network exposure vector
A∗ = (A∗1, . . . ,A∗N ), conditional on baseline covariates W = (W1, . . . ,WN )

• g∗(A∗ |W): density for the user-specified stochastic intervention of the intervened ex-
posure vector A∗= (A∗1, . . . ,A∗N ), conditional on all baseline covariates W = (W1, . . . ,WN )

• Q̄0(as,ws): conditional expectation of the outcome, defined as EPN0 [Yi |Asi = as,W s
i =

ws], assumed common across i when conditioned on the same fixed summary measure
values as,ws

• H̄i,0(Asi ,W s
i ): i-specific summary measure distribution for (Asi ,W s

i )

• hi,0(Asi ,W s
i ): i-specific density for the distribution H̄i,0(Asi ,W s

i )

• H∗i,0(Asi ,W s
i ): i-specific summary measure distribution for (A∗si ,W s

i )

• h∗i,0(A∗si ,W s
i ): i-specific density for the distribution H̄∗i,0(A∗si ,W s

i )
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• h̄0(Ās, W̄ s): mixture density 1/N∑
ihi,0 determined by g0 and QW,0, with (Ās, W̄ s)

being a random variable sampled from h̄0

• h̄∗0(Ā∗s, W̄ s): mixture density 1/N∑
ih
∗
i,0 determined by g∗ and QW,0, with (Ā∗s, W̄ s)

being a random variable sampled from h̄∗0

• ḡ0(Ās | W̄ s): the conditional mixture density implied by factorization

h̄0(Ās, W̄ s) = ḡ0(Ās | W̄ s)Q̄W s,0(W̄ s)

• ḡ∗0(Ā∗s | W̄ s): the conditional mixture density implied by factorization

h̄∗(Ā∗s, W̄ s) = ḡ∗0(Ā∗s | W̄ s)Q̄W s,0(W̄ s)

.
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Chapter 2

simcausal R Package for Complex
Simulations in Causal Inference

2.1 Introduction

Motivation for simcausal
This chapter describes the simcausal package [115], a comprehensive set of tools for the
specification and simulation of complex longitudinal data structures to study causal inference
methodologies. The package is developed using the R system for statistical computing [96]
and is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.
R-project.org/package=simcausal. Our package is intended to provide a flexible tool to
facilitate the process of conducting transparent and reproducible simulation studies, with a
particular emphasis on the types of data and interventions frequently encountered in real-
world causal inference problems. For example, our package simplifies the simulation of
observational data based on random clinical monitoring to evaluate the effect of time-varying
interventions in the presence of time-dependent confounding and sources of selection bias
(e.g., informative right censoring). The package provides a novel user-interface that allows
concise and intuitive expression of complex functional dependencies between a large number
of nodes that may represent time-varying random variables (e.g., repeated measurements
over time of the same subject-matter attribute, such as, blood pressure).

Statisticians often rely on simulation studies for assessing the appropriateness and accu-
racy of different statistical methods [22]. These studies generally help evaluate and uncover
potential problems with a method because the statistician knows and controls the true data
generating distribution, which remains unknown in a real data study [54]. Hence, a simu-
lation study provides statisticians with a gold standard for evaluating and comparing the
performance of different statistical methods. The artificial population data is usually drawn
according to the specified model and the statistical procedure is then applied to such data
many times. For example, simulations have been applied to evaluate the bias of an esti-
mator [95, 20], study its asymptotic behavior [76], diagnose its sensitivity towards different

http://CRAN.R-project.org/package=simcausal
http://CRAN.R-project.org/package=simcausal
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modeling assumptions [93, 20], and determine the power of hypothesis tests [124]. Moreover,
it may not only be of value to find out that the statistical method works when its postu-
lated assumptions are true, but also to evaluate its robustness towards departures from the
required causal and statistical assumptions [32]. These are some of the common reasons
why simulation studies are increasingly being used in the medical literature [22, 61, 124,
28]. We also note that careful consideration should be given to a simulation study design
[22]. Indeed, simulations are of most value when there is some hope that they are capable of
capturing the complexities one might expect to see in real-world data-generating processes.
We also argue that careful attention should be paid to the structure and clarity of the simu-
lation code itself, not only to simplify the conduct and presentation of extensive and complex
simulation studies, but also to avoid coding errors which may lead to incorrect conclusions
and difficulty with reproducing the findings of such a simulation study.

In this package, data can be simulated using a broad range of distributions, such that
the resulting data generating distribution falls into a user-specified non-parametric structural
equation model (NPSEM) [85, 86, 84]. An NPSEM consists of a set of structural equations,
which describe the causal mechanisms for generating independent observations of a user-
specified data structure. Each structural equation is used to describe a single variable (call it
‘X’), which may be latent or observed. Specifically, the structural equation for X postulates
a mechanism in which Nature could have generated X, as a consequence of other endogenous
variables’ values and a random disturbance (representing the effect of exogenous variables).
Thus, defining X in this manner avoids having to make a commitment to a particular
parametric family of distributions or specific functional form in which X may relate to
other variables. As a result, an NPSEM enforces the separation of the notion of a causal
“effect” from its algebraic representation in a particular parametric family (i.e., a coefficient
in a linear causal model), and redefines an effect as a ‘general capacity to transmit changes
among variables’ [89, 88]. In particular, the NPSEM framework allows the extension of
the capabilities of traditional SEM methods to problems that involve discrete variables,
nonlinear dependencies, and heterogeneous treatment effects [35]. The interventions can
then be defined by replacing some of the equations in NPSEM with their intervened values,
which then defines the counterfactual data.

Our package was developed based on the principles of the NPSEM framework and thus
aims to provide the user with a toolkit for specifying and simulating data based on a very
large collection of distributions with often nonlinear relationships between the variables.
Moreover, simcausal is build around the language and the logic of counterfactuals: What
would happen if a subject received a different treatment? In other words, simcausal also
allows for specification and simulation of counterfactual data under various user-specified
interventions (e.g., static, dynamic, deterministic, or stochastic), which are referred to as
“actions”. These actions may represent exposure to treatment regimens, the occurrence or
non-occurrence of right-censoring events, or of clinical monitoring events (e.g., laboratory
measurements based on which treatment decisions may be made). Finally, the package
enables the computation of a selected set of “effects” (defined as user-specified features of the
distribution of some counterfactual data) that represent common causal quantities of interest,
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referred to as causal target parameters. For instance, treatment-specific means, the average
treatment effects (ATE) (on the multiplicative or additive scale) and coefficients from working
marginal structural model (MSM) [101, 77] are a few of the causal target parameters that
can be evaluated by the package. The computed value of a particular causal parameter can
then serve as the gold standard for evaluating and comparing different estimation methods,
e.g., evaluating finite sample bias of an estimator. We note that our package also provides
a valuable tool for incorporating and changing various causal independence assumptions
and then testing the sensitivity or robustness of the studied statistical methods towards
departures from those assumptions.

One of the possible examples of applying simcausal in practice includes simulating the
types of data collected on subjects in the fields of medicine and public health, e.g., elec-
tronic health-records data. Specifically, when one is interested in evaluating the utility and
appropriateness of a statistical procedure towards answering causal policy questions about
the effects of different interventions on the exposures of interest (e.g., the average effect of
a treatment for lowering blood pressure vs. placebo). In addition, our package provides
tools for converting simulated and real data between various formats, simplifying the data
processing as it may be required by different estimation R packages (e.g., converting longi-
tudinal data from wide to long formats, performing forward imputation on right-censored
data). Finally, we note that the simcausal package can be a useful instructional tool, since it
can elucidate understanding of complex causal concepts [55], for example, using a simulated
setting to demonstrate the validity of complex causal identifiability results, showing bias due
to unmeasured confounding [37], selection bias [36], and bias due to positivity violations [93].
In summary, these are just a few of the possible practical applications of simcausal: (a) Eval-
uating and comparing the performance of statistical methods and their sensitivity towards
departures from specific modeling assumptions; (b) Modeling simulations after real data sets
and technically validating an implementation of a novel statistical procedure; (c) Identify-
ing possible issues with statistical algorithms that were not or could not be predicted from
theory; and (d) Serving as an instructional tool for understanding complex causal theory in
practical simulated settings.

Comparison to other simulation packages
The CRAN system contains several R packages for conducting data simulations with various
statistical applications. We reference some of these packages below. Our review is not
intended to be exhaustive and we focus on two key aspects in which simcausal differ from
these other simulation tools.

First, simulations in the simcausal package are based on data generating distributions
that can be specified via general structural equation models. By allowing the specification
of a broad range of structural equations, the set of possible distributions available to the
analyst for simulating data is meant to be not overly restrictive. For instance, any sampling
distribution that is currently available in R or that can be user-defined in the R programming
environment can be used for defining the conditional distribution of a node given its parents.
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Some of the other R packages rely on alternative approaches for specifying and simulating
data. For example, the package gems [13] is based on the generalized multistate models, and
the package survsim [74] is based on the Weibull, log-logistic or log-normal models. Finally,
the following R simulation packages rely on linear structural equation models: lavaan [108],
lavaan.survey [82], sem [38, 39], semPLS [73], OpenMx [15, 14] and simsem [94]. The
latter group of R packages is traditionally described as being based on the LISREL model
[16]. We note that the purpose and formulation of LISREL framework differs from the
NPSEM framework that we adopt in simcausal, and we use the example in Section 2.3 to
help highlight some of the differences. However, describing all the technical details of these
two modeling approaches is beyond the scope of this chapter and we refer the reader to the
following sources for the additional details: [43, 89, 71, 88, 17, 112].

Second, unlike the simFrame package, which is meant as a general object-oriented tool
for designing simulation studies, the simcausal package is instead tailored to study causal
inference methodologies and is particularly suited to investigate problems based on complex
longitudinal data structures [101]. Indeed, simcausal provides a single pipeline for perform-
ing the following common steps frequently encountered in simulation studies from the causal
inference literature and described in details later in this chapter: defining the observed data
distribution, defining intervention/counterfactual distributions, defining causal parameters,
simulating observed and counterfactual data, and evaluating the true value of causal param-
eters. In addition, the package introduces an intuitive user-interface for specifying complex
data-generating distributions to emulate realistic real-world longitudinal data studies char-
acterized by a large number of repeated measurements of the same subject-matter attributes
over time. In particular, the simcausal package was designed to facilitate the study of
causal inference methods for investigating the effects of complex intervention regimens such
as dynamic and stochastic interventions (not just the common static and deterministic in-
tervention regimens), and summary measures of these effects defined by (working) marginal
structural models. We note, however, that while the package was initially developed for this
particular methodological research purpose, its utility can be extended to a broader range of
causal inference research, e.g., to perform simulation-based power calculations for informing
the design of real-world studies.

Organization of this chapter
The rest of this chapter is organized as follows. In Section 2.2, we provide an overview of
the technical details for a typical use of the simcausal package. In Section 2.3, we describe a
template workflow for a simple simulation study with single time point interventions, while
also drawing parallels with the traditional linear SEM framework. In Section 2.4, we describe
the use of the package for a more realistic and complex simulation study example based on
survival data with repeated measures and dynamic interventions at multiple time points.
In Section 2.4, we also apply the simcausal package to replicate some of the results of a
previously published simulation study by [78, 79]. In Section 2.5, we apply the simcausal
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package to replicate results of another published simulation study by [68]. We conclude with
a discussion in Section 2.6.

2.2 Technical details

NPSEM, causal parameter and causal graph
For the sake of clarity, we limit ourselves to describing a non-parametric structural equation
model [NPSEM, [86]] for the observed data collected from a simple single-time point inter-
vention study (no repeated measures on subjects over time) and we note that this NPSEM
can be easily extended to longitudinal settings with repeated measures. Suppose that we
collect data on baseline covariates, denoted as W , an exposure, denoted as A (e.g. treat-
ment variable), and an outcome of interest, denoted as Y . An NPSEM is a causal model
that describes how these variables could be generated from a system of equations, such as:
W = fW (UW ), A= fA(W,UA) and Y = fY (W,A,UY ). We note that an NPSEM is defined by
unspecified (non-random) functions fW , fA, fY , and a model on the probability distribution
PU of random “disturbances” U = (UW ,UA,UY ). These equations are non-parametric in the
sense that they make no specific statement about the functional form of fW , fA, fY . We
define the observed data1as O = (W,A,Y ), and we note that the allowed set of probability
distributions for O is referred to as the the statistical model and it is implied by the causal
model encoded by the above NPSEM (i.e., by the choice of f and the choice of the distri-
bution PU ). We also note that every parametric data-generating distribution defined in the
simcausal package can be described as an instance of a distribution in some NPSEM. Such
NPSEM encodes the independence assumptions between the endogenous variables. For in-
stance, the NPSEM described above assumes that the exposure A can depend on all baseline
variables W . As another example, suppose that (W,A,Y ) were collected from a clinical trial
in which the exposure A was assigned at random. In this case, A is independent of W ,
an assumption that can be encoded in the above NPSEM by removing W from the above
equation fA as follows: A= fA(UA).

The NPSEM also implicitly encodes the definition of counterfactual variables, i.e., vari-
ables which would result from some particular interventions on a set of endogenous vari-
ables. For example, the NPSEM can be modified as follows: W = fW (UW ), A = a, Ya =
fY (W,a,UY ), where the equation for W was kept unchanged, A was set to a known con-
stant a and Ya denotes the counterfactual outcome under an intervention that sets A = a.
In this chapter, we will refer to (W,a,Ya) as counterfactual data and we define our target
causal parameter as a function of such counterfactual data distribution, resulting from one
or more exposure intervention “a”. For example, the average treatment effect (ATE) can
be expressed as E [Y1−Y0]. The fundamental feature of the causal parameter defined in
this manner is that it remains a well-defined quantity under any probability distribution PU

1We use the term “observed data” to designate the collection of all non-latent endogenous variables. The
term “observed data” is meant to be opposed to the “counterfactual data” defined in the next paragraph.
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for the disturbances and any choice of functions f , a notion which we also highlight with
examples in Section 2.3.

Furthermore, suppose our goal is to evaluate the effect of the exposure with more than two
levels (e.g., categorical or time-varying A), in which case we could evaluate the above ATE
for any two possible combinations of different exposure levels. We could also undertake an
equivalent approach and characterize all such contrast with a saturated model for the mean
counterfactual outcome (E(Ya)), as indexed by the exposure levels a of interest. For example,
for an exposure with levels a ∈ {0,1,2}, we may use the following saturated MSM with three
parameters: E(Ya) = α0 + α1I(a = 1) + α2I(a = 2). This model then implies that each
possible contrast (ATE) can be recovered as a function of α= (α0,α1,α2), e.g., E(Y1−Y0) =
α1. However, this approach becomes problematic when dealing with small sample datasets
and high dimensional or continuous exposures. That is, suppose our goal is to characterize
the entire causal function of a given by {E(Ya) : a ∈ A}, where A represents the support
of a highly dimensional or continuous A. An alternative approach is to approximate the
true causal function {E(Ya) : a∈A} with some low-dimensional working marginal structural
model m(a|α). For example, one may define the working MSM as the following linear model:
m(a|α) = α0 +α1a+α2a2. Note, however, that the term “working MSM” implies that we
are not assuming E(Ya) = m(a|α), but instead we are defining our causal parameter (α) as
the best parametric approximation of the true function E(Ya) with m(a|α). That is, such a
working MSM made no assumptions about the true functional form of E(Ya) and thus made
no additional assumptions about the distribution of U and the functions f , beyond those
already implied by the NPSEM (e.g., independence of (UW ,UA,UY )). We also refer to [77]
for additional details and examples of working MSMs. Also note that the concept of such
working MSMs is easily extended to arbitrary functions, e.g., we could define m(a|α) as an
expit function when the outcome Y is binary.

We note that the above NPSEM can be equivalently represented as a Directed Acyclic
Graph (DAG) [85], such as the one in Figure 2.1 (left), by drawing arrows from causes to their
effects. Links in this DAG can be of two kinds: those that involve unmeasured quantities
are represented by dashed arrows and those that only involve measured quantities by solid
arrows. We note that each endogenous node in Figure 2.1 represents a single equation in the
above NPSEM. The causal assumptions in such a DAG are conveyed by the missing arrows,
i.e., in our second example of the NPSEM, the absence of a variable W from the right-hand
side of the equation for A= fA(UA) would correspond with no direct arrow between W and
A. The disturbances U (also referred to as ‘errors’) are enclosed in circles in the diagram on
the left because they represent unobserved (latent) factors that the modeler decides to keep
unexplained. When the error terms (UW ,UA,UY ) are assumed to be independent, the often-
used convention is to remove them from the causal DAG [88], as shown in Figure 2.1 (right),
with the implication that each of the remaining variables is subject to the influence of its own
independent error. This is also precisely how the function plotDAG of the simcausal package
will plot the diagram of the user-specified SEM, that is, omitting the implied independent
errors that influence each user-defined latent and endogenous node. We also refer to the
examples in Section 2.3 for illustrations of this functionality of simcausal.
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Figure 2.1: Two alternative ways to graphically represent the same structural equation model
(SEM) using directed acyclic graphs (DAGs). The left figure shows the independent (latent)
errors, while the right figure doesn’t.

D = DAG.empty()
↓

D =D+ node(. . .) + node(. . .)
↓

D = set.DAG(D) −→ sim(D)
↓

D =D+ action(. . .) −→ sim(D,actions = . . .)
↓

D = set.targetE(D,. . .)
D = set.targetMSM(D,. . .)

↓
eval.target(D)

Figure 2.2: Schematic of simcausal routines and the order in which one would usually call
such routines in a typical simulation study.

We note that simcausal was designed to facilitate simulations from NPSEM with mu-
tually independent disturbances. However, we also note that one can use simcausal to
simulate dependent errors (U) with an arbitrary correlation structure using one of the fol-
lowing methods: a) Sample U jointly using a user-specified multivariate distribution with a
specific correlation structure, e.g., multivariate normal or copula (see the documentation and
examples for the node function); b) Create a common (also latent) parent that has a direct
effect of all three variables in U (see the example in Section 2.3; or c) Perform Cholesky
decomposition of the covariance matrix Σ for a multivariate normal N(µ,Σ), then generate
correlated (UW ,UA,UY ) distributed as N(µ,Σ) based on the previously sampled independent
standard normal variables (see the example in Section 2.5).
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The workflow
Data structures. The following most common types of output are produced by the pack-
age.

parameterized causal DAG model - object that specifies the structural equation model,
along with interventions and the causal target parameter of interest.

observed data - data simulated from the (pre-intervention) distribution specified by the
structural equation model.

counterfactual data - data simulated from one or more post-intervention distributions
defined by actions on the structural equation model.

causal target parameter - the true value of the causal target parameter evaluated with
counterfactual data.

Routines. The following routines, also outlined in Figure 2.2, will be generally invoked by
a user, in the same order as presented below.

DAG.empty initiates an empty DAG object that contains no nodes.

node defines a node in the structural equation model and its conditional distribution, i.e.,
the outcome of one equation in the structural equation model and the formula that
links the outcome value to that of earlier covariates, referred to as parent nodes. A call
to node can specify either a single node or multiple nodes at once, with name and distr
being the only required arguments. To specify multiple nodes with a single node call,
one must also provide an indexing vector of integers as an argument t. In this case, each
node shares the same name, but is indexed by distinct values in t. The simultaneous
specification of multiple nodes is particularly relevant for providing a shorthand syntax
for defining a time-varying covariate, i.e., for defining repeated measurements over time
of the same subject-matter attribute, as shown in the example in Section 2.4.

add.nodes or D + node provide two equivalent ways of growing the structural equation
model by adding new nodes and their conditional distributions. Informally, these
routines are intended to be used to sequentially populate a DAG object with all the
structural equations that make up the causal model of interest. See Sections 2.3 and
2.4 for examples.

set.DAG locks the DAG object in the sense that no additional nodes can be subsequently
added to the structural equation model. In addition, this routine performs several
consistency checks of the user-populated DAG object. In particular, the routine attempts
to simulate observations to verify that all conditional distributions in the DAG object
are well-defined.
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sim simulates independent and identically distributed (iid) observations of the complete
node sequence defined by a DAG object. The output dataset is stored as a data.frame
and is referred to as the observed data. It can be structured in one of two formats, as
discussed in Section 2.4.

add.action or D + action provides two equivalent ways to define one or more actions.
An action modifies the conditional distribution of one or more nodes of the structural
equation model. The resulting data generating distribution is referred to as the post-
intervention distribution. It is saved in the DAG object alongside the original structural
equation model. See Sections 2.3 and 2.4 for examples.

sim(..., actions = ...) can also be used for simulating independent observations from
one or more post-intervention distributions, as specified by the actions argument.
The resulting output is a named list of data.frame objects, collectively referred to
as the counterfactual data. The number of data.frame objects in this list is equal
to the number of post-intervention distributions specified in the actions argument,
where each data.frame object is an iid sample from a particular post-intervention
distribution.

set.targetE and set.targetMSM define two distinct types of target causal parameters.
The output from these routines is the input DAG object with the definition of the
target causal parameter saved alongside the interventions. See Sections 2.3 and 2.4 for
examples defining various target parameters.

eval.target evaluates the causal parameter of interest using simulated counterfactual data.
As input, it can take previously simulated counterfactual data (i.e., the output of a
call to the sim(..., actions = ...) function) or, alternatively, the user can specify
the sample size n, based on which counterfactual data will be simulated first.

Specifying a structural equation model
The simcausal package encodes a structural equation model using a DAG object. The DAG
object is a collection of nodes, each node represented by a DAG.node object that captures a
single equation of the structural equation model. DAG.node objects are created by calling
the node function. When the node function is used to simultaneously define multiple nodes,
these nodes share the same name, but must be indexed by distinct user-specified integer
values of the time variable t, as shown in the example in Section 2.4. We will refer to a
collection of nodes defined simultaneously in this manner as a time-varying node and we will
refer to each node of such a collection as a measurement at a specific time point.

Each node is usually added to a growing DAG object by using either the add.nodes
function or equivalently the ’+’ function, as shown in the example in Sections 2.3 and
2.4. Each new node added to a DAG object must be uniquely identified by its name or the
combination of a name and a value for the time variable argument t.
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The user may explicitly specify the temporal ordering of each node using the order
argument of the node() function. However, if this argument is omitted, the add.nodes
function assigns the temporal ordering to a node by using the actual order in which this
node was added to the DAG object and, if applicable, the value of the time variable that
indexes this node (earlier added nodes receive a lower order value, compared to those that
are added later; nodes with a lower value for the t argument receive a lower order value,
compared to those with a higher value of t).

The node function also defines the conditional distribution of a node, given its parents,
with a combination of the sampling distribution specified by the distr argument and the
distributional parameters specified as additional named arguments to the node() function.
This distr argument can be set to the name of any R function that accepts an integer
argument named n and returns a vector of size n. Examples of such distribution functions
are provided in Section 2.3.

The distributional parameters are specified as additional named arguments of the node()
function and can be either constants or some summary measures of the parent nodes. Their
values can be set to any evaluable R expressions that may reference any standard or user-
specified R function, and also, may invoke a novel and intuitive shorthand syntax for ref-
erencing specific measurements of time-varying parent nodes, i.e., nodes identified by the
combination of a node name and a time point value t. The syntax for identifying specific
measurements of time-varying nodes is based on a re-purposed R square-bracket vector sub-
setting function ’[’: e.g., writing the expression sum(A[0:5]), where A is the name of a
previously defined time-varying node, defines the summary measure that is the sum of the
node values over time points t = 0,. . .,5. This syntax may also be invoked to simultaneously
define the conditional distribution of the measurements of a time-varying node over multiple
time points t at once. For example, defining the conditional distribution of a time-varying
node with the R expression sum(A[max(0, t - 5):t]) + t will resolve to different node
formulas for each measurement of the time-varying node, depending on the value of t:

1. A[0] at t = 0;

2. sum(A[0:1]) + 1 at t = 1, . . ., sum(A[0:5]) + 5 at t = 5;

3. sum(A[1:6]) + 6 at t = 6, . . ., sum(A[5:10]) + 10 at t = 10.

Concrete applications of this syntax are described in Section 2.4, as well as in the documen-
tation of the node() function (?node).

Note that the user can also define a causal model with one or more nodes that represent
the occurrence of end of follow-up (EFU) events (e.g., right-censoring events or failure events
of interest). Such nodes are defined by calling the node() function with the EFU argument
being set to TRUE. The EFU nodes encode binary random variables whose value of 1 indicates
that, by default, all of the subsequent nodes (i.e., nodes with a higher temporal order value)
are to be replaced with a constant NA (missing) value. As an alternative, the user may
choose to impute missing values for the time-varying node that represents the failure event
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of interest using the last time point value carried forward (LTCF) imputation method. This
imputation procedure consists in replacing missing values for measurements of a time-varying
node at time points t after an end of follow-up event with its last known measurement value
prior to the occurrence of an end of follow-up event. Additional details about this imputation
procedure are provided in the simcausal package vignette Section 4.6 [115].

Finally, we note that the package includes pre-written wrapper functions for random
sampling from some commonly employed distributions. These routines can be passed di-
rectly to the distr argument of the node function with the relevant distributional param-
eters on which they depend. These built-in functions can be listed at any time by calling
distr.list(). In particular, the routines "rbern", "rconst", and "rcat.b1" can be used
for specifying a Bernoulli distribution, a degenerate distribution (constant at a given value),
and a categorical distribution, respectively. One can also use any of the standard random
generating R functions, e.g., "rnorm" for sampling from the normal distribution and "runif"
for sampling from the uniform distribution, as demonstrated in Sections 2.3 and 2.3.

Specifying interventions
An intervention regimen (also referred to as action regimen) is defined as a sequence of
conditional distributions that replace the original distributions of a subset of nodes in a DAG
object. To specify an intervention regimen, the user must identify the set of nodes to be
intervened upon and provide new node distributions for them. The user may define a static,
dynamic, deterministic or stochastic intervention on any given node, depending on the type
of distributions specified. A deterministic static intervention is characterized by replacing
a node distribution with a degenerate distribution such that the node takes on a constant
value. A deterministic dynamic intervention is characterized by a conditional degenerate
distribution such that the node takes on a value that is only a function of the values of its
parents (i.e., a decision rule). A stochastic intervention is characterized by a non-degenerate
conditional distribution. A stochastic intervention is dynamic if it is characterized by a non-
degenerate conditional distribution that is defined as a function of the parent nodes and it is
static otherwise. Note that a particular intervention may span different types of nodes and
consist of different types of distributions, e.g., an intervention on a monitoring node can be
static, while the intervention on a treatment node from the same structural equation model
may be dynamic.

To define an intervention the user must call D + action(A, nodes = B) (or equivalently
add.action(D, A, nodes = B)), where D is a DAG object, A is a unique character string that
represents the intervention name, and B is a list of DAG.node objects defining the intervention
regimen. To construct B the user must first aggregate the output from one or more calls to
node (using c(..., ...)), with the name argument of the node function call set to node
names that already exist in the locked DAG object D. The example in Section 2.4 demonstrates
this functionality. Alternatively, repeated calls to add.action or D+action with the same
intervention name, e.g., A = "A1", allow the incremental definition of an intervention regimen
by passing each time a different node object, enabling iterative build-up of the collection B
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of the intervened nodes that define the intervention regimen. Note, however, that by calling
D + action or add.action(D, ...) with a new action name, e.g., action("A2", ...),
the user initiates the definition of a new intervention regimen.

Specifying a target causal parameter
The causal parameter of interest (possibly a vector) is defined by either calling the func-
tion set.targetE or set.targetMSM. The function set.targetE defines causal parameters
as the expected value(s) of DAG node(s) under one post-intervention distribution or the
contrast of such expected value(s) from two post-intervention distributions. The function
set.targetMSM defines causal parameters based on a working marginal structural model
[77]. In both cases, the true value of the causal parameter is defined by one or several
post-intervention distributions and can thus be approximated using counterfactual data.

The following types of causal parameters can be defined with the function set.targetE:

• The expectation of an outcome node under an intervention regimen denoted by d, where
the outcome under d is denoted by Yd. This parameter can be naturally generalized
to a vector of measurements of a time-varying node, i.e., the collection of nodes Yd(t)
sharing the same name, but indexed by distinct time points t that represents a sequence
of repeated measurements of the same attribute (e.g., a CD4 count or the indicator of
past occurrence of a given failure event):

E(Yd) or (E(Yd(t)))t=0,1,....

• The difference between two expectations of an outcome node under two interventions,
d1 and d0. This parameter can also be naturally generalized to a vector of measure-
ments of a time-varying node:

E(Yd1)−E(Yd0) or (E(Yd1(t))−E(Yd0(t)))t=0,1,....

• The ratio of two expectations of an outcome node under two interventions. This
parameter can also be naturally generalized to a vector of measurements of a time-
varying node:

E(Yd1)
E(Yd0) or

(
E(Yd1(t))
E(Yd0(t))

)
t=0,1,...

.

Note that if the DAG object contains nodes of type EFU = TRUE other than the outcome
nodes of interest Yd(t), the target parameter must be defined by intervention regimens that
set all such nodes that precede all outcomes of interest Yd(t) to 0. Also note that with such
intervention regimens, if the outcome node is time-varying of type EFU = TRUE then the
nodes Yd(t) remain well defined (equal to 1) even after the time point when the simulated
value for the outcome jumps to 1 for the first time. The nodes Yd(t) can then be interpreted
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as indicators of past failures in the absence of right-censoring events. The specification of
these target parameters is covered with examples in Sections 2.3 and 2.4.

When the definition of the target parameter is based on a working marginal structural
model, the vector of coefficients (denoted by α) of the working model defines the target
parameter. The definition of these coefficients relies on the specification of a particular
weighting function when the working model is not a correct model (see [77] for details). This
weighting function is set to the constant function of 1 in this package. The corresponding true
value of the coefficients α can then be approximated by running a standard (unweighted)
regression routines applied to simulated counterfactual data observations. The following
types of working models, denoted by m(), can be defined with the function set.targetMSM:

• The working linear or logistic model for the expectation of one outcome node under
intervention d, possibly conditional on baseline node(s) V , where a baseline node is
any node preceding the earliest node that is intervened upon, i.e., E(Yd | V ):

m(d,V |α).
Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on the mean CD4 count measured at one point in time.

• The working linear or logistic model for the expectation vector of measurements of a
time-varying outcome node, possibly conditional on baseline node(s) V , i.e., E(Yd(t) |
V ):

m(t,d,V |α), for t= 0,1, . . . .
Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on survival probabilities over time.

• The logistic working model for discrete-time hazards, i.e., for the probabilities that a
measurement of a time-varying outcome node of type EFU=TRUE is equal to 1 under
intervention d, given that the previous measurement of the time-varying outcome node
under intervention d is equal to 0, possibly conditional on baseline node(s) V , i.e.,
E(Yd(t) | Yd(t−1) = 0,V ):

m(t,d,V ), for t= 0,1, . . . .
Such a working model can, for example, be used to evaluate the effects of HIV treatment
regimens on discrete-time hazards of death over time.

Examples of the specification of the above target parameters are provided in Sections 2.3
and 2.4. As shown above, the working MSM formula m() can be a function of t, V and
d, where d is a unique identifier of each intervention regimen. In Sections 2.3 and 2.4 we
describe in detail how to specify such identifiers for d as part of the action function call.
Also note that the working MSM formula, m, may reference time-varying nodes using the
square-bracket syntax introduced in Section 2.2, as long as all such instances are embedded
within the syntax S(...). Example use of this syntax is provided in Section 2.4 (Example
2 of set.targetMSM).
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Simulating data and evaluating the target causal parameter
The simcausal package can simulate two types of data: 1) observed data, sampled from the
(pre-intervention) distribution specified by the structural equation model and 2) counter-
factual data, sampled from one or more post-intervention distributions defined by actions
on the structural equation model. Both types of data are simulated by invoking the sim
function and the user can set the seed for the random number generator using the argument
rndseed. The examples showing how to simulate observed data are provided in Sections 2.3
and 2.4, whereas the examples showing how to simulate counterfactual data are provided in
Sections 2.3 and 2.4.

We note that two types of structural equation models can be encoded with the DAG object:
1) models where some or all nodes are defined by specifying the “time” argument t to the
node function, or 2) models where the argument t is not used for any of the nodes. For
the first type of structural equation models, the simulated data can be structured in either
long or wide formats. A dataset is considered to be in wide format when each simulated
observation of the complete sequence of nodes is represented by only one row of data, with
each time-varying node represented by columns spanning distinct values of t. In contrast,
for a dataset in long format, each simulated observation is typically represented by multiple
rows of data indexed by distinct values of t and each time-varying node represented by a
single column. The format of the output data is controlled by setting the argument wide
of the sim function to TRUE or FALSE. The default setting for sim is to simulate data in
wide format, i.e., wide = TRUE. An example describing these two formats is provided in
Section 2.4.

In addition, as previously described, for nodes representing the occurrence of end of
follow-up events (i.e., censoring or outcome nodes declared with EFU = TRUE), the value of 1
indicates that, during data simulation, by default, all values of subsequent nodes (including
the outcome nodes) are set to missing (NA). To instead impute these missing values after
a particular end of follow-up event occurs (typically the outcome event) with the last time
point value carried forward (LTCF) method, the user must set the argument LTCF of the
sim function to the name of the EFU-type node that represents the end of follow-up event
of interest. This will result in carrying forward the last observed measurement value for all
time-varying nodes, after the value of the EFU node whose name is specified by the LTCF
argument is observed to be 1. For additional details see the package documentation for the
function sim.

In the last step of a typical workflow, the function eval.target is generally invoked for
estimation of the true value of a previously defined target causal parameter. The true value
is estimated using counterfactual data simulated from post-intervention distributions. The
function eval.target can be called with either previously simulated counterfactual data,
specified by the argument data or a sample size value, specified by the argument n. In the
latter case, counterfactual data with the user-specified sample size will be simulated first.
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2.3 Simulation study with single time point
interventions.

The following examples describe a typical workflow for specifying a structural equation
model, defining various interventions, simulating observed and counterfactual data, and
calculating various causal target parameters. The structural equation model chosen here
illustrates a common point treatment problem in which one is interested in evaluating the
effect of an intervention on one treatment node on a single outcome node using observational
data with confounding by baseline covariates. In addition, these examples demonstrate the
plotting functionality of the simcausal package that builds upon the igraph R package [29] to
visualize the Directed Acyclic Graph (DAG) [85, 86, 84] implied by the structural equation
model encoded in the DAG object.

We also undertake an approach similar to the one described in [35] and use the following
examples to highlight some of the differences between the non-parametric structural equation
models [86] and the traditional linear structural equation models based on the LISREL
framework [16]. Many traditional applications of structural equation modeling are devoted
to addressing the problem of the measurement in the exposure, and more precisely, to address
problems in which the true exposure of interest is a latent variable, such as talent, motivation
or political climate that cannot be observed directly, but that is instead measured via some
noisy and correlated proxies. Hence, the LISREL framework is frequently applied to formally
assess the causal effects of such latent variables. However, the primary intended goal of
simcausal is not to simulate such measurement error data, even though one could adapt
simcausal for that purpose. Instead, our package specifically focuses on data simulation for
the purpose of evaluating estimation methods for assessing the effect of exposures that can
be observed directly. Additionally, one may also use simcausal to simulate data problems
with latent variables that might impact the observed exposures of interest.

Specifying parametric structural equation models in simcausal
Suppose that we want to simulate data that could be generated in a hypothetical study
evaluating the effect of receiving school vouchers on mean test scores based on a sample of
students. We start by assuming that a latent covariate I represents the level of subject’s
true and unobserved intelligence, where I is categorical and its distribution is defined by
the node named "I" in the code example below. We also assume that I directly influences
the values of the three observed baseline covariates W = (W1,W2,W3) (nodes "W1", "W2"
and "W3" below) and we define the distribution of each W conditional on I. That is, the
observed baseline covariates in W will be correlated, since all three depend on a common
and latent parent I. We now let A (node "A" below) define the observed binary exposure
(receiving school vouchers), where the probability of success for A is defined as the following
logit-linear function2of W :

logit(P (A= 1|W )) = α0 +γAW,



CHAPTER 2. SIMCAUSAL R PACKAGE FOR COMPLEX SIMULATIONS IN
CAUSAL INFERENCE 57

for W = (W1,W2,W3)t, α0 = 4.2 and γA = (−0.5,0.1,0.2).
That is, the above model assumes that A is directly influenced by the observed variable

W , while the latent I has no direct influence on A. We also emphasize that we want
to study the effect of intervening on the observed variable(s), such as A, whereas in the
traditional measurement error model the focus might have been on modeling the effect of
the latent varible I on some observed outcome(s). The following example code defines the
distributions of (I,W,A). Specifically, we use the pre-defined R functions rcat.b1, rnorm,
runif and rbern to define the latent categorical node I, normal node W1, uniform node W2
and Bernoulli nodes W3 and A, respectively3. We also note that implicit in the specification
of these nodes is the specification of independent exogenous errors (disturbances), whose
distributions are defined by the distr arguments as shown below.

library("simcausal")
D <- DAG.empty()
D <- D +

node("I", distr = "rcat.b1",
probs = c(0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1)) +

node("W1", distr = "rnorm",
mean = ifelse(I == 1, 0, ifelse(I == 2, 3, 10)) + 0.6 * I, sd = 1) +

node("W2", distr = "runif",
min = 0.025*I, max = 0.7*I) +

node("W3", distr = "rbern",
prob = plogis(-0.5 + 0.7*W1 + 0.3*W2 - 0.2*I)) +

node("A", distr = "rbern",
prob = plogis(+4.2 - 0.5*W1 + 0.1*W2 + 0.2*W3))

Similarly, we assume that the outcome Y is influenced by an independent latent error
UY∼N(0,1), and we use the following code example to show how one might explicitly define
UY using a node named "U.Y"4:

D <- D + node("U.Y", distr = "rnorm", mean = 0, sd = 1)

2logit(x) = log[x/(1−x)]
3For details and examples on writing sampling functions for arbitrary distributions see Section 2.3. We

also refer to Section 2.3 for a description on how to specify node formulas (distributional parameters), such
as, the R expressions specified by the probs, mean, sd, min, max and prob arguments to node function.

4In simcausal, such disturbances would typically be defined implicitly as representing mutually indepen-
dent exogenous variables, as shown in the previous examples of node specification. We can however also
define them explicitly as endogenous variables. For example, this can be done for the purpose of defining
non-independent error terms. For simplicity here, we demonstrate how such error terms can be defined
explicitly and refer the reader to the previous Section 2.2 and help files for a descriptions of 3 alternative
methods for defining non-independent errors.
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The following example defines the outcome Y (node named "Y") by using the following
linear structural equation:

Y = β0 +β1A+β2I+γYW +UY ,

where β0 =−0.5, β1 = 1.2, β2 = 0.2 and γY = (0.1,0.3,0.2).
Note that in this example, we are assuming that the effect of exposure A on Y is the

same for every strata of W and I (i.e., homogeneous treatment effect). We also note that
the distribution of the node Y is defined below as degenerate (distr = "rconst"), since we
explicitly define its error term with the above node U.Y. That is, the following example uses
a pre-defined R function rconst, which puts mass one on the value of the node function
argument const:

D <- D + node("Y", distr = "rconst",
const = -0.5 + 1.2*A + 0.2*I + 0.1*W1 + 0.3*W2 + 0.2*W3 + U.Y)

Note that the names of all user-defined endogenous latent nodes must be specified within
the set.DAG function via the argument latent.v, as shown in this example:

Dset1 <- set.DAG(D, latent.v = c("I", "U.Y"))

Running the code above results in implicitly assigning a sampling order (temporal order)
to each node - based on the order in which the nodes were added to the DAG object D.
Alternatively, one can use the optional node() argument order to explicitly specify the integer
value of the sampling order of each node, as described in more detail in the documentation
for the node function. The resulting internal representation of the structural equation model
encoded by the DAG object Dset1 can be examined as follows:

str(Dset1)

In the example above, we are interested in the causal target parameter defined as the
average treatment effect (ATE) of school vouchers on mean test scores, which is generally
defined in the NPSEM framework as E(Y1−Y0). Analytically, one can show that in the
simple SEM defined above, the ATE is equal to the coefficient β1 [88].

Our example so far illustrates a scenario typical of the linear SEM literature in which the
effect of interest corresponds with a coefficient from one of the structural equations. We now
illustrate other more complex scenarios in which the effect of interest (ATE) is not equal
to one particular structural equation coefficient. In the following example, we modify the
above SEM for Y and allow for the effect of treatment on Y to vary by strata of W3:

Y = β0 +β1A+β∗1(AW3) +β2I+γYW +UY ,

where β0 = −0.5, β1 = 1.2, β∗1 = −0.5, β2 = 0.2 and γY = (0.2,0.2,0.2). Note that in this
example we moved away from the classical linear structural model for Y , specifically, we
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allowed for the causal effect of A on Y to vary by subject depending on their value of W3.
Finally, we note that whenever the node named "Y" is added again to the same DAG object
D, simcausal automatically overwrites the previously defined distribution of Y with the one
given by the new node function call, as demonstrated below.

D <- D + node("Y", distr = "rconst",
const = -0.5 + 1.2*A - 0.5*(A * W3) + 0.2*I + 0.2*(W1 + W2 + W3) + U.Y)

Dset2 <- set.DAG(D, latent.v = c("I", "U.Y"))

Note that for the above data generating distribution specified by the object Dset2, the
ATE (E(Y1−Y0)) is no longer equal to β1, but is rather equal to β1 +β∗1E(W3) (proof not
shown, but easily derived by following the same logic as in the previous example).

For our final example shown below, we re-define Y as a nonlinear function of the same
parent nodes used in the previous two examples:

Y =β1A+β2(W 2
1 +W 3

2 /10 +W3) +β3|UY |+β4I
2

+β5|
1

sin(UYW2 +A) |hY (UY ,W ) +β6(1−hY (UY ,W )),

where hY (UY ,W ) = I(|1/sin(UYW2)| ≤ 10), β1 = 1.2, β2 = 0.05, β3 = 0.7, β4 = 0.002, β5 =
0.02 and β6 = 5. Note that in this model for the outcome Y , the analytic derivation of the
ATE becomes intractable. However, one can use simcausal to find a Monte-Carlo approxi-
mation of the ATE from simulated counterfactual data, as shown in Section 2.3.

D <- D + node("Y", distr = "rconst",
const =

+1.2*A + 0.05*(W1ˆ2 + W2ˆ3 / 10 + W3) + 0.7*abs(U.Y) + 0.002*Iˆ2 +
+0.02*abs(1 / sin(U.Y * W2 + A)) * (abs(1/sin(U.Y * W2)) <= 10) +
+5*(abs(1/sin(U.Y * W2)) > 10))

Dset3 <- set.DAG(D, latent.v = c("I", "U.Y"))

We note that all three of the above structural equations for Y depend on exactly the same
variables, namely, (A,W,I). Therefore, the three parameterizations of the SEM specified by
the above objects Dset1, Dset2 and Dset3 are represented by the same DAG in Figure 2.3.
The DAG in Figure 2.3 was automatically generated by calling the function plotDAG. The
plotting is accomplished by using the visualization functionality from the igraph package
[29]. The directional arrows (solid and dashed) represent the functional dependencies in the
structural equation model. Specifically, the node of origin of each arrow is an extracted node
name from the node formula(s). The user-specified latent nodes are surrounded by circles,
and each functional dependency that originates at a latent node is displayed via a dashed
directional arrow5.

5Note that the appearance of the resulting diagram can be customized with additional arguments, as
demonstrated in the simcausal package vignette [115].
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Figure 2.3: Graphical representation of the structural equation model using a DAG, where
the latent nodes I and U.Y are enclosed in circles.

The above alternative examples for specifying the outcome variable Y also demonstrate
how simcausal can be applied for defining a variety of functional and distributional relation-
ships between the model variables, including those that can be specified by the traditional
linear structural equation models. We have also demonstrated that our package can be used
for defining the SEM with endogenous latent variables. The above examples also highlight
the merit of defining the target causal parameters in a way that remains meaningful for any
parametric specification of the SEM. As we demonstrate in Section 2.3 below, our package
provides exactly this type of functionality, allowing the user to define and evaluate various
causal target parameters as functions of the counterfactual data distribution.

Simulating observed data (sim)
Simulating observed data is accomplished by calling the function sim and specifying its
arguments DAG and n that indicate the causal model and sample size of interest. Below is an
example of how to simulate an observed dataset with 10,000 observations using the causal
model defined in the previous section. The output is a data.frame object.

Odat <- sim(DAG = Dset3, n = 10000, rndseed = 123)

The format of the output dataset is easily understood by examining the first row of the
data.frame returned by the sim function. Note that the latent variables ‘I’ and ‘U.Y’ are
absent from the simulated data, as shown below.

Odat[1,]

## ID W1 W2 W3 A Y
## 1 1 3.705826 0.1686546 1 1 7.080206
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Specifying interventions (+ action)
The example below defines two actions on the treatment node. The first action named
"A1" consists in replacing the distribution of the treatment node A with the degenerate
distribution at value 1. The second action named "A0" consists in replacing the distribution
of the treatment node A with the degenerate distribution at value 0. As shown below, these
interventions are defined by invoking the + action syntax on the existing DAG object. This
syntax automatically adds and saves the new intervention object within the original DAG
object, without overwriting it.

A1 <- node("A", distr = "rbern", prob = 1)
Dset3 <- Dset3 + action("A1", nodes = A1)
A0 <- node("A", distr = "rbern", prob = 0)
Dset3 <- Dset3 + action("A0", nodes = A0)

The added actions can be examined by looking at the result of the call A(Dset). Note that
A(Dset) returns a list of DAG.action objects, with each DAG.action encoding a particular
post-intervention distribution, i.e., it is a modified copy of the original DAG object, where the
original distribution of the node A is replaced with the degenerate distribution at value 0 or
1, for actions "A0" and "A1", respectively.

names(A(Dset3))
class(A(Dset3)[["A0"]])

Simulating counterfactual data (sim)
Simulating counterfactual data is accomplished by calling the function sim and specifying
its arguments DAG, actions and n to indicate the causal model, interventions, and sample
size of interest. Counterfactual data can be simulated for all actions stored in the DAG object
or a subset by setting the actions argument to the vector of the desired action names.

The example below shows how to use the sim function to simulate 100,000 observations for
each of the two actions, "A1" and "A0". These actions were defined as part of the DAG object
Dset above. The call to sim below produces a list of two named data.frame objects, where
each data.frame object contains observations simulated from the same post-intervention
distribution defined by one particular action only.

Xdat1 <- sim(DAG = Dset3, actions = c("A1", "A0"), n = 100000, rndseed = 123)
names(Xdat1)
nrow(Xdat1[["A1"]])
nrow(Xdat1[["A0"]])

The format of the output list is easily understood by examining the first row of each
data.frame object:
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Xdat1[["A1"]][1, ]
Xdat1[["A0"]][1, ]

Defining and evaluating various causal target parameters
Causal parameters defined with set.targetE

The first example below defines the causal quantity of interest as the expectation of node Y
under action "A1", i.e., E(Y1):

Dset3 <- set.targetE(Dset3, outcome = "Y", param = "A1")

The true value of the above causal parameter is now evaluated by calling the function
eval.target and passing the previously simulated counterfactual data object Xdat1.

eval.target(Dset3, data = Xdat1)$res

Alternatively, eval.target can be called without the simulated counterfactual data,
specifying the sample size argument n instead. In this case a counterfactual dataset with
the user-specified sample size is simulated first.

eval.target(Dset3, n = 100000, rndseed = 123)$res

The example below defines the causal target parameter as the ATE on the additive scale,
i.e., the expectation of Y under action "A1" minus its expectation under action "A0", given
by E(Y1−Y0):

Dset3 <- set.targetE(Dset3, outcome = "Y", param = "A1-A0")
eval.target(Dset3, data = Xdat1)$res

## Diff_Y
## 1.281203

Similarly, the ATE on the multiplicative scale given by E(Y1)/E(Y0) can be evaluated as
follows:

Dset3 <- set.targetE(Dset3, outcome = "Y", param = "A1/A0")
eval.target(Dset3, data = Xdat1)$res
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Causal parameters defined with set.targetMSM

To specify MSM target causal parameter, the user must provide the following arguments
to set.targetMSM: (1) the DAG object that contains all and only the actions of interest;
(2) outcome, the name of the outcome node (possibly time-varying); (3) for a time-varying
outcome node, the vector of time points t that index the outcome measurements of interest;
(4) form, the regression formula defining the working MSM; (5) family, the working model
family that is passed on to glm, e.g., family = "binomial" or family = "gaussian" for
a logistic or a linear working model; and (6) for time-to-event outcomes, the logical flag
hazard that indicates whether the working MSM describes discrete-time hazards (hazard =
TRUE) or survival probabilities (hazard = FALSE).

In the examples above, the two actions "A1" and "A0" are defined as deterministic static
interventions on the node A, setting it to either constant 0 or 1. Thus, each of these two
interventions is uniquely indexed by the post-intervention value of the node A itself. In the
following example, we instead introduce the variable d∈ {0,1} to explicitly index each of the
two post-intervention distributions when defining the two actions of interest. We then define
the target causal parameter as the coefficients of the following linear marginal structural
model m(d |α) = α0 +α1d. As expected, the estimated true value for α1 obtained below
corresponds exactly with the estimated value for the ATE on the additive scale obtained
above by running set.targetE with the parameter param = "A1-A0".

As just described, we now redefine the actions "A1" and "A0" by indexing the intervention
node formula (the distributional parameter prob) with parameter d before setting its values
to 0 or 1 by introducing an additional new argument named d into the action function call.
This creates an action- specific attribute variable d whose value uniquely identifies each of
the two actions and that will be included as an additional column variable to the simulating
counterfactual data sets.

newA <- node("A", distr = "rbern", prob = d)
Dset3 <- Dset3 + action("A1", nodes = newA, d = 1)
Dset3 <- Dset3 + action("A0", nodes = newA, d = 0)

Creating such an action-specific attribute d allows it to be referenced in the MSM regres-
sion formula as shown below:

msm.form <- "Y ˜ d"
Dset3 <- set.targetMSM(Dset3, outcome = "Y", form = msm.form,

family = "gaussian")
msm.res <- eval.target(Dset3, n = 100000, rndseed = 123)
msm.res$coef

## (Intercept) d
## 7.385276 1.281203
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Defining node distributions
To facilitate the comprehension of this subsection, we note that, in the simcausal package,
simulation of observed or counterfactual data follows the temporal ordering of the nodes
that define the DAG object and is vectorized. More specifically, the simulation of a dataset
with sample size n is carried out by first sampling the vector of all n observations of the
first node, before sampling the vector of all n observations of the second node and so on,
where the node ranking is defined by the temporal ordering that was explicitly or implicitly
specified by the user during the creation of the DAG object (see Section 2.2 for a discussion
of temporal ordering).

The distribution of a particular node is specified by passing the name of an evaluable
R function to the distr argument of the function node. Such a distribution function must
implement the mapping of n independent realizations of the parent nodes into n independent
realizations of this node. In general, any node with a lower temporal ordering can be defined
as a parent. Thus, such a distribution function requires an argument n, but will also typically
rely on additional input arguments referred to as distributional parameters. In addition,
the output of the distribution function must also be a vector of length n. Distributional
parameters must be either scalars or vectors of n realizations of summary measures of the
parent nodes. The latter types of distributional arguments are referred to as the node
formula(s) because they are specified by evaluable R expressions. Distributional parameters
are passed as named arguments to the node function so they can be mapped uniquely to the
relevant argument of the function that is user-specified by the distr argument of the node
function call. The node formula(s) of any given node may invoke the name(s) of any other
node(s) with a lower temporal order value. The parents of a particular node are thus defined
as the collection of nodes that are referenced by its node formula(s). Note that unlike the
values of distributional parameters, the value of the argument n of the distr function is
internally determined during data simulation and is set to the sample size value passed to
the sim function by the user.

For example, as shown below, the pre-written wrapper function for the Bernoulli distri-
bution rbern is defined with two arguments, n and prob. When defining a node with the
distr argument set to "rbern", only the second argument must be explicitly user-specified
by a distributional parameter named prob in the call to the node function, e.g., node("N1",
distr="rbern", prob = 0.5). The argument prob can be either a numeric constant as
in the previous example or an evaluable R expression. When prob is a numeric constant,
the distribution function rbern returns n iid realizations of the Bernoulli random variable
with probability prob. When prob is an R expression (e.g., see the definition of node W3 in
Section 2.3) that involves parent nodes, the prob argument passed to the rbern function
becomes a vector of length n. The value of each of its component is determined by the R
expression evaluated using one of the n iid realizations of the parent nodes simulated previ-
ously. Thus, the resulting simulated independent observations of the child node (e.g., W3 in
Section 2.3) are not necessarily identically distributed if the vector prob contains distinct
values. We note that the R expression in the prob argument is evaluated in the environment
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containing the simulated observations of all previous nodes (i.e., nodes with a lower temporal
order value).

To see the names of all pre-written distribution wrapper functions that are specifically
optimized for use as distr functions in the simcausal package, invoke distr.list(), as
shown below:

distr.list()

## [1] "rbern" "rcat.b0" "rcat.b1" "rcat.factor"
## [5] "rcategor" "rcategor.int" "rconst" "rdistr.template"

For a template on how to write a custom distribution function, see the documentation
?rdistr.template and rdistr.template, as well as any of the pre-written distribution
functions above. For example, the rbern function below simply wraps around the standard
R function rbinom to define the Bernoulli random variable generator:

rbern

## function (n, prob)
## ## rbinom(n = n, prob = prob, size = 1)##
## <environment: namespace:simcausal>

Another example on how to write a custom distribution function to define a custom
left-truncated normal distribution function based on the standard R function rnorm with
arguments mean and sd is demonstrated below. The truncation level is specified by an
additional distributional parameter minval, with default value set to 0.

rnorm_trunc <- function(n, mean, sd, minval = 0) {
out <- rnorm(n = n, mean = mean, sd = sd)
minval <- minval[1]
out[out < minval] <- minval
out

}

The example below makes use of this function to define the outcome node Y with positive
values only:

Dmin0 <- DAG.empty()
Dmin0 <- Dmin0 +

node("W", distr = "rbern",
prob = plogis(-0.5)) +

node("A", distr = "rbern",
prob = plogis(-0.5 - 0.3 * W)) +
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node("Y", distr = "rnorm_trunc",
mean = -0.1 + 1.2 * A + 0.3 * W,
sd = 10)

Dmin0set <- set.DAG(Dmin0)

In the next example, we overwrite the previous definition of node Y to demonstrate how
alternative values for the truncation parameter minval may be passed by the user as part
of the node function call:

Dmin0 <- Dmin0 +
node("Y", distr = "rnorm_trunc",

mean = -0.1 + 1.2 * A + 0.3 * W,
sd = 10,
minval = 10)

Dmin10set <- set.DAG(Dmin0)

Finally, we illustrate how the minval argument can also be defined as a function of parent
node realizations:

Dmin0 <- Dmin0 +
node("Y", distr = "rnorm_trunc",

mean = -0.1 + 1.2 * A + 0.3 * W,
sd = 10,
minval = ifelse(A == 0, 5, 10))

Dminset <- set.DAG(Dmin0)

As just described, the distributional parameters defining a particular node distribution
can be evaluable R expressions, referred to as node formulas. These expressions can contain
any built-in or user-defined R functions. By default, any user-defined function inside such
an R expression is assumed non-vectorized, except for functions on the simcausal built-in
list of known vectorized functions (this list can be printed by calling vecfun.all.print()).
We note that the simulation time can often be significantly improved by using vectorized
user-defined node formula functions. For example, to register a new user-defined vectorized
function "funname", which is not part of the built-in vectorized function list, the user may
call vecfun.add("funname"). We refer to the package vignette [115] for additional details
and examples on how to write custom vectorized node formula functions. We also refer
to the same vignette for a simulation demonstrating the performance gains as a result of
vectorization.
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2.4 Simulation study with multiple time point
interventions

In this example we replicate results from the longitudinal data simulation protocol used in
two published manuscripts [78, 79]. We first describe the structural equation model that
implies the data generating distribution of the observed data, with time-to-event outcome,
as reported in Section 5.1 of [79]. We then show how to specify this model using the sim-
causal R interface, simulate observed data, define static and dynamic intervention, simulate
counterfactual data, and calculate various causal parameters based on these interventions.
In particular, we replicate estimates of true counterfactual risk differences under the dy-
namic interventions reported in [78], as shown in Section 2.4 (Example 1 for set.targetE
and Example 1 for set.targetMSM).

Specifying the structural equation model
In this section, we demonstrate how to specify the structural equation model described by
the following longitudinal data simulation protocol (Section 5.1 of [79]):

1. L2(0) ∼ B(0.05) where B denotes the Bernoulli distribution (e.g., L2(0) represents a
baseline value of a time-dependent variable such as low versus high A1c)

2. If L2(0) = 1 then L1(0) ∼ B(0.5), else L1(0) ∼ B(0.1) (e.g., L1(0) represents a time-
independent variable such as history of cardiovascular disease at baseline)

3. If (L1(0),L2(0)) = (1,0) then A1(0)∼B(0.5), else if (L1(0),L2(0)) = (0,0) then A1(0)∼
B(0.1), else if (L1(0),L2(0)) = (1,1) then A1(0)∼ B(0.9), else if (L1(0),L2(0)) = (0,1)
then A1(0)∼ B(0.5) (e.g., A1(0) represents the binary exposure to an intensified type
2 diabetes pharmacotherapy)

4. for t= 1, . . . ,16 and as long as Y (t−1) = 0 (by convention, Y (0) = 0):

a) Y (t) ∼ B( 1
1+exp(−(−6.5+L1(0)+4L2(t−1)+0.05∗

∑t−1
j=0 I(L2(j)=0)))

) (e.g., Y(t) represents

the indicator of failure such as onset or progression of albuminuria)
b) If A1(t−1) = 1 then L2(t)∼B(0.1), else if L2(t−1) = 1 then L2(t)∼B(0.9), else

L2(t)∼ B(min(1,0.1 + t/16))
c) If A1(t−1) = 1 then A1(t) = 1, else if (L1(0),L2(t)) = (1,0) then A1(t)∼ B(0.3),

else if (L1(0),L2(t)) = (0,0) then A1(t)∼B(0.1), else if (L1(0),L2(t)) = (1,1) then
A1(t)∼ B(0.7), else if (L1(0),L2(t)) = (0,1) then A1(t)∼ B(0.5).

First, the example below shows how to define the nodes L2, L1 and A1 at time point t =
0 as Bernoulli random variables, using the distribution function "rbern":
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library("simcausal")
D <- DAG.empty()
D <- D +

node("L2", t = 0, distr = "rbern",
prob = 0.05) +

node("L1", t = 0, distr = "rbern",
prob = ifelse(L2[0] == 1, 0.5, 0.1)) +

node("A1", t = 0, distr = "rbern",
prob =

ifelse(L1[0] == 1 & L2[0] == 0, 0.5,
ifelse(L1[0] == 0 & L2[0] == 0, 0.1,
ifelse(L1[0] == 1 & L2[0] == 1, 0.9, 0.5))))

Second, the example below shows how one may use the node function with node formulas
based on the square bracket function ’[’ to easily define the time-varying nodes Y, L1 and
A1 simultaneously for all subsequent time points t ranging from 1 to 16:

t.end <- 16
D <- D +

node("Y", t = 1:t.end, distr = "rbern",
prob =

plogis(-6.5 + L1[0] + 4 * L2[t-1] +
0.05 * sum(I(L2[0:(t-1)] == rep(0, t)))),

EFU = TRUE) +
node("L2", t = 1:t.end, distr = "rbern",

prob =
ifelse(A1[t-1] == 1, 0.1,
ifelse(L2[t-1] == 1, 0.9, min(1, 0.1 + t / 16)))) +

node("A1", t = 1:t.end, distr = "rbern",
prob =

ifelse(A1[t-1] == 1, 1,
ifelse(L1[0] == 1 & L2[t] == 0, 0.3,
ifelse(L1[0] == 0 & L2[t] == 0, 0.1,
ifelse(L1[0] == 1 & L2[t] == 1, 0.7, 0.5)))))

lDAG <- set.DAG(D)

Note that the node formulas specified with the prob argument above use the generic
time variable t both outside and inside the square-bracket vector syntax. For example,
the conditional distribution of the time-varying node Y is defined by an R expression that
contains the syntax sum(I(L2[0:(t - 1)] == rep(0, t))), which evaluates to different R
expressions, as t ranges from 0 to 16:

1. sum(I(L2[0] == 0)), for t = 1; and
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Figure 2.4: Graphical representation of a portion of the structural equation model using a
DAG. Only the nodes indexed by time points lower than or equal to 3 are represented.

2. sum(I(L2[0:1] == c(0, 0))), for t = 2, . . . , sum(I(L2[0:16] == c(0, ..., 0))),
for t = 16.

For more details on the specification of node formulas, see Section 2.3.
One can visualize the observed data generating distribution defined in the lDAG object as

shown in Figures 2.4 by calling plotDAG. Note that the appearance of the resulting diagram
can be customized with additional arguments, as demonstrated in the package vignette [115].

Simulating observed data (sim)
Simulating observed data is accomplished by calling the function sim and specifying its
arguments DAG and n that indicate the causal model and sample size of interest. Below is an
example of how to simulate an observed dataset with 10,000 observations using the causal
model defined previously. The output is a data.frame object.

Odat <- sim(DAG = lDAG, n = 10000, rndseed = 123)
Odat[1,]

Specifying interventions (+ action)
Dynamic interventions

The following two dynamic interventions on the time-varying node A1 of the structural
equation model encoded by the previously defined lDAG object were studied in [78]: ‘Initiate
treatment A1 the first time t that the covariate L2 is greater than or equal to θ and continue
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treatment thereafter (i.e., Ā1(t− 1) = 0 and A(t) = 1,A(t+ 1) = 1, . . .)’, for θ = 0,1. The
example below demonstrates how to specify these two dynamic interventions.

First, we define the list of intervention nodes and their post-intervention distributions.
Note that these distributions are indexed by the attribute theta, whose value is not yet
defined:

act_theta <-c(
node("A1", t = 0, distr = "rbern",

prob = ifelse(L2[0] >= theta , 1, 0)),
node("A1", t = 1:(t.end), distr = "rbern",

prob = ifelse(A1[t-1] == 1, 1, ifelse(L2[t] >= theta, 1, 0))))

Second, we add the two dynamic interventions to the lDAG object while defining the value
of theta for each intervention:

Ddyn <- lDAG
Ddyn <- Ddyn + action("A1_th0", nodes = act_theta, theta = 0)
Ddyn <- Ddyn + action("A1_th1", nodes = act_theta, theta = 1)

We refer to the argument theta passed to the +action function as an action attribute.
One can select and inspect particular actions saved in a DAG object by invoking the

function A():

class(A(Ddyn)[["A1_th0"]])
A(Ddyn)[["A1_th0"]]

The distribution of some or all of the the intervention nodes that define an action saved
within a DAG object can be modified by adding a new intervention object with the same
action name to the DAG object. The new intervention object can involve actions on only
a subset of the original intervention nodes for a partial modification of the original action
definition. For example, the code below demonstrates how the existing action "A1 th0" with
the previously defined dynamic and deterministic intervention on the node A1[0] is partially
modified by replacing the intervention distribution for the node A1[0] with a deterministic
and static intervention defined by a degenerate distribution at value 1. Note that the other
intervention nodes previously defined as part of the action "A1 th0" remain unchanged.

A(Ddyn)[["A1_th0"]]$A1_0
Ddyntry <- Ddyn +

action("A1_th0", nodes = node("A1", t = 0, distr = "rbern", prob = 0))
A(Ddyntry)[["A1_th0"]]$A1_0

Similarly, some or all of the action attributes that define an action saved within a DAG
object can be modified by adding a new intervention object with the same action name but
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a different attribute value to the DAG object. This functionality is demonstrated with the
example below in which the previous value 0 of the action attribute theta that defines the
action named "A1 th0" is replaced with the value 1 and in which a new attribute newparam
is simultaneously added to the previously defined action "A1 th0":

A(Ddyntry)[["A1_th0"]]
Ddyntry <- Ddyntry +

action("A1_th0", nodes = act_theta, theta = 1, newparam = 100)
A(Ddyntry)[["A1_th0"]]

Static interventions

Here we diverge from the replication of simulation results presented in [78]. Instead, we build
on the structural equation model introduced in that paper to illustrate the specification of
static interventions on the treatment nodes A1. These static interventions are defined by
more or less early treatment initiation during follow-up followed by subsequent treatment
continuation. Each of these static interventions is thus uniquely identified by the time
when the measurements of the time-varying node A1 switch from value 0 to 1. The time
of this value switch is represented by the parameter tswitch in the code below. Note that
the value tswitch = 16 identifies the static intervention corresponding with no treatment
initiation during follow-up in our example while the values 0 through 15 represent 16 distinct
interventions representing increasingly delayed treatment initiation during follow-up.

First, we define the list of intervention nodes and their post-intervention distributions.
Note that these distributions are indexed by the attribute tswitch, whose value is not yet
defined:

‘%+%‘ <- function(a, b) paste0(a, b)
Dstat <- lDAG
act_A1_tswitch <- node("A1",t = 0:(t.end), distr = "rbern",

prob = ifelse(t >= tswitch, 1, 0))

Second, we add the 17 static interventions to the lDAG object while defining the value of
tswitch for each intervention:

tswitch_vec <- (0:t.end)
for (tswitch_i in tswitch_vec) {

abar <- rep(0, length(tswitch_vec))
abar[which(tswitch_vec >= tswitch_i)] <- 1
Dstat <- Dstat + action("A1_ts"%+%tswitch_i,

nodes = act_A1_tswitch,
tswitch = tswitch_i,
abar = abar)
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}

Note that in addition to the action attribute tswitch, each intervention is also indexed
by an additional action attribute abar that also uniquely identifies the intervention and
that represents the actual sequence of treatment decisions that defines the intervention, i.e.,
ā(tswitch−1) = 0, a(tswitch) = 1, . . .:

A(Dstat)[["A1_ts3"]]

The purpose of this additional action attribute abar will become clear when we illus-
trate the definition of target parameters defined by working MSMs based on these 17 static
interventions in Section 2.4 (Example 2 of set.targetMSM).

Simulating counterfactual data (sim)
Simulating counterfactual data is accomplished by calling the function sim and specifying its
arguments DAG, actions and n to indicate the causal model, interventions, and sample size
of interest. The counterfactual data can be simulated for all actions stored in the DAG object
or a subset by setting the actions argument to the vector of the desired-action names.

The example below shows how to use the sim function to simulate 200,000 observations
for each of the two dynamic actions, "A1 th0" and "A1 th1", defined in Section 2.4. The
call to sim below produces a list of two named data.frame objects, where each data.frame
object contains observations simulated from the same post-intervention distribution defined
by one particular action only.

Xdyn <- sim(Ddyn, actions = c("A1_th0", "A1_th1"),
n = 200000, rndseed = 123)

The default format of the output list generated by the sim function is easily understood
by examining the first row of each data.frame object:

Xdyn[["A1_th0"]][1, ]
Xdyn[["A1_th1"]][1, ]

Converting a dataset from wide to long format (DF.to.long)
The specification of structural equation models based on time-varying nodes such as the
one described in Section 2.4 allows for simulated (observed or counterfactual) data to be
structured in either long or wide formats. Below, we illustrate these two alternatives. We
note that, by default, simulated (observed or counterfactual) data from the sim function
are stored in wide format. The data output format from the sim function can, however, be
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changed to the long format by setting the wide argument of the sim function to FALSE or,
equivalently, by applying the function DF.to.long to an existing simulated dataset in wide
format.

The following code demonstrates the default data formatting behavior of the sim function
and how this behavior can be modified to generate data in the long format:

Odat.wide <- sim(DAG = lDAG, n = 1000, wide = TRUE, rndseed = 123)
Odat.wide[1:2, 1:16]

## ID L2_0 L1_0 A1_0 Y_1 L2_1 A1_1 Y_2 L2_2 A1_2 Y_3 L2_3 A1_3 Y_4 L2_4 A1_4
## 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 NA NA
## 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Odat.long <- sim(DAG = lDAG, n = 1000, wide = FALSE, rndseed = 123)
Odat.long[1:7, ]

## ID L1 t L2 A1 Y
## 1 1 0 0 0 0 NA
## 2 1 0 1 0 0 0
## 3 1 0 2 0 0 0
## 4 1 0 3 1 0 0
## 5 1 0 4 NA NA 1
## 6 2 0 0 0 0 NA
## 7 2 0 1 0 0 0

Note that the first observation in Odat.wide contains NAs following Y 4. As described in
Section 2.2, this is due to the fact that the node Y was defined earlier as an end of follow-up
(EFU) event (using argument EFU=TRUE). That is, Y 4=1 indicates that the first subject has
reached the end of the follow-up at time point t= 4 (i.e., was right-censored), therefore, all
of the subsequent columns following Y 4 are replaced with NA (missing) value. This is also
the reason why we only see 5 rows of data on subject with ID=1 in the above long format
dataset Odat.long. Also note that in Odat.long, the value of Y is always NA (missing) for
t=0, since the node Y was only defined for time-points t > 0.

Defining and evaluating various causal target parameters
Causal parameters defined with set.targetE

Example 1. In the example below, we first define two causal target parameters as two
vectors, each containing the expectations of the node Y[t], for time points t=1, . . ., 16, under
the post-intervention distribution defined by one of the two dynamic interventions "A1 th0"
and "A1 th1" defined in Section 2.4. Second, we evaluate these target parameters using the
counterfactual data simulated previously in Section 2.4 and we map the resulting estimates
of cumulative risks into estimates of survival probabilities. We also plot the corresponding
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two counterfactual survival curves using the simcausal routine plotSurvEst as shown in
Figure 2.5. Finally, we note that Figure 2.5 replicates the simulation study results reported
in Figure 4 of [78].

Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 1:16, param = "A1_th1")
surv_th1 <- 1 - eval.target(Ddyn, data = Xdyn)$res
Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 1:16, param = "A1_th0");
surv_th0 <- 1 - eval.target(Ddyn, data = Xdyn)$res

plotSurvEst(surv = list(d_theta1 = surv_th1, d_theta0 = surv_th0),
xindx = 1:17,
ylab = "Counterfactual survival for each intervention",
ylim = c(0.75,1.0))
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Figure 2.5: Estimates of the true survival curves under the two dynamic interventions.

Example 2. In the example below, we first define the causal target parameter as the
ATE on the additive scale (cumulative risk differences) for the two dynamic interventions
("A1 th1" and "A1 th0") defined in Section 2.4 at time point t = 12. Second, we evaluate
this target parameter using the previously simulated counterfactual data from Section 2.4.

ATE on the additive scale:
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Ddyn <- set.targetE(Ddyn, outcome = "Y", t = 12, param = "A1_th1-A1_th0")
(psi <- round(eval.target(Ddyn, data = Xdyn)$res, 3))

## Diff_Y_12
## 0.053

We also note that the above result for the ATE (0.053) replicates the simulation result
reported for ψ in Section 5.1 and Figure 4 of [78], where ψ was defined as the difference
between the cumulative risks of failure at t0 = 12 for the two dynamic interventions d1 and
d0.

Causal parameters defined with set.targetMSM

In Section 2.3, we described the arguments of the function set.targetMSM that the user
must specify to define MSM target causal parameters. They include the specification of
the argument form which encodes the working MSM formula. This formula can only be a
function of the time index t, action attributes that uniquely identify each intervention of
interest, and baseline nodes (defined as nodes that precede the earliest intervention node).
Both baseline nodes that are measurements of time-varying nodes and time-varying action
attributes must be referenced in the R expression passed to the form argument within the
wrapping syntax S(...) as illustrated in several examples below.

Example 1. Working dynamic MSM for survival probabilities over time. Here,
we illustrate the evaluation of the counterfactual survival curves E(Ydθ(t)) for t = 1, . . . ,16
under the dynamic interventions dθ for θ = 0,1 introduced in Section 2.4 using the following
pooled working logistic MSM (MSM 1):

expit(α0 +α1θ+α2t+α3tθ) ,

where the true values of the coefficients (αi, i = 0, . . . ,3) define the target parameters of
interest. First, we define these target parameters:

msm.form <- "Y ˜ theta + t + I(theta*t)"
Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, form = msm.form,

family = "binomial", hazard = FALSE)

Note that when the outcome is a time-varying node of type EFU, the argument hazard
= FALSE indicates that the working MSM of interest is a model for survival probabilities.
The argument family = "binomial" indicates that the working model is a logistic model.
Second, we evaluate the coefficients of the working model:
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MSMres1 <- eval.target(Ddyn, n = 10000, rndseed = 123)
MSMres1$coef

We also note that no previously simulated counterfactual data were passed as argument
to the function eval.target above. Instead, the sample size argument n was specified
and the routine will thus first sample n = 10,000 observations from each of the two post-
intervention distributions before fitting the working MSM with these counterfactual data
to derive estimates of the true coefficient values. Alternatively, the user could have passed
the previously simulated counterfactual data. Note however that in this case, the user must
either simulate counterfactual data by calling the sim function with the argument LTCF =
"Y" or convert the previously simulated counterfactual data with the last time point value
carried forward imputation function doLTCF. Both approaches are described in the simcausal
package vignette Section 4.7 [115].

The resulting coefficient estimates for MSM 1 can be mapped into estimates of the two
counterfactual survival curves and plotted as shown on the left in Figure 2.6 using the
simcausal plotSurvEst function.

Next, we modify the previous working model formula by specifying a saturated MSM to
directly replicate the results reported in Figure 4 of [78] that are based on a non-parametric
MSM approach (MSM 2):

msm.form <- "Y ˜ theta + as.factor(t) + as.factor(t):theta "
Ddyn <- set.targetMSM(Ddyn, outcome = "Y", t = 1:16, formula = msm.form,

family = "binomial", hazard = FALSE)
MSMres2 <- eval.target(Ddyn, n = 200000, rndseed = 123)
MSMres2$coef

Finally, we plot the resulting survival curves obtained from MSM 2 as shown on the
right in Figure 2.6. The resulting estimates of the survival curves replicate those reported
in Figure 4 of [78].

Example 2. Working static MSM for discrete-time hazards over time. Here,
we illustrate the evaluation of discrete-time hazards E(Yā(t))|Yā(t−1) = 0), for t = 1, ...,16
under the 17 static interventions introduced in Section 2.4 using the following pooled working
logistic MSM:

expit
(
α0 +α1t+α2

1
t

t−1∑
j=0

a(j) +α3
t−1∑
j=0

a(j)
)
,

where we use the notation ā = (a(0),a(1), ...,a(16)) to denote the 17 static intervention
regimens on the time-varying treatment node A1. Note that the time-varying action attribute
abar introduced in Section 2.4 directly encodes the 17 treatment regimens values ā referenced
in the MSM working model above. To evaluate the target parameters αj above, for j = 0, ...,3,
we first simulate counterfactual data for the 17 static interventions of interest as follows:
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Figure 2.6: Survival curve estimates evaluated based on working MSM 1 (left) and saturated
MSM 2 (right).

Xts <- sim(Dstat, actions = names(A(Dstat)), n = 1000, rndseed = 123)

Second, we define the target parameters and estimate them using the counterfactual data
just simulated as follows:

msm.form_1 <- "Y ˜ t +
S(mean(abar[0:(t-1)])) + I(t*S(mean(abar[0:(t-1)])))"

Dstat <- set.targetMSM(Dstat, outcome = "Y", t = 1:16, form = msm.form_1,
family = "binomial", hazard = TRUE)

MSMres <- eval.target(Dstat, data = Xts)
MSMres$coef

Note that the working MSM formulas can reference arbitrary summary measures (func-
tions) of time-varying action attributes such as abar. The square-bracket ’[’ syntax can
then be used to identify specific elements of the time-varying action attributes in the same
way it can be used in node formulas to reference particular measurements of time-varying
nodes. For example, the term sum(abar[0:t]) indicates a summation over the elements of
the action attribute abar indexed by time points lower than or equal to value t and the
syntax S(abar[max(0, t - 2)]) creates a summary measure representing time-lagged val-
ues of abar that are equal to abar[0] if t< 2 and to abar[t-2] if t≥ 2. Note also that
references to time-varying action attributes in the working MSM formula must be wrapped
within a call to the S(...) function, e.g., Y∼t + S(mean(abar[0:t])).

The eval.target function returns a list with the following named attributes: the working
MSM fit returned by a glm function call (msm), the coefficient estimates (coef), the mapping
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(S.msm.map) of the formula terms defined by expressions enclosed within the S(...) function
into the corresponding variable names in the design matrix that was used to implement the
regression, and the design matrix (df long) stored as a list of data.table objects from
the R package data.table [33]. Each of these data.table objects contains counterfactual
data indexed by a particular intervention. These counterfactual data are stored in long
format with possibly additional new columns representing terms in the working MSM formula
defined by expressions enclosed with the S() function. The design matrix can be derived by
row binding these data.table objects.

names(MSMres)
MSMres$S.msm.map
names(MSMres$df_long)
MSMres$df_long[["A1_ts2"]]
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Figure 2.7: Survival curve estimates evaluated based on working MSM 2.

Finally, we plot the resulting counterfactual survival curve estimates using the function
survbyMSMterm (source code provided in a supplementary R script), as shown in Figure 2.7:

survMSMh_wS <- survbyMSMterm(MSMres = MSMres, t_vec = 1:16,
MSMtermName = "mean(abar[0:(t - 1)])")

print(plotsurvbyMSMterm(survMSMh_wS))
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Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Confounder(s) only 300 0.576 1.803 0.752 1.690
1000 0.278 0.725 0.374 0.688

10000 0.062 0.139 0.069 0.147
Confounder(s) & 300 0.572 1.714 0.785 1.489
risk factors 1000 0.250 0.764 0.304 0.665

10000 0.071 0.121 0.077 0.120

Table 2.1: Replication of the simulation results from [68] for Scenario 1.

Additional examples of working MSMs are available in the package vignette [115], which
includes the examples of dynamic MSM for discrete-time hazards and dynamic MSMs that
evaluate effect modification by a baseline covariate.

2.5 Replication study of the impact of
misspecification of propensity score models

Replication study results
In this section, we use the simcausal package for replicating a simulation study from [68].
Specifically, we replicate the results reported in Tables II and IV of that paper. We first
specify the observed data generating distribution using the two structural equation models
corresponding with Scenarios 1 and 3 described in [68]. Second, for each scenario, we evaluate
the true values of the coefficients of the MSM using counterfactual data and compare them to
those reported by [68]. Finally, for each scenario, we implement the same inverse probability
weighting (IPW) estimators of these MSM coefficients and evaluate their performances using
the same two metrics (bias and mean squared error) as in [68]. We refer to next Section 2.5
for the description of the details on how the simcausal package was used to conduct this
replication study. The R code that fully reproduces the tables presented in this section is
provided as a supplementary R script.

Our replication results for Scenarios 1 and 3 are reported in Table 2.1 and Table 2.3,
respectively. The simulation results, as they were originally reported by [68], are presented
in Table 2.2 and Table 2.4. We note that our results closely match those originally reported
in [68].
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Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Lefebvre et al.: Confounder(s) only 300 0.768 1.761 0.889 1.728
1000 0.265 0.761 0.312 0.723

10000 0.057 0.146 0.086 0.120
Lefebvre et al.: Confounder(s) & 300 0.757 1.642 0.836 1.505
risk factors 1000 0.283 0.718 0.330 0.638

10000 0.056 0.139 0.081 0.114

Table 2.2: Simulation results for Scenario 1 as reported in Table II of [68].

Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Confounder(s) only 300 -0.179 1.238 0.157 1.102
1000 -0.341 0.413 -0.137 0.363

10000 -0.347 0.054 -0.177 0.046
Confounder(s) & 300 -0.151 1.156 0.110 0.890
risk factors 1000 -0.266 0.348 -0.093 0.271

10000 -0.354 0.050 -0.190 0.034
Confounder(s) & 300 1.397 3.966 2.014 3.854
IVs 1000 0.919 2.016 1.200 1.989

10000 0.438 0.605 0.457 0.595
Confounder(s), 300 1.304 4.010 1.966 3.841
IVs & risk factors 1000 0.936 2.082 1.208 2.027

10000 0.375 0.644 0.422 0.626
Mis-specified 300 2.742 3.203 5.542 5.437

1000 2.598 1.737 5.188 3.739
10000 2.407 0.809 5.009 2.730

Full Model 300 1.383 4.028 2.109 3.924
1000 0.934 2.020 1.285 1.926

10000 0.417 0.607 0.435 0.609

Table 2.3: Replication of the simulation results from [68] for Scenario 3.
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Covariates in P (A|L) N A(0)
Bias*10

A(0)
MSE*10

A(1)
Bias*10

A(1)
MSE*10

Lefebvre et al.: Confounder(s) only 300 -0.080 1.170 0.099 1.155
1000 -0.371 0.385 -0.035 0.331

10000 -0.368 0.056 -0.203 0.043
Lefebvre et al.: Confounder(s) & 300 -0.110 1.092 0.112 0.865
risk factors 1000 -0.330 0.340 -0.108 0.245

10000 -0.378 0.051 -0.207 0.037
Lefebvre et al.: Confounder(s) & 300 1.611 3.538 2.069 3.841
IVs 1000 0.824 2.063 1.245 2.188

10000 0.241 0.684 0.379 0.622
Lefebvre et al.: Confounder(s), 300 1.600 3.477 2.143 3.598
IVs & risk factors 1000 0.867 2.053 1.170 2.043

10000 0.235 0.676 0.372 0.625
Lefebvre et al.: Mis-specified 300 3.146 3.326 5.591 5.494

1000 2.460 1.700 5.258 3.851
10000 2.364 0.832 4.943 2.705

Lefebvre et al.: Full Model 300 1.524 3.648 2.221 3.907
1000 0.878 2.099 1.185 2.099

10000 0.240 0.679 0.377 0.630

Table 2.4: Simulation results for Scenario 3 as reported in Table IV of [68].

Additional details and replication code
A number of IPW estimators were considered in this simulation study, each estimator defined
by a distinct model for the propensity scores P (A(0)|L(0)) and P (A(1)|A(0),L(1)). To
estimate these propensity scores we used the same models presented in Table I of [68] for
Scenarios 1 and 3. We considered three sample sizes N = 300; 1,000; and 10,000, and we
report the bias of each IPW estimator, multiplied by 10 (Bias*10 ) and the mean-squared
error, also multiplied by 10 (MSE*10 ) in Tables 2.1 and 2.3.

Replicating Scenario 1

To carry out the simulation study, we first define a new distribution function rbivNorm for
simulating observations from a bivariate normal distribution with a user-specified mean vec-
tor (specified by the argument mu) and a user-specified covariance matrix (specified by the
arguments var1, var2, and rho to represent the diagonal and off-diagonal scalars, respec-
tively). This new distribution function is based on Cholesky decomposition of the covariance
matrix and independent observations simulated from the standard normal distribution which
are provided by the input argument norms. The argument whichbiv indicates whether the
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function should return independent observations from the first or second element of the
bivariate normal vector.

> rbivNorm <- function(n, whichbiv, norms, mu, var1 = 1, var2 = 1, rho = 0.7) {
+ whichbiv <- whichbiv[1]; var1 <- var1[1]; var2 <- var2[1]; rho <- rho[1]
+ sigma <- matrix(c(var1, rho, rho, var2), nrow = 2)
+ Scol <- chol(sigma)[, whichbiv]
+ bivX <- (Scol[1] * norms[, 1] + Scol[2] * norms[, 2]) + mu
+ bivX
+ }

Second, using this distribution function, we define the structural equation model specified
for data simulation according to Scenario 1 in [68].

> ‘%+%‘ <- function(a, b) paste0(a, b)
> Lnames <- c("LO1", "LO2", "LO3", "LC1")
> D <- DAG.empty()
> for (Lname in Lnames) {
+ D <- D +
+ node(Lname%+%".norm1", distr = "rnorm", mean = 0, sd = 1) +
+ node(Lname%+%".norm2", distr = "rnorm", mean = 0, sd = 1)
+ }
> D <- D +
+ node("LO1", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ norms = c(LO1.norm1, LO1.norm2),
+ mu = 0) +
+ node("LO2", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ norms = c(LO2.norm1, LO2.norm2),
+ mu = 0) +
+ node("LO3", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ norms = c(LO3.norm1, LO3.norm2),
+ mu = 0) +
+ node("LC1", t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ norms = c(LC1.norm1, LC1.norm2),
+ mu = {if (t == 0) {0} else {-0.30 * A[t-1]}}) +
+ node("alpha", t = 0:1, distr = "rconst",
+ const = {if(t == 0) {log(0.6)} else {log(1.0)}}) +
+ node("A", t = 0:1, distr = "rbern",
+ prob =
+ plogis(alpha[t] +
+ log(5)*LC1[t] + {if(t == 0) {0} else {log(5)*A[t-1]}})) +
+ node("Y", t = 1, distr = "rnorm",
+ mean = (0.98 * LO1[t] + 0.58 * LO2[t] + 0.33 * LO3[t] +
+ 0.98 * LC1[t] - 0.37 * A[t]),
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+ sd = 1)
> DAGO.sc1 <- set.DAG(D)

Third, we define the target parameter as the coefficients β1 and β2 of the following
correctly specified marginal structural model:

E[Ya(0),a(1)] = β0 +β1a(0) +β2a(1),

defined by the following four possible static and deterministic interventions (a(0),a(1)) on
the treatment process (A(0),A(1)): (0,0), (1,0), (0,1), and (1,1).

> defAct <- function (Dact) {
+ act.At <- node("A", t = 0:1, distr = "rbern", prob = abar[t])
+ Dact <- Dact +
+ action("A00", nodes = act.At, abar = c(0, 0)) +
+ action("A10", nodes = act.At, abar = c(1, 0)) +
+ action("A01", nodes = act.At, abar = c(0, 1)) +
+ action("A11", nodes = act.At, abar = c(1, 1))
+ return(Dact)
+ }
> Dact.sc1 <- defAct(DAGO.sc1)
> msm.form <- "Y ˜ S(abar[0]) + S(abar[1])"
> Dact.sc1 <- set.targetMSM(Dact.sc1, outcome = "Y", t = 1,
+ form = msm.form, family = "gaussian")

Fourth, we evaluate the true values of these MSM coefficients using the eval.target
function and note that our results closely match the true value of the MSM coefficients
reported in Table II of [68]:

> repstudy2.sc1.truetarget <- function() {
+ trueMSMreps.sc1 <- NULL
+ reptrue <- 50
+ for (i in (1:reptrue)) {
+ res.sc1.i <- eval.target(Dact.sc1, n = 500000)$coef
+ trueMSMreps.sc1 <- rbind(trueMSMreps.sc1, res.sc1.i)
+ }
+ return(trueMSMreps.sc1)
+ }
> f1name <- "replication_dat/trueMSMreps.sc1.Rdata"
> if (file.exists(f1name)) {
+ load(f1name)
+ } else {
+ trueMSMreps.sc1 <- repstudy2.sc3.truetarget()
+ save(list = "trueMSMreps.sc1", file = f1name)
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+ }
> trueMSM.sc1 <- apply(trueMSMreps.sc1, 2, mean)
> print(trueMSM.sc1)

## (Intercept) S(abar[0]) S(abar[1])
## 0.0001540635 -0.2941187264 -0.3700397969

Note that the true values of the MSM coefficients above were obtained from the aver-
ages of coefficient estimates obtained from several simulated counterfactual data sets. This
approach was implemented to avoid the memory limitation that can be encountered when
trying to simulate a single very large counterfactual data set. Finally, using the R code
provided as a supplementary script file, we replicate the IPW estimation results for Scenario
1 as presented originally in Table II of [68].

Replicating Scenario 3

Next, using the same approach described above, we replicate the simulation results for
Scenario 3 reported in Table IV of [68]. We start by defining the structural equation model
specified for data simulation according to Scenario 3 in [68] as follows:

> ‘%+%‘ <- function(a, b) paste0(a, b)
> Lnames <- c("LO1", "LO2", "LO3", "LE1", "LE2", "LE3", "LC1", "LC2", "LC3")
> D <- DAG.empty()
> for (Lname in Lnames) {
+ D <- D +
+ node(Lname%+%".norm1", distr = "rnorm") +
+ node(Lname%+%".norm2", distr = "rnorm")
+ }
> coefAi <- c(-0.10, -0.20, -0.30)
> sdLNi <- c(sqrt(1), sqrt(5), sqrt(10))
> for (i in (1:3)) {
+ D <- D +
+ node("LO"%+%i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ mu = 0,
+ params = list(norms = "c(LO"%+%i%+%".norm1, LO"%+%i%+%".norm2)")) +
+ node("LE"%+%i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ mu = 0, var1 = 1, var2 = 1, rho = 0.7,
+ params = list(norms = "c(LE"%+%i%+%".norm1, LE"%+%i%+%".norm2)")) +
+ node("LC"%+%i, t = 0:1, distr = "rbivNorm", whichbiv = t + 1,
+ mu = {if (t == 0) {0} else {.(coefAi[i]) * A[t-1]}},
+ params = list(norms = "c(LC"%+%i%+%".norm1, LC"%+%i%+%".norm2)")) +
+ node("LN"%+%i, t = 0:1, distr = "rnorm",
+ mean = 0, sd = .(sdLNi[i]))
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+ }
> D <- D +
+ node("alpha", t = 0:1, distr = "rconst",
+ const = {if(t == 0) {log(0.6)} else {log(1.0)}}) +
+ node("A", t = 0:1, distr = "rbern",
+ prob = plogis(alpha[t] +
+ log(5) * LC1[t] + log(2) * LC2[t] + log(1.5) * LC3[t] +
+ log(5) * LE1[t] + log(2) * LE2[t] + log(1.5) * LE3[t] +
+ {if (t == 0) {0} else {log(5) * A[t-1]}})) +
+ node("Y", t = 1, distr = "rnorm",
+ mean = 0.98 * LO1[t] + 0.58 * LO2[t] + 0.33 * LO3[t] +
+ 0.98 * LC1[t] + 0.58 * LC2[t] + 0.33 * LC3[t] - 0.39 * A[t],
+ sd = 1)
> DAGO.sc3 <- set.DAG(D)

Similar to Scenario 1, we then define the same four actions on the new DAG object before
defining and evaluating the causal target parameter of interest. We note that our results
match the true value of the MSM coefficients reported in Table IV of [68]. Finally, using the
R code provided as a supplementary script file, we replicate the IPW estimation results for
Scenario 3 as presented originally in Table IV of [68].

> Dact.sc3 <- defAct(DAGO.sc3)
> msm.form <- "Y ˜ S(abar[0]) + S(abar[1])"
> Dact.sc3 <- set.targetMSM(Dact.sc3, outcome = "Y", t = 1,
+ form = msm.form, family = "gaussian")
> repstudy2.sc3.truetarget <- function() {
+ trueMSMreps.sc3 <- NULL
+ reptrue <- 50
+ for (i in (1:reptrue)) {
+ res.sc3.i <- eval.target(Dact.sc3, n = 500000)$coef
+ trueMSMreps.sc3 <- rbind(trueMSMreps.sc3, res.sc3.i)
+ }
+ return(trueMSMreps.sc3)
+ }
> f2name <- "replication_dat/trueMSMreps.sc3.Rdata"
> if (file.exists(f2name)) {
+ load(f2name)
+ } else {
+ trueMSMreps.sc3 <- repstudy2.sc3.truetarget()
+ save(list = "trueMSMreps.sc3", file = f2name)
+ }
> trueMSM.sc3 <- apply(trueMSMreps.sc3, 2, mean)
> print(trueMSM.sc3)



CHAPTER 2. SIMCAUSAL R PACKAGE FOR COMPLEX SIMULATIONS IN
CAUSAL INFERENCE 86

## (Intercept) S(abar[0]) S(abar[1])
## 0.0001690372 -0.3134283871 -0.3901595327

2.6 Discussion
In this chapter we described how our simulation package can be used for creating a wide
range of artificial datasets often encountered in medical and public health applications of
causal inference methods. Specifically, we demonstrated that the simcausal R package is a
flexible tool that facilitates the conduct of transparent and reproducible simulation studies.
The package allows the user to simulate complex longitudinal data structures based on struc-
tural equation models using a novel interface which allows concise and intuitive expression
of complex functional dependencies for a large number of nodes. We also argued that such
complex simulations are often necessary when one tries to conduct a realistic simulation
study that attempts to replicate a large variety of scenarios one might expect to see from a
true data-generating process. The package allows the user to specify and simulate counter-
factual data under various interventions (e.g., static, dynamic, deterministic, or stochastic).
These interventions may represent exposures to treatment regimens, the occurrence or non-
occurrence of right-censoring events, or of specific monitoring events. The package also
enables the computation of a selected set of user-specified features of the distribution of the
counterfactual data that represent common causal target parameters (the gold standards),
such as, treatment-specific means, average treatment effects and coefficients from working
marginal structural models. In addition, the package provides a flexible graphical component
that produces plots of directed acyclic graphs (DAGs) for observed (or post-intervention)
data generating distributions.

We note that one of the distinguishing features of simcausal is that it allows the user to
define and evaluate a causal target parameter, such as the ATE, that can then serve as the
model-free gold standard. That is, the causal parameter is always the same functional of
the counterfactual data distribution, regardless of the user-selected parameterization of the
SEM. For example, the gold standard defined in this manner provides an objective measure
of bias that does not depend on the modeling assumptions of a specific statistical method.
Furthermore, coupled with a wide variety of possible data generating distributions that may
be specified in simcausal, this package provides statisticians with a powerful tool for testing
the validity and accuracy of various statistical methods. For example, one may use our
package for validating an implementation of a novel statistical method, using the simulated
data with the known truth (the true value of the causal parameter), prior to applying such
an algorithm to real data, in which this truth is unknown. As another example, one may
use simcausal to simulate data from a large variety of data-generating distributions and
conduct a simulation study comparing the properties of different statistical procedures (e.g.,
bias, mean-squared error (MSE), asymptotic confidence interval coverage), using the user-
selected causal parameter as the gold standard.
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We also demonstrated the functionality of the package with a single time point interven-
tion simulation study in Section 2.3 and a complex multiple time point simulation study in
Section 2.4. Moreover, we also showed two real-world applications of the simcausal pack-
age in Sections 2.4 and 2.5, by replicating some of results of the two previously published
simulation studies [78, 79, 68]. The first simulation study by [78] was initially conducted as
a complement to a real data analysis in order to validate the claimed theoretical benefits
of a new estimator in a simulated setting that was designed to resemble the data structure
collected and used in the real-world study. The second simulation study by [68] evaluated
the impact of the model misspecification of the treatment mechanism on the MSE for the in-
verse probability-weighting (IPW) estimator, where the coefficients of the marginal structural
model were used as the target causal quantity. We note that in both of these instances, we
were able to use simcausal to specify the desired data-generating distribution, then simulate
repeated observed data samples, and finally, specify and evaluate the different causal param-
eters that were used in these simulation studies. We also note that the simcausal package
vignette [115] contains additional replication results of the simulation study described by
[78] that evaluated the comparative performance of targeted minimum loss based estimation
(TMLE) and IPW estimation of a causal risk difference between two dynamic treatment
regimens.

Finally, we note that the simcausal package is being actively developed and contains
several new features that are beyond the scope of this chapter. In particular, recently
implemented functionality allows one to simulate dependent observations using networks
[34]. We refer to the forthcoming simcausal network vignette for details describing this
new feature. We also note that the implementation of additional functionalities in future
releases of the simcausal package should further expand its utility for methods research.
Among such possible improvements is the evaluation of additional causal parameters, e.g.,
the average treatment effect on the treated [56, 58, 112], survivorship causal effects [60, 47]
and direct/indirect effects [87, 92, 126, 131, 50].
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Chapter 3

Simulation Studies in Network Data

3.1 Introduction
This chapter is concerned with design and implementation of simulation studies for network-
dependent data. We describe a comprehensive set of tools implemented in the simcausal1
R package [115], which allow simulating the types of dependent data one might collect on a
community connected by a social or geographical network. The main purpose of this simula-
tion tool is to study the validity of causal inference methods in such network-dependent data
settings. We note that statistical estimation of causal effects in such connected settings is
challenging, since the frequently made assumption of independence among units is generally
invalid. Consider a setting with single time point exposure where we collect data on the
baseline covariates, the exposures and the outcomes on N units. When these units are also
connected by a network we might expect that the interactions between any two connected
units can cause the exposure of one unit to have an effect on the outcome of the other unit -
an occurrence often referred to as interference or spillover [57, 113]. Moreover, it is possible
that both, the outcome and the exposure of one unit, are dependent on the baseline covari-
ates of other connected units. We note that the new tools implemented in the simcausal
packages are specifically designed for specification and simulation of the above described
types of dependencies among units. In more detail, the simcausal process of specifying the
distribution of N connected units generally consists of two steps. First, one describes the
network of connections between these units (e.g., social or geographical network) by speci-
fying either a network graph or a probabilistic network graph model for N nodes. Next, one
specifies the distribution of the unit-level covariates (node attributes) by parameterizing a
structural equation model (SEM) for connected units [63]. This SEM allows the covariates
of one unit to be dependent on the covariates of other connected units via some known
functional form which is controlled explicitly by the user. For this purpose, we developed
a novel R interface which simplifies the specification of complex network-based functional

1simcausal package was developed using the R system for statistical computing [96] and it is available from
the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=simcausal.

http://CRAN.R-project.org/package=simcausal
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relationships between such units. Moreover, the network-based syntax can be combined with
the existing syntax for specifying longitudinal data structures, allowing for simulations of
network-based processes that also evolve in time. We refer to the vignette “simcausal Pack-
age: Simulations with Complex Longitudinal Data” [115] for general information about the
simcausal package and the description of its syntax for simulating longitudinal IID data.

The past decade has seen an increasing body of literature devoted to estimation of causal
effects in network-dependent data. Many of these studies seek to answer questions about
the role of social networks on various aspects of public health. For example, Christakis et
al. used the observational data on subjects connected by a social network to estimate the
causal effects of contagion for obesity, smoking and a variety of other outcomes [27, 26],
finding that many of these conditions are subject to social contagion, e.g., in one of the
studies the authors found that the person’s risk of becoming obese increases with an addi-
tional obese friend, even when one controls for all measured confounding factors. However,
the statistical methods employed by these studies have come under scrutiny due to possi-
bly anti-conservative standard error estimates that did not account for network-dependence
among the observed units [70], and possibly biased effect estimates that could have resulted
from: model misspecification [70, 128], network-induced homophily [111], and unmeasured
confounding by environmental factors [111]. Given the potential high impact of such studies
on future policy and public health decisions, it is important to be able to verify the robust-
ness of statistical methods employed in these and similar studies. Thus, there is an emerging
need for methods which can test the validity of various statistical methods for social network
data and we argue that one of the possible approaches involves the conduct of simulation
studies. That is, a practical way to test the validity of a certain statistical method involves
its application against a large set of plausible data generating scenarios, specifically in rela-
tion to the types of dependent data one might see in social networks. Moreover, a carefully
designed simulation study can test the method’s sensitivity to violations of its key assump-
tions, highlight its limitations for specific types of data, and provide an important proof of
concept that complements the results based on statistical theory. Finally, simulations can
be also helpful in identifying errors in the implementation of complex statistical algorithms.

Network simulation studies have been previously applied to assess the validity of different
estimation approaches in causal inference (for example, see [81], [34] and [5]). Such simulation
studies have also been used as a guiding tool for comparison of the benefits of different
experimental design strategies in network settings [133, 2, 53, 9]. However, to the best
of our knowledge, there is no open-source simulation software for conducing network-based
causal inference research that is similar to the tools and syntax implemented in the simcausal
package. The main contribution of simcausal is in its novel interface which simplifies the
design of simulation studies based on the non-parametric structural equation model for
connected units. While the package provides the user with a broad range of possible data-
generating distributions, it is specifically targeted towards causal inference research on the
types of observational data that might be collected when observing members of a single
social network. In other words, simcausal allows specification of a model based on a causal
Directed Acyclic Graph (DAG), and in conjunction with previously specified network model,
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this causal DAG can be used to define ways in which connected units depend on each other.
Moreover, any R package that can simulate such network graphs can be used with simcausal.
For example, in this chapter we use the igraph R package [29] for network graph simulations.

In summary, these are some of the advantages and differences of our proposed network
simulation package over other open-source tools. simcausal provides a simple and concise
interface for specifying a network data-generating distribution and incorporating the network
structure into various forms of functional dependence of one unit on other connected units.
It permits the simulation of such interconnected data structures, as well as the generation of
the counterfactual data under single or multiple time-point interventions. The user-defined
causal parameters can then be evaluated from the counterfactual data and serve as gold-
standards in testing the validity of various statistical methods. Finally, the simcausal package
provides the syntax for specifying complex longitudinal data structures in combination with
the network-dependent syntax, allowing one to simulate complex network processes that also
evolve over time.

Other related R packages
As of May 29, 2016, there were 208 R packages on CRAN that contain the word “net-
work” in their title sentence. A large number of these packages are dedicated towards
visual analysis and representation of networks (e.g., ggnetwork [19], igraph [29], d3Network
[40]), re-constructing the network based on biological, neural and other field-specific data
(e.g., interventionalDBN [117], LogitNet [134], RSNNS [11], dna [42]), statistical analysis
of networks based on specific network-generating models (multiplex [100], lvm4net [44]). In
addition, a large collection of packages often referred to as a “statnet suite of packages”
provides various tools for social network analysis, visualization, simulation and diagnoses
based on the statistical methods of exponential-family random graph models (ERGMs) or
other related parametric model families for networks (e.g., statnet [52], sna [23], EpiModel
[59], ergm [51], tergm [62]). Other packages for statistical analysis of network or network-
related data include, among others, netdiffuseR [132], nets [21], ebdbNet [97] and tmlenet
[116]. Finally, a large number of R packages are targeted towards analyses and simulation
of various networks, network evolution over time and the modeling various network features,
such as the creation of the tie between two nodes and answering questions such as, how
and why certain network ties are formed? Among the packages that are tailored to such
analyses are CIDnetworks [1], tsna [10], networkDynamic [24] and egonet [110]. Another
class of packages that is worth noting are those specifically targeted towards modeling of
epidemics on a network graph, such as packages epinet [48], netdiffuseR [132], EpiModel
[59], for example, by relying on the agent-based modeling or ERMG techniques. In addition,
the following packages are specifically designed for simulations of the network-graph data:
SocialMediaLab [46], which provides tools for collecting and generating social media data for
networks; hybridModels [109], which allows simulations of stochastic models for transmis-
sion of infectious diseases in longitudinal networks; NetSim [118], a package for simulating
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social networks; and finally, RSiena [99], a package designed for simulation-based analysis
of networks as well as model fitting for longitudinal network data.

Organization of this chapter
The rest of this chapter is organized as follows. In Section 3.2, we formally describe our
assumed observed data structure and provide the technical definition of the underlying non-
parametric structural equation model (NPSEM) for connected units. In Section 3.3 we
provide some technical details of the simcausal interface for simulating data according to
the user-specified parameterization of this NPSEMs. In Section 3.4, we describe an example
of a simulation that uses a network distributed according to the Erdos-Renyi model [98].
In Section 3.5, we describe the use of the package for simulating from more small world
network distribution [135]. We also illustrate the use of simcausal in a typical simulation
study, evaluating the true sample-average mean causal outcome (the gold-standard) of a
single time-point stochastic intervention on continuous exposure. In Section 3.6, we demon-
strate how one of our network simulation examples could be used in practice for assessing the
performance of statistical methods for estimation of causal effects among network-dependent
observations. In Section 3.7, we simulate a network in a longitudinal setting in which effects
are propagated over time and across units. We conclude with a discussion in Section 3.8.

3.2 Technical details
We start by introducing some notation. Suppose that we can simulate a sample of N
connected observations, where each observed unit is indexed as i = 1, . . . ,N . We let Fi ⊆
{1, . . . ,N}\i denote the set of observations that are assumed “connected” to i or, as we will
refer to it, the units in Fi are “friends” of i. In other words, we assume that each set Fi
consists of a unique set of indices j in {1, . . . ,N}, except for i itself. We also allow Fi to be
empty, which would imply that observation i is not receiving input from any other units.
We assume that i may receive input from other observations only if those observations are
listed as part of Fi. We will refer to the union of all Fi as a “network profile” on all N
observations, which will be denoted by F. Let Oi = (Wi,Ai,Yi) denote the data collected
on each observation i, for i= 1, . . . ,N , where Wi denotes all the baseline covariates for i, Ai
denotes the exposure of i and Yi denotes the outcome of i. Let W = (Wi)Ni=1, A = (Ai)Ni=1,
Y = (Yi)Ni=1 and O = (W,A,Y). Finally, we assume Fi ∈Wi, that is, the network of friends
of i is assumed to be part of i′s baseline covariates.

Nonparametric structural equation model for connected units
We now define the nonparametric structural equation model (NPSEM) [86] for N connected
units, similar to that described in [63]. This model will form the basis for describing the
type of network-based data generating distributions that can be defined within the simcausal
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Figure 3.1: An example of a directed acyclic graph (DAG) for two observations, where unit
1 is dependent on unit 2, but not vice-versa.

package. To help with the presentation, we first consider a more general NPSEM, which
is then followed with the definition of our actual NPSEM of interest. Suppose that the N
connected observations are generated by applying the following, general, NPSEM2:

Wi = fWi
(UWi

), i= 1, . . . ,N,
Ai = fAi(Wi,(Wj : j ∈ Fi),UAi), i= 1, . . . ,N,
Yi = fYi(Ai,Wi,(Aj ,Wj : j ∈ Fi),UYi), i= 1, . . . ,N,

where for now we assume that the error terms (UWi
,UAi ,UYi) are sampled as IID, for

i= 1, . . . ,N . Note that the above NPSEM could be represented as a Directed Acyclic Graph
(DAG) [85], by drawing arrows from causes to their effects. However, such a DAG would
have to include all N dependent observations (the entire network), since the above NPSEM
includes a separate equation for each observed unit i= 1, . . . ,N . For example, for a network
with two units (N = 2), in which unit i= 1 is dependent on unit i= 2, but not vice-versa, the
NPSEM could be depicted with a DAG shown in Figure 3.1. We also note that the error terms
(UWi

,UAi ,UYi), for i = 1,2, are excluded from this causal DAG [88], with the implication
that each of the remaining variables is subject to the influence of its own independent error.

To simplify our notation and to also to maintain the grip on the increasing dimensionality
of such network-connected data, we assume that there are some known summary measures:

W s
i := wsi (Wi,Wj : j ∈ Fi)

and
Asi := asi ((Ai,Wi),(Aj ,Wj : j ∈ Fi)),

and we use the short-hand notation W s
i for wsi (·) and Asi for asi (·). We assume that these

summary measures W s
i and Asi are of constant-in-i dimension that does not depend on N .

2This NPSEM is general in the sense that it makes no functional restrictions on fWi
, fAi

and fYi
,

allowing each i-specific set of covariates (Wi,Ai,Yi) to be generated from their own i-specific functions.
We do, however, assume that the dependence of i on other units is limited to set Fi and we also make an
assumption of independent errors (UWi

,UAi
,UYi

) across units.
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We now assume that the observed N units are actually generated from the following NPSEM,
which can be viewed as a special case of the NPSEM presented earlier:

Wi = fWi
(UWi

), i= 1, . . . ,N,
Ai = fA(W s

i ,UAi), i= 1, . . . ,N,
Yi = fY (Asi ,W s

i ,UYi), i= 1, . . . ,N.

This NPSEM implies that the observed data could be simulated in the following manner:

1. Start by generating N baseline covariates (W1, . . . ,WN ), by first drawing the (indepen-
dent or weakly dependent) errors UWi

and then applying the equations fWi
(UWi

), for
i= 1, . . . ,N ;

2. Generate N baseline summaries (W s
1 , . . . ,W

s
N ), by applying the baseline summary mea-

sures wsi (·) to Wi and (Wj : j ∈ Fi), for i= 1, . . . ,N ;
3. Generate N exposures (A1, . . . ,AN ), by first drawing the errors UAi and then applying

the common equation fA(·) to each W s
i and UAi , for i= 1, . . . ,N ;

4. Generate N exposure summaries (As1, . . . ,AsN ), by applying the exposure summary
measures asi (·) to (Ai,Wi) and (Aj ,Wj : j ∈ Fi), for i= 1, . . . ,N ; and

5. Generate N outcomes Y1, . . . ,YN , by drawing the errors UYi and then applying the
common equation fY (·) to (Asi ,W s

i ) and UYi , for i= 1, . . . ,N .

Note that in this chapter we only consider NPSEMs which assume a certain independence
structure of the errors, namely, conditional on W we assume that: (1) (UAi ,UYi), for i =
1, . . . ,N are IID; and (2) For each i, UAi is independent of UYi . The above structural equation
model assumptions on generating Ai and Yi imply that if two different units with the same
number of friends have the same individual covariate and treatment values, and also have
the same values for the covariates and treatments of their friends, they will be subjected to
the same conditional distribution for drawing their treatment and outcome. We note that we
had assumed UWi

are iid and since fWi
are allowed to be different for each i this corresponds

with assuming that W1, . . . ,WN are independent, but not necessarily identically distributed.
However, our package also allows simulating dependent W1, . . . ,WN , for example, by defining
a latent (hidden) covariate W ∗i which is shared between all observations connected to i and
then defining the observed baseline covariate for i and all j ∈ Fi conditionally on W ∗i . Such
simulation procedure allows one to introduce dependence between the observed Wi and Wj ,
whenever i and j are connected.

These independence assumptions on Ui := (UWi
,UAi ,UYi), for i= 1, . . . ,N imply that:

1. W1, . . . ,WN are independent (or more generally, their dependence is weak enough);
2. Conditional on W, the random variables (A1, . . . ,AN ) are mutually independent; and
3. Conditional on (A,W), the random variables (Y1, . . . ,YN ) are mutually independent.

Thus, all the dependence between units is explained by the observed pasts of the units
themselves and of their friends. Finally, these structural assumptions lead to the following
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assumptions for the conditional distribution of Yi and Ai. Specifically, let P (Ai |W) denote
the conditional distribution of the exposure Ai, given all W; and let P (Yi |A,W) denote the
conditional distribution of the outcome Ai, given all (A,W), for observations i = 1, . . . ,N .
The above NPSEM with the network structure F imply the following for these conditional
distributions:

1. Each P (Ai | ·) depends on (Wi,Wj : j ∈ Fi) only as a function of some fixed-dimension
summary measure wsi (Wi,Wj : j ∈ Fi); and

2. Each P (Yi | ·) depends on (Ai,Wi) and (Aj ,Wj : j ∈Fi) only as a function of some fixed-
dimension summary measures asi ((Ai,Wi),(Aj ,Wj : j ∈ Fi)) and wsi (Wi,Wj : j ∈ Fi).

Note that the above-defined NPSEM also implicitly encodes the definition of counter-
factual variables, i.e., variables which would result from some particular interventions on a
set of endogenous variables. For example, for a particular vector of treatment assignments
a = (a1, . . . ,aN ), we could modify the NPSEM as follows:

Wi = fWi
(UWi

), i= 1, . . . ,N,
Ai = ai, i= 1, . . . ,N,
Yi,a = fY (asi (a,W),W s

i ,UYi), i= 1, . . . ,N,

where the equations for Wi were kept unchanged, each Ai was set to ai, and each Yi,a
denotes the counterfactual outcome of unit i, under the network intervention on all N units
that sets A = a. In this chapter, we will refer to (W,a,Ya) as counterfactual data for N
units and we define our target causal parameter as a function of such counterfactual data
distribution. For example, the average treatment effect (ATE) can be simply expressed as
E [Y1−Y0].

3.3 Using simcausal for simulating networks and
network-dependent data

To define the distribution of the data (and to simulate such data), simcausal uses a DAG
object, which will typically consist of a collection of individual nodes (random variables).
Such nodes are defined each time the user calls the node() function. That is, each call
to node() defines the conditional distribution(s) of either a single or time-varying node.
Collectively, these node() calls define a single DAG object, which parametrizes the distribution
of the data that the user wants to simulate. By default, the distribution of any new node for
a single observation i can be dependent only on i′s values of the previously defined nodes,
and not the node values of other observations. As a result, any two observations sampled
from such DAG object will be independent. However, there are many real-life examples when
one wishes to simulate data based on some either a priori known or hypothesized information
about the network of connections between different observations. The new functionality we
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describe here allows the user to specify the distribution of a network graph and then use that
network to define the distribution of covariates for each observation i conditionally on the
covariates of other observations. For example, if we assume that the observation j is part
of i′s social or geographical network (or as we will call it, the observation j is a friend of
i), then the nodes of j are allowed to influence the distribution of the nodes of i. Moreover,
we assume that the functional form of such dependence can be described by some user-
specified network-based summary measures. For that purpose, we used the R list subsetting
operator “[[...]]” and re-defined it specifically for indexing and building of such network
summaries based on observations that are friends of i (e.g., “Var[[indx]]”). We also note
that simcausal does not allow simultaneous friend references of the same node, that is, each
newly added node can be defined only as a function of the nodes that have been previously
added to the DAG object.

Defining the network
In order to perform network-based simulations with the simcausal package, the user has to
declare a function which will return a specific network matrix, and we will refer to any such
function as the network generator. In particular, a network generator is any user-specified
function that returns a network profile F on N observations, defined as a matrix of N rows,
each row i containing the set of friends Fi of observation i, i.e., row i consists of a vector
of observations from {1, . . . ,N} that are assumed connected to i. The network generator
function should accept at least one named argument, n, and it must return a network matrix
with n rows and Kmax columns, where Kmax stands for a maximal possible number of friends
for any observation. When observation i happens to have fewer than Kmax friends, i.e.,
|Fi|<Kmax, the remainder of the matrix row i must by filled with NA (missing) values. Note
that an observation i is allowed to have no friends, which is denoted by an empty friend set
Fi, in which case the row i of the network matrix should only consist of NA (missing) values.

Once such a network generator has been defined, the next step is to add this network
to a specific DAG object. This is accomplished by simply calling the network function,
specifying the name of the network generator as its argument “netfun” and adding this
network function call to the current DAG object with the R operator “+”. In other words,
the network function call defines the network and is added to an existing DAG object with a
syntax “+network(...)”. Note that this is identical to the simcausal syntax for adding new
node function calls to a growing DAG object when defining data for IID observations. This
network can then serve as a backbone for defining the dependent-data structural equation
models within such a DAG object. More specifically, the previously defined node values of i′s
friends can be now referenced as part of the new node function calls, defining the conditional
distribution of the node for each observation i= 1, . . . ,N . The examples following this section
illustrate this functionality for various network models.

Finally, we note that the network function can accept any number of user-specified op-
tional arguments, where each of such optional arguments must be an evaluable R expression.
These expressions will not be evaluated until the data simulation step, at which point all
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of them are passed as arguments to the function that defines the network generator. Thus,
just like the regular node function expressions, the network function expressions can refer
to any standard or user-specified R functions and can reference any of the previously defined
DAG nodes (i.e., DAG nodes that were added prior to network function call). This feature can
be useful when, for example, one wishes to simulate the network in which the probability of
forming a tie between two units depends on the previously simulated unit-specific variable
values (such as the baseline risk factors on each unit).

Using the syntax [[...]] for network-based variable subsetting
Following the network function call, subsequent calls to node function can employ our re-
purposed list subsetting operator “[[...]]” for indexing the node values of friends. First,
the variable which is to be used for network subsetting is specified in front of the subset-
ting operator, e.g., “A[[...]]”. Second, the friend values of the variable A are specified by
the subsetting index, e.g., “A[[1:5]]”. This expression will look up the values of node A for
friends indexed from 1 to 5 and it will be evaluated for all observations i= 1, . . . ,N . The spe-
cific ordering of friends is determined by the column ordering of the network matrix returned
by the network generator. Such network-indexing expressions can be also used as inputs of
different R functions, enabling evaluation of various network-based summaries. For example,
the expression “sum(A[[1:Kmax]])” will specify a vector of length N that will consist of a
sum of A values among all friends of i, for each observation i= 1, . . . ,N . This syntax is fully
generalizable towards any function which can operate on matrices, such as the matrix result
of the expression “A[[1:Kmax]]”. Moreover, two of the commonly used R functions, sum and
mean, are automatically replaced with their row-based counterparts: the functions rowSums
and rowMeans. Thus, the expressions “sum(A[[1:Kmax]])” and “rowSums(A[[1:Kmax]])”
can be used interchangeably.

We illustrate this syntax with a simple example. Suppose that we have a DAG object,
named “D” and we use the network generator, named “rnet.gnp”3. As shown in the code
snippet below, we first define an empty DAG object D, then we add the network named “net”
to object D and we also define an IID Bernoulli variable named “Var”.

library("simcausal"); library("magrittr")
D <- DAG.empty() +

network("net", netfun = "rnet.gnp", p = 0.1) +
node("Var", distr = "rbern", prob = 0.5)

Next, we define a new node, named “Var.F1”, as the value of Var for the first friend of
each observation i = 1, . . . ,N . We do this by defining a node with a constant (degenerate)
distribution, distr="rconst", and indexing the first friend of each observation with the
expression “Var[[1]]”, as shown in the following example:

3Note that the network generator rnet.gnp is provided as part of the simcausal package. It uses the
igraph R package function sample gnp to sample a network graph and then converts its output into the
simcausal network matrix representation. See ?rnet.gnp for additional information.
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D <- D + node("Var.F1", distr = "rconst", const = Var[[1]])

Suppose we now wish to list the Var values among the first 4 friends from each set Fi.
This can be accomplished by defining a single multivariate node and using the expression
“Var[[1:4]]”, as shown next:

D <- D + node(paste0("Var.F",1:4), distr = "rconst", const = Var[[1:4]])

As our final example, we define a new degenerate node, named “mean.F1to4”, as the
mean of Var amongst the first 4 friends, for each i= 1, . . . ,N . We also define a new Bernoulli
node, named “Var.F1to4”, for which the i-specific probability of success is also given as
the mean of Var amongst the first 4 friends in Fi. The data for the variables defined thus
far can now be simulated by simply calling the functions set.DAG and sim in sequence and
specifying the desired sample size N with the argument “n”.

{ D <- D +
node("mean.F1to4", distr = "rconst", const = mean(Var[[1:4]], na.rm=TRUE)) +
node("Var.F1to4", distr = "rbern", prob = mean(Var[[1:4]], na.rm=TRUE)) } %>%

set.DAG(n.test = 50) %>%
sim(n = 50)

In summary, for a given indexing vector indx, the network-indexing expression, such as
“Var[[indx]]”, will evaluate to a matrix withN rows and the number of columns determined
by the length of indx. We note that indexing variable indx can be a non-negative integer-
valued vector, with values starting from 0 and bounded above by a special reserved constant
named “Kmax”. That is, the variable Kmax can be used for finding out the maximal friend
index for any given network, as we demonstrate in examples in following sections. In addition,
one can use 0 as part of the same friend indexing vector, where the expression “Var[[0]]”
is equivalent to using “Var”. This provides a convenient syntax for indexing the actual Var
value of observation i along with the Var values of i′s friends, for example, allowing the
expressions such as “sum(Var[[0:Kmax]])”. Furthermore, for a specific observation i, the
expression “Var[[k]]” will evaluate to a missing value (i.e., “NA”) whenever i has fewer than
k friends. This default behavior can be also altered by passing a special named argument
“replaceNAw0=TRUE” to the corresponding node() call, in which case all of such missing
(NA) values are automatically replaced with 0 values. In addition, any node expression can
reference a special reserved variable “nF”, which is a vector of length n and it stores the total
number of friends for observation j in its jth entry.

Finally, we note that any function that defines a network-indexing node summary can
be similarly applied as a summary of a time-varying node and vice-versa. For example, for
a time varying node “Var.t”, the expression “sum(Var.t[t indx])” is analogous to our
previous example of the network summary “sum(Var[[indx]])”, except that in the former
case we are summing the values of a time-varying node Var.t for time-points defined by the
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indexing vector t indx. We also provide some additional examples of such network sum-
maries in the following sections. However, for more in-depth description of this functionality
we refer to Section “Defining node distributions and vectorizing node formula functions” of
the simcausal package vignette “simcausal Package: Simulations with Complex Longitudi-
nal Data”. Furthermore, both of these indexing operators, i.e., the time indexing operator
“[...]” and the network indexing operator “[[...]]”, can be combined to form a single
summary applied to a time-varying node, as we demonstrate in Section 3.7.

3.4 Simulation with Erdos-Renyi network

Specifying the structural equation model for dependent data
We describe a simulation study of a hypothetical community of intravenous drug users,
considered to be under a high risk for HIV infection. We suppose that the exposure of
interest was defined as the indicator of receiving antiretroviral therapy while the outcome
was defined as the HIV status, which was assessed after some pre-specified follow-up period.
We also node that this simulation set-up is later extended to a more realistic setting with
longitudinal data in Section 3.7.

For this simulation the network graph is sampled according to the network generator
called “rnet.gnm”, which is provided as part of the simcausal package. This network gen-
erator uses the sample gnm function of the igraph package [29] to sample a directed ran-
dom graph according to Erdos-Renyi model [98]. The nodes of the graph returned by the
sample gnm function are treated as individual observations and are indexed as i = 1, . . . ,N .
A directed edge from node j pointing to node i implies that the unit j is a friend on unit
i, and hence j ∈ Fi, but not vice-versa, i.e., i ∈ Fj only if there is a separate directed edge
from node i to node j. The function rnet.gnm converts this network graph to a matrix of
network IDs, where each friend set Fi (matrix row i) is determined according to the above
described rule. Finally, function rnet.gnm accepts two arguments: n - the total sample size
(number of nodes in a network graph), and m pn - the total number of edges in the network
as a fraction of n. Note that the argument n needs to be the first argument of any network
generator, while the argument m pn is optional.

We proceed by first instantiating an empty DAG object, which is assigned to variable “D”
below. We will use this DAG object to define the network distribution, as well as to encode the
unit-specific distribution of the data. As a next step, we then register the network generator
function (rnet.gnm), making it a part of the object D. This will allow us to: (a) generate a
specific network, and (b) use this network as a way to connect nodes defined within the same
DAG object D. Specifically, as we show in the following code snippet, we add a network to the
object D by using syntax “D<-D+network()”. The name of the network generator is passed
on to the network() call with an argument “netfun”. Note that the network() call also
requires a “name” argument (first argument), which specifies a name of a particular network4.

4The actual value of the name argument of network() function becomes only relevant when the user
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Note that the function network allows passing any number of additional arguments, however
all of these arguments must be named. These arguments will be passed on to the network
generator function (e.g., rnet.gnm) during the process of data simulation. Note that one
can use such arguments for additional parameterization of the network distribution, such as
the argument “m pn” in the example below.

library("simcausal")
D <- DAG.empty() + network(name = "ER.net", netfun = "rnet.gnm", m_pn = 5)

As a next step, we define an integer node named “nF”, a vector with its jth entry set
equal to the total number of friends for unit j. Note that the special reserved variable nF is
automatically evaluated by the package and thus does not need to be explicitly defined as a
separate node.

D <- D + node("nF", distr = "rconst", const = nF)

In our next example we define three IID covariates W = (W (1),W (2),W (3)), where W (1)
is denoted as a node “W1” and it defined a categorical baseline risk factor, W (2) is denoted
as a node “W2” and it defines a binary confounder positively correlated with W1, and W (3)
is denoted as a node “W3” and it defines a binary indicator of having an HIV infection at
baseline.

D <- D +
node("W1", distr = "rcat.b1",

probs = c(0.0494, 0.1823, 0.2806, 0.2680, 0.1651, 0.0546)) +
node("W2", distr = "rbern", prob = plogis(-0.2 + W1/3)) +
node("W3", distr = "rbern", prob = 0.05)

We are finally ready to define the network summaries which will use the network. Specif-
ically, in the example below we introduce three network-based summaries sumW1, sumW2 and
sumW3, defined as the sums of the unit-specific baseline covariate values of the unit’s friends.
For example, when the user simulates n observations, the variable sumW1 will evaluate to
a vector of length n, with the ith entry in sumW1 being defined as ∑j∈FiWj(1), which cor-
responds with the sum of the values of W1 among all friends of unit i5. Note that sumW3
thus represents the number of friends of each observation who were infected at baseline.
The summing order is based on the ordering of the columns in the network matrix returned
by the network generator. The last friend index is indicated with Kmax, where Kmax is a
wants to either over-write the existing network or use several different networks within the same DAG object.

5As previously described, the expression “sum(W1[[1:Kmax]])” is automatically converted to an expres-
sion rowSums(W1[[1:Kmax]]), thus, correctly evaluating the unit-specific sums of the corresponding input
matrix rows, such as, W1[[1:Kmax]]. However, this functionality does not apply to any other functions
besides sum and mean. It is the responsibility of the user to provide a function which will appropriately
handle the matrix evaluation result of W1[[1:Kmax]].
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constant reserved by simcausal and it is equal to the maximal number of friends for any
unit. As previously described, when the unit j happens to have fewer than Kmax friends,
the default rule is to return NA for such non-existing friend covariate values. However, these
none-existing covariate values will be automatically replaced with 0 whenever an additional
argument replaceNAw0 = TRUE is passed to node() call, as we show in the examples below:

D <- D +
node("sumW1", distr = "rconst", const = sum(W1[[1:Kmax]]), replaceNAw0 = TRUE) +
node("sumW2", distr = "rconst", const = sum(W2[[1:Kmax]]), replaceNAw0 = TRUE) +
node("sumW3", distr = "rconst", const = sum(W3[[1:Kmax]]), replaceNAw0 = TRUE)

Suppose now that we also wanted to obtain the covariate values for specific friends, e.g.,
the values of covariate W1. Below we provide such an example, by defining one multivariate
node (5 columns) which contains the values of W1 among the first 5 friends. Note that we are
no longer using the argument replaceNAw0 = TRUE, which should set the evaluation result
to NA whenever the corresponding friend of rank k does not exist.

D <- D + node(paste0("W1.F",c(1:5)), distr = "rconst", const = W1[[1:5]])

Next, we define the conditional distribution for the binary exposure A, denoted with node
“A” below (e.g., indicator of receiving antiretroviral therapy). The probability of success for
A is defined as a logit-linear function of W2 and the above network-based summaries sumW1,
sumW2 and sumW3.

D <- D +
node("A", distr = "rbern",

prob = plogis(2 - 4*W2 - 0.1*sumW1 - 0.4*sumW2 + 1.5*sumW3))

Note that the above expression in prob argument of node A did not need to use the names
of the network summaries sumW1, sumW2 and sumW3. Thus, the node A could have directly
defined the network summaries eliminating the need to define separate nodes sumW1, sumW2
and sumW3, as we show the following alternative definition of A6:

D <- D +
node("A", distr = "rbern",

prob = plogis(2 - 4*W2 -
0.1*sum(W1[[1:Kmax]]) - 0.4*sum(W2[[1:Kmax]]) + 1.5*sum(W3[[1:Kmax]])),

replaceNAw0 = TRUE)

6Note that by adding another node() call with the same node name “A” we over-write the previously
defined node A (where in this particular example the new node A happens to be equivalent to the one we
defined previously)
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In the following example we define the network-based summary measure “sumW3A”, which
involves an interaction of friend’s exposures A and friend’s baseline covariates W3. More
specifically, we define the summary measure sumW3A for each unit i as ∑j∈FiWj(3)(1−Aj),
i.e., its the total number of i′s friends who were infected at baseline (W3 was 1) and were also
unexposed (A was 0).

D <- D +
node("sumW3A", distr = "rconst",

const = sum(W3[[1:Kmax]] * (1 - A[[1:Kmax]])),
replaceNAw0 = TRUE)

Next, we define the conditional distribution of the binary outcome Y , denoted as a
node “Y” below. We assume that Y is an indicator of adherence to the antiretroviral ther-
apy throughout some pre-specified follow-up period. In the example below, we model this
outcome as a function of the above described network summaries. Specifically, for each ob-
servation i, we assume that the probability of success for Y is a logit-linear function of the
summaries sumW3, sumW3A and the baseline covariate value W2. We also add another network
summary, making the outcome for observation i also dependent on the average exposure of i
and the exposures of i′s friends, i.e., (Ai+

∑
j∈FiAj)/(|Fi|+1). This new summary is defined

by the expression sum(A[[0:Kmax]])/(nF+1)) in the example below. Also note that we are
including 0 in the network subsetting of the node A (i.e., A[[0]]), which is equivalent to just
using A.

D1 <- D +
node("Y", distr = "rbern",

prob = plogis(-1 + 0.5*A + 2*sumW3A -
2*sumW3 + 3*W2 + 0.25*sum(A[[0:Kmax]])/(nF+1)),

replaceNAw0 = TRUE)

Note that, just like with an alternative definition of the node A above, we could have
also defined all of the above network summaries directly inside the definitions of node Y.
Finally, we finish specifying the observed data-generating distribution by calling the function
set.DAG(D), as shown below:

Dset1 <- set.DAG(D1, n.test = 100)

Simulating network and observed data
Having defined the network-based distribution of the data with a specific DAG object, one can
simulate data by simply calling the function sim, as we show in the example below. Here
we simulate 200 observations from the distribution defined by the above object Dset1.

datnet <- sim(Dset1, n = 100, rndseed = 543)
head(datnet, 2)
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## ID nF W1 W2 W3 sumW1 sumW2 sumW3 W1.F1 W1.F2 W1.F3 W1.F4 W1.F5 A sumW3A Y
## 1 1 6 3 1 0 18 4 0 1 3 1 4 5 0 0 0
## 2 2 3 2 0 0 10 2 0 3 3 4 NA NA 1 0 0

We also note the presence of the missing values (NA) for some network covariates in the
above simulated data frame (e.g., W1.F4 and W1.F5). As previously stated, these missing
network covariates imply that the unit has fewer friends than the index of the syntax [[...]]
(e.g., W1.F5=W1[[5]]). The data frame returned by the sim() function can be also used
for extracting the simulated network, as we show next. The data frame datnet contains an
attribute called netind cl, which is an R6 object of class NetIndClass. This object is used
for storing the network, as it was returned by the network generator. In particular, the field
NetInd contains the network matrix and the field nF contains the vector with total counts
of the simulated friends for each observation, i.e., F = (F1, . . . ,FN ) (see ?NetIndClass for
more information).

NetInd_mat <- attributes(datnet)$netind_cl$NetInd
head(NetInd_mat, 2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## [1,] 7 57 65 67 77 83 NA NA NA NA NA
## [2,] 1 60 100 NA NA NA NA NA NA NA NA

nF <- attributes(datnet)$netind_cl$nF
head(nF, 2)

## [1] 6 3

Plotting network and SEM
The plot.igraph function in igraph package can be used for visualizing such simulated
network. However, the network ID matrix NetInd mat needs to be first converted back into
its original igraph object representation (g), as we show below.

library("igraph")
g <- sparseAdjMat.to.igraph(NetInd.to.sparseAdjMat(NetInd_mat, nF = nF))

We can now use the plot.igraph function of the igraph package to visualize the simu-
lated network structure stored in the object g, as shown in Figure 3.2.

Using more than one network in a single dataset or over-writing
an existing network
Note that additional network() calls can be added to the same object D. When the same
name argument in the new network() call is used, the old network definition is automatically
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Figure 3.2: Example of a network sampled from the Erdos-Renyi model.

replaced by the new one. In the example below, we overwrite the previously defined network
"ER.net" with another network, with the same network generator rnet.gnm, but with a
different parametrization of the argument m pn.

D <- D + network(name = "ER.net", netfun = "rnet.gnm", m_pn = 10)
Dset.alt <- set.DAG(D, n.test = 200)
datnet <- sim(Dset.alt, n = 200, rndseed = 543)

In contrast, when another network() call provides a different name argument, e.g., name
= "new.ER.net", both networks (old and new) will be present within the same DAG object
and both networks can be used for constructing the network summaries. Specifically, any
node with a network-based summary that is added to D after the network new.ER.net, will
be computed on the basis of this new network, while all the network summaries defined
previously within D before new.ER.net was added, will continue to use the old network.
We illustrate this functionality with the following example, where we use the the same DAG
object D and we add a new network named new.ER.net, which is then followed by a new
network summary measure defined by the node “new.sumW1”. Note that the summary defined
in new.sumW1 is exactly the same function as the previously defined summary sumW1, i.e.,
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it is the sum of the friend values of the node W1. Thus, their unit-specific values should
be equivalent when the two summaries use the same network structure. However, in our
case the summary in sumW1 is evaluated on the basis of the network ER.net, while the
summary new.sumW1 is evaluated on the basis of the re-sampled network new.ER.net. As
the example below demonstrates, by using two different networks these two functionally
equivalent summaries evaluate to different observation-specific values.

D <- D +
network(name = "new.ER.net", netfun = "rnet.gnm", m_pn = 10) +
node("new.sumW1", distr = "rconst", const = sum(W1[[1:Kmax]]),

replaceNAw0 = TRUE)
Dset.alt <- set.DAG(D, n.test = 200)
datnet <- sim(Dset.alt, n = 200, rndseed = 543)
head(datnet[,c("sumW1", "new.sumW1")], 2)

## sumW1 new.sumW1
## 1 50 17
## 2 36 32

We note that this functionality is also demonstrated in a longitudinal simulation study
in Section 3.7.

3.5 Simulation with small world network, continuous
exposure and a single time point stochastic
intervention

The simulation study described here is a simplified version of a hypothetical observational
study that might have been conducted to evaluate the social influence of healthy living
on personal long term health status. We imagined that this study collected data on an
interconnected community of N individuals. For each individual i, we would have measured
their social network Fi, baseline covariates Wi, an exposure Ai and a binary outcome Yi. The
exposure was assessed as a continuous physical activity index and the outcome indicated if
the person was obese after some follow-up period. We evaluated the average-causal effect of a
stochastic intervention that intervened only on some members of the community by shifting
their observed physical activity level by some known constant shift > 0, while keeping the
exposures of others unchanged. More precisely, such stochastic intervention for each a unit
i can be defined by a function δ(Ai,Wi) that assigns the new (intervened) exposure to
either Ai+shift or Ai, depending on the covariate values Wi. Such interventions have been
described in the past [75] and they arise naturally in settings with continuous exposures
where it is not feasible to intervene on every member of the population. For example, in
our hypothetical study it might be infeasible to increase the level of physical activity for an
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individual with a pre-existing medical condition who is above a certain age. Therefore, as
an alternative, we may consider a dynamic interventions that does not intervene on such
community members, as determined by the pre-specified function δ(Ai,Wi). This in turn
allows us to define the types of causal parameters which are less likely to violate the positivity
assumption (also known as the assumption of experimental treatment assignment (ETA)).

In our simulation, we start by sampling a network graph for N units (nodes) according
to the small world model [135], along with three unit-specific baseline covariates,

Wi = (Wi(1),Wi(2),Wi(3)),

for i = 1, . . . ,N . The unit-specific exposure Ai is then was simulated conditionally on Wi

as normal with µ(Wi) = 0.58∗Wi(2) + 0.33∗Wi(3) and σ2 = 1. We also let the conditional
density of Ai given Wi to be denoted as g0(a|w). We denote the intervened exposure on i as
A∗i , with its corresponding conditional density denoted as g∗. Note that A∗i is set equal to
Ai+ shift, for known constant shift > 0, only if the following condition holds:

exp{shift∗ (Ai−µ(Wi) + shift/2)} ≥ trunc, (*)

for known truncation constant trunc > 0, and otherwise, the intervention keeps the observed
exposure Ai unchanged. Finally, the binary outcome Yi is simulated as dependent on all three
of i′s baseline covariates in Wi, i′s exposure Ai, as well as the baseline covariate values and ex-
posures of i′s friends via the following network summaries: 1/|Fi|

∑
j∈FiWj(1) and ∑

j∈FiAj .
To reiterate, we assume that the probability of success for each binary outcome Yi is logit-
linear function of the summary measures (Asi ,W s

i ), which are defined as

Asi := (Ai,1/|Fi|
∑
j∈Fi

Wj(1)) and W s
i := (Wi,

∑
j∈Fi

Aj).

Our target causal quantity is then defined with respect to N i-specific counterfactual
outcomes Y ∗i , under stochastic intervention g∗, for i = 1, . . . ,N . These counterfactual out-
comes are generated by replacing the structural equation for generating N exposures Ai with
new structural equations for generating intervened exposures A∗i , for i = 1, . . . ,N , and then
sampling the outcomes Y ∗i , for i = 1, . . . ,N from such a modified data-generating distribu-
tion. Note that we are using the new notation Y ∗i to denote the fact that the conditional
distribution of the observed data (Wi,Ai,Yi) has been modified by replacing g0 with the
intervention g∗. Our causal quantity is denoted by ψ0 and we define it as the sample-average
of the expected counterfactual outcomes, i.e.,

ψ0 := 1/n
n∑
i=1

E[Y ∗i ].

Using simcausal to specify the structural equation model for
dependent data
In this simulation study we sample the network graph based on the small world network
model [135], where its corresponding network generator function “rnet.SmWorld” is provided
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in the simcausal package. The actual network sampling is performed by calling the function
sample smallworld of the igraph R package. The rest of the code simply converts the
igraph output object into the simcausal network representation. We remind the reader that
simcausal represents the network as a matrix with N rows, each row i representing the set
of friends Fi (social connections of unit i), where each Fi may be padded with extra NAs
to make sure all Fi are of the same length. As in the example in the previous section, the
following code snippet instantiates an empty DAG object, then uses this DAG object to define
a network called ‘Net’, which is based on the network generator rnet.SmWorld().

D <- DAG.empty()
D <- D + network("Net", netfun = "rnet.SmWorld", dim = 1, nei = 9, p = 0.1)

Next, we define the three IID baseline covariates, categorical (0-5) Wi(1) (variable W1),
binary Wi(2) (variable W2) and binary Wi(3) (variable W3), as shown below:

D <- D +
node("W1", distr = "rcat.b0", probs = c(0.0494, 0.1823, 0.2806, 0.2680, 0.1651, 0.0546)) +
node("W2", distr = "rbern", prob = plogis(-0.2 + W1/3)) +
node("W3", distr = "rbern", prob = 0.6)

In our next step, we define the conditional distribution of a continuous exposure Ai
(variable A) , sampled as normal, with mean given as a linear combination of Wi(2) and
Wi(3) (variables W2 and W3) and the standard deviation of 1.

D <- D + node("A.obs", distr = "rnorm", mean = 0.58 * W2 + 0.33 * W3, sd = 1)

Finally, we model the conditional probability of success for the binary outcome Yi (vari-
able Y below) as a logit-linear function of (Wi,Ai) and the earlier described summary mea-
sures (W s

i ,A
s
i ), where the latter are based on the network of connections in Fi (friends of

unit i). In more detail, for each unit i, W s
i is defined as the mean of covariates Wj(1) for all

observations j that are friends with i (j ∈ Fi) and Asi is defined as the sum of the exposures
of all friends of i, i.e., all Aj such that j is in Fi.

D <- D +
node("A", distr = "rconst", const = A.obs) +
node("Y", distr = "rbern",

prob = plogis(+0.35*A +
+0.10*sum(A[[1:Kmax]]) +
-0.5*ifelse(nF > 0, sum(W1[[1:Kmax]])/nF, 0) +
-0.5*W1 - 0.58*W2 - 0.33*W3),

replaceNAw0 = TRUE)
Dset <- set.DAG(D, n.test = 200)
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Figure 3.3: Network for 100 observations sampled according to the small world network
model.

Note that the above object Dset has saved the described data-generating distribution,
which includes the definition of the network and that of unit-specific data. In other words,
Dset object saves all the information that is needed in order to be able to simulate: (1) the
network graph on N units, and (2) the observations (Wi,Ai,Yi), for i = 1, . . . ,N . Also note
that such unit-specific data may or may not be dependent (i.e., it may or may not use the
network structure), depending on a particular SEM parameterization selected by the user.

Simulating network and observed data
In our next code example we simulate the observed data on N units from the distribution
specified in the above object Dset. As before, this is accomplished by calling the function
sim, where the number of units is specified with the argument n. We save the resulting data
frame on N observations (Wi,Ai,Yi) as a variable datO, the network matrix as a variable
NetInd mat and the vector counting the number of friends for each unit as a variable nF.

nsamp <- 100
datO <- sim(Dset, n = nsamp, rndseed = 54321)
NetInd_mat <- attributes(datO)$netind_cl$NetInd
nF <- attributes(datO)$netind_cl$nF

As in the previous example, we use the plot.igraph function in igraph package to
visualize the simulated network, as shown in Figure 3.3.
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Defining interventions, simulating counterfactual data and
evaluating the true value of the causal quantity
Our next goal is to evaluate the true value of the causal parameter ψ0 under intervention
g∗ via Monte-Carlo simulation that samples from the distribution of the counterfactual
outcomes Y ∗i , for i = 1, . . . ,N . This process consists of two stages. First, as we show in
the following code snippet, we define the intervention of interest by modifying the observed
data-generating distribution saved in the object Dset. Namely, we replace the conditional
exposure density g0 with a stochastic intervention given by g∗. Note that such interventions
are defined by calling the function action and adding the result of this call to the previously
defined object Dset. In the example given below, our intervention of interest is named
‘gstar’ and it overrides the previous definition of the observed exposure node A with a new
intervened definition that is based on the previously described stochastic intervention g∗.

Dset <- Dset +
action("gstar",

nodes = node("A", distr = "rconst",
const = ifelse(exp(shift * (A.obs + shift -

(0.58*W2 + 0.33*W3) - shift/2)) > trunc,
A.obs,
A.obs + shift)),

trunc = 1, shift = 0.5)

Second, we sample from such intervened (post-intervention) distribution defined by the
action gstar and generate the counterfactual data, as shown in the following code example.
We do this by calling the function sim and specifying the name of the previously defined
action with an argument actions. The procedure in sim first samples the network of N =
100,000, proceeded by sampling the counterfactual data. We then evaluate the Monte-
Carlo approximation of the true causal parameter by taking the mean of the simulated
counterfactual outcomes Y ∗i , which provides a Monte-Carlo estimate of ψ0. We note that
this Monte-Carlo evaluated causal parameter defines our gold standard: the quantity which
we may use for evaluating and comparing the performance of different statistical methods.
One possible application of such causal parameters is exhibited in the following section.

nfull <- 100000
datFull <- sim(Dset, actions="gstar", n = nfull, rndseed = 54321)[[1]]
print(mean(datFull[["Y"]]))

3.6 Simulation study comparing performance of
dependent-data estimators

We now describe one possible application for the simcausal package. In particular, we
conduct a simulation study that compares the performance of the three dependent-data
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estimators implemented in the tmlenet R package [116], based on the data generating distri-
bution described in Section 3.5. We also note that the estimation algorithms implemented
in the tmlenet package have been described elsewhere [114]. In particular, the tmlenet
package implements three dependent-data estimators: Target Maximum Likelihood Estima-
tor (TMLE), the Inverse Probability Weighted Estimator (IPW) and the G-computation
estimator (GCOMP). We also note that our intervention of interest and the corresponding
target causal quantity was introduced in the previous section. We will now use this target
causal quantity as our gold standard, namely, it is the quantity that will generally remain
known in a real data-generating process. Our simulation study hence uses this gold standard
as a mean of comparing the finite sample performance of these three dependent-data estima-
tors over iterated samples of hypothetical observed data. We also note that the inferential
framework used by tmlenet assumes that the target causal quantity is defined condition-
ally on a particular sample size N and a particular network structure. Thus, the simcausal
Monte-Carlo evaluation of our true causal quantity was slightly modified from the previous
section as outlined below.

As our first step, we simulate the observed data, as shown below, for 10,000 units. In
this example, we set the network-generating process to a fixed random seed and leave the
rest of the data-generating procedure random.

datO <- sim(Dset, n = 10000, rndseed = 544321, rndseed.reset.node = "W1")
net_obj <- attributes(datO)[["netind_cl"]]
NetInd_mat <- net_obj[["NetInd"]]
nF <- net_obj[["nF"]]
Kmax <- net_obj[["Kmax"]]

As our next step, we define the input parameters for the tmlenet() estimation function,
as shown in the following code snippets. We define the observed-data baseline summary
measures W s

i by calling the function “def sW” and the exposure summary measures Asi by
calling the function “def sA”. Note, as we show below, these two functions use the syntax
that is nearly identical to the simcausal syntax for specifying the network-based variable
summaries.

require("tmlenet")
def_sW <- def_sW(W1, W2, W3) +

def_sW(meanW1 = ifelse(nF > 0, sum(W1[[1:Kmax]])/nF, 0),
replaceNAw0 = TRUE)

def_sA <- def_sA(A, sumA = sum(A[[1:Kmax]]), replaceNAw0 = TRUE)

In the following example we define the intervention of interest by calling the function
“def new sA”. We again note the syntactic similarities between the intervention specification
in the example below and the specification of the counterfactual action gstar in the example
from the previous section.
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trunc <- 1; shift <- 0.5
newA.gstar <- def_new_sA(A =

ifelse(exp(shift * (A + shift - (0.58*W2 + 0.33*W3) - shift/2)) > trunc,
A,
A + shift))

In our following example we define the regression formulas, where the regression defined
by the variable “Qform” is used for modeling the conditional outcome Yi given the summary
measures W s

i ,A
s
i and the regression in “hform” is used for modeling the conditional prob-

abilities of the observed exposure summaries given the observed baseline summaries, i.e.,
P (Asi |W s

i ). We also call tmlenet options to specify additional tuning parameters for the
tmlenet package. Finally, we call the estimation routine tmlenet(), as shown below.

Qform <- "Y ˜ A + sumA + meanW1 + W1 + W2 + W3"
hform <- "A + sumA ˜ meanW1 + W1 + W2 + W3"
tmlenet_options(bin.method = "equal.mass", maxNperBin = 200)
res <- tmlenet(data = datO, sW = def_sW, sA = def_sA,

Kmax = Kmax, NETIDmat = NetInd_mat,
intervene1.sA = newA.gstar ,
Qform = Qform, hform.g0 = hform)

The above function call returns a list containing the three point estimates of the counter-
factual sample-average expected outcome under intervention defined by newA.gstar, which
can be obtained by running the following code (output not shown):

res[["EY_gstar1"]][["estimates"]]

The tmlenet function also returns the corresponding 95% confidence intervals (CIs) for
TMLE and IPTW. Note that these CIs are adjusted for the dependence between units based
on the input network structure and can be printed by running the following code (output
not shown):

res[["EY_gstar1"]][["IC.CIs"]]

Finally, one can also obtain the 95% CIs which assume complete independence of the ob-
served units, by running the following code (output not shown). One would expect that such
independence-based CIs are going to be overly optimistic and will thus provide inadequate
asymptotic coverage. The extent of this under-coverage is also explored in our simulation
study.

res[["EY_gstar1"]][["iid.CIs"]]
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Estimator Bias10 MSE10 Variance10
TMLE 0.0081 0.00048 0.00048
IPTW 0.0037 0.00049 0.00049
GCOMP 0.0078 0.00041 0.00040

Table 3.1: Simulation-based performance of the three dependent data estimators across 1,000
simulations, each simulation consisted of N = 10,000 units. The reported bias, mean squared
error (MSE) and variance are all multiplied by 10.

DEP.VAR IID.VAR Relative.VAR DEP.CI.cover IID.CI.cover
0.000048 0.000039 1.23 0.948 0.923

Table 3.2: Monte-Carlo approximated mean of the TMLE variance for dependent data
(’DEP.VAR’), TMLE variance estimator for IID data (’IID.VAR’), the relative ratio of
means of the two variances (’Relative.VAR’), the coverage of the 95% CI for dependent
data (’DEP.CI.cover’) and the coverage of the 95% CI for IID data (’IID.CI.cover’).

Our simulation study repeated the above described estimation procedure 1,000 times,
each time using a newly sampled dataset that used exactly the same network. The corre-
sponding R code for this simulation study can be found in Appendix A. We evaluated the
absolute bias, the mean-squared error (MSE) and the variance of these three estimators,
with results presented in Table 3.1 (all performance metrics were multiplied by 10). In
addition, we evaluated the mean of the TMLE variance estimate which adjusted for the de-
pendence among units and the coverage of its corresponding 95% CI, as reported in columns
“DEP.VAR” and “DEP.CI.cover” in Table 3.2. We also evaluated the mean of the TMLE
variance estimate which assumed independence among units, along with its corresponding
95% CI, as reported in columns “IID.VAR” and “IID.CI.cover” of Table 3.2. Finally, we
compared the relative ratio of the means of these two TMLE variance estimates, as reported
in column “Relative.VAR” in Table 3.2. As expected, the IID-based variance estimator
resulted in 95% CIs that had inadequate coverage, compared to the nearly nominal cover-
age probability of 0.95 for the TMLE variance estimator which appropriately adjusted for
dependence among the units.

3.7 Extensions to longitudinal data structures
In our final example we demonstrate the extension of the simcuasal package towards simula-
tions with longitudinal network data. This simulation is based on the longitudinal NPSEM
for connected units and it has been previously described in [63]. We omit the description
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of the technical details of such longitudinal NPSEMs in favor of an applied simulation ex-
ample. We note that research on statistical methods for causal inference in longitudinal
network data is a relatively new area of statistical research. Some of the recent packages
that provide descriptive statistics and simulation for dynamic network data include tsna [10],
networkDynamic [24], RSiena [99] and netdiffuseR [132].

In this simulation, we continue with an example first presented in Section 3.4 and demon-
strate how it can be expanded towards simulations of dependent processes that also evolve
in time over a static network. In particular, we present a simple model for the spread of an
HIV epidemic over time based on a static network of 10 independent communities. We also
note that another possible application of this type of a simulation study is for modeling the
product or service adoption over time among the users of an online social network [34]. We
assume that the study collects data on N individuals over time points t = 0, . . . ,50, where
for each unit i their network of sexual partners is denoted as Fi, their baseline covariates are
denoted as Wi, and their indicator of receiving antiretroviral therapy is denoted as Ai. The
unit’s HIV status at time t is also recorded and is denoted as Yi(t), and the right-censoring
indicator due to death is denoted as D(t). We assume that whenever unit i is HIV-positive
at t (i.e., Yi(t) = 1), there is a non-zero probability of HIV transmission from i to another
individuals j at time point t+1 if the unit i is in j′s friend set (i.e., the event Yj(t+1) = 1 can
occur for all j such that i ∈ Fj). The same model also applies at next time cycle t+1, when
a newly infected individual j can cause new HIV infections for all observations that had j
in their friend set, even if some or all of those units were not at risk of getting HIV prior to
cycle t+2. In this manner, any outcome Yj(t+2) measured at time t+2 is clearly dependent
on the outcomes measured at t+ 1 for all units that were immediate sexual partners of j,
i.e., all outcomes (Yk(t+ 1) : k ∈ Fj). However, the outcomes (Yk(t+ 1) : k ∈ Fj), and hence
Yj(t+ 2), depend on an ever larger set of units as a function of outcomes measured at t,
namely, all units within at most a second-degree of connectivity of j or the units in the set
∪k∈FiFk (friends of friends).

Our example below provides an intentionally simplified simulation of the above described
process of contagion, where we use the time-varying Bernoulli node “Y” to model Y (t), for
t = 0, . . . ,50. This simulation assumes that the conditional probability that unit i will be
newly infected at each cycle t (i.e.,P (Yi(t) = 1|·)), is a logit-linear function of the total
number of friends of i who: (1) were infected at the previous time-point t−1 (all j ∈ Fi such
that Yj(t−1) = 1); and (2) did not receive the antiretroviral treatment at baseline (all j ∈ Fi
with Aj = 0). In addition, we also model the right-censoring process D(t), for t = 0, ...,50
with a time-varying node “D”, as shown below. Our network is defined by the number of
independent clusters (communities), where the number of such clusters is determined by the
variable “nC” and each cluster is inter-connected by a network sampled from the small world
network model (the R code provided in Appendix B).

As before, we first add this new network to the DAG object D1 previously defined in Section
3.4, naming it as SmWrld.nC10. Note that the variables that were already defined in the
object D1 will be based on the previously added network model, however, all of the new
variables that we add next will be using this new network SmWrld.nC10. The distribution
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of the exposure A (i.e., the indicator of receiving antiretroviral therapy) is unchanged from
the simulation example in Section 3.4.

D1.l <- D1 +
network("SmWrld.nC10", netfun = "rnet.SmWrld.nC", nC = 10, nei = 4, p = 0.05)

We are now ready to define the time-varying structure, using the same node function call,
but with an additional argument t. We also define the summary measure netYA, which is
equal the number of number of untreated and infected friends at a particular time point. We
define the time-varying node “Y” as our outcome, where at each time-point t, the outcome
node Y[t] is a logit-linear function of the summary “netYA[t]”, a function of the exposure
“A”, and finally, a function of the baseline summary “sumW2”. We also define a time-varying
right-censoring node “D[t]” (death status), which depends on the baseline value of node
“W1” and the HIV infection status at time t, namely, “Y[t]”. The following example first
defines the distributions of the time-varying nodes at their initial time-point t= 0.

D1.l <- D1.l +
node("Y", t = 0, distr = "rbern",

prob = ifelse(W3==1L, 1L,
plogis(-4 - 2*sumW2 - 2*A + 1.5*sum(W3[[1:Kmax]]*(1-A[[1:Kmax]])))),

replaceNAw0 = TRUE) +
node("D", t = 0, distr = "rbern", prob = 0, EFU = TRUE)

The following code example defines the distributions of the time-varying nodes “netYA”,
“Y” and “D” for time-points t= 1, . . . ,50:

D1.l <- D1.l +
node("netYA", t = 1:50, distr = "rconst",

const = sum(Y[t-1][[1:Kmax]]*(1-A[[1:Kmax]])), replaceNAw0 = TRUE) +
node("Y", t = 1:50, distr = "rbern",

prob = ifelse(Y[t-1]==1, 1, plogis(-4 - 5*sumW2 - 10*A + 0.5*netYA[t]))) +
node("D", t = 1:50, distr = "rbern",

prob = plogis(-7.5 + 0.25*W1 + 0.05*A+ 0.25*Y[t]), EFU = TRUE)

We finish defining the above data-generating distribution with a call to set.DAG function
and we simulate a dataset with 10,000 observations, as shown below:

Dset <- set.DAG(D1.l, n.test = 1000,
latent.v =c("sumW1", "sumW2", "sumW3", "W1.F1", "W1.F2",

"W1.F3", "W1.F4", "W1.F5", "sumW3A"))
dat <- sim(Dset, n = 10000, LTCF = "D", rndseed = 543)

Below we present a sample of the simulated data for two observations and several time
points. We also present the mean number of untreated and infected friends over time in
a top plot of Figure 3.4 and we present the mortality and HIV prevalence over time in a
bottom plot of Figure 3.4.
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Figure 3.4: Mean number of untreated and infected friends by time (top figure). Mortality
and HIV prevalence by time (bottom figure).

head(dat[c(1:2),1:19])

## ID nF W1 W2 W3 A Y_0 D_0 netYA_1 Y_1 D_1 netYA_2 Y_2 D_2 netYA_3 Y_3 D_3
## 1 1 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 2 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Suppose now that we also want to model the outcome Yi[t] as a function of another
time-varying network summary defined for each unit i as the mean duration of HIV among
all friends of observation i up to time t. Note that the duration of HIV for unit j at cycle t
is defined by the total number of cycles since the initial HIV infection (first time Yj jumps
to 1). Below, we provide an example that defines exactly such a summary, called “new.S”,
by combining the time-indexing and network-indexing summaries into a single expression
“sum(sum(Y[0:(t)])[[0:Kmax]])/nF”. Note that this expression should be read from the
inside out as follows: First, the expression “sum(Y[0:(t)])” evaluates to a sum of the unit-
specific values of the time-varying vector Y from time-point 0 up to the current time-point
value in t, i.e., the total number of cycles the person had HIV up to this point; Second, the
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expression “(...)[[0:Kmax]]” evaluates the result of the previous expression for a network-
based index “[[0:Kmax]]”, which provides the total duration of HIV among all friends of
each unit; Third, the expression “sum(...)/nF” is applied to the result of the previous
expression to find the mean value (mean duration) of HIV among all friends of each unit.

D1.l <- D1.l +
node("new.S", distr = "rconst", t = 1:50,

const = sum(sum(Y[0:t])[[0:Kmax]])/nF, replaceNAw0 = TRUE)

Note that the above time-varying node “new.S” was added to the previously defined DAG
object “D1.l”. In particular, for a given time-point value t the node “new.S[t]” is added
after the previously defined nodes “netYA[t]”, “Y[t]” and “D[t]”. The following example
simulates the observed data with new summary node “new.S” and displays its value over
time for three selected observations:

Dset.new <- set.DAG(D1.l, n.test = 1000, verbose = FALSE)
dat.new <- sim(Dset.new, n = 10000, rndseed = 757)
round(dat.new[c(1,5000, 8000), paste0("new.S_",1:10)],2)

## new.S_1 new.S_2 new.S_3 new.S_4 new.S_5 new.S_6 new.S_7 new.S_8 new.S_9
## 1 0.29 0.43 0.57 0.71 0.86 1.00 1.14 1.29 1.43
## 5000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## 8000 0.00 0.00 0.00 0.00 0.00 0.14 0.29 0.43 0.57

3.8 Discussion
We described how the simcausal R package can facilitate the conduct of network-based simu-
lation studies in causal inference research, specifically allowing one to model data with known
network and known functional form of dependence among units. We also described how the
package can be used for simulations with longitudinal data structures. We described how
the simcausal R package allows creating a wide range of artificial datasets often encountered
in public health applications of causal inference methods. In particular, this includes simula-
tions of causal mechanisms of interference or spillover. To simplify the specification of such
models we implemented a novel R syntax which allows for a concise and intuitive expression
of complex functional dependencies for a large number of nodes. We also demonstrated how
this syntax can be used for simplifying the specification and simulation of complex network-
based summaries of the data. Moreover, we argued that such complex simulations are often
necessary when one tries to conduct a realistic simulation study that attempts to replicate
a large variety of scenarios one might expect to see from a true data-generating process. We
also note that our package can work in conjunction with other network simulation tools, as
we demonstrated with the example of the igraph R package that was used to sample the
actual networks. In addition, the simcausal package allows the user to specify and simu-
late counterfactual data under various interventions (e.g., static, dynamic, deterministic, or



CHAPTER 3. SIMULATION STUDIES IN NETWORK DATA 116

stochastic). These interventions may represent exposures to treatment regimens, the occur-
rence or non-occurrence of right-censoring events, or of specific monitoring events. These
simulations provide practical settings with the types of data generating distributions which
might be used for validation, testing and comparison of statistical methods for causal infer-
ence. To the best of our knowledge there are no other tools which implement the specific
type of functionality afforded by the network-based syntax that is implemented in simcausal
and is described in this chapter.

We note that one of the distinguishing features of simcausal is that it allows the user
to define and compute various causal target parameters, such as, the treatment-specific
counterfactual mean, that can then serve as the model-free gold standard. That is, the causal
parameter is always the same functional of the counterfactual data distribution, regardless of
the user-selected parameterization of the structural equation model. For example, the gold
standard defined in this manner provides an objective measure of bias that does not depend
on the modeling assumptions of a specific statistical method. Coupled with a wide variety
of possible data generating distributions that may be specified in simcausal, this package
provides statisticians with a powerful tool for testing the validity and accuracy of various
statistical methods. For example, one may use our package for validating an implementation
of a novel statistical method, using the simulated data with the known truth (the true value
of the causal parameter), prior to applying such an algorithm to real data, in which this truth
is unknown. As another example, one may use simcausal to simulate data from a variety of
data-generating distributions and conduct a simulation study comparing the properties of
different statistical procedures (e.g., bias, mean-squared error (MSE), asymptotic confidence
interval coverage) against the user-selected causal parameter. We emphasize that the main
purpose of our package is not to assess the impact of real-life interventions, but rather to
test the validity and performance of statistical methods, which can then be applied to real
datasets. Moreover, we demonstrated that the simcausal R package is a flexible tool that
enables easier communication of assumptions between various practitioners and thus helps
improve the transparency about the assumptions of different statistical methods.

We demonstrated the functionality of the simcausal package and its support for a large
variety of network-based data generating processes with two single time point intervention
simulation studies in Sections 3.4 and 3.5, as well the simulation study of more complex
network-based processes that evolve in time in Section 3.7. We also showed a real-world
application of the simcausal package in Section 3.6, where we conducted a simulation study
that used another R package tmlenet to evaluate the performance of the three estimators
of causal effect under interference intervening on the single time-point continuous exposure.
We also note that the simcausal package vignette “simcausal Package: Simulations with
Complex Longitudinal Data” [115] contains additional examples for simulations with IID data
and other technical details of simcausal functionality. We also note that the implementation
of additional features in future releases of the simcausal package should further expand its
utility for methods research. Among such possible improvements is to allow interventions on
the network structure and providing a unified interface for changes to friend structure as part
of the intervention. Future work will also focus on modeling the changes in network structure
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over time, for example, by providing an interface for specifying a time-varying analogs of the
network function, modeling the probability of forming a new tie or removing a certain friend
over time and allowing one to sample new networks conditional on the previously sampled
networks.

3.9 Chapter apendix

R code for a network simulation study
require("doParallel")
registerDoParallel(cores = detectCores())
nsamp <- 10000
n.sim <- 1000
psi0.reps <- foreach(i.sim = seq(500), .combine = "c") %dopar% {

datFull <- sim(Dset, actions="gstar", n = nsamp,
rndseed = 544321, rndseed.reset.node = "W1")[[1]]

psi0 <- mean(datFull[["Y"]])
}
(psi0 <- mean(psi0.reps)) # 0.2297232

psi.n.mat <- foreach(i.sim = seq(n.sim), .combine = "rbind") %dopar% {
datO <- sim(Dset, n = nsamp, rndseed = 544321, rndseed.reset.node = "W1")
res <- tmlenet(data = datO, sW = def_sW, sA = def_sA,

Kmax = attributes(datO)[["netind_cl"]][["Kmax"]],
NETIDmat = attributes(datO)[["netind_cl"]][["NetInd"]],
intervene1.sA = newA.gstar,
Qform = Qform, hform.g0 = hform)

psi.n.vec <- t(res[["EY_gstar1"]][["estimates"]][,1])
IID.tmle.CI <- res[["EY_gstar1"]][["iid.CIs"]]["tmle", ]
tmle.CI <- res[["EY_gstar1"]][["IC.CIs"]]["tmle", ]
IID.tmle.cover <- as.vector(IID.tmle.CI[1] <= psi0 & psi0 <= IID.tmle.CI[2])
tmle.cover <- as.vector(tmle.CI[1] <= psi0 & psi0 <= tmle.CI[2])
c(psi.n.vec,

var.iid.TMLE = res[["EY_gstar1"]][["iid.vars"]]["tmle", ],
var.TMLE = res[["EY_gstar1"]][["IC.vars"]]["tmle", ],
IID.tmle.cover = IID.tmle.cover, tmle.cover = tmle.cover)

}
save(list=c("psi.n.mat", "psi0"), file="psi.n.mat.rda")
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R code for additional network generators
Example of a small world network model with independent clusters

Below we provide the R code for a network sampling function used in the simulation example
with longitudinal data described in Section 3.7. Specifically this function samples networks
of independent communities, where each community network is distributed according to the
small world network model and the number of independent communities is specified with
the argument nC. An example graph of such a network for 1,000 observations is shown in
Figure 3.5.

rnet.SmWrld.nC <- function(n, nC = 1, nei, p, ...) {
sample_1Comm <- function(size) {

g <- igraph::sample_smallworld(dim = 1, size = size, nei = nei, p = p,
loops = FALSE, multiple = FALSE)

g <- igraph::as.directed(g, mode = c("mutual"))
NetInd_mat_1C <- sparseAdjMat.to.NetInd(igraph.to.sparseAdjMat(g))
return(NetInd_mat_1C[["NetInd_k"]])

}

padcolsNetMat <- function(NetInd_mat) {
if (ncol(NetInd_mat)<maxF) {

NetInd_mat <- cbind(NetInd_mat,
matrix(NA,nrow=nrow(NetInd_mat),ncol=maxF-ncol(NetInd_mat)))

}
return(NetInd_mat)

}

if (n <= 100) {nC <- 1}
size_C <- vector(mode="integer", length=nC)
for (i in 1:nC) size_C[i] <- as.integer(n / nC)
size_C[nC] <- size_C[nC] + (n-sum(size_C))
stopifnot(sum(size_C)==n)
NetInd_mat_list <- lapply(seq(nC), function(iC)

sample_1Comm(size_C[iC]) + (iC - 1)*size_C[1])
maxF <- max(unlist((lapply(NetInd_mat_list, ncol))))
NetInd_mat_list <- lapply(NetInd_mat_list, padcolsNetMat)
NetInd_mat <- do.call(’rbind’, NetInd_mat_list)
return(NetInd_mat)

}
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Figure 3.5: Network for 100 observations sampled by the custom network generator.

Example of a custom network generator

In this example we demonstrate that the user can define their own custom network sampling
function, such as the genNET function provided below. Specifically, we will sample a network
for n units, where the probability of making a connection (friendship) between two units
is defined conditionally on the units’ own baseline covariates. The following arguments are
passed to the function genNET():

• maxFi - The overall maximal number of friends
• bslVar - The baseline covariate which is used for constructing weights for the proba-

bility of selecting unit i as someone else’s friend (weighted sampling);
• nF - A vector with the total number of friends that needs to be sampled for each unit
i.

genNET <- function(n, maxFi, bslVar, nF, ...) {
prob_F <- plogis(-4.5 + 2.5*c(1:6)/2) / sum(plogis(-4.5 + 2.5*c(1:6)/2))
NetInd_k <- matrix(NA_integer_, nrow = n, ncol = maxFi)
nFriendTot <- rep(0L, n)
for (index in (1:n)) {



CHAPTER 3. SIMULATION STUDIES IN NETWORK DATA 120

FriendSampSet <- setdiff(c(1:n), index)
nFriendSamp <- max(nF[index] - nFriendTot[index], 0L)
if (nFriendSamp > 0) {

if (length(FriendSampSet) == 1) {
friends_i <- FriendSampSet

} else {
friends_i <- sort(sample(FriendSampSet, size = nFriendSamp,

prob = prob_F[bslVar[FriendSampSet] + 1]))
}
NetInd_k[index, ] <- c(as.integer(friends_i),

rep_len(NA_integer_, maxFi - length(friends_i)))
nFriendTot[index] <- nFriendTot[index] + nFriendSamp

}
}
return(NetInd_k)

}

Next, we define the matrix of categorical probabilities p.nFbyW1. We will use this matrix
for sampling the total number of friends (nF), conditionally on the value of the baseline
covariate W1. Specifically, if W1 is equal to 0, the observation’s number of friends, 0 to 6, is
sampled according to the probabilities in the first column of the matrix p.nFbyW1, and so on,
each observation-specific value of W1 being used to look up observation-specific categorical
probabilities from p.nFbyW1.

set.seed(544321)
normprob <- function(x) x / sum(x)
p.nFbyW1 <- apply(matrix(runif(7*6), ncol = 6, nrow = 7), 2, normprob)
colnames(p.nFbyW1) <- paste0("p.nFbyW1_", c(0:5))
print(p.nFbyW1[c(1:2),])

## p.nFbyW1_0 p.nFbyW1_1 p.nFbyW1_2 p.nFbyW1_3 p.nFbyW1_4 p.nFbyW1_5
## [1,] 0.1461838 0.1526971 0.1006473 0.1240505 0.02911188 0.2123011
## [2,] 0.1738377 0.1833152 0.2790983 0.1569190 0.23426583 0.2273970

In this simulation, the baseline covariate W1 is added to the DAG object prior to registering
the network generator. The network will be sampled later and the sampling process will be
performed conditional on the value of the categorical W1, which is passed as an argument
bslVar to the network generator function genNET().

create_probs_nF <- function(W1) t(p.nFbyW1[,W1+1])
vecfun.add("create_probs_nF")

D <- DAG.empty()
D <- D +

node("W1", distr = "rcat.b0",
probs = c(0.0494, 0.1823, 0.2806, 0.2680, 0.1651, 0.0546))
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Next, we define the node for the total number of friends (nF) according to the rule
described above. We pass W1 to function create probs nF7, which then looks-up the unit-
specific vector of categorical probabilities from matrix p.nFbyW1, depending on the specific
value of W1.

D <- D +
node("nF", distr = "rcat.b0", probs = create_probs_nF(W1)) +
network(name = "net.custom", netfun = "genNET",

maxFi = 6, bslVar = W1, nF = nF)
Dset <- set.DAG(D, n.test = 200)

We then simulate 100 observations by calling the function sim, as shown below.

nsamp <- 100
datO <- sim(Dset, n = nsamp, rndseed = 54321)
NetInd_mat <- attributes(datO)$netind_cl$NetInd
nF <- attributes(datO)$netind_cl$nF

We use the plot.igraph function in igraph package to visualize the simulated network,
as shown in Figure 3.6.

7Note that prior to defining a categorical node “nF”, we called vecfun.add(...), to define the vector-
ized function create probs nF. See the package vignette “simcausal Package: Simulations with Complex
Longitudinal Data”, Section 3.6, Subsection Vectorizing node formula functions for the description of why
this needs to be done. Next, we add the network generator genNET to D, passing it the above defined
observation-specific variables, i.e., the total number of friends nF and the categorical W1.
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Figure 3.6: Network for 100 observations sampled by the custom network generator.
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