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Systems biology approach to bioremediation 
 

Romy Chakraborty1, Cindy H Wu1 and Terry C Hazen1,2,3 
 

 
Bioremediation has historically been approached as a ‘black 
box’ in terms of our fundamental understanding. Thus it 
succeeds and fails, seldom without a complete understanding 
of why. Systems biology is an integrated research approach to 
study complex biological systems, by investigating interactions 
and networks at the molecular, cellular, community, and 
ecosystem level. The knowledge of these interactions within 
individual components is fundamental to understanding the 
dynamics of the ecosystem under investigation. Understanding 
and modeling functional microbial community structure and 
stress responses in environments at all levels have tremendous 
implications for our fundamental understanding of 
hydrobiogeochemical processes and the potential for making 
bioremediation breakthroughs and illuminating the ‘black box’. 
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Introduction 
Bioremediation, a process mediated by microorganisms, is 
a sustainable way to degrade and detoxify environmental 
contaminants. Though  bioremediation has been  used  to 
varying  degrees   for  more  than  60  years,  for  example 
petroleum land  farming,  it historically  has been  imple- 
mented as a very ‘black box’ engineering  solution where 
amendments are added  and the pollutants  are degraded. 
This approach is often successful but all too often the 
results are less than desirable, that is, no degradation of 
the contaminant or even production of more toxic 
daughter products. The key to successful bioremediation 
is to harness the naturally occurring catabolic capability of 
microbes to catalyze transformations of environmental 
pollutants. Simulated experiments using defined microbial 
consortia in the laboratory is a great starting point in 

providing crucial initial indication (within certain con- 
straints) of the process. However, unlike bench-scale simu- 
lations, in situ bioremediation in reality is a complex 
phenomenon involving more than one contaminant and 
mediated by different strains of microbes involving differ- 
ent metabolic pathways, across geochemical gradients, 
geophysical and hydrological complexities. 
 
Systems biology approach 
Recently, modern tools of genomics, transcriptomics, pro- 
teomics, metabolomics, phenomics, and lipidomics have 
been  applied  to investigate  systems biology of microbial 
communities  in a myriad of environments (Figure 1). 
Systems biology is an integrated research approach to study 
complex biological systems, by investigating interactions 
and networks at the molecular, cellular, community, and 
ecosystem levels. Amalgamation of the results from the 
various ‘omics’ tools has provided crucial insights into the 
survival, metabolism  and interaction  of microbes in their 
native environments including groundwater and marine 
systems  [1–4], extreme  milieus  [5], deep-sea  sediments 
and vents  [6,7], and animal microbiomes  [8]. A systems 
biology approach is being adopted to unravel key processes 
to understand, optimize, predict and evaluate microbial 
function and survival strategies in the ecosystem of in- 
terest. However, successful application of this approach 
requires over coming several challenges, including the high 
cost associated  with  sample  processing  equipment, 
materials and reagents, large amount of samples required, 
the need for skilled personnel to process the samples, 
massive amount of data generated, and the time consuming 
nature in integration and synthesis of the data. Currently, 
few bioremediation projects utilize the systems biology 
approach due to limitations in funding, expertise, and 
resources. This review will describe a compilation of 
research projects that would constitute a perfect study 
employing a systems biology approach for remediation of 
radionuclides, metals, hydrocarbons and chlorinated 
solvents, and suggest directions for future development. 
 
To use a systems biology approach to bioremediation 
projects they must involve the characterization of microbial 
community composition, cellular and molecular activity and 
are complicated by the presence of toxic chemicals that 
alters the normal behavior of the microbial community. In 
addition, the ultimate objective of bioremediation projects 
is the elimination or detoxification of toxic compounds, 
which requires an understanding of all possible influence 
from environmental variables and cell–cell interactions. 
The selection process for which methods to use in a systems 
biology study includes consideration for cost, time frame, 
personnel, and the objectives of the project. If the 
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Systems biology from molecules to ecosystems. In general terms, an

ecosystem consists of communities, populations, cells, protein, RNA,

and DNA. The approaches use geochemcial, ecological, genomic,

proteomic, metabolomic, and computational techniques. Analyze DNA,

RNA, and protein at the cellular levels to understand impacts on the cell

in terms of how bioremediation functions, and analyze communities, and

populations to understand impacts on structure/function relationships

and finally interactomes at the ecosystem level in terms of

bioremediation practices.

2

focus is to elucidate microbial community composition,

DNA based ‘-omics’ tools such as 16S rRNA clone library,

PhyloChip or sequencing should be used. If the interest is

to understand cellular pathways and identify functional

genes involved in microbially mediated reactions, tools

that identify RNA, and proteins such as GeoChip, RNA-

seq, and various mass spectrometry methods should be

used. If the intention is to characterize small molecules

produced by the microbes, matrix-assisted laser deso-

rption/ionization (MALDI), desorption electrospray ioniz-

ation (DESI), nuclear magnetic resonance (NMR)

spectroscopy can be used. Concomitant monitoring of

limiting nutrients, electron donors, electron acceptors,

and hydrology is also crucial for a systems biology concep-

tual model to be useful.
Please cite this article in press as: Chakraborty R, et al. Systems biology approach to bioremedia

Current Opinion in Biotechnology 2012, 23:1–8 
To gain an understanding of complex in situ bioremedia-

tion processes, monitoring techniques that inventory and

monitor terminal electron acceptors and electron donors,

enzyme probes that measure functional activity in the

environment, functional genomic microarrays, phyloge-

netic microarrays, metabolomics, proteomics, and quan-

titative PCR can provide unprecedented insights into the

key microbial reactions employed (Figure 1). In general

terms, an ecosystem consists of communities, popu-

lations, cells, protein, RNA, and DNA. We can analyze

DNA, RNA, and protein at the cellular levels to under-

stand the impacts on the cells, and analyze community

and populations to understand effect of bioremediation

on structure/function relationships (Figure 1). In some

cases, a change in redox state is the simplest tool to bring

about detoxification of hazardous metals and organic

compounds. This is particularly true for metals and radio-

nuclides like U(VI), Cr(VI), and Tc(VII). While these

cannot be degraded, they can be biotransformed decreas-

ing their bioavailability, mobility and thus toxicity [9–11].

Microbes can directly mediate such immobilization and

detoxification by changing the valence states, utilizing

them as electron acceptors [12,13] when appropriate

electron donors are present. Measurement of enzyme

activity during bioremediation is a reliable, inexpensive

tool for measuring microbial respiration and metabolism.

Dehydrogenase enzyme based assays such as INT (iodo

nitro tetrazolium) [14] and TTC (triphenyl tetrazolium

chloride) assays [15] have been used successfully in

monitoring microbial respiration in the bioremediation

of explosives [16], metals, PAHs [17], and oil [18]. Other

enzymatic or DNA/RNA based probes from key microbial

metabolic pathways can be effectively used as a tool in

tracking bioremediation processes as used previously

during degradation of trichloroethene (TCE) [19] and

of petroleum hydrocarbons [20,21]. Proteogenomic

analysis during U(VI) reduction field studies have been

able to identify and track Geobacter-specific biomarker

peptide citrate synthase [22] during the process. Using

qPCR as a technique for detection of phylogenetic and

catabolic genes as indication of microbially mediated

remediation is a popular and successful approach for

monitoring detoxification in metal as well as hydrocarbon

contaminated sites. Examples include monitoring Anae-
romyxobacter strains involved in reduction of U(VI) [23]

and of Dehalococcoides spp. in bioremediation of chlori-

nated solvents [24]. In order to identify and track the

entire microbial community during bioremediation pro-

cesses, metagenomic analysis including 16S rRNA-based

clone libraries has been broadly used for metals [25,26] as

well as for hydrocarbons and chlorinated solvents

[27�,28,29] among others. Collectively, these techniques

for metagenomics have reiterated that the microbial

diversity existing in most environments is greater than

expected [30]. Recently, high throughput microarrays

like the PhyloChip and the GeoChip have been exten-

sively used in metal and organics bioremediation studies
tion, Curr Opin Biotechnol (2012), doi:10.1016/j.copbio.2012.01.015

www.sciencedirect.com

http://dx.doi.org/10.1016/j.copbio.2012.01.015
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[31�,32,33,34�,35], in order to quickly characterize

microbial community and function. PhyloChip, the 16S

rRNA-phylogenetic microarray characterizes and monitors

microbial community dynamics whereas GeoChip, the

functional gene microarray tracks functional gene activity

changes of microbes in the environment [34�,36�].
Microbial community proteomics and metabolomics have

been a major breakthrough in providing deeper insight into

the microbial cellular function and gene products inter-

playing in the environment [37�]. A novel application of

Immunomagnetic separation for targeting and monitoring

specific microorganisms during in situ bioremediation [38]

holds promise to enable transcriptomics, proteomics, or

metabolomics-based studies directly on cells collected

from the field. Integration of all of these techniques using

the latest advances in bioinformatics and modeling will

enable break-through science in environmental biotech-

nology. We discuss a review of these techniques as used in

field studies and lab simulations from sites contaminated

with metals, radionuclides, hydrocarbons, and chlorinated

solvents (Table 1).

Case studies

The U.S. Department of Energy (DOE) is responsible for

the remediation and long-term stewardship of a signifi-

cant number of plumes containing various contaminants

including radionuclides and metals, at sites spread across

the United States (http://www.em.doe.gov/Pages/siteslo-

cations.aspx). Several groups of researchers have been

involved since 2004 in active implementation of basic

research to understand the systems biology of contami-

nated sites, and predicting feasible remediation technol-

ogies.

Radionuclide biotransformation

Groundwater and soil at the Area 3 FRC site in Oak Ridge

is not only contaminated with Uranium (up to 200 mM),

but poses an unique bioremediation problem due to its

low pH (�3), high nitrate (200 mM), and high calcium

concentrations along with presence of chlorinated organic

solvents. Research at this site by various investigators

exemplifies successful application of systems biology

tools to reveal a deeper understanding of the micro-

biology at play in the subsurface. Previously, 16S clone

library-based community analysis during an in situ bios-

timulation test at this site have identified Desulfovibrio,

Geobacter, Anaeromyxobacter, Desulfosporosinus, Acidovorax,

and Geothrix spp. present concomitant with U(VI)

reduction [26]. Clone libraries of functional gene markers

like dsrAB, nirK, nirS, amoA, and pmoA [39,40] showed

high microbial diversity in functional genes. However,

recent metagenomic analysis from well FW106 specifi-

cally using a random shotgun sequencing-based strategy

revealed a highly enriched community dominated by

denitrifying b-Proteobacteria and g-Proteobacteria [2]. Geo-

Chip analysis of several groundwater monitoring wells

reported widespread diversity of dsrAB genes [34�,41],
Please cite this article in press as: Chakraborty R, et al. Systems biology approach to bioremedia

www.sciencedirect.com 
which showed that sulfate-reducing bacteria were key

players in U(VI) reduction. During the U(VI) reoxidation

phase as studied in a sediment column with samples from

FRC, observed decrease in biomass, but increase in

microbial activity [42]. Using the PhyloChip, the study

showed no decline in Geobacter or Geothrix spp. during the

reoxidation phase, but members of Actinobacteria, Firmi-
cutes, Acidobacteria, and Desulfovibrionaceae exhibited

increased abundance [42]. GeoChip analysis during the

reoxidation phase from field samples showed a decline in

dsr genes but reoxidation did not appear to effect

microbial functional diversity [33] suggesting that the

microbial community was able to recover and continue

to reduce U(VI) in the post oxidation phase.

Metals bioimmobilization

The Hanford 100H area adjacent to the Columbia River

in Washington is contaminated with Chromium (Cr) as a

result of being a weapons production site. In 2004,

Hydrogen Release Compound HRCtm was injected in

an effort to mediate sustained bioimmobilization of

Cr(VI) in situ by stimulating indigenous microbial flora

[43]. Hubbard et al. used time-lapse seismic and radar

tomographic geophysical monitoring to determine spatio-

temporal distribution of the injected HRC and biogeo-

chemical transformations associated with Cr(VI)

bioremediation post injection of HRC [44]. Direct cell

counts revealed that while cell numbers reached 108 cells/

ml [43], Cr(VI) levels decreased from 100 ppb to below

background levels within a year. PhyloChip analysis

showed enrichment of sulfate reducers along with nitrate

reducers, iron reducers, and methanogenic populations

during this time [43]. Targeted enrichments resulted in

isolation of sulfate-reducing Desulfovibrio vulgaris like

strain RCH1, nitrate reducing strain Pseudomonas stutzeri
strain RCH2, and iron-reducing strain Geobacter metallir-
educens strain RCH3 [45], all capable of Cr(VI) reduction

[45]. mFlowFISH (integrated fluorescence in situ hybrid-

ization and flow cytometry) analysis was able to detect

and sort Pseudomonads similar to strain RCH2 directly

from Hanford 100H field water samples collected in 2009

and 2010 [46].

Hydrocarbon bioremediation

The dependence of petroleum-based energy source has

fueled industrial growth and prosperity. However, it also

brought dispersal of hydrocarbons into different environ-

ments. Fortunately, the organic nature of hydrocarbons

enables microbes to metabolize these petroleum com-

pounds as substrates. Notable reviews on a systems

biology approach to bioremediation a Atlas and Hazen

[47�], Harayama et al. [48], Zhou et al. [49], Fredrickson

et al. [50], and de Lorenzo [51].

The MC252 oil spill in the Gulf of Mexico in 2010 was

the largest in US history. Many environmental factors
tion, Curr Opin Biotechnol (2012), doi:10.1016/j.copbio.2012.01.015

Current Opinion in Biotechnology 2012, 23:1–8

http://www.em.doe.gov/Pages/siteslocations.aspx
http://www.em.doe.gov/Pages/siteslocations.aspx
http://dx.doi.org/10.1016/j.copbio.2012.01.015
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Table 1

Fundamental systems biology parameters measured at the bioremediation sites

Site Contaminant Key parameters measured References

Field Research Center, Oak Ridge, TN Uranium (VI), nitrate

(a) 16S clone libraries [26]

(b) Metagenomics [2]

(c) PhyloChip [42]

(d) Functional gene clone libraries [39,40]

(e) GeoChip [33]

Hanford 100H, Hanford, WA Chromium (VI)

(a) Seismic and radar tomographic monitoring [43]

(b) Microbial cell counts [44]

(c) PhyloChip [44]

(d) Microbial isolation [45]

(e) FISH [46]

Gulf of Mexico Oil

(a) Dissolved oxygen [52]

(b) Enzyme activities [53]

(c) Microbial counts [27�,53]

(d) Hydrocarbon analyses [54,27�,52,53]

(e) 16S clone libraries [27�]

(f) PhyloChip [27�]

(g) GeoChip [27�,56�]

(h) PLFA [27�,53]

(i) Isotope chemistry [27�,55]

Savannah River Site, SC TCE, PCE

(a) Microbial cell counts [62]

(b) Fluorescent antibody [62]

(c) PLFA [62]

(d) Functional gene analysis [62,66]

(e) Isotope chemistry [67]

Test Area North, ID TCE

(a) Microbial cell counts [68]

(b) PLFA [68]

(c) Phenotypic microarray [68]

(d) DGGE [68]

(e) qPCR [69]

(f) RFLP [69,70]

(g) Functional gene analysis [70]

(h) PhyloChip [31�]

(i) Isotope chemistry [63]

4

distinguished this spill from previous ones, including

hydrocarbon composition, environmental variables, depth

of the spill, and the availability of systems biology tools.

Information on chemical analyses is crucial in support of a

system’s biology approach for oil bioremediation in the

MC252 spill. While Camilli et al. [52] concluded that

microbial respiration rates within the deep plume were

extremely low based on dissolved oxygen concentration,

measurement of microbial respiration rates, enzyme

activity, phosphate concentration, and polar membrane

lipid concentration in surface water affected by the oil

spill. Edwards et al. concluded that enzyme activities and

respiration rates were found to be higher inside the oil

slick [53]. Valentine et al. [54] investigated the fate of

methane, propane, and ethane gases of the deep hydro-

carbon plume at depth greater than 799 m, and found that

propane and ethane were degraded faster than methane.
13C-labled substrates, as well as 13C and 3H tracers, were

used to measure d13C-DIC. In another study, methane

was found to be the most abundant hydrocarbon released

during the MC252 spill, and that there was a rapid

response of methanotrophic bacteria rapidly respiring
Please cite this article in press as: Chakraborty R, et al. Systems biology approach to bioremedia

Current Opinion in Biotechnology 2012, 23:1–8 
the released methane [55]. PhyloChip, clone library,

GeoChip, phospholipid fatty acid (PLFA), and isotope

chemistry were used to compare microbial communities

inside and outside the deep plume [27�]. The results

identified Oceanospirillales, which were found to degrade

hydrocarbons at 58C inside the plume. The GeoChip

demonstrated genes that were significantly correlated

to concentration of oil contaminants, such as phdC1

(naphthalene degradation), and alkB (oxidation of

alkanes), as well as a shift in C, N, P, S cycling processes

in the deep plume samples [56�]. The involvement of

federal agencies and pending lawsuits is the impetus for a

concerted effort in collating all data collected resulting in

a comprehensive database useful for researchers. By

integrating chemical analyses with studies utilizing a

systems biology approach, there was an unprecedented

near real-time understanding of chemical and biological

reactions involved in the hydrocarbon degradation. In

order to gain a more comprehensive understanding of

the microbiological processes, data from transcriptomics

studies will provide information on whether the cultiva-

table dominant microbes are the in situ active ones, and
tion, Curr Opin Biotechnol (2012), doi:10.1016/j.copbio.2012.01.015

www.sciencedirect.com

http://dx.doi.org/10.1016/j.copbio.2012.01.015
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proteomics studies will identify enzymes central to hydro-

carbon degradation.

Chlorinated solvents bioremediation
Chlorinated solvents, such as TCE and dichloroethene

(DCE), are recalcitrant carcinogenic compounds that

persist in the environment once released. Microbes, such

as Dehalococcoides, are capable of using the chlorinated

solvents as electron acceptors anaerobically and dechlor-

inating the compounds to ethene [31�,57]. Another bio-

degradation pathway is the aerobic co-metabolism of the

chlorinated compounds to carbon dioxide and chloride by

microbes such as methane-oxidizers with methane mono-

oxygenases (MMOs) [31�]. Descriptions of techniques

that monitor mass loss, geochemical fingerprints, isotope

fractionation associated with biodegradation, microbial

communities in biostimulation and natural attenuation

studies, quantitative real-time PCR methods targeting

reductive dehalogenase genes are included in several

reviews [58,59,57].

Between 1955 and 1972, low-level radioactive isotopes,

sewage and chlorinated solvents were injected into the

aquifer through a 95 m deep well at Test Area North

(TAN) in Idaho National Laboratory. The plume con-

tained TCE concentrations ranging from 5 ppb to

300 ppm extending for more than 2 km. An enhanced

in situ bioremediation pilot study started in 1999 to treat

the chlorinated solvents contaminated groundwater by

injecting the electron donor Lactate to stimulate in situ
reductive dechlorination. A comparison of microbial com-

munities in the core and groundwater samples was

assessed by characterizing total biomass, PLFA analysis,

culturing and community-level physiological profiling

(CLPP) using Biolog GN microplates [60]. DGGE

analysis indicated that wells with high concentrations

of chlorinated solvents had different microbial commu-

nities from wells with minimal concentrations of the

contaminants, and that attached and the free-living

microbes had different functional and composition profile

[60]. Additionally, qPCR of the Dehalococcoides sp. 16S

rRNA genes provided the most convincing result in

quantifying dechlorinating potential of a community

compared to community analysis by terminal restriction

fragment length polymorphism (T-RFLP), and RFLP

analysis with clone sequencing [61]. Erwin et al. [62]

demonstrated the presence of bacteria harboring MMOs

and potential of TCE co-metabolism at TAN from a

pristine area using PCR amplification to generate a func-

tion gene fragment library and sequencing. Stable carbon

isotope ratios of groundwater samples taken in 2000

confirmed the complete conversion of TCE to ethene,

and minimal biodegradation of t-DCE [63]. Using

the PhyloChip for bacterial composition characterization,

a decrease in reductive dechlorinating organisms and

an increase in methane-oxidizing microbes capable of
Please cite this article in press as: Chakraborty R, et al. Systems biology approach to bioremedia

www.sciencedirect.com 
aerobic co-metabolism of TCE was observed [31�].
Further studies that would complement the investigation

at the TAN site would be to employ a shotgun proteomics

approach as reported by Werner et al. [64�]. Their method

allowed for detection of peptides, such as FdhA, TceA,

PceA, and HupL that could potentially be used as bioin-

dicators of chlorinated ethene dehalorespiration.

Conclusion
The combination of the systems biology techniques as

demonstrated in the case studies above allowed for

enhanced understanding of complex bioremediation pro-

cesses. Investigation of the MC252 spill is the most

comprehensive bioremediation study using a systems

biology approach to date as a result of available funding,

resources, expertise, as well as, interests from the scien-

tific communities and regulating agencies. Future pro-

jects can benefit from the experiences obtained from the

MC252 spill investigation. However, while significant

advances have been made in rapid generation and avail-

ability of ‘omics’-based data in key microbial processes in

the environment, a key bottleneck lies in the ability to

quickly analyze the output using appropriate, user

friendly, simplified bioinformatic tools to make mean-

ingful conclusions. Currently, user-friendly bioinfor-

matics pipelines available for analysis of sequencing

and microarray data, include Qiime (qiime.sourcefor-

ge.net) [65] and PhyloTrac (www.phylotrac.org/),

respectively. In order to fully utilize the data generated

from the various ‘omics’ tools, better annotation of the

genes, pathways, and metabolites are needed. A compre-

hensive database of all available genomics, proteomics,

and metabolomics information from bioremediation

research will provide a platform for scientist to exchange

information including data obtained, and analysis

methods and pipeline. This will require coordination

from scientists to share data, and database managers to

update, maintain, and provide quality control. Taken

together, these tools will allow for accurate interpretation

of the ‘omics’ data, leading to generation of judicious

predictive models and strategies for successful imple-

mentation of bioremediation applications in the future.
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