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A B S T R A C T

• Diverse genetic and environmental etiologies converge onto circuit level brain dysfunction in autism spec-
trum disorder (ASD), manifesting at a macroscopic level as aberrant neural connectivity. Previous studies
have described atypical patterns of decreased short range and increased long range connectivity in ASD [1].
However, it remains unclear whether group level features of circuit dysfunction are consistently present
across the range of cognitive function seen in the autism spectrum.

• The dynamics of neural oscillations in the alpha range (6–12 Hz) are exquisitely sensitive to healthy de-
velopment of functional and structural connectivity. Alpha-band coherence, measured with high temporal-
precision electroencephalography (EEG) therefore represents an ideal tool for studying neural connectivity in
developmental populations.

• Here we examined spontaneous alpha phase coherence in a heterogeneous sample of 59 children with ASD
and 39 age matched typically developing children. Using a data driven approach, we conducted an unbiased
examination of all possible atypical connectivity patterns across all cortical regions.

• Long-range hypoconnectivity was present in children with ASD compared to typically developing children,
with temporal interhemispheric connectivity showing the largest difference between the two groups.

• Decreased long range alpha coherence distinguishes a heterogeneous group of ASD children from typically
developing children. Interhemispheric temporal hypoconnectivity represents a fundamental functional dif-
ference in children with ASD across a wide cognitive and age range that may reflect white matter dis-
turbances or increased signal variability at temporal sites in ASD.

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition
characterized by core features of social communication impairment,
repetitive behaviors and restricted interests. Like many neurodevelop-
mental disorders, ASD is rooted in aberrant neural connectivity, coined
by Geschwind and Levitt as a “developmental disconnection syndrome”
[2]. Neuroimaging studies of high risk infants demonstrate early dis-
ruptions in the development of both structural and functional con-
nectivity precede the emergence of core symptoms in ASD [3–6].

Various functional and structural imaging methods have been used
to quantify spontaneous, or baseline, neural connectivity in ASD and to
compare these patterns to those of typically developing individuals.

Across studies, a pattern of short range hyperconnectivity and long
range hypoconnectivity has emerged [1,7,8]. However, two major gaps
exist in this body of research. First, most studies have focused on the
individuals with cognitive abilities in the typical range [9], thus ex-
cluding the large portion of the ASD population with co-occurring
cognitive impairment [10–13]. Secondly, studies often focus on pre-
specified, putative networks of interest, such as brain regions involved
in language function or social cognition [14,15]. Such a targeted ap-
proach may preclude the discovery of unexpected differences in
meaningful circuits.

EEG represents a unique and powerful tool that can capture brain
dynamics in three important dimensions: space, time and frequency
[16]. The complex and multidimensional aspects of brain function that
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EEG captures may reflect changes in many underlying neurobiological
processes, from molecular and cellular changes to large scale structural
development. Sensitivity to small alterations in any of these dimensions
facilitates the detection of neurophysiological patterns associated with
both typical and atypical development. EEG also represents a relatively
tolerable and scalable research tool to quantify functional connectivity
in diverse populations [17].

Of the oscillatory activity underlying large-scale functional net-
works, coherence in the alpha band (6–12 Hz) is exquisitely sensitive to
the healthy development of [18,19], and disruptions to [20], functional
and structural connectivity. Alpha oscillations are the dominant signal
in the resting brain and therefore yield a high signal to noise ratio in
stimulus independent environments [21,22].

Here, we used an electroencephalography (EEG) measures of alpha
band phase coherence to quantify functional connectivity in children
with ASD across a wide range of cognitive abilities. Employing per-
mutation testing and strict false discovery rate (FDR) control, we stu-
died alpha band coherence between all possible combinations of elec-
trode pairs. This statistical approach obviates the need for a priori
assumptions regarding connectivity patterns and allows for an unbiased
interrogation of functional interactions in the alpha band across all
brain regions.

Coherence is an estimate of the consistency between two neural
signals within a particular frequency band, and it depends on both
phase consistency and amplitude covariations [23]. Amplitude can be
influenced by non-neural anatomical factors, such as skull thickness
[24], or by structural brain differences including cortical gyral patterns
[25]. These factors can, in turn, bias coherence estimates [25,26].
Therefore, we measured the phase synchrony of signals, which provides
a measure of synchronization in the EEG that is independent of signal
amplitude [23,27].

We hypothesized that (1) children with ASD would exhibit different
patterns of alpha band coherence compared to typically developing
(TD) children, particularly in long range networks; and, based on pre-
viously reported correlations between alpha band oscillations and
cognitive function in ASD [28], we also hypothesized that (2) the net-
work connections that differentiate ASD from TD would relate to cog-
nitive ability, with disruptions in functional connectivity related to
cognitive impairment within ASD.

2. Method

2.1. Participants

Sixty-one children with ASD were recruited from the community
through the UCLA Center for Autism Research and Treatment (CART).
Datasets from participants were pooled across two major studies in
order to maximize sample size and reflect a clinically representative
range of cognitive function across the autism spectrum. All children
entered the study with a prior clinical diagnosis of ASD, made through
the California State Regional Center, independent clinical psycholo-
gists, child psychiatrists, and/or developmental pediatricians. UCLA
psychologists confirmed diagnoses based on DSM-IV or DSM-5 criteria.
Exclusionary criteria for children with ASD included active epilepsy,
birth-related complications, and uncorrected vision or hearing impair-
ment. Secondary diagnoses were present in seven ASD participants,
which included attention-deficit/hyperactivity disorder (ADHD;
N=5), obsessive compulsive disorder (OCD; N=1), and depression
(N=1). At the time of the study, five participants with ASD were
taking psychoactive medication, which included: selective serotonin
reuptake inhibitors (SSRI) (N=2); stimulants (N= 1); partial dopa-
mine antagonist (N=2); and central alpha agonists (N=2). Analyses
were repeated after removing participants taking medication at the
time of the study, with no significant difference in primary measures of
interest. Therefore, the results presented here include those taking
medication.

Forty typically developing (TD) age- and sex-matched participants
were recruited from the community. Exclusionary criteria for TD par-
ticipants included any neurological abnormalities, birth-related com-
plications, developmental delays, need for special services in school,
diagnosis of psychiatric conditions, uncorrected vision or hearing im-
pairment, or a first degree relative with an ASD diagnosis. No TD
children were taking psychoactive medications at the time of the study.

The study received ethical approval from the UCLA institutional
review board (IRB numbers: 14-001259; 11–000355). Parents provided
informed written consent, in accordance with the declaration of
Helsinki. Verbal assent was obtained from participants who had suffi-
cient cognitive and language capabilities to understand and agree to the
study procedures. Testing was suspended if non-verbal participants
became agitated or distressed (e.g. crying, vocal protest). If, following a
break, the participant was still distressed, then testing was dis-
continued.

Two participants with ASD and one TD participant were excluded
from further analyses due to excessive artifact throughout the EEG re-
cording (c.f. [28,29]. The final groups included 59 children with ASD
and 39 TD children. Verbal and non-verbal IQ (as assessed with stan-
dardized tests, described below) were significantly lower in the ASD
group, as would be expected when representing the full spectrum of
cognitive ability in ASD. See Table 1 for demographic variables. Data
from these participants have also been reported in a previous study
conducted by our research group (Table 2) [28].

2.2. Behavioral assessments

Cognitive and language assessments were tailored to the ability and
age of the child, and ratio IQ was used to facilitate comparison across
assessments. Assessments included the Mullen Scales of Early Learning
(MSEL; [30], the Differential Abilities Scale-Second Edition (DAS-II;
[31]), and the Wechsler Preschool and Primary Scale of Intelligence-
Third Edition (WPPSI-III; [32]). From these measures, ratio IQ scores
for non-verbal IQ (NVIQ) and verbal IQ (VIQ) were calculated for each
child and were used to account for the scores of children who per-
formed outside of the standardized norms for their chronological age.
For children who were tested with the WPPSI-III or DAS-II, NVIQ and
VIQ were calculated from the protocol-specific subscores. For children
who were administered the MSEL, VIQ was calculated using the average
of the Receptive Language and Expressive Language subscale scores,
and NVIQ was calculated using the average of the Visual Reception and
Fine Motor subscale scores [33]. Studies have demonstrated the con-
vergent validity of the WPPSI-III with other cognitive assessments such
as the MSEL and the DAS-II, supporting the combination of assessments
through standard scores [34–36].

Autism symptoms were assessed in the ASD group using multiple
measures due to participants being pooled across two studies conducted
by CART in order to represent all levels of cognitive function present in
the autism spectrum. Modules one and two of the Autism Diagnostic
Observation Schedule (ADOS; [37]) were used to assess communication

Table 1
Demographic variables of participants.

ASD TD Group
Comparison

Measure M(SD), range or
number (%)

M(SD), range or
number (%)

Student’s t or X2
P value

Age (months) 69.44(24.12),
25–126

71.56(26.58),
29–146

0.68

Sex (N females) 13 (22) 13 (33.3) 0.16
VIQ 68.96(34.35),

12–160
121.12(19.42),
82–168

<0.001

NVIQ 74.67(33.82),
10–145

112.55(12.07),
88–156

<0.001
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and social interaction in a subset of participants with ASD (42.4%).
Calibrated severity scores are used across modules to assess the severity
of autism specific behaviors [38]. The social communication ques-
tionnaire (SCQ) was also administered to the same subset of partici-
pants who underwent ADOS assessment (42.4%). The SCQ is a 40-item
parent-report questionnaire designed to assess the presence of beha-
viors in three main domains: reciprocal social interaction, language and
communication and repetitive and stereotyped patterns of behaviors
[39]. The Social Responsiveness Scale (SRS-1) was administered to a
separate subset of participants (23.7%). The parent-report version of
this 65-item questionnaire measures the severity of social impairment
in ASD, with increased scores indicating a higher severity of ASD
symptomology [40].

2.3. EEG recording

EEG was recorded for two minutes in a dark, sound-attenuated room
while (auditory-free) bubbles were displayed on a computer screen.
Due to the young age of the children and the wide range of cognitive
and language abilities, it was not possible to gather spontaneous data
under ‘eyes-closed’ conditions. Therefore, consistent with many other
studies in developmental populations, we presented this passive visual
stimulus while recording EEG [17,29,41–43].

2.4. EEG acquisition and processing

Continuous EEG data were recorded using a high density 128-
channel HydroCel Geodesic Sensor Net (Electrical Geodesics Inc.,
Eugene, OR). Four electrodes positioned to record electrooculogram
(EOG) (located below and lateral to the eyes) were removed from the
net in order to increase comfort. Net Station 4.4.5 software was used to
record from a Net Amps 300 amplifier with a low-pass analog filter
cutoff frequency of 6 KHz. Data were sampled at 500 Hz and referenced
to vertex at the time of recording. Electrode impedances were kept
below 100 KΩ.

All offline data processing and analyses were performed using
EEGLAB (Delorme & Makeig, 2004), and in-house MATLAB scripts.
Data were high pass filtered to remove frequencies below 1Hz and low
pass filtered to remove frequencies above 100 Hz, using a finite impulse
response filter implemented in EEGLAB. Continuous data were then
visually inspected, and noisy channels were removed. Following
channel removal, data were interpolated to the international 10–20
system 25 channel montage [44]. Sections of data that showed elec-
tromyogram (EMG) or other non-stereotyped artifacts were then re-
moved from the recording.

Independent component analysis (ICA), a statistical blind source
separation technique [45], was implemented to remove EOG and other
stereotyped artifacts from the data. After decomposing the data into

maximally independent components (IC), the scalp topography and
time course of each IC was visually inspected. Any IC that represented a
non-neural source (including EMG, EOG and line noise) was removed
from the data. The experimenter was blinded to participant details
(including diagnostic category) throughout the data cleaning process.

Data were then separated into three-second epochs. This epoch
length was chosen based on a previous exploration of phase coherence
measures in spontaneous EEG recordings, which demonstrates that
longer epochs represent higher stability in such data [46]. The
minimum amount of artifact free data available across participants was
38 s. When computing phase coherence estimates, it is important to use
an equal amount of data across all participants. Thus 36 s provided the
minimum number of 3- second epochs (12 epochs). While this data
length represents an appropriate minimum threshold to gain reliable
estimates of the characteristics of spontaneous EEG [28,47]. However,
it should be noted that a longer length of recording (and consequently,
an increased number of epochs) would provide more reliable measures
of phase coherence. Due to the nature of the sample in the current
study, a minimum amount of data was used in order to retain as many
participants as possible in our analyses.

2.5. Volume conduction

The contribution of multiple neural sources to the EEG signal
measured at the scalp is dependent not only on neural source location
and electrode location but also on volume conduction, which reflects
the propagation of electric current from the cortex to scalp electrodes
[48,49]. The spatial blurring introduced by volume conduction is par-
ticularly relevant to connectivity analyses, which seek to detect and
quantify neural interactions between brain regions based on separate
measurements. The non-neural spreading of signal through tissue which
separates sources and electrodes falsely inflates estimates of coherence
[48], particularly for electrodes positioned closely in space [50].

One way to minimize the effects of volume conduction on scalp
recorded potentials prior to analysis is by applying a reference-free
surface Laplacian transform. The surface Laplacian is the second spatial
derivative of the scalp recorded potentials for each electrode, thus
transforming the scalp-recorded EEG into estimates of current source
density (CSD [51]. The surface Laplacian isolates the source activity
under each electrode. Therefore, CSD captures the unique properties of
each electrode while minimizing activity that is broadly distributed
across multiple electrodes. Implementing a surface Laplacian after ICA
has also been shown to attenuate EMG across the entire scalp and over a
wide range of frequencies, which is extremely valuable in develop-
mental populations [52].

2.6. Coherence analysis

Cleaned EEG data were transformed into CSD by applying a sphe-
rical spline Laplacian transform with medium spline flexibility (m=3)
[53,54]. The spline flexibility reflects the degree to which spherical
spline functions can be deformed to produce continuous interpolation,
and this flexibility constant has adequate flexibility to prevent distor-
tion of the original data [51]. Laplacian transform was implemented
using the CSD toolbox [55].

Coherence analyses were then conducted on CSD values. CSD values
were decomposed into frequency-time domain using Fast Fourier
Transform with a fixed Hanning-tapered window size of 1024 samples
to generate a sequence of amplitude and phase components for each
frequency bin (approximately 0.25 Hz resolution) Due to the hypothesis
of the present study, analysis of connectivity was restricted to the alpha
range, defined here as 6–12 Hz, a commonly used range in young
children [56,57]. Analysis of peak alpha frequency for each participant
confirmed that alpha peaks occurred within this 6–12 Hz range [28].

Coherence was then computed in the form of event-related phase
coherence (ERPCOH) from the aforementioned resting state epochs (for

Table 2
Electrode pairs which demonstrate significantly altered coherence FDR < 0.2.

Electrode Pair ASD TD P Value AdjustedP Value

T9-T10 0.367 0.488 0.000 0.02
F7-F8 0.323 0.402 0.001 0.07
T7-T10 0.324 0.411 0.001 0.07
Fp1-C4 0.307 0.371 0.001 0.07
P7-O1 0.395 0.495 0.002 0.11
Fp2-T10 0.343 0.428 0.003 0.11
C3-O2 0.285 0.334 0.003 0.11
F7-T10 0.358 0.437 0.003 0.12
F7-P9 0.340 0.417 0.004 0.14
Fz-F8 0.339 0.406 0.006 0.17
F9-F8 0.345 0.427 0.006 0.17
F4-T7 0.316 0.386 0.008 0.19

Note. Even electrode labels indicate right hemisphere, odd electrode labels in-
dicate left hemisphere.
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each frequency bin) using the newcrossf function provided by eeglab
[58]:
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b * is the complex conjugate of F f t( , )k

b .
[58].

For each channel pair, phase coherence value was calculated by
averaging ERPCOH of all latencies and of all the frequency bins en-
compassed by alpha band, resulting in 300 unique average alpha co-
herence values for every possible electrode pair. These coherence va-
lues for each group are illustrated in Fig. 1.

3. Results

3.1. Group comparisons

Instead of selecting predefined regions of interest for analysis, we
took an unbiased, data-driven approach to examine alpha coherence
across the entire scalp. Significant group differences in alpha coherence
values among the 300 electrode pairs were examined using test statis-
tics which represented normalized differences in group means. A per-
mutation test, where group labels were randomly assigned to subjects in
each resample, was used to estimate the distribution of the test statis-
tics. A non-parametric permutation test was employed, as it makes no
assumptions about the data (including the shape of the distribution).
The permutation test used 100,000 permutations to reach high stability
in the results. False discovery rate (FDR) was applied to adjust for
multiple testing of group differences in the coherence of 300 electrode
pairs.

Several electrode pairs were found to be significantly altered in ASD
compared to TD children. These electrode pairs are illustrated in Fig. 2,
and they were visualized using Surf Ice [59]. Each significant electrode
pair was defined by decreased alpha coherence in the ASD group. No
electrode pair showed significantly increased coherence in the ASD
group.

Implementing an FDR correction at 0.05, average alpha coherence
between one interhemispheric electrode pair (corresponding to inter-
hemispheric pairs T9 and T10 in the international 10–20 system) was
significantly different between groups. Phase coherence between this
electrode pair was significantly lower in ASD (M=0.37, SD=0.12,
95% CI [0.34, 0.40]) compared to the TD group (M=0.49, SD =0.17,
95% CI [0.44, 0.54]); adjusted P= 0.02, see Fig. 3).

3.2. Behavioral correlations

To investigate the association between alpha coherence and both
age and cognitive ability, we performed regression procedures sepa-
rately in each diagnostic group. We chose to split the groups in order to
understand these relations within both typical and atypical develop-
ment, with the hypothesis that they would differ in ASD and TD (c.f.
[28]). We chose T9-T10, the coherence variable that survived multiple
comparisons, to be used in the analysis. As coherence values were not
normally distributed in the ASD group, coherence values were log
transformed for this group only. Age, NVIQ and VIQ were entered as
individual predictors of coherence into a forward step-wise regression
procedure, with age forced to be included at each step.

Age was the first and only significant predictor in TD children
(®=0.002, P=0.036). Introduction of VIQ and NVIQ as predictors did
not significantly improve the prediction of the model (VIQ: ®=-0.05,
P=0.76; NVIQ: ®=-0.18, P=0.26). For the ASD group, none of the
variables were a significant predictor of log-transformed coherence
(age: ®=0.001, P= .0.46; VIQ: ®=-0.06, P=0.67; NVIQ: ®=-0.14,
P=0.30).

An additional correlation in the ASD group was conducted to assess
whether there was any relationship between severity of ASD symptoms
and coherence. We conducted these analyses using the ADOS severity
score, as this was the measure which was available for the most parti-
cipants. There was no association between ADOS severity scores and
log-transformed phase coherence for connection T9-T10 (r(25)= -0.52,
P= .81).

4. Discussion

Here, we quantified functional connectivity in the alpha band in
ASD. Consistent with our primary hypothesis, and using a very con-
servative statistical approach to identify group differences, we found
that children with ASD across a wide cognitive range demonstrated an
altered pattern of connectivity compared to TD children. Significantly
reduced interhemispheric alpha phase coherence between left and right
temporal regions was present in ASD.

Contrary to our secondary hypothesis, we found no correlation be-
tween long range connectivity and either cognitive ability or autism
symptom severity, as measured by direct assessment. It is possible that
this lack of correlation reflects a measurement issue, either due to the
variability in the types of assessments used across the study population
or due to the inherent limitations of these standardized assessments to
truly capture meaningful clinical differences between children on the
spectrum. However, these findings may also suggest that long range
hypoconnectivity reflects a fundamental neurodevelopmental process

Fig. 1. Coherence matrices for the A) ASD group and B) TD group, demonstrating increased phase coherence in the TD group for many electrode pairs.
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that underlies and unifies the autism spectrum. The stability of this
measure over time and with treatment, and its value as a diagnostic
predictor, represent the focus of further investigations in our research
program.

The ongoing development of functional connectivity during child-
hood is characterized by the strengthening of long-range, and weak-
ening of short-range connections with age [60–63]. The typical devel-
opmental increase in long range connectivity that reflects neural
maturation underlies both cognitive and emotional development [63].
In keeping with this established developmental change, the TD children
in the present study showed an association between long range func-
tional connectivity (temporal interhemispheric connection) and age.
However, although cross sectional, there was no relation between age
and functional connectivity in the ASD group, consistent with fMRI
findings of connectivity dysmaturation in ASD [64,65].

4.1. Alpha coherence in ASD

The data driven approach employed here facilitates an unbiased
examination of all possible atypical connectivity patterns. It should be
noted that out of a large range of connection pairs studied, only one
connection was significantly altered between the two groups, sug-
gesting that the brain differences that distinguish ASD from TD are
comprised of subtle but important changes. While many functional
connections are found to be unaltered between the two groups, it is
interesting that in a heterogeneous sample of children with ASD, the

main group difference is characterized by hypo (rather than hyper)
connectivity. Significantly decreased alpha coherence is consistent with
previous reports [66–74]. However, it should be noted that other stu-
dies have found increased [75–77], and unaltered spontaneous alpha
coherence in children with ASD [78–80]. Disparate reports of increased
and decreased spontaneous alpha coherence are likely influenced by
variations in methodology and analyses. These include 1) the type of
EEG system used to record data, 2) the specific EEG processing pipeline
(including its parameters), 3) the metric used to establish coherence
and 4) the connections selected for analyses.

Furthermore, previous studies vary widely in the participant char-
acteristics. For instance, studies which find increased spontaneous
alpha coherence have focused only on younger children [75–77], con-
sistent with evidence that suggests that the early neurodevelopment of
ASD is associated with increased connectivity due to cortical over-
growth [81]. In future research (described below), we will examine the
trajectories of connectivity longitudinally from early in life in order to
determine whether patterns of hyperconnectivity precede later hypo-
connectivity in ASD.

4.2. Why is alpha coherence reduced in ASD?

Across all levels of analysis (from cellular to structural to func-
tional), neurobiological studies in ASD have demonstrated aberrant
long range connectivity (for reviews see: [1]; fMRI: [82]; EEG/MEG;
[9,83,84]). There are two key factors likely contribute to reduced long
range phase coherence reported here.

The first factor is rooted in the variability in the local signal con-
tributing to each measurement. An increased number of neural inputs,
or more variable inputs, to one (or both) electrodes would decrease
phase coherence between the two input signals [85]. More variable
inputs are (by definition) uncorrelated, thus manifesting as reduced
connectivity. Increased signal variability is often described as ‘neural
noise’, and has been said to contribute to inconsistent evoked neural
responses in ASD [86,87] reported in both EEG [88] and fMRI studies
[89]. Increased variability of local signals could result from a variety of
neurophysiological mechanisms at both micro- and macroscopic scales
(discussed extensively by [85]). Both synaptic plasticity at the single
cell level [90] and the balance of neural excitation and inhibition at the
network level [91] contribute to increased neural noise. These under-
lying mechanisms, and the presence of excessive neural noise in ASD,
are particularly relevant in the context of prominent ASD theories im-
plicating E/I balance [92–94], and synaptic pathology as etiological
factors [95,96].

Fig. 2. Group average resting state functional connections revealed by alpha phase coherence for A) ASD and B) typically developing groups. Connection color
depicts value of connection strength, with all connections > 0.4 phase coherence illustrated. C) Group differences in alpha phase coherence. Connection color
indicates FDR correction value. All depicted connections represent decreased phase coherence in the ASD group. Labelled connection represents significant electrode
pair group difference after implementing FDR correction at 0.05.

Fig. 3. Dot plot demonstrating alpha phase coherence for electrode pair T9-T10
(with group mean and error bars representing SD) for both ASD and TD groups.
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Hypoconnectivity in ASD may also result from underlying abnormal
or delayed development of long range circuits, which in turn leads to
decreased integration between brain regions. These findings support
previous studies of structural hypoconnectivity in ASD (see, [97], for a
recent review). Diffusion tensor imaging (DTI) techniques have shown
that individuals with ASD exhibit smaller and less-developed white
matter tracts [98]. Connectivity disturbances in ASD are most promi-
nent in frontal and temporal regions [1], with early brain overgrowth
(see [99], for a review), minicolumnar, and white matter abnormalities
[100,101] specifically found in these areas. Consistent with these re-
gional abnormalities, here we find reduced interhemispheric con-
nectivity over temporal and, at a slightly less conservative statistical
correction, frontal regions. The protracted development of frontal and
temporal regions (compared to brain regions which mature earlier) may
increase their vulnerability to developmental disturbances at a micro-
scopic level, including atypical axon numbers, synaptogenesis and
pruning [2], leading to a higher risk of atypical connectivity these areas
[8,81].

Moreover, from a structural standpoint, reduced interhemispheric
connectivity may result from alerted development of the corpus cal-
losum (CC) [102]. Reduced CC volume (particularly in anterior regions)
[103–111], and atypical myelination of the CC are reported in ASD
[112]. Furthermore, the degree of CC structural abnormalities in ASD
are related to fMRI measurements of spontaneous functional con-
nectivity [113].

Neural noise and fundamental neurobiolgical differences certainly
are not mutually exclusive. Alpha oscillations most sensitively capture
maturational trends in both the variability of brain signals [19] and
structural white matter deficits [20]. Dinstein and colleagues [85]
highlight that increased neural variability and structural white matter
development remain intimately linked, with reduced synchrony be-
tween brain regions during early development affecting the develop-
ment of anatomical structural connections. Our results, therefore, likely
capture a synergistic contribution of both increased local signal varia-
bility and reduced cortical synchrony in ASD.

4.3. Future research

From a methodological perspective, the application of CSD esti-
mates may emphasize connections at a different spatial frequency to
those represented in average reference data [114]. Future research
across studies examining EEG changes in neurodevelopmental popula-
tions will directly compare average reference and CSD estimates of
coherence differences, using the same unbiased approach. These ana-
lyses were not appropriate in the present data, as Laplacian reference
was integral to attenuating the large sources of EMG that were present
due to the heterogeneous sample [52], in addition to mitigating volume
conduction [51].

From a clinical perspective, these data can guide continued efforts
to disentangle the relationship between signal variability and structural
differences, particularly through studies in early infancy before beha-
vioral symptoms of atypical development have emerged. There is a
growing effort to identify brain-based biomarkers that are scalable and
feasible to enhance detection of early risk for ASD, in order to facilitate
earlier interventions. We have established here that spontaneous alpha
coherence can robustly capture connectivity disturbances across a
heterogeneous group of children with ASD, establishing a basis for
employing this metric in developmental populations. While EEG may
not provide the spatial resolution of MEG and MRI-based techniques, its
tolerability and scalability facilitates its use across the entire develop-
mental spectrum. The EEG data length used to compute phase co-
herence here was relatively low, in order to retain as many participants
as possible in the present analyses. In future data collection, we will
increase the length of EEG recordings. This will hopefully allow us to
retain more usable data across all participants, and increase the relia-
bility of phase coherence estimates.

In ongoing studies, we will address more specifically the earliest
developmental origins of aberrant spontaneous functional connectivity
in infants at risk for ASD, both based on familial risk and due to cau-
sative genetic variants. We also will examine behavioral consequences
of these connectivity patterns through more sensitive assays of social,
communication and cognitive function. Through longitudinal in-
vestigations, we can better understand the timing of and relationship
between the emergence of hypoconnectivity and social communication
deficits.

4.4. Conclusions

Our results demonstrate that interhemispheric temporal hypo-
connectivity represents a fundamental brain difference in children with
ASD across a wide cognitive range. In the future, alpha phase coherence
could serve as a valuable biomarker to map networks from birth in
infants at risk for ASD and in children with ASD, a biomarker that, in
turn, could serve as a quantitative, mechanistically driven target of
intervention.
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