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Abstract

Coherence Techniques at Extreme Ultraviolet Wavelengths

by

Chang Chang

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor David Attwood, Chair

The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent

years is mainly driven by the desire of printing and observing ever smaller features,

as in lithography and microscopy. This attribute is complemented by the unique op-

portunity for element specific identification presented by the large number of atomic

resonances, essentially for all materials in this range of photon energies. Together,

these have driven the need for new short-wavelength radiation sources (e.g. third gen-

eration synchrotron radiation facilities), and novel optical components, that in turn

permit new research in areas that have not yet been fully explored. This dissertation

is directed towards advancing this new field by contributing to the characterization of

spatial coherence properties of undulator radiation and, for the first time, introducing

Fourier optical elements to this short-wavelength spectral region.

The first experiment in this dissertation uses the Thompson-Wolf two-pinhole

method to characterize the spatial coherence properties of the undulator radiation

at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radia-

tion is demonstrated with appropriate spatial filtering. The effects of small vertical

source size and beamline apertures are observed. The difference in the measured hor-

izontal and vertical coherence profile evokes further theoretical studies on coherence

propagation of an EUV undulator beamline. A numerical simulation based on the

Huygens-Fresnel principle is performed.
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Accurate knowledge of the refractive index in this wavelength region is of fun-

damental importance for the design of optical systems. However, due to the high

absorption, no previous direct measurement of the real part of the refractive index

has been performed at EUV wavelengths. To overcome these limitations, a novel

diffractive optical element based on Fourier optics techniques is invented, fabricated,

and demonstrated for the first time. The improved efficiency of the interferometer

employing this novel optical element enables the first direct measurement of the re-

fractive index at EUV wavelengths. Both the real and imaginary parts of the complex

refractive indices are measured directly, without recourse to Kramers-Kronig trans-

formations. Data for Al and Ni, in the vicinity of their L and M-edges, respectively,

are presented as first examples of this technique.

The first novel Fourier optical element used in the above EUV interferometer is also

discussed in detail. This diffractive optical element, when illuminated by a uniform

plane wave, will produce two symmetric off-axis first order foci suitable for inter-

ferometric experiments. In addition to the symmetricalness, the flux throughput is

improved by ∼10 times as compared with separate elements providing the same func-

tionality. The efficiency of this optical element is measured. Future work on computer

generated holograms is suggested and compared with the Fourier optical element. The

invention of this Fourier optical element opens a new era in the use of sophisticated op-

tical techniques at short wavelengths.

Professor David Attwood
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

Coherent radiation offers important opportunities for both science and technol-

ogy. The well defined phase relationships characteristic of coherent radiation, allow

for diffraction-limited focusing (as in scanning microscopy), set angular limits on

diffraction (as in protein crystallography), and enable the convenient recording of

interference patterns (as in interferometry and holography). While coherent radia-

tion has been readily available and widely utilized at visible wavelengths for many

years [1–7], it is just becoming available for wide use at shorter wavelengths [8–11].

This is of great interest as the shorter wavelengths, from the extreme ultraviolet

(EUV: 10-20 nm wavelength), soft x-ray (SXR: 1-10 nm), and x-ray (<1 nm) regions

of the spectrum, correspond to photon energies that are well matched to the primary

electronic resonances (K-shell, L-shell, etc.) of essentially all elements, thus provid-

ing a powerful combination of techniques for the elemental and chemical analysis of

physical and biological materials at very high spatial resolution. Tunable, coherent

radiation in these spectral regions is available primarily due to the advent of undulator

radiation at modern synchrotron facilities [12–18], where relativistic electron beams

of small cross-section transverse periodic magnet structures, radiating very bright,

powerful, and spatially coherent radiation at short wavelengths. The development

of optical elements follow as short wavelength radiation sources are made available.
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Due to the large absorption at these short wavelengths, devising optical elements that

serve the specific needs of an application is of crucial importance. This dissertation is

directed towards advancing this new field by contributing to the characterization of

spatial coherence properties of undulator radiation and, for the first time, introducing

Fourier optical elements to this short-wavelength spectral region.

1.2 EUV wavelength: opportunities and challenges

With proper optics, shorter wavelength results in better spatial resolution for

imaging systems. Lithographic tools (steppers) used by the semiconductor industry

to print nanometer transistor patterns are constantly evolving toward shorter wave-

lengths in order to reduce the circuit dimension. High power EUV radiation produced

by xenon laser plasma sources and multi-layer reflective mirrors working specifically

at 92.5 eV (λ = 13.4 nm) provide the crucial optical flux throughput that makes EUV

Lithography the leading next generation lithographic technology for feature sizes of

45 nm and smaller. In seeing smaller features, soft x-ray microscopes have been an

increasingly important tool in both biological [19, 20] and magnetic material stud-

ies [21]. High resolution (outermost zone-width ∆r = 25 nm) zoneplates fabricated

by electron-beam tools [22] deliver the required diffraction-limited wavefront for x-ray

microscopic imaging. The water-window at 500eV (2.4 nm) makes x-ray microscopes

especially attractive for biologist because of its capability to see samples in vivo at a

higher spatial resolution as compared with visible-light microscopes.

The various atomic resonances are the element-specific signatures of the particu-

lar materials, and the capability of probing atomic resonances at-wavelength allows

accurate element-sensitive analysis that is essential in material science [23], environ-

mental science [24], and surface science [25]. Photoelectron spectroscopy and absorp-

tion spectroscopy are the two most commonly used experimental techniques in this

respect [26]. Astronomers also exploit this element-specific property by employing

telescopes with narrow bandpass multilayer mirrors to detect specific emission lines

of atoms/ions [27].

Concomitantly, the challenges in EUV/SXR research stem from exactly the same
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properties that provide these enormous opportunities. The large amount of atomic

resonances of essentially all materials at EUV/SXR spectral region results in high

absorption, thus limiting experimental techniques. For example, the use of traditional

refractive lenses is prohibited due to the large absorption at these wavelengths. This

obstacle of high absorption has been continuously attacked from both fronts: seeking

EUV/SXR radiation sources of higher power, and creating optical elements that can

more effectively harness the short wavelength radiation.

The advent of high power, high brightness, short wavelength radiation provided

by the third generation synchrotron radiation facilities, e.g. undulators and wigglers,

essentially gave birth to this new field. Continuing efforts to develop a fourth gener-

ation synchrotron radiation source, perhaps a free electron laser [28], is expected to

produce a higher power, higher brightness and highly coherent x-ray source.

The development of optical elements comprises the other front of the exertion

in short wavelength optics. As mentioned above, refractive lens are ineffective at

EUV and x-ray wavelengths due to high absorption. A variety of optical elements,

e.g. Fresnel zone-plates, multi-layer mirrors, glancing incidence mirrors, capillary

optics [29], compound refractive lenses [30], photon sieves [31], and Fourier optical

elements [11], have been devised to satisfy the various wavefront shaping requirements

of short wavelength experiments. In this dissertation, the first Fourier optical element,

an XOR pattern which combines the functionalities of a grating and a zoneplate, is

demonstrated with applications in EUV interferometry.

1.3 Coherence

An optimal degree of coherence is needed for a given application. For example, in-

terference experiments such as interferometry and holography usually require a higher

degree of coherence, while image formation experiments necessitate delicate control

of partial coherence. Therefore, the ability to measure and control the coherence

properties of an imaging system is of crucial importance for all optical experiments.

At shorter wavelengths, the importance of coherence on an imaging system has

long been ignored, mainly because of the lack of sophisticated optical systems at these



4

wavelengths. Advances in both source and optical technology now permit the emer-

gence of more sophisticated short wavelength optical systems, e.g. EUV lithography,

x-ray microscopy, and EUV/SXR interferometry. Therefore, an increasing demand

for a better understanding of coherence at short wavelengths arises. The experimen-

tal studies of the optical coherence properties of EUV/SXR optical systems are all

fairly recent. Indeed, demonstrations of the ability to accurately measure [9, 32] and

control [33, 34] the degree of coherence have only been published very recently. This

dissertation describes the first short-wavelength Thompson-Wolf two-pinhole charac-

terization of the spatial coherence properties of undulator radiation and confirms the

anticipated coherence at these very short wavelengths. Applications that exploit this

better understanding of short-wavelength coherence are described in the following

chapters.

1.4 Overview

Chapter 2 starts with a spatial coherence characterization of the EUV undula-

tor radiation at the Advanced Light Source (ALS) in Berkeley, a third generation

synchrotron facility [35]. This first conditioning experiment uses the Thompson-Wolf

two-pinhole method to characterize the spatial coherence properties of the undula-

tor radiation at Beamline 12 of the Advanced Light Source. The effects of elliptical

source size and beamline apertures are observed. The result of this spatial coherence

characterization determines the optimal size of the spatial filter (i.e. pinhole) used

for EUV interferometry described in Chapter 5. This optimized pinhole provides just

enough spatial filtering without excessively sacrificing optical flux, so that it provides

the required spatial coherence necessary for the interferometric experiment and at the

same time allows an optimal amount of flux through it.

Chapter 3 describes the effect of aberrations on the spatial coherence properties

of an undulator beamline, which is recognized as a critically-illuminated system. The

commonly used Zernike approximation [6], which states that aberrations have no

effect on the spatial coherence distribution at the image-plane of the condenser, is no

longer valid in the case of undulator radiation source due to the exceedingly small
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vertical source size. Therefore, a numerical simulation based on the Huygens-Fresnel

principle is required to describe the spatial coherence properties of this critically-

illuminated imaging system. The simulated spatial coherence distribution is shown

to be affected by the various aberrations, as observed in the experimental results

presented in Chapter 2.

Chapter 4 is devoted to the first novel Fourier optical element, the XOR pattern,

that optimizes the EUV interferometer described in Chapter 5 by providing impor-

tant new advances in the properties of optical flux throughput and symmetricalness.

This diffractive element, based on Fourier optical techniques, for use in EUV/SXR

experiments, has been fabricated and demonstrated. This diffractive optical element,

when illuminated by a uniform plane wave, will produce two symmetric off-axis first

order foci suitable for interferometric experiments. The efficiency of this optical ele-

ment and its use in direct interferometric determination of optical constants are also

discussed. Its use opens a new era in the use of sophisticated optical techniques at

short wavelengths.

Chapter 5 describes the first direct index of refraction measurement at EUV wave-

lengths with a novel interferometer. Accurate knowledge of the refractive index in

this wavelength region is of fundamental importance for the design of optical systems.

However, due to the high absorption, no previous direct measurement of the real part

of the refractive index has been performed at EUV wavelengths. To overcome these

limitations, a novel diffractive optical element, based on Fourier optics techniques, for

use in EUV/soft x-ray interferometric experiments is invented, fabricated and demon-

strated for the first time. The efficiency of the interferometer employing this novel

optical element improves by ∼10 times, compared with a separate grating and zone-

plate setup, thus enabling the first direct measurement of the refractive index at EUV

wavelengths. Both the real and imaginary parts of the complex refractive indices are

measured directly by this technique without recourse to Kramers-Kronig transforma-

tions [36]. Data for Al and Ni, in the vicinity of their L and M-edges, respectively,

are presented as first examples of this technique. Undulator radiation available at

the third generation synchrotron facilities (in this case the Advanced Light Source)

provides the high brightness, high coherence short wavelength radiation necessary for
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this interferometric experiment.

The contribution of this dissertation to the field of short wavelength optics is again

two-fold: characterizing the spatial coherence properties of the new radiation source

and, for the first time, introducing Fourier optical techniques to short wavelength

optics.
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Chapter 2

Spatial coherence characterization

of undulator radiation

The coherence properties of undulator radiation at extreme ultravio-
let (EUV) wavelengths are measured using the Thompson-Wolf two-
pinhole method. The effects of elliptical source size and beamline aper-
tures are observed. High spatial coherence EUV radiation is demon-
strated. Projection of these same capabilities to the x-ray region is
straightforward.

2.1 Introduction

Coherent radiation offers important opportunities for both science and technol-

ogy. The well defined phase relationships characteristic of coherent radiation, allow

for diffraction-limited focusing (as in scanning microscopy), set angular limits on

diffraction (as in protein crystallography), and enable the convenient recording of

interference patterns (as in interferometry and holography). While coherent radia-

tion has been readily available and widely utilized at visible wavelengths for many

years [1,3–5,7], it is just becoming available for wide use at shorter wavelengths [8,9].

This is of great interest as the shorter wavelengths, from the EUV (10-20 nm wave-

length), soft x-ray (1-10 nm), and x-ray (<1 nm) regions of the spectrum, correspond

to photon energies that are well matched to the primary electronic resonances (K-

shell, L-shell, etc.) of essentially all elements, thus providing a powerful combination
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of techniques for the elemental and chemical analysis of physical and biological ma-

terials at very high spatial resolution. Tunable, coherent radiation in these spectral

regions is available primarily due to the advent of undulator radiation at modern

synchrotron facilities [12–18], where relativistic electron beams of small cross-section

transverse periodic magnet structures, radiating very bright, powerful, and spatially

coherent radiation at short wavelengths. Recent progress with EUV lasers [37, 38],

high laser harmonics [39,40], and free electron lasers [28] may soon add to these capa-

bilities. In this chapter, the classic two-pinhole diffraction technique [5], an extension

of Young’s two-slit interference experiment [7], is utilized to simply and accurately

characterize the degree of spatial coherence provided by undulator radiation. It is

shown that, with the aid of modest pinhole spatial filtering, undulator radiation can

provide tunable short wavelength radiation with a very high degree of spatial coher-

ence at presently available user facilities. Spatially coherent power of order 30mW is

available in the EUV [35], and is expected to scale with wavelength to about 0.3 mW

in the hard x-ray region [8].

For radiation with a high degree of coherence and a well-defined propagation direc-

tion, it is convenient to describe coherence properties in longitudinal and transverse

directions. For a source of diameter d, emission half-angle θ, and full spectral band-

width ∆λ at wavelength λ, relationships for full spatial coherence and longitudinal

coherence length, lcoh, are given respectively by

d · θ = λ/2π (2.1)

and

lcoh = λ2/2∆λ (2.2)

where d, θ, and ∆λ are 1/
√

e measures of Gaussian distributions. Based on measures

of the source size and theoretical predictions of the emission angle, it is estimated

that undulator radiation, as discussed in this chapter, emanating from an electron

beam of highly elliptical cross-section, will approach full spatial coherence Eq. (2.1)

in the vertical plane, while being coherent over only a fraction of the radiated beam

in the horizontal direction. Here a detailed characterization of an undulator beamline

optimized for operation in the EUV regime is presented.
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Undulator beamline 12.0 at Lawrence Berkeley National Laboratory’s Advanced

Light Source (ALS) was developed to support high-accuracy wave-front interferometry

of EUV optical systems [41, 42]. With an electron beam of elliptical cross-section,

having a vertical size dv = 2σv = 32 µm, and an emission half-angle θ = 80 µrad

(the central radiation cone containing a 1/N relative spectral bandwidth, where N

is the number of magnet periods of the undulator), the product d · θ is just slightly

larger (20%) than λ/2π at the 13.4 nm wavelength used in these experiments. Thus

one expects to see strongly correlated fields, of high spatial coherence, in the vertical

plane. The horizontal beam size is considerably larger with dh = 2σh = 520 µm, so

that with approximately the same emission half-angle it is expected to be spatially

coherent over only a fraction of the horizontal extent of the radiated beam.

The coherence characterization presented here is performed at the focus of the

condenser system used to re-image the undulator source to the entrance of our ex-

perimental chamber. In the case of beamline 12, this condenser is a Kirkpatrick-Baez

(KB) system [8]. Its focal plane serves as the entrance plane for various experiments,

including EUV phase-shifting point diffraction interferometry [41–43]. The coher-

ence measurement is based on an implementation, at a shorter wavelength, of the

well known Thompson and Wolf two-pinhole experiment [5]. The Thompson and

Wolf experiment is essentially an extension of Young’s classic two-slit interference

experiment [7], where in this case fringe visibility is recorded as a function of pinhole

separation in order to determine the spatial coherence properties of the illuminat-

ing beam. Under the conditions that: (1) the pinholes are small enough such that

the field within each pinhole can be regarded as constant, (2) the bandwidth of the

illuminating beam is narrow enough that temporal coherence does not significantly

affect fringe visibility, and (3) the intensity at the two sampled points are equal, the

fringe visibility can be shown to be proportional to the magnitude of the complex

coherence factor, |µ12|, [1,3]. Typical measured interference patterns are presented in

Fig. 2.3, which shows interference modulation of the Airy envelope as a function of

pinhole separation distance. These patterns provide a direct measure of the spatial

coherence of undulator radiation as transported by the beamline optical system.
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2.2 Mathematical description

P1

P2

x

z
r2

r1

s

Q

Figure 2.1: Young’s two-pinhole interferometer for spatial coherence measurement.

A schematic plot of Young’s experiment is shown in Fig. 2.1 where Pi, ri, i = 1, 2

are the pinhole positions and their distance to the mixing plane, respectively. The

mutual coherence function Γ12(τ) which represents the cross-correlation of the light

incident on pinholes P1 and P2 is defined by

Γ12(τ) ≡ 〈u(P1, t + τ)u∗(P2, t)〉. (2.3)

The intensity I(Q) at any point Q on the mixing plane is given by I(Q) = 〈|u(Q, t)|2〉.
Assuming that the light is narrowband and the pinholes are small enough such that

the analytic signal within each pinhole can be regarded as uniform, u(Q, t) can be

represented by the weighted sum of the properly delayed analytic signals at the pin-

holes,

u(Q, t) = K1u
(
P1, t − r1

c

)
+ K2u

(
P2, t − r2

c

)
, (2.4)
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where K1, K2 are purely imaginary numbers. The intensity of light at the mixing

plane can therefore be represented by

I(Q) = I(1)(Q) + I(2)(Q) + 2K1K2 �e

{
Γ12

(
r2 − r1

c

)}
, (2.5)

where I(i)(Q) ≡ |Ki|2〈 |u(Pi, t) |2 〉, i = 1, 2 is the contribution on Q from the ith

pinhole alone and Ki = |Ki|. To further demonstrate the rising of the fringe pattern,

a normalized version of Γ12(τ) is defined to be

γ12(τ) ≡ Γ12(τ)[
Γ11(0)Γ22(0)

]1/2
. (2.6)

Equation (2.5) can then written as

I(Q) = I(1)(Q) + I(2)(Q) + 2
√

I(1)(Q)I(2)(Q) �e

{
γ12

(r2 − r1

c

)}
. (2.7)

The last step in visualizing the fringe pattern is the following: since the light is

assumed to be narrowband with center frequency ν (λ = c/ν), the complex degree of

coherence may be re-written in the following form

γ12(τ) = |γ12(τ)| exp{−j[2πντ − α12(τ)]} (2.8)

and Eq. (2.7) would become

I(Q) = I(1)(Q) + I(2)(Q) +

2
√

I(1)(Q)I(2)(Q)

∣∣∣∣γ12

(
r2 − r1

c

)∣∣∣∣ cos

[
2πν

r2 − r1

c
− α12(

r2 − r1

c
)

]
.(2.9)

As can be seen from the above Eq. (2.9), in the vicinity of zero path length difference

(r2−r1) � 0, the macroscopic fringe visibility V is related to the microscopic complex

degree of coherence γ12(0) by

V =
2
√

I(1)(Q)I(2)(Q)

I(1)(Q) + I(2)(Q)
|γ12(0)|. (2.10)
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Quasi-monochromatic conditions In some circumstances the bandwidth of the

light is so narrow that the effect of temporal coherence on the fringe visibility is neg-

ligible over the observable region. If this quasi-monochromatic condition is satisfied,

γ12(τ) can be approximated by

γ12(τ) ∼= γ12(0)︸ ︷︷ ︸
µ12

e−j2πντ , (2.11)

where µ12 ≡ γ12(0) = |γ12(0)| ejα12(0) is the complex coherence factor.

Together with the paraxial approximation, Eq. (2.9) can be further simplified to

I(Q) = I(1)(Q) + I(2)(Q) + 2
√

I(1)(Q)I(2)(Q) |µ12| cos

(
2π

λz
sx + φ12

)
, (2.12)

where x is the axis on Q that is parallel to the pinholes, φ12 = α12(0) had we chosen

the optical axis to pass through the center of the pinhole pairs, s is the pinhole

separation and z is the distance from the pinhole plane to the mixing plane. Note

that for this quasi-monochromatic case, λ is used instead of λ.

In this experiment, the largest pinhole separation is s = 9µm, which is smaller

than the pixel size (25 µm) of the CCD. The two Airy patterns, I(1)(Q) and I(2)(Q),

are then basically overlapped, i.e. I(1)(Q) = I(2)(Q) for all points Q on the mixing

plane. The intensity pattern on the mixing plane (CCD) is therefore

I(Q) = 2I(1)(Q)

[
1 + |µ12| cos

(
2π

λz
sx + φ12

)]
(2.13)

and the fringe visibility is V = |µ12| over the entire observable mixing plane.

2.3 Experiment

The experimental system is depicted in Fig. 2.2. The beamline [35] provides

an overall 60:1 demagnified image of the source in the focal plane of the KB sys-

tem. The undulator employed at this beamline has a magnet period (λu) of 8 cm,

55 magnet periods (N), and a non-dimensional magnetic field parameter K = 2.7.

The electron beam energy is 1.9 GeV , with a corresponding relativistic Lorentz fac-

tor γ = 3720. The acceptance half-angle (NA) of undulator radiation for these
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Figure 2.2: The experiment setup shows the undulator, beamline optics, monochro-
mator grating and exit-slit, Kirkpatrick-Baez (KB) re-focusing optics (M4 and M6),
and the spatial coherence measuring end-station consisting of a two-pinhole mask and
an CCD electronic array detector. The two pinholes are shown here with a horizontal
separation; vertical separation tests are also employed.

experiments is set by the acceptance aperture of the beamline, which is a 1.6-mm

diameter circle placed 16.7 meters downstream of the undulator exit. This accep-

tance NA of 48 µrad is somewhat smaller than the central radiation cone half-angle,

θcen =
√

1 + K2/2/γ
√

N = 80 µrad [8, 35]. The radiation within θcen has a natural

bandwidth of λ/∆λ = N , corresponding to a longitudinal coherence length, lcoh, of

0.37 µm. The monochromator bandpass of this beamline can be narrowed to values

as large as λ/∆λ = 1100, by adjusting the size of its horizontal exit-slit. Except

where stated otherwise, all experiments reported in this chapter were performed with

the monochromator exit-slit set such as to pass the entire λ/∆λ = 55 natural undu-

lator bandwidth. Accounting for the 48-µrad acceptance NA, the spatially coherent

power is expected to be about 12 mW, within a relative bandwidth of λ
∆λ

= 55 at

λ=13.4 nm [35]. Using the full 80-µrad acceptance NA defined by θcen would yield

expected coherent power of 30 mW . This bandwidth is sufficient to assure that the

quasi-monochromatic condition required for this experiment is satisfied, i.e. that the

temporal coherence does not significantly affect fringe visibility.

As shown in Fig. 2.2, the M2 spherical mirror images the undulator output verti-

cally to the monochromator exit-slit. The calculated FWHM of the vertical intensity

profile on the exit-slit is 17µm, neglecting aberrations on M2 mirror. The KB system

is composed of two asymmetric, bendable reflective mirrors (M4 and M6). Mirror M6

directly demagnifies the undulator source in the horizontal direction by a factor of
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60, whereas M4 demagnifies the monochromator exit-slit in the vertical direction by

a factor of 7.2. M2 and M4 together provide a total vertical demagnification of 60 in

the plane of the two-pinhole mask.

To implement these coherence tests, a patterned mask containing multiple 450-

nm-diameter-pinhole pairs, with separations ranging from 1 to 9-µm, was placed in

the vicinity of the KB system focus, i.e. at the demagnified image of the undulator

source. The 450-nm pinhole diameter is chosen to be significantly smaller than the

expected coherence width, while providing reasonable throughput and appropriate

working distance for full Airy pattern recording at the charge-coupled-device (CCD)

electronic array detector. The mask, fabricated using electron-beam lithography and

reactive-ion etching, consists of a 360-nm-thick Ni absorbing layer evaporated on a

100-nm-thick Si3N4 membrane. The mask features are etched completely through the

membrane prior to the Ni evaporation, leaving the pinholes completely open in the

finished mask. Pinhole circularity and size are confirmed by observing the resultant

far field Airy patterns, as recorded on the CCD.

The pinhole array mask is mounted on an x-y-z stage, allowing desired pinhole

separations to be selected sequentially, and the coherence to be studied as a function

of focal position. A back-thinned, back-illuminated, EUV sensitive CCD camera is

placed 26 cm downstream of the mask to record the resulting interference pattern.

The active area of the CCD is 25.4 mm × 25.4 mm, in a 1024 by 1024 pixel ar-

ray. Typical exposure times for a recorded pattern vary between 50 msec and 5 sec

depending on pinhole separation, storage ring current, and beamline apertures.

Because the divergence created by the pinhole diffraction is large relative to the

pinhole separation, the two diffraction patterns overlap to a high degree on the CCD.

In order to determine the magnitude of the complex coherence factor, |µ12|, from the

fringe visibility, one must know the relative intensities of the illuminating beam at the

two pinholes or, alternatively, guarantee them to be equal. This can be challenging

as the pinholes are near the KB focal plane, where the beam is small and may display

structure due to aberrations in the optics. Because it is impractical to independently

measure the intensity at each pinhole, we attempt to guarantee the equal intensity

condition by performing a large ensemble (greater than 50) of measurements for each
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pinhole separation, intentionally displacing the pinhole pair relative to the incident

beam. Because beam-intensity non-uniformity can only degrade fringe visibility, we

take the highest fringe visibility from the ensemble of measurements as representing

the coherence-limited fringe visibility.

Figure 2.3 shows the recorded interference patterns for horizontal pinhole separa-

tions of 3, 4, 6 and 9 µm. The measured magnitude of the fringe visibility decreases

with larger pinhole separation as expected. Figure 2.4 shows several interference pat-

terns obtained with vertically displaced pinhole pairs. Fringe modulation is generally

better than that of horizontally displaced pinholes. In order to verify our ability

to control and measure the beamline coherence properties, the measurement was re-

peated at a larger beamline acceptance NA. This NA can be controlled by way of the

acceptance aperture described above. The measured spatial coherence decreases in

both directions as expected when the 48 µrad acceptance aperture is replaced by a

larger aperture allowing the entire 80 µrad central radiation cone to pass.

The interference pattern at the CCD is written here again from Eq. (2.13)

I(x, y) = 2I(1)(x, y)

[
1 + |µ12| cos

(
2π

λz
sx + φ12

)]
, (2.14)

where I(1)(x, y) is the Airy intensity envelope in the recording plane due to pinhole

diffraction, x is the axis on the recording plane that is parallel to the pinhole separa-

tion, s is the pinhole separation, λ is the wavelength, and z is the distance from the

pinholes to the recording plane. Note that the phase φ12 describes the fringe shift

relative to the geometric center of the interference pattern. With equi-phase illumi-

nation of the two pinholes and proper pinhole alignment, φ12 = 0. Because fringe

visibility is defined as

V ≡ Imax − Imin

Imax + Imin

, (2.15)

one finds that V = |µ12| as a constant over the entire interferogram for the cases

considered here.

To obtain the fringe visibility from the interference pattern, we perform a two-

dimensional Fourier transform of the interferogram and separate the zeroth order

and the two first-order peaks. As seen in Eq.(2.14), the Fourier transform of the
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Figure 2.3: Measured two-pinhole interference patterns for horizontal pinhole separations of 3,
4, 6 and 9-µm, for a wavelength of 13.4nm and a beamline acceptance half-angle of 48µrad. The
pinhole diffraction patterns overlap and produce an interference pattern within the Airy envelope.
The interference patterns are recorded on an EUV sensitive CCD camera, located 26 cm downstream
of the pinhole mask. Pinhole diameter range from 400 to 500 nm, but are equal in their respective
pairs. As shown in the lineouts, fringe visibility of the modulation decreases for larger separations.
Spectral resolution for these measurements is 55.
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Figure 2.4: Measured two-pinhole interference patterns for vertical pinhole separa-
tions of 1 and 6-µm, at a wavelength of 13.4 nm, and an acceptance half-angle of
48µrad.
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interferogram I(x, y) can be represented as the convolution of the Fourier transform

of the Airy envelope with three delta functions. The delta functions arising from the

1 + cos(·) term can be written as

δ(fx, fy) +
|µ12|

2

[
δ(fx +

s

λz
, fy) + δ(fx − s

λz
, fy)

]
. (2.16)

Furthermore, the Fourier transform of the Airy envelope becomes the autocorrelation

of the pinhole. The resultant pattern in the frequency domain is therefore one zeroth

order peak and two symmetric first-order peaks, each properly scaled. Ideally, the

fringe visibility is two times the relative strength of the first-order peak to the zeroth-

order peak. In practice, we apply properly displaced top-hat filters centered at each

peak and integrate within the filters. The fringe visibility is then determined by

two times the ratio of the integration under the first-order peak to that under the

zeroth-order peak.

In Fig. 2.5 we show |µ12| as a function of pinhole separation for both horizontally

and vertically separated pinholes. One observes that the transverse coherence distance

in the vertical plane is greater than that in the horizontal plane, for this 48 − µrad

acceptance NA. Following the convention in [3], a transverse coherence distance Lc

for the measured coherence profiles (Fig. 2.5) is obtained by determining the width

of an equivalent top-hat function, i.e.,

Lc ≡
∞∫

−∞

|µ12(∆x)|2 d∆x. (2.17)

The measured transverse coherence distance in the horizontal direction, Lc,h, is found

to be approximately 6.3 µm and the measured transverse coherence distance in the

vertical direction, Lc,v, is found to be approximately 7.4 µm. This is due to the fact

that the vertical source dimension is sub-resolution in size at this acceptance angle,

while the horizontal size is not. After propagating from the undulator exit (source),

the FWHM of the spatial coherence profile, as calculated by the van Cittert-Zernike

theorem, is 0.3 mm(H)×5.2 mm(V ) at the beamline acceptance aperture. Therefore,

the spatial coherence profile at the KB focal plane (image plane) is expected to

be asymmetric with vertical coherence better than horizontal coherence. As will
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Figure 2.5: The measured coherence factor |µ12| as function of pinhole separation
distance for (a), horizontally and (b), vertically separated pinholes. For these mea-
surements, a 48µrad half-angle acceptance aperture is used. The measured spatial
coherence distance decreases with larger pinhole separations as expected. Larger
uncertainty in the vertical 3µm separation may be due to a smaller number of inter-
ferograms collected in this case. The data points are fitted to a Gaussian curve in
each case.

be shown in Chapter 3, simple analysis of a critical illumination system like the

one considered here would suggest the coherence to be symmetric when the NA is

symmetric. More detailed analysis reveals, however, that the small vertical source

size causes the vertical coherence width at the entrance pupil to be large relative to

the pupil size. In this case we violate the assumptions typically used for predicting

coherence in a critical illumination. This causes a preferential increase of coherence

in the vertical direction.

The effect of radiation directly transmitted through the mask membrane, a source

of noise in these measurements, can be seen in Fig. 2.3(d). This effect becomes

more significant as the pinhole separation increases because the limited beam size

(see Fig. 2.6) results in a reduced illumination intensity at each pinhole, whereas the

directly transmitted radiation remains fixed. This directly transmitted light adds a

background noise to the interference pattern, thus reducing fringe visibility locally in

the affected region. Therefore, when applying the Fourier transform method to the

cases of large pinhole separations, we avoid the region containing directly transmitted
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light. This Fourier transform method has the advantage of evaluating the fringe

visibility as an integrated, rather than localized, property of the full interferogram.

The intensity and coherence distribution in the KB focal plane is calculated by way

of computer simulation for an aberration-free beamline. The simulation shows that

the coherence profile is wider than the calculated intensity profile for the aberration-

free beam in the vertical direction, which means that without aberrations the beam

would be essentially fully coherent in the vertical direction. Horizontally, the coher-

ence profile is dominated by the acceptance NA. As described above, this asymmetry

is expected based on the geometry of the system.

Figure 2.6 displays both FWHM intensity contours and |µ12| = 0.5 isometrics for

both the aberration-free simulation case, and the actual measured results. In both

cases the vertical coherence is seen to be larger than the beam vertical FWHM, indi-

cating nearly complete coherence in the vertical direction. Also both simulation and

experiment show the horizontal coherence to be smaller than the vertical coherence

and significantly smaller than the beam. This is a result of the extended source in

the horizontal direction and the beamline geometry. The results differ, however, in

that the measured coherence and beam-size are larger than those predicted for the

aberration-free simulation. The beam-size increase is attributed to aberrations in

the KB. By comparing the two intensity profiles we surmise the aberration limited

point-spread function of the KB to be about 4 µm in diameter. We assume these

aberrations to also play a role in the increased coherence observed experimentally.
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Figure 2.6: The beamline is designed to image the undulator output to the KB focus
with a demagnification of 60 and an acceptance half-angle of 48 µrad. The undulator
output in this calculation is assumed to be a monochromatic (λ = 13.4nm), spatially
incoherent Gaussian-shaped source with (σx, σy) = (260µm, 16µm) [8], corresponding
to source plane values of 612µm× 38µm FWHM. The solid line shows the FWHM of
the measured KB focal intensity distribution. The dash-dot line is the FWHM of this
calculated KB focal intensity distribution assuming an aberration-free beamline. The
intensity distribution FWHM values are increased by aberrations from ideal values of
10.5µm(H)× 2.4µm(V ), to experimental values of 11µm(H)× 5µm(V ). The dashed
line represents the calculated focal plane spatial coherence isometric (|µ12| = 0.5) for
experimental values of wavelength, acceptance NA, and demagnification, as calculated
using the van Cittert-Zernike theorem [1, 3]. The asymmetric coherence isometric is
due to the asymmetry of the source intensity distribution.
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2.3.1 Effect of monochromator exit-slit
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Figure 2.7: The vertical opening of monochromator’s exit-slit has significant effect
on the vertical coherence but not on the horizontal coherence. A smaller exit-slit size
decreases the vertical phase-space of the transmitted radiation, thus increasing the
vertical coherence. Horizontal coherence is relatively unaffected. This is done with a
larger beamline acceptance NA.

The natural bandwidth of undulator radiation within the central radiation cone,

θcen, is set by the number of magnet pairs N [8], which is 55 in these experiments.

The monochromator is designed to transmit a bandpass variable from λ/∆λ = 55 to

1100. The larger value is useful in experiments requiring a longer coherence length

(to 7.4 µm at 13.4 nm wavelength). These values of spectral bandpass correspond to

exit-slit widths of 320µm and 16µm, respectively. Exit-slit size greater than 320µm

does not further affect the monochromator bandpass. All data presented to this point

correspond to a 400µm exit-slit size (λ/∆λ = 55). Use of a smaller monochromator
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exit-slit narrows the transmitted spectrum, but also has the effect of decreasing the

transmitted beam’s transverse phase-space, and thus increasing the spatial coherence

length in the vertical plane. To study the effect of the monochromator exit-slit size,

we have repeated the experiment with exit-slit size as a parameter. Figure 2.7 shows

the measured horizontal and vertical coherence as a function of monochromator exit-

slit size. For a vertical pinhole separation of 6 µm, the fringe visibility varies from

0.38 to 0.94 as the exit-slit size changes from 400 µm to 50 µm. For the horizontally

oriented 4-µm separation pinholes, the fringe visibility varies from 0.47 to 0.60 as the

exit-slit size changes from 400 µm to 20 µm. As one expects, the exit-slit also acts as

a spatial filter, having a significant effect on spatial coherence in the vertical plane,

and minimal effect in the horizontal plane.

2.3.2 Wave-front null test

The two-pinhole experiment presented here can also be used to measure the de-

parture from sphericity of the pinhole-diffracted wave. Figure 2.8 is derived from the

measured interference pattern obtained with 450 − µm diameter pinholes horizon-

tally placed 9 µm apart. To determine the underlying wave-front quality of the two

nearly spherical waves used to produce the interference pattern, the interferogram is

analyzed using conventional Fourier-transform wave-front reconstruction techniques

routinely applied to carrier-frequency interferograms [44]. The resulting wave-front is

then compared to what one would expect from two perfectly spherical waves in our

recording geometry. The rms departure from a sphere is taken to represent the un-

derlying pinhole-diffracted wave-front quality. For example, at a numerical aperture

of 0.025 (a typical input numerical aperture for testing EUV optics), the wave-front

quality from these 450− µm pinholes is seen to be λ/330, exceeding current require-

ments for such tests [41,45,46].
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Figure 2.8: Departure of pinhole generated wave-front from sphericity, expressed as
an rms number of waves at λ = 13.4nm. For example, the data indicates that with
450-nm-pinhole filtered radiation a wave-front departure from a sphericity of λ/1000
is obtained across a wave-front of about 0.016 NA (equal to 13 picometer rms at this
wavelength and NA).

2.4 Conclusion

The coherence properties of spatially filtered undulator radiation have been mea-

sured. A very high degree of spatial coherence is demonstrated, as expected on the

basis of a simple model. The effect of an asymmetric source size on the resultant co-

herence properties is observed, and is consistent with aperturing within the beamline

optical system used to transport radiation to the experimental chamber. Based on

these observations and well understood scaling of undulator radiation, it is evident

that high average power, spatially coherent radiation is available at modern storage

rings with the use of appropriate pinhole spatial filtering techniques. The ability
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of synchrotron facilities to provide high spatial coherence at hard x-ray region has

recently been confirmed as expected [32,47].
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Chapter 3

Analysis of the illumination

coherence properties of systems

where the Van Cittert-Zernike

theorem does not apply

Modern synchrotron beamlines often take the form of critical illumi-
nation systems, where an incoherent source of limited spatial extent is
re-imaged to some experimental plane of interest. Unique constraints
of these sources and beamlines, however, may preclude the use of the
simple Van Cittert-Zernike theorem for calculating the object-image co-
herence relationship. Here, a rigorous analysis of the object-image co-
herence relationship valid for synchrotron beamlines is performed. The
analysis shows beamline aberrations to have an effect on the coherence
properties. Effects of various low-order aberrations on the coherence
are explicitly studied.

3.1 Introduction

High brightness and high coherent power undulators available at third generation

synchrotron radiation facilities, through spatial and spectral filtering, enable a va-

riety of experiments that require a high degree of coherence at short wavelengths.



27

Undulator radiation, at its exit-plane, is regarded as an incoherent source because

the electrons in the storage ring have uncorrelated motion and thus are essentially

independent radiators. Beamline optics are routinely used to re-image this spatially

confined incoherent source to an experimental plane of interest. Such a configuration

is readily recognized as a critical illumination system [1], where the beamline acts as

the condenser.

Undulator radiation has an intrinsic divergence angle, known as the central ra-

diation cone angle θcen, characterized by the electron’s forward-emitting radiation.

The beamline acceptance angle, i.e. object-side NA of the condenser, is usually set

comparable but slightly smaller than θcen. This acceptance angle sets the effective

coherence patch size on the source as seen by the condenser system. For the Van

Cittert-Zernike theorem to correctly predict the spatial coherence distribution at the

image plane of the condenser, the dimension of the source needs to be much greater

than this effective coherence patch size, i.e.

dsource � d eff
coh ≈ 1

2π

λ

θaccept

(3.1)

where dsource is the source dimension, d eff
coh is the effective coherence patch size at the

source, λ is the wavelength, and θaccept is the beamline acceptance angle. However, the

distinct characteristics of third generation undulator radiation, i.e. the small vertical

source dimension and the constraint on the size of beamline acceptance angle, give

rise to a condenser system whose spatial coherence properties cannot be simplified

by the commonly used Zernike approximation [1, 3, 6]. For the λ = 13.4 nm exper-

iments described here, the Gaussian undulator source has a vertical dimension (2σ)

of dsource = 32 µm, and the beamline acceptance angle is θaccept = 48 µrad, slightly

smaller than the central radiation cone angle of 80µrad. The d eff
coh thus equals to

45 µm, for which Eq.(3.1) is clearly not satisfied and the Zernike approximation is

not applicable.

Here, based on the Huygens-Fresnel principle, the analysis and numerical evalu-

ation of the spatial coherence properties of a representative undulator beamline are

presented and the results are compared with actual measurements conducted at the

ALS undulator beamline 12.
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3.2 Rigorous mutual coherence propagation for un-

dulator beamlines

3.2.1 Undulator radiation as an incoherent source

The undulator radiation at its exit-plane is assumed to be an incoherent source

here. In practice, this assumption is valid as long as the coherence width at the source

is smaller than the diffraction-limited resolution of the condenser. Alternatively, this

could be stated as requiring the intrinsic divergence of the source to be larger than the

acceptance angle of the condenser. For the undulator source, the positions and motion

of the electrons in the undulator are uncorrelated. All point radiators originating from

uncorrelated electrons can be treated as independent, and the size of an elemental

point radiator can be determined from the central radiation cone divergence [8]. The

intrinsic divergence of the EUV undulator discussed here is θcen = 80 µrad, which is

larger than the beamline acceptance angle θaccept of 48 µrad. Therefore, it is evident

that the incoherent source approximation holds here.

3.2.2 Zernike approximation for a condenser system

The Zernike approximation, first described by F. Zernike in 1938 [6], states that

the condenser lens pupil, when illuminated by a large incoherent source, can be re-

garded as a secondary incoherent source whose intensity distribution is given by the

modulus square of the pupil function. This approximation, discussed again by Born

& Wolf [1] (sec.10.5.2) and Goodman [3] (sec.7.2.2), is commonly used for condensers

operating at visible wavelengths.

Starting with an incoherent source placed at the object plane of the condenser, the

Van Cittert-Zernike theorem [1,3,6] can be used to propagate this incoherent source

to the condenser lens pupil and the resultant mutual intensity at the condenser lens

is given by a Fourier transform of the source intensity distribution. The condition

under which the Zernike approximation is valid requires that the incoherent source

subtends a sufficiently large angle at the condenser lens, such that the coherence
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width at the condenser lens is small relative to the pupil diameter. Satisfying this

condition, the condenser lens pupil can be regarded as a secondary source with a very

small coherence area and the generalized Van Cittert-Zernike theorem [3] can then

be used to propagate the mutual intensity from the condenser lens pupil to the image

plane of the condenser. The resultant coherence distribution at the image plane of

the condenser is thus determined solely by the modulus square of the pupil function

and aberrations in the condenser lens do not affect the coherence distribution at the

image plane [3]. Note that in this case, the resultant intensity distribution at the

image plane of the condenser is determined by the coherence function at the lens

pupil.

However, when the dimension of the incoherent source shrinks to the point where

the coherence width at the condenser lens is comparable to the pupil diameter, the

Zernike approximation fails and the generalized Van Cittert-Zernike theorem can

no longer be used to propagate the mutual intensity function from the exit of the

condenser lens to the image-plane. Under this small-source condition, a rigorous

mutual coherence propagation based on the Huygens-Fresnel principle is required [3].

As will be shown later in this chapter, the condenser pupil aberrations in this case

begin to affect the coherence properties at the condenser image-plane.

3.2.3 Undulator beamline as a condenser: an example

Undulator Beamline 12 of the ALS can be viewed as an incoherent source with a

Gaussian intensity distribution, (σξ, ση) = (260µm, 16µm). The beamline essentially

acts as a condenser lens with a de-magnification of 60 and an object-side NA of

48 µrad. The distance z1 from the exit-plane of the undulator to the pupil is 16.7 m

and the pupil radius a is 0.8 mm. The wavelength used here is λ = 13.4 nm.

Using the Van Cittert-Zernike theorem to propagate radiation from the incoherent

source to the lens pupil, the mutual intensity at the pupil is given by a Fourier

transform of the Gaussian intensity distribution of the incoherent undulator source

(see Appendix A). The resultant coherence distribution at the pupil is then Gaussian
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distributed with rms radii

(σC
x , σC

y ) = (
λz1

2πσξ

,
λz1

2πση

) ≈ (0.14 mm, 2.23 mm).

Comparing the vertical size of this coherence patch with the pupil diameter (2a =

1.6 mm), the Zernike approximation is found not to be applicable here and therefore

the generalized Van Cittert-Zernike theorem cannot be used to propagate the mu-

tual coherence from the condenser pupil to the image-plane. However, should this

invalidity be ignored and the Zernike approximation used for the calculation of the

spatial coherence distribution at the condenser image-plane, the erroneous resultant

coherence distribution would be an Airy pattern with a first null radius so of 2.84 µm.

Specifically, the modulus of the complex coherence factor would be

|µ12| = 2
J1

(
2πa
λz2

√
(∆u)2 + (∆v)2

)
2πa
λz2

√
(∆u)2 + (∆v)2

where a is the pupil radius, λ is the wavelength, z2 is the distance from the condenser

lens to the image-plane, (∆u, ∆v) is the coordinate difference at the image plane,

and the first null radius is so = 0.610λz2/a. As expected, this over-simplification

results in discrepancy with the experimentally measured coherence profile [9], which

determined the size of the coherence patch to be 4.4 µm and 6.8 µm in the horizontal

and vertical direction, respectively.

As demonstrated, the generalized Van Cittert-Zernike theorem does not apply

here. A rigorous analysis on mutual coherence propagation using the Huygens-Fresnel

principle and subsequent numerical evaluations are presented in this chapter.
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Figure 3.1: Coordinate system

3.3 Object-image coherence relation

Using the Huygens-Fresnel principle [3], the object-image coherence relation, un-

der quasi-monochromatic and paraxial approximations, can be expressed as

Ji(u1, v1; u2, v2) =

+∞∫∫∫∫
−∞

Jo(ξ1, η1; ξ2, η2)K(u1, v1; ξ1, η1)K
∗(u2, v2; ξ2, η2)dξ1dη1dξ2dη2

(3.2)

where Ji and Jo are the mutual intensities at the image and object plane, respectively.

The amplitude spread function K is defined by

K(u, v; ξ, η) =
exp

{
j π

λz2
(u2 + v2)

}
exp

{
j π

λz1
(ξ2 + η2)

}
λ2z2z1

×
+∞∫∫

−∞

P(x, y) exp

{
−j

2π

λz2

[(
u +

z2

z1

ξ
)
x +

(
v +

z2

z1

η
)
y

]}
dxdy

(3.3)

where P(x, y) is the complex pupil function described in detail in Appendix B. The

coordinate system used throughout this chapter is depicted in Fig. 3.1. Notice that

the subscript i for (ui, vi) and (ξi, ηi) is dropped in Eq.(3.3) for ease of notation.
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Also notice that the integral above can be regarded as a Fourier transform of the

condenser lens pupil evaluated at spatial frequency
[

1
λz2

(ui + Mξi) , 1
λz2

(vi + Mηi)
]
,

where M = z2/z1 and i = 1, 2.

If an incoherent source is placed at the object plane, then Jo can be written as

Jo = κ Is(ξ, η) δ(∆ξ, ∆η) (3.4)

where Is(ξ, η) is the source intensity distribution, κ = λ2/π, and δ(·,·) is a 2-

dimensional Dirac delta function.

In this case, Eq.(3.2) simplifies to

Ji(u1, v1; u2, v2) = κ

+∞∫∫
−∞

Is(ξ, η)K(u1, v1; ξ, η)K∗(u2, v2; ξ, η)dξdη (3.5)

The mutual intensity function Ji at the image plane can now be determined by the

integration of the source intensity distribution Is and the two off-centered [by (u1, v1)

and (u2, v2), respectively] amplitude spread functions of the pupil P.

In order to simplify the notation in Eq.(3.5), we define

G(u′, v′) ≡
+∞∫∫

−∞

P(x, y) exp

{
−j

2π

λz2

[
u′x + v′y

]}
dxdy (3.6)

Note that G(u′, v′) is essentially the point-spread function (up to a scaling constant)

of the pupil P(x, y). Eq.(3.5) can now be written as

Ji(u1, v1; u2, v2) =
κ exp

{
j π

λz2
(u2

1 + v2
1 − u2

2 − v2
2)
}

λ4z2
2z

2
1

×
+∞∫∫

−∞

Is(ξ, η) G
(
u1 + Mξ, v1 + Mη

)
G∗(u2 + Mξ, v2 + Mη

)
dξdη,

(3.7)

The mutual intensity can be obtained by numerically evaluating the above double

integral. Equation (3.7), and its equivalent Eq.(3.5), are based on the Huygens-Fresnel

principle and are valid regardless of the Zernike approximation. Note here that the
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mutual intensity is a function of the four individual coordinates, (u1, v1, u2, v2), not

their differences.

The numerical value of G(u′, v′) can be determined by evaluating the integral in

Eq.(3.6). As will be shown in Section 3.4, this integral can be expressed as weighed

summations of various Bessel functions for the specific aberrations involved. Defo-

cus/distortion, astigmatism, and coma are the low order aberrations whose effects on

the spatial coherence distributions at the condenser image plane are studied here.

3.3.1 Zernike approximation

Before using Eq.(3.7), or equivalently Eq.(3.5), it is interesting to examine the

Zernike approximation and the conditions under which it is valid. The Zernike ap-

proximation [6] states that the coherence distribution at the image plane of a con-

denser that re-images the source can be determined solely by the modulus square of

the pupil function, thus independent of the pupil aberrations. Examining Eq.(3.5)

[the equivalent of Eq.(3.7)], which is valid in general for all incoherent sources, one

finds that Eq.(3.5) reduces to the commonly known Zernike approximation when

the size of the incoherent source is large enough such that Is(ξ, η) can be effectively

regarded as a constant lC. To demonstrate this, substitute the amplitude spread func-

tion K(u, v; ξ, η) in Eq. (3.5) with Eq.(3.3), and integrate first dξdη with Is(ξ, η) = lC.

This yields

Ji(u1, v1; u2, v2) = lC
κ exp

{
j π

λz2
(u2

1 + v2
1 − u2

2 − v2
2)
}

λ4z2
2z

2
1

×
+∞∫∫

−∞

P(x1, y1)dx1dy1

+∞∫∫
−∞

P∗(x2, y2)dx2dy2

×
+∞∫∫

−∞

dξdη exp

{
−j

2π

λz2

[(
u1+

z2

z1

ξ
)
x1+

(
v1+

z2

z1

η
)
y1

]}
exp

{
j

2π

λz2

[(
u2+

z2

z1

ξ
)
x2+

(
v2+

z2

z1

η
)
y2

]}
.

Note that the last integral in the above equation evaluates to

exp

{
−j

2π

λz2

[
u1x1 + v1y1 − u2x2 − v2y2

]}
× δ

(
x1 − x2

λz1

,
x1 − x2

λz1

)
. (3.8)
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Further integrate over dx2dy2 to yield

Ji(u1, v1; u2, v2) =
κ′ exp

{
j π

λz2
(u2

1 + v2
1 − u2

2 − v2
2)
}

λ2z2
2

×
+∞∫∫

−∞

dx1dy1

∣∣∣P(x1, y1)
∣∣∣2 exp

{
−j

2π

λz2

[
(u1 − u2)x1 + (v1 − v2)y1

]}

(3.9)

where κ′ = κ lC.

Eq.(3.9) indeed shows that in the case where Is is large enough, the image-plane

mutual intensity Ji depends only on the modulus square of the pupil function (thus

independent of the aberrations in the pupil) and its magnitude, |Ji|, is a function of

(∆u, ∆v) only. Also shown in Eq.(3.9), the image-plane mutual intensity is essentially

a Fourier transform of the modulus square of the pupil. Note that Eq.(3.9) is identical

to (7.2-17) in Ref. [3], which was obtained by explicitly assuming a Dirac-δ-function

coherence distribution at the condenser lens plane.

Validity of the Zernike approximation In arriving at Eq.(3.9), the assumption

was made that the incoherent source was of infinite extent with uniform intensity

distribution lC. However, as mentioned in Section 3.2, this assumption can be relaxed

to that the size of the incoherent source be large enough such that the coherence patch

at the entrance of the condenser lens is sufficiently smaller than the lens pupil. Under

this relaxed condition, the generalized Van Cittert-Zernike theorem is applicable at

exit of the the condenser lens and Eq.(3.9) still holds with some modification on κ′.

In this case, the κ′ in Eq.(3.9) is actually a function of (u, v) = (u1+u2

2
, v1+v2

2
), given

by

κ′(u, v) = κIs(−z1

z2

u,−z1

z2

v) (3.10)

Note that when the incoherent source is of infinite extent with uniform intensity

distribution lC, the resultant κ′ indeed reduces to κ′ = κ lC. In practice, the incoherent

source cannot be infinitely large, and using the simpler form of Eq.(3.9) where κ′ is

a constant requires caution. In fact, the geometric image of the source needs to

be sufficiently larger than the object of interest, in order for the intensity of the
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illumination on the object to be regarded as uniform and Eq.(3.9) to strictly apply.

Mathematically, this condition can seen from Eq.(3.10) as


∣∣∣z1

z2

uobj

∣∣∣ � ∣∣ξsrc

∣∣∣∣∣z1

z2

vobj

∣∣∣ � ∣∣ηsrc

∣∣ (3.11)

where (uobj, vobj) and (ξsrc, ηsrc) denote the maximum dimension of the object under

illumination and that of the incoherent source, respectively. Therefore, when apply-

ing Eq.(3.9) to describe the mutual intensity incident on an object, the additional

requirement on the relative size of the object under illumination and the geometric

image of the source must be satisfied.

Although valid in a wide array of situations, the simple Fourier transform re-

lationship, Eq.(3.9), established by the Zernike approximation, breaks down as the

dimension of the incoherent source shrinks and the coherence area at the pupil plane

increases. As described above, this small-source condition is the norm for the verti-

cal dimension with undulator radiation. Therefore, one cannot resort to the Zernike

approximation here and numerical evaluation based on Eq.(3.7) in Sec.3.3 is needed

for examining the mutual intensity distribution at the condenser image-plane.

3.4 Point spread functions for aberrated pupils

To proceed on the numerical evaluation using Eq.(3.7), it is evident that the

expressions for the PSF (i.e. G) corresponding to various low-order aberrations are

needed. In this section, PSFs for defocus/distortion, astigmatism, and coma, are

presented.

3.4.1 Distortion & Defocus

The displacement theorem, as presented in Ref. [1] in terms of intensity, states

that for any two arbitrary aberration functions whose difference is given by Hρ2 +

Kρ sin θ + Lρ cos θ + N , where H, K, L, and N are constants of order λ, their

respective intensity distributions near focus are identical apart from a displacement
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described by the transformation given later in Eq.(3.20). Resembling the derivation

of the displacement theorem in Ref. [1], the same theorem in terms of field, i.e. PSF,

for the two arbitrary aberration functions differing by Hρ2 + Kρ sin θ + Lρ cos θ + N ,

will also be established in Eq.(3.23). Notice that the allowed difference between the

two aberration functions, Hρ2 + Kρ sin θ + Lρ cos θ + N , is essentially distortion

and defocus. Therefore, by setting one of the pupil functions to zero, the PSFs of

distortion and defocus can be obtained from an un-aberrated PSF, which in turn can

be asymptotically approximated by a series of Bessel functions.

The displacement theorem

When distortion and defocus are the only difference between two pupil functions,

their respective PSFs are related simply by translation perpendicular and parallel to

the optical axis. This is called the displacement theorem. The field distribution due

to an arbitrary aberration function Φ can be expressed as

U(P ) = − i

λ

a2A

z2
2

ei(z2/a)2ζ

∫ 1

0

∫ 2π

0

exp
{

i
[
kΦ − νρ cos(θ − φ) − 1

2
ζρ2

]}
ρdρdθ (3.12)

where a is the radius of the exit-pupil, A is a scaling factor indicating the strength of

the beam, ρ is the normalized (with respect to a) radial coordinate at the exit-pupil

plane, and

ζ =
2π

λ

( a

z2

)2

z (3.13)

ν =
2π

λ

( a

z2

)√
u2 + v2 (3.14)

φ = arctan
v

u
. (3.15)

For ease of notation we define

f(ζ, ν, φ; ρ, θ) = kΦ − νρ cos(θ − φ) − 1

2
ζρ2 (3.16)

Assuming a second aberration function Φ′ which differs from Φ only by distortion

and defocus, i.e.

Φ′ = Φ + Hρ2 + Kρ sin θ + Lρ cos θ + N (3.17)
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where H is the magnitude of the defocus, K and L are the x and y distortion mag-

nitudes, respectively, then we have

f(ζ, ν, φ; ρ, θ) = kΦ′ − 1

2
(2kH + ζ)ρ2 − ρ cos θ(ν cos φ + kL) − ρ sin θ(ν sin φ + kK) − kN

= kΦ′ − 1

2
(2kH + ζ)ρ2 − kN−

ρ
√

(ν cos φ + kL)2+(ν sin φ + kK)2
(
cos θ

ν cos φ + kL√
(·)2 + (·)2

+sin θ
ν sin φ + kK√

(·)2 + (·)2

)
= kΦ′ − ν ′ρ cos(θ − φ′) − 1

2
ζ ′ρ2 − kN

where

ζ ′ = ζ + 2kH

ν ′ =
√

(ν cos φ + kL)2 + (ν sin φ + kK)2 ν ′ cos φ′ = ν cos φ + kL

φ′ = arctan
ν sin φ + kK

ν cos φ + kL
ν ′ sin φ′ = ν sin φ + kK

and now

ν ′ =
2π

λ

( a

z2

)√
(u′)2 + (v′)2 (3.18)

φ′ = arctan
v′

u′ . (3.19)

The corresponding cartesian coordinate relationships are as follows,

z′ = z + 2
(z2

a

)2

H u′ = u +
(z2

a

)
L v′ = v +

(z2

a

)
K (3.20)

Solving for U ′(P ′) we find,

U ′(P ′) = − i

λ

a2A

z2
2

ei(z2/a)2ζ′
∫ 1

0

∫ 2π

0

exp

{
i
[
kΦ′ − ν ′ρ cos(θ − φ′) − 1

2
ζ ′ρ2

]}
ρdρdθ

(3.21)

= − i

λ

a2A

z2
2

ei(z2/a)2ζ′
∫ 1

0

∫ 2π

0

exp

{
i
[
f(ζ, ν, φ; ρ, θ) + kN

]}
ρdρdθ (3.22)

= U(P )eikNei(z2/a)2(ζ′−ζ) (3.23)
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Eq.(3.23) is the displacement theorem expressed in terms of field. Note that U ′(P ′)

and U(P ) are only different by a constant phase term, eik(N+z′−z), and that in Born &

Wolf [1], the displacement theorem is expressed in terms of intensity, i.e. |U ′(P ′)|2 =

|U(P )|2.

PSF for distortion and defocus

Using the displacement theorem, the PSFs of distortion and defocus can now be

obtained from the unaberrated PSF, i.e. Φ = 0 [1]. With Φ = 0, Eq.(3.17) now

becomes,

Φ′ = Hρ2 + Kρ sin θ + Lρ cos θ + N , (3.24)

which is purely distortion and defocus. Rewriting Eq.(3.21) in terms of the cartesian

coordinate (x, y) of the exit-pupil, we have

U ′(P ′) = − i

λ

a2A

z2
2

ei(z2/a)2ζ′
∫∫

P(x,y)

eikΦ′
exp

{
−i

2π

λz2

[
xu′ + yv′ +

π

λ

( a

z2

)2
z′
(
x2 + y2

)]}
dxdy

(3.25)

Using the result of Eq.(3.23), with U(P ) of Eq.(3.12) being substituted in, note

that now Φ = 0 for unaberrated case,

U ′(P ′) = − i

λ

a2A

z2
2

ei(z2/a)2ζ′ ×
∫ 1

0

∫ 2π

0

exp

{
−i

[
νρ cos(θ − φ) +

1

2
ζρ2

]}
ρdρdθ × eikN

(3.26)

= − i

λ

a2A

z2
2

ei(z2/a)2ζ′ × 2π

∫ 1

0

Jo(νρ)e−i 1
2
ζρ2

ρ dρ × eikN (3.27)

Equating Eq.(3.25) and Eq.(3.27), it is found that

U ′(P ′) = − i

λ

a2A

z2
2

ei(z2/a)2ζ′ ×
∫∫

P(x,y)

eikΦ′
exp

{
−i

2π

λz2

[
xu′ + yv′ +

π

λ

( a

z2

)2
z′
(
x2 + y2

)]}
dxdy

= − i

λ

a2A

z2
2

ei(z2/a)2ζ′ × 2π

∫ 1

0

Jo(νρ)e−i 1
2
ζρ2

ρ dρ × eikN

(3.28)
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As shown in Eq.(3.7), the effect of the aberration of interest is examined at z′ = 0

in this case, i.e.,

U ′(u′, v′, z′ = 0) = − i

λ

a2A

z2
2

×
∫∫

P(x,y)

eikΦ′
exp

{
−i

2π

λz2

[
xu′ + yv′

]}
dxdy

= − i

λ

a2A

z2
2

× 2π

[∫ 1

0

Jo(νρ)e−i 1
2
ζρ2

ρ dρ

]
eikN

(3.29)

One sees from Eq.(3.29), the Fourier transform of a defocused and/or distorted pupil

can be numerically evaluated by calculating the integral,∫ 1

0

Jo(νρ)e−i 1
2
ζρ2

ρ dρ = e−iζ/4

√
2π

ζ

∞∑
s=0

(i)s
(
2s + 1

)
Js+ 1

2

(
ζ/4

) J2s+1(ν)

ν
(3.30)

The procedure in the software used for numerically evaluating the PSF of the aber-

rated pupil is outlined in the flow diagram Fig. 3.2, basically utilizing the following

equality:

Gdistort
defocus

(u′, v′) ≡
∫∫

P(x,y)

eikΦ′
exp

{
−i

2π

λz2

[
xu′ + yv′

]}
dxdy

= 2π

[
e−iζ/4

√
2π

ζ

∞∑
s=0

(i)s
(
2s + 1

)
Js+ 1

2

(
ζ/4

) J2s+1(ν)

ν

]
eikN

(3.31)

where

Φ′ = Hρ2 + Kρ sin θ + Lρ cos θ + N

z = −2
(z2

a

)2

H

u = u′ −
(z2

a

)
L ζ =

2π

λ

( a

z2

)2

z

v = v′ −
(z2

a

)
K ν =

2π

λ

( a

z2

)√
u2 + v2
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Summary on distortion & defocus

Expressing distortion and defocus in terms of the Zernike circle polynomials [48],

i.e.

Φ′
distort
defocus

(u′, v′) = Adistort ρ cos θ + Adefocus

(
2ρ2 − 1

)
(3.32)

and comparing with Eq.(3.24), one finds
H = 2Adefocus ; N = −Adefocus

L = Adistort ; K = 0


 (3.33)

i.e.,

Φ′ =
(
2Adefocus

)
ρ2 +

(
Adistort

)
ρ cos θ +

(−Adefocus

)
(3.34)

and the corresponding PSF (up to a scaling constant) is as described in Eq.(3.31),

and

z = −2
(z2

a

)2
(

2Adefocus

)

u = u′ −
(z2

a

)(
Adistort

)
ζ =

2π

λ

( a

z2

)2

z

v = v′ ν =
2π

λ

( a

z2

)√
u2 + v2

Note that here 
u′ = ui + Mξ

v′ = vi + Mη
i = 1, 2 (3.35)

as in Eq.(3.7).
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Figure 3.2: Procedure for the calculation of defocus/distortion PSF.
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3.4.2 Astigmatism

Next we consider the lower-order aberration of astigmatism, defined as

Φastig = Aastig ρ2 cos 2θ (3.36)

where Aastig is the aberration magnitude, usually of the order of wavelength λ.

In this case, the PSF (up to a scaling constant) produced by the aberrated pupil

can be written as

Gastig(u
′, v′) =

∫∫
P(x,y)

eikΦastig exp

{
−i

2π

λz2

[
xu′ + yv′

]}
dxdy (3.37)

Following the derivation in Ref. [49], the above integral involving the aberrated pupil

can be expressed in terms of a series of Bessel functions. Note that the signs of the

imaginary parts in the equation are inverted to conform with the notation used here.

Gastig(u
′, v′)∼= 2π

ν

[
J1(ν) − iβ cos 2φJ3(ν)

− β2

2 · 2!

{
1

3
J1(ν) − 1

2
J3(ν) +

1

6
J5(ν) + cos 4φJ5(ν)

}

− iβ3

22 · 3!

{
−3 cos 2φ

(
3

5
J3(ν) − 1

3
J5(ν) +

1

15
J7(ν)

)
− cos 6φJ7(ν)

}

+
β4

23 · 4!

{
3
(1

5
J1(ν) − 2

5
J3(ν) +

2

7
J5(ν) − 1

10
J7(ν) +

1

70
J9(ν)

)

+ 4 cos 4φ
(5

7
J5(ν) − 1

4
J7(ν) +

1

28
J9(ν)

)
+ cos 8φJ9(ν)

}]
.

(3.38)

where

β = kAastig =
2π

λ
Aastig (3.39)

ν ′ =
2π

λ

( a

z2

)√(
u′)2 +

(
v′)2 ≡ ν (3.40)

φ′ = arctan
v′

u′ ≡ φ (3.41)
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Note that here we have dropped the primes for ν ′ and φ′ for ease of notation, and

that with respect to the image-plane mutual intensity expression in Eq.(3.7),
u′ = ui + Mξ

v′ = vi + Mη
i = 1, 2 (3.42)

Therefore,

ν =
2π

λ

( a

z2

)√(
ui + Mξ

)2
+

(
vi + Mη

)2
(3.43)

φ = arctan
vi + Mη

ui + Mξ
(3.44)

where a is the condenser exit-pupil radius.

3.4.3 Coma

Finally, we consider another lower-order aberration, namely coma. Coma is de-

fined as

Φcoma = Acoma

(
3ρ3 − 2ρ

)
cos θ (3.45)

where Acoma is the aberration magnitude.

The resultant PSF (up to a scaling constant) is

Gcoma(u
′, v′) =

∫∫
P(x,y)

eikΦcoma exp

{
−i

2π

λz2

[
xu′ + yv′

]}
dxdy (3.46)

The above integral can be expressed as a series of Bessel functions as follows,

Gcoma(u
′, v′)∼= 2π

ν

[
J1(ν) − β cos φJ4(ν)

− β2

2 · 2!

{
1

4
J1(ν)− 1

20
J3(ν)+

1

4
J5(ν)− 9

20
J7(ν)−cos 2φ

(2

5
J3(ν) +

3

5
J7(ν)

)}

− β3

22 · 3!

{
3 cos φ

( 1

15
J2(ν) − 44

105
J4(ν) +

9

70
J6(ν) − 6

35
J8 +

3

14
J10(ν)

)

− cos 3φ
( 8

35
J4(ν) − 9

20
J6(ν) − 9

28
J10(ν)

)}]
.

(3.47)
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where

β = kAcoma =
2π

λ
Acoma (3.48)

ν ′ =
2π

λ

( a

z2

)√(
u′)2 +

(
v′)2 ≡ ν (3.49)

φ′ = arctan
v′

u′ ≡ φ (3.50)

Again here we have dropped the primes for ν ′ and φ′ for ease of notation and that

again with respect to the image-plane mutual intensity expression in Eq.(3.7),
u′ = ui + Mξ

v′ = vi + Mη
i = 1, 2 (3.51)

Therefore,

ν =
2π

λ

( a

z2

)√(
ui + Mξ

)2
+

(
vi + Mη

)2
(3.52)

φ = arctan
vi + Mη

ui + Mξ
(3.53)

3.5 Numerical evaluation results

Using the object-image coherence relation derived in Sec. 3.3, i.e. Eq.(3.7), the

mutual intensity at the image plane of the condenser can now be determined numer-

ically by incorporating the appropriate PSFs [i.e. G(u′, v′)] given in Sec. 3.4. To test

the validity of the numerical evaluation, a large (1.6 mm× 1.6 mm) uniform intensity

incoherent source is used to illuminate the condenser. Unlike the undulator source,

this large square incoherent source can be shown to satisfy the Zernike approximation.

The resultant intensity and coherence distributions with various pupil aberrations are

shown in Fig. 3.3. As expected by the Zernike approximation, the various aberrations

have negligible effect on the spatial coherence distributions, which are all essentially

Airy patterns with first null radius of 2.8 µm. The intensity distributions are all rela-

tively uniform, again as expected by the Zernike approximation. In the case of coma,

the intensity distribution is shifted as the center of mass of the modulus square of the

coma PSF is off-centered.
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Figure 3.3: Simulation results for a large (1.6 mm×1.6 mm) uniform source. Intensity
(left column) and coherence (right column) distributions resulting from the various
pupil aberrations (a defocus, b astigmatism, c coma). The coherence distributions
are all essentially Airy patterns as predicted by the Zernike approximation.
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Next, an actual undulator source having a size that does not satisfy the Zernike

approximation is studied. The intensity distribution of this incoherent undulator

source is Gaussian with (σx, σy) = (260µm, 16µm), given by the undulator beam size

at the exit-plane. First, an aberration-free condenser is assumed in order to see the

effect of smaller source size. Figure 3.4 shows the failure of Zernike approximation

for small sources, as the coherence distribution deviates significantly from an Airy

pattern.
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Figure 3.4: Simulation results: Intensity and coherence distribution at the condenser
image-plane resulting from the un-aberrated condenser pupil and the Gaussian-shaped
incoherent source of (σx, σy) = (260µm, 16µm).

It has been shown above that the size of the incoherent source has affected the

coherence distribution at the image plane and the apodized pupil function is not the

sole determining factor. Next, the effect of pupil aberrations on the spatial coherence

distribution is investigated. Several low order aberrations will be assumed in the

condenser to demonstrate this effect. The PSFs needed by Eq.(3.7) are again given in

Sec. 3.4. Figure 3.5 shows that in the case of smaller source size, the effect of condenser

aberrations on spatial coherence cannot be ignored. With 0.5 waves of defocus in the

condenser, the intensity and coherence distributions at the condenser-image plane is

shown in Fig. 3.5(a). Figures 3.5(b) and (c) show the distributions under 0.5 waves

of astigmatism and coma, respectively. For the cases of defocus and astigmatism, the

high vertical coherence shown in Fig. 3.5(a) and (b) can be explained by the small
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vertical source size. However, in general the two dimensional coherence distributions

cannot be treated separately in terms of vertical and horizontal directions. As demon-

strated in the case of coma, shown in Fig. 3.5(c), the two dimensional structure of

coma dominates the spatial coherence distribution in the condenser image-plane and

the coherence distribution cannot be explained simply by the vertical and horizontal

source size. It is shown that numerical spatial coherence propagation based on the

Huygens-Fresnel principle is required to correctly predict the coherence distribution

at the condenser image-plane.

Note again that the coherence distribution is not simply a function of the differ-

ence of the coordinates, instead, it is a function of the four individual coordinates, i.e.

(u1, v1, u2, v2). Therefore, when showing the coherence distribution, one of the coor-

dinates is fixed at the origin, i.e. (u1, v1) = (0, 0), and the coherence distribution is

obtained as the correlation factor |µ12| between various points (u2, v2) and the origin

(0, 0).

Note that for a condenser system illuminated by a point source (i.e. a coherent

source), the resultant intensity and coherence distributions at the image plane of

the condenser can also be obtained with this numerical evaluation by employing a

Dirac-δ-function as the source. The results for 0.5 waves of defocus, astigmatism and

coma, respectively, are shown in Fig. 3.6. The intensity distribution indeed shows the

modulus square of the PSF of the respective lens pupil and the resultant coherence

distribution is 1 at all positions since it is coherently illuminated.
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Figure 3.5: Simulation results that show the effect of aberrations for the Gaussian-
shaped incoherent source: Intensity (left column) and coherence (right column) distri-
bution at resulting from the various aberrations (a defocus, b astigmatism, c coma).
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Figure 3.6: Simulation results using a point source (coherent source): Intensity (left
column) and coherence (right column) distributions resulting from the various pupil
aberrations (a defocus, b astigmatism, c coma). The coherence distribution is a
constant 1, which shows that the field is fully coherent as expected.
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3.6 Conclusion

The results obtained in this chapter are valid for any condenser systems that

re-image the incoherent source to its conjugate plane, regardless of the Zernike ap-

proximation. We have demonstrated that for a condenser system employing an EUV

undulator as the radiation source, the commonly used Zernike approximation is vio-

lated and numerical spatial coherence propagation based on Huygens-Fresnel principle

is required. In fact, for any condenser system that re-images an incoherent source,

the spatial coherence distribution at the image plane, in general, depends both on the

complex pupil function, and on the intensity distribution of the incoherent source.

Using the Zernike approximation requires caution and the validity of Zernike approxi-

mation has to be verified before application. Also shown is that pupil aberrations pose

significant effect on the spatial coherence distributions at the condenser image-plane

when Zernike approximation fails.
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Chapter 4

Diffractive optical elements based

on Fourier optical techniques:

A new class of short wavelength

optical elements

A diffractive optical element, based on Fourier optical techniques, for
use in extreme ultraviolet/soft x-ray experiments, has been fabricated
and demonstrated. This diffractive optical element, when illuminated
by a uniform plane wave, will produce two symmetric off-axis first or-
der foci suitable for interferometric experiments. The efficiency of this
optical element, and its use in an EUV interferometer, are presented.
Its use opens a new era in the use of sophisticated optical techniques
at short wavelengths.

4.1 Introduction

Coherent extreme ultraviolet (EUV) and soft x-ray (SXR) radiation [35] facil-

itates phase-sensitive techniques that provide new opportunities in various fields,

e.g. biological imaging, material characterization, and nanotechnology. However,

challenges are presented in that very limited optical elements are available at these

wavelengths. Most experiments either utilize low efficiency diffractive optics such
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as Fresnel zoneplates, or glancing incidence reflection mirrors and normal incidence

multi-layer mirrors which result in restrictive off-axis optical systems and limited

spectral region, respectively. No appropriate materials exist for lenses and prisms

due to high absorption. Therefore, devising novel optical elements that can effec-

tively and efficiently achieve wavefront shaping is of crucial importance for researches

conducted at EUV/SXR wavelengths. Here, Fourier optical techniques are introduced

to accomplish the desired wavefront manipulation.

In our first example of these new techniques, we have designed and fabricated,

based on Fourier optical techniques, a diffractive optical element which combines the

functions of a grating and a zone-plate through a bit-wise XOR operation [11]. Using

this compound diffractive optical element allows the efficiency and the contrast of

the interferometer to be greatly increased. The application of this optical element in

an EUV interferometer to directly determine the index of refraction at EUV wave-

lengths will be presented in Chapter 5. Similar activities are underway at soft x-ray

wavelengths.

4.2 XOR pattern

This XOR diffractive optical element is obtained by combining a 50% duty-cycle

binary intensity grating and a 50% duty-cycle intensity zoneplate. The binary grating

and zoneplate are first pixelized, with each pixel being either 1 or 0 for transmission

and absorption, respectively. As shown in Fig. 4.1, the two pixelized patterns are

then overlapped and compared pixel by pixel to produce the resulting XOR pattern,

i.e. at each pixel position, if the pixel values of the grating and zoneplate are the

same (both 0’s or both 1’s), the value of the corresponding pixel on the XOR pattern

is 0. Otherwise, the value of the corresponding pixel on the XOR pattern is 1.

For a 50% duty-cycle grating of period d, the transmitted intensity function is

G(x, y) =
1

2

[
1 + sgn (cos νx)

]
(4.1)

where ν = 2π/d.
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Similarly, for a 50% duty-cycle zoneplate of diameter D and outermost zone-width

∆r, the transmitted intensity function is [2]

ZP (x, y) =
1

2

[
1 + sgn

(
cos γ r2

)]
(4.2)

where r =
√

x2 + y2 and

γ =
π

∆r(D − ∆r)
.

Expand these two patterns in their Fourier series,

G(x, y) =
∞∑

m=−∞

sin(mπ/2)

mπ
e−jmνx (4.3)

and

ZP (x, y) =
∞∑

n=−∞

sin(nπ/2)

nπ
e−jnγ r2

. (4.4)

Note that by comparing the Fourier series of a zoneplate to a lens, one finds that the

zoneplate functions as multiple lenses with nth order focal length fn given by

fn =
−π

nλγ
.

The XOR pattern of the combined grating and the zoneplate is obtained by

XOR(x, y) = G(x, y) + ZP (x, y) − 2G(x, y)ZP (x, y)

=
∞∑

m=−∞

sin(mπ/2)

mπ
e−jmνx +

∞∑
n=−∞

sin(nπ/2)

nπ
e−jnγ r2

− 2

[
1

2
+

∞∑
m=−∞
m �= 0

sin(mπ/2)

mπ
e−jmνx

][
1

2
+

∞∑
n=−∞
n �=0

sin(nπ/2)

nπ
e−jnγ r2

]

=
1

2
− 2

[ ∞∑
m=−∞
m �=0

sin(mπ/2)

mπ
e−jmνx

][ ∞∑
n=−∞
n �= 0

sin(nπ/2)

nπ
e−jnγ r2

]
.

(4.5)

This combined diffractive element, when illuminated by a uniform wavefront, has the

interesting property that it produces two symmetric off-axis focal spots, (m,n) =
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(±1, 1), at the back focal plane of the zoneplate. Note that both the grating and the

zoneplate have to be of 50% duty-cycle for the on-axis focal spot to disappear, i.e.

m �= 0 and n �= 0 in the summation. The separation of these two beam spots xs

can be determined by multiplying the two exponentials in Eq.(4.5), completing the

square for x-terms, thus resulting in

xs =
2∆r

(
D − ∆r

)
d

≈ 2∆rD

d
. (4.6)

Note that this separation is independent of wavelength λ. Thus as the wavelength

is varied for spectral determinations of δ and β, the focal length (distance from the

XOR pattern to the sample mask) varies, but the lateral separation of the two beam

spots remains fixed. The invariance of the spot separation over wavelength allows the

EUV interferometer to operate at different wavelengths without the need of changing

the image-plane sample mask. This is a desirable property for EUV interferometers

since the scale of the sample mask for EUV applications requires it to be micro/nano-

fabricated, thus immutable after being made.
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bit-wise XOR
operation

Grating

Zoneplate

XOR

Figure 4.1: Bitwise XOR operation: The binary grating and zoneplate are first pix-
elized, with each pixel being either 1 or 0 for transmission and absorption, respectively.
The two pixelized patterns are then overlapped and compared pixel by pixel to pro-
duce the resulting XOR pattern, i.e. at each pixel position, if the pixel values of the
grating and zoneplate are the same (both 0’s or both 1’s), the value of the corre-
sponding pixel on the XOR pattern is 0. Otherwise, the value of the corresponding
pixel on the XOR pattern is 1.
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4.2.1 Simulation of the XOR pattern

A computer simulation has been performed to see if these patterns produce the

expected results. An XOR pattern of a grating (period d = 16µm) and a zoneplate

(outermost zone-width ∆r = 0.2µm, diameter D = 400µm) is produced, as shown

in Fig. 4.2(a). This pattern is then Fresnel-propagated to the first order focal plane

of the zoneplate and the resulting intensity distribution is shown in Fig. 4.2(b). As

expected, only off-axis spots exist in this focal plane and the on-axis zeroth order

focus is completely eliminated.
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Figure 4.2: Computer simulation of the XOR pattern: The parameters used in this
simulation are set equal to the actual fabricated element. The pattern in (a) is
obtained by taking the ”exclusive or (XOR)” of the binary grating and zone-plate.
4096 × 4096 pixels are used to generated this pattern. This pattern is then Fresnel-
propagated in computer by one focal length and the resulting intensity distribution
is shown in (b). A horizontal cross-section through the focal spots is also shown. The
two symmetric off-axis first order foci is clearly visible in this simulation. The other
two outer spots are caused by the third orders (m = ±3) of the grating, with 9 times
lower intensity.
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4.3 Efficiency of the XOR pattern

The XOR pattern, as expressed in Eq. 4.5, gives the efficiencies of the individual

orders. First of all, we need to determine the overall transparent area of this XOR

pattern. Since we know that the percent of transparent area on the grating and the

zoneplate is 1/2, we find that the overall transparent area of the XOR pattern to be

1/2 + 1/2 − 2(1/2)(1/2) = 1/2 from Eq. 4.5.

Next, we calculate the efficiency of individual orders from their relative strength.

From Eq. 4.5, we have, for m,n �= 0,

ηm,n =




22(1/mπ)2(1/nπ)2

(1/2)2 + 22(21
8
)(21

8
)
× 1

2
=

4

m2n2π4
if m,n are both odd,

0 if m or n is even.

(4.7)

where
∑∞

k=0
1

(2k+1)2
= π2

8
is used in the calculation.

Another way to look at this is that we can think of this XOR pattern as a binary

amplitude zoneplate, multiplied by a π-phase-shift grating which does not have any

absorption. Therefore, the overall absorption of this XOR pattern is the same as that

of a binary amplitude zoneplate, i.e. 1/2 and the efficiency of its individual orders is

given by multiplying the corresponding orders of the binary amplitude zoneplate and

the π-phase-shift grating. The efficiency ηm of a 50% duty-cycle π-phase-shift grating

is

ηm =




4

m2π2
for m = ±1,±3, · · · ,

0 for m is even.

(4.8)

And the efficiency ηn of a binary amplitude zoneplate is

ηn =




1

n2π2
for n = ±1,±3, · · · ,

0 for n is even.

(4.9)

By comparing Eq. 4.7 with Eq. 4.8 and Eq. 4.9, we indeed see that the efficiency of the

individual orders of the XOR pattern, ηm,n, is given by ηm×ηn, , i.e. the multiplication

of the corresponding orders of the phase grating and amplitude zoneplate.
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4.4 Visible light experiment

A first XOR pattern, designed for proof-of-principle testing at visible wavelengths,

is fabricated using e-beam lithography [22] in order to directly observe the intensity

distribution at the back focal plane. The grating used in this visible version has

a period of 5µm ,the zoneplate diameter is 5mm and the outermost zone-width is

2µm. A screen is put at its back plane, which is 15.8mm away from this visible XOR

pattern. A collimated He-Ne laser beam (λ = 633 nm) is then used to illuminate

this visible version XOR pattern and the resulting intensity distribution at the back

focal plane is shown in Fig. 4.3(a). As expected, the two symmetric off-axis foci are

directly observable and there is no on-axis focus presented. The separation between

these two off-axis spots are measured to be 4mm, which agrees with the designed

value. As a comparison, an “OR” pattern made from the same grating and zoneplate

is also fabricated and shown in Fig. 4.4. The effect of combining the grating and

zoneplate through an bit-wise OR operation is equivalent to that of placing them

in tandem. Therefore, this OR pattern demonstrates the back focal plane intensity

distribution of a traditional separate grating and zoneplate setup. Fig. 4.3(b) shows

the resulting intensity distribution at the back focal plane of this OR pattern. Three

foci are clearly observed, with the strongest focus on-axis and two weaker symmetric

off-axis foci. The separation between the on-axis and the off-axis spots are measured

to be 2mm, which again agrees with the designed value.
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4 mm 2 mm 2 mm

(b)(a) XOR OR

Figure 4.3: A visible light experiment is performed in order to directly verify the
intensity distribution at the back focal plane of the XOR pattern. For comparison,
an OR pattern obtained by taking the bit-wise OR of a grating and a zoneplate is
also fabricated. The effect of this OR pattern is equivalent to that of a grating and
a zoneplate placed in tandem, which is the conventional setup for interferometric
experiments. Part (a) shows that the intensity distribution at the back focal plane
of the XOR pattern consists of only two symmetric off-axis foci, as predicted by the
theory. As a comparison, the focal plane intensity distribution of the OR pattern is
shown in (b), which has three foci, with one strongest on-axis focus and two weaker
off-axis symmetric foci. The grating used by the XOR and OR patterns in this visible
experiment has a period of 5µm and the diameter and the outermost zone-width of
the zoneplate is D = 5 mm and 2 µm, respectively. A He-Ne laser (λ = 633nm) is
used for illuminating the XOR and OR patterns.
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Figure 4.4: A microscope image of the OR pattern used in the experiment with visible
light. The grating period is 5µm. The zoneplate diameter is 5 mm and the outermost
zone-width is 2 µm.
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4.5 First use in EUV interferometry

The XOR pattern employed in our first application to EUV interferometry is

fabricated using the same e-beam lithography tool and an SEM image of the actual

pattern is shown in Fig. 4.5. The period d of the grating used here is 16µm (8µm

pitch) and the zoneplate has a diameter D = 400µm and a outermost zone-width

∆r = 0.2µm. Undulator beamline 12 at the Advanced Light Source provides the

EUV radiation for this measurement. [35] The wavelength at which this measurement

was performed is λ = 16.53 nm (75 eV) and the monochromator at the beamline is

set at λ/∆λ = 1100.

This interferometer utilizes the strongest non-zeroth order, i.e. (m,n) = (±1, 1),

which has a theoretical efficiency of 4/π2 × 1/π2 = 4/π4 ∼ 4.1% as given by Eq. 4.7.

Experimentally, the efficiency of this XOR pattern is measured by recording the total

counts on the CCD while scanning a knife-like beam-stop transversely across the back

focal plane. Starting with the beam-stop placed at the back focal plane such that

the entire beam is blocked, as the beam-stop slowly moves aside, the total counts on

the CCD increases, allowing fractions of light to pass. The result of this efficiency

measurement is shown in Fig. 4.7. The two abrupt steps at the center is caused by

the two symmetric off-axis first order foci, (m,n) = (±1, 1), being released one at

a time by the scanning beam-stop. However, when determining the efficiency of the

(m,n) = (±1, 1) order, the effect of straight through light needs to be removed. Since

the position of the transversely scanning beam-stop is directly proportional to the

fraction of the straight through light that passes it, the effect of straight through

light can be determined by the constant slope of the two straight sections. After

removing the effect of the straight through light by least-square fitting the slope of

the two straight sections, the individual strength of the (m,n) = (±1, 1) order is

shown to be around 4.0%, which agrees with the theoretical value. Note that the

definition of diffraction efficiency for this element is the sum of the flux in the two

desired orders divided by the total incident flux on the pattern. We measured the

diffracted flux to the two desired orders and the total flux through the XOR pattern.

The latter is assumed to be half of the total flux incident on the XOR pattern, as
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Figure 4.5: The center part of the XOR pattern is shown. This diffractive optical
element is obtained by taking the bit-wise XOR of a binary amplitude grating and a
binary amplitude zoneplate. The functionality of this XOR pattern is equivalent to
that of a binary phase grating overlapping a binary amplitude zoneplate, as discussed
in the text. The grating used here has a 16µm period (8µm line-space) and the
zoneplate has a 400µm diameter and a 0.2µm outermost zone-width.
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Figure 4.6: The edge of the XOR pattern is shown here. The outmost zone width
is seen to be 0.2µm and the alternation of opaque and transparent zones over the
grating half-period is also shown.
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half the pattern is transparent. Therefore, the diffraction efficiency is obtained by

dividing the diffracted flux in the two orders by twice the total flux through the XOR

pattern.

Comparing with the separate binary grating and zoneplate setup, in which the

±1st orders of the grating are being focused by the first order of the zone-plate with

a overall efficiency of 1/π4 ∼ 1.0%, this XOR pattern provides a 4 times improvement

in theory. In practice, the required exposure time actually reduces about 10 times due

to the fact that the substrates on which these optical elements are fabricated have

finite absorption and only one substrate is needed in this case. As will be described

in Chapter 5, this improvement in efficiency enables the first direct measurement

of refractive index at EUV wavelengths, where the two symmetric first order foci

are used as two arms of an interferometer and a direct phase measurement for the

dispersive part of the index of refraction is performed [10].
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Figure 4.7: The efficiency of this XOR pattern is measured by scanning a knife-like
beam-stop across the focal plane. Starting with the beam-stop placed at the back
focal plane such that the entire beam is blocked, as the beam-stop slowly moves
aside, the total counts on the CCD increases, allowing fractions of light to pass. The
constant slope of the two straight sections results from the effect of zeroth order
(straight through) light. The two abrupt steps at the center is caused by the two
symmetric off-axis first order foci being released one at a time by the beam-stop.
Their strength is shown to be around 4.0%, which agrees with the theoretical value.

4.6 Comparison to the computer generated holo-

gram CGH

A computer generated hologram (CGH) having similar functions can also be con-

structed. The relationship between CGH and XOR is clarified by showing that even

though they are both applications of Fourier optics, with similar functionality, they

are of fundamentally different concepts. Specifically, CGH uses the traditional analog

concept, while the XOR has an interesting digital aspect.
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Figure 4.8: In part (a), the object wave (in red) which consists of two converging
spherical wavefronts interferes with a reference plane wave (in blue) and the resulting
intensity interference pattern, which is usually referred to as Computer Generated
Hologram, is shown in (b). This CGH is then binarized for nanofabrication by e-beam
lithography. Part (c) shows its binarized form. When illuminated by a uniform plane
wave, this optical element reconstructs the object wave (two converging spherical
waves) as shown in (d). Note that the two spots are symmetrically off-axis.
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The design concept of CGH is depicted in Fig. 4.8(a). In a computer simula-

tion, the object wave (in red) which consists of two converging spherical wavefronts

is encoded by a reference plane wave (in blue) to form an interference pattern (holo-

gram), as shown in Fig. 4.8(b). This CGH, when illuminated by the reference plane

wave, will produce two converging spherical wavefronts which can be used for inter-

ferometric experiments. Note that these two spherical wavefronts are identical and

symmetrically distributed with respect to the optical axis.

To nano-fabricate this CGH, it is necessary to binarize the “smooth” areal in-

terference pattern (Fig. 4.8(b)) into 0’s and 1’s. This binarized pattern, shown in

Fig. 4.8(c), will then be used to produced the CAD file that nano-fabricates the

holographic optical element. To see the effect of binarization on the re-constructed

wavefront, this binarized holographic optical element is Fresnel-propagated to the

plane where the object wave converges to two points and the intensity distribution

is shown in Fig. 4.8(d). No significant higher order effects are observed. It is also

interesting to compare Fig. 4.2 with Fig. 4.8(c,d) and note that the two different

diffractive elements produce similar intensity distributions at the back focal plane.

The CGH can be optimized for optical flux throughput, while the XOR pattern

is not specifically designed for maximum efficiency. However, it is very difficult for

the CAD program of an electron-beam column to generated a CGH data file due

to the large memory requirement imposed by the large amount of very small and

irregularly-shaped structures particularly at the outer edge of the CGH. In addition,

the finer details required by the CGH also make it more difficult to nano-fabricate.

The XOR pattern provides a more practical solution in that it requires much less

computer memory and relatively less stringency in nano-fabrication. For the XOR

pattern, the digital data files of the grating and the zoneplate are already accurately

calculated and taking the bit-wise XOR operation of the two data files is trivial in

computers.
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4.7 Conclusion

For the first time a novel diffractive optical element based on Fourier optics tech-

niques has been demonstrated. It is shown, both in theory and in experiment, that

by combining two diffractive elements, a grating and a zoneplate, through a bit-wise

XOR operation, the resultant optical element produced a new functionality, two sym-

metric off-axis foci with a higher efficiency. The two symmetric off-axis foci at the

back focal plane are used in an EUV experiment to directly measure both the real and

imaginary parts of the refractive index. Specifically, it is shown that interferometric

experiments that require better contrast and higher coherent power benefit from this

XOR design, due to the symmetricalness of the intensity distribution at the back focal

plane and the improved overall efficiency, respectively. Although useful at all wave-

lengths, this pattern has particular value at the short wavelengths of interest here.

This group of optical elements shown in this paper brings sophisticated Fourier opti-

cal techniques to open new experimental frontiers in an area rich with opportunities

on nanometer scales and with element-specific identifications and applications.
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Chapter 5

Direct index of refraction

measurements at EUV wavelengths

with a novel interferometer

The first direct measurement of the dispersive part of the refractive
index is performed at EUV wavelengths, where absorption is higher as
compared with hard x-ray and visible wavelengths. A novel diffrac-
tive optical element, the XOR pattern, which combines the functions
of a grating and a zoneplate, is used for the interferometer. Both the
real and imaginary parts of the complex refractive indices are measured
directly by this technique without recourse to Kramers-Kronig trans-
formations. Data for Al and Ni, in the vicinity of their L and M-edges,
respectively, are presented as first examples of this technique.

5.1 Introduction

Refractive indices, n(ω) = 1 − δ(ω) + iβ(ω), in the extreme ultraviolet (EUV)

wavelength region are complex, highly absorptive and have strong wavelength (pho-

ton energy) dependence [8]. The absorptive part β(ω) of the refractive index at EUV

wavelengths is well-tabulated by photo-absorption measurements. However, the real

(dispersive) part of the refractive index δ(ω) at EUV wavelengths is less accurately

known. Interferometry, which can provide independent measurements of δ and β, is



70

difficult in the EUV/Soft X-Ray(SXR) regions due to high absorption by the many

atomic resonances and the lack of high optical quality beam-splitters. Joyeux et.

al. [50] have had some success using an interferometer based on a bi-mirror reflective

splitter, but were limited by the trade-off between throughput and spectral resolu-

tion. Bonse and Hart [51] have been successful at significantly higher photon ener-

gies, where β/δ � 1, using crystal diffraction techniques. Presently in the EUV/SXR

region, knowledge of δ is determined either indirectly from a Kramers-Kronig trans-

formation [36] of the imaginary (absorptive) part, β(ω) [52–58], or by least-square

fitting Fresnel coefficients obtained from reflectance measurements [56, 59–62]. Nei-

ther of these methods provide an independent measurement of δ(ω). The δ(ω) values

obtained from the Kramers-Kronig relationship depend entirely on the β(ω) values.

Because the Kramers-Kronig relationship requires a wide range of spectrum of β(ω)

for one to obtain each point of δ(ω) on the spectrum, errors in β(ω), especially near

absorption edges, affect the accuracy of the resultant δ(ω) values. The accuracy of

δ(ω) values determined from reflectance experiments are sensitive to surface rough-

ness, chemistry and contamination, and to the fact that the accuracy of this fitting

depends strongly on β/δ, working well only for energies with β/δ � 1 [56].

Here, an amplitude-division transmission interferometer, which can be used to

measure both the dispersive and the absorptive parts of the refractive index indepen-

dently by determining the phase-shift and the visibility of interferograms, is presented

with optimization provided by the XOR pattern discussed in Chapter 4. Because the

determination of δ directly from the phase-shift is independent of β, this interfer-

ometer can measure δ across the absorption edges without being affected by sharp

spectral variations of the β value. In addition, the sample is probed in transmission

at normal incidence in this interferometer, thus, it is less sensitive to errors associated

with surface roughness, chemistry and contamination, as compared with reflectance

measurements, assuming that the thickness of the sample is much greater than that

of the surface layer.
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5.2 Interferometry

5.2.1 Principle

Interferometry can be used to extract phase information from an intensity detec-

tor. The amplitude-division transmission interferometer employed here utilizes the

Fraunhofer diffraction, which states that the field distribution in the far-field can be

obtained from a Fourier transform of the aperture field distribution. The underlying

principle of operation of this interferometer is discussed here.

Let Uo(x, y) denote the field distribution in the aperture, the resultant far-field

field distribution U1(u, v) is given by [2]

U1(u, v) =
ejkzej k

2z
(u2+v2)

jλz

+∞∫∫
−∞

Uo(x, y)e−j 2π
λz

(xu+yv)dxdy. (5.1)

As shown in Appendix C, the inverse Fourier transform of the far-field intensity

distribution, |U1(u, v)|2, is equal to the auto-correlation of Uo(x, y), i.e.,

+∞∫∫
−∞

∣∣∣U1(u, v)
∣∣∣2ej 2π

λz
(xu+yv)dudv =

+∞∫∫
−∞

Uo(x
′, y′)U∗

o(x
′ − x, y′ − y)dx′dy′ . (5.2)

For an intensity detector placed at a distance z away from the aperture, the

detected intensity distribution |U1|2 can be recorded and then inverse Fourier trans-

formed to obtain the auto-correlation of the field distribution in the aperture. If the

field distribution in the aperture is arranged in such a way that it can be written as

Uo(x, y) = δ(x, y) + S(x, y) , (5.3)

then its auto-correlation consists of four parts. The field quantities, S(x, y) and

S∗(−x,−y), are present in the auto-correlation of Uo, together with the auto-correlation

of δ(x, y) and that of S(x, y). For the interferometer used here, S(x, y) is of limited

spatial extent and is spatially separated in the inverse Fourier transform domain from

the other three components. Therefore, the field distribution S(x, y) can be extracted

and both the amplitude and phase distribution of S(x, y) can be obtained.
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Figure 5.1: Experimental Setup: A 5µm pinhole is place at the focus of the beamlines
optics to provide spatially coherent illumination for this interferometer. The grating
serves as the beam splitter which effectively creates orders of virtual sources out of
the pinhole. The zoneplate then images the pinhole, together with all the virtual
sources created by the grating, to the plane of the sample mask. This mask consists
of two 5µm× 5µm windows allowing only the two symmetric orders (m,n) = (±1, 1)
to pass. The test material is then shuffled in and out over one of the windows and
an back-thinned EUV-sensitive CCD camera records the respective interferograms
for comparison. The functions of the grating and zoneplate have been combined
into a single diffractive element following the use of Fourier optical techniques and
nanofabrication.
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5.2.2 The interferometer

The interferometer used for the measurements presented here is shown concep-

tually in Fig. 5.1. The size of the pinhole, 5µm, is chosen to be smaller than the

coherence area of the beam [9], guaranteeing spatially coherent illumination of the

interferometer. In concept, the pinhole-diffracted beam then propagates through a

binary transmission grating, which serves as a beam-splitter, followed by a zoneplate

lens used to focus the beams to the sample plane. As actually used, the grating

and zoneplate are combined for improved efficiency into a single diffractive element.

This combined optical element provides two side-by-side focal spots of equal inten-

sity, thus ideal for use in interferometric experiments. The properties of the XOR

pattern related to the operation of the interferometer are summarized in Sec.5.2.3. A

comprehensive study of this XOR pattern is presented in Chapter 4.

The sample mask, consisting of side-by-side window pairs, is placed at the back

focal plane of the zoneplate. The window pairs consist of two 5µm × 5µm cross-

sectioned openings. Reference window pairs are free of test material, while other

pairs have one window coated with test material. In taking data, one first aligns a

reference window pair to the two side-by-side first order focal beam spots and records

a reference interferogram. One then moves the sample mask to illuminate a window

pair in which one side contains test material, and records the test interferogram.

By introducing the test material into one arm of the interferometer, the fringes of

the interferogram shift due to the refractive properties of the material, essentially a

path integration of δ(ω). Additionally, the visibility of the interferogram is reduced

due to absorption. The interferograms are recorded on a back-thinned EUV-sensitive

CCD camera. The complex index of refraction is determined by comparing these two

interferograms for fringe-shift and visibility change, which are directly related to δ

and β, respectively.

5.2.3 Novel diffractive optical element

The XOR pattern described in Chapter 4 is employed here by the interferometer

for improved efficiency, which is essential at these highly absorptive wavelengths. The
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use of two sequential diffractive elements (the grating and zoneplate), each of which

has a theoretical efficiency to first order of 1/π2, limits the overall efficiency of the

interferometer. This efficiency can be significantly improved by consolidating the

functionality of the grating and the zoneplate into a single diffractive optical element.

This is done by combining the binary grating and zoneplate through a bit-wise XOR

operation. Specifically, the XOR pattern is obtained by first pixelizing the binary

grating and zoneplate. Each pixel is either 1 or 0 for transmission and absorption,

respectively. The two pixelized patterns are then overlapped and compared pixel by

pixel to produce the resulting “XOR” pattern, i.e. at each pixel position, if the pixel

values of the grating and zoneplate are the same (both 0’s or both 1’s), the value

of the corresponding pixel on the “XOR” pattern is 0. Otherwise, the value of the

corresponding pixel on the “XOR” pattern is 1.

The two optical elements used in this XOR pattern, a 50% duty-cycle binary

amplitude grating of period d, and a 50% duty-cycle binary amplitude zoneplate of

diameter D and outermost zone-width ∆r, can be represented by

G(x) =
1

2

[
1 + sgn

(
cos

2πx

d

)]
and

ZP (x, y) =
1

2

[
1 + sgn

(
cos

π(x2 + y2)

∆r(D − ∆r)

)]
,

respectively [2]. Expanding these two patterns in their respective Fourier series

and noting that the XOR pattern of the grating and zoneplate can be expressed

as XOR(x, y) = G(x, y) + ZP (x, y) − 2G(x, y)ZP (x, y), we have

XOR(x, y) =
1

2
− 2

[ ∞∑
m=−∞
m �=0

sin(mπ/2)

mπ
e−i2mπx

d

][ ∞∑
n=−∞
n �= 0

sin(nπ/2)

nπ
e
−i nπ(x2+y2)

∆r(D−∆r)

]
.

(5.4)

Examining the first order terms in both the grating and zoneplate, i.e. (m,n) =

(±1, 1), its efficiency is given by the square of its coefficient [2(1/π)(1/π)]2 = 4/π4,

which is a factor of 4 increase in optical throughput as compared with a separate

grating and zoneplate setup. Since the membranes on which these optical elements

are fabricated have finite absorption, there is an additional gain of efficiency due to

the fact that only one membrane is required.
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This combined diffractive element, when illuminated by a uniform wavefront, has

the interesting property that it produces two symmetric off-axis focal spots, (m,n) =

(±1, 1), at the back focal plane of the zoneplate. This can be seen by multiplying the

two exponentials in Eq.(5.4) and completing the square for x-terms. The separation

of these two beam spots is determined by

xs ≈ 2 sin−1(λ/d)
∆rD

λ
=

2∆rD

d
. (5.5)

Note that this separation is independent of wavelength λ. Thus as the wavelength

is varied for spectral determinations of δ and β, the focal length (distance from the

XOR pattern to the sample mask) varies, but the lateral separation of the two beam

spots remains fixed. Therefore, the index of refraction as a function of wavelength

can be obtained simply by translating the same sample mask along the optical axis.
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5.2.4 Analysis method

A Fourier transform method [9, 44] is used to extract both the phase-shift and

visibility from the interferograms. The extracted values are averaged over the full

area of the interference pattern.

Phase shift

The phase shift, ∆φ, is simply the difference between the two independently re-

constructed phase maps from the interferograms. The value of δ is determined by

∆φ =
2π

λ
t δ (5.6)

where λ is the wavelength and t is the thickness of the sample.

The Fourier transform method used here to determine the phase shift ∆φ has the

advantage that the phase information contained in the spatial-frequency modulated

fringes is isolated into the first order peaks in the Fourier (i.e. spatial frequency)

domain. Filtering of the first order peak in the Fourier domain removes the effect

of all stray lights that does not have an identical spatial frequency as that of the

fringes. Figure 5.2 shows the analysis process of the Fourier transform method. The

interferograms are first Fourier transformed into the Fourier domain, where the first

order peaks positioned at the spatial frequency of the fringes are separated from all

other spatial frequency components. A Gaussian filter in the Fourier domain is used

to extract the first order peak. The extracted first order peak is then inverse Fourier

transformed to propagate back to the CCD plane, where the field distribution caused

from one of the windows is now obtained. The phase information, wrapped between

±π, can now be retrieved from the field distribution. The phase shift between the

two interferograms, ∆φ, is determined simply by subtracting the two wrapped phase

distributions. Note that the linear phase terms caused by the off-centered first order

peaks are identical in the two wrapped phase distributions, and cancel each other

after subtraction. The resultant phase map is only valid over the region where the

fringes exist on the CCD and the phase shift number ∆φ is quoted as the average

over this valid region.
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Visibility

The illumination on the interferometer provided by the pinhole is essentially coher-

ent. The visibility on the CCD is therefore solely determined by the relative intensity

of the two focal spots after the window-pair. The relative optical intensity of the two

beams, after propagating through the sample mask, is related to observed visibility

of the interferogram by

V =
2
√

α

1 + α
(5.7)

where α is the relative intensity after propagating through the sample. From the

relative intensity α, the value of β is obtained by

α = exp{−4π

λ
βt} . (5.8)

Fourier transform method is again used to extract the visibility from the interfer-

ograms. The separation between the two foci is xs = 10 µm, which is smaller than

the pixel size of the CCD (25 µm). Therefore, the far-field diffraction patterns from

the two foci effectively overlap on the CCD. Additionally, as shown in the analysis

of the XOR pattern, the two first order foci are identical. Their far-field diffraction

patterns after propagating through the sample mask onto the CCD are again identical

apart from their relative intensity. Under these circumstances, the visibility observed

on the CCD is directly determined by the relative intensity of the two foci after the

sample mask, i.e. α. Specifically, the observed intensity on the CCD is give by

I(u, v) = Io(u, v)

[(
1 + α

)
+ 2

√
α cos

(2π

λz
xsu

)]
(5.9)

where λ is the wavelength, z is the distance from the sample mask to the CCD, and

Io(u, v) is the diffraction pattern of one of the first order foci had the other focus

were blocked. Figure 5.3 shows the coordinate system used in Eq.(5.9). After Fourier

transform, terms inside the [·] gives

(
1 + α

)
δ(fu, fv) +

√
α
[
δ(fu +

xs

λz
, fv) + δ(fu − xs

λz
, fv)

]
(5.10)

The Fourier transform of I(u, v) is given by the convolution of Eq.(5.10) and the

Fourier transform of Io(u, v). Therefore, the visibility is obtained in the Fourier
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domain by two times the ratio of the integration under the first-order peak to that

under the zeroth-order peak. This analysis method has been used in Chapter 2, where

α = 1 and visibility is solely determined by the magnitude of the complex coherence

factor |µ12|. The visibility obtained by this Fourier method is an average over the

entire area where fringes exist.
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Figure 5.3: Fourier method for determining visibility.

5.3 Experimental setup

This experiment is performed at undulator beamline 12.0 of the Advanced Light

Source, a third generation synchrotron radiation facility [35]. Undulator radiation

provides the required EUV photon flux and, with pinhole spatial filtering, the spatial

coherence required for the interferometric experiments. The beamline monochroma-



80

tor provides a spectral resolution λ/∆λ = 1100. As described above, a single XOR

diffractive element combining a grating (d = 16 µm) and zoneplate (D = 400 µm,

∆r = 0.2 µm) is used for optimum efficiency. This new diffractive element is fab-

ricated using electron beam patterning and nanofabrication techniques [22]. The

separation of the two beam spots at the back focal plane is xs = 10 µm.

The sample mask is also fabricated by electron beam lithography on a 100nm

thick silicon nitride membrane. The thickness of the Si3N4 membrane is relatively

uniform over the 10µm separation of the two beam spots. The sample is prepared

with the test material being evaporated onto the nitride membrane. The thickness of

the test material is measured both by a profilometer and a spectral reflectivity system

to an accuracy ±1 nm.

The overall distance from the pinhole to the CCD detector is 420 mm and the

distance between the pinhole and the XOR pattern is 110mm. The separation be-

tween the XOR pattern and the sample mask is determined by the first order focal

length, which is a function of wavelength λ. For instance, at 72.5 eV, the wavelength

is λ = 17.1 nm and the first order focal length is 4.7 mm. Therefore, the distance

from the sample mask to the CCD detector is around 300mm over the spectral range

considered. Given the dimension of the window-pairs, 15 µm × 5 µm, Fraunhofer

approximation can be used for the light propagation from the sample mask to the

CCD.

5.4 Experimental results

5.4.1 Aluminum across its L-edge

Measured δ and β values for aluminum 67.0±0.1nm thick are shown in Fig. 5.4 in

blue. The results obtained with this interferometer resolve the fine aluminum L-edge

structure, i.e. the L3 edge at 72.7 eV and the L2 edge at 73.1 eV, in both δ and β.

Moreover, it is also evident that the shapes of the δ and β curves, though determined

independently, are closely related. The sharpest increase in β occurs at 72.7 eV which

coincides exactly with the dip of the δ curve at the L3 edge. Furthermore, the sharp
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increase of β at 73.1 eV also coincides exactly with the dip of the δ curve at the

L2 edge. For comparison, the best available data for aluminum refractive indices is

shown in red [63], where the δ value is obtained by Kramers-Kronig transformations

of β values over a wide spectrum. The two data sets agree fairly well both in δ and

β.

5.4.2 Nickel across its M-edge

Measured δ and β values for nickel of thickness 20.6±0.1nm are shown in Figs. 5.5.

The Nickel M3 edge at 66.2 eV is clearly resolved and the δ and β values at this edge

are seen to be closely correlated. The error-bars for the nickel data are slightly larger

than that of the aluminum data, mainly because of the lower photon flux available

in our experiment at the nickel M-edge. Thus, longer exposure times were required

resulting in greater noise due to vibration. Improved accuracy at the absorption

edge will require increased system stability or increased optical throughput. The best

available refractive index values of nickel [64] are shown in red for comparison.

5.5 Conclusion

The first direct measurement of the dispersive part of the index of refraction

at EUV wavelengths is performed using interferometry. A new diffractive optical

element based on Fourier optical techniques is employed in the interferometer for

improved efficiency. This interferometer directly measures δ values at wavelengths

where it is desired. No compilation of β values over a wide spectral range is needed.

As a first example, δ and β values of aluminum and nickel are obtained by this

interferometer at wavelengths close to their atomic resonances, i.e. Al L-edge and

Ni M-edge. Extensions of these studies to additional materials (Si, Mo,...), and to

shorter wavelengths (1 to 5 nm) in the soft x-ray spectral region can be performed

with the same interferometer.



82

60 65 70 75 80

−0.03

−0.02

−0.01

0

0.01

Photon Energy [eV]

δ

60 65 70 75 80
0

0.005

0.01

0.015

0.02

0.025

0.03

Photon Energy [eV]

δ

23

Aluminum

L =73.1 eVL =72.7 eV

70 71 72 73 74 75 76
0

0.005

0.01

0.015

0.02

0.025

0.03

δ

β

70 71 72 73 74 75 76

−0.03

−0.025

−0.02

−0.015

−0.01

Figure 5.4: The experimental results are shown in blue. It is evident that the alu-
minum L-edge is resolved both in δ and β where the position of the L2 and L3 edges
are 73.1 eV and 72.7 eV, respectively. Note that the values of δ and β are obtained
directly (independently) from phase shift and visibility change, respectively. The δ
and β values from Ref. [63] (in red) is derived from Kramers-Kronig transformation
of a compilation of absorption and reflectance data. The two data sets agree fairly
well both in δ and β.
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Figure 5.5: Nickel: The experimental results are shown in blue. The M3 edge at
66.2 eV is clearly resolved and the δ and β values at this edge are seen to be closely
correlated. The typical exposure time (∼ 200 sec) for the nickel interferograms is
approximately 10 times longer than that of aluminum due to lower beamline flux at
low energy. The stages in the experimental setup drift over longer exposure time,
thus causing larger error bars in the nickel data. For comparison, current standard
nickel refractive indices are shown in red.
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Chapter 6

Conclusion

The higher spatial resolution provided by employing shorter wavelengths corrobo-

rates the importance of advancing optical techniques at EUV wavelengths. As a result

of this incessant desire of seeing and printing smaller features, new developments in

short wavelength optics are continuously emerging. Optical coherence techniques,

based on Fourier and statistical optics, constitute a new and pioneering aspect in the

progression of EUV optics. In this dissertation, experiments that confirm and charac-

terize the spatial coherence properties of EUV undulator radiation are presented. In

addition, the first Fourier optical element, the XOR pattern, is described and utilized

in the first direct measurement of refractive indices in this wavelength region.

Understanding the spatial coherence properties of a radiation source is essential

to the design and implementation of concomitant optical systems. Unlike visible

light optics, the spatial coherence properties of the relatively new EUV radiation

sources are not well understood. Therefore, the first experiment in this disserta-

tion was aimed at characterizing the spatial coherence properties of EUV undulator

radiation using the Thompson-Wolf two-pinhole method. The result of these experi-

ments demonstrate that, with appropriate spatial filtering, high spatial coherence at

EUV wavelengths region is achievable with undulator radiation at third generation

(small electron beam phase space) synchrotron facilities. New opportunities are thus

presented for experiments that require high spatial coherence, e.g. high resolution

interferometry [41, 42, 65], holography [66, 67], coherent scattering [68, 69], and fo-
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cused microbeam analysis [70], etc. In addition, this experimental characterization

uncovers an interesting characteristic of the undulator radiation, i.e. the difference

in the measured horizontal and vertical coherence profile. These studies have verified

that the Zernike approximation, which is most standard in visible light optics, is not

applicable here. This is a consequence of the exceedingly small vertical source size of

the undulator. The effect of this small vertical source size on the resultant numerical

coherence distribution at the image plane of the condenser evokes further theoretical

studies that are described in Chapter 3. For the EUV undulator that acts as a con-

denser which re-images the incoherent source to its conjugate plane, rigorous spatial

coherence propagation based on the Huygens-Fresnel principle is necessary and used

in Chapter 3 in order to obtain the correct mutual intensity distribution.

As statistical optics is utilized in Chapter 2 and 3, Chapter 4 and 5 exploit Fourier

optical techniques. A novel diffractive optical element based on Fourier optics, the

XOR pattern, is demonstrated for the first time. This XOR pattern substantially

improves the flux throughput and therefore resolves the high absorption problems at

these wavelengths. Another interesting property of this XOR pattern is its generation

of two symmetrical, off-axis, foci. This symmetricalness, together with the improved

optical throughput, makes the XOR pattern an ideal candidate for interferometry at

EUV wavelengths. Previously, the high absorption and the lack of high-quality beam-

splitters in the EUV wavelength region precluded attempts at direct at-wavelength

interferometric measurements of refractive indices. With this new XOR pattern, the

first direct measurement at EUV wavelengths of the dispersive part (δ) of the refrac-

tive index is performed for aluminum around its L edge, and nickel around its M edge.

The measured values are in good agreement, but more detailed and more accurate

than current standards, which are obtained indirectly from Kramers-Kronig transfor-

mations of the absorption data. The use of this new XOR pattern brings sophisticated

Fourier optical techniques to shorter wavelengths. Furthermore, the demonstrated ca-

pability in the highly absorptive EUV wavelength region opens up new opportunities

on nanometer scale applications and element-specific identifications.

This dissertation on coherence techniques has accomplished its goal in advanc-

ing two frontiers of short wavelength optics: coherence characterization of radiation
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sources and the introduction of novel optical elements. A thorough understand-

ing of the spatial coherence properties of the undulator radiation has been achieved

through both experimental and theoretical studies. The invention of a novel XOR

pattern demonstrated the first application of the Fourier optical techniques in short

wavelength optics. This invention also enabled the first direct measurement of the dis-

persive part of refractive indices at EUV wavelengths. Optical coherence techniques

introduced in this dissertation have advanced the field of short wavelength optics and

will continue to play an essential role in the development of short wavelength optics.
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Appendix A

Free space coherence propagation

of an incoherent source with

Gaussian-shaped intensity

distribution

A.1 Fourier transform of a Gaussian distribution

function

A Gaussian distribution with parameter σ is given by

g(t) =
1

σ
√

2π
exp

(
− t2

2σ2

)
. (A.1)

Note that this distribution function is normalized, i.e.∫ +∞

−∞
g(t) dt = 1 (A.2)

The Fourier transform of this normalized Gaussian function is given by

G(f) =

∫ +∞

−∞

1

σ
√

2π
e−t2/2σ2

e−j2πft dt (A.3)
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Further evaluate this integral to get

G(f) =
1

σ
√

2π

∫ +∞

−∞
exp

{
− 1

2σ2

[
t2 + j4πσ2ft

]}
dt

=
1

σ
√

2π

∫ +∞

−∞
exp

{
− 1

2σ2

[(
t + j2πσ2f

)2
]
− 2π2σ2f 2

}
dt

=
exp

(−2π2σ2f 2
)

σ
√

2π

∫ +∞

−∞
exp

{
− 1

2σ2

[(
t + j2πσ2f

)2
]}

d(t + j2πσ2f)

= exp
(
−2π2σ2f 2

)
(A.4)

g(t) =
1

σ
√

2π
exp

(
− t2

2σ2

)
⇐⇒ G(f) = exp

(
−2π2σ2f 2

)
(A.5)

Notice that because g(t) is an even function, its Fourier tranform G(f) is a real-valued

function.

A.2 Coherence distribution after propagating from

the undulator exit-plane

A.2.1 Van Cittert-Zernike Theorem

The Van Cittert-Zernike theorem governs the coherence propagation of an inco-

herent source.

J(x1, y1; x2, y2) =
κe−jψ

(λz)2

∫∫ +∞

−∞
Is(ξ, η)e−j 2π

λz

(
ξ∆x+η∆y

)
dξdη (A.6)

where

κ =
λ2

π
and ψ =

π

λz

[(
x2

2 + y2
2 − x2

1 − y2
1

)]
(A.7)

Note that here (∆x, ∆y) is defined as

(∆x, ∆y) = (x1 − x2, y1 − y2) , (A.8)

which is different from that in Goodman [3], where (∆x, ∆y) is defined as (x2−x1, y2−
y1). Therefore, the sign of the exponential term in Eq.(A.6) changes accordingly.
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Notice that J(x1, y1; x2, y2) is in general a function of the four coordinates (x1, y1; x2, y2),

but its modulus of |J(x1, y1; x2, y2)| is a function of the coordinate difference (∆x, ∆y)

only, i.e.

J(∆x, ∆y) ≡ |J(x1, y1; x2, y2)|

=
κ

(λz)2

∣∣∣∣∣
∫∫ +∞

−∞
Is(ξ, η)e−j 2π

λz

(
ξ∆x+η∆y

)
dξdη

∣∣∣∣∣ (A.9)

The Van Cittert-Zernike theorem can be expressed in the normalized form as

follows, using the complex coherence factor µ,

µ(x1, y1; x2, y2) ≡ J(x1, y1; x2, y2)

J(x1, y1; x1, y1)

=
eiψ

∫∫ +∞
−∞ Is(ξ, η)e−j 2π

λz

(
ξ∆x+η∆y

)
dξdη∫∫ +∞

−∞ Is(ξ, η)dξdη

(A.10)

Note again that the µ(x1, y1; x2, y2) is in general a function of the four coordinates

(x1, y1; x2, y2), and its modulus |µ(x1, y1; x2, y2)| is a function of the coordinate dif-

ference (∆x, ∆y) only, i.e.

µ(∆x, ∆y) ≡ |µ(x1, y1; x2, y2)|

=

∣∣∣∣∣
∫∫ +∞
−∞ Is(ξ, η)e−j 2π

λz

(
ξ∆x+η∆y

)
dξdη∫∫ +∞

−∞ Is(ξ, η)dξdη

∣∣∣∣∣
(A.11)

A.2.2 Incoherent source with Gaussian intensity distribution

An incoherent source, whose intensity distribution is Gaussian with (σξ, ση), can

be expressed as

Is(ξ, η) = C exp

{
−
( ξ2

2σ2
ξ

+
η2

2σ2
η

)}
(A.12)

Given this Gaussian intensity source, its coherence distribution after propagating

a distance z can be determined by Eq.(A.10). First, the integral in the numerator is
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evaluated to be∫∫ +∞

−∞
C exp

{
−
( ξ2

2σ2
ξ

+
η2

2σ2
η

)}
e−j 2π

λz

(
ξ∆x+η∆y

)
dξdη

= Cσξ

√
2π exp

{
−2π2σ2

ξ

(∆x

λz

)2
}

× ση

√
2π exp

{
−2π2σ2

η

(∆y

λz

)2
}

= C2πσξση exp

{
−
[

(∆x)2

2(λz/2σξπ)2
+

(∆y)2

2(λz/2σηπ)2

]}
(A.13)

Note that Eq.(A.5) is used with (fξ, fη) being given by(
fξ, fη

)
=

(∆x

λz
,
∆y

λz

)
(A.14)

to arrive at the above result. Also note that the result of this double-integral is

real-valued.

Secondly, Eq.(A.2) is used to obtain the denuminator as∫∫ +∞

−∞
C exp

{
−
( ξ2

2σ2
ξ

+
η2

2σ2
η

)}
dξdη = C 2πσξση . (A.15)

Therefore, the resultant complex coherence factor µ after propagating a Gaussian-

shaped incoherent source by a distance z is

µ(x1, y1; x2, y2) = e−jψ exp

{
−
[

(∆x)2

2(λz/2σξπ)2
+

(∆y)2

2(λz/2σηπ)2

]}
(A.16)

and its modulus |µ| is given by

µ(∆x, ∆y) ≡ |µ(x1, y1; x2, y2)|

= exp

{
−
[

(∆x)2

2(λz/2σξπ)2
+

(∆y)2

2(λz/2σηπ)2

]}
.

(A.17)

To conclude, given an incoherent source of Gaussian intensity distribution (σξ, ση),

the modulus of the complex coherence factor at a distance z away from the incoherent

source is again Gaussian in coordinate difference (∆x, ∆y) with(
σC

x , σC
y

)
=

( λz

2πσξ

,
λz

2πση

)
(A.18)
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Appendix B

Pupil function of a thin lens

Under the paraxial approximation, the amplitude transmittance function of a thin

lens, tl(x, y), can be written as,

tl(x, y) = P(x, y) exp
[
−j

π

λf

(
x2 + y2

)]
(B.1)

where the complex pupil function, P(x, y), accounts for the finite aperture of the thin

lens and the exponential term represents the refractive function of a thin lens of focal

length f . The phase of P accommodates lens aberrations, and |P| may vary within

the aperture to account for apodizations. Also note that P = 0 outside the lens

aperture.

The complex pupil function, P(x, y), can be written explicitly as

P(x, y) =
∣∣P(x, y)

∣∣ exp
{

jkΦ(x, y)
}

(B.2)

where k = 2π/λ and Φ(x, y) is the aberration function.
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Appendix C

Holographic interferometry –

Retrieving phase information from

an intensity detector

C.1 Mathematical preliminaries

Theorem C.1 Convolution theorem states that the convolution of two func-

tions in time domain is equivalent to the multiplication of their respective Fourier

transforms in the Fourier (frequency) domain.

Proof

Given two Fourier transform pairs g(t) ⇔ G(f) and h(t) ⇔ H(f), i.e.

G(f) =

∫ +∞

−∞
g(t) e−j2πftdt (C.1)

and similarly for h(t) ⇔ H(f), their convolution in time domain is defined by

g⊗h(t) ≡
∫ +∞

−∞
g(τ)h(t − τ)dτ . (C.2)
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Fourier transform to get

F
[
g⊗h(t)

]
(f) =

∫ +∞

−∞

(∫ +∞

−∞
g(τ)h(t − τ)dτ

)
e−j2πftdt

=

∫ +∞

−∞
dτg(τ)e−j2πfτ

∫ +∞

−∞
d(t − τ)h(t − τ)e−j2πf(t−τ)

= G(f)H(f)
�

Theorem C.2 Auto-correlation theorem can be proved from the convolu-

tion theorem.

Proof

Let H(f) ≡ G∗(f), then

h(t) =

∫ +∞

−∞
G∗(f)ej2πftdf

=

(∫ +∞

−∞
G(f)e−j2πftdf

)∗

=
(
g(−t)

)∗

Therefore,∣∣G(f)
∣∣2 = G(f)G∗(f) ⇐⇒ g(t) ⊗ g∗(−t)

=

∫ +∞

−∞
g(τ)g∗(−(t − τ)

)
dτ

=

∫ +∞

−∞
g(τ)g∗(τ − t)dτ

�



94

C.2 Holographic interferometry

C.2.1 Far-field coherent field propagation

In the far-field, i.e. under the Fraunhofer approximation, which requires that

z � k(x2 + y2)max

2
(C.3)

where k = 2π/λ, the field distribution U1(u, v) at a distance z away from the aperture

can be obtained by Fourier transforming the aperture field distribution Uo(x, y), i.e.,

U1(u, v) =
ejkzej k

2z
(u2+v2)

jλz

+∞∫∫
−∞

Uo(x, y)e−j 2π
λz

(xu+yv)dxdy (C.4)

Note that the coordinate system is defined in Fig. 5.3.

Therefore, if the far-field field distribution is given, the field distribution in the

aperture can be obtained. However, a regular detector can only record the intensity

distribution, not the field distribution. Using the intensity distribution recorded in

the far-field, an inverse Fourier transform gives the auto-correlation of the aperture

field distribution. As will be described next, holographic interferometry utilizes this

property to retrieve field distribution in the aperture from an intensity detector placed

in the far-field.

C.2.2 From intensity distribution to auto-correlation

Given the intensity distribution in the far-field recorded on a detector, i.e. |U1|2,
re-write as follows,

∣∣∣U1(u, v)
∣∣∣2 = U1(u, v)U∗

1(u, v)

=
1

λ2z2

[ +∞∫∫
−∞

Uo(x
′, y′)e−j 2π

λz
(x′u+y′v)dx′dy′

][ +∞∫∫
−∞

Uo(x
′′, y′′)e−j 2π

λz
(x′′u+y′′v)dx′′dy′′

]∗
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Perform the inverse Fourier transform of
∣∣U1(u, v)

∣∣2, denoted as AUo(x, y),

AUo(x, y) ≡
+∞∫∫

−∞

∣∣∣U1(u, v)
∣∣∣2ej 2π

λz
(xu+yv)dudv

=
1

λ2z2

+∞∫∫
−∞

[ +∞∫∫
−∞

· · · dx′dy′
][ +∞∫∫

−∞

· · · dx′′dy′′
]∗

ej 2π
λz

(xu+yv)dudv

=
1

λ2z2

+∞∫∫
−∞

dx′dy′Uo(x
′, y′)

+∞∫∫
−∞

dx′′dy′′U∗
o(x

′′, y′′)

×
+∞∫∫

−∞

dudv exp
{
−j

2π

λz

[
u(−x + x′ − x′′) + v(−y + y′ − y′′)

]}
︸ ︷︷ ︸

δ
(−x+x′−x′′

λz
, −y+y′−y′′

λz

)

(C.5)

Noting that δ(ax) = 1
|a|δ(x), Eq.(C.5) evaluates to

AUo(x, y) =

+∞∫∫
−∞

dx′dy′Uo(x
′, y′)

+∞∫∫
−∞

dx′′dy′′U∗
o(x

′′, y′′)δ
(−x + x′ − x′′,−y + y′ − y′′)

=

+∞∫∫
−∞

Uo(x
′, y′)U∗

o(x
′ − x, y′ − y)dx′dy′

(C.6)

Therefore, it is shown that the inverse Fourier transform of the far-field intensity

distribution, |U1|2, is equal to the auto-correlation of the aperture field distribution,

i.e.
+∞∫∫

−∞

∣∣∣U1(u, v)
∣∣∣2ej 2π

λz
(xu+yv)dudv =

+∞∫∫
−∞

Uo(x
′, y′)U∗

o(x
′ − x, y′ − y)dx′dy′ . (C.7)

Note that the Fourier transform of
∣∣U1(u, v)

∣∣2 is AUo(−x,−y).

C.2.3 Aperture geometry

To achieve field retrieval, the aperture geometry has to be arranged such that

Uo(x, y) = δ(x, y) + S(x, y) , (C.8)
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where S(x, y) is the field quantity of interest. The term S(x, y) therefore exists in

the resultant auto-correlation of Uo(x, y). In practice, S(x, y) has to be sufficiently

separated spatially from the δ(x, y) function in order for the auto-correlation to isolate

the field quantity of interest, S(x, y).
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Appendix D

Phase grating

A phase grating is an optical element whose “grating” functionality modulates

the phase of the incident field. As a comparison, an amplitude grating modulates the

amplitude of the incident field.

D.1 π-phase-shift grating

A π-phase-shift grating is the most commonly used phase grating, defined by

Π(x) = exp
{

jπG(x)
}

(D.1)

where

G(x) =
1

2
+

1

2
sgn

[
sin

2πx

d
+ sin

(s − d/2

2

)]
. (D.2)

The period of this phase grating is denoted by d and s is the length of the grating

tooth. Note that 0 ≤ s ≤ d. Figure D.1(a) shows the amplitude and phase of the

transmission function of this π-phase-shift grating. The phase change imposed by this

π-phase-shift grating is alternating between π and 0, with the span of π-shift being s.

For comparison, Fig. D.1(b) shows the transmission function of an amplitude grating

with identical period d and tooth length s.
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Figure D.1: (a)π-phase-shift grating. (b)Binary amplitude grating.

D.1.1 Fourier series expansion

Since this π-phase-shift grating is a periodic structure, its Fourier series expansion

can be written as

Π(x) = exp
{

jπG(x)
}

=
+∞∑

n=−∞
an ej2πnfox (D.3)

where the fundamental frequency fo is given by

fo =
1

d
(D.4)

and the Fourier coefficients an is obtained by

an =
1

d

∫
d

Π(x) e−j2πnfox dx

=
1

d

∫ d

0

exp
{

jπG(x)
}

e−j2πnfox dx

=
1

d

∫ s

0
ejπ e−j2πnfox dx +

1

d

∫ d

s
1 · e−j2πnfox dx

Case n = 0 For n = 0, the zeroth order coefficient a0 is given by

a0 = 1 − 2
( s

d

)
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Case n �= 0 For all other n �= 0 terms, the n-th order coefficient an can be obtained

by

an =
ejπ

d

−1

j2πnfo

e−j2πnfox

∣∣∣∣∣
x=s

x=0

+
1

d

−1

j2πnfo

e−j2πnfox

∣∣∣∣∣
x=d

x=s

=
−1

jπn

[
1 − e−j2πn(s/d)

]
Fourier coefficients To conclude, the Fourier coefficients of a π-phase-shift grating

is given by 


a0 = 1 − 2ϑ

an =
−1

jπn

[
1 − e−j2πnϑ

]
for n = ±1,±2,±3, · · · .

(D.5)

where

ϑ =
s

d
(D.6)

is the duty-cycle of the grating. Note that when the duty-cycle ϑ equals to 0.5, even

orders (n = 0,±2, · · · ) disappear.

D.2 Efficiency of π-phase-shift grating

The relative strength of the diffraction orders from a π-phase-shift grating is pro-

portional to the modulus square of its Fourier coefficients. As will be shown later by

the Parseval’s theorem, the summation of the modulus square of the Fourier coeffi-

cients over all the diffracted orders of a π-phase-shift grating equals to 1. Considering

that the π-phase-shift grating here does not have any absorption, the diffraction effi-

ciency is simply the modulus square of the Fourier coefficients.

Theorem D.1 Parseval’s theorem for a periodic function: Given the Fourier coef-

ficients cn of a periodic function f(t) with period T , the Parseval’s theorem states

that

1

T

∫
T

∣∣f(t)
∣∣2dt =

+∞∑
n=−∞

∣∣cn

∣∣2
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Proof

The Fourier series decomposition of the periodic function f(t) can be written as

f(t) =
+∞∑

n=−∞
cn ej2πnt/T

Note that

f(t)f ∗(t) =
+∞∑

n=−∞

+∞∑
m=−∞

cnc
∗
m ej2π(n−m)t/T

and integrate both sides of the above equation over one period T∫
T

∣∣f(t)
∣∣2dt =

+∞∑
m=−∞

+∞∑
n=−∞

cmc∗n

∫
T

ej2π(m−n)t/T dt︸ ︷︷ ︸
Tδmn

�

Applying the Parseval’s theorem to Eq.(D.3), i.e. the transmission function of the

periodic π-phase-shift grating, one finds

1

d

∫
d

∣∣Π(x)
∣∣2dx =

+∞∑
n=−∞

∣∣an

∣∣2 = 1 (D.7)

Therefore, the diffraction efficiency of each diffracted order from the π-phase-shift

grating is simply the modulus square of its Fourier coefficient, |an|2.
Using the following identity,∣∣∣1 − ejϕ

∣∣∣ =
√

(1 − cos ϕ)2 + sin2 ϕ =
√

2(1 − cos ϕ) =

√
2
(
2 sin2 ϕ

2

)
the diffraction efficiency of a π-phase-shift grating is

ηn =
∣∣an

∣∣2 =




∣∣1 − 2ϑ
∣∣2 for n = 0,

4 sin2 πnϑ

π2n2
for n = ±1,±2,±3, · · · .

(D.8)

D.2.1 Efficiency of a 50% duty-cycle π-phase-shift grating

For a 50% duty-cycle π-phase-shift grating, i.e. ϑ = s/d = 0.5, its diffraction

efficiency is given by

ηn =
∣∣an

∣∣2 =




4

π2n2
for n = ±1,±3,±5, · · · .

0 otherwise
(D.9)
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This 50% duty-cycle π-phase-shift grating has only odd diffraction orders. This is a

desirable property in many applications since there is no strong zeroth order present

in its far-field diffraction pattern.
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