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Graphene-based tunable hyperbolic
metamaterials and enhanced near-field

absorption

Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino∗

Department of Electrical Engineering and Computer Science, University of California, Irvine,
CA, 92697, USA

∗f.capolino@uci.edu

Abstract: We investigate a novel implementation of hyperbolic metama-
terial (HM) at far-infrared frequencies composed of stacked graphene sheets
separated by thin dielectric layers. Using the surface conductivity model of
graphene, we derive the homogenization formula for the multilayer structure
by treating graphene sheets as lumped layers with complex admittances.
Homogenization results and limits are investigated by comparison with a
transfer matrix formulation for the HM constituent layers. We show that
infrared iso-frequency wavevector dispersion characteristics of the proposed
HM can be tuned by varying the chemical potential of the graphene sheets
via electrostatic biasing. Accordingly, reflection and transmission properties
for a film made of graphene-dielectric multilayer are tunable at terahertz
frequencies, and we investigate the limits in using the homogenized model
compared to the more accurate transfer matrix model. We also propose to
use graphene-based HM as a super absorber for near-fields generated at its
surface. The power emitted by a dipole near the surface of a graphene-based
HM is increased dramatically (up to 5 × 102 at 2 THz), furthermore we
show that most of the scattered power is directed into the HM. The validity
and limits of the homogenized HM model are assessed also for near-fields
and show that in certain conditions it overestimates the dipole radiated
power into the HM.

© 2013 Optical Society of America

OCIS codes: (160.3918) Metamaterials; (230.4170) Multilayers; (250.5403) Plasmonics;
(240.0310) Thin films.
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1. Introduction

A stack of graphene sheets, separated by subwavelength dielectric spacers, can be regarded as a
composite material with uniaxial electric properties under certain conditions. Graphene layers
strongly affect the complex effective permittivity of the composite for electric field compo-
nents polarized parallel to the graphene sheets. Uniaxial anisotropic materials in general offer
a variety of interesting electromagnetic properties. In particular, we investigate here a subcat-
egory denoted as hyperbolic metamaterials (HMs), named after the hyperbolic iso-frequency
wavevector dispersion that arise due to the negative permittivity experienced by the electric
field component along either the axis of anisotropy or a direction orthogonal to the axis of
anisotropy [1, 2].

Strong interest in HMs is based on their specific property that enables propagation in a very
wide spatial spectrum, that would be otherwise evanescent in free space, which is in principle
unbounded for the ideal case of purely hyperbolic iso-frequency wavevector dispersion. In case
of realistic hyperbolic-like dispersion, the spatial spectrum allowed for propagation can still be
extremely wide, as shown in [3–5]. This property is shared with uniaxial anisotropic materials
having elliptic iso-frequency dispersion diagram, with a very large axial ratio. Though in prac-
tical cases purely hyperbolic dispersion cannot be obtained, effective medium models based on
hyperbolic dispersion proves to be a very useful tool for understanding the physics behind the
interesting electromagnetic properties of these metamaterials with extremely subwavelength
features.

Recently, metal-dielectric multilayers were proposed as candidates to realize HMs at optical
frequencies [3, 6, 7]. The wide spatial spectrum of propagation supported by these HMs can
lead to novel phenomena as increasing the power emitted by imposed dipoles [3,8] or scattered
by nanoparticles [3,9] on HM surfaces, and this power is mostly directed into HMs. This exotic
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property enables features like focusing with very subwavelength resolution [10,11], controlling
absorption [12], enhancement of spontaneous emission [13], increasing the decay rate of emit-
ters [6], designing quantum and thermal emitters [14]. HMs can also host backwards waves
and thus they are utilized for achieving negative refraction as in [15]. As stated in [4], HMs
are considered to be promising materials for advancement in the fields of tunable surface plas-
mon polaritons, super Planckian thermal emission [5], radiative decay engineering [16], and
nano-imaging.

HMs attract attention also because they are easy to fabricate using metal-dielectric mul-
tilayers or metallic nanowires embedded in dielectric substrates. Also, doped semiconduc-
tors [17, 18] and conductive oxides used for generating surface plasmons can be used for HM
designs in near- and mid-IR frequency bands [15]. In multilayer structures, metal is used as a
negative permittivity layer-spaced by dielectric layers, overall creating a negative permittivity
effect for the electric field components tangential to the layers. This effect does not rely on any
resonant behavior and thus is a very wide-frequency-band.

In this paper we investigate a multilayer HM design based on stacking dielectric layers and
graphene sheets. A graphene sheet (a one-atom-thick carbon layer) is able to support surface
plasmon modes at terahertz frequencies [19–23]. A recent work in [24] a discussed HM based
on a semi-infinite stack of graphene-dielectric multilayers, studied at a temperature of 4 K, thus
assuming graphene losses negligible, leading to purely real permittivity and wavenumbers. Our
analysis instead accounts for losses at a room temperature of 300 K and their effect on (i) the
effective permittivity that assumes complex values, (ii) the hyperbolic-like dispersion (it is not
exactly hyperbolic), hence (iii) wavenumbers that may assume complex values, and (iv) on the
radiated power by a dipole near the HM surface, where losses play an important role. More-
over, we investigate practical cases with a finite number of graphene-dielectric layers, and quan-
titatively show tunability aspects of graphene-based HMs using electrostatic biasing. We also
show a detailed study about the dependence of power spectrum emitted by a dipole source in the
proximity of the graphene-based HM on the number of layers, as well as on frequency. Alterna-
tive to the HM implemented as a graphene-dielectric multilayer studied here, in [25] graphene
stripes analogous to a metallic wire medium, are utilized for realizing hyperbolic dispersion
in cylindrical wavenumber coordinates, with the aim of designing a hyperlens. The peculiar
electronic properties of graphene [26, 27], have been investigated for different electromagnetic
applications such as lensing [28], transformation optics [29], nanomechanical resonators [30],
and solar cells [31]. Moreover, based upon periodic patterning of graphene, bi-periodic and/or
multilayered graphene structures were extensively studied for enhanced transmission [32], op-
tical absorption [33], and tunable metasurfaces in [34], as well as isolators and polarizers in the
microwave regime [35–37]. It was shown that crystalline Graphite (the 3D parent of graphene)
possess indefinite permittivity at UV frequencies [38].

A graphene sheet has properties at THz frequencies similar to those of a thin metal film at
optical frequencies, as shown in our work. In principle, any inductive infinitesimally-thin layer
can be used to realize HMs, however, in the terahertz regime, designing inductive layers is
difficult due to metallic losses and spatial and frequency dispersion introduced by periodically
patterned conductive layers. For this aim, metallic meshes are mainly effective only in lower
microwave regime [39–41]. On the other hand, the use of highly dispersive metals is practi-
cal the optical frequencies below the plasma frequency. Here we show that stacking graphene
sheets can be utilized for designing tunable HMs in a wide frequency spectrum ranging from
millimeter-waves up to tens of terahertz frequencies, encompassing the whole far-infrared band.
In Section 2, we develop an effective medium approximation (EMA) to facilitate the character-
ization of graphene-based multilayer structure and its use in possible devices and we assess its
limits. Moreover, in Section 2 we describe the basic properties of graphene and the associated
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hyperbolic wavenumber dispersion of the multilayer structure composed of graphene-dielectric
layers. In Section 3 we investigate plane wave transmission and reflection for a thin slab made
of several graphene sheets, as well as their tunability features, and we also show how EMA
is able to describe these properties. In Section 4 we investigate the radiation of a dipole at the
interface of a finite thickness HM and we show that the HM is able to enhance the total power
radiated by several orders of magnitude, reporting an enhancement of 5× 102 at 2 THz. We
also show that most of the power is directed into the HM, offering a viable route for wide band
and wide incidence-angle super absorption interfaces at far-infrared frequencies, as previously
discussed in [3,9,13,42] for optical frequencies. We show that this large enhancement of power
emission is associated to the wide spatial spectrum being able to propagate inside the HM, that
would be otherwise evanescent in free space.

2. Tunable hyperbolic metamaterial made of graphene-dielectric multilayers

A graphene monolayer is electrically characterized by its surface conductivity σ(ω,μc), where
μc is the chemical potential related to the electrostatic biasing, which quantifies the electronic
transport properties [43]. The frequency dependent conductivity follows the interband (bound-
electrons) and the intraband (free-electrons) sum rules [44, 45]. Spatial dispersion of graphene
has negligible effects, since the graphene lattice constant a ≈0.246 nm is extremely subwave-
length at THz frequencies [34]. Therefore, a graphene layer is modeled by the local isotropic
surface conductivity σ(ω,μc) = σ ′ + jσ ′′ (assuming time-harmonic fields of the form e jωt )
that is calculated by the Kubo formula

σ(ω,μc) =
− j4πe2kBT
h2(ω − j2Γ)

(
μc

kBT
+2ln

(
e−μc/(kBT ) +1

))

− j4πe2(ω − j2Γ)
h2

∫ ∞

0

fD(−ζ )− fD(ζ )
(ω − j2Γ)2 −16(πζ/h)2 dζ , (1)

where kB is the Boltzmann constant, h is the Planck constant, fD(ζ ) = [e(ζ−μc)/(kBT ) +1]−1 is
the Fermi-Dirac distribution, and Γ is the phenomenological scattering rate. Throughout our
discussion, we assume Γ = 0.1 meV, which is within the range of values considered in other
studies [21,37,46,47], at room temperature T = 300 K. Consider a periodic stack of graphene-
dielectric layers, as depicted in Fig. 1. Each dielectric spacer has a subwavelength thickness d
and relative permittivity εd . In this premise, we assume that graphene sheets are electronically
isolated, i.e., the electronic band structure of a graphene sheet is not affected by the neigh-
boring graphene sheets (interlayer electronic coupling mechanisms as well as tunneling effects
are ignored, due to the significant thickness of the dielectric with respect to quantum scales).
We model graphene sheets as lumped complex-admittance layers, due to their extremely sub-
wavelength thickness. Wave propagation in the multilayer structure, depicted in Fig. 1, can be
modeled using (i) EMA that models the multilayer as a homogeneous medium and (ii) by ap-
plying Bloch theory (as in Chapter 8 in [48]) using the transfer matrix of a unit cell. When
applying EMA, the multilayered structure is modeled as a homogeneous uniaxial anisotropic
medium (with axis of anisotropy along z) whose effective relative permittivity tensor εεε eff is a
diagonal matrix in Cartesian coordinates given as

εεε eff = εt(x̂x̂+ ŷŷ)+ εzẑẑ . (2)

Since a graphene sheet is infinitesimally thin with respect to the dielectric thickness, one
may assume that εz = εd , because z−directed electric field would not excite any current in
the graphene sheet. The transverse effective relative permittivity εt is determined as follows,
considering a unit cell made of a dielectric layer with dielectric constant εd between z = 0 and
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Fig. 1. Composite multilayer material made by stacking graphene sheets and dielectric
layers. Under certain conditions it exhibits hyperbolic-like iso-frequency wavevector dis-
persion as depicted in the inset, where vg indicates the direction of the group velocity.

z = d, and a graphene sheet at z = 0. Within this unit cell one can write ∇×H = jωε0εdE+
J = jωε0εεεd ·E, where the current density J [A/m2] in the graphene sheet is reduced to the
surface current along the sheet J = δ (z)σEt , and Et is the transverse component of the electric
field. Therefore, one has εεεd = εdI− j σ

ωε0
δ (z)(x̂x̂+ ŷŷ), where I is the unit tensor, that when

averaged over a period along z leads to the effective relative “transverse” permittivity εt ,

εt = ε ′t − jε ′′t = εd − j
σ(ω,μc)

ωε0d
. (3)

The formula for εt in Eq. (3) could be obtained alternatively by following the method used
for homogenization involving thin metal-dielectric layers [49]. Accordingly, a graphene sheet
may be treated as a layer with extremely subwavelength, but finite, thickness with bulk prop-
erties. Exploiting the continuity of the electric field, along x and y, at the boundaries between
graphene and dielectric layers, and averaging the transverse component of the effective dis-
placement current over a period d also leads to Eq. (3) (here the effective displacement current
account for the displacement current in the dielectric and the conduction current in the graphene
sheets ). In Eq. (3), we have highlighted that the graphene conductivity is strongly dependent
on the frequency and chemical potential. It is important to note that if a graphene sheet has
a sufficiently large inductive susceptance, i.e., if σ ′′ < −ωε0εdd, then the effective relative
permittivity term εt = ε ′t − jε ′′t has a negative real part, i.e., ε ′t < 0. Under this condition, and
recalling that εz > 0, extraordinary waves, with TMz polarization (magnetic field transverse to
z), are allowed to propagate inside the HM, with wavevectors exhibiting iso-frequency hyper-
bolic dispersion as explained in [3]; whereas ordinary waves with TEz polarization (electric
field transverse to z) are mainly evanescent. This allows for the propagation of TMz waves with
transverse wavenumber kt > ω√μ0ε0εd , that would be otherwise evanescent in free space.

To better illustrate the possible homogenized parameters that can be obtained, we report in
Fig. 2 the real and imaginary parts of εt = ε ′t − jε ′′t using the EMA formula Eq. (3), assum-
ing that graphene sheets are spaced by silica layers with permittivity εd = 2.2 and thickness
d= 0.1 µm. Note that ε ′t approaches εd at higher frequencies due to saturation of the graphene
conductivity to its universal value πe2/(2h) [44] which gives a negligible contribution com-
pared to εd . Moreover, the imaginary part of the effective permittivity term (ε ′′t ) is remarkably
small in a certain frequency band, showing that waves in this composite material can propa-
gate with minimal attenuation. Indeed, it is known that a graphene layer may support weakly
attenuated plasmonic modes in at terahertz frequencies [45]. We note that εt is very sensitive to
the chemical potential μc, and we show that the zero-crossing frequency of ε ′t , occurring when
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Fig. 2. Effective medium complex relative permittivity term εt = ε ′t − jε ′′t for biased and
unbiased graphene multilayer configuration.

Fig. 3. Relative effective medium complex permittivity term εt = ε ′t − jε ′′t of graphene HM
versus the graphene sheets’ chemical potential for various spacer thicknesses at 12 THz.

σ ′′ =−ωε0εdd, occurs at 6.6, 11, and 24.6 THz, for different values of μc = 0, 0.1, and 0.4 eV,
respectively. The tunability of the proposed HM structure is then quantified, as seen in Figs.
3(a) and 3(b), where the chemical potential and stacking density (thickness of dielectric layer
d) are varied assuming a frequency of 12 THz. When the dielectric thickness d is increased,
one should note that ε ′t increases toward 0. Note also that as the chemical potential (tuned by
electrostatic biasing) increases ε ′t takes smaller values. Hence, at 12 THz, ε ′t is positive (≈ 2.2)
for zero chemical potential, and at higher chemical potential values, ε ′t becomes negative: for
example at μc =0.5 eV, with d= 0.1 µm, one has ε ′t ≈−9.5. In summary, a composite material
made by layered graphene sheets possesses desirable performance in terms of losses, inductive
response, and tunability from millimeter-waves up to mid-infrared frequencies, hard to find in
any other known material. This makes it a good candidate for realizing HM designs in the THz
range.

When considering plane waves propagating in a homogeneous uniaxial anisotropic medium
it is useful to decompose them into the modal polarizations TEz and TMz. A description us-
ing EMA, when valid, gives a neat physical insight into wave propagation in this structure.
Wavevector dispersion relations for ordinary (TEz) and extraordinary (TMz) waves in a uniax-
ial anisotropic materials are written as
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k2
z + k2

t = εt k
2
0, TEz (4)

k2
z

εt
+

k2
t

εz
= k2

0, TMz (5)

where k0 = ω√μ0ε0 is the wavenumber in vacuum, and we use kt =
√

k2
x + k2

y thanks to sym-

metry about the z axis. It is apparent that TMz waves in a medium with εt < 0 exhibit an iso-
frequency wavenumber dispersion with hyperbolic shape, as explained in [3,5,50]. This allows
the propagation of the extraordinary waves (TMz) with any transverse wavenumber kt >

√
εdk0,

that would be otherwise evanescent in a homogeneous dielectric with permittivity εd . However,
one should note that TEz waves are mainly evanescent when εt < 0, for any kt . The proposed
graphene-dielectric metamaterial can be used for realizing hyperbolic dispersion with εt < 0
and εz > 0, and with the present implementation it is not possible to have anisotropy such that
εt > 0 and εz < 0. Elliptic dispersion regime occurring when both εt > 0 and εz > 0, inher-
ently implies a propagating spectrum with kt <

√εzk0. Considering the multilayered structure
depicted in Fig. 1, we shall consider the root of k2

z , solution of Eq. (5), that corresponds to a
wave whose Poynting vector is directed toward the graphene-based HM, i.e, in the −z direc-
tion, as shown with vg in Fig. 1. We assume here that the z-directed wavenumber may assume
complex values, i.e., kz = βz − jαz, since the graphene conductivity σ is complex, modeling
the inhomogeneous plane wave spectrum. Accordingly, a wave that carries power in the −z
direction shall have the attenuation constant (αz) with negative sign, associated to field decay
(due to possible losses) along the −z direction. In general βz can have both signs, though in
our case it is positive, implying that the TMz mode is a backward wave for kt >

√
εdk0, since

βzαz < 0 [51, 52].
With the aim of assessing the validity of EMA in Eq. (4), we calculate the iso-frequency

wavevector dispersion with the more accurate Bloch theory for the periodic structures. This
is done by treating each graphene layer as a complex lumped admittance Ys = σ (where the
subscript “s” denotes surface) as a shunt load in a transverse equivalent network (TEN, see
Chapters 2 and 3 in [1]). This leads to the dispersion relation as (see Appendix A for more
details)

cos(kzd) = cos(κdd)+ j
1
2

σZd sin(κdd), (6)

where κd =
√

εdk2
0 − k2

t is the z-directed wavenumber of a wave inside the dielectric, ZTE
d =

ωμ0/κd , and ZTM
d = κd/(ωε0εd) are the characteristic wave impedances for TEz and TMz

waves, respectively. Here we report only the dispersion curves that belong to TMz modes for
brevity, since they are those exhibiting hyperbolic-like dispersion.. We report in Figs. 4(a)-
4(b), and Figs. 4(c)-4(d) the plots of kz = βz − jαz versus kt , for TMz waves at 2 and 12 THz,
respectively, by applying EMA Eq. (5) and Bloch theory Eq. (6), for the graphene-dielectic HM
(with εd = 2.2 and d= 0.1 µm), for various chemical potentials μc. We plot only the dispersion
branch relative to power propagation in the downward direction (see Fig. 1). However one
should note the ±kz symmetry in the solutions of Eq. (6). One can observe in Fig. 4 that EMA
and Bloch theory are in very good agreement for a wide range of transverse wavenumber kt

showing a hyperbolic relation, whereas the curves obtained from the two methods diverge for
large kt and the dispersion curve obtained via Bloch theory shows a switching to a mainly
evanescent spectrum after certain kt . This observation is in accordance with the simplification
of the dispersion relation obtained from Bloch theory as follows. Let us consider the special
but important case with |κdd| � 1, and |kzd| � 1, i.e., the period d is subwavelength, with
respect to the wavenumber in the dielectric and with respect to the Bloch wavenumber (the
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Fig. 4. Iso-frequency wavevector dispersion (kz = βz − jαz) versus kt computed by both
Bloch theory (dashed-dotted lines) and EMA (solid lines), for different chemical potential
levels at 2 THz (a,b), and at 12 THz (c,d).

second inequality also implies that kz is far from the edge of the first Brillouin zone where
βz = ±π/d). Thus, we approximate Eq. (6) by taking into account the first and second order
Taylor expansion terms corresponding to the approximations cos(κdd) ≈ 1− (κdd)2/2 and
sin(κdd)≈ κdd, that lead to

1− (kzd)2

2
≈ 1− (κdd)2

2
+ j

σ
2

Zdκdd. (7)

After substituting the characteristic impedance by its corresponding value for TEz and TMz

waves, Eq. (7) leads to

k2
z = κ2

d − j
σωμ0

d
, TEz (8)

k2
z = κ2

d − j
σκ2

d

ωε0εdd
, TMz. (9)

By substituting κd =
√

εdk2
0 − k2

t , we find that for TEz

k2
z =

[
εd − j

σ
ωε0d

]
k2

0 − k2
t , (10)

and similarly for TMz

k2
z =

[
εd − j

σ
ωε0d

]
k2

0 −
[

εd − j
σ

ωε0d

]
1
εd

k2
t . (11)
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Note that if one defines an effective transverse permittivity as in Eq. (3), the wavenumber dis-
persions, just found above, become

k2
z = εt k

2
0 − k2

t , TEz (12)

k2
z = εt k

2
0 −

εt

εz
k2

t , TMz (13)

which are identical to the wavevector dispersion relations provided in Eqs. (4) and (5) using
EMA.

It is clear from the analytical analysis above and from Fig. 4 that EMA well describes the
wavevector dispersion when |κdd|� 1 and |kzd|� 1, which can be verified when the transverse
wavenumber kt is not too large. For larger and larger values of kt , the two assumptions would not
be valid anymore. In Fig. 4, we also report the evolution of the dispersion curves by varying the
chemical potential μc at 2 THz and 12 THz. For example at 2 THz, when μc = 0.4 eV, the spatial
spectrum is bounded by kt ≈ 36k0 after which αz increases dramatically. However, by increasing
the chemical potential, ε ′t assumes larger negative values and βz−kt dispersion in Fig. 4 evolves
to a flatter curve, thus the Brillouin zone edge is reached at larger values of kt . Note that at larger
spatial spectrum, the attenuation constant αz increases due to finite losses, as shown in Fig. 4(b).
By tuning the chemical potential, the dispersion characteristics can be controlled, for example,
at 12 THz the dispersion for unbiased graphene is elliptic as well as when μc = 0.1 eV. This
behavior appears since ε ′t exhibits zero crossing and becomes positive at 6.6 THz and 11 THz,
when μc = 0 and μc = 0.1 eV, respectively. However, when the chemical potential is increased
to 0.4 eV, hyperbolic dispersion arises at 12 THz, as shown in Figs. 4(c) and 4(d) where the
inset of Fig. 4(c) shows the elliptic behavior for kt <

√
εdk0. At high frequencies where the

conductivity saturates to its universal value, the TMz plasmonic modes are extremely confined
to graphene layers (σ ′′ becomes very small) and higher frequencies, once σ ′′ > 0, graphene
layers are incapable of supporting those modes [21]. Hence, the spectrum kt >

√
εdk0 becomes

mainly evanescent at frequencies with ε ′t > 0. In other words, after ε ′t exhibits a zero-crossing
and becomes positive, the wavevector dispersion becomes elliptic.

3. Plane wave reflection and transmission by a thin film made of graphene-dielectric
multilayers

A finite thickness graphene-dielectric multilayer film is considered comprising N graphene
sheets stacked with silica SiO2 dielectric spacer, such that a graphene sheet is at the topmost
layer. The thickness of each SiO2 spacer is 0.1 µm, and the total multilayered film thickness
is D = Nd. For simplicity, all graphene layers are biased equally using a constant electrostatic
potential [34]. For practical consideration, suppose that a thin film of silica (in the order of
100 nm) is deposited on an epitaxially-grown graphene monolayer repeatedly until creating
an N layer stack; though larger thicknesses could be considered, it is rather simple to achieve
the biasing range (μc up to 0.5 eV) using relatively lower electrostatic potential for smaller
thicknesses [34, 53].

We investigate reflection and transmission under normal plane wave incidence, and at 30◦
oblique incidence for both TEz and TMz polarizations (here kt = k0 sin(θ i), where θ i is the
incidence angle). Reflection and transmission coefficients are reported using the transfer matrix
method (solid lines), and using EMA (circles) as well, for the two cases with N = 10 (D = 1
µm) and N = 20 (D = 2 µm), when μc= 0 eV and 0.4 eV in Fig. 5 and Fig. 6, respectively.
As discussed in Section 2, at lower frequencies, TEz waves are evanescent for any kt when
ε ′t < 0, while for TMz waves the iso-frequency wavenumber dispersion is hyperbolic (when
ε ′t < 0), consequently, a plane wave impinging on the structure with kt <

√
εdk0 is very weakly
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Fig. 5. Reflection and transmission versus frequency for a finite thickness graphene-silica
multilayered HM, at normal, and oblique incidence for both TEz and TMz polarizations,
calculated by transfer matrix method (solid lines) and EMA (circles) when graphene layers
are unbiased, i.e., μc = 0 eV.

transferred, specifically by evanescent coupling. This property is demonstrated in Fig. 5 at
frequencies lower than 6 THz, and in Fig. 6 at frequencies lower than 24.6 THz. However,
after ε ′t exhibits a zero-crossing and becomes positive, the plane wave is able to propagate,
and the hyperbolic wavevector dispersion turns into elliptic (thus waves with kt <

√
εdk0 can

propagate). The transmission peak for normal incidence occurs when the effective ε ′t is near
unity (matched to the free space, where the losses are negligible) for μc= 0 eV at ≈ 8 THz
(reported in Fig. 5) and for μc= 0.4 eV at ≈ 33 THz (reported in Fig. 6); this is in accordance
with the effective ε ′t plotted in Fig. 2(a). It is clear that changing the chemical potential of
the graphene layers offers great tunability and possibility to control the transmission peak and
spectrum. EMA is a good tool to describe plane wave interaction with a graphene-dielectric
multilayer thin film, for small dielectric thickness d. In order to explore the validity of EMA
for thicker dielectric spacers, we report in Fig. 7 the reflection and transmission coefficients for
10 layers of graphene-dielectric layers with varying thickness d, at 10 THz, assuming μc = 0.4
eV. It is shown that EMA yields a noticeable deviation from transfer matrix calculations when
d > 0.2λ0. Note that in Fig. 7 the transition from hyperbolic to elliptic dispersion occurs at
d = 0.02λ0, which implies ε ′t ≈ 0.

In particular, these results show two remarkable facts: (i) EMA agrees well with transfer
matrix calculations for a wide range of frequencies and dielectric thicknesses, (ii) transmission
and reflection by the graphene-based multilayered structure can be effectively tuned by elec-
trostatic biasing. It is evident that graphene layers despite controlling transmission with such
small thicknesses, at the same time can be designed to be almost transparent to plane wave
excitation [32].

In this Section we have investigated reflection and transmission, and how this is predicted by
EMA, for an incident plane wave, however a source or scatterer near the HM interface is able
to generate a very wide spatial spectrum of plane waves, including the spectrum with kt > k0,
which would be evanescent in free space. In the next Section we show how this wide spectrum
is able to propagate inside the HM, similarly to what was done in [3] for a HM at optical
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Fig. 6. Reflection and transmission versus frequency, for the same set of parameters as Fig.
5, except that now graphene layers are biased with μc = 0.4 eV.

Fig. 7. Reflection and transmission of a 30◦ TMz wave from a 10 layer graphene-dielectric
stack at 10 THz with variable spacer d, based on transfer matrix (solid lines) and EMA
(circles).

frequencies made of dielectric and metallic layers.

4. Enhancement of emitted power by an impressed dipole at the surface of a graphene-
based HM film

We investigate the power emitted by a transverse dipole located at a distance h above the
graphene-silica multilayered HM as depicted in Fig. 8(a), over a a silicon substrate (sufficiently
thick to be assumed infinitely long, with relative permittivity εSi=11.7). We assume here a unit
cell of the HM consisting of a 0.1-µm thick silica layer stacked with a sheet of graphene sheet
on top. We calculate the power emitted by the transverse dipole located at z = 0 as in Fig. 8(a),
by using the spatial spectral formalism of TEz and TMz waves as outlined in [1]. The total
power Ptot = Pup +Pdown emitted by the transverse dipole illustrated in Fig. 8 is decomposed
into the power terms directed toward the +z and −z directions (Pup and Pdown, respectively) that
are found by the spectral integrals

Pup,down =
ω2|pt |2

8π

∫ ∞

0

(
pTE

up,down + pTM
up,down

)
dkt , (14)
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Fig. 8. (a) Dipole near-field emission over a finite thickness multilayer graphene HM over
of a substrate, and (b) the its transverse equivalent network (TEN) for every spectral wave
(both TEz and TMz).

and p(kt) is the spectral power either in the “up” or “down” direction, with transverse wavenum-
ber kt , and |pt | is magnitude of the transverse electric dipole moment. The spectral power
pTE,TM

up,down(kt) can be written as

pTE,TM
up,down(kt) =

Re
(
Y TE,TM∗

up,down (kt)
)

∣∣∣Y TE,TM
tot (kt)

∣∣∣2
kt . (15)

Here Y represents the equivalent admittance of TEz/TMz waves seen at the location of the
dipole either toward free space or toward the HM (indicated by the subscripts “up” and “down”,
respectively), whereas Ytot =Ydown +Yup, and “∗” denotes the complex conjugate. In particular,

for what concerns free space (up), the terms Y TE/TM
up are straightforwardly the TEz and TMz

wave admittances in free space give by YTE
up = Y TE

0 = κ0/(ωμ0), and Y TM
up = Y TM

0 = (ωε0)/κ0

where κ0 =
√

k2
0 − k2

t is the wavenumber along the z axis in free space. The calculation of
the admittance Ydown, for either TEz or TMz waves, is done by translating YHM, N , which is the
admittance toward −z direction, shown in Fig. 8(b), evaluated at the surface of HM (at z =−h),
to z = 0 by the simple formula

Ydown = Y0
jY0 sin(κ0h)+ cos(κ0h)YHM, N

Y0 cos(κ0h)+ j sin(κ0h)YHM, N
. (16)

The calculation of YHM, N (see Fig. 8), for either TEz or TMz waves, is done by using the transfer
matrix of N unit cells, and representing the silicon substrate at the bottom with a TEz /TMz wave
admittance, as detailed in Appendix B. When using EMA, the multilayer structure is treated as
an anisotropic dielectric with relative permittivity in Eq. (2). In Fig. 9 and Fig. 10 (for μc=
0 eV and μc= 0.4 eV, respectively, and assuming a dipole distance h = 2 µm) we report two
power ratios aiming at showing their enhancement: (i) the total power Ptot = Pup+Pdown emitted
by the dipole normalized by the power emitted by the same dipole in free space Pfree space; (ii)
the ratio of the power directed downward to the HM, Pdown, and the power directed into the
upper free space, Pup, for four different cases where the number of graphene sheets is changed
as N = 1, 3, 10 and N → ∞, as well as for a transverse dipole at a distance h above a silicon
substrate (dashed lines) for comparison purposes.

The ratio Ptot/Pfree space also represents the increase of the local density of states (LDOS)
with respect to LDOS at a point in free space [5, 50, 54], and this is also referred to as Purcell
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Fig. 9. (a) Ratio between power emitted in the lower space with the one in the upper space,
Pdown/Pup , and (b) the ratio Ptot/Pfree space related to the transverse dipole located near the
interface of free space and graphene-based HM made by N graphene layers on top of Si
substrate. Calculations done via multilayer transfer matrix method (lines) and via EMA
(markers) when chemical potential is μc = 0 eV.

effect [6, 24]. We model the HM with thickness Nd via both the more accurate transfer matrix
method (denoted by lines in the figure) and EMA (denoted by circles), and provide the results
in Fig. 9(a) and (b) for unbiased graphene (μc= 0 eV), and in Fig. 10 for biased graphene
(μc= 0.4 eV). In Fig. 9 one can observe that, at the lowest frequency 0.1 THz, there is a clear
trend showing that when the number of layers (N) increases the ratio Pdown/Pup also increases
from ≈ 106 up to ≈ 2.7× 108 , when using calculations based on the transfer matrix method.
Moreover in the lower frequency range, EMA overestimates Pdown/Pup by almost one order of
magnitude, as also discussed in [3] for a different HM configuration; however, as the frequency
increases EMA and the transfer matrix method agree well. In Fig. 9(b), we observe the same
disagreement of the transfer matrix calculations and EMA at lower frequencies, and it is clearly
seen that the normalized emitted power (Ptot/Pfree space) is ≈ 4×103 at the lowest frequency 0.1
THz and drops linearly as the frequency increases. Pdown/Pup exhibits a very sharp drop for
N = 1 after around 1 THz, for N = 3 after about 2 THz, for N = 10 after 4 THz, and for N → ∞
after 6 THz (note that the hyperbolic to elliptic dispersion curve transformation occurs at 6.6
THz when μc = 0 eV obtained via EMA, see Fig. 2, in very good agreement with the N → ∞
case). When the chemical potential is increased to μc = 0.4 eV, the “transverse” permittivity ε ′t
decreases to further negative values and the frequency of hyperbolic to elliptic dispersion curve
transformation shifts from 6.6 THz (μc = 0 eV) to 24.6 THz (μc = 0.4 eV). In Fig. 10(a), at
lower frequencies one can observe that Pdown/Pup is increased by one order of magnitude for
all cases whereas Ptot/Pfree space decreases by almost one order of magnitude when compared to
the case with μc = 0 eV. Moreover the frequency where Ptot/Pfree space exhibits a sharp decrease
shifts to a higher frequency when the chemical potential is increased to 0.4 eV in agreement
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Fig. 10. (a) Ratio Pdown/Pup and (b) ratio Ptot/Pfree space for the same set of parameters in
Fig. 9, but when chemical potential is μc = 0.4 eV.

with the change in the frequency of hyperbolic to elliptic dispersion curve transformation, as
illustrated from Fig. 4(c). As seen in Figs. 10(a) and 10(b) both the enhancement of emitted
power and the ratio of power directed to the –z direction are much larger than the Si-substrate
case for a wide frequency band (1-6 THz) in the presence of graphene-dielectric. The interesting
features in Figs. 9-10 are related to the power spectrum in Eq. (15), which is described in the
following.

We report the emitted power spectrum for TMz waves (solid lines), pTM(kt) = pTM
up (kt)+

pTM
down(kt), versus normalized transverse wavenumber ktd/π at 0.1 in Fig. 11(a) and 3 THz in

Fig. 11(b), varying the number of graphene-dielectric layers assuming μc = 0 eV, and for a
better visualization we provide Figs. 11(a) and 11(b) in both logarithmic and linear scales for
the horizontal axis, in the left and right panels, respectively. For comparison we also show
the power spectrum pTE(kt) = pTE

up (kt) + pTE
down(kt) for N =1 and N → ∞ (dashed lines). At

these two frequencies the composite multilayer exhibits hyperbolic dispersion for TMz waves
and propagation inside the HM occurs for kt >

√
εdk0. We observe in Fig. 11(b) that in the

high kt spectrum, there are a larger number of spectral peaks when N increases; eventually
yielding a continuous distribution of large spectral intensities when N → ∞. This explain the
advantage of having a large number of layers. Moreover when N → ∞, one can notice that
the power spectrum starts to rise strongly after kt =

√
εdk0, in agreement with the propagating

spectrum’s lower limit in the hyperbolic dispersion diagrams in Fig. 4. We would like to em-
phasize that plots in linear scale in Fig. 11 clearly show that the propagating power spectrum
in the large kt region is very wide and therefore it strongly contributes to the spectral integral
in Eq. (14). Note that the upper limit of the power spectrum, cut-off at kt,max, can be deter-
mined by evaluating the evanescent decay in free space between the dipole at z = 0 and the

surface of the composite material at z = −h, given by exp
(
−
√

k2
t − k2

0h
)

. For example, by
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Fig. 11. Emitted power spectrum pTM(kt) = pTM
up (kt)+ pTM

down(kt) in Eq. (15), solid lines,
versus normalized traverse wavenumber ktd/π at (a) 0.1 THz, and (b) 3 THz, for different
number of graphene-dielectric layers:N = 1, 10, and N → ∞. For comparison we also show
the power spectrum pTE(kt) = pTE

up (kt)+ pTE
down(kt) for N =1 and N → ∞ (dashed lines).

The points A, B, and C denote the spectrum points k0d/π ,
√εdk0d/π , and

√
εSik0d/π ,

respectively. Left panel plots have a horizontal logarithmic scale whereas right panel plots
have a horizontal linear scale.

setting exp
(
−
√

k2
t,max − k2

0h
)
= ξ , where ξ is a predetermined small number, we can consider

the power spectrum negligible when kt > kt,max. It is important to note that for h � λ0 this
upper wavenumber limit kt,max is independent of the operating frequency when kt,max 	 k0, be-

cause in this case exp
(
−
√

k2
t,max − k2

0h
)
≈ exp(−kt,maxh). These considerations explain why

all spectral curves decay with very similar profile for very large kt and therefore it is imposed
mainly by the dipole distance h, for both frequencies examined in Fig. 11(a) and (b), i.e., at 0.1
and 3 THz.

At low frequency, in Fig. 11(a) all curves with different N, tend to exhibit the same behavior
at the large kt , in particular when (ktd/π) > 10−2. The reason of this low frequency property,
that does not occur at higher frequency in Fig. 11(b), is explained as follows. Propagation
inside such multilayer stack consists in strong evanescent coupling between adjacent graphene

sheets [23, 32], that is approximately proportional to exp
(
−
√

k2
t − εdk2

0d
)

. Considering now

the large kt region where the power spectrum pTM(kt) is intense in Fig. 11(a), the exponential
interlayer decay becomes stronger, at fixed kt , when the frequency decreases (i.e., when εdk2

0
decreases). Thus, at low frequencies, less power is coupled to lower graphene layers, whereas
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Fig. 12. (a) Ratio Pdown/Pup and (b) ratio Ptot/Pfree space related to the transverse dipole
located near the interface of free space and a semi-infinite graphene-based HM at 2 THz
plotted versus dipole distance h, for different chemical potential μc values obtained via
transfer matrix method (lines) and EMA (markers).

most of the power is coupled to losses in the first graphene sheet closest to the dipole, implying
that the number of layers becomes less effective on the power spectrum for large kt and hence on
the total emitted power integral in Eq. (14). For example, the case with 0.1 THz in Fig. 11(a),
the total TMz power emitted by the dipole is dominated by the wide power spectrum region(
5×10−3π/d

)
< kt < kt,max, which is weakly dependent on the number of layers. Under this

low frequency condition, we observe that the total TMz emitted power becomes proportional
to ω2, independently on the number of layers, in agreement with the findings in [21] for a
single graphene layer. A similar trend occurs for the power emitted as TEz waves at these lower
frequencies, though it is several orders of magnitude weaker than TMz cases for large kt (see
the dashed curves in Fig. 11). Note that, instead, the free space emitted power by a dipole
|pt |2ω4η0/

(
12πc2

)
is proportional to ω4. Comparing the low frequency trends of the power

emitted in free space with the one in presence of the HM one can explain the strong increase of
the power ratio

(
Ptot/Pfree space

)
∝ ω−2 in Fig. 10(b) as frequency decreases.

It is also important to provide a physical insight into the effect of the distance h on the power
emitted by the impressed transverse dipole. In Fig. 12, we provide the plots of Ptot/Pfree space

and Pdown/Pup at 2 THz versus the dipole’s distance h for the semi-infinitely periodic (N → ∞)
graphene-dielectric multilayered structure with μc= 0 eV and μc= 0.4 eV, obtained both via
EMA (markers) and the transfer matrix method (lines). In Figs. 12(a) and 12(b) we report the
power ratios Pdown/Pup and Ptot/Pfree space for both HMg and HMd configurations, denoting a
HM with graphene (HMg) and dielectric (HMd) as topmost layer, respectively [3,49]. We notice
that the responses of both HMg and HMd configurations are very similar while the HMg has
a slightly larger Pdown/Pup and Ptot/Pfree space for smaller h, in agreement with the observations
in [49]. For the smallest reported distance h = 0.2 µm, the emitted power (Ptot/Pfree space ) and
Pdown/Pup are maximum. However for small h, EMA overestimates the reported parameters by
one to two orders of magnitude for small h, as demonstrated in [49], whereas for h > 1 µm
both methods agree well at the given frequency. Using the transfer matrix method we find the
maximum ratio Pdown/Pup ≈ 2×106 when μc=0 eV, and it decreases to Pdown/Pup ≈ 5×105 as
a result of increasing Y TM

down when ε ′t possesses more negative values. A similar change is also
observed such that the maximum ratio Ptot/Pfree space becomes ≈ 2×104 when μc= 0 eV, and it
decreases to Ptot/Pfree space ≈ 4×102 when μc= 0.4 eV. The total emitted power decreases as the
distance h increases, due to the stronger evanescent decay of high kt spectrum. However, since
the distance h is subwavelength, still a lot of power is able to couple into the HM. The power
ratio Pdown/Pup also exhibits a decrease with increasing h showing the key role of the coupling
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of the evanescent spectrum in free space to the propagating spectrum in the HM. We finally
note from the observations in Fig. 12 that the accuracy of EMA is influenced by changing the
values of μc, implying the effect of εt on EMA’s validity.

In summary, we have shown that the power emitted by a dipolar source in the proximity of
a graphene-based HM is strongly enhanced, and that it can be effectively tuned by electrostat-
ically biasing the graphene sheets, which makes this HM a promising candidate for tunable
applications in the far-infrared frequencies.

5. Conclusion

We have investigated a novel design of HM for far-infrared frequencies based on graphene
layers. The multilayer structure has been analyzed using EMA which, based on a permittivity
homogenization model, predicts the HM features at far-infrared frequencies. We have quantita-
tively shown the capability of tuning the composite material properties via chemical potential of
graphene. We have investigated plane wave interaction with a thin film made by few graphene
sheets, and showed how the transmission frequency spectrum can be tuned. We have assessed
the validity of EMA for both plane wave incidence and near-field radiation from a dipole, and
we have shown that under certain conditions EMA is in good agreement with the transfer matrix
analysis. In the last part of the paper, we have shown that a very wide spatial spectrum emitted
by an electric dipole is allowed to couple into the graphene-based HM, that would be otherwise
evanescent in free space. This generates two interesting main features: (1) the power emitted
by the dipole is strongly enhanced (up to several orders of magnitude) by the presence of the
graphene-based HM, and (2) most of the power is directed into the HM, also for relative sub-
wavelength HM thicknesses realized with only a few graphene sheets.These properties seem to
enable the use of this tunable graphene-based HM to efficiently absorb mm-waves and terahertz
frequencies, and give rise to other possible applications including super resolution lenses.
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6. Appendix A

The transfer matrix [Tunit] of a unit cell composed of a graphene sheet (modeled as a lumped
shunt complex admittance Ys = σ ) and a dielectric layer of thickness d (modeled as a transmis-
sion line) for TEz/TMz waves can be written as (assuming time-harmonic fields of the form
e jωt )

[Tunit] =

[
Aunit Bunit

Cunit Dunit

]
=

[
1 0
σ 1

][ cos(κdd) jZd sin(κdd)
j

Zd
sin(κdd) cos(κdd)

]

=

[
cos(κdd) jZd sin(κdd)

j
Zd

sin(κdd)+σ cos(κdd) jσZd sin(κdd)+ cos(κdd)

]
, (17)

where κd =
√

εdk2
0 − k2

t is wavenumber along the z axis inside the dielectric, and for TEz and

TMz waves: ZTE
d = ωμ0/κd and ZTM

d = κd/(ωε0εd), respectively. We are interested in deter-
mining the Bloch wavenumber kz in the z-direction, that describes layer to layer propagation.
Following the simple procedure in [48], the wavevector dispersion relation can be obtained
from the solution of the eigenvalue problem

∣∣[Tunit]− e− jkzd [I]
∣∣ = 0, where [I] is the identity

matrix. This leads to the simple dispersion relation in Eq. (6).
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7. Appendix B

The calculation of the admittance looking toward the −z direction YHM, N (see Fig. 8) can be
straightforwardly carried out by constructing the transfer matrix of the HM film made of N unit
cells [TN ], between the bottom-most material, i.e., the silicon substrate at z = −(Nd + h), and
the surface of HM at z = −h. By knowing the transfer matrix of the unit cell [Tunit], given in
Eq. (17), one has

[TN ] =

[
AN BN

CN DN

]
= [Tunit]

N . (18)

Then YHM, N is evaluated using the entries of the transfer matrix [TN ] and the wave admittance
inside silicon substrate, Ysubs, as

YHM, N =
CN +DNYsubs

AN +BNYsubs
, (19)

where Y TE
subs = κsubs/(ωμ0) and Y TM

subs =ωε0εsubs/κsubs are the TEz and TMz wave impedances in

the substrate, κsubs =
√

εsubsk2
0 − k2

t is the z-directed wavenumber, and εsubs = εSi is the relative
permittivity of silicon. When we consider the semi-infinite case, N → ∞, the admittance YHM, N

becomes the Bloch admittance YBloch of the periodic multilayer evaluated using the unit cell’s
transfer matrix entries in Eq. (17) as

YBloch =
Aunit −Dunit ±

√
(Aunit +Dunit)2 −4

−2Bunit
. (20)

Here one should pick the root of YBloch such that Re(YBloch)> 0, representing waves that carry
power in the −z direction.
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