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Abstract

Some new methods for Hamilton–Jacobi type nonlinear partial differential equations

by

Hung Vinh Tran

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lawrence C. Evans, Chair

I present two recent research directions in this dissertation. The first direction is on
the study of the Nonlinear Adjoint Method for Hamilton–Jacobi equations, which was
introduced recently by Evans [27]. The main feature of this new method consists of the
introduction of an additional equation to derive new information about the solutions of
the regularized Hamilton–Jacobi equations. More specifically, we linearize the regularized
Hamilton–Jacobi equations first and then introduce the corresponding adjoint equations.
Looking at the behavior of the solutions of the adjoint equations and using integration by
parts techniques, we can prove new estimates, which could not be obtained by previous
techniques.

We use the Nonlinear Adjoint Method to study the eikonal-like Hamilton–Jacobi equa-
tions [79], and Aubry–Mather theory in the non convex settings [10]. The latter one is
based on joint work with Filippo Cagnetti and Diogo Gomes. We are able to relax the
convexity conditions of the Hamiltonians in both situations and achieve some new results.

The second direction, based on joint work with Hiroyoshi Mitake [69, 68], concerns
the study of the properties of viscosity solutions of weakly coupled systems of Hamilton–
Jacobi equations. In particular, we are interested in cell problems, large time behavior,
and homogenization results of the solutions, which have not been studied much in the
literature.

We obtain homogenization results for weakly coupled systems of Hamilton–Jacobi equa-
tions with fast switching rates and analyze rigorously the initial layers appearing naturally
in the systems. Moreover, some properties of the effective Hamiltonian are also derived.

Finally, we study the large time behavior of the solutions of weakly coupled systems
of Hamilton–Jacobi equations and prove the results under some specific conditions. The
general case is still open up to now.
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Chapter 1

Viscosity solutions of

Hamilton–Jacobi equations

In this Chapter, we give a short introduction to the theory of viscosity solutions of first
order Hamilton–Jacobi equations, which was introduced by Crandall and Lions [22] (see
also Crandall, Evans, and Lions [21]). Most of this short introduction is taken from the
book of Evans [28]. Let us for simplicity only consider initial-value problem of Hamilton–
Jacobi equations:

(C)

{

ut +H(x,Du) = 0 in Rn × (0, T ),

u(x, 0) = g(x) on Rn,

where the Hamiltonians H : Rn × Rn → R is given, as is the initial function g : Rn → R.
The original approach [22, 21] is to consider the following approximated equation

(Cε)

{

uεt +H(x,Duε) = ε∆uε in Rn × (0, T ),

uε(x, 0) = g(x) on Rn,

for ε > 0. The term ε∆ in (Cε) regularizes the Hamilton–Jacobi equations, and this is the
method of vanishing viscosity. We then let ε → 0 and study the limit of the family {uε}ε>0.
It is often the case that {uε}ε>0 is bounded and locally equicontinuous on Rn× (0, T ). We
hence can use the Arzela-Ascoli theorem to deduce that

uεj → u, locally uniformly in Rn × (0, T ),

for some subsequence {uεj} and some limit function u ∈ C(Rn × (0, T )). We expect that
u is some kind of solution of (C) but we only have that u is continuous and absolutely
no information about Du and ut. Also as (C) is fully nonlinear and not of the divergence
structure, we cannot use integration by parts and weak convergence techniques to justify
that u is the weak solution in such sense. We instead use the maximum principle to obtain
the notion of weak solution, which is viscosity solutions.

The term viscosity solutions is used in honor of the vanishing viscosity technique. In
the modern approach, the existence of viscosity solutions can be obtained by using Perron’s
method. We can see later that the definition of viscosity solutions does not involve viscosity
of any kind but the name remains because of the history of the subject.
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1.1 Definitions

Definition 1.1.1 (Viscosity subsolutions, supersolutions, solutions). A bounded, uni-
formly continuous function u is called a viscosity subsolution of the intial-value problem
(C) provided that

• u(·, 0) = g on Rn.

• For each v ∈ C1(Rn × (0, T )), if u− v has a local maximum at (x0, t0) ∈ Rn × (0, T )
then

vt(x0, t0) +H(x0, Dv(x0, t0)) ≤ 0.

A bounded, uniformly continuous function u is called a viscosity supersolution of the intial-
value problem (C) provided that

• u(·, 0) = g on Rn.

• For each v ∈ C1(Rn × (0, T )), if u− v has a local minimum at (x0, t0) ∈ Rn × (0, T )
then

vt(x0, t0) +H(x0, Dv(x0, t0)) ≥ 0.

A bounded, uniformly continuous function u is called a viscosity solution of the intial-value
problem (C) if u is both a subsolution, and a supersolution of (C).

Remark 1.1.2. In Definition 1.1.1, a local maximum (resp., minimum) can be replaced by
a maximum (resp., minimum) or even by a strict maximum (resp., minimum). Besides, a
C1 test function v can be replaced by a C∞ test function v as well.

1.2 Existence

Theorem 1.2.1. Let uε be the solution of (Cε) for ε > 0. Assume that there exists a
subsequence {uεj} such that

uεj → u, locally uniformly in Rn × [0, T ]

for some u ∈ C(Rn × [0, T ]) bounded and uniformly continuous. Then u is a viscosity
solution of (C).

Proof. It is enough to prove that u is a viscosity subsolution of (C). Take any v ∈ C∞(Rn×
(0, T )) and assume that u− v has a strict maximum at (x0, t0) ∈ Rn × (0, T ).

Recall that uεj → u locally uniformly as j → ∞. For j large enough, uεj −v has a local
maximum at (xj , tj) and

(xj , tj) → (x0, t0), as j → ∞.
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We haveDuεj(xj , tj) = Dv(xj , tj), u
εj
t (xj , tj) = vt(xj , tj), and−∆uεj (xj , tj) ≥ −∆v(xj , tj).

Hence,

vt(xj , tj) +H(xj , Dv(xj, tj)) = u
εj
t (xj , tj) +H(xj , Du

εj(xj , tj))

= ε∆uεj(xj , tj) ≤ εj∆v(xj , tj).

Let j → ∞ to imply that

vt(x0, t0) +H(x0, Dv(x0, t0)) ≤ 0.

Remark 1.2.2. Let us emphasize that obtaining viscosity solutions through the vanishing
viscosity approach is the classical approach. This method does not work for second order
equations. In general, we can use Perron’s method to prove the existence of viscosity
solutions. However, we do not present Perron’s method here in this short introduction to
the theory of viscosity solutions.

1.3 Consistency

We here prove that the notion of viscosity solutions is consistent with that of classical
solutions.

Firstly, it is quite straightforward to see that if u ∈ C1(Rn × [0, T ]) solves (C) and u is
also bounded and continuous, then u is a viscosity solution of (C).

Next, we show that if a viscosity solution is differentiable at some point, then it solves
(C) there. We need the following Lemma

Lemma 1.3.1 (Touching by a C1 function). Assume u : Rm → R is continuous and
differentiable at some point x0. There exists v ∈ C1(Rm) such that u(x0) = v(x0) and u−v
has a strict local maximum at x0.

Proof. Without loss of generality, we assume first that

x0 = 0, u(0) = 0, and Du(0) = 0. (1.3.1)

We use (1.3.1) and the differentiability of u at 0 to deduce that

u(x) = |x|ω(x) (1.3.2)

where ω : Rm → R is continuous with ω(0) = 0. For each r > 0, we define

ρ(r) = max
x∈Br(0)

|ω(x)|.

We see that ρ : [0,∞) → [0,∞) is continuous, increasing, and ρ(0) = 0.
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We define

v(x) =

∫ 2|x|

|x|

ρ(r)dr + |x|2, for x ∈ Rm. (1.3.3)

It is clear that |v(x)| ≤ |x|ρ(2|x|) + |x|2, which implies

v(0) = 0, Dv(0) = 0.

Besides, for x 6= 0, explicit computations give us that

Dv(x) =
2x

|x|ρ(2|x|)−
x

|x|ρ(|x|) + 2x,

and hence v ∈ C1(Rm).
Finally for every x 6= 0,

u(x)− v(x) = |x|ω(x)−
∫ 2|x|

|x|

ρ(r)dr − |x|2

≤ |x|ρ(|x|)− |x|ρ(|x|)− |x|2 ≤ 0 = u(0)− v(0).

The proof is complete.

Lemma 1.3.1 immediately implies the following.

Theorem 1.3.2 (Consistency of viscosity solutions). Let u be a viscosity solution of (C)
and suppose that u is differentiable at (x0, t0) ∈ Rn × (0, T ), then

ut(x0, t0) +H(x0, Du(x0, t0)) = 0.

1.4 Stability

It is really important to mention that viscosity solutions remain stable under the L∞-norm.
The following proposition shows this basic fact.

Proposition 1.4.1. Let {Hk}k∈N ⊂ C(Rn × Rn) and {gk}k∈N ⊂ C(Rn). Assume that
Hk → H, gk → g locally uniformly in Rn × Rn as k → ∞ for some H ∈ C(Rn × Rn)
and g ∈ C(Rn). Let {uk}k∈N be viscosity solutions of the intial-value Hamilton–Jacobi
equations corresponding to {Hk}k∈N with uk(·, 0) = gk. Assume furthermore that uk → u
locally uniformly in Rn × [0, T ] as k → ∞ for some u bounded and uniformly continuous.
Then u is a viscosity solution of (C).

Proof. It is enough to prove that u is a viscosity subsolution of (C). Take φ ∈ C1(Rn×(0, T ))
and assume that u− φ has a strict maximum at (x0, t0) ∈ Rn × (0, T ). By the hypothesis,
for k large enough, uk − φ has a maximum at some point (xk, tk) ∈ Rn × (0, T ) and
(xk, tk) → (x0, t0) as k → ∞. By definition of viscosity subsolutions, we have

φt(xk, tk) +Hk(xk, Dφ(xk, tk)) ≤ 0.

We let k → ∞ to obtain the result.
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1.5 Uniqueness

We now establish the uniqueness of a viscosity solution of (C).

Lemma 1.5.1 (Extrema at a terminal time). Assume that u is a viscosity subsolution
(resp., supersolution) of (C) and u− v has a local maximum (resp., minimum) at a point
(x0, t0) ∈ Rn × (0, T ] for some v ∈ C1(Rn × [0, T ]). Then

vt(x0, t0) +H(x0, Dv(x0, t0)) ≤ 0(≥ 0).

The point here is that terminal time t0 = T is allowed.

Proof. We just need to verify the case of subsolution. Assume u− v has a strict maximum
at (x0, T ). We define

v(x, t) = v(x, t) +
ε

T − t
, for (x, t) ∈ Rn × (0, T ).

For ε > 0 small enough, u− v has a local maximum at (xε, tε) ∈ Rn× (0, T ) and (xε, tε) →
(x0, T ) as ε → 0. By definition of viscosity subsolutions, we have

vt(xε, tε) +H(xε, Dv(xε, tε)) ≤ 0

which is equivalent to

vt(xε, tε) +
ε

(T − tε)2
+H(xε, Dv(xε, tε)) ≤ 0.

Hence
vt(xε, tε) +H(xε, Dv(xε, tε)) ≤ 0.

We let ε→ 0 to achieve the result.

We now assume further that the Hamiltonian H satisfies

(H1) There exist a positive constant C such that

|H(x, p)−H(x, q)| ≤ C|p−q|, |H(x, p)−H(y, p)| ≤ C|x−y|(1+|p|), for (x, y, p, q) ∈ (Rn)4.

Theorem 1.5.2 (Comparison Principle for (C)). Assume that (H1) holds. If u, ũ are
viscosity subsolution, and supersolution of (C) respectively, then u ≤ ũ.

Proof. We assume by contradiction that

sup
Rn×[0,T ]

(u− ũ) = σ > 0.

For ε, λ ∈ (0, 1), we define

Φ(x, y, t, s) = u(x, t)−ũ(y, s)−λ(t+s)− 1

ε2
(|x−y|2+(t−s)2)−ε(|x|2+|y|2), for x, y ∈ Rn, t, s ≥ 0.
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There exists a point (x0, y0, t0, s0) ∈ R2n × [0, T ]2 such that

Φ(x0, y0, t0, s0) = max
R2n×[0,T ]2

Φ(x, y, t, s).

For ε, λ small enough, we have Φ(x0, y0, t0, s0) ≥ σ/2.
We use Φ(x0, y0, t0, s0) ≥ Φ(0, 0, 0, 0) to get

λ(t0+s0)+
1

ε2
(|x0−y0|2+(t0−s0)2)+ε(|x0|2+|y0|2) ≤ u(x0, t0)−ũ(y0, s0)−u(0, 0)+ũ(0, 0) ≤ C.

(1.5.1)
Hence

|x0 − y0|+ |t0 − s0| ≤ Cε, |x0|+ |y0| ≤
C

ε1/2
. (1.5.2)

We next use Φ(x0, y0, t0, s0) ≥ Φ(x0, x0, t0, t0) to deduce that

1

ε2
(|x0 − y0|2 + (t0 − s0)

2) ≤ ũ(x0, t0)− ũ(y0, s0) + λ(t0 − s0) + ε(x0 − y0) · (x0 + y0).

In view of (1.5.2) and the uniformly continuity of ũ, we get

|x0 − y0|+ |t0 − s0| = o(ε). (1.5.3)

By (1.5.2) and (1.5.3), we can take ε > 0 small enough so that s0, t0 ≥ µ > 0 for some
µ > 0.

Notice that (x, t) 7→ Φ(x, y0, t, s0) has a maximum at (x0, t0). In view of the definition
of Φ, u− v has a maximum at (x0, t0) for

v(x, t) = ũ(y0, s0) + λ(t+ s0) +
1

ε2
(|x− y0|2 + (t− s0)

2) + ε(|x|2 + |y0|2).

By definition of viscosity subsolutions,

λ+
2(t0 − s0)

ε2
+H(x0,

2(x0 − y0)

ε2
+ 2εx0) ≤ 0. (1.5.4)

Similarly, by using the fact that (y, s) 7→ Φ(x0, y, t0, s) has a maximum at (y0, s0), we
obtain that

−λ +
2(t0 − s0)

ε2
+H(y0,

2(x0 − y0)

ε2
− 2εy0) ≥ 0. (1.5.5)

Subtract (1.5.5) from (1.5.4)

2λ ≤ H(y0,
2(x0 − y0)

ε2
− 2εy0)−H(x0,

2(x0 − y0)

ε2
+ 2εx0) ≤ Cε(|x0|+ |y0|) + C|x0 − y0|.

(1.5.6)
We let ε→ 0 to discover that λ ≤ 0, which is the contradiction.

By using the comparison principle above, we obtain the following uniqueness result
immediately.

Theorem 1.5.3 (Uniqueness of viscosity solution). Under assumption (H1) there exists
at most one viscosity solution of (C).
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Chapter 2

The Nonlinear Adjoint Method for

Hamilton–Jacobi equations

2.1 Introduction to The Nonlinear Adjoint Method

In this Chapter and the next Chapter, we use the Nonlinear Adjoint Method, introduced
by Evans [27], to study the properties of solutions of Hamilton–Jacobi equations, and to
study Aubry–Mather theory, in which the Hamiltonians are non convex.

In order to describe clearly the Nonlinear Adjoint Method, let us focus on the following
time-dependent Hamilton–Jacobi equation studied by Evans [27]

{

uεt +H(Duε) = ε∆uε in Rn × (0,∞),

uε = g on Rn × {t = 0}, (2.1.1)

where H : Rn → R is a given smooth Hamiltonian and g is a given smooth initial data,
and for simplicity, we assume further that

g : Rn → R is smooth and has compact support.

It is well-known from the theory of viscosity solution [22, 21, 59] that for any given
T > 0, there exists a constant C = C(T ) independent of ε so that

‖uε‖L∞(Rn×[0,T ]) + ‖Duε‖L∞(Rn×[0,T ]) + ‖uεt‖L∞(Rn×[0,T ]) ≤ C,

and uε converges locally uniformly to u, which is the unique viscosity solution of the
Hamilton–Jacobi equation

{

ut +H(Du) = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}. (2.1.2)

However, the theory of viscosity solution does not give us the information about the
structures of the singularities of u as well as the understanding about the convergence
uε → 0, e.g. whether Duε → Du almost everywhere or not.
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Evans [27] introduced a new idea of using the Nonlinear Adjoint Method to provide
some new understanding about the above issues as follows. First of all, we can see that
the formal linearized operator of (2.1.1) is

Lεv = vt +DH(Duε) ·Dv − ε∆v.

We then can introduce the adjoint equation of the linearized operator Lε: For each T > 0
and a probability measure α on Rn, we study

{

−σεt − div(DH(Duε)σε) = ε∆σε in Rn × (0,∞),

σε = α on Rn × {t = T}. (2.1.3)

Then σε = σε,α,T were used, for various of choices of the terminal data α, to extract more
information about the vanishing viscosity process. It is straightforward by using Maximum
Principle and integration by parts to see that σε ≥ 0 and for each t ∈ [0, T ]

∫

Rn

σε(x, t) dx = 1.

The new and important inequality that Evans derived is that

ε

∫ T

0

∫

Rn

(|D2uε|2 + |Duεt |2)σε dx dt ≤ C, (2.1.4)

for some constant C > 0 independent of ε. Notice that (2.1.4) tells us that we have better
control on the second derivative of uε on the support of σε, as usually we only have ε|∆uε|
is bounded on Rn × [0, T ] by (2.1.1).

In particular, we can use (2.1.4) to derive the rate of convergence of uε to u,

‖uε − u‖L∞(Rn×[0,T ] ≤ Cε1/2,

in a very beautiful way by proving that |∂uε
∂ε

(x, t)| ≤ C
ε1/2

for (x, t) ∈ Rn × [0, T ].
Deeper analysis using the Nonlinear Adjoint Method gives us some new phenomenon,

which is the matrix of dissipation measures. The matrix of dissipation measures contains
some hidden information about the jumps of the gradients of Du along the characteristics
as described in [27].

We will use the Nonlinear Adjoint Method to study the eikonal-like Hamilton–Jacobi
equations in the next Section, which is taken from [79]. We derive the rate of convergence
of uε to u and also relax the convexity of the Hamiltonians. Next Chapter devotes to
the study of Aubry–Mather theory in the non convex setting. The results are taken from
[10]. We construct Aubry–Mather measures for the non convex Hamiltonians and prove
that these measures may fail to be invariant under the Hamiltonian flow because of the
appearance of the dissipation measures. However, in the important case of uniformly quasi-
convex Hamiltonians the dissipation measures vanish, and as a consequence the invariance
is guaranteed.

We refer the readers to [27, 79, 10, 33, 9, 11] for the progress in recent years of the
Nonlinear Adjoint Method.
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2.2 Eikonal-like equation in bounded domain

We study the following of Eikonal-like Hamilton–Jacobi equation in a given bounded do-
main U with smooth boundary

{

H(Du(x)) = 0 in U,

u(x) = 0 on ∂U.
(2.2.1)

Crandall and Lions studied this equation in sense of viscosity solution first in [22].
See also [59]. After that, Fleming and Souganidis studied it in more details and also gave
some asymptotic series of the solutions of the regularized problem in [42]. Then Ishii gave
a simple and direct proof of the uniqueness of the solution in [49]. We here base on the
conditions given in [42, 59] and we refer the readers to [49, 42, 59] for more details.

Our approach, as usual, is to consider the following regularized problem

{

H(Duε(x)) = ε∆uε(x) in U,

uε(x) = 0 on ∂U.
(2.2.2)

Our goal here is twofold. First, we use the nonlinear adjoint method to study the
speed of convergence of uε to u as ε tends to 0. Secondly, we relax the convexity of the
Hamiltonian H , which was often required in the study of (2.2.1) in the literature. We
replace the convexity condition by some weaker and more natural condition as follows.

We assume the Hamiltonian H satisfies the following conditions

(H1) H smooth and H(0) < 0.

(H2) H is superlinear, i.e. lim|p|→∞
H(p)

|p| = ∞.

(H3) There exist γ, δ > 0 such that DH(p) · p− γH(p) ≥ δ > 0 for all p ∈ Rn.

Condition (H3) is used to replace the convexity condition and will be discussed later. We
just make an obvious observation that if H is convex then (H3) holds with γ = 1 and
δ = −H(0).

Theorem 2.2.1. There exists a constant C > 0 independent of ε such that

‖uε‖L∞ , ‖Duε‖L∞ ≤ C. (2.2.3)

Proof. In the case where H is convex then this theorem was proved in [42] by Lemmas 1.1
and 1.2 or in [59]. We here follow the proof in [42] and just need to slightly modify some
estimates using the convexity of H .

By Lemma 1.1 and the first part of Lemma 1.2 in [42], there exists a constant C > 0
such that 0 ≤ uε ≤ C in U and |Duε| ≤ C on ∂U . To complete the proof, we will only
need to bound |Duε| in U .
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Using the same ideas like in [42, 59], let w = |Duε| − µuε, where µ is to be a suitably
chosen constant. Suppose that w has a positive maximum at an interior point x0 ∈ U . At
x0 we have

0 = wxi =

∑

k u
ε
xk
uεxkxi

|Duε| − µuεxi,

which implies that
∑

i

(
∑

k

uεxku
ε
xkxi

)2 = µ2|Duε|4.

Furthermore,

0 ≤ −ε∆w =
ε
∑

i(
∑

k u
ε
xk
uεxkxi)

2

|Duε|3 −
ε
∑

i,k(u
ε
xkxi

)2

|Duε| +

∑

k u
ε
xk
(−ε∆uε)xk
|Duε| + µ(ε∆uε),

By using the inequality
(∆uε)2

n
≤ ∑

i,k(u
ε
xixk

)2 and (2.2.2), we derive that

0 ≤ εµ2|Duε| − H2

nε|Duε| − µDH ·Duε + µH.

Besides, (H3) implies
µDH ·Duε − µγH > δµ > 0,

Thus,
H2

|Duε|2 ≤ nµ2ε2 + nε(µ− µγ)
H

|Duε| ≤ nµ2ε2 + nεµ(1 + γ)
|H|
|Duε| .

Choose µ =
1

2n(1 + γ)
then for ε < 1, we get the estimate:

H2

|Duε|2 ≤ 1 +
|H|
|Duε| .

By the superlinearity condition (H2) we finally get |Duε| is bounded independently of
ε.

Remark 2.2.2. The existence of the solution of (2.2.2) then follows directly from [42] with
some changes and adaptations similar to the proof of Theorem 2.2.1 above.

Now we discuss the uniqueness of the viscosity solution u of (2.2.1). For p ∈ Rn, let us
consider φ : (0,∞) → R as following

φ(t) = t−γH(tp) ∀ t > 0,

then
φ′(t) = t−γ−1(DH(tp) · (tp)− γH(tp)) > t−γ−1δ > 0.
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Hence φ is strictly increasing and for t < 1 we have furthermore:

φ(1)− φ(t) =

∫ 1

t

φ′(s) ds >

∫ 1

t

s−γ−1δ ds =
δ

γ + 1
(t−γ − 1) > 0,

Thus,

H(tp) ≤ tγH(p)− δ

γ + 1
(1− tγ) = tγH(p) +

−δ
(γ + 1)H(0)

(1− tγ)H(0).

Notice that H(0) < 0 by (H1). So H satisfies all the conditions (H1)-(H3) and (H4)’ in
[49] with ϕ = 0. Therefore, (2.2.1) has a unique viscosity solution.

The proof of the uniqueness of uε is quite complicated and follows the key idea of this
Section. Therefore, we put it at the end of this Section.

Our main theorem of this Section is

Theorem 2.2.3. There exists a constant C > 0 independent of ε such that

‖uε − u‖L∞ ≤ Cε1/2. (2.2.4)

Adjoint method. The formal linearized operator of (2.2.2) is

Lεv = DH(Duε) ·Dv − ε∆v.

We now introduce the adjoint equation of the above operator. For each x0 ∈ U , we consider
the following PDE

{

−div(DH(Duε)σε) = ε∆σε + δx0 in U,

σε = 0 on ∂U.
(2.2.5)

The adjoint equation here is very nice, natural and similar to the one that Evans intro-
duced in [27] to study the time-dependent Hamilton–Jacobi equations. We can use σε and
integration by parts techniques to extract more properties of uε as well as u, which are our
very important goals especially in the case that H is not convex in p.

In order to derive the properties of σε, we need to use the adjoint equation of (2.2.5).
For each f ∈ C∞(U) and f ≥ 0, we consider the following equation

{

DH(Duε) ·Dvε = ε∆vε + f in U,

vε = 0 on ∂U.
(2.2.6)

By Maximum principle, we derive that vε ≥ 0. It is moreover straightforward to see that
vε = 0 when f = 0 by using Maximum Principle again. Hence by Fredholm alternative,
both equations (2.2.6) and (2.2.5) have unique solutions. By the theory of distributions
(see Chapter 5 in [72]), σε ∈ C∞(U \ {x0}).
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Lemma 2.2.4. The following fact holds

∫

U

fσε dx = vε(x0) ≥ 0. (2.2.7)

In particular, σε ≥ 0 in U \ {x0}.

Proof. By (2.2.5) and (2.2.6),

∫

U

fσε dx =

∫

U

(DH(Duε) ·Dvεσε − ε∆vεσε) dx (2.2.8)

=

∫

U

(−div(DH(Duε)σε)− ε∆σε)vε dx = vε(x0) ≥ 0.

The proof is complete.

From the above Lemma, we can easily derive some following properties of σε.

Lemma 2.2.5. Properties of σε

(i) σε ≥ 0 in U \ {x0}. In particular,
∂σε

∂n
≤ 0 on ∂U .

(ii)

∫

∂U

ε
∂σε

∂n
dS = −1.

Lemma 2.2.6. Let wε =
|Duε|2

2
then wε satisfies:

DH(Duε) ·Dwε = ε∆wε − ε|D2uε|2. (2.2.9)

The proof of Lemma 2.2.6 is quite standard, hence omitted.

Lemma 2.2.7. There exists a constant C > 0 such that
∫

U

ε|D2uε|2σε dx ≤ C. (2.2.10)

This is one of the key Lemma of this Section and the inequality (2.2.10) is a new
inequality in the theory of viscosity solutions, which was discovered first by Evans [27].

Proof. By (2.2.9), we have

∫

U

(DH(Duε) ·Dwε − ε∆wε)σε dx = −
∫

U

ε|D2uε|2σε dx. (2.2.11)
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Integrate by parts the left hand side of the above equality to derive
∫

U

(DH(Duε) ·Dwε − ε∆wε)σε dx

=

∫

U

(−div(DH(Duε)σε)wε − ε∆σεwε) dx+

∫

∂U

ε
∂σε

∂n
wεdS

=

∫

U

(−div(DH(Duε)σε)− ε∆σε)wε dx+

∫

∂U

ε
∂σε

∂n
wε dS = w(x0) +

∫

∂U

ε
∂σε

∂n
wε dS.

The results of Theorem 2.2.1 and Lemma 2.2.5 then yield the conclusion.

As usual, if we can bound
∫

U
σε dx independently of ε then Theorem 2.2.3 follows

immediately by using Lemma 2.2.7 as one can see later by using the same arguments as in
[27]. However, it is not easy to bound

∫

U
σεdx here. We will show the reasons why in the

following discussions.
Choose f = 1 then (2.2.6) reads

{

DH(Duε) ·Dvε = ε∆vε + 1 in U,

vε = 0 on ∂U.
(2.2.12)

And also Lemma 2.2.4 reads
∫

U

σε dx = vε(x0) ≥ 0. (2.2.13)

Hence, in order to bound
∫

U
σε dx, we need to bound vε(x0). And since x0 may vary,

maxU v
ε should be bounded uniformly independently of ε. It turns out that this fact is not

true for general H . For example, when DH(p) = 0 for all p, the above fact is no longer
true, i.e. we will no longer have the uniformly bound for maxU v

ε by the following explicit
example.

Let us consider the following ODE:
{

ε∆vε + 1 = 0 in (0, 1),

vε(0) = vε(1) = 0.
(2.2.14)

Then vε(x) =
1

2ε
(x−x2), which implies max[0,1] v

ε =
1

8ε
. So max[0,1] v

ε blows up as ε tends

to 0. Heuristically, this counter-example shows that we need to have some conditions on
the gradient of the Hamiltonian H that allow us to control vε.

We introduce next the second example, where we have some growth control on DH(p),
as following

{

(vε)′ = ε∆vε + 1 in (0, 1),

vε(0) = vε(1) = 0.
(2.2.15)

Explicit computations give us that

vε(x) = x− ex/ε − 1

e1/ε − 1
.



CHAPTER 2. THE NONLINEAR ADJOINT METHOD FOR HAMILTON–JACOBI

EQUATIONS 14

Hence, max[0,1] v
ε ≤ 1, which provides us the uniformly boundedness of maxU v

ε indepen-
dent of ε. While the first example fails, the second one intuitively shows that if we can
control the growth of DH(p) in an appropriate way, we will have such uniform bound.

Based upon the above examples and discussions, we introduce condition (H3), which
is weaker than the convexity condition, but still allows us to have the uniform bound of
maxU v

ε independent of ε. Let us recall (H3).

(H3) There exist γ, δ > 0 so that DH(p) · p− γH(p) ≥ δ > 0 for all p ∈ Rn.

In particular, if H is convex then (H3) follows with γ = 1, δ = −H(0). In fact, the required
condition (H3) is similar to the homogenous condition. It is natural and it works well for
a lot of cases where H is not convex. For example, for n = 1, if we take

H(p) = (p2 − 1)2 − 2 = p4 − 2p2 − 1,

then H is not convex, but

DH(p) · p− 2H(p) = (4p4 − 4p2)− 2(p4 − 2p2 − 1) = 2p4 + 2 ≥ 2 > 0.

It is easy to check that H satisfies (H1)–(H3) and H is not convex.
The following lemma shows the way to bound maxU v

ε.

Lemma 2.2.8. Let α, β ∈ R and z(x) = αx ·Duε(x) + βuε(x) then

DH(Duε) ·Dz − ε∆z = (α + β)DH(Duε) ·Duε − (2α+ β)ε∆uε. (2.2.16)

Proof. It’s enough to work with z(x) = x ·Duε(x) = xiu
ε
xi
. We compute

zxk = uεxk + xiu
ε
xixk

, zxkxk = uεxkxk + uεxkxk + xiu
ε
xkxkxi

,

to get
Dz = Duε + xiDu

ε
xi
, ∆z = 2∆uε + xi∆u

ε
xi
.

Next, we differentiate (2.2.2) with respect to xi

DH(Duε) ·Duεxi = ε∆uεxi, (2.2.17)

and combine all the above computations to derive that

DH(Duε) ·Dz − ε∆z = DH(Duε) ·Duε − 2ε∆uε + xi(DH(Duε) ·Duεxi − ε∆uεxi)

= DH(Duε) ·Duε − 2ε∆uε.
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This lemma gives us an idea to obtain a bound of maxU v
ε by finding a supersolution

ϕ of (2.2.12) of the type z, and then performing Comparison Principle to get vε ≤ ϕ.

We can choose appropriate α, β such that α + β > 0 and
2α+ β

α + β
= γ. By using this

relation and (H3),

DH(Duε) ·Dz − ε∆z = (α + β)(DH(Duε) ·Duε − γε∆uε) (2.2.18)

≥(α + β)(γH(Duε) + δ − γε∆uε) = (α + β)δ > 0.

Let k =
1

(α+ β)δ
and let ϕ(x) = kz(x) +M with M > 0 large enough so that ϕ|∂U ≥ 0.

Then by (2.2.18), ϕ is a supersolution of (2.2.12), i.e.

DH(Duε) ·Dϕ− ε∆ϕ ≥ 1. (2.2.19)

By Comparison Principle, we easily get:

0 ≤ vε ≤ ϕ. (2.2.20)

Therefore, there exists C > 0 such that 0 ≤ vε ≤ C. Notice that the boundedness of U
plays the crucial role here since it implies the boundedness of z(x) = αx ·Duε(x)+βuε(x).
If U is not bounded then z may not be bounded.

In order to prove Theorem 2.2.3, we prove the following theorem

Theorem 2.2.9. There exists C > 0 such that

|uεε(x)| ≤ Cε−1/2,

where uεε(x) :=
∂uε

∂ε
(x).

Proof. Differentiate (2.2.2) with respect to ε to get
{

DH(Duε) ·Duεε = ε∆uεε +∆uε in U,

uεε = 0 on ∂U.
(2.2.21)

Pick a point x0 ∈ U so that

|uεε(x0)| = max
U

|uεε(x)| ≥ 0.

Multiply (2.2.21) by σε and then integrate by parts over U to achieve

uεε(x0) =

∫

U

∆uεσε dx.

By Holder’s inequality, Lemma 2.2.6 and the boundedness of
∫

U
σε dx, we finally get that

|uεε(x0)| ≤
(
∫

U

|D2uε|2σε dx
)1/2 (∫

U

σε dx

)1/2

≤ Cε−1/2.
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Finally, we end this Chapter by giving the proof of the uniqueness of the solution uε of
equation (2.2.2).

Theorem 2.2.10. If u and v are the solutions of (2.2.2) then we get u = v.

Proof. It is enough to prove that u ≤ v. The strategy is to find a sequence of functions
{zθ} such that zθ converges uniformly to v as θ → 0 and

H(Du)− ε∆u < H(Dzθ)− ε∆zθ in U ; and u ≤ zθ on ∂U.

By Remark 2.2.2, for t > 1 we have

H(tp) ≥ tγH(p) +
δ

γ + 1
(tγ − 1).

Let z = sv + t(x ·Dv +M) where M > 0 is to be a suitable chosen constant. We can see
that the function z here is similar to the one in Lemma 2.2.8, and

Dz = (s+ t)Dv + txiDvxi, ∆z = (s+ 2t)∆v + txi∆vxi.

For s close to 1, for t > 0 close to 0 and s+ t > 1,

H(Dz)− ε∆z = H((s+ t)Dv + txiDvxi)− ε(s+ 2t)∆v + tεxi∆vxi
= H((s+ t)Dv) + tDH((s+ t)Dv) · (xiDvxi) + t2O(1)− ε(s+ 2t)∆v + tεxi∆vxi
= H((s+ t)Dv) + tDH(Dv) · (xiDvxi) + t((s+ t)− 1)O(1) + t2O(1)−

− ε(s+ 2t)∆v + tεxi∆vxi

≥ (s+ t)γH(Dv) +
δ

γ + 1
((s+ t)γ − 1) + t((s+ t)− 1)O(1) + t2O(1)− ε(s+ 2t)∆v.

For θ > 0, let t = (1 + θ)γ − (1 + θ) and s = 2(1 + θ) − (1 + θ)γ. Let zθ = sv + t(x ·
Dv +M) corresponding to s, t chosen. Notice that zθ converges uniformly to v as θ → 0.
Furthermore, (s+ t)γ = s+ 2t = (1 + θ)γ and for θ small enough

δ

γ + 1
((s+ t)γ − 1) + t((s+ t)− 1)O(1) + t2O(1) > 0.

Hence we get H(Dzθ)− ε∆zθ > 0. Finally, choose M large enough to guarantee zθ ≥ u on
∂U . The proof is complete.
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Chapter 3

Aubry–Mather Measures in the Non

Convex setting

3.1 Introduction

Let us consider a periodic Hamiltonian system whose energy is described by a smooth
Hamiltonian H : Tn × Rn → R. Here Tn denotes the n-dimensional torus, n ∈ N. It is
well known that the time evolution t 7→ (x(t),p(t)) of the system is obtained by solving
the Hamilton’s ODE







ẋ = −DpH(x,p),

ṗ = DxH(x,p).
(3.1.1)

Assume now that, for each P ∈ Rn, there exists a constant H(P ) and a periodic function
u(·, P ) solving the following time independent Hamilton-Jacobi equation

H(x, P +Dxu(x, P )) = H(P ). (3.1.2)

Suppose, in addition, that both u(x, P ) and H(P ) are smooth functions. Then, if the
following relations

X = x+DPu(x, P ), p = P +Dxu(x, P ), (3.1.3)

define a smooth change of coordinates X(x, p) and P (x, p), the ODE (3.1.1) can be rewrit-
ten as







Ẋ = −DPH(P),

Ṗ = 0.
(3.1.4)

Since the solution of (3.1.4) is easily obtained, solving (3.1.1) is reduced to inverting the
change of coordinates (3.1.3). Unfortunately, several difficulties arise.

Firstly, it is well known that the solutions of the nonlinear PDE (3.1.2) are not smooth
in the general case. For the convenience of the reader, we recall the definition of viscosity
solution.
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Definition 3.1.1. We say that u is a viscosity solution of (3.1.2) if for each v ∈ C∞(Rn)

• If u− v has a local maximum at a point x0 ∈ Rn then

H(x0, P +Dv(x0)) ≤ H(P );

• If u− v has a local minimum at a point x0 ∈ Rn then

H(x0, P +Dv(x0)) ≥ H(P ).

One can anyway solve (3.1.2) in this weaker sense, as made precise by the following
theorem, due to Lions, Papanicolaou and Varadhan.

Theorem 3.1.2 (See [60]). Let H : Tn × Rn → R be smooth such that

lim
|p|→+∞

H(x, p) = +∞. (3.1.5)

Then, for every P ∈ Rn there exists a unique H(P ) ∈ R such that (3.1.2) admits a
continuous Tn-periodic viscosity solution u(·, P ).

We call (3.1.2) the cell problem. It can be easily proved that all the viscosity solutions
of the cell problem are Lipschitz continuous by using the coercivity of H .

A second important issue is that the solution u(·, P ) of (3.1.2) may not be unique,
even modulo addition of constants. Indeed, a simple example is given by the Hamiltonian
H(x, p) = p · (p− Dψ(x)), where ψ : Tn → R is a smooth fixed function. In this case, for
P = 0 and H(0) = 0, the cell problem is

Du ·D(u− ψ) = 0,

which admits both u ≡ 0 and u = ψ as solutions. Therefore, smoothness of u(x, P ) in P
cannot be guaranteed.

Finally, even in the particular case in which both u(x, P ) and H(P ) are smooth, rela-
tions (3.1.3) may not be invertible, or the functions X(x, p) and P (x, p) may not be smooth
or globally defined.

Therefore, in order to understand the solutions of Hamilton’s ODE (3.1.1) in the general
case, it is very important to exploit the functions H(P ) and u(x, P ), and to extract any
possible information “encoded” in H(P ) about the dynamics.

Classical Results: the convex case

Classically, the additional hypotheses required in literature on the Hamiltonian H are:

(i) H(x, ·) is strictly convex;
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(ii) H(x, ·) is superlinear, i.e.
lim

|p|→+∞

H(x, p)

|p| = +∞.

A typical example is the mechanical Hamiltonian

H(x, p) =
|p|2
2

+ V (x),

where V is a given smooth Tn-periodic function. Also, one restricts the attention to a
particular class of trajectories of (3.1.1), the so-called one sided absolute minimizers of
the action integral. More precisely, one first defines the Lagrangian L : Tn × Rn → R

associated to H as the Legendre transform of H :

L(x, v) := H∗(x, v) = sup
p∈Rn

{−p · v −H(x, p)} for every (x, v) ∈ Tn × Rn. (3.1.6)

Here the signs are set following the Optimal Control convention (see [41]). Then, one looks
for a Lipschitz curve x(·) which minimizes the action integral, i.e. such that

∫ T

0

L(x(t), ẋ(t)) dt ≤
∫ T

0

L(y(t), ẏ(t)) dt (3.1.7)

for each time T > 0 and each Lipschitz curve y(·) with y(0) = x(0) and y(T ) = x(T ).
Under fairly general conditions such minimizers exist, are smooth, and satisfy the Euler-
Lagrange equations

d

dt
[DvL(x(t), ẋ(t))] = DxL(x(t), ẋ(t)), t ∈ (0,+∞). (3.1.8)

It may be shown that if x(·) solves (3.1.7) (and in turn (3.1.8)), then (x(·),p(·)) is a solution
of (3.1.1), where p(·) := −DvL(ẋ(·),x(·)). This is a consequence of assumptions (i) and
(ii), that in particular guarantee a one to one correspondence between Hamiltonian space
and Lagrangian space coordinates, through the one to one map Φ : Tn × Rn → Tn × Rn
defined as

Φ(x, v) := (x,−DvL(x, v)). (3.1.9)

There are several natural questions related to the trajectories x(·) satisfying (3.1.7), in
particular in what concerns ergodic averages, asymptotic behavior and so on. To address
such questions it is common to consider the following related problem.

In 1991 John N. Mather (see [64]) proposed a relaxed version of (3.1.7), by considering

min
ν∈D

∫

Tn×Rn

L(x, v) dν(x, v), (3.1.10)

where D is the class of probability measures in Tn×Rn that are invariant under the Euler-
Lagrange flow. In Hamiltonian coordinates the property of invariance for a measure ν can
be written more conveniently as:

∫

Tn×Rn

{φ,H} dµ(x, p) = 0, for every φ ∈ C1
c (T

n × Rn),
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where µ = Φ#ν is the push-forward of the measure ν with respect to the map Φ, i.e., the
measure µ such that

∫

Tn×Rn

φ(x, p) dµ(x, p) =

∫

Tn×Rn

φ(x,−DvL(x, v)) dν(x, v),

for every φ ∈ Cc(T
n × Rn). Here the symbol {·, ·} stands for the Poisson bracket, that is

{F,G} := DpF ·DxG−DxF ·DpG, for every F,G ∈ C1(Tn × Rn).

Denoting by P(Tn × Rn) the class of probability measures on Tn × Rn, we have

D =

{

ν ∈ P(Tn × Rn) :
∫

Tn×Rn

{φ,H} dΦ#ν(x, p) = 0, for every φ ∈ C1
c (T

n × Rn)
}

.

(3.1.11)

The main disadvantage of problem (3.1.10) is that the set (3.1.11) where the minimiza-
tion takes place depends on the Hamiltonian H and thus, in turn, on the integrand L. For
this reason, Ricardo Mañe (see [63]) considered the problem

min
ν∈F

∫

Tn×Rn

L(x, v) dν(x, v), (3.1.12)

where

F :=

{

ν ∈ P(Tn × Rn) :
∫

Tn×Rn

v ·Dψ(x) dν(x, v) = 0, for every ψ ∈ C1(Tn)

}

.

Measures belonging to F are called holonomic measures. Notice that, in particular, to
every trajectory y(·) of the original problem (3.1.7) we can associate a measure νy(·) ∈ F .
Indeed, for every T > 0 we can first define a measure νT,y(·) ∈ P(Tn × Rn) by the relation

∫

Tn×Rn

φ(x, v) dνT,y(·)(x, v) :=
1

T

∫ T

0

φ(y(t), ẏ(t)) dt for every φ ∈ Cc(T
n × Rn).

Then, from the fact that

supp νT,y(·) ⊂ Tn × [−M,M ], for every T > 0, (M = Lipschitz constant of y(·))

we infer that there exists a sequence Tj → ∞ and a measure νy(·) ∈ P(Tn ×Rn) such that

νTj ,y(·)
∗
⇀ νy(·) in the sense of measures, that is,

lim
j→∞

1

Tj

∫ Tj

0

φ(y(t), ẏ(t)) dt =

∫

Tn×Rn

φ(x, v) dνy(·)(x, v) for every φ ∈ Cc(T
n × Rn).

(3.1.13)
Choosing φ(x, v) = v ·Dψ(x) in (3.1.13) it follows that νy(·) ∈ F , since

∫

Tn×Rn

v·Dψ(x) dνy(·)(x, v) = lim
j→∞

1

Tj

∫ Tj

0

ẏ(t)·Dψ(y(t)) dt = lim
j→∞

ψ(y(Tj))− ψ(y(0))

Tj
= 0.
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In principle, since F is much larger than the class of measures D, we could expect the
last problem not to have the same solution of (3.1.10). However, Mañe proved that every
solution of (3.1.12) is also a minimizer of (3.1.10).

A more general version of (3.1.12) consists in studying, for each P ∈ Rn fixed,

min
ν∈F

∫

Tn×Rn

(L(x, v) + P · v) dν(x, v), (3.1.14)

referred to as Mather problem. Any minimizer of (3.1.14) is said to be a Mather mea-
sure. An interesting connection between the Mather problem and the time independent
Hamilton-Jacobi equation (3.1.2) is established by the identity:

−H(P ) = min
ν∈F

∫

Tn×Rn

(L(x, v) + P · v) dν(x, v). (3.1.15)

Notice that problems (3.1.12) and (3.1.14) have the same Euler-Lagrange equation, but
possibly different minimizers, since the term P · v is a null Lagrangian. The following
theorem gives a characterization of Mather measures in the convex case.

Theorem 3.1.3. Let H : Tn × Rn → R be a smooth function satisfying (i) and (ii), and
let P ∈ Rn. Then, ν ∈ P(Tn × Rn) is a solution of (3.1.14) if and only if:

(a)

∫

Tn×Rn

H(x, p) dµ(x, p) = H(P ) = H(x, p) µ-a.e.;

(b)

∫

Tn×Rn

(p− P ) ·DpH(x, p) dµ(x, p) = 0;

(c)

∫

Tn×Rn

DpH(x, p) ·Dφ(x) dµ(x, p) = 0, for every φ ∈ C1(Tn),

where µ = Φ#ν and H(P ) is defined by Theorem 3.1.2.

Before proving Theorem 3.1.3 we state the following proposition, which is a consequence
of the results in [63], [35], [37], [34], [36] and [32].

Proposition 3.1.4. Let H : Tn × Rn → R be a smooth function satisfying (i) and (ii).
Let P ∈ Rn, let ν ∈ P(Tn × Rn) be a minimizer of (3.1.14) and set µ = Φ#ν. Then,

(1) µ is invariant under the Hamiltonian dynamics, i.e.

∫

Tn×Rn

{φ,H} dµ(x, p) = 0 for every φ ∈ C1
c (T

n × Rn);

(2) µ is supported on the graph

Σ := {(x, p) ∈ Tn × Rn : p = P +Dxu(x, P )},
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where u is any viscosity solution of (3.1.2).

We observe that property (2), also known as the graph theorem, is a highly nontrivial
result. Indeed, by using hypothesis (ii) one can show that any solution u(·, P ) of (3.1.2) is
Lipschitz continuous, but higher regularity cannot be expected in the general case.

Proof of Theorem 3.1.3. To simplify, we will assume P = 0.
Let ν be a minimizer of (3.1.14). By the previous proposition, we know that properties

(1) and (2) hold; let us prove that µ = Φ#ν satisfies (a)–(c). By (3.1.15), we have

∫

Tn×Rn

L(x, v) dν(x, v) = −H(0).

Furthermore, because of (2)

∫

Tn×Rn

H(x, p) dµ(x, p) = H(0),

that is, (a). Since H(x, p) = −L(x,−DpH(x, p)) + p ·DpH(x, p), this implies that

∫

Tn×Rn

p ·DpH(x, p) dµ(x, p) = 0,

and so (b) holds. Finally, (c) follows directly from the fact that ν ∈ F .
Let now µ ∈ P(Tn × Rn) satisfy (a)–(c), and let us show that ν = (Φ−1)#µ is a

minimizer of (3.1.14). First of all, observe that ν ∈ F . Indeed, by using (c) for every
ψ ∈ C1(Tn)

∫

Tn×Rn

v ·Dψ(x) dν(x, v) = −
∫

Tn×Rn

DpH(x, p) ·Dψ(x) dµ(x, p) = 0.

Let now prove that ν is a minimizer.
Integrating equality H(x, p) = −L(x,−DpH(x, p)) + p · DpH(x, p) with respect to µ,

and using (a) and (b) we have

H(0) =

∫

Tn×Rn

H(x, p) dµ(x, p)

= −
∫

Tn×Rn

L(x,−DpH(x, p)) dµ(x, p) +

∫

Tn×Rn

p ·DpH(x, p) dµ(x, p)

= −
∫

Tn×Rn

L(x,−DpH(x, p)) dµ(x, p) = −
∫

Tn×Rn

L(x, v) dν(x, v).

By (3.1.15), ν is a minimizer of (3.1.14).
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The Non Convex Case

The main goal of this Chapter is to use the techniques of [27] and [79] to construct Mather
measures under fairly general hypotheses, when the variational approach just described
cannot be used. Indeed, when (i) and (ii) are satisfied H coincides with the Legendre
transform of L, that is, identity H = H∗∗ holds. Moreover, L turns out to be convex and
superlinear as well, and relation (3.1.9) defines a smooth diffeomorphism, that allows to
pass from Hamiltonian to Lagrangian coordinates.

First of all, we extend the definition of Mather measure to the non convex setting,
without making use of the Lagrangian formulation.

Definition 3.1.5. We say that a measure µ ∈ P(Tn × Rn) is a Mather measure if there
exists P ∈ Rn such that properties (a)–(c) are satisfied.

The results exposed in the previous subsection show that, modulo the push-forward
operation, this definition is equivalent to the usual one in literature (see e.g. [38], [63],
[64]). We would like now to answer the following natural questions:

• Question 1: Does a Mather measure exist?

• Question 2: Let µ be a Mather measure. Are properties (1) and (2) satisfied?

We just showed that in the convex setting both questions have affirmative answers. Before
addressing these issues, let us make some hypotheses on the Hamiltonian H . We remark
that without any coercivity assumption (i.e. without any condition similar to (ii)), there
are no a priori bounds for the modulus of continuity of periodic solutions of (3.1.2). Indeed,
for n = 2 consider the Hamiltonian

H(x, p) = p21 − p22 for every p = (p1, p2) ∈ R2.

In this case, equation (3.1.2) for P = 0 and H(P ) = 0 becomes

u2x − u2y = 0. (3.1.16)

Then, for every choice of f : R → R of class C1, the function u(x, y) = f(x − y) is a
solution of (3.1.16). Clearly, there are no uniform Lipschitz bounds for the family of all
such functions u. We assume that

(H1) H is smooth;

(H2) H(·, p) is Tn-periodic for every p ∈ Rn;

(H3) lim|p|→+∞

(

1

2
|H(x, p)|2 +DxH(x, p) · p

)

= +∞ uniformly in x.
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Note that if hypothesis (ii) of the previous subsection holds uniformly in x and we have a
bound on DxH(x, p), e.g. |DxH(x, p)| ≤ C(1 + |p|), then (H3) holds.

First we consider, for every ε > 0, a regularized version of (3.1.2), showing existence
and uniqueness of a constant H

ε
(P ) such that

−ε
2

2
∆uε(x) +H(x, P +Duε(x)) = H

ε
(P ) (3.1.17)

admits a Tn-periodic viscosity (in fact smooth) solution (see Theorem 3.2.1).
Thanks to (H3), we can establish a uniform bound on ‖Duε‖L∞ and prove that, up to

subsequences, H
ε
(P ) → H(P ) and uε(·, P ) converges uniformly to u(·, P ) as ε→ 0, where

H(P ) and u(·, P ) solve equation (3.1.2).
Observe that, in particular, this shows that Theorem 3.1.2 still holds true under as-

sumption (H3) when (3.1.5) does not hold, as for instance when n = 1 and

H(x, p) = p3 + V (x), V smooth and Tn-periodic.

On the other hand (3.1.5) does not imply (H3), see the Hamiltonian

H(x, p) = p2
(

3 + sin(ep
2

(cos 2πx))
)

(here again n = 1). Thus, although (H3) seems to be a technical assumption strictly related
to the particular choice of the approximating equations (3.1.17), it is not less general than
(3.1.5), as just clarified by the previous examples. Anyway, it is not clear at the moment
if the results we prove in this Chapter are still true for Hamiltonians satisfying (3.1.5) but
not (H3).

Once suitable properties for the sequence {uε} are proved, for every ε > 0 we define
the perturbed Hamilton SDE (see Section 3.3) as

{

dxε = −DpH(xε,pε) dt+ ε dwt,

dpε = DxH(xε,pε) dt+ εD2uε dwt,
(3.1.18)

where wt is a n-dimensional Brownian motion. The main reason why we use a stochastic
approach, is that in this way we emphasize the connection with the convex setting by
averaging functions along trajectories. Nevertheless, our techniques can also be introduced
in a purely PDE way (see Section 3.3 for a sketch of this approach).

In the second step, as just explained, in analogy to what is done in the convex setting we
encode the long-time behavior of the solutions t 7→ (xε(t),pε(t)) of (3.1.18) into a family
of probability measures {µε}ε>0, defined by

∫

Tn×Rn

φ(x, p) dµε(x, p) := lim
Tj→∞

1

Tj
E

[
∫ Tj

0

φ(xε(t),pε(t)) dt

]

for every φ ∈ Cc(T
n×Rn),

where with E[·] we denote the expected value and the limit is taken along appropriate
subsequences {Tj}j∈N (see Section 3.3).
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Using the techniques developed in [27], we are able to provide some bounds on the
derivatives of the functions uε. More precisely, defining σµε as the projection on the torus
Tn of the measure µε (see Section 3.3), we give estimates on the (L2, dσµε)-norm of the
second and third derivatives of uε, uniformly w.r.t. ε (see Proposition 3.4.1).

In this way, we show that there exist a Mather measure µ and a nonnegative, symmetric
n × n matrix of Borel measures (mkj)k,j=1,...,n such that µε converges weakly to µ up to
subsequences and

∫

Tn×Rn

{φ,H} dµ+
∫

Tn×Rn

φpkpj dmkj = 0, ∀φ ∈ C2
c (T

n × Rn), (3.1.19)

with sum understood over repeated indices (see Theorem 3.5.1). As in [27], we call mkj the
dissipation measures. Relation (3.1.19) is the key point of our work, since it immediately
shows the differences with the convex case. Indeed, the Mather measure µ is invariant under
the Hamiltonian flow if and only the dissipation measures mkj vanish. When H(x, ·) is
convex, this is guaranteed by an improved version of the estimates on the second derivatives
of uε (see Proposition 3.4.1, estimate (3.4.4)). We give in Section 3.10 a one dimensional
example showing that, in general, the dissipation measures (mkj)k,j=1,...,n do not disappear.

We study property (2) in Section 3.8. In particular, we show that if (3.1.2) admits a
solution u(·, P ) of class C1, which is a rather restrictive condition, then the corresponding
Mather measure µ given by Theorem 3.1.2 satisfies

DpH(x, P +Dxu(x, P )) · (p− P −Dxu(x, P )) = 0

in the support of µ (see Corollary 3.8.2). Observe that this single relation is not enough
to give us (2) in general, e.g. n ≥ 2.

Finally, we are able to provide some examples of non-convex Hamiltonians (see Section
3.9), for which both properties (1) and (2) are satisfied. We observe that the case of strictly
quasiconvex Hamiltonians, which appears among our examples, could also be studied using
duality (see Section 3.9).

3.2 Elliptic regularization of the cell problem

We start by quoting a classical result concerning an elliptic regularization of equation
(3.1.2). This, also called vanishing viscosity method, is a well known tool to study viscosity
solutions. In the context of Mather measures this procedure was introduced by Gomes in
[45], see also [1], [2], [55].

Theorem 3.2.1. For every ε > 0 and every P ∈ Rn, there exists a unique number H
ε
(P ) ∈

R such that the equation

−ε
2

2
∆uε(x) +H(x, P +Duε(x)) = H

ε
(P ) (3.2.1)



CHAPTER 3. AUBRY–MATHER MEASURES IN THE NON CONVEX SETTING 26

admits a unique (up to constants) Tn-periodic viscosity solution. Moreover, for every P ∈
Rn

lim
ε→0+

H
ε
(P ) = H(P ), and uε → u uniformly (up to subsequences),

where H(P ) ∈ R and u : Tn → R are such that (3.1.2) is satisfied in the viscosity sense.

We call (3.2.1) the stochastic cell problem.

Definition 3.2.2. Let ε > 0 and P ∈ Rn. The linearized operator Lε,P : C2(Tn) → C(Tn)
associated to equation (3.2.1) is defined as

Lε,P v(x) := −ε
2

2
∆v(x) +DpH(x, P +Duε(x)) ·Dv(x),

for every v ∈ C2(Tn).

Sketch of the Proof. We mimic the proof in [60]. For every λ > 0, let’s consider the follow-
ing problem

λvλ +H(x, P +Dvλ) =
ε2

2
∆vλ.

The above equation has a unique smooth solution vλ in Rn which is Zn-periodic.
We will prove that ‖λvλ‖L∞ , ‖Dvλ‖L∞ ≤ C, for some positive constant C independent on λ
and ε. By using the viscosity property with ϕ = 0 as a test function, we get ‖λvλ‖L∞ ≤ C.

Let now wλ =
|Dvλ|2

2
. Then we have

2λwλ +DpH ·Dwλ +DxH ·Dvλ = ε2

2
∆wλ − ε2

2
|D2vλ|2.

Notice that for ε < 1/
√
n

ε2

2
|D2vλ|2 ≥ ε4

4
|∆vλ|2 = (λvλ +H)2 ≥ 1

2
H2 − C.

Therefore,

2λwλ +DpH ·Dwλ +DxH ·Dvλ + 1

2
H2 − C ≤ ε2

2
∆wλ.

At x1 ∈ Tn where wλ(x1) = maxTn w
λ

2λwλ(x1) +DxH ·Dvλ(x1) +
1

2
H2 ≤ C.

Since wλ(x1) ≥ 0, using condition (H3) we deduce that wλ is bounded independently of
λ, ε. Finally, considering the limit λ→ 0 we conclude the proof.



CHAPTER 3. AUBRY–MATHER MEASURES IN THE NON CONVEX SETTING 27

Remark 3.2.3. Bernstein method and (H3) were used in the proof to deduce the uniform
bound on ‖Dvλ‖L∞ , which is one of the key properties we need along our derivation. See
[59, Appendix 1] for conditions similar to (H3).

The classical theory (see [59]) ensures that the functions uε(·, P ) are C∞. In addition,
the previous proof shows that they are Lipschitz, with Lipschitz constant independent of
ε.

3.3 Stochastic dynamics

We now introduce a stochastic dynamics associated with the stochastic cell problem (3.2.1).
This will be a perturbation to the Hamiltonian dynamics (3.1.1), which describes the
trajectory in the phase space of a classical mechanical system.

Let (Tn, σ, P )be a probability space, and let wt be a n-dimensional Brownian motion
on Tn. Let ε > 0, and let uε be a Tn-periodic solution of (3.2.1). To simplify, we set P = 0.
Consider now the solution xε(t) of

{

dxε = −DpH(xε, Duε(xε)) dt+ ε dwt,

xε(0) = x,
(3.3.1)

with x ∈ Tn arbitrary. Accordingly, the momentum variable is defined as

pε(t) = Duε(xε(t)).

Remark 3.3.1. From Remark 3.2.3 it follows that

sup
t>0

|pε(t)| <∞.

Let us now recall some basic fact of stochastic calculus. Suppose z : [0,+∞) → Rn is
a solution to the SDE:

dzi = ai dt+ bij w
j
t i = 1, . . . , n,

with ai and bij bounded and progressively measurable processes. Let ϕ : Rn × R → R be
a smooth function. Then, ϕ(z, t) satisfies the Itô formula:

dϕ = ϕzi dzi +

(

ϕt +
1

2
bijbjkϕzizk

)

dt. (3.3.2)

An integrated version of the Itô formula is the Dynkin’s formula:

E [φ(z(T ))− φ(z(0))] = E

[
∫ T

0

(

aiDziφ(z(t)) +
1

2
bijbjkD

2
zizk

φ(z(t))

)

dt

]

.

Here and always in the sequel, we use Einstein’s convention for repeated indices in a sum.
In the present situation, we have

ai = −DpiH(xε, Duε), bij = εδij .
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Hence, recalling (3.3.1) and (3.3.2)

dpi = uεxixj dx
ε
j +

ε2

2
∆(uεxi) dt = −Lε,Puεxidt+ εuεxixj dw

j
t

= DxiH dt+ εuεxixj dw
j
t ,

where in the last equality we used identity (3.4.9). Thus, (xε,pε) satisfies the following
stochastic version of the Hamiltonian dynamics (3.1.1):

{

dxε = −DpH(xε,pε) dt+ ε dwt,

dpε = DxH(xε,pε) dt+ εD2uε dwt.
(3.3.3)

We are now going to study the behavior of the solutions uε of equation (3.2.1) along the
trajectory xε(t). Thanks to the Itô formula and relations (3.3.3) and (3.2.1):

duε(xε(t)) = Duεdxε +
ε2

2
∆uε dt = −Lε,Puεdt+ εDuε dwt

=
(

H −H
ε −Duε ·DpH

)

dt+ εDuε dwt. (3.3.4)

Using Dynkin’s formula in (3.3.4) we obtain

E
(

uε(xε(T ))− uε(xε(0))
)

= E

[
∫ T

0

(

H −H
ε −Duε ·DpH

)

dt

]

.

We observe that in the convex case, since the Lagrangian L is related with the Hamiltonian
by the relation

L = p ·DpH −H,

we have

uε(xε(0)) = E

[∫ T

0

(L+H
ε
) dt+ uε(xε(T ))

]

.

Phase space measures

We will encode the asymptotic behaviour of the trajectories by considering ergodic aver-
ages. More precisely, we associate to every trajectory (xε(·),pε(·)) of (3.3.3) a probability
measure µε ∈ P(Tn × Rn) defined by

∫

Tn×Rn

φ(x, p) dµε(x, p) := lim
T→∞

1

T
E

[
∫ T

0

φ(xε(t),pε(t)) dt

]

, (3.3.5)

for every φ ∈ Cc(T
n×Rn). In the expression above, the definition makes sense provided the

limit is taken over an appropriate subsequence. Moreover, no uniqueness is asserted, since
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by choosing a different subsequence one can in principle obtain a different limit measure
µε. Then, using Dynkin’s formula we have, for every φ ∈ C2

c (T
n × Rn),

E [φ(xε(T ),pε(T ))− φ(xε(0),pε(0))] = E

[
∫ T

0

(

Dpφ ·DxH −Dxφ ·DpH
)

dt

]

+ E

[
∫ T

0

(ε2

2
φxixi + ε2uεxixjφxipj +

ε2

2
uεxixku

ε
xixj

φpkpj

)

dt

]

. (3.3.6)

Dividing last relation by T and passing to the limit as T → +∞ (along a suitable subse-
quence) we obtain
∫

Tn×Rn

{φ,H} dµε +
∫

Tn×Rn

[

ε2

2
φxixi + ε2uεxixjφxipj +

ε2

2
uεxixku

ε
xixj

φpkpj

]

dµε = 0. (3.3.7)

Projected measure

We define the projected measure σµε ∈ P(Tn) in the following way:
∫

Tn
ϕ(x) dσµε(x) :=

∫

Tn×Rn

ϕ(x) dµε(x, p), ∀ϕ ∈ C(Tn).

Using test functions that do not depend on the variable p in the previous definition we
conclude from identity (3.3.7) that

∫

Tn
DpH ·Dϕ dσµε =

ε2

2

∫

Tn×Rn

∆ϕdσµε , ∀ϕ ∈ C2(Tn). (3.3.8)

PDE Approach

The measures µε and σµε can be defined also by using standard PDE methods from (3.3.8).
Indeed, given uε we can consider the PDE

−ε
2

2
∆σε − div (DpH(x,Duε) σε) = 0,

which admits a unique non-negative solution σε with
∫

Tn
σε(x) dx = 1,

since it is not hard to see that 0 is the principal eigenvalue of the following elliptic operator
in C2(Tn):

v 7−→ −ε
2

2
∆v − div(DpH(x,Duε) v).

Then µε can be defined as a unique measure such that
∫

Tn×Rn

ψ(x, p) dµε(x, p) =

∫

Tn
ψ(x,Duε(x)) dσε(x),

for every ψ ∈ Cc(T
n × Rn). Finally, identity (3.3.7) requires some work but can also be

proved in a purely analytic way.
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3.4 Uniform estimates

In this section we derive several estimates that will be useful when passing to the limit as
ε→ 0. We will use here the same techniques as in [27] and [79].

Proposition 3.4.1. We have the following estimates:

ε2
∫

Tn
|D2

xxu
ε|2 dσµε ≤ C, (3.4.1)

ε2
∫

Tn
|D2

Pxu
ε|2 dσµε ≤

∫

Tn
|DPu

ε|2 dσµε +
∫

Tn
|DpH −DPH

ε|2 dσµε , (3.4.2)

ε2
∫

Tn
|Duεxixi|2 dσµε ≤ C

(

1 +

∫

Tn
|D2

xxu
ε|3 dσµε

)

, i = 1, . . . , n. (3.4.3)

In addition, if H is uniformly convex in p, inequalities (3.4.1) and (3.4.2) can be improved
to:

∫

Tn
|D2

xxu
ε|2 dσµε ≤ C, (3.4.4)

∫

Tn
|D2

Pxu
ε|2 dσµε ≤ C trace (D2

PPH
ε
), (3.4.5)

respectively. Here C denotes a positive constant independent of ε.

Remark 3.4.2. Estimate (3.4.4) was already proven in [27] and [79].

To prove the proposition we first need an auxiliary lemma. In the following, we denote
by β either a direction in Rn (i.e. β ∈ Rn with |β| = 1), or a parameter (e.g. β = Pi for
some i ∈ {1, . . . , n}). When β = Pi for some i ∈ {1, . . . , n} the symbols Hβ and Hββ have
to be understood as Hpi and Hpipi , respectively.

Lemma 3.4.3. We have

ε2
∫

Tn
|Dxu

ε
β|2 dσµε = 2

∫

Tn
uεβ(H

ε

β −Hβ) dσµε , (3.4.6)
∫

Tn
(H

ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppHDxu
ε
β ·Dxu

ε
β) dσµε = 0, (3.4.7)

ε2
∫

Tn
|Dxu

ε
ββ|2 dσµε = 2

∫

Tn
uεββ(H

ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppH : Dxu
ε
β ⊗Dxu

ε
β dσµε .

(3.4.8)

Proof. By differentiating equation (3.2.1) with respect to β and recalling Definition 3.2.2
we get

Lε,Puεβ = H
ε

β −Hβ, (3.4.9)

so that

1

2
Lε,P (|uεβ|2) = uεβL

ε,Puεβ −
ε2

2
|Dxu

ε
β|2 = uεβ(H

ε

β −Hβ)−
ε2

2
|Dxu

ε
β|2.
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Integrating w.r.t. σµε and recalling (3.3.8) we get (3.4.6).
To prove (3.4.7), we differentiate (3.4.9) w.r.t. β obtaining

Lε,Puεββ = H
ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppH : Dxu
ε
β ⊗Dxu

ε
β. (3.4.10)

Integrating w.r.t. σµε and recalling (3.3.8) equality (3.4.7) follows. Finally, using (3.4.10)

1

2
Lε,P (|uεββ|2) = uεββL

ε,Puεββ −
ε2

2
|Dxu

ε
ββ|2

= uεββ(H
ε

ββ −Hββ − 2DpHβ ·Dxu
ε
β −D2

ppH : Dxu
ε
β ⊗Dxu

ε
β)−

ε2

2
|Dxu

ε
ββ|2.

Once again, we integrate w.r.t. σµε and use (3.3.8) to get (3.4.8).

We can now proceed to the proof of Proposition 3.4.1.

Proof of Proposition 3.4.1. Summing up the n identities obtained from (3.4.6) with β =
x1, . . . , xn respectively, we have

ε2
∫

Tn
|D2

xxu
ε|2 dσµε = −2

∫

Tn
Dxu

ε ·DxH dσµε .

Thanks to Remark 3.2.3, (3.4.1) follows. Analogously, relation (3.4.2) is obtained by sum-
ming up (3.4.6) with β = P1, P2, . . . , Pn, which yields

ε2
∫

Tn
|D2

Pxu
ε|2 dσµε = 2

∫

Tn
DPu

ε ·
[

DPH
ε −DpH

]

dσµε .

Let us show (3.4.3). Thanks to (3.4.8)

ε2
∫

Tn
|Dxu

ε
xixi

|2 dσµε

= −2

∫

Tn
uεxixi(Hxixi + 2DpHxi ·Dxu

ε
xi
+D2

ppH : Dxu
ε
xi
⊗Dxu

ε
xi
) dσµε .

Since the functions uε are uniformly Lipschitz, we have

|Hxixi|, |DpHxi|, |D2
ppH| ≤ C, on the support of σµε .

Hence,

ε2
∫

Tn
|Dxu

ε
xixi

|2 dσµε ≤ C

[
∫

Tn
|D2

xxu
ε| dσµε +

∫

Tn
|D2

xxu
ε|2 dσµε +

∫

Tn
|D2

xxu
ε|3 dσµε

]

≤ C

(

1 +

∫

Tn
|D2

xxu
ε|3 dσµε

)

.
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Finally, assume that H is uniformly convex. Thanks to (3.4.7) for every i = 1, . . . , n

0 =

∫

Tn
(Hxixi + 2DpHxi ·Dxu

ε
xi
+D2

ppHDxu
ε
xi
·Dxu

ε
xi
) dσµε

≥
∫

Tn

(

Hxixi + 2DpHxi ·Dxu
ε
xi

)

dσµε + α‖Dxu
ε
xi
‖2L2(Tn;dσµε )

,

for some α > 0. Thus, using Cauchy’s and Young’s inequalities, for every η ∈ R

α‖Dxu
ε
xi
‖2L2(Tn;dσµε )

≤ −
∫

Tn
Hxixi dσµε + 2‖DpHxi‖L2(Tn;dσµε )‖Dxu

ε
xi
‖L2(Tn;dσµε )

≤ −
∫

Tn
Hxixi dσµε +

1

η2
‖DpHxi‖2L2(Tn;dσµε )

+ η2‖Dxu
ε
xi
‖2L2(Tn;dσµε )

.

Finally,

(α− η2)‖Dxu
ε
xi
‖2L2(Tn;dσµε )

≤ −
∫

Tn
Hxixi dσµε +

1

η2
‖DpHxi‖2L2(Tn;dσµε )

.

Choosing η2 < α we get (3.4.4).
Let i ∈ {1, . . . , n} and let us integrate w.r.t. σµε relation (3.4.10) with β = Pi:

0 =

∫

Tn
(H

ε

PiPi
−Hpipi − 2DpHpi ·Dxu

ε
Pi
−D2

ppHDxu
ε
Pi
·Dxu

ε
Pi
) dσµε .

Since D2
ppH is positive definite,

α

∫

Tn
|Dxu

ε
Pi
|2 dσµε ≤

∫

Tn
(H

ε

PiPi
−Hpipi − 2DpHpi ·Dxu

ε
Pi
) dσµε

≤
∫

Tn
(H

ε

PiPi
− 2DpHpi ·Dxu

ε
Pi
) dσµε .

Using once again Cauchy’s and Young’s inequalities and summing up with respect to
i = 1, . . . , n (3.4.5) follows.

3.5 Existence of Mather measures and dissipation

measures

We now look at the asymptotic behavior of the measures µε as ε → 0, proving existence
of Mather measures. The main result of the section is the following.

Theorem 3.5.1. Let H : Tn × Rn → R be a smooth function satisfying conditions (H1)–
(H3), and let {µε}ε>0 be the family of measures defined in Section 3.3. Then there exist
a Mather measure µ and a nonnegative, symmetric n × n matrix (mkj)k,j=1,...n of Borel
measures such that

µε
∗
⇀ µ in the sense of measures up to subsequences, (3.5.1)
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and
∫

Tn×Rn

{φ,H} dµ+

∫

Tn×Rn

φpkpj dmkj = 0, ∀φ ∈ C2
c (T

n × Rn). (3.5.2)

Moreover,
supp µ and suppm are compact. (3.5.3)

We call the matrix mkj the dissipation measure.

Proof. First of all, we notice that since we have a uniform (in ε) Lipschitz estimate for the
functions uε, there exists a compact set K ⊂ Tn × Rn such that

suppµε ⊂ K, ∀ ε > 0.

Moreover, up to subsequences, we have (3.5.1), that is

lim
ε→0

∫

Tn×Rn

φ dµε →
∫

Tn×Rn

φ dµ,

for every function φ ∈ Cc(T
n × Rn), for some probability measure µ ∈ P(Tn × Rn), and

this proves (3.5.1). From what we said, it follows that

supp µ ⊂ K.

To show (3.5.2), we need to pass to the limit in relation (3.3.7). First, let us focus on the
second term of the aforementioned formula:

∫

Tn×Rn

[

ε2

2
φxixi + ε2uεxixjφxipj +

ε2

2
uεxixku

ε
xixj

φpkpj

]

dµε. (3.5.4)

By the bounds of the previous section,

lim
ε→0

∫

Tn×Rn

[

ε2

2
φxixi + ε2uεxixjφxipj

]

dµε = 0.

However, as in [27], the last term in (3.5.4) does not vanish in the limit. In fact, through
a subsequence, for every k, j = 1, . . . , n we have

ε2

2

∫

Tn×Rn

uεxixku
ε
xixj

ψ(x, p) dµε(x, p) −→
∫

Tn×Rn

ψ(x, p) dmkj(x, p) ∀ψ ∈ Cc(T
n × Rn),

for some nonnegative, symmetric n×n matrix (mkj)k,j=1,...n of Borel measures. Passing to
the limit as ε → 0 in (3.3.7) condition (3.5.2) follows. From Remark 3.3.1 we infer that
suppm ⊂ K, so that (3.5.3) follows.

Let us show that µ satisfies conditions (a)–(c) with P = 0. As in [27] and [79], consider

∫

Tn×Rn

(

H(x, p)−H
ε)2

dµε(x, p) =
ε4

4

∫

Tn×Rn

|∆uε(x)|2 dµε(x, p) −→ 0
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as ε→ 0, where we used (3.2.1) and (3.4.1). Therefore, (a) follows. Let us consider relation
(3.3.7), and let us choose as test function φ = ϕ(uε). We get

∫

Tn×Rn

ϕ′(uε)Dxu
ε ·DpH dµε + ε2

∫

Tn×Rn

(

ϕ′(uε)uεxixi + ϕ′′(uε)(uεxi)
2
)

dµε = 0.

Passing to the limit as ε→ 0, we have
∫

Tn×Rn

ϕ′(u) p ·DpH dµ = 0.

Choosing ϕ(u) = u we get (b). Finally, relation (c) follows by simply choosing in (3.5.2)
test functions φ that do not depend on the variable p.

We conclude the section with a useful identity that will be used in Section 3.9.

Proposition 3.5.2. For every λ ∈ R
∫

Tn×Rn

eλH
(

λHpkHpj +Hpkpj

)

dmkj = 0. (3.5.5)

Proof. First recall that for any function f : R→ R of class C1

{H, f(H)} = 0,

and, furthermore, for any ψ ∈ C1(Tn × Rn)

{H,ψf(H)} = {H,ψ} f(H).

Let now λ ∈ R. By choosing in (3.5.2) φ = ψf(H) with f(z) = eλz and ψ ≡ 1 we conclude
the proof.

3.6 Support of the dissipation measures

We discuss now in a more detailed way the structure of suppm.

Proposition 3.6.1. We have

suppm ⊂
⋃

x∈Tn

coG(x) =: K, (3.6.1)

where with coG(x) we denote the convex hull in Rn of the set G(x), and

G(x) := suppµ ∩ {(x, p) ∈ Tn × Rn : x = x}, x ∈ Tn.

Remark 3.6.2. We stress that the convex hull of the set G(x) is taken only with respect to
the variable p, while the closure in the right-hand side of (3.6.1) is taken in all Tn × Rn.
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Sketch of the proof. For τ > 0 sufficiently small, we can choose an open set Kτ in T
n×Rn

such that K ⊂ Kτ , dist (∂Kτ , K) < τ , and Kτ (x) := {p ∈ Rn : (x, p) ∈ Kτ} is convex for
every x ∈ Tn.

Also, we can find a smooth open set K2τ ⊂ Tn × Rn such that, for every x ∈
Tn, K2τ (x) := {p ∈ Rn : (x, p) ∈ K2τ} is strictly convex, K2τ (x) ⊃ Kτ (x), and
dist (∂K2τ (x), Kτ (x)) < τ .

Finally, we can construct a smooth function ητ : Tn × Rn → R such that for every
x ∈ Tn:

• ητ (x, p) = 0 for p ∈ Kτ (x).

• p 7→ ητ (x, p) is convex.

• p 7→ ητ (x, p) is uniformly convex on Rn \K2τ (x).

In this way, ητ (x, p) = 0 on Kτ ⊃ K ⊃ suppµ. Therefore
∫

Tn×Rn

{ητ , H}dµ = 0.

Combining with (3.5.2),
∫

Tn×Rn

(ητ )pkpjdmkj = 0,

which implies suppm ⊂ ⋃

x∈Tn K2τ (x). Letting τ → 0, we finally get the desired result.

As a consequence, we have the following corollary.

Corollary 3.6.3.

suppm ⊂ co{H(x, p) ≤ H}.
Proof. The proof follows simply from the fact that for every x ∈ Tn we have

G(x) ⊂ {H(x, p) ≤ H}.

3.7 Averaging

In this section we prove some additional estimates concerning averaging with respect to the
process (3.1.17). When necessary, to avoid confusion we will explicitly write the dependence
on P . Let us start with a definition.

Definition 3.7.1. We define the rotation number ρ0 associated to the measures µ and m
as

ρ0 := lim
ε→0

lim
T→+∞

E

[

xε(T )− xε(0)

T

]

,

where the limit is taken along the same subsequences as in (3.3.5) and (3.5.1).
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The following theorem gives a formula for the rotation number.

Theorem 3.7.2. There holds

ρ0 =

∫

Tn×Rn

DpH dµ. (3.7.1)

Moreover, defining for every ε > 0 the variable Xε := xε +DPu
ε(xε), we have

E

[

Xε(T )−Xε(0)

T

]

= −DPH
ε
(P ), (3.7.2)

and

lim
T→+∞

E

[

(

Xε(T )−Xε(0) +DPH
ε
(P )T

)2

T

]

≤ 2n ε2 + 2

∫

Tn
|DPu

ε|2 dσµε

+ 2

∫

Tn
|DpH −DPH

ε|2 dσµε .

Proof. Choosing φ(x) = xi with i = 1, 2, 3 in (3.3.6) we obtain

E

[

xε(T )− xε(0)

T

]

= −E
[

1

T

∫ T

0

DpH(xε(t),pε(t)) dt

]

.

Passing to the limit as T → +∞

ρε := lim
T→+∞

E

[

xε(T )− xε(0)

T

]

=

∫

Tn×Rn

DpH dµε.

We get (3.7.1) by letting ε go to zero.
To prove (3.7.2), recalling Itô’s formula (3.3.2) we compute

dXε = dxε +D2
Pxu

ε(xε) dxε +
ε2

2
DP∆u

ε(xε) dt

=

(

−DpH(xε,pε)(I +D2
Pxu

ε(xε)) +
ε2

2
DP∆u

ε(xε)

)

dt+ ε(I +D2
Pxu

ε(xε)) dwt,

where in the last equality we used (3.3.1). By differentiating equation (3.2.1) w.r.t. P we
obtain

−DpH(xε,pε)(I +D2
Pxu

ε(xε)) +
ε2

2
DP∆u

ε(xε) = −DPH
ε
(P ), (3.7.3)

so that
dXε = −DPH

ε
(P ) dt+ ε(I +D2

Pxu
ε(xε)) dwt. (3.7.4)

Using the fact that

E

[
∫ T

0

ε(I +D2
Pxu

ε(xε)) dwt

]

= 0,
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(3.7.2) follows.
Finally, using once again Itô’s formula (3.3.2) and relation (3.7.4) we can write

d
[

(

Xε(t)−Xε(0) +DPH
ε
(P )t

)2
]

= 2
(

Xε(t)−Xε(0) +DPH
ε
(P )t

)

(dXε +DPH
ε
(P ) dt) + ε2|I +D2

Pxu
ε(xε)|2 dt

= 2 ε
(

Xε(t)−Xε(0) +DPH
ε
(P )t

)

(I +D2
Pxu

ε(xε)) dwt + ε2|I +D2
Pxu

ε(xε)|2 dt.

Hence,

E
[

(

Xε(T )−Xε(0) +DPH
ε
(P )T

)2
]

= E

[
∫ T

0

2 ε
(

Xε(t)−Xε(0) +DPH
ε
(P )t

)

(I +D2
Pxu

ε(xε)) dwt

]

+ E

[
∫ T

0

ε2|I +D2
Pxu

ε(xε)|2 dt
]

= E

[
∫ T

0

ε2|I +D2
Pxu

ε(xε)|2 dt
]

.

Dividing by T and letting T go to infinity

lim
T→+∞

E

[

(

Xε(T )−Xε(0) +DPH
ε
(P )T

)2

T

]

= lim
T→+∞

E

[
∫ T

0

ε2|I +D2
Pxu

ε(xε)|2
T

dt

]

= ε2
∫

Tn
|I +D2

Pxu
ε|2 dσµε ≤ 2n ε2 + 2 ε2

∫

Tn
|D2

Pxu
ε|2 dσµε

≤ 2n ε2 + 2

∫

Tn
|DPu

ε|2 dσµε + 2

∫

Tn
|DpH −DPH

ε|2 dσµε ,

where we used (3.4.2).

We conclude the section with a proposition which shows in a formal way how much
relation (3.1.3) is “far” from being an actual change of variables. Let us set wε(x, P ) :=
P · x + uε(x, P ), where uε(x, P ) is a Tn-periodic viscosity solution of (3.1.17), and let
k ∈ Tn. We recall that in the convex setting the following weak version of the change of
variables (3.1.3) holds [32, Theorem 9.1]:

lim
h→0

∫

Tn
Φ
(

Dh
Pu(x, P )

)

dσµ =

∫

Tn
Φ (X) dX,

for each continuous Tn-periodic function Φ : Rn → R, where

Dh
Pu(x, P ) :=

(

u(x, P + he1)− u(x, P )

h
, . . . ,

u(x, P + hen)− u(x, P )

h

)

,



CHAPTER 3. AUBRY–MATHER MEASURES IN THE NON CONVEX SETTING 38

e1, . . . , en being the vectors of the canonical basis in Rn. The quoted result was proven by
the authors by considering the Fourier series of Φ, and then analyzing the integral on the
left-hand side mode by mode. The next proposition shows what happens for a fixed mode
in the non convex case.

Proposition 3.7.3. The following inequality holds:

(k ·DPH
ε
)

∫

Tn
e2πik·DPw

ε

dσµε

≤ 2π|k|2
(

ε2 +

∫

Tn
|DPu

ε|2 dσµε +
∫

Tn
|DpH −DPH

ε|2 dσµε
)

.

Proof. Recalling identity (3.3.8) with

ϕ(x) = e2πik·DPw
ε(x,P )

we obtain

0 =

∫

Tn
Lε,P e2πik·DPw

ε

dσµε

= 2πi

∫

Tn
e2πik·DPw

ε [

Lε,P (k ·DPw
ε)− πiε2|Dx(k ·DPw

ε)|2
]

dσµε

= 2πi

∫

Tn
e2πik·DPw

ε [

k ·DPH
ε − πiε2|Dx(k ·DPw

ε)|2
]

dσµε ,

where we used (3.4.9) and the fact that wε = P · x+ uε. Thus, thanks to estimate (3.4.2)

∣

∣

∣

∣

(k ·DPH
ε
)

∫

Tn
e2πik·DPw

ε

dσµε

∣

∣

∣

∣

≤ πε2
∫

Tn
|Dx(k ·DPw

ε)|2 dσµε

≤ 2π|k|2
(

ε2 + ε2
∫

Tn
|D2

Pxu
ε|2 dσµε

)

≤ 2π|k|2
(

ε2 +

∫

Tn
|DPu

ε|2 dσµε +
∫

Tn
|DpH −DPH

ε|2 dσµε
)

.

Remark 3.7.4. When H is uniformly convex, thanks to (3.4.5) the last chain of inequalities
becomes

∣

∣

∣

∣

(k ·DPH
ε
)

∫

Tn
e2πik·DPw

ε

dσµε

∣

∣

∣

∣

≤ C|k|2ε2
(

1 + trace (D2
PPH

ε
)
)

.

Thus, if trace (D2
PPH

ε
) ≤ C, the right-hand side vanishes in the limit as ε → 0, and we

recover [32, Theorem 9.1].
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3.8 Compensated compactness

In this section, some analogs of compensated compactness and Div-Curl lemma introduced
by Murat and Tartar in the context of conservation laws (see [31], [78]) will be studied,
in order to better understand the support of the Mather measure µ. Similar analogs are
also considered in [27], to investigate the shock nature of non-convex Hamilton-Jacobi
equations.
What we are doing here is quite different from the original Murat and Tartar work (see [78]),
since we work on the support of the measure σµε . Besides, our methods work on arbitrary
dimensional space Rn while usual compensated compactness and Div-Curl lemma in the
context of conservation laws can only deal with the case n = 1, 2. However, we can only
derive one single relation and this is not enough to characterize the support of µ as in the
convex case. To avoid confusion, when necessary we will explicitly write the dependence
on the P variable.

Let φ be a smooth function from Tn × Rn → R, and let

ρε = {φ,H}σµε +
ε2

2
φpjpku

ε
xixj

uεxixkσµε .

By (3.3.7) and (3.4.1), there exists C > 0 such that

∫

Tn
|ρε|dx ≤ C.

So, up to passing to some subsequence, if necessary, we may assume that ρε
∗
⇀ ρ as a

(signed) measure.
By (3.5.2), ρ(Tn) = 0. We have the following theorem.

Theorem 3.8.1. The following properties are satisfied:

(i) for every φ ∈ C(Tn × Rn)
∫

Tn×Rn

DpH · (p− P )φ(x, p) dµ =

∫

Tn
u dρ; (3.8.1)

(ii) for every φ ∈ C(Tn × Rn) and for every η ∈ C1(Tn),

∫

Tn×Rn

DpH ·Dη φ(x, p) dµ =

∫

Tn
ηdρ. (3.8.2)

Proof. Let wε = φ(x, P +Dxu
ε). Notice first that

∫

Tn×Rn

DpH · (p− P )φ(x, p) dµ = lim
ε→0

∫

Tn
DpH(x, P +Dxu

ε) ·Dxu
εwεdσµε .
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Integrating by parts the right hand side of the above equality we obtain

∫

Tn
DpH(x, P +Dxu

ε) ·Dxu
εwεdσµε = −

∫

Tn
uεdiv(DpHw

εσµε)dx

=−
∫

Tn
uε(div(DpHσµε)w

ε +DpH ·Dxw
εσµε)dx (3.8.3)

=

∫

Tn
uε(

ε2

2
∆σµεw

ε −DpH ·Dxw
εσµε)dx.

After several computations, by using (3.2.1) we get

DpH ·Dxw
ε = −{φ,H}+ ε2

2
φpi∆u

ε
xi
.

Hence

ε2

2
∆σµεw

ε −DpH ·Dxw
εσµε =

ε2

2
∆σµεw

ε + {φ,H}σµε −
ε2

2
φpi∆u

ε
xi
σµε

=
ε2

2
∆wεσµε +

ε2

2
(div(Dxσµεw

ε)− div(Dxw
εσµε)) + {φ,H}σµε −

ε2

2
φpi∆u

ε
xi
σµε

=
ε2

2
(φpjpku

ε
xixj

uεxixk+φpjxiu
ε
xjxi

+ φxixi + φpi∆u
ε
xi
)σµε

+
ε2

2
(div(Dxσµεw

ε)− div(Dxw
εσµε)) + {φ,H}σµε −

ε2

2
φpi∆u

ε
xi
σµε

=ρε +
ε2

2
φxixiσµε+

ε2

2
φpjxiu

ε
xjxi

+
ε2

2
(div(Dxσµεw

ε)− div(Dxw
εσµε)).

Therefore
∫

Tn×Rn

DpH · (p− P )φ(x, p) dµ

= lim
ε→0

∫

Tn
uε

[

ρε +
ε2

2
φxixiσµε+

ε2

2
φpjxiu

ε
xjxi

+
ε2

2
(div(Dxσµεw

ε)− div(Dxw
εσµε))

]

dx.

(3.8.4)

Since uε converges uniformly to u,

lim
ε→0

∫

Tn
uερεdx =

∫

Tn
u dρ.

The second term in the right hand side of (3.8.4) obviously converges to 0 as ε → 0. The
third term also tends to 0 by (3.4.1).
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Let us look at the last term. We have
∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn
uε(div(Dxσµεw

ε)−div(Dxw
εσµε))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn
−Dxu

ε ·Dxσµεw
ε +Dxu

ε ·Dxw
εσµεdx

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn
div(Dxu

εwε)σµε +Dxu
ε ·Dxw

εσµεdx

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

ε2

2

∫

Tn
(∆uεwε + 2Dxu

ε ·Dxw
ε)σµεdx

∣

∣

∣

∣

≤ lim
ε→0

Cε2
∫

Tn
|D2

xxu
ε|σµεdx ≤ lim

ε→0
Cε = 0,

which implies (3.8.1). Relation (3.8.2) can be derived similarly.

As a consequence, we have the following corollary.

Corollary 3.8.2. Let u(·, P ) be a classical solution of (3.1.2), and let µ be the correspond-
ing Mather measure given by Theorem 3.1.2. Then,

DpH · (p− P −Dxu) = 0 in suppµ.

Proof. By (3.8.1) and (3.8.2)
∫

Tn
DpH · (p− P −Dxu)φ dµ = 0,

for all φ. Therefore, the conclusion follows.

3.9 Examples

In this section, we study non-trivial examples where the Mather measure µ is invariant
under the Hamiltonian dynamics. Notice that, by (3.5.2), the Mather measure µ is invariant
under the Hamiltonian dynamics if and only if the dissipation measures (mkj) vanish. An
example in Section 3.10 shows that this is not always guaranteed. As explained in [27],
the dissipation measures mkj record the jump of the gradient Dxu along the shock lines.

We investigate now under which conditions we still have the invariance property (1). We
provide some partial answers by studying several examples, which include the important
class of strongly quasiconvex Hamiltonians (see [39]).

H is uniformly convex

There exists α > 0 so that D2
ppH ≥ α > 0.

Let λ = 0 in (3.5.5) then

0 =

∫

Tn×Rn

Hpkpjdmkj,
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which implies mkj = 0 for all 1 ≤ k, j ≤ n. We then can follow the same steps as in [32]
to get that µ also satisfies (2).

Uniformly convex conservation law

Suppose that there exists F (p, x), strictly convex in p, such that {F,H}=0. Then m = 0.

Some special non-convex cases

The cases we consider here are somehow variants of the uniformly convex case.
Suppose there exists φ uniformly convex and a smooth real function f such that either

φ = f(H) or H = f(φ). Then, by (3.5.2) we have mkj = 0 for all k, j. In particular, if
H = f(φ) with f increasing, then H is quasiconvex.
One explicit example of the above variants is H(x, p) = (|p|2+V (x))2, where V : Tn → R is
smooth and may take negative values. Then H(x, p) is not convex in p anymore. Anyway,
we can choose φ(x, p) = |p|2+V (x), so that H(x, p) = (φ(x, p))2 and φ is uniformly convex
in p. Therefore, µ is invariant under the Hamiltonian dynamics.

The case when n = 1

Let’s consider the case H(x, p) = H(p) + V (x).
In this particular case, property (H3) implies that |H(x, p)| → ∞ as |p| → +∞. Let us
suppose that

lim
|p|→+∞

H(p) = +∞.

Assume also that there exists p0 ∈ R such that H ′(p) = 0 if and only if p = p0 and
H ′′(p0) 6= 0. Notice that H(p) does not need to be convex. Obviously, uniform convexity
of H implies this condition.
We will show that m11 = 0, which implies that µ is invariant under the Hamiltonian
dynamics. From our assumptions, we have that H ′(p) > 0 for p > p0, H

′(p) < 0 for p < p0
and hence H ′′(p0) > 0. Then there exists a neighborhood (p0 − r, p0 + r) of p0 such that

H ′′(p) >
H ′′(p0)

2
, ∀ p ∈ (p0 − r, p0 + r).

And since the support of m11 is bounded, we may assume

supp(m11) ⊂ T× [−M,M ],

for some M > 0 large enough. We can choose M large so that (p0− r, p0+ r) ⊂ (−M,M).
Since |H ′(p)|2 > 0 for p ∈ [−M,M ] \ (p0 − r, p0 + r) and [−M,M ] \ (p0 − r, p0 + r) is
compact, there exists γ > 0 such that

|H ′(p)|2 ≥ γ > 0, ∀ p ∈ [−M,M ] \ (p0 − r, p0 + r).
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Hence, by choosing λ≫ 0

λ|H ′(p)|2 +H ′′(p) ≥ H ′′(p0)

2
, ∀ p ∈ [−M,M ],

which shows m11 = 0 by (3.5.5).

Case in which there are more conserved quantities

Let’s consider
H(x, p) = H(p) + V (x1 + ... + xn),

where V : T→ R is smooth.
For k 6= j, define Φkj = pk − pj. It is easy to see that {H,Φkj} = 0 for any k 6= j.
Therefore {H, (Φkj)2} = 0 for any k 6= j.
For fixed k 6= j, let φ = (Φkj)2 in (3.5.2) then

2

∫

Tn×Rn

(mkk − 2mkj +mjj) dxdp = 0.

The matrix of dissipation measures (mkj) is non-negative definite, therefore mkk − 2mkj +
mjj ≥ 0. Thus, mkk − 2mkj +mjj = 0 for any k 6= j.
Let ε ∈ (0, 1) and take ξ = (ξ1, ..., ξn), where ξk = 1+ ε, ξj = −1 and ξi = 0 otherwise. We
have

0 ≤ mkjξkξj = (1 + ε)2mkk − 2(1 + ε)mkj +mjj = 2ε(mkk −mkj) + ε2mkk.

Dividing both sides of the inequality above by ε and letting ε→ 0,

mkk −mkj ≥ 0.

Similarly, mjj −mkj ≥ 0. Thus, mkk −mkj = mjj −mkj = 0 for all k 6= j.
Hence, there exists a non-negative measure m such that

mkj = m ≥ 0, ∀ k, j.

Therefore, (3.5.5) becomes

0 =

∫

Tn×Rn

eλH
(

λ
(

∑

j

Hpj

)2
+
∑

j,k

Hpjpk

)

dm.

We here point out two cases which guarantee that m = 0. In the first case, assuming
additionally that H(p) = H1(p1)+ ...Hn(pn) and H2, ..., Hn are convex, but not necessarily
uniformly convex (their graphs may have flat regions) and H1 is uniformly convex, then
we still have m = 0.
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In the second case, suppose that H(p) = H(|p|), where H : [0,∞) → R is smooth,
H ′(0) = 0, H ′′(0) > 0 and H ′(s) > 0 for s > 0. Notice that H is not necessarily convex.
This example is similar to the example above when n = 1. Then for p 6= 0

λ
(

∑

j

Hpj

)2
+
∑

j,k

Hpjpk = n
H ′

|p| +
(p1 + ...+ pn)

2

|p|2
(

λ(H ′)2 +H ′′ − H ′

|p|

)

,

and at p = 0

λ
(

∑

j

Hpj(0)
)2

+
∑

j,k

Hpjpk(0) = nH ′′(0) > 0.

So, we can choose r > 0, small enough, so that for |p| < r

λ
(

∑

j

Hpj

)2
+
∑

j,k

Hpjpk >
n

2
H ′′(0) > 0.

Since the support of m is bounded, there exists M > 0 large enough

suppm ⊂ Tn × {p : |p| ≤M}.

Since mins∈[r,M ]H
′(s) > 0, by choosing λ≫ 0, we finally have for |p| ≤M

λ
(

∑

j

Hpj

)2
+
∑

j,k

Hpjpk ≥ β > 0,

for β =
n

2
min

{

H ′′(0),
mins∈[r,M ]H

′(s)

M

}

.

Thus m = 0, and therefore µ is invariant under the Hamiltonian dynamics.

Quasiconvex Hamiltonians: a special case

Let’s consider
H(x, p) = H(|p|) + V (x),

where H : [0,∞) → R is smooth, H ′(0) = 0, H ′′(0) > 0 and H ′(s) > 0 for s > 0.
Once again, notice that H is not necessarily convex. We here will show that (mjk) = 0.
For p 6= 0 then

(λHpjHpk +Hpjpk)mjk =
H ′

|p| (m11 + ... +mnn) +

(

λ(H ′)2 +H ′′ − H ′

|p|

)

pjpkmjk

|p|2 .

For any symmetric, non-negative definite matrix m = (mjk) we have the following inequal-
ity

0 ≤ pjpkmjk ≤ |p|2 tracem = |p|2(m11 + ...+mnn).

There exists r > 0 small enough so that for |p| < r

H ′

|p| >
3

4
H ′′(0);

∣

∣

∣

∣

H ′

|p| −H ′′

∣

∣

∣

∣

<
1

4
H ′′(0).
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Hence for |p| < r

(λHpjHpk +Hpjpk)mjk ≥
1

2
H ′′(0)(m11 + ... +mnn).

Since the support of (mjk) is bounded, there exists M > 0 large enough

suppmjk ⊂ Tn × {p : |p| ≤M}, ∀ j, k.
Since mins∈[r,M ]H

′(s) > 0, by choosing λ≫ 0 we finally have for |p| ≤M

(λHpjHpk +Hpjpk)mjk ≥ β(m11 + ... +mnn),

for β = min

{

H ′′(0)

2
,
mins∈[r,M ]H

′(s)

M

}

> 0.

We then must have m11 + ...mnn = 0, which implies (mjk) = 0. Thus, µ is invariant under
the Hamiltonian dynamics in this case.
We now derive the property (2) of µ rigorously. Since the support of µ is also bounded, we
can use a similar procedure as above to show that φ(x, p) = eλH(x,p) is uniformly convex in
Tn × B̄(0,M) ⊃ supp(µ) for some λ large enough.
More precisely,

φpjpkξjξk ≥ eλHβ|ξ|2, ξ ∈ Rn, (x, p) ∈ Tn × B̄(0,M),

for β chosen as above. Then doing the same steps as in [32], we get µ satisfies (2).
There is another simple approach to prove (2) by using the properties we get in this non-
convex setting. Let’s just assume that u is C1 on the support of µ.
By Remark 3.8.2, it follows that DpH.(p − P − Du) = 0 on support of µ. And since

DpH(x, p) = H ′(|p|) p|p| for p 6= 0 and H ′(|p|) > 0, we then have p.(p − P − Du) = 0 on

support of µ. Hence |p|2 = p.(P +Du) on supp(µ).
Besides, H(x, p) = H(x, P +Du(x)) = H(P ) on supp(µ) by property (a) of Mather mea-
sure and the assumption that u is C1 on supp(µ). It follows that H(|p|) = H(|P +Du|).
Therefore, |p| = |P +Du| by the fact that H(s) is strictly increasing.
So we have |p|2 = p.(P +Du) and |p| = |P +Du| on supp(µ), which implies p = P +Du
on supp(µ), which is the property (2) of µ.

Quasiconvex Hamiltonians

We treat now the general case of uniformly quasiconvex Hamiltonians. We start with a
definition.

Definition 3.9.1. A smooth set A ⊂ Rn is said to be strongly convex with convexity
constant c if there exists a positive constant c with the following property. For every
p ∈ ∂A there exists an orthogonal coordinate system (q1, . . . , qn) centered at p, and a
coordinate rectangle R = (a1, b1)× . . .×(an, bn) containing p such that Tp∂A = {qn = 0}
and A ∩ R ⊂ {q ∈ R : c

∑n−1
i=1 |qi|2 ≤ qn ≤ bn}.
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The previous definition can be stated in the following equivalent way, by requiring that
for every p ∈ ∂A

(Bpv) · v ≥ c|v|2 for every v ∈ Tp∂A,

where Bp : Tp∂A × Tp∂A → R is the second fundamental form of ∂A at p.
We consider in this subsection strongly quasiconvex Hamiltonians. That is, we assume

that there exists c > 0 such that

(j) {p ∈ Tn : H(x, p) ≤ a} is strongly convex with convexity constant c for every a ∈ R
and for every x ∈ Tn.

In addition, we suppose that there exists α ∈ R such that for every x ∈ Tn

(jj) There exists unique p ∈ Rn s.t. DpH(x, p) = 0, and

D2
ppH(x, p) ≥ α.

Notice that the special case presented in Section 3.9, where the level sets are spheres, fits
into this definition. We will show that under hypotheses (j)–(jj) there exists λ > 0 such
that

λDpH ⊗DpH +D2
ppH is positive definite.

From this, thanks to relation (3.5.5), we conclude that mkj = 0. First, we state a well-
known result. We give the proof below, for the convenience of the reader.

Proposition 3.9.2. Let (j)–(jj) be satisfied, and let (x∗, p∗) ∈ Tn × Rn be such that
DpH(x∗, p∗) 6= 0. Then

DpH(x∗, p∗) ⊥ Tp∗C and D2
ppH(x∗, p∗) = |DpH(x∗, p∗)|Bp∗, (3.9.1)

where Bp∗ denotes the second fundamental form of the level set

C := {p ∈ Rn : H(x∗, p) = H(x∗, p∗)}

at the point p∗.

Proof. By the smoothness of H , there exists a neighborhood U ⊂ Rn of p∗ and n smooth
functions ν : U → Sn−1, τi : U → Sn−1, i = 1, . . . , n − 1, such that for every p ∈ U
the vectors {τ1(p), . . . , τn−1(p), ν(p)} are a smooth orthonormal basis of Rn, and for every
p ∈ U ∩ C τ1(p), . . . , τn−1(p) ∈ TpC. Let now i, j ∈ {1, . . . , n− 1} be fixed. Since

H(x∗, p) = a ∀ p ∈ U,

differentiating w.r.t τi(p) we have

DpH(x∗, p) · τi(p) = 0 ∀ p ∈ U ∩ C. (3.9.2)
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Computing last relation at p = p∗ we get that DpH(x∗, p∗) ⊥ Tp∗C. Differentiating (3.9.2)
along the direction τj(p) and computing at p = p∗

(

D2
ppH(x∗, p∗)τj(p

∗)
)

· τi(p∗) +DpH(x∗, p∗) · (Dpτi(p
∗)τj(p

∗)) = 0. (3.9.3)

Notice that by differentiating along the direction τj(p) the identity τi(p) · ν(p) = 0 and
computing at p∗ we get

(Dpτi(p
∗)τj(p

∗)) · ν(p∗) = − (Dpν(p
∗)τj(p

∗)) · τi(p∗).

Plugging last relation into (3.9.3), and choosing ν(p∗) oriented in the direction ofDpH(x∗, p∗)
we have

(

D2
ppH(x∗, p∗)τj(p

∗)
)

· τi(p∗) = −|DpH(x∗, p∗)| (Dpτi(p
∗)τj(p

∗)) · ν(p∗)
= |DpH(x∗, p∗)| (Dpν(p

∗)τj(p
∗)) · τi(p∗) = |DpH(x∗, p∗)| (Bp∗τj(p

∗)) · τi(p∗).

For every vector v ∈ Rn, we consider the decomposition

v = v‖v
‖ + v⊥v

⊥,

with v‖, v⊥ ∈ R, |v‖| = |v⊥| = 1, v‖ ∈ Tp∗C, and v⊥ ∈ (Tp∗C)⊥. By hypothesis (jj) and by
the smoothness of H , there exist τ > 0 and α′ ∈ (0, α), independent of (x, p), such that

D2
ppH(x, p) ≥ α′ for every (x, p) ∈ {|DpH| ≤ τ}.

Let us now consider two subcases:
Case 1: (x, p) ∈ {|DpH| ≤ τ}

First of all, notice that

λDpH ⊗DpHv · v = λ|DpH · v|2 = λ v2⊥ |DpH|2.

Then, we have

(λDpH ⊗DpH +D2
ppH)v · v = λ v2⊥ |DpH|2 + (D2

ppHv · v) ≥ α′|v|2.

Case 2: (x, p) ∈ {|DpH| > τ}

In this case we have
D2
ppHv‖ · v‖ ≥ c|DpH|,

which then yields

D2
ppHv · v = v2‖(D

2
ppHv‖ · v‖) + 2v‖v⊥(D

2
ppHv‖ · v⊥) + v2⊥(D

2
ppHv⊥ · v⊥)

≥ c v2‖|DpH|+ 2v‖v⊥(D
2
ppHv‖ · v⊥) + v2⊥(D

2
ppHv⊥ · v⊥).
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By (3.5.3) we have
|D2

ppH| ≤ C along suppµ.

Thus,

(λDpH ⊗DpH +D2
ppH)v · v

≥ λ v2⊥ |DpH|2 + c v2‖|DpH|+ 2v‖v⊥(D
2
ppHv‖ · v⊥) + v2⊥(D

2
ppHv⊥ · v⊥)

≥ v2⊥
(

λ |DpH|2 − C
)

− 2C|v‖||v⊥|+ c v2‖|DpH|

> v2⊥

(

λ τ 2 − C
(

1 +
1

η2

))

+ v2‖(c τ − Cη2 ).

Choosing first η2 < c τ
C
, and then

λ >
C

τ 2

(

1 +
1

η2

)

,

we obtain
(λDpH ⊗DpH +D2

ppH)v · v ≥ α′′|v|2,
for some α′′ > 0, independent of (x, p).

General Case

In the general case, we have

(λDpH ⊗DpH +D2
ppH)v · v ≥ γ|v|2,

where γ := min{α′, α′′}.
Similar to the case above, we basically have that φ(x, p) = eλH(x,p) is uniformly convex on
the support of µ for λ large enough. Hence, by repeating again the same steps as in [32],
we finally get that µ satisfies (2). As already mentioned in the introduction, we observe
that one could also study the case of uniformly convex Hamiltonians by duality, that is,
by considering a function Φ : R → R such that Φ(H(x, ·)) is convex for each x ∈ Tn. In
this way, the dynamics can be seen as a reparametrization of the dynamics associated to
the convex Hamiltonian Φ(H).

3.10 A one dimensional example of nonvanishing

dissipation measure m

In this section we sketch a one dimensional example in which the dissipation measure m
does not vanish. We assume that the zero level set of the Hamiltonian H : T × R → R

is the smooth curve in Figure 3.1, and that everywhere else in the plane (x, p) the signs
of H are as shown in the picture. In addition, H can be constructed in such a way that
(DxH,DpH) 6= (0, 0) for every (x, p) ∈ {(x, p) ∈ T × R : H(x, p) = 0}. That is, the
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x

p

H(x, p) > 0

H(x, p) < 0

10

Figure 3.1: {H(x, p) = 0}.

x

p

H(x, p) > 0

H(x, p) < 0

10

g(x)
{H(x, p) = 0}

Figure 3.2: g(x).

zero level set of H does not contain any equilibrium point. Consider now the piecewise
continuous function g : [0, 1] → R, with g(0) = g(1), as shown in Figure 3.2. Then, set

P :=

∫ 1

0

g(x) dx,

and define

u(x, P ) := −Px+
∫ x

0

g(y) dy.

One can see that u(·, P ) is the unique periodic viscosity solution of

H(x, P +Dxu(x, P )) = 0,

that is equation (3.1.2) with H(P ) = 0. Assume now that a Mather measure µ exists,
satisfying property (1). Then, the support of µ has necessarily to be concentrated on the
graph of g, and not on the whole level set {H = 0}. However, any invariant measure by the
Hamiltonian flow will be supported on the whole set {H = 0}, due to the non existence of
equilibria and to the one-dimensional nature of the problem, thus giving a contradiction.
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Chapter 4

Homogenization of weakly coupled

systems of Hamilton–Jacobi

equations with fast switching rates

4.1 Introduction

In this Chapter we study the behavior, as ε(> 0) tends to 0, of the viscosity solutions
(uε1, u

ε
2) of the following weakly coupled systems of Hamilton–Jacobi equations

(Cε)



















(uε1)t +H1(
x

ε
,Duε1) +

c1
ε
(uε1 − uε2) = 0 in Rn × (0, T ),

(uε2)t +H2(
x

ε
,Duε2) +

c2
ε
(uε2 − uε1) = 0 in Rn × (0, T ),

uεi (x, 0) = fi(x) on Rn for i = 1, 2,

where T > 0, c1, c2 are given positive constants and the Hamiltonians Hi(ξ, p) : R
n×Rn →

R are given continuous functions for i = 1, 2, which are assumed throughout the Chapter
to satisfy the followings.

(A1) The functions Hi are uniformly coercive in the ξ-variable, i.e.,

lim
r→∞

inf{Hi(ξ, p) | ξ ∈ Rn, |p| ≥ r} = ∞.

(A2) The functions ξ 7→ Hi(ξ, p) are Tn-periodic, i.e., Hi(ξ + z, p) = Hi(ξ, p) for any
ξ, p ∈ Rn, z ∈ Zn and i = 1, 2.

The functions fi are given continuously differentiable functions on Rn with ‖Dfi‖L∞(Rn)

are bounded for i = 1, 2, respectively. Here uεi are the real-valued unknown functions on
Rn × [0, T ] and (uεi )t := ∂uεi/∂t,Du

ε
i := (∂uεi/∂x1, . . . , ∂u

ε
i/∂xn) for i = 1, 2, respectively.



CHAPTER 4. HOMOGENIZATION OF WEAKLY COUPLED SYSTEMS OF

HAMILTON–JACOBI EQUATIONS WITH FAST SWITCHING RATES 51

Background: Randomly Switching Cost Problems

System (Cε) arises as the dynamic programming for the optimal control of the system
whose states are governed by certain ODEs, subject to random changes in the dynamics:
the system randomly switches at a fast rate 1/ε among the two states. See [24, 25, 30]. Also
see [71, 58, 15] for another switching cost problems. In order to explain the background
more precisely, we assume in addition that the Hamiltonians Hi are convex in p here. We
define the functions uεi → Rn × [0, T ] → R by

uεi (x, t) := inf
{

Ei

(

∫ t

0

Lνε(s)(
η(s)

ε
,−η̇(s)) ds+ fνε(t)(η(t))

)}

, (4.1.1)

where Li : R
2n → R are the Fenchel-Legendre transform of Hi, i.e., Li(ξ, q) := supp∈Rn(p ·

q − Hi(ξ, p)) for all (ξ, q) ∈ R2n and the infimum is taken over η ∈ AC ([0, t],Rn) such
that η(0) = x. Here Ei denotes the expectation of a process with νε(0) = i where ν is a
{1, 2}-valued process which is a continuous-time Markov chain such that

P
(

νε(s+∆s) = j | νε(s) = i
)

=
ci
ε
∆s+ o(∆s) as ∆s→ 0 for i 6= j, (4.1.2)

where o : [0,∞) → [0,∞) is a function which satisfies o(r)/r → 0 as r → 0. Formula
(4.1.1) is basically the optimal control formula for the solution of (Cε), where the random
switchings among the two states are governed by (4.1.2).

We first give a formal proof that (uε1, u
ε
2) given by (4.1.1) is a solution of (Cε). The rig-

orous derivation will be proved in Section 4.7 by using the dynamic programming principle.
We suppose that ui ∈ C1(Rn× [0, T ]). Set u(x, i, t) := ui(x, t) and Y (s) := (η(s), νε(s)) for
η ∈ AC (Rn) with η(0) = x and let νε be a Markov chain given by (4.1.2) with η(0) = x
and νε(0) = i. By Ito’s formula for a jump process we have

Ei

(

uε(Y (t), 0)− uε(Y (0), t)
)

=Ei

(

∫ t

0

−uεt (Y (s), t− s) +Duε(Y (s), t− s) · η̇(s) ds

+

∫ t

0

2
∑

j=1

(

uε(η(s), j, s)− uε(η(s), νε(s), s)
)

· cνε(s)
ε

ds
)

≥Ei
(

∫ t

0

−uεt (Y (s), t− s)−Hνε(s)(
η

ε
,Duε)− Lνε(s)(

η

ε
,−η̇) ds

+

∫ t

0

2
∑

j=1

(

uε(η(s), j, s)− uε(η(s), νε(s), s)
)

· cνε(s)
ε

ds
)

= − Ei
(

∫ t

0

Lνε(s)(
η

ε
,−η̇) ds

)

.

Thus,

uε(x, i, t) ≤ Ei
(

∫ t

0

Lνε(s)(
η

ε
,−η̇) ds+ uε(Y (t), 0)

)

.
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In the above inequality, the equality holds if −η̇(s) ∈ D−
p Hνε(s)(η(s)/ε,Du(Y (s), s)),

where D−
p Hi denotes the subdifferential of Hi with respect to the p-variable.

Main Results

There have been extensively many important results on the study of homogenization of
Hamilton–Jacobi equations. The first general result is due to Lions, Papanicolaou, and
Varadhan [60] who studied the cell problems together with the effective Hamiltonian and
established homogenization results under quite general assumptions on the Hamiltonians
in the periodic setting. The next major contributions to the subject are due to Evans [30,
29] who introduced the perturbed test functions methods in the framework of viscosity
solutions. The methods then have been adapted to study many different homogenization
problems. Then Concordel [19, 18] achieved some first general results on the properties of
the effective Hamiltonian concerning flat parts and non-flat parts. Afterwards Capuzzo-
Dolceta and Ishii [16] combined the perturbed test functions with doubling variables meth-
ods to obtain the first results on the rate of convergence of uε to u. We refer to [12, 79] for
some recent progress.

There have been some interesting results [76, 13, 14] on the study of homogenization
for weakly coupled systems of Hamilton–Jacobi equations in the periodic settings or in
the almost periodic settings. We refer the readers to [26, 52] for the complete theory of
viscosity solutions for weakly coupled systems of Hamilton–Jacobi and Hamilton–Jacobi–
Bellman equations. Since the maximum principle and comparison principle still hold,
homogenization results can be obtained by using the perturbed test functions methods
quite straightforwardly with some modifications. Let us call attention also to the new
interesting direction on the large time behavior of weakly coupled sytems of Hamilton–
Jacobi equations, which is related to homogenization through the cell problems. The
authors [69], and Camilli, Ley, Loreti and Nguyen [15] obtained large time behavior results
for some special cases but general cases still remain open.

Let us also refer to one of the main research directions in the study of homogenization,
stochastic homogenization of Hamilton–Jacobi equations, which were first obtained by
Souganidis [77], and Rezakhanlou and Tarver [73] independently. See [61, 56, 75, 62, 3] for
more recent progress on the subject.

First we heuristically derive the behavior of solutions of (Cε) as ε tends to 0. For
simplicity, from now on, we always assume that c1 = c2 = 1. We consider the formal
asymptotic expansions of the solutions (uε1, u

ε
2) of (Cε) of the form

uεi (x, t) := ui(x, t) + εvi(
x

ε
) +O(ε2).

Set ξ := x/ε. Plugging this into (Cε) and performing formal calculations, we achieve

(ui)t + . . .+Hi(ξ,Dxui +Dξvi + · · · ) + 1

ε
(ui − uj) + (vi − vj) + · · · = 0,

where we take i, j ∈ {1, 2} such that {i, j} = {1, 2}. The above expansion implies that
u1 = u2 =: u. Furthermore, if we let P = Du(x, t) then (v1, v2) is a T

n-periodic solution
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of the following cell problem

(EP )

{

H1(ξ, P +Dv1(ξ, P )) + v1(ξ, P )− v2(ξ, P ) = H(P ) in Rn,

H2(ξ, P +Dv2(ξ, P )) + v2(ξ, P )− v1(ξ, P ) = H(P ) in Rn,

where H(P ) is a unknown constant. Because of the Tn-periodicity of the Hamiltonians
Hi, we can also consider the above cell problem on the torus Tn, which is equivalent to
consider it on Rn with Tn-periodic solutions. By an argument similar to the classical one
in [60], we have

Proposition 4.1.1 (Cell Problems). For any P ∈ Rn, there exists a unique constant H(P )
such that (EP ) admits a Tn-periodic solution (v1(·, P ), v2(·, P )) ∈ C(Rn)2. We call H the
effective Hamiltonian assosiated with (H1, H2).

See also [9, 69] for more details about the cell problems.
Our main goal in this Chapter is threefold. First of all, we want to demonstrate that

uεi converge locally uniformly to the same limit u in Rn × (0, T ) for i = 1, 2 and u solves

ut +H(Du) = 0 in Rn × (0, T ).

This part is a rather standard part in the study of homogenization of Hamilton–Jacobi
equations by using the perturbed test functions method introduced by Evans [30] with
some modifications. The only hard part comes from the fact that we do not have uniform
bounds on the gradients of uεi here because of the fast switching terms. We overcome
this difficulty by introducing the barrier functions (see Lemma 4.2.1) and using the half-
relaxed limits (see the proof of Theorem 4.1.2). The barrier functions furthermore give us
the correct initial data for the limit u. Let (uε1, u

ε
2) be the solution of (Cε) henceforth.

Theorem 4.1.2 (Homogenization Result). Then, uεi converge locally uniformly in Rn ×
(0, T ) to the same limit u ∈ C0,1(Rn × [0, T ]) as ε→ 0 for i = 1, 2 and u solves







ut +H(Du) = 0 in Rn × (0, T )

u(x, 0) = f(x) :=
f1(x) + f2(x)

2
on Rn.

(4.1.3)

Formula (4.1.1) of solutions of (Cε) actually gives us an intuitive explanation about
the effective initial datum f . As we send ε to 0, the switching rate becomes very fast
and processes have to jump randomly very quickly between the two states with equal
probability as given by (4.1.2) with c1 = c2 = 1. Therefore, it is relatively clear that f is
the average of the given initial data fi for i = 1, 2.

The second main part of this Chapter is the study of the initial layers appearing natu-
rally in the problem as the initial data of uεi and u are different in general. We first study
the initial layers in a heuristic mode by finding inner and outer solutions, and using the
matching asymptotic expansion method to identify matched solutions (see Section 3.1).
We then combine the techniques of the matching asymptotic expansion method and of
Capuzzo-Dolceta and Ishii [16] to obtain rigorously the rate of convergence result.



CHAPTER 4. HOMOGENIZATION OF WEAKLY COUPLED SYSTEMS OF

HAMILTON–JACOBI EQUATIONS WITH FAST SWITCHING RATES 54

Theorem 4.1.3 (Rate of Convergence to Matched Solutions). For each T > 0, there exists
C := C(T ) > 0 such that

‖uεi −mε
i‖L∞(Rn×[0,T ]) ≤ Cε1/3 for i = 1, 2,

where u is the solution of (4.1.3) and

mε
i (x, t) := u(x, t) +

(fi − fj)(x)

2
e−

2t
ε (4.1.4)

with j ∈ {1, 2} such that {i, j} = {1, 2}.

Finally, we study various properties of the effective Hamiltonian H. It is always ex-
tremely hard to understand properties of the effective Hamiltonians even for single equa-
tions. Lions, Papanicolaou and Vadrahan [60] studied some preliminary properties of the
effective Hamiltonians and pointed out a 1-dimensional example that H can be computed
explicitly. After that, Concordel [19, 18] discovered some very interesting results related
flat parts and non-flat parts of H for more general cases. Evans and Gomes [32] found
some further properties on the strict convexity of H by using the weak KAM theory.

The properties of H for weakly coupled systems of Hamilton–Jacobi equations in this
Chapter are even more complicated. In case H1 = H2 then the effective Hamiltonian for
the weakly coupled systems and the single equations are obviously same. Therefore, we can
view the cases of single equations as special cases of the weakly coupled systems. However,
in general, we cannot expect the effective Hamiltonians for weakly coupled systems to have
similar properties like single equations’ cases.

The first few results on flat parts and non-flat parts of H are generalizations to the ones
discovered by Concordel [19, 18], and are proved by using different techniques, namely the
min-max formulas which are derived in Section 4.4 and the constructions of subsolutions.
On the other hand, we investigate other cases which show that the properties of the effective
Hamiltonians for weakly coupled systems are widely different from those of the effective
Hamiltonians for single equations. Theorems 4.4.14, 4.4.17, 4.4.18 , 4.4.20, which are ones
of our main results, describe some rather new results which do not appear in the context
of single HJ equations. Since the theorems are technical, we refer the readers to Section
4.4 for details.

We are grateful to C. Evans for his suggestion which leads us to this project. We thank
G. Barles, D. Gomes, H. Ishii, T. Mikami, and F. Rezakhanlou for their fruitful discussions.
We also thank S. Armstrong and P. Souganidis for letting us know about the coming result
on stochastic homogenization of weakly coupled systems of Hamilton–Jacobi equations of
B. Fehrman [40]. Fehrman [40] independently obtained interesting homogenization results
of monotone systems of viscous Hamilton–Jacobi equations, which are similar to ours,
with convex nonlinearities in the stationary, ergodic setting. His work includes as well
generalizations to other related systems.

This Chapter is organized as follows. In Section 2 we prove homogenization result,
Theorem 4.1.2. Section 3 devotes to the study of initial layers and rate of convergence. We
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derive inner solutions, outer solutions, and matched asymptotic solutions in the heuristic
mode and then prove Theorem 4.1.3. The properties of the effective Hamiltonian are
studied in Section 4. We obtain its elementary properties in Section 4.1, the representation
formulas in Section 4.2, and flat parts, non-flat parts near the origin in Section 4.3. In
Section 5 we prove generalization results for systems of m equations for m ≥ 2. We then
prove also the homogenization result for Dirichlet problems and describe the differences of
the effective data between Cauchy problems and Dirichlet problems in Section 4.6. Some
lemmata concerning verifications of optimal control formulas for the Cauchy and Dirichlet
problems are recorded in Section 4.7.

Notations. For k ∈ N and A ⊂ Rn, we denote by C(A), C0,1(A) and Ck(A) the space of
real-valued continuous, Lipschitz continuous and k-th continuous differentiable functions on
A, respectively. We denote L∞(A) by the set of bounded measurable functions and ‖·‖L∞(A)

denotes the superemum norm. Let Tn denote the n-dimensional torus and we identify Tn

with [0, 1]n. Define Π : Rn → Tn as the canonical projection. By abuse of notations, we
denote the periodic extensions of any set B ⊂ Tn and any function f ∈ C(Tn) to the whole
space Rn by B, and f themselves respectively. For a, b ∈ R, we write a∧ b = min{a, b} and
a ∨ b = max{a, b}. We call a function m : [0,∞) → [0,∞) a modulus if it is continuous,
nondecreasing on [0,∞) and m(0) = 0.

4.2 Homogenization Results

Lemma 4.2.1 (Barrier Functions). We define the functions ϕ±
i : Rn × [0, T ] → R by











ϕ±
1 (x, t) =

f1(x) + f2(x)

2
+
f1(x)− f2(x)

2
e−

2t
ε ± Ct

ϕ±
2 (x, t) =

f1(x) + f2(x)

2
+
f2(x)− f1(x)

2
e−

2t
ε ± Ct.

(4.2.1)

If we choose C ≥ maxi=1,2max(ξ,p)∈Rn×B(0,r) |Hi(ξ, p)|, where r = ‖Df1‖L∞(Rn)+‖Df2‖L∞(Rn),
then (ϕ−

1 , ϕ
−
2 ) and (ϕ+

1 , ϕ
+
2 ) are, respectively, a subsolution and a supersolution of (Cε), and

(ϕ−
1 , ϕ

−
2 )(·, 0) = (ϕ+

1 , ϕ
+
2 )(·, 0) = (f1, f2) on R

n.

In particular, ϕ−
i ≤ uεi ≤ ϕ+

i on Rn × [0, T ] for i = 1, 2.

Proof. We calculate that

(ϕ−
1 )t +H1(

x

ε
,Dϕ−

1 ) +
1

ε
(ϕ−

1 − ϕ−
2 )

= − f1(x)− f2(x)

ε
e−

2t
ε − C +H1(

x

ε
,Dϕ−

1 ) +
f1(x)− f2(x)

ε
e−

2t
ε

= − C +H1(
x

ε
,Dϕ−

1 ) ≤ 0

for C > 0 large enough as chosen above. Similar calculations give us that (ϕ−
1 , ϕ

−
2 ) and

(ϕ+
1 , ϕ

+
2 ) are, respectively, a subsolution and a supersolution of (Cε). By the comparison

principle for (Cε) (see [26, 52]) we get ϕ−
i ≤ uεi ≤ ϕ+

i on Rn × [0, T ] for i = 1, 2.
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Proof of Theorem 4.1.2. By Lemma 4.2.1 we can take the following half-relaxed limits

{

W (x, t) = limsup∗ε→0 supi=1,2[u
ε
i ](x, t)

w(x, t) = liminf∗ε→0 inf i=1,2[u
ε
i ](x, t).

We now show that W and w are, respectively, a subsolution and a supersolution of (4.1.3)
in Rn × (0, T ) by employing the perturbed test functions method.

Since we can easily check W (·, 0) = w(·, 0) = f on Rn due to Lemma 4.2.1, it is enough
to prove that w and W are a subsolution and a supersolution, respectively, of the equation
in (4.1.3). We only prove that W is a subsolution since by symmetry we can prove that
w is a supersolution. We take a test function φ ∈ C1(Rn × (0, T )) such that W − φ has a
strict maximum at (x0, t0) ∈ Rn × (0, T ). Let P := Dφ(x0, t0). Choose a sequence εm → 0
such that

W (x0, t0) = limsup∗m→∞ max
i=1,2

uεmi (x0, t0).

We define the perturbed test functions ψε,αi for i = 1, 2 and α > 0 by

ψε,αi (x, y, t) := φ(x, t) + εvi(
y

ε
) +

|x− y|2
2α2

,

where (v1, v2) is a solution of (EP ). By the usual argument in the theory of viscosity
solutions, for every m ∈ N, α > 0, there exist im,α ∈ {1, 2} and (xm,α, ym,α, tm,α) ∈
Rn × Rn × (0, T ) such that

max
i=1,2

max
Rn×Rn×[0,T ]

[uεmi (x, t)− ψεm,αi (x, y, t)] = uεmim,α
(xm,α, tm,α)− ψεm,αim,α

(xm,α, ym,α, tm,α)

(4.2.2)
and up to passing some subsequences

(xm,α, ym,α, tm,α) → (xm, xm, tm) as α→ 0,

im,α → im ∈ {1, 2} as α→ 0,

(xm, tm) → (x0, t0) as m→ ∞,

lim
m→∞

lim
α→0

uεmim,α
(xm,α, tm,α) = W (x0, t0).

Choose jm,α, jm ∈ {1, 2} such that {im,α, jm,α} = {im, jm} = {1, 2}. By the definition of
viscosity solutions, we have

φt(xm,α, tm,α)+Him,α(
xm,α
εm

, Dφ(xm,α, tm,α)+
xm,α − ym,α

α2
)+

1

εm
(uεmim,α

−uεmjm,α
)(xm,α, tm,α) ≤ 0.

(4.2.3)
Since (v1, v2) is a solution of (EP ) we have

Him,α(
ym,α
εm

, P +
xm,α − ym,α

α2
) + (vim,α − vjm,α)(

ym,α
εm

) ≥ H(P ). (4.2.4)
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Let α→ 0 in (4.2.3) and (4.2.4) to derive

φt(xm, tm) +Him(
xm
εm

, Dφ(xm, tm) +Qm) +
1

εm
(uεmim − uεmjm )(xm, tm) ≤ 0 (4.2.5)

and
Him(

xm
εm

, P +Qm) + (vim − vjm)(
xm
εm

) ≥ H(P ), (4.2.6)

where Qm = lim
α→0

xm,α − ym,α
α2

. Noting that the correctors vi are Lipschitz continuous due to

the coercivity of Hi, we see that |Qm| ≤ C for C > 0 which is independent of m. Combine
(4.2.5) with (4.2.6) to get

φt(xm, tm) +H(P ) ≤ Him(
xm
εm

, P +Qm)−Him(
xm
εm

, Dφ(xm, tm) +Qm)

+
1

εm
[uεmjm (xm, tm)− (φ(xm, tm) + εmvjm(

xm
εm

))]

− 1

εm
[uεmim (xm, tm)− (φ(xm, tm) + εmvim(

xm
εm

))]

≤ σ(|P −Dφ(xm, tm)|)

for some modulus σ. Letting m→ ∞, we get the result.
We finally prove that u is Lipschitz continuous. We can easily see that f ±Mt are a

supersolution and a subsolution of (4.1.3), respectively, for M > 0 large enough. By the
comparison principle for (4.1.3) we have |u(x, t)− f(x)| ≤ Mt for all (x, t) ∈ Rn × [0, T ].
Moreover, the comparison principle for (4.1.3) also yields that

sup
x∈Rn

|u(x, t+ s)− u(x, t)| ≤ sup
x∈Rn

|u(x, s)− f(x)| ≤Ms for all t, s ≥ 0, and

sup
x∈Rn

|u(x+ z, t)− u(x, t)| ≤ sup
x∈Rn

|f(x+ z)− f(x)| ≤ r|z| for all z ∈ Rn, t ≥ 0.

The proof is complete.

4.3 Initial layers and rate of convergence

Inner solutions, Outer solutions, and Matched solutions

We first derive inner solutions, outer solutions and perform the matching asymptotic ex-
pansion method to find matched solutions in a heuristic mode.

As we already obtained in Section 4.2, outer solutions are same as the limit u give in
Theorem 4.1.2. Now we need to find a right scaling for inner solutions. We let

wεi (x, t) = uεi (x,
t

ε
) for i = 1, 2,
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and plug into (Cε) to obtain

(Iε)



















(wε1)t + εH1(
x

ε
,Dwε1) + (wε1 − wε2) = 0 in Rn × (0, T/ε),

(wε2)t + εH2(
x

ε
,Dwε2) + (wε2 − wε1) = 0 in Rn × (T/ε),

wεi (x, 0) = fi(x) on Rn for i = 1, 2.

We next assume that wεi have the asymptotic expansions of the form

wεi (x, t) = wi(x, t) + εwi1(x, t) + ε2wi2(x, t) · · · , for i = 1, 2.

It is then relatively straightforward to see that (w1, w2) solves

(I)







(w1)t + (w1 − w2) = 0 in Rn × (0,∞),

(w2)t + (w2 − w1) = 0 in Rn × (0,∞),

wi(x, 0) = fi(x) on Rn for i = 1, 2.

Thus, we can compute the explicit formula for the inner solutions (w1, w2)

(w1(x, t), w2(x, t))

=

(

f1(x) + f2(x)

2
+
f1(x)− f2(x)

2
e−2t,

f1(x) + f2(x)

2
+
f2(x)− f1(x)

2
e−2t

)

.

The final step is to obtain the matched solutions. We have in this particular situation

lim
t→0

u(x, t) = lim
t→∞

wi(x, t) =
f1(x) + f2(x)

2
,

which shows that the common part of the inner and outer solutions is (f1 + f2)(x)/2.
Hence, the matched solutions are

(

u(x, t) + w1(x,
t

ε
)− f1(x) + f2(x)

2
, u(x, t) + w2(x,

t

ε
)− f1(x) + f2(x)

2

)

=

(

u(x, t) +
f1(x)− f2(x)

2
e−

2t
ε , u(x, t) +

f2(x)− f1(x)

2
e−

2t
ε

)

=(mε
1(x, t), m

ε
2(x, t)),

where mε
i are the functions defined by (4.1.4).

As we can see, the matched solutions contain the layer parts which are essentially the
same like the subsolutions and supersolutions that we build in Lemma 4.2.1. For any
fixed t > 0, we can see that (mε

1(x, t), m
ε
2(x, t)) converges to (u(x, t), u(x, t)) exponentially

fast. But for t = O(ε) then we do not have such convergence. In particular, we have
(mε

1(x, ε), m
ε
2(x, ε)) converges to (u(x, t) + (f1 − f2)(x)/(2e

2), u(x, t) + (f2 − f1)(x)/(2e
2)).

On the other hand, the fact that ((mε
1)t, (m

ε
2)t) is not bounded also give us an intuition

about the unboundedness of ((uε1)t, (u
ε
2)t).

It is therefore interesting if we can study the behavior of the difference between the real
solutions (uε1, u

ε
2) and the matched solutions (mε

1, m
ε
2).
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Rate of convergence

In this subsection, we assume further that

(A3) Hi are (uniformly) Lipschitz in the p-variable for i = 1, 2, i.e. there exists a constant
CH > 0 such that

|Hi(ξ, p)−Hi(ξ, q)| ≤ CH |p− q| for all ξ ∈ Tn and p, q ∈ Rn.

We now prove Theorem 4.1.3 by splitting Rn × [0, T ] into two parts, which are Rn ×
[0, ε| log ε|] and Rn × [ε| log ε|, T ]. For the part of small time Rn × [0, ε| log ε|], we use the
barrier functions in Lemma 4.2.1 and the effective equation to obtain the results. The L∞-
bounds of |uεi −mε

i | for i = 1, 2 on Rn × [ε| log ε|, T ] can be obtained by using techniques
similar to those of Capuzzo-Dolcetta and Ishii [16].

Proposition 4.3.1 (Initial Layer). There exists C > 0 such that

|(uεi −mε
i )(x, t)| ≤ Cε| log ε| for all (x, t) ∈ Rn × [0, ε| log ε|] and i = 1, 2.

Proof. We only prove the case i = 1. By symmetry we can prove the case i = 2. Let C ≥
maxi=1,2max(ξ,p)∈Rn×B(0,r) |Hi(ξ, p)| be a constant, where r = ‖Df1‖L∞(Rn) + ‖Df2‖L∞(Rn)

and note that u is Lipschitz continuous with a Lipschitz constant Cu := (1/2)(‖Df1‖∞ +
‖Df2‖∞). By Lemma 4.2.1 we have

∣

∣uε1(x, t)− (u(x, t) +
f1(x)− f2(x)

2
e−

2t
ε )
∣

∣

≤
∣

∣u(x, t)− f1(x) + f2(x)

2

∣

∣+ Ct = |u(x, t)− u(x, 0)|+ Ct

≤ (C + Cu)t ≤ (C + Cu)ε| log ε|

for all t ∈ [0, ε| log ε|].

Proposition 4.3.2. Assume that (A3) holds. For T > 0 there exists C = C(T ) > 0 such
that

|uεi (x, t)− u(x, t)| ≤ Cε1/3 for (x, t) ∈ Rn × [ε| log ε|, T ] and i = 1, 2.

Lemma 4.3.3. Assume that (A3) holds. For each δ > 0 and P ∈ Rn, there exists a
unique solution (vδ1, v

δ
2) ∈ C0,1(Tn)2 of

(EδP )

{

H1(ξ, P +Dvδ1(ξ, P )) + (1 + δ)vδ1(ξ, P )− vδ2(ξ, P ) = 0 in Tn,

H2(ξ, P +Dvδ2(ξ, P )) + (1 + δ)vδ2(ξ, P )− vδ1(ξ, P ) = 0 in Tn.

Moreover,

(i) there exists a constant C > 0 independent of δ such that

δ|vδi (ξ, P )− vδi (ξ, Q)| ≤ C|P −Q| for ξ ∈ Tn, P, Q ∈ Rn and i = 1, 2;
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(ii) for each R > 0, there exists a constant C = C(R) > 0 independent of δ such that

|δvδi (ξ, P ) +H(P )| ≤ C(R)δ for ξ ∈ Tn, P ∈ B(0, R) and i = 1, 2.

Proof. By the classical result (see [26, 52]) we can easily see that there exists a unique solu-
tion (vδ1, v

δ
2) of (E

δ
P ) for any P ∈ Rn. We see that

(

vδ1(·, P )± CH |P −Q|/δ, vδ2(·, P )± CH |P −Q|/δ
)

are a supersolution and subsolution of (EδQ), respectively, in view of (A3). By the compar-
ison principle for (EδQ) we have

vδi (ξ, P )−
CH |P −Q|

δ
≤ vδi (ξ, Q) ≤ vδi (ξ, P ) +

CH |P −Q|
δ

for ξ ∈ Tn, i = 1, 2,

which completes (i).
Let C1(P ) = maxi=1,2maxξ∈Tn |Hi(ξ, P )|. It is clear that (−C1(P )/δ,−C1(P )/δ) and

(C1(P )/δ, C1(P )/δ) are a subsolution and a supersolution of (EδP ), respectively. Note that

|Hi(ξ, P )| ≤ |Hi(ξ, 0)|+ |Hi(ξ, 0)−Hi(ξ, P )| ≤ C(1 + |P |)

for C ≥ maxi=1,2, ξ∈Tn |Hi(ξ, 0)| ∨CH . Therefore, by the comparison principle again we get

δ‖vδi (·, P )‖L∞(Tn) ≤ C1(P ) ≤ C(1 + |P |). (4.3.1)

Next, sum up the two equations of (EδP ) to get

H1(ξ, P +Dvδ1(ξ, P )) +H2(ξ, P +Dvδ2(ξ, P )) ≤ 2C(1 + |P |).

Thus, for each R > 0, there exists a constant C = C(R) ≥ 0 so that

‖Dvδi (·, P )‖L∞(Tn) ≤ C(R) for |P | ≤ R and i = 1, 2. (4.3.2)

We look back at (EδP ) and take the inequalities (4.3.1), (4.3.2) into account to deduce that

‖vδ1(·, P )− vδ2(·, P )‖L∞(Tn) ≤ C(R) for |P | ≤ R. (4.3.3)

Let µ+ := maxi=1,2, ξ∈Tn δv
δ
i (ξ, P ) and µ

− := mini=1,2, ξ∈Tn δv
δ
i (ξ, P ). Then we have

µ− ≤ −H(P ) ≤ µ+. (4.3.4)

Indeed, suppose that µ+ < −H(P ) and then by the comparison principle we have vδi ≥ wi
on Tn for any solution (w1, w2, H(P )) of (EP ). This is a contradiction, since for any C2 ∈ R
(w1 + C2, w2 + C2, H(P )) is a solution of (EP ) too. Similarly we see that µ− ≤ −H(P ).
By (4.3.2)–(4.3.4) we can get the desired conclusion of (ii).

Proof of Proposition 4.3.2. Let (vδ1(·, P ), vδ2(·, P )) be the solution of (EδP ) for P ∈ Rn. We
consider the auxiliary functions

Φi(x, y, t, s) := uεi (x, t)− u(y, s)− εvδi (
x

ε
,
x− y

εβ
)− |x− y|2 + (t− s)2

2εβ
−K(t+ s)
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for i = 1, 2, where δ = εθ and β, θ ∈ (0, 1) and K ≥ 0 to be fixed later.
For simplicity of explanation we assume that Φi takes a global maximum on R2n ×

[ε| log ε|, T ]2 and let (x̂, ŷ, t̂, ŝ) be a point such that

max
i=1,2

max
Rn×[ε| log ε|,T ]

Φi(x, y, t, s) = Φ1(x̂, ŷ, t̂, ŝ). (4.3.5)

For a more rigorous proof we need to add the term −γ|x|2 to Ψi for γ > 0. See the proof
of Theorem 1.1 in [16] for the detail. We first consider the case where t̂, ŝ > ε| log ε|.

Claim. If 0 < θ < 1−β, then there exists M > 0 such that (|x̂− ŷ|+ |t̂− ŝ|)/εβ ≤M .

We use Φ1(x̂, ŷ, t̂, ŝ) ≥ Φ1(x̂, x̂, t̂, t̂), Lemma 4.3.3 (i) and that u is Lipschitz continuous
to deduce that

|x̂− ŷ|2 + |t̂− ŝ|2
2εβ

≤ |u(x̂, t̂)− u(ŷ, ŝ)|+ ε|vδ1(
x̂

ε
,
x̂− ŷ

εβ
)− vδ1(

x̂

ε
, 0)|+K|t̂− ŝ|

≤Cu(|x̂− ŷ|+ |t̂− ŝ|) + Cε
1

εθ
|x̂− ŷ|
εβ

+K|t̂− ŝ|

≤C
′

(|x̂− ŷ|+ |t̂− ŝ|)

for some C,C
′

> 0, which implies the result of Claim.
We fix (y, s) = (ŷ, ŝ) and notice that the function

(x, t) 7→ uε1(x, t)− εvδi (
x

ε
,
x− ŷ

εβ
)− |x− ŷ|2 + (t− ŝ)2

2εβ
−Kt

attains the maximum at (x̂, t̂). For α > 0, we define the function ψ by

ψ(x, ξ, z, t) := uε1(x, t)− εvδ1(ξ,
z − ŷ

εβ
)− |x− ŷ|2 + |t− ŝ|2

2εβ
− |x− εξ|2 + |x− z|2

2α
−Kt.

Let ψ attain the maximum at (xα, ξα, zα, tα) and then we may assume that (xα, ξα, zα, tα) →
(x̂, x̂/ε, x̂, t̂) as α → 0 up to passing some subsequences if necessary. By the definition of
viscosity solutions, we have

K +
tα − ŝ

εβ
+H1(

xα
ε
,
xα − ŷ

εβ
+
xα − εξα

α
+
xα − zα

α
) +

1

ε
(uε1 − uε2)(xα, tα) ≤ 0, (4.3.6)

and

H1(ξα,
zα − ŷ

εβ
+
xα − εξα

α
) + (1 + δ)vδ1(ξα,

zα − ŷ

εβ
)− vδ2(ξα,

zα − ŷ

εβ
) ≥ 0. (4.3.7)

Next, since ψ(xα, ξα, zα, tα) ≥ ψ(xα, ξα, xα, tα) we get

|xα − zα|2
2α

≤ ε(vδ1(ξα,
xα − ŷ

εβ
)− vδ1(ξα,

zα − ŷ

εβ
)) ≤ Cε1−θ−β|xα − zα|
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by Lemma 4.3.3 (i). Thus, |xα − zα|/α ≤ Cε1−θ−β. Send α→ 0 and we get

K+
t̂− ŝ

εβ
+H(

x̂− ŷ

εβ
)+

1

ε
(uε1−uε2)(x̂, t̂)−vδ1(

x̂

ε
,
x̂− ŷ

εβ
)+vδ2(

x̂

ε
,
x̂− ŷ

εβ
)−C(εθ+ε1−θ−β) ≤ 0.

(4.3.8)
Similarly we fix (x, t) = (x̂, t̂) and do a similar procedure to the above to obtain

−K +
t̂− ŝ

εβ
+H(

x̂− ŷ

εβ
) + C(εθ + ε1−θ−β) ≥ 0. (4.3.9)

Combining (4.3.8), (4.3.9), and (4.3.5), we get

2K ≤ C(εθ + ε1−θ−β). (4.3.10)

Now we choose θ = β = 1/3 and K = K1ε
1/3 for K1 large enough to get the contradiction

in (4.3.10). Hence either t̂ = −ε log ε or ŝ = −ε log ε holds. The proof is complete
immediately.

Theorem 4.1.3 is a straightforward result of Propositions 4.3.1, 4.3.2.

4.4 Properties of effective Hamiltonians

Elementary properties

Proposition 4.4.1.

(i) (Coercivity) H(P ) → +∞ as |P | → ∞.
(ii) (Convexity) If Hi are convex in the p-variable for i = 1, 2, then H is convex.

Proof. (i) For each δ > 0 and P ∈ Rn, let (vδ1, vδ2) be a solution of (EδP ) and without loss
of generality, we may assume that vδ1(ξ0, P ) = maxi=1,2, ξ∈Tn v

δ
i (ξ, P ) for some ξ0 ∈ Tn. By

the definition of viscosity solutions we have H1(ξ0, P ) ≤ H1(ξ0, P ) + (vδ1 − vδ2)(ξ0, P ) ≤
−δvδ1(ξ0, P ). We let δ → 0 to derive that

H(P ) ≥ min
i=1,2, ξ∈Tn

Hi(ξ, P ).

Since Hi are coercive for i = 1, 2, so is H.
(ii) We argue by contradiction. Suppose that H is not convex and then there would

exist P,Q ∈ Rn such that

2ε0 := H(
P +Q

2
)− H(P ) +H(Q)

2
> 0. (4.4.1)

We define the functions wi ∈ C(Tn) so that wi(ξ) := (vi(ξ, P ) + vi(ξ, Q))/2 for i = 1, 2,
where (v1(·, P ), v2(·, P )) and (v1(·, Q), v2(·, Q)) are solutions of (EP ) and (EQ), respectively.
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Due to the convexity of Hi for i = 1, 2 we have










H1(ξ,
P +Q

2
+Dw1(ξ)) + w1(ξ)− w2(ξ) ≤

H(P ) +H(Q)

2
,

H2(x,
P +Q

2
+Dw2(ξ)) + w2(ξ)− w1(ξ) ≤

H(P ) +H(Q)

2
.

By (4.4.1) there exists a small constant δ > 0 such that










H1(ξ,
P +Q

2
+Dw1(ξ)) + (1 + δ)w1(ξ)− w2(ξ) ≤ H(

P +Q

2
)− ε0,

H2(x,
P +Q

2
+Dw2(ξ)) + (1 + δ)w2(ξ)− w1(ξ) ≤ H(

P +Q

2
)− ε0,

and










H1(ξ,
P +Q

2
+Dv1(ξ,

P +Q

2
)) + (1 + δ)v1(ξ,

P +Q

2
)− v2(ξ,

P +Q

2
) ≥ H(

P +Q

2
)− ε0,

H2(ξ,
P +Q

2
+Dv2(ξ,

P +Q

2
)) + (1 + δ)v2(ξ,

P +Q

2
)− v1(ξ,

P +Q

2
) ≥ H(

P +Q

2
)− ε0.

By the comparison principle we get

vi(ξ, P ) + vi(ξ, Q)

2
≤ vi(ξ,

P +Q

2
) for i = 1, 2. (4.4.2)

Notice that (4.4.2) is still correct even if we replace vi(ξ, (P+Q)/2) by vi(ξ, (P+Q)/2)+C1

for i = 1, 2 and for any C1 ∈ R, which yields the contradiction.

The uniqueness of the effective Hamiltonian for (EP ) and the cell problem for single
Hamilton–Jacobi equations gives the following proposition.

Proposition 4.4.2. If H1 = H2 = K, then

H(P ) = K(P ) for all P ∈ Rn,

where K is the effective Hamiltonian corresponding to K.

Proposition 4.4.3. If Hi are homogeneous with degree 1 in the p-variable for i = 1, 2,
then H is positive homogeneous with degree 1.

Proof. Let (v1, v2, H(P )) be a solution of (EP ) for any P ∈ Rn. If Hi is homogeneous
with degree 1 in the p-variable, then (rv1, rv2, rH(P )) is a solution of (ErP ) for any r > 0.
Therefore by the uniqueness of the effective Hamiltonian we get the conclusion.

Proposition 4.4.4. We define the Hamiltonian K as

K(ξ, p) := max{H1(ξ, p), H2(ξ, p)}.

Let K be its corresponding effective Hamiltonian and then

H(P ) ≤ K(P ).



CHAPTER 4. HOMOGENIZATION OF WEAKLY COUPLED SYSTEMS OF

HAMILTON–JACOBI EQUATIONS WITH FAST SWITCHING RATES 64

Proof. For each P ∈ Rn, there exists ϕ(·, P ) ∈ C0,1(Tn) such that

K(ξ, P +Dϕ(ξ, P )) = K(P ).

Thus (ϕ(·, P ), ϕ(·, P ), K(P )) is a subsolution of (EP ). We hence get K(P ) ≥ H(P ) by
Proposition 4.4.6.

We give an example that we can calculate the effective Hamiltonian explicitly.

Example 4.4.5. Let n = 1 and H1(ξ, p) = |p|, H2(ξ, p) = a(ξ)|p|, where

a(ξ) :=
1− ( 1

8π2 cos(2πξ) +
1
4π

sin(2πξ))

1 + (1
2
+ 1

8π2 ) cos(2πξ)
> 0.

By Proposition 4.4.3 we have that H(P ) = H(1)P for P ≥ 0. Set

v1(ξ, 1) :=
1

16π3
sin(2πξ)− 1

8π2
cos(2πξ), v2(ξ, 1) := (

1

4π
+

1

16π3
) sin(2πξ).

Then we can confirm that (v1(·, 1), v2(·, 1), 1) is a solution of (E1). Therefore H(1) = 1
and thus, H(P ) = P for P ≥ 0.

For any P < 0 we have H(P ) = H(−1) · (−P ). Set

v1(ξ,−1) := −
( 1

16π3
sin(2πξ)− 1

8π2
cos(2πξ)

)

, v2(ξ, 1) := −(
1

4π
+

1

16π3
) sin(2πξ).

Then we can confirm that (v1(·,−1), v2(·,−1), 1) is a solution of (E−1). Therefore H(−1) =
1 and thus, H(P ) = −P for P ≤ 0. Thus, we get H(P ) = |P |.

Representation formulas for the effective Hamiltonian

In this subsection we derive representation formulas for the effective Hamiltonian H(P ).
See [20, 45] for the min-max formulas for the effective Hamiltonian for single equations.

Proposition 4.4.6 (Representation formula 1). We have

H(P ) = inf{c : there exists (φ1, φ2) ∈ C(Tn)2 so that

the triplet (φ1, φ2, c) is a subsolution of (EP )}. (4.4.3)

Proof. Fix P ∈ Rn and we denote by c(P ) the right-hand side of (4.4.3). By the definition
of c(P ) we can easily see that H(P ) ≥ c(P ). We prove the other way around. Assume
by contradiction that there exist a triplet (φ1, φ2, c) ∈ C(Tn)2 × R which is a subsolution
of (EP ) and c < H(P ). Let (v1, v2, H(P )) be a solution of (EP ) and take C > 0 so that
φi > vi−C =: vi on T

n. Then since vi and φi are bounded on Tn, for ε > 0 small enough,
we have

{

H1(ξ, P +Dv1) + (1 + ε)v1 − v2 ≥ H1(ξ, P +Dφ1) + (1 + ε)φ1 − φ2

H2(ξ, P +Dv2) + (1 + ε)v2 − v1 ≥ H2(ξ, P +Dφ2) + (1 + ε)φ2 − φ1.

By the comparison principle (see [26, 52]) we deduce vi ≥ φi on Tn which yields the
contradiction.
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If we assume the convexity on Hi(ξ, ·) for any ξ ∈ Rn, by the classical result on the
representation formula for the effective Hamiltonian for single Hamilton–Jacobi equations
we can easily see that

H(P ) = inf
ϕ∈C1(Tn)

max
ξ∈Tn

[H1(ξ, P +Dϕ(ξ)) + v1(ξ, P )− v2(ξ, P )] (4.4.4)

= inf
ψ∈C1(Tn)

max
ξ∈Tn

[H2(ξ, P +Dψ(ξ)) + v2(ξ, P )− v1(ξ, P )]

for any solution (v1(·, P ), v2(·, P )) of (EP ), which is in a sense an implicit formula. For
the weakly coupled system we have the following representation formula.

Proposition 4.4.7 (Representation formula 2). If Hi are convex in the p-variable for
i = 1, 2, then

H(P ) = inf
(φ1,φ2)∈C1(Tn)2

max
i=1,2, ξ∈Tn

[Hi(ξ, P +Dφi(ξ)) + φi(ξ)− φj(ξ)], (4.4.5)

where we take j ∈ {1, 2} so that {i, j} = {1, 2}.
Lemma 4.4.8. Assume that Hi are convex in the p-variable. Let (v1, v2, H(P )) ∈ C(Tn)2

be a subsolution of (EP ). Set viδ(x) := ρδ ∗ vi(x), where ρε(x) := (1/εn)ρ(x/ε) and ρ ∈
C∞(Rn) be a standard mollification kernel, i.e., ρ ≥ 0, supp ρ ⊂ B(0, 1), and

∫

Rn ρ(x) dx =

1. Then, (v1δ, v2δ, H(P ) + ω(δ)) is a subsolution of (EP ) for some modulus ω.

Proof. Note that in view of the coercivity ofHi, vi are Lipschitz continuous and (v1, v2, H(P ))
solves (EP ) almost everywhere. Fix any ξ ∈ Tn. We calculate that

H(P ) ≥ ρδ ∗
(

H1(·, Dv1(·)) + (v1 − v2)
)

(ξ)

=

∫

B(ξ,δ)

ρδ(ξ − η)
(

H1(η,Dv1(η)) + (v1 − v2)(η)
)

dη

≥
∫

B(ξ,δ)

ρδ(ξ − η)
(

H1(ξ,Dv1(η))− ω(δ)
)

dη + (v1δ − v2δ)(ξ)

≥ H1(ξ, ρδ ∗Dv1(ξ)) + (v1δ − v2δ)(ξ)− ω(δ)

= H1(ξ,Dv1δ(ξ)) + (v1δ − v2δ)(ξ)− ω(δ),

where the third inequality follows by using Jensen’s inequality.

Proof of Proposition 4.4.7. Let c(P ) be the constant on the right-hand side of (4.4.5).
Noting that for any (φ1, φ2) ∈ C1(Tn)2

Hi(ξ, P +Dφi(ξ)) + (φi − φj)(ξ) ≤ max
i=1,2, ξ∈Tn

[Hi(ξ, P +Dφi(ξ)) + (φi − φj)(ξ)] =: aφ1,φ2

for every ξ ∈ Tn. By Proposition 4.4.6 we see that H(P ) ≤ aφ1,φ2 for all (φ1, φ2) ∈ C1(Tn)2.
Therefore we get H(P ) ≤ c(P ).

Conversely, we observe that by Proposition 5.2.1 (v1δ(·, P ), v2δ(·, P ), H(P ) + ω(δ)) ∈
C1(Tn)2 × R is a subsolution of (EP ). Therefore, by the definition of c(P ) we see that
c(P ) ≤ H(P ) + ω(δ). Sending δ → 0 yields the conclusion.
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If Hi are convex in the p-variable, then there is a variational formula of solutions of the
initial value problem and the cell problem as stated in Introduction. Therefore, naturally
we have the following variational formula

H(P ) = − lim
δ→0

inf
η
Ei

[

∫ +∞

0

e−δs
(

−P · η̇(s) + Lν(s)(η(s),−η̇(s))
)

ds
]

= − lim
t→∞

1

t
inf
η
Ei

[

∫ t

0

(

−P · η̇(s) + Lν(s)(η(s),−η̇(s))
)

ds
]

,

where the infimum is taken over η ∈ AC ([0,+∞),Rn) such that η(0) = x and Ei denotes
the expectation of a process with ν(0) = i given by (4.1.2).

Remark 4.4.9. When we consider the nonconvex Hamilton–Jacobi equations, in general we
cannot expect the formula (4.4.5). Take the Hamiltonian

Hi(ξ, p) := (|p|2 − 1)2 for i = 1, 2 (4.4.6)

for instance. In this example if we calculate the right-hand side of (4.4.5) with P = 0,
then it is 0. But we can easily check that H(0) = 1, since in this case we have solutions
(which are constants).

The following formula is a revised min-max formula for the effective Hamiltonian for
nonconvex Hamilton–Jacobi equations.

Proposition 4.4.10. We have

H(P ) = inf
(φ1,φ2)∈C0,1(Tn)2

max
i=1,2, ξ∈Tn

sup
p∈D+φi(ξ)

[Hi(ξ, P + p) + (φi − φj)(ξ)], (4.4.7)

where if D+φi(ξ) = ∅, then we set supp∈D+φi(ξ)[Hi(ξ, P + p) + (φi − φj)(ξ)] = −∞ by
convention.

We notice that if Hi are given by (4.4.6), then the right-hand side of (4.4.7) with P = 0
is 1.

Proof. The proof is already in the proof of Proposition 4.4.7. We just need to be careful
for the definition of viscosity subsolutions. Indeed, let c be the right-hand side of (4.4.7)
and noting that for any (φ1, φ2) ∈ C0,1(Tn)2, ξ ∈ Tn, and q ∈ D+φi(ξ),

Hi(ξ, P + q) + (φi − φj)(ξ) ≤ max
ξ∈Tn,i=1,2

sup
p∈D+φi(ξ)

[Hi(ξ, P + p)− (φi − φj)(ξ)] =: aφ1,φ2 .

Thus, H(P ) ≤ aφ1,φ2 for all (φ1, φ2) ∈ C0,1(Tn)2 by Proposition 4.4.6. Therefore, H(P ) ≤ c.
Conversely, there exists a viscosity subsolution (v1(·, P ), v2(·, P ), H(P )) ∈ C0,1(Tn)2×R

of (EP ). By the definition of viscosity subsolutions we have

Hi(ξ, P + p) + (vi − vj)(ξ) ≤ H(P ) for all ξ ∈ Tn and p ∈ D+vi(ξ).

Thus,
max

ξ∈Tn,i=1,2
sup

p∈D+vi(ξ)

[Hi(ξ, P + p) + (vi − vj)(ξ)] ≤ H(P ),

which implies c ≤ H(P ).
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Flat parts and Non-flat parts near the origin

In this subsection, we study the results concerning flat parts and non-flat parts of the
effective Hamiltonian H near the origin. We first point out that there are some cases in
which we can obtain similar results to those of Concordel’s results for single equations. We
present different techniques to obtain these results , namely the min-max formulas, and
the construction of subsolutions. In this subsection, we only deal with the Hamiltonians
of the form Hi(ξ, p) = |p|2 − Vi(ξ), where Vi ∈ C(Tn) for i = 1, 2 unless otherwise stated.

Theorem 4.4.11. Assume that Vi ≥ 0 in Tn and {Vi = 0} =: Ui ⊂ Tn for i = 1, 2. We
assume further that U1 ∩ U2 6= ∅ and there exist open sets W1,W2 in Tn, and a vector
q ∈ Rn such that Π(q +W2) ⋐ (0, 1)n and

U1 ∪ U2 ⊂W1 ⊂ W2 and dist(W1, ∂W2), dist(U1 ∪ U2, ∂W1) > 0, (4.4.8)

then there exists γ > 0 such that H(P ) = 0 for |P | ≤ γ.

W1

Fig. 4.2. The graph of ϕ in case n = 1.

ξ

−P · ξ

W2

Fig. 4.1. The figure of Ui,Wi.

U1

U2

W1

W2

Proof. Without loss of generality, we may assume that q = 0. Take ξ0 ∈ U1 ∩ U2. By
Proposition 4.4.7 we have

H(P ) ≥ inf
(ϕ1,ϕ2)∈C1(Tn)

max
i=1,2

[|P +Dϕi(ξ0)|2 − Vi(ξ0) + ϕi(ξ0, P )− ϕj(ξ0, P )]

≥ inf
(ϕ1,ϕ2)∈C1(Tn)

max
i=1,2

[ϕi(ξ0, P )− ϕj(ξ0, P )] = 0.

Now, let d := min{dist(W1, ∂W2), dist(U1 ∪ U2, ∂W1)} > 0. There exists ε0 > 0 such
that

Vi(ξ) ≥ ε0 for x ∈ Tn \W1, i = 1, 2. (4.4.9)

We define a smooth function ϕ on Tn such that

ϕ(ξ) = −P · ξ on W1, ϕ(ξ) = 0 on Tn \W2,

|Dϕ| ≤ C|P |
d

on Tn. (4.4.10)
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Notice that

|P +Dϕ(ξ)|2 − Vi(ξ) =







= −Vi(ξ) ≤ 0, on W1,

≤ C|P |2
d2

− ε0, on Tn \W1.

Thus, |P +Dϕ(ξ)|2 − Vi(ξ) ≤ 0 on Tn provided that |P | ≤ d
√
ε0/C =: γ. We hence have

that (ϕ, ϕ, 0) is a subsolution of (EP ) for |P | ≤ γ. Therefore H(P ) ≤ 0 for |P | ≤ γ by
Proposition 4.4.6.

Remark 4.4.12. (i) In fact, the result of Theorem 4.4.11 still holds for more general Hamil-
tonians

Hi(ξ, p) := Fi(ξ, p)− Vi(ξ),

where Fi ∈ C(Tn × Rn) and Vi ∈ C(Tn) are assumed to satisfy

(a) the functions p 7→ Fi(ξ, p) are convex and Fi(ξ, p) ≥ Fi(ξ, 0) = 0 for all (ξ, p) ∈
Tn × Rn,

(b) V1, V2 satisfy the conditions of Theorem 4.4.11.

(ii) Notice that the assumptions Vi ≥ 0 and {Vi = 0} 6= ∅ for i = 1, 2 are just for simplicity.
In general, we can normalize Vi by Vi −minξ∈Tn Vi(ξ) to get back to such situation.
(iii) From the proof of Theorem 4.4.11 we have

v1(ξ, P ) = v2(ξ, P ) for all ξ ∈ {V1 = 0} ∩ {V2 = 0}

for any solution (v1(·, P ), v2(·, P )) of (EP ).
(iv) By Proposition 4.4.4 we can give another proof to Theorem 4.4.11 as follows. In this
case, we explicitly have

K(ξ, p) = max{|p|2 − V1(ξ), |p|2 − V2(ξ)} = |p|2 − V (ξ)

where V (ξ) = min{V1(ξ), V2(ξ)}. Note that V ≥ 0 and {V = 0} = {V1 = 0} ∪ {V2 = 0}.
Hence, we can either repeat the above proof for single equations to show that H(P ) ≤
K(P ) = 0 for |P | ≤ γ or we can use Concordel’s result directly.

Notice that condition (4.4.8) is crucial and plays an important role in the construction
of the subsolution (ϕ, ϕ, 0) of (EP ) and could not be removed in the proof of Theorem
4.4.11. We point out in the next Theorem that there are cases when (4.4.8) does not hold,
then the flatness near the origin of H does not appear.

Theorem 4.4.13. Assume that Vi ≥ 0 in Tn and

{V1 = 0} = {V2 = 0} = {ξ = (ξ1, · · · , ξn) ∈ Tn : ξj = 1/2 for j ≥ 2} =: K. (4.4.11)

The followings hold.

(i) There exists γ > 0 such that H(P ) = |P1|2 provided that |P ′| ≤ γ for any P =
(P1, P

′) ∈ R× Rn−1.
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(ii) H(P ) ≥ |P1|2 for all P ∈ Rn.

Proof. Firstly, we prove that H(P ) ≤ |P1|2 provided that |P ′| ≤ γ for some γ > 0 small
enough by using exactly the same idea in the proof of Theorem 4.4.11. We build a function
ϕ(ξ) = ϕ(ξ2, · · · , ξn)∈ C1(Tn), which does not depend on ξ1, so that

n
∑

j=2

|Pj + ϕξj(ξ)|2 − Vi(ξ) ≤ 0 on Tn

for i = 1, 2 and for |P ′| ≤ γ with γ > 0 small enough. Thus

|P +Dϕ(ξ)|2 − Vi(ξ) ≤ |P1|2 on Tn

for i = 1, 2. By Proposition 4.4.6 H(P ) ≤ |P1|2.
We now prove that H(P ) ≥ |P1|2. For each ξ0 ∈ K, we have in view of (4.4.4)

H(P ) = inf
ϕ∈C1(Tn)

max
ξ∈Tn

[|P +Dϕ(ξ)|2 − V1(ξ) + v1(ξ, P )− v2(ξ, P )]

≥ inf
ϕ∈C1(Tn)

[|P +Dϕ(ξ0)|2 + v1(ξ0, P )− v2(ξ0, P )],

and similarly

H(P ) ≥ inf
ψ∈C1(Tn)

[|P +Dψ(ξ0)|2 + v2(ξ0, P )− v1(ξ0, P )].

Take an arbitrary function ϕ ∈ C1(Tn) and observe that

∫

K

|P +Dϕ(ξ)|2 dξ1

≥
∫

K

|P1 + ϕξ1(ξ)|2 dξ1 =
∫

K

|P1|2 + |ϕξ1(ξ)|2 + 2P1ϕξ1(ξ) dξ1

≥
∫

K

|P1|2 + 2P1ϕξ1(ξ) dξ1 = |P1|2.

Thus, it is clear to see that H(P ) ≥ |P1|2, which implies the result.

The above two Theorems describe several examples that we can obtain similar results
of the flat part or non-flat part of H to those of single Hamilton–Jacobi equations in [19,
18]. Indeed, the structures on the potentials Vi for i = 1, 2 are very related in such a way
that we obtain the shape of H like for single equations. We rely on the idea of building
the subsolutions (ϕ, ψ,H(P )) of (EP ) where ϕ = ψ, which does not work in general cases.

Next, we start investigating the properties of H in some cases where the structures of
the potentials Vi for i = 1, 2 are widely different and in general we cannot expect H to have
simple properties. The next question is that: Can we read of information of the effective
Hamiltonian in the case where {V1 = minξ∈Tn V1(ξ)} ∩ {V2 = minξ∈Tn V2(ξ)} = ∅?
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Theorem 4.4.14. Let n = 1 and assume that for ε0 > 0 small enough the following
properties hold.

(a) {V1 = 0} = [
4

16
,
12

16
], {V1 = −ε0} = [0, 1] \ (

3

16
,
13

16
), and −ε0 ≤ V1 ≤ 0 on T for

some ε0 > 0.

(b) {V2 = 0} = [
7

16
,
9

16
], {V2 = 2} = [0, 1] \ ( 6

16
,
10

16
), and 0 ≤ V2 ≤ 2 on T.

There exists γ > 0 such that H(P ) = 0 for |P | ≤ γ.

Lemma 4.4.15. We have

H(P ) ≥ −1

2
min
ξ∈Tn

(V1 + V2)(ξ).

Proof. Sum up the two equations in (EP ) to get

|P +Dv1|2 + |P +Dv2|2 − V1 − V2 = 2H(P ),

which implies 2H(P ) ≥ −(V1 + V2)(ξ)) for a.e. ξ ∈ Tn, and the proof is complete.

Proof of Theorem 4.4.14. Noting that minξ∈T(V1 + V2)(ξ) = 0, and {V1 = −ε} ∩ {V2 =
0} = ∅, we have H(P ) ≥ 0 by Lemma 4.4.15. We construct a subsolution (ϕ, ψ, 0) of (EP )
for |P | small enough. Let

W1 = (
6

16
,
10

16
), W2 = (

5

16
,
11

16
), W3 = (

4

16
,
12

16
).

Let P < 0 for simplicity. We define the functions ϕ, ψ by

ϕ(ξ) :=

{

−P · ξ for x ∈ W2

0 for ξ ∈ T \W3

and |Dϕ| ≤ C1|P | for some C1 > 0, 0 ≤ ϕ ≤ −P · ξ on [0, 1] and

ψ(ξ) =

{

−P · ξ for ξ ∈ W1

C2 ξ ∈ T \W2

for some C2 ∈ (1/64, 1), |P +Dψ| ≤ 1, and ψ ≥ −P · ξ on [0, 1].
We have

|P +Dϕ(ξ)|2 − V1(ξ) + ϕ(ξ)− ψ(ξ)

≤
{

ϕ(ξ)− ψ(ξ) ≤ 0 if ξ ∈ W2

2(C2
1 + 1)|P |2 + ε0 + |P | − C2 if ξ ∈ T \W2.
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If |P | and ε0 are small enough, then |P +Dϕ(ξ)|2−V1(ξ)+ϕ(ξ)−ψ(ξ) ≤ 0 on T. Besides,

|P +Dψ(ξ)|2 − V2(ξ) + ψ(ξ)− ϕ(ξ)

≤
{

0 if ξ ∈ W1

1− 2 + C2 − 0 ≤ 0 if ξ ∈ T \W1.

Fig. 4.3. The graph of ϕ. Fig. 4.4. The graph of ψ.

ξξ

−P · ξ

W2
W3 W2

W1

C2

Thus (ϕ, ψ, 0) is a subsolution of (EP ), and the proof is complete.

Remark 4.4.16. It is worth to notice that

H(0) 6= −1

2
min
x∈Tn

(V1 + V2)(x)

in general. Indeed, set

V1(ξ) = 4π2 sin2(2πξ) + cos(2πξ)− sin(2πξ),

V2(ξ) = 4π2 cos2(2πξ) + sin(2πξ)− cos(2πξ).

If we check that (cos(2πξ), sin(2πξ), 0) is a solution of (E0), then we realize H(0) = 0. In
this case

H(0) = 0 6= −2π2 = −1

2
(V1 + V2)(ξ) for all ξ ∈ T.

In Theorem 4.4.11 the fact that Π(Rn \ (U1 ∪ U2)) is connected, where Ui = {Vi = 0}
plays an important role in the construction of subsolutions as stated just before Theorem
4.4.13. In the next couple of Theorems we make new observations that we can get the flat
parts of effective Hamiltonians even though Π(Rn \ (U1 ∪ U2)) is not connected.

Theorem 4.4.17. Let n = 1 and assume V1 ≡ 0, V2 ≥ 0 on [0, 1] and {V2 = 0} = {1/2}.
Then there exists γ > 0 such that H(P ) = 0 for |P | ≤ γ.

Sketch of Proof. The proof is almost the same as the proof of Theorem 4.4.14 but let us
present it here for the sake of clarity. Since minξ∈Tn(V1 + V2)(ξ) = 0, we have H(P ) ≥ 0
by Lemma 4.4.15. Let

W1 = (
3

8
,
5

8
), W2 = (

2

8
,
6

8
), W3 = (

1

8
,
7

8
).
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There exists M ∈ (0, 1) so that

V2(ξ) ≥ M for ξ /∈ W1.

Assume P < 0 for simplicity. We now construct the functions ϕ, ψ so that (ϕ, ψ, 0) is a
subsolution of (EP ) for small |P |, which implies the conclusion. Take |P | ≤M/4 first. We
define the functions ϕ, ψ by

ϕ(ξ) :=

{

−P · ξ for x ∈ W2

0 for ξ ∈ T \W3

and |Dϕ| ≤ C1|P | for some C1 > 0, 0 ≤ ϕ ≤ −P · ξ on [0, 1] and

ψ(ξ) =

{

−P · ξ for ξ ∈ W1

C2 ξ ∈ T \W2

for some C2 ∈ (M/128,M/2), |P +Dψ| ≤M/2, and ψ ≥ −P · ξ on [0, 1].
We have

|P +Dϕ(ξ)|2 + ϕ(ξ)− ψ(ξ) ≤
{

ϕ(ξ)− ψ(ξ) ≤ 0 if ξ ∈ W2

2(C2
1 + 1)|P |2 + |P | − C2 if ξ ∈ T \W2.

If |P | is small enough, then |P +Dϕ(ξ)|2 + ϕ(ξ)− ψ(ξ) ≤ 0 on T. Besides,

|P +Dψ(ξ)|2 − V2(ξ) + ψ(ξ)− ϕ(ξ)

≤







0 if ξ ∈ W1

M2

4
−M + C2 − 0 ≤ M2

4
−M +

M

2
≤ 0 if ξ ∈ T \W1.

Thus (ϕ, ψ, 0) is a subsolution of (EP ), and the proof is complete.

We can actually generalize Theorem 4.4.17 as following.

Theorem 4.4.18. Assume that V1 ≡ 0, V2 ≥ 0 and there exist an open set W in Tn and
a vector q ∈ Rn such that Π(q +W ) ⋐ (0, 1)n and ∅ 6= {V2 = 0} ⊂ W . Then there exists
γ > 0 such that H(P ) = 0 for |P | ≤ γ.

The proof of this Theorem is basically the same as the proof of Theorem 4.4.17, hence
omitted. The following Corollary is a direct consequence of Theorem 4.4.18

Corollary 4.4.19. Assume that V1, V2 ≥ 0 and there exist an open set W in Tn and a
vector q ∈ Rn such that Π(q +W ) ⋐ (0, 1)n and

∅ 6= {V1 = 0} ∩ {V2 = 0} ⊂ {V2 = 0} ⊂W.

Then there exists γ > 0 such that H(P ) = 0 for |P | ≤ γ.
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The result of Corollary 4.4.19 is pretty surprising in the sense that flat part around 0
of H occurs even though we do not know much information about V1. More precisely, we
only need to control well {V2 = 0} and do not need to care about {V1 = 0} except that
{V1 = 0} ∩ {V2 = 0} 6= ∅.

Finally, we consider a situation in which the requirements of Theorem 4.4.18 and Corol-
lary 4.4.19 fail.

Theorem 4.4.20. We take two potentials V i : T → [0,∞) such that V i are continuous
and {V i = 0} = {y0i} for some y0i ∈ T for i = 1, 2. Assume that V1(ξ1, ξ2) = V 1(ξ1)
and V2(ξ1, ξ2) = V 2(ξ2) for (ξ1, ξ2) ∈ T2. Then there exists γ > 0 such that H(P ) = 0 for
|P | ≤ γ.

{V1 = 0}

y01

y02
{V2 = 0}

Fig. 4.5. The figures of {Vi = 0}
Proof. By using Theorem 4.4.17, for P = (P1, P2) with |P | small enough, there exist two
pairs (ϕi, ψi) ∈ C0,1(T)2 for i = 1, 2 such that

{

|P1 + ϕ′
1(ξ1)|2 − V 1(ξ1) + ϕ1(ξ1)− ψ1(ξ1) = 0,

|P1 + ψ′
1(ξ1)|2 + ψ1(ξ1)− ϕ1(ξ1) = 0

and
{

|P2 + ϕ′
2(ξ2)|2 + ϕ2(ξ2)− ψ2(ξ2) = 0,

|P2 + ψ′
2(ξ2)|2 − V 2(ξ2) + ψ2(ξ2)− ϕ2(ξ2) = 0

Now let v1(ξ1, ξ2) = ϕ1(ξ1) + ϕ2(ξ2), v2(ξ1, ξ2) = ψ1(ξ1) + ψ2(ξ2) for (ξ1, ξ2) ∈ T2. For
P = (P1, P2) with |P | ≤ γ, we easily get that (v1, v2, 0) is a solution of (EP ), which means
H(P ) = 0.

4.5 Generalization

In this section we consider weakly coupled systems of m-equations for m ≥ 2

(uεi )t +Hi(
x

ε
,Duεi) +

1

ε

m
∑

j=1

cij(u
ε
i − uεj) = 0 in Rn × (0, T ) for i = 1, . . . , m,
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with
uεi (x, 0) = fi(x) on R

n for i = 1, . . . , m,

where cij are given nonnegative constants which are assumed to satisfy

m
∑

j=1

cij = 1 for all i = 1, . . . , m. (4.5.1)

Set

K :=





c11 · · · c1m
...

. . .
...

cm1 · · · cmm



 , uε :=





uε1
...

uεm



 , and f :=





f1
...
fm



 .

Then the problem can be written as















uεt +





H1(x/ε,Duε1)
...

Hm(x/ε,Duεm)



+
1

ε
(I −K)uε = 0 in Rn × (0, T ), (4.5.2)

uε(·, 0) = f on Rn,

where I is the identity matrix of size m. We obtain the following result.

Theorem 4.5.1. The functions uεi converge locally uniformly to the same limit u in Rn ×
(0, T ) as ε → 0 for i = 1, . . . , m and u solves

{

ut +H(Du) = 0 in Rn × (0, T )

u(x, 0) = f(x) on Rn,

where H is the associated effective Hamiltonian and

f(x) :=
1

m

m
∑

i=1

fi(x).

We only present barrier functions which are generalizations of the barrier function in
case m = 2 defined by (4.2.1) in Lemma 4.2.1. Set

w±(x, t) := (f ± Ct)j+ gε(x, t),

where C is a positive constant which will be fixed later, j := (1, . . . , 1)T and

gε(x, t) :=
[

e
t
ε
(K−I)h

]

(x), h(x) := f(x)− f(x)j.

Since we assume (4.5.1), we can easily check that the Frobenius root of K, i.e., the max-
imum of the eigenvalues of K, is 1 and moreover j is an associated eigenvector. Moreover
by the Perron–Frobenius theorem we have
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Lemma 4.5.2. There exists δ > 0 such that |et(K−I)h| ≤ e−δt|h| provided that h · j = 0.

See [54, Lemma 5.2] for a more general result.

Proposition 4.5.3. The functions w± are a subsolution and a supersolution of (4.5.2)
with w±(·, 0) = f on Rn, respectively, if C > 0 is large enough.

Proof. It is easy to check w±(·, 0) = f on Rn. Note that

∂gε

∂t
=

1

ε
(K − I)gε and |Dg| ≤ Ce−

δt
ε .

Thus, we can check easily that w± are a subsolution and a supersolution of (4.5.2), respec-
tively, if C > 0 is large enough.

By a rather standard argument by using the perturbed test functions we can get The-
orem 4.5.1 as in the proof of Theorem 4.1.2.

4.6 Dirichlet Problems

In this section we consider the asymptotic behavior, as ε tends to 0, of the viscosity
solutions (uε1, u

ε
2) of Dirichlet boundary problems for weakly coupled systems of Hamilton–

Jacobi equations

(Dε)



















uε1 +H1(
x

ε
,Duε1) +

1

ε
(uε1 − uε2) = 0 in Ω,

uε2 +H2(
x

ε
,Duε2) +

1

ε
(uε2 − uε1) = 0 in Ω,

uεi (x) = gi(x) on ∂Ω,

where Ω is a bounded domain of Rn with the Lipschitz boundary, the Hamiltonians Hi ∈
C(Rn × Rn) are assumed to satisfy (A1)-(A2) and gi ∈ C(∂Ω) are given functions.

Concerning the Dirichlet problem, most of the works required continuous solutions up
to the boundary and prescribed data on the entire boundary. This can be achieved for
special classes of equations by imposing compatibility conditions on the boundary data or
by assuming the existence of appropriate super and subsolutions. However, in general, we
do not expect that there exists a (viscosity) solution satisfying the boundary condition in
the classical sense. After Soner studied the state constraints problems in terms of PDE,
the viscosity formulation of Dirichlet conditions was introduced by Barles and Perthame
[5] and Ishii [48]. In this Chapter we deal with solutions satisfying Dirichlet boundary
conditions in the sense of viscosity solutions.

Theorem 4.6.1. Let (uε1, u
ε
2) be the solution of (Dε). Then uεi converge locally uniformly

to the same limit u on Ω as ε → 0 for i = 1, 2 and u solves
{

u+H(Du) = 0 in Ω,

u(x, t) = g on ∂Ω,
(4.6.1)
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where g := min{g1, g2} on ∂Ω.

Lemma 4.6.2. If (uε1, u
ε
2) ∈ USC (Ω)2 is a bounded subsolution of (Dε), then u

ε
i (x) ≤ gi(x)

for all x ∈ ∂Ω and i = 1, 2.

Proof. Fix x0 ∈ ∂Ω. Choose a sequence {xk}k∈N ⊂ Rn \ Ω such that |x0 − xk| = 1/k2.
Define the functions φ1 : Ω → R by φ1(x) := uε1(x) − k|x − xk|. Let r > 0 and ξk ∈
B(x0, r) ∩ Ω be a maximum point of φ1 on B(x0, r) ∩ Ω. Since φ1(ξk) ≥ φ1(x0), we have
k|ξk−xk| ≤ uε1(ξk)−uε1(x0)+ k|x0−xk| ≤ C, where C > 0 is a constant independent of k.
Thus, ξk → x0 as k → ∞. Moreover, noting that uε1(x0) ≤ lim infk→∞(uε1(ξk)+k|x0−xk|) ≤
lim supk→∞ uε1(ξk) + lim supk→∞ k|x0 − xk| ≤ uε1(x0), we get uε1(ξk) → uε1(x0) as k → ∞.
By the viscosity property of uε1, we have

uε1(ξk) +H1(
ξk
ε
, pk) +

1

ε
(uε1(ξk)− u2(ξk)) ≤ 0 or (4.6.2)

uε1(ξk) ≤ g1(ξk),

where pk = k(ξk−xk)/|ξk−xk|. Noting that |pk| = k, by (A1), we see that the left-hand side
of (4.6.2) is positive for a sufficiently large k ∈ N and then we must have uε1(ξk) ≤ g1(ξk).
Sending k → ∞, we get uε1(x0) ≤ g1(x0). Similaly, we get uε2(x0) ≤ g2(x0) on ∂Ω.

Lemma 4.6.3. The families {uεi}ε>0 are equi-Lipschitz continuous for i = 1, 2.

Proof. Set M := maxi=1,2(‖Hi(·, 0)‖L∞(Rn) + ‖gi‖L∞(∂Ω)). Then (−M,−M) and (M,M)
are a subsolution and a supersolution of (Dǫ), respectively. By the comparison principle
for (Dǫ) we have |uεi | ≤ M . Adding two equations in (Dǫ) we get

uε1 + uε2 +H1(
x

ε
,Duε1) +H2(

x

ε
,Duε2) = 0

for almost every x ∈ Ω, which implies that |Duεi | ≤ M
′

in the sense of viscosity solutions
for some M

′

> 0.

Proof of Theorem 4.1.2. By Lemma 4.6.3 we can extract a subsequence {εj} converging to
0 so that u

εj
i converges locally uniformly to ui ∈ C(Ω) for i = 1, 2. By usual observations,

we get that u1 = u2 =: u. Since (4.6.1) has a unique solution, it is enough for us to prove
that u is a solution of (4.6.1).

We only prove that u is a supersolution of (4.6.1), since in view of Lemma 4.6.2 we can
easily see that u is a subsolution of (4.6.1).

Let φ ∈ C1(Ω) be a test function such that u − φ takes a strict minimum at x0 ∈ Ω.
We only consider the case where x0 ∈ ∂Ω, since we can prove by a similar way to the
proof of Theorem 4.1.2 in the case where x0 ∈ Ω. It is enough for us to prove that
u(x0) +H(Dφ(x0)) ≥ 0 provided that (u− g)(x0) < 0.

Let (v1, v2) be a solution of (EP ) with P := Dφ(x0). We consider

mε := min
i∈{1,2}

min
x∈Ω

(

uεi (x)− φ(x)− εvi(
x

ε
)
)

.
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Pick iε ∈ {1, 2} and xε ∈ Ω so that mε = uεiε(x
ε) − φ(xε) − εviε(x

ε/ε). Also choose
jε ∈ {1, 2} such that {iε, jε} = {1, 2}. We only consider the case where xε ∈ ∂Ω again.
Since uiε converges to u locally uniformly on Ω, εv(·/ε) converges to 0 uniformly on Ω as
ε → 0 and u− φ takes a strict maximum at x0, we see that xε → x0 as ε → 0. Thus, if ε
is small enough, then we may assume that (uεiε − giε)(x

ε) < 0.
For α > 0 we define the function Φα : Ω× Rn → R by

Φα(x, y) := uεiε(x)− φ(x)− εviε
(y

ε

)

+
1

2α2
|x− y|2 + 1

2
|x− xε|2.

Let Φα achieve its minimum over Ω×Rn at some (xεα, y
ε
α). Since we may assume by taking

a subsequence if necessary that xεα → xε as α → 0, we have

(uiε − giε)(x
ε
α) < 0 for small α > 0.

Therefore, by the definition of viscosity solutions, we have

uiε +Hiε(
xεα
ε
,Dφ(xεα)− pεα − (xεα − xε)) +

1

ε
(uεiε − uεjε)(x

ε
α) ≥ 0,

where pεα := (xεα − yεα)/α
2. Also, we have

Hi(
yεα
ε
, P − pεα) + (viε − vjε)(

yεα
ε
) ≤ H(P ),

since (v1, v2) is a solution of (EP ).
A priori Lipschitz estimate implies |pεα| ≤ C for some C > 0 which is independent of α

and ε. Without loss of generality, we may assume that pεα → pε by taking a subsequence
{αj} converging to 0 if necessary. Send α→ 0 in the above inequalities to obtain

uεiε(x
ε) +Hiε(

xε

ε
,Dφ(xε)− pε) +

1

ε
(uεiε(x

ε)− uεjε(x
ε)) ≥ 0,

Hiε(
xε

ε
, P − pε) + viε(

xε

ε
)− vjε(

xε

ε
) ≤ H(P ).

Noting that uεiε(x
ε)− φ(xε)− εviε(

xε

ε
) ≤ uεjε(x

ε)− φ(xε)− εvjε(
xε

ε
), we get that

uεiε(x
ε) +H(P ) ≥ Hiε(

xε

ε
,Dφ(xε)− pε)−Hiε(

xε

ε
, P − pε) ≥ −σ(|Dφ(xε)− P |).

Sending ε→ 0 yields the conclusion.

In order to explain the relation between (Dε) and the exit-time problem in the optimal
control theory, we assume that the Hamiltonians Hi are convex in the p-variable henceforth.
We next define the associated value functions, which give us an intuition about the effective
boundary datum g in Theorem 4.6.1.
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For ε > 0 we define the functions uεi : Ω → R by

uεi (x) := inf
{

Ei

(

∫ τ

0

e−sLνε(s)(
η(s)

ε
,−η̇(s)) ds+ e−τgνε(τ)(η(τ))

)}

, (4.6.3)

where the infimum is taken over η ∈ AC ([0,∞),Ω) such that η(0) = x and τ ∈ [0,∞] such
that η(τ) ∈ ∂Ω and if τ = ∞, then we set e−∞ := 0. Here Ei denotes the expectation of a
process with νε(0) = i, where νε is a {1, 2}-valued continuous-time Markov chain given by
(4.1.2).

Theorem 4.6.4. Assume that the functions uεi given by (4.6.3) are continuous on Ω.
Then the pair (uε1, u

ε
2) is a solution of (Dε).

The proof of Theorem 4.6.4 is given in Section 4.7. See [I, 5] for single equations. The
value functions defined by (4.6.3) give us an intuitive explanation of the reason why the
boundary datum g of the limit solution u is the minimum of gi for i = 1, 2. If we send
ε to 0, then the switching rate becomes very fast but it does not really affect the exit
time as we can choose to stay in Ω as long as we like. And hence, we can control the exit
state in such a way that the exit cost is the minimum of two given exit costs gi. On the
other hand, when we consider the value function (4.1.1) associated with the initial value
problem, we cannot control the terminal state and also the timing of jumps, which are only
determined by a probabilistic way given by (4.1.2). This is the main difference between
Dirichlet problems and initial value problems and the reason why the effective Dirichlet
boundary value and the effective initial value are different.

4.7 Auxiliary Lemmata

We now prove Theorems 4.7.1, and 4.6.4 by basically using the dynamic programming
principles, which are pretty standard in the theory of viscosity solutions. Throughout
this section we always assume in addition to (A1), (A2) that p 7→ Hi(ξ, p) are convex for
i = 1, 2.

Theorem 4.7.1 (Verification Theorem). Assume that the functions uεi given by (4.1.1)
are continuous on Rn × [0, T ]. Then the pair (uε1, u

ε
2) is a solution of (Cε).

Let ε = 1 for simplicity in what follows. By abuse of notations we write (u1, u2) for
(u11, u

1
2).

Proposition 4.7.2 (Dynamic Programming Principle). For any x ∈ Rn, 0 ≤ h ≤ t and
i = 1, 2 we have

ui(x, t) = inf
{

Ei

(

∫ h

0

Lν(s)(η(s),−η̇(s)) ds+ uν(h)(η(h), t− h)
)}

, (4.7.1)

where the infimum is taken over η ∈ AC ([0, h],Rn) with η(0) = x.
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Proof. We denote by vi(x, t; h) the right-hand side of (4.7.1). Let η be a trajectory in
AC ([0, t],Rn) with η(0) = x and ν be a process with ν(0) = i which satisfies (4.1.2). Set
η̃(s) := η(s+ h) and ν̃(s) := ν(s + h) for s ∈ [0, t− h]. We have

Ei

(

∫ t

0

Lν(s)(η(s),−η̇(s)) ds+ fν(t)(η(t))
)

=Ei

(

∫ h

0

Lν(s)(η(s),−η̇(s)) ds+
∫ t

h

Lν(s)(η(s),−η̇(s)) ds+ fν(t)(η(t))
)

=Ei

(

∫ h

0

Lν(s)(η(s),−η̇(s)) ds
)

+ Ei

(

∫ t−h

0

Lν̃(s)(η̃(s),− ˙̃η(s)) ds+ fν̃(t−h)(η̃(t− h))
)

≥Ei
(

∫ h

0

Lν(s)(η(s),−η̇(s)) ds+ uν(h)(η(h), t− h)
)

≥ vi(x, t; h),

which implies ui(x, t) ≥ vi(x, t; h).
Let δ1 ∈ AC ([0, h],Rn) and δ2 ∈ AC ([0, t − h],Rn) be trajectories with δ1(h) = δ2(0)

and δ1(0) = x. Set

η(s) :=

{

δ1(s) for all s ∈ [0, h],
δ2(s− h) for all s ∈ [h, t].

Let ν be a process with ν(0) = i which satisfies (4.1.2). Note that

∫ h

0

Lν(s)(δ1(s),−δ̇1(s)) ds+
∫ t−h

0

Lν(s+h)(δ2(s),−δ̇2(s)) ds+ fν(t)(δ2(t− h))

=

∫ t

0

Lν(s)(η(s),−η̇(s)) ds+ fν(t)(η(t)).

We have

Ei

(

∫ h

0

Lν(s)(δ1(s),−δ̇1(s)) ds+
∫ t−h

0

Lν(s+h)(δ2(s),−δ̇2(s)) ds+ fν(t)(δ2(t− h))
)

=Ei

(

∫ t

0

Lν(s)(η(s),−η̇(s)) ds+ fν(t)(η(t))
)

≥ui(x, t).

Take the infimum on all admissible δ2 to obtain

Ei

(

∫ h

0

Lν(s)(δ1(s),−δ1(s)) ds+ uν(h)(δ1(h), t− h)
)

≥ ui(x, t),

which implies vi(x, t; h) ≥ ui(x, t).

Proof of Theorem 4.7.1. It is obvious to see that (u1, u2)(·, 0) = (f1, f2) on R
n. We prove

first that u1 is a subsolution of (C1). We choose a function φ ∈ C1(Rn × (0, T )) such that
u1 − φ has a strict maximum at (x0, t0) ∈ Rn × (0, T ) and (u1 − φ)(x0, t0) = 0.
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Let h > 0. By Proposition 4.7.1 we have

u1(x0, t0) ≤ Ei
(

∫ h

0

Lν(s)(η(s),−η̇(s)) ds+ uν(h)(η(h), t0 − h)
)

(4.7.2)

for any η ∈ AC ([0, h],Rn) with η(0) = x0 ∈ Rn and η̇(0) = q ∈ Rn. Since ν is a continuous-
time Markov chain which satisfies (4.1.2), the probability that ν(h) = 2 is c1h + o(h) and
the probability that ν(h) = 1 is 1− (c1h+ o(h)). By (4.7.2) we obtain

φ(x0, t0) = u1(x0, t0)

≤ (1− c1h− o(h))
(

∫ h

0

L1(η,−η̇) ds+ u1(η(h), t0 − h)
)

+ (c1h+ o(h))
(

∫ h

0

L2(η,−η̇) ds+ u2(η(h), t0 − h)
)

≤
∫ h

0

L1(η,−η̇) ds+ φ(η(h), t0 − h)

+ (c1h+ o(h))
(

∫ h

0

L2(η,−η̇) ds+ u2(η(h), t0 − h)−
∫ h

0

L1(η,−η̇) ds− u1(η(h), t0 − h)
)

.

Thus,

φ(η(0), t0)− φ(η(h), t0 − h)

h

≤ 1

h

∫ h

0

L1(η,−η̇) ds+ (c1 +
o(h)

h
)(u2(η(h), t0 − h)− u1(η(h), t0 − h))

+ (c1 +
o(h)

h
)
(

∫ h

0

L2(η,−η̇) ds−
∫ h

0

L1(η,−η̇) ds
)

.

Sending h→ 0, we obtain

φt(x0, t0) +Dφ(x0, t0) · (−q) ≤ L1(x0,−q) + c1(u2 − u1)(x0, t0) for all q ∈ Rn,
which implies φt(x0, t0) +H(x0, Dφ(x0, t0)) + c1(u2 − u1)(x0, t0) ≤ 0.

Next we prove that u1 is a supersolution of (C1). We choose a function φ ∈ C1(Rn ×
(0, T )) such that u1−φ has a strict minimum at (x0, t0) ∈ Rn×(0, T ) and (u1−φ)(x0, t0) = 0.
Take h, δ > 0. By Proposition 4.7.1 we have

u1(x0, t0) + δ > Ei

(

∫ h

0

Lν(s)(ηδ(s),−η̇δ(s)) ds+ uν(h)(ηδ(h), t0 − h)
)

(4.7.3)

for some ηδ ∈ AC ([0, h],Rn) with ηδ(0) = x0. Since ν is a continuous-time Markov chain
which satisfies (4.1.2), by a similar calculation to the above we obtain

φ(x0, t0) + δ = u1(x0, t0) + δ

>

∫ h

0

L1(η,−η̇) ds+ φ(η(h), t0 − h)

+ (c1h+ o(h))
(

∫ h

0

L2(η,−η̇) ds+ u2(η(h), t0 − h)−
∫ h

0

L1(η,−η̇) ds− u1(η(h), t0 − h)
)

.
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Thus,

δ

h
>

1

h

∫ h

0

dφ(ηδ(s), t0 − s)

ds
+ L1(ηδ,−η̇δ) ds

+ (c1 +
o(h)

h
)(u2(ηδ(h), t0 − h)− u1(ηδ(h), t0 − h))

+ (c1 +
o(h)

h
)
(

∫ h

0

L2(ηδ,−η̇δ) ds−
∫ h

0

L1(ηδ,−η̇δ) ds
)

=
1

h

∫ h

0

−φt(ηδ(s), t0 − s)−Dφ · (−η̇δ(s)) + L1(ηδ,−η̇δ) ds

+ (c1 +
o(h)

h
)(u2(ηδ(h), t0 − h)− u1(ηδ(h), t0 − h)) +O(h)

≥ 1

h

∫ h

0

−
(

φt(ηδ(s), t0 − s) +H1(ηδ(s), Dφ)
)

ds

+ (c1 +
o(h)

h
)(u2(ηδ(h), t0 − h)− u1(ηδ(h), t0 − h)) +O(h).

We finally set δ = h2 and let h→ 0 to yield the conclusion.

By a similar argument to the proof of Proposition 4.7.2 we can prove

Proposition 4.7.3 (Dynamic Programming Principle for (4.6.3)). For any x ∈ Rn, h ≥ 0
and i = 1, 2 we have

ui(x) = inf
{

Ei

(

∫ h∧τ

0

e−sLν(s)(
η(s)

ε
,−η̇(s)) ds

+ 1{h<τ}e
−huν(h)(η(h)) + 1{h≥τ}e

−τgν(τ)(η(τ))
)}

, (4.7.4)

where ν with ν(0) = i is a {1, 2}-valued continuous-time Markov chain which satisfies
(4.1.2) and the infimum is taken over η ∈ AC ([0, h],Ω) such that η(0) = x and τ ∈ [0, h]
such that η(τ) ∈ ∂Ω.

Proof of Theorem 4.6.4. We only prove in what follows that ui satisfy the Dirichlet bound-
ary condition in the sense of viscosity solutions, as we can prove ui satisfy the equations
by an argument similar to the proof of Theorem 4.7.1. Since it is clear to see that ui ≤ gi
on ∂Ω in the classical sense from the definition of ui, we only need to prove that (u1, u2)
is a supersolution of (Dε) and particularly that u1 satisfies the boundary condition in the
viscosity solution sense. Take x0 ∈ ∂Ω and suppose that

(u1 − g1)(x0) < 0. (4.7.5)
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Let φ ∈ C1(Ω) satisfy (u1 − φ)(x0) = maxΩ(u1 − φ) = 0. By Proposition 4.7.3 we have

u1(x0) + h2

>Ei

(

∫ h∧τh

0

e−sL ν(s)
ε

(ηh(s),−η̇h(s)) ds+ 1{h<τh}e
−huν(h)(ηh(h)) + 1{h≥τh}e

−τhgν(τh)(ηh(τh))
)

≥Ei
(

∫ h∧τh

0

e−sLν(s)(
ηh(s)

ε
,−η̇h(s)) ds+ e−(h∧τh)uν(h∧τh)(ηh(h ∧ τh))

)

for some ηh ∈ AC ([0, h],Ω) such that η(0) = x and τh ∈ [0, h]. In view of (4.7.5), we have
τh > 0 for small h > 0. Therefore by a similar calculation as in the proof of Theorem 4.7.1
we get

u1(x0) +H1(
x0
ε
,Dφ(x0)) +

1

ε
(u1 − u2)(x0) ≥ 0.
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Chapter 5

Large time behavior of viscosity

solutions of weakly coupled systems

of Hamilton–Jacobi equations

5.1 Introduction

In this Chapter we study the large time behavior of the viscosity solutions of the following
weakly coupled systems of Hamilton–Jacobi equations

(C)







(u1)t +H1(x,Du1) + c1(u1 − u2) = 0 in Rn × (0, T ),

(u2)t +H2(x,Du2) + c2(u2 − u1) = 0 in Rn × (0, T ),

u1(x, 0) = u01(x), u2(x, 0) = u02(x) on Tn,

where the Hamiltonians Hi ∈ C(Tn × Rn) are given functions which are assumed to be
coercive, i.e.,

(A1) lim
r→∞

inf{Hi(x, p) | x ∈ Tn, |p| ≥ r} = ∞,

and u0i are given real-valued continuous functions on Tn, and ci > 0 are given constants
for i = 1, 2, respectively. Here ui are the real-valued unknown functions on Rn × [0, T ]
and (ui)t := ∂ui/∂t,Dui := (∂ui/∂x1, . . . , ∂ui/∂xn) for i = 1, 2, respectively. For the sake
of simplicity, we focus on the system of two equations above but we can generalize it to
general systems of m equations in Cases 1, 2 below.

Although it is already established well that existence and uniqueness results for weakly
coupled systems of Hamilton–Jacobi equations hold (see [57, 26, 52] and the references
therein for instance), there are not many studies on properties of solutions of (C). Shimano
[76] and F. Camilli, O. Ley and P. Loreti [13] investigated homogenization problems for the
system and obtained the convergence result, and the second author with F. Cagnetti and
D. Gomes [9] very recently considered new nonlinear adjoint methods for weakly coupled
systems of stationary Hamilton–Jacobi equations and obtained the speed of convergence by
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using usual regularized equations. As far as the authors know, there are few works on the
large time behavior of solutions of weakly coupled systems of Hamilton–Jacobi equations.

Heuristic derivations and Main goal

First we heuristically derive the large time asymptotics for (C). For simplicity, from now
on, we assume that c1 = c2 = 1. We consider the formal asymptotic expansions of the
solutions u1, u2 of (C) of the form

u1(x, t) = a01(x)t + a11(x) + a21(x)t
−1 + . . . ,

u2(x, t) = a02(x)t + a12(x) + a22(x)t
−1 + . . . as t→ ∞.

Plugging these expansions into (C), we get

a01(x)− a21(x)t
−2 + . . .+H1(x,Da01(x)t+Da11(x) +Da21(x)t

−1 + . . .)

+(a01(x)− a02(x))t + (a11(x)− a12(x)) + (a21(x)− a22(x))t
−1 + . . . = 0, (5.1.1)

and

a02(x)− a22(x)t
−2 + . . .+H2(x,Da02(x)t+Da12(x) +Da22(x)t

−1 + . . .)

+(a02(x)− a01(x))t + (a12(x)− a11(x)) + (a22(x)− a21(x))t
−1 + . . . = 0. (5.1.2)

Adding up the two equations above, we have

H1(x,Da01t +Da11 +O(1/t)) +H2(x,Da02t+Da12 +O(1/t)) +O(1) = 0

as t → ∞. Therefore by the coercivity of H1 and H2 we formally get Da01 = Da02 ≡ 0.
Then sending t→ ∞ in (5.1.1), (5.1.2), we derive

a01(x) = a02(x) ≡ a0 for some constant a0,

and
{

H1(x,Da11(x)) + a11(x)− a12(x) = −a0 in Tn,

H2(x,Da12(x)) + a12(x)− a11(x) = −a0 in Tn.

Therefore it is natural to investigate the existence of solutions of

(E)

{

H1(x,Dv1(x)) + v1 − v2 = c in Tn,

H2(x,Dv2(x)) + v2 − v1 = c in Tn.

Here one seeks for a triplet (v1, v2, c) ∈ C(Tn)2 × R such that (v1, v2) is a solution of (E).
If (v1, v2, c) is such a triplet, we call (v1, v2) a pair of ergodic functions and c an ergodic
constant. By an analogous argument to that of the classical result of [60] we can see that
there exists a solution of (E). Indeed the second author with F. Cagnetti, D. Gomes [9]
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recently proved that there exists a unique constant c such that the ergodic problem has
continuous solutions (v1, v2).

Hence, our goal in this Chapter is to prove the following large time asymptotics for (C)
under appropriate assumptions on Hi. For any (u01, u02) ∈ C(Tn)2 there exists a solution
(v1, v2, c) ∈ C(Tn)2×R of (E) such that if (u1, u2) ∈ C(Rn× [0, T ])2 is the solution of (C),
then, as t→ ∞,

ui(x, t) + ct− vi(x) → 0 uniformly on Tn (5.1.3)

for i = 1, 2. We call such a pair (v1(x)− ct, v2(x)− ct) an asymptotic solution of (C).
It is worthwhile to emphasize here that for homogenization problems, the associated cell

problems do not have the coupling terms. See [13] for the detail. Therefore it is relatively
easy to get the convergence result by using the classical perturbed test function method
introduced by L. C. Evans [30]. But when we consider the large time behavior of solutions
of (C), we need to consider ergodic problems (E) with coupling terms. This fact seems
to make convergence problems for large time asymptotics rather difficult. We are not yet
able to justify rigorously convergence (5.1.3) for general Hamiltonians Hi for i = 1, 2 up to
now. We are able to handle only three special cases which we describe below.

On the study of the large time behavior

In the last decade, a lot of works have been devoted to the study of large time behavior of
solutions of Hamilton–Jacobi equations

ut +H(x,Du) = 0 in Rn × (0, T ), (5.1.4)

where H is assumed to be coercive and general convergence results for solutions have been
established. More precisely, the convergence

u(x, t)− (v(x)− ct) → 0 uniformly on x ∈ Tn as t→ ∞

holds, where (v, c) ∈ C(Tn)× R is a solution of the ergodic problem

H(x,Dv(x)) = c in Tn. (5.1.5)

Here the ergodic eigenvalue problem for H is a problem of finding a pair of v ∈ C(Tn) and
c ∈ R such that v is a solution of (5.1.5). G. Namah and J.-M. Roquejoffre in [70] were the
first to get general results on this convergence under the following additional assumptions:
H(x, p) = F (x, p)− f(x), where F and f satisfy p 7→ F (x, p) is convex for x ∈ M,

F (x, p) > 0 for all (x, p) ∈ M× (Rn \ {0}), F (x, 0) = 0 for all x ∈ M, (5.1.6)

and

f(x) ≥ 0 for all x ∈ M and {f = 0} 6= ∅, (5.1.7)

where M is a smooth compact n-dimensional manifold without boundary. Then A. Fathi
[36] proved the same type of convergence result by using general dynamical approach and
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weak KAM theory. Contrary to [70], the results of [36] use strict convexity assumptions
on H(x, ·), i.e., DppH(x, p) ≥ αI for all (x, p) ∈ M×Rn and α > 0 (and also far more reg-
ularity) but do not need (5.1.6), (5.1.7). Afterwards J.-M. Roquejoffre [R] and A. Davini
and A. Siconolfi [23] have refined the approach of A. Fathi and they studied the asymp-
totic problem for (5.1.4) on M or n-dimensional torus. By another approach based on the
theory of partial differential equations and viscosity solutions, this type of results has been
obtained by G. Barles and P. E. Souganidis in [7]. Moreover, we also refer to the litera-
tures [6, 50, 46, 47] for the asymptotic problems without the periodic assumptions and the
periodic boundary condition and the literatures [74, 65, 67, 66, 51, 4] for the asymptotic
problems which treat Hamilton–Jacobi equations under various boundary conditions in-
cluding three types of boundary conditions: state constraint boundary condition, Dirichlet
boundary condition and Neumann boundary condition. We remark that results in [7, 6, 4]
apply to nonconvex Hamilton–Jacobi equations. We refer to the literatures [81, 44, 43] for
the asymptotic problems for noncoercive Hamilton–Jacobi equations.

Main results

The first case is an analogue of the study by G. Namah, J.-M. Roquejoffre [70]. We consider
Hamiltonians Hi of the forms

Hi(x, p) = Fi(x, p)− fi(x),

where the functions Fi : T
n × Rn → [0,∞) are coercive and fi : T

n → [0,∞) are given
continuous functions for i = 1, 2, respectively. We use the following assumptions on Fi, fi.
For i = 1, 2

(A2) fi(x) ≥ 0 for all x ∈ Tn;

(A3) define A1 := {x ∈ Tn | f1(x) = 0}, A2 := {x ∈ Tn | f2(x) = 0} and then A :=
A1 ∩ A2 6= ∅;

(A4) Fi(x, λp) ≤ λFi(x, p) for all λ ∈ (0, 1], x ∈ Tn \ A and p ∈ Rn;

(A5) Fi(x, p) ≥ 0 on Tn × Rn, and Fi(x, 0) = 0 on Tn.

With the above special forms of the Hamiltonians, we have

Theorem 5.1.1 (Convergence Result 1). Assume that the Hamiltonians Hi are of the
forms

Hi(x, p) = Fi(x, p)− fi(x)

and Hi, Fi, fi satisfy assumptions (A1)–(A5), then there exists a solution (v1, v2) ∈ C(Tn)2

of (E) with c = 0 such that convergence (5.1.3) holds.

Notice that the directional convexity condition with respect to the p variable on Fi, i.e.,

(A4’) for any p ∈ Rn \ {0} and x ∈ Tn, t 7→ Fi(x, tp) is convex,
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together with Fi(x, 0) = 0 implies (A4). It is clear to see that assumption (A4) or (A4’)
does not require Hamiltonians to be convex. One explicit example of Hamiltonians in
Theorem 5.1.1 is

Hi(x, p) = Fi(x, p)− fi(x) =







ai(x)|p|αiϕi(
p

|p|)− fi(x) for p 6= 0,

−fi(x) for p = 0

for some αi ≥ 1, ai ∈ C(Tn), ϕi ∈ C(Sn−1) with ai, ϕi > 0 and fi satisfying (A2)–(A3) for
i = 1, 2, where Sn−1 denotes the (n− 1)-dimensional unit sphere.

After this work has been completed, we learned of the interesting recent work of F.
Camilli, O. Ley, P. Loreti and V. Nguyen [15], which announces results very similar to
Theorem 5.1.1. Their result is somewhat more general along this direction. In fact they
consider systems of m-equations which have coupling terms with variable coefficients in-
stead of constant coefficients. Also, the control-theoretic interpretation of (C) is derived
there.

In the second case, we consider the case where the Hamiltonians are independent of the
x variable, i.e., Hi(x, p) = Hi(p) for i = 1, 2. We assume that the Hamiltonians satisfy

(A6) Hi are uniformly convex, i.e.,

Hi(p) ≥ Hi(q) +DHi(q) · (p− q) + α|p− q|2

for some α > 0 and almost every p, q ∈ Rn,
(A7) Hi(0) = 0

for i = 1, 2. Our main result is

Theorem 5.1.2 (Convergence Result 2). Assume that Hi(x, p) = Hi(p) for i = 1, 2 and
Hi satisfy assumptions (A1), (A6) and (A7), then there exists a constant M such that

ui(x, t)−M → 0 uniformly on Tn for i = 1, 2

as t→ ∞.

One explicit example of Hamiltonians in Theorem 5.1.2 is

Hi(p) = |p− bi|2 − |bi|2

for some constant vectors bi ∈ Rn for i = 1, 2. Notice that the above Hamiltonians in
general do not satisfy the conditions in the first case, particularly (A5). The idea for the
proof of Theorem 5.1.2 can be applied to study more general forms of Hamiltonians, e.g.,

Hi(x, p) = |p− bi(x)|2 − |bi(x)|2

for bi ∈ C1(Tn) with divbi = 0 on Tn for i = 1, 2 as will be noted in Remark 5.4.4.
In the third case, we generalize the result of G. Barles, P. E. Souganidis [7] for single

equations to systems. We consider the case where the two Hamiltonians H1, H2 are same,
i.e., H := H1 = H2. We normalize the ergodic constant c to be 0 by replacing H by H − c
and then we assume that H satisfies
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(A8) either of the following assumption (A8)+ or (A8)− holds:

(A8)+ there exists η0 > 0 such that, for any η ∈ (0, η0], there exists ψη > 0 such that
if H(x, p + q) ≥ η and H(x, q) ≤ 0 for some x ∈ Tn and p, q ∈ Rn, then for any
µ ∈ (0, 1],

µH(x,
p

µ
+ q) ≥ H(x, p+ q) + ψη(1− µ),

(A8)− there exists η0 > 0 such that, for any η ∈ (0, η0], there exists ψη > 0 such that if
H(x, p+q) ≤ −η and H(x, q) ≥ 0 for some x ∈ Tn and p, q ∈ Rn, then for any µ ≥ 1,

µH(x,
p

µ
+ q) ≤ H(x, p+ q)− ψη(µ− 1)

µ
.

Assumption (A8)+ was first introduced in [7] to replace the convexity assumption, and it
mainly concerns the set {H ≥ 0} and the behavior of H in this set. Assumption (A8)− is
a modified version of (A8)+ which was introduced in [4] and on the contrary, it concerns
the set {H ≤ 0}. We can generalize them as in [7] but to simplify our arguments we only
use the simplified version. See the end of Section 5.

Our third main result is

Theorem 5.1.3 (Convergence Result 3). If we assume that H = H1 = H2 and H satisfies
(A1), (A8) and the ergodic constant c is equal to 0, then there exist a solution (v, v) ∈
C(Tn)2 of (E) with c = 0 such that convergence (5.1.3) holds.

We notice that if H is smooth with respect to the p-variable, then (A8) is equivalent
to a one-sided directionally strict convexity in a neighborhood of {p ∈ Rn | H(x, p) = 0}
for all x ∈ Tn, i.e.,

(A8’) either of the following assumption (A8’)+ or (A8’)− holds:

(A8’)+ there exists η0 > 0 such that, for any η ∈ (0, η0], there exists ψη > 0 such that if
H(x, p+ q) ≥ η and H(x, q) ≤ 0 for some x ∈ Tn and p, q ∈ Rn, then

DpH(x, p+ q) · p−H(x, p+ q) ≥ ψη,

(A8’)− there exists η0 > 0 such that, for any η ∈ (0, η0], there exists ψη > 0 such that if
H(x, p+ q) ≤ −η and H(x, q) ≥ 0 for some x ∈ Tn and p, q ∈ Rn, then

DpH(x, p+ q) · p−H(x, p+ q) ≥ ψη.

We refer the readers to [7] for interesting examples of Hamiltonians in Theorem 5.1.3. Our
conclusions in Cases 2, 3 seem to go beyond the recent work [15].

This Chapter is organized as follows: in Section 2 we give some preliminary results.
Section 3, Section 4, and Section 5 are respectively devoted to the proofs of Theorems
5.1.1–5.1.3. In Section 5.6 we present the proof of the result on ergodic problems.
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Notations. For A ⊂ Rn and k ∈ N, we denote by C(A), LSC (A), USC (A) and Ck(A)
the space of real-valued continuous, lower semicontinuous, upper semicontinuous and k-th
continuous differentiable functions on A, respectively. We denote by W 1,∞(A) the set of
bounded functions whose first weak derivatives are essentially bounded. We call a function
m : [0,∞) → [0,∞) a modulus if it is continuous and nondecreasing on [0,∞) and vanishes
at the origin.

5.2 Preliminaries

In this section we assume only (A1).

Proposition 5.2.1 (Ergodic Problem (E) (e.g., [9, Theorem 4.2])). There exists a solution
(v1, v2, H1, H2) ∈ W 1,∞(Tn)2 × R2 of

{

H1(x,Dv1) + c1(v1 − v2) = H1 in Tn,

H2(x,Dv2) + c2(v2 − v1) = H2 in Tn.
(5.2.1)

Furthermore, c2H1 + c1H2 is unique.

We note that solutions v1, v2 of (5.2.1) are not unique in general even up to constants.
Also it is easy to see that H1, H2 are not unique as well. Take v′1 = v1 + C1, v

′
2 = v2 + C2

for some constants C1, C2 then

H
′

1 = H1 + c1(C1 − C2), H
′

2 = H2 + c2(C2 − C1),

which shows that H i can individually take any real value. But remarkably, we have

c2H1 + c1H2 = c2H
′

1 + c1H
′

2,

which is a unique constant. We can get the existence result by an argument similar to a
classical result in [60] (see also the proof of Proposition 5.3.1 below). We give the sketch
of the proof for the uniqueness of c2H1 + c1H2 in Section 5.6 for the reader’s convenience.

We assume henceforth for simplicity that c1 = c2 = 1. Then the ergodic constant c is
unique and is given by

c =
H1 +H2

2
.

The comparison principle for (C) is a classical result. See [57, 26, 52], [13, Proposition 3.1]
for instance.

Proposition 5.2.2 (Comparison Principle for (C)). Let (u1, u2) ∈ USC (Rn × [0, T ])2,
(v1, v2) ∈ LSC (Rn × [0, T ])2 be a subsolution and a supersolution of (C), respectively. If
ui(·, 0) ≤ vi(·, 0) on Tn, then ui ≤ vi on R

n × [0, T ] for i = 1, 2.

The following proposition is a straightforward application of Propositions 5.2.1, 5.2.2.



CHAPTER 5. LARGE TIME BEHAVIOR OF VISCOSITY SOLUTIONS OF

WEAKLY COUPLED SYSTEMS OF HAMILTON–JACOBI EQUATIONS 90

Proposition 5.2.3 (Boundedness of Solutions of (C)). Let (u1, u2) be the solution of (C)
and let c be the ergodic constant for (E). Then we have |ui(x, t) + ct| ≤ C on Rn × [0, T ]
for some C > 0 for i = 1, 2.

In view of the coercivity assumption on Hi for i = 1, 2, we have the following Lipschitz
regularity results.

Proposition 5.2.4 (Lipschitz Regularity of Solutions of (C)). If u0i ∈ W 1,∞(Tn) for
i = 1, 2, then (u1 + ct, u2 + ct) is in W 1,∞(Rn × [0, T ])2, where (u1, u2) is the solution of
(C) and c is the ergodic constant.

Proposition 5.2.5 (Lipschitz Regularity of Solutions of (E)). Let (v1, v2) ∈ USC (Tn)2 be
a subsolution of (E). Then (v1, v2) ∈ W 1,∞(Tn)2.

We assume henceforth that u0i ∈ W 1,∞(Tn) for i = 1, 2 in order to avoid technicalities
but they are not necessary. We can easily remove these additional requirements on u0i.
See Remark 5.3.5 for details.

5.3 First Case

In this section we consider the case where Hamiltonians have the formsHi(x, p) = Fi(x, p)−
fi(x), and Hi, Fi, fi satisfy assumptions (A1)–(A5). System (C) becomes

(C1)







(u1)t + F1(x,Du1) + u1 − u2 = f1(x) in Rn × (0, T ),

(u2)t + F2(x,Du2) + u2 − u1 = f2(x) in Rn × (0, T ),

u1(x, 0) = u01(x), u2(x, 0) = u02(x) on Tn.

In order to prove Theorem 5.1.1, we need several following steps.

Stationary Problems

Proposition 5.3.1. The ergodic constant c in (E) is equal to 0.

Proof. For ε > 0 let us consider a usual approximate monotone system

{

F1(x,Dv
ε
1(x)) + (1 + ε)vε1 − vε2 = f1(x) in Tn,

F2(x,Dv
ε
2(x)) + (1 + ε)vε2 − vε1 = f2(x) in Tn.

(5.3.1)

It is easy to see that (0, 0), (C1/ε, C1/ε) are a subsolution and a supersolution of the
above for C1 > 0 large enough. By Perron’s method and the comparison theorem for the
monotone system, we have a unique solution (vε1, v

ε
2) ∈ C(Tn)2 of (5.3.1). By the way of

construction we have
0 ≤ εvεi ≤ C1 on Tn (5.3.2)
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for i = 1, 2. Summing up both equations in (5.3.1), we have

F1(x,Dv
ε
1) + F2(x,Dv

ε
2) = −ε(vε1 + vε2) + f1(x) + f2(x) ≤ C2

for some C2 > 0. By the coercivity of Fi we obtain

‖Dvεi ‖L∞(Tn) ≤ C2

for i = 1, 2 by replacing C2 by a larger constant if necessary. Therefore we see that
{vεi }ε∈(0,1) are equi-Lipschitz continuous.

We claim that there exists a constant C3 > 0

|vε1(x)− vε2(y)| ≤ C3 for all x, y ∈ Tn. (5.3.3)

Indeed setting mε
i := maxTn v

ε
i = vεi (zi) for some zi ∈ Tn for i = 1, 2. Take 0 as a test

function in the first equation of (5.3.1) to derive

F1(z1, 0) + (1 + ε)vε1(z1)− vε2(z1) ≤ f1(z1),

which implies
vε1(z1)− vε2(z1) ≤ −F1(z1, 0)− εvε1(z1) + f1(z1) ≤ C3

for some C3 > 0. Thus,

vε1(x)− vε2(y) ≤ vε1(z1)− vε2(y)

= vε1(z1)− vε2(z1) + vε2(z1)− vε2(y) ≤ C3

by replacing C3 by a larger constant if necessary. This implies (5.3.3). In particular,
|mε

1 −mε
2| ≤ C3.

Let wεi (x) := vεi (x)−mε
i . Because of (5.3.2), {wεi }ε∈(0,1) is a sequence of equi-Lipschitz

continuous and uniformly bounded functions on Tn. Moreover they satisfy

{

F1(x,Dw
ε
1(x)) + (1 + ε)wε1 − wε2 = f1(x)− (1 + ε)mε

1 +mε
2 in Tn,

F2(x,Dw
ε
2(x)) + (1 + ε)wε2 − wε1 = f2(x)− (1 + ε)mε

2 +mε
1 in Tn

in the viscosity solution sense. By Ascoli-Arzela’s theorem, there exists a sequence εj → 0
so that

w
εj
i → wi,

−(1 + εj)m
εj
1 +m

εj
2 → H1 and − (1 + εj)m

εj
2 +m

εj
1 → H2

uniformly on Tn as j → ∞ for some (w1, w2) ∈ W 1,∞(Tn)2 and (H1, H2) ∈ R2. By a
standard stability result of viscosity solutions we see that (w1, w2, H1, H2) is a solution of
(5.2.1).
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We now prove that c := (H1 +H2)/2 = 0. Noting that m
εj
i ≥ 0 and

1

2

{

(−(1 + εj)m
εj
1 +m

εj
2 ) + (−(1 + εj)m

εj
2 +m

εj
1 )

}

= −1

2
εj(m

εj
1 +m

εj
2 ) → c

as j → ∞, we see that c ≤ 0. Furthermore, summing up the two equations in (5.2.1), we
obtain

2c = H1 +H2 = F1(x,Dw1) + F2(x,Dw2)− f1(x)− f2(x) ≥ −f1(x)− f2(x)

for almost every x ∈ Tn. Since A 6= ∅, we see that c ≥ 0. Together with the above
observation we get the conclusion.

Theorem 5.3.2 (Comparison Principle for Stationary Problems). Let (u1, u2) ∈ USC (Tn)2,
(v1, v2) ∈ LSC (Tn)2 be, respectively, a subsolution and a supersolution of

(S1)

{

F1(x,Dv1(x)) + v1 − v2 = f1(x) in Tn,

F2(x,Dv2(x)) + v2 − v1 = f2(x) in Tn.

If ui ≤ vi on A, then ui ≤ vi on T
n for i = 1, 2.

The idea of the proof below basically comes from the combination of those in [49] and
[57, 26, 52]. It is worthwhile to mention that the set A plays the role of the boundary as in
[39, 53]. See also [22] and [15, Theorem 3.3] for weakly coupled systems of Hamilton–Jacobi
equations.

Proof. Fix any δ > 0. We may choose an open neighborhood V of A and λ ∈ (0, 1) so that
λui ≤ vi+δ on V for λ ∈ [λ, 1] and i = 1, 2. It is enough to show that λui ≤ vi+δ on T

n\V
for λ ∈ [λ, 1]. Fix λ ∈ [λ, 1] and we set uλi := λui and v

δ
i := vi + δ. We prove the above

statement by a contradiction argument. Suppose that M := maxi=1,2,x∈Tn\V (u
λ
i − vδi )(x) >

0.
We take i0 ∈ {1, 2}, ξ ∈ Tn \ V such that M = (uλi0 − vδi0)(ξ). We may assume that

i0 = 1 by symmetry. We first consider the case where

Mλ = (uλ1 − vδ1)(ξ) = (uλ2 − vδ2)(ξ). (5.3.4)

We define the function Ψ : T2n → R by

Ψ(x, y) := uλ1(x)− vδ1(y)−
|x− y|2
2ε2

− |x− ξ|2
2

.

Let Ψ achieve its maximum at some point (xε, yε) ∈ T2n. By the definition of viscosity
solutions we have

F1(xε,
1

λ

(xε − yε
ε2

+ xε − ξ
)

) + (u1 − u2)(xε) ≤ f1(xε),

F1(xε,
xε − yε
ε2

) + (v1 − v2)(yε) ≥ f1(yε).
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By the usual argument we may assume that

xε, yε → ξ,
xε − yε
ε2

→ p ∈ Rn

as ε → 0 by taking a subsequence if necessary in view of the Lipschitz continuity of
solutions. Therefore sending ε to 0 yields

F1(ξ,
p

λ
) + (u1 − u2)(ξ) ≤ f1(ξ), (5.3.5)

F1(ξ, p) + (v1 − v2)(ξ) ≥ f1(ξ). (5.3.6)

In view of (A4), (5.3.5) transforms to read

F1(ξ, p) + (uλ1 − uλ2)(ξ) ≤ λf1(ξ) for all λ ∈ [λ, 1]. (5.3.7)

Note that (v1− v2)(ξ) = (vδ1 − vδ2)(ξ). By (5.3.4), (5.3.6) and (5.3.7) we get f1(ξ) ≤ λf1(ξ).
Similarly, f2(ξ) ≤ λf2(ξ). Hence f1(ξ) + f2(ξ) ≤ λ(f1(ξ) + f2(ξ)) which is a contradiction
since f1(ξ) + f2(ξ) > 0 and λ ∈ (0, 1).

We next consider the case where

(uλ1 − vδ1)(ξ) 6= (uλ2 − vδ2)(ξ).

Then there exists a > 0 such that (uλ1 − vδ1)(ξ) ≥ (uλ2 − vδ2)(ξ) + a and therefore by (5.3.6),
(5.3.7) we obtain

0 ≥ (λ− 1)f1(ξ) ≥ (uλ1 − vδ1)(ξ)− (uλ2 − vδ2)(ξ) ≥ a,

which is a contradiction. This finishes the proof.

Convergence

Proposition 5.3.3 (Monotonicity Property 1). Set U(x, t) := u1(x, t)+u2(x, t). Then the
function t 7→ U(x, t) is nonincreasing for all x ∈ A.

Proof. It is easy to see that U satisfies Ut ≤ 0 on A in the viscosity sense and we get the
conclusion.

Proposition 5.3.4 (Monotonicity Property 2). Set

V (x, t) := max{u1(x, t), u2(x, t)} =
1

2

{

(u1 + u2)(x, t) + |(u1 − u2)(x, t)|
}

.

Then the function t 7→ V (x, t) is nonincreasing for all x ∈ A.

We notice that the result of Proposition 5.3.4 is included by the recent result of [15,
Remark 5.7, (3)] but our proof seems to be more direct.
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Proof. Fix x ∈ A. For ε, δ > 0 we set Kε(x) := x+ [−ε, ε]n and

Vδ(x, t) :=
1

2

(

(u1 + u2)(x, t) + 〈(u1 − u2)(x, t)〉δ
)

,

where 〈p〉δ :=
√

|p|2 + δ2. We note that Vδ converges uniformly to V as δ → 0.
We have for all t, h ≥ 0

∫

Kε(x)

Vδ(y, t+ h)− Vδ(y, t) dy =

∫

Kε(x)×[t,t+h]

(Vδ)t(y, s) dy ds.

Let (y, s) be a point at which u1, u2 are differentiable. We calculate that

(Vδ)t(y, s)

=
1

2

{

(u1)t + (u2)t +
u1 − u2

〈u1 − u2〉δ
((u1)t − (u2)t)

}

=
1

2

{

f1 + f2 +
u1 − u2

〈u1 − u2〉δ
(f1 − f2)

}

+
1

2

{

−F1 − F2 +
u1 − u2

〈u1 − u2〉δ
(F2 − F1)

}

− 1

〈u1 − u2〉δ
(u1 − u2)

2

≤ 1

2

{

f1 + f2 +
u1 − u2

〈u1 − u2〉δ
(f1 − f2)

}

+
1

2

{

−F1 − F2 +
u1 − u2

〈u1 − u2〉δ
(F2 − F1)

}

.

In view of (A5) and (A3) sending δ → 0 yields
∫

Kε(x)

V (y, t+ h)− V (y, t) dy

≤
∫

Kε(x)×[t,t+h]

1

2

{

f1 + f2 + sgn (u1 − u2)(f1 − f2)
}

+
1

2

{

−F1 − F2 + sgn (u1 − u2)(F2 − F1)
}

dyds

≤
∫

Kε(x)×[t,t+h]

1

2

{

f1 + f2 + sgn (u1 − u2)(f1 − f2)
}

dyds

≤
∫

Kε(x)×[t,t+h]

ωf1(|x− y|) + ωf2(|x− y|) dyds

≤ εnh(ωf1(
√
nε) + ωf2(

√
nε)),

where ωfi are the moduli of continuity of fi for i = 1, 2. By dividing by εn and sending
ε→ 0 we get the conclusion.

Proof of Theorem 5.1.1. For any x ∈ A by Propositions 5.3.3, 5.3.4 we see that (u1 +
u2)(x, t) → α(x) and |(u1 − u2)(x, t)| → β(x) as t → ∞. If β(x) > 0, then (u1 − u2)(x, t)
converges as t → ∞ since t 7→ (u1 − u2)(x, t) is continuous. The limit may be either β(x)
or −β(x). Therefore u1(x, t), u2(x, t) converge as t→ ∞. If β(x) = 0, then we have

(u1 + u2)(x, t)− |(u1 − u2)(x, t)| ≤ 2u1(x, t) ≤ (u1 + u2)(x, t) + |(u1 − u2)(x, t)|,
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which implies u1(x, t) and u2(x, t) converge to (1/2)α(x) as t → ∞. Consequently, we see
that u1(x, t), u2(x, t) converge for all x ∈ A as t→ ∞.

Now, let us define the following half-relaxed semilimits

ui(x) = lim sup
t→∞

∗[ui](x, t) and ui(x) = lim inf
t→∞

∗[ui](x, t)

for x ∈ Tn and i = 1, 2. By standard stability results of the theory of viscosity solutions,
(u1, u2), (u1, u2) are a subsolution and a supersolution of (E), respectively. Moreover,
(u1, u2) = (u1, u2) on A, since u1, u2 converge on A as t → ∞. By the comparison
principle, Theorem 5.3.2, we obtain (u1, u2) = (u1, u2) in T

n and the proof is complete.

Remark 5.3.5. (i) The Lipschitz regularity assumption on u0i for i = 1, 2 is convenient to
avoid technicalities but it is not necessary. We can remove it as follows. For each i, we
may choose a sequence {uk0i}k∈N ⊂W 1,∞(Tn) so that ‖uk0i−u0i‖L∞(Tn) ≤ 1/k for all k ∈ N.
By the maximum principle, we have

‖ui − uki ‖L∞(Rn×(0,T )) ≤ ‖u0i − uk0i‖L∞(Tn) ≤ 1/k,

and therefore

uki (x, t)− 1/k ≤ ui(x, t) ≤ uki (x, t) + 1/k for all (x, t) ∈ Rn × [0, T ],

where (u1, u2) is the solution of (C) and (uk1, u
k
2) are the solutions of (C) with u0i = uk0i for

i = 1, 2. Therefore we have

uk∞i(x)− 1/k ≤ liminf∗t→∞ui(x, t) ≤ limsup∗t→∞ui(x, t) ≤ uk∞i(x) + 1/k

for all x ∈ Tn, where uk∞i(x) := limt→∞ uki (x, t). This implies that

liminf∗t→∞ui(x, t) = limsup∗t→∞ui(x, t)

for all x ∈ Tn and i = 1, 2.
(ii) Notice that if A = ∅ then the comparison principle for (S1) holds, i.e., for any subso-
lution (v1, v2) and any supersolution (w1, w2) we have vi ≤ wi on T

n for i = 1, 2 (e.g., [22,
Theorem 3.3]). This fact implies that the ergodic constant c is negative (not 0!). Indeed,
by the argument same as in the proof of Proposition 5.3.1 we easily see that c ≤ 0. Suppose
that c = 0 and then the comparison principle implies that (E) has a unique solution (v1, v2).
However, that is obviously not correct since for any solution (v1, v2) of (E), (v1+C, v2+C)
is also a solution for any constant C. In this case we do not know whether convergence
(5.1.3) holds or not.

Systems of m-equations

This section was added after we had received the draft [15] in order for the readers to see
the different ideas used in our work and [15].
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In this subsection we consider weakly coupled systems of m-equations for m ≥ 2

(ui)t + Fi(x,Dui) +

m
∑

j=1

cijuj = fi in R
n × (0, T ) for i = 1, . . . , m,

where Fi satisfy (A1), (A5) and the convexity with respect to the p-variable,

cii ≥ 0, cij ≤ 0 if i 6= j and

m
∑

i=1

cij =

m
∑

j=1

cij = 0 (5.3.8)

for i, j ∈ {1, . . . , m} and fi satisfy (A2) and

A :=
m
⋂

i=1

{x ∈ Tn | fi(x) = 0} 6= ∅

then the result of Theorem 5.1.1 still holds. In [15] the authors first found the importance
of irreducibility of coupling term. Although it is not essential in our argument, we also
somehow use it below. Let us first assume for simplicity that the coefficient matrix (cij) is
irreducible, i.e.,

(M) For any I  {1, . . . , m}, there exist i ∈ I and j ∈ {1, . . . , m} \ I such that cij 6= 0.

Condition (M) will be removed in Remark 5.3.6 at the end of this subsection.
We just give a sketch of the formal proof for the convergence. By a standard regular-

ization argument we can prove it rigorously in the viscosity solution sense.
We only need to prove the convergence of ui on A for each i ∈ {1, . . . , m}, since we

have an analogous comparison principle to Theorem 5.3.2 when (M) holds. For (x, t) ∈
Rn × [0, T ], we can choose {ix,t}mi=1 such that {1x,t, . . . , mx,t} = {1, . . . , m} and

u1x,t(x, t) ≥ u2x,t(x, t) ≥ . . . ≥ umx,t(x, t)

and set vi(x, t) := uix,t(x, t).
Fix (x0, t0) ∈ A× (0,∞) and we may assume without loss of generality that

1x0,t0 = 1 and 2x0,t0 = 2.

Noting that c1j ≤ 0, u1 ≥ uj for all j = 2, . . . , m, and F1 ≥ 0, we have

(v1)t = (u1)t ≤ (u1)t +

m
∑

j=1

c1ju1 ≤ (u1)t + F1(x0, Du1) +

m
∑

j=1

c1juj = 0

at the point (x0, t0), which implies that v1(x0, ·) is nonincreasing for x0 ∈ A and therefore
v1(x0, ·) converges as t→ ∞.
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Noting that u2 ≥ uj and cij ≤ 0 for all i = 1, 2, j = 3, . . . , m,
∑m

j=1 c2j = 0, and Fi ≥ 0,
we have

(v1 + v2)t = (u1 + u2)t ≤ (u1 + u2)t +
2

∑

i=1

m
∑

j=3

cij(uj − u2)

= (u1)t + (u2)t + (c11 + c12 + c21 + c22)u2 +

2
∑

i=1

m
∑

j=3

cijuj

≤ (u1)t + (u2)t + (c11 + c21)u1 + (c12 + c22)u2 +

2
∑

i=1

m
∑

j=3

cijuj

≤ (u1)t + (u2)t + F1(x0, Du1) + F2(x0, Du2) +
2

∑

i=1

m
∑

j=1

cijuj = 0

at the point (x0, t0). Thus,
(v1 + v2)t(x0, t0) ≤ 0.

Therefore (v1 + v2)(x0, ·) is nonincreasing for x0 ∈ A. Since we have already known that
v1(x0, ·) converges, we see that v2(x0, ·) converges as t→ ∞.

By the induction argument, we can prove that (v1 + . . .+ vk)(x0, ·) is nonincreasing for
all x0 ∈ A and k ∈ {1, . . . , m}, which is a geralization of Proposition 5.3.4. Thus, we see
that

vi(x0, t) → wi(x0) as t→ ∞ for i ∈ {1, . . . , m},
which concludes that each ui(x0, t) converges as t→ ∞ for x0 ∈ A.

Remark 5.3.6. (i) In general, condition (M) can be removed as follows. By possible row
and column permutations, C := (cij) can be written in the block triangular form

C = (Cpq)lp,q=1

where Cpq are sp × sq matrices for p, q ∈ {1, . . . , l}, ∑l
k=1 sk = m, Ckk are irreducible for

k ∈ {1, . . . , l} and Cpq = 0 for p > q as in [8]. By (5.3.8), we can easily see that Cpq = 0 for
p < q as well. Therefore the convergence result above can be applied to each irreducible
matrix Ckk to yield the result.
(ii) Our approach in this general case is slightly different from the one in [15]. The conver-
gence of each ui(x, t) as t→ ∞ for i ∈ {1, . . . , m}, for x ∈ A plays the key role here, while
Lemma 5.6 plays the key role in [15]. See Lemma 5.6 in [15] for more details.
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5.4 Second case

In this section we study the case where Hamiltonians are independent of the x-variable
and then (C) reduces to

(C2)







(u1)t +H1(Du1) + u1 − u2 = 0 in Rn × (0, T ), (5.4.1)

(u2)t +H2(Du2) + u2 − u1 = 0 in Rn × (0, T ), (5.4.2)

u1(x, 0) = u01(x), u2(x, 0) = u02(x) on Tn.

Proposition 5.4.1. The ergodic constant c is equal to 0, and problem (E) has only constant
Lipschitz subsolutions (a, a) for a ∈ R.

Proof. Since we can easily see that the ergodic constant is 0, we only prove the second
statement. To simplify the presentation, we argue as if Hi and vi were smooth for i = 1, 2
and rigorous proof can be made by a standard regularization argument. Summing up the
two equations in (E) and using (A6), we obtain

0 ≥ H1(Dv1) +H2(Dv2)

≥ H1(0) +DH1(0) ·Dv1 + α|Dv1|2 +H2(0) +DH2(0) ·Dv2 + α|Dv2|2
= DH1(0) ·Dv1 + α|Dv1|2 +DH2(0) ·Dv2 + α|Dv2|2.

Integrate the above inequality over Tn to get

0 ≥
∫

Tn
[DH1(0) ·Dv1 + α|Dv1|2 +DH2(0) ·Dv2 +α|Dv2|2] dx =

∫

Tn
α(|Dv1|2 + |Dv2|2) dx

which implies the conclusion.

Lemma 5.4.2 (Monotonicity Property). Define

M(t) := max
i=1,2

max
x∈Tn

ui(x, t) and m(t) := min
i=1,2

min
x∈Tn

ui(x, t).

Then t 7→M(t) is nonincreasing and t 7→ m(t) is nondecreasing.

Proof. Fix s ∈ [0,∞) and let a =M(s). We have (a, a) is a solution of (C2) and a ≥ ui(x, s)
for all x ∈ Tn and i = 1, 2. By the comparison principle for (C2), we have a ≥ ui(x, t)
for x ∈ Tn, t ≥ s and i = 1, 2. Thus t 7→ M(t) is nonincreasing. Similarly, t 7→ m(t) is
nondecreasing.

By Lemma 5.4.2, we can define

M := lim
t→∞

M(t) and m := lim
t→∞

m(t).
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Proof of Theorem 5.1.2. If M = m then we immediately get the conclusion and therefore
we suppose by contradiction that M > m and show the contradiction.

Since {ui(·, t)}t>0 is compact in W 1,∞(Tn) for i = 1, 2, there exists a sequence Tn → ∞
so that {ui(·, Tn)} converges uniformly as n→ ∞ for i = 1, 2. By the maximum principle,

‖ui(·, Tn + ·)− ui(·, Tm + ·)‖L∞(Tn×(0,∞)) ≤ ‖ui(·, Tn)− ui(·, Tm)‖L∞(Tn)

for i = 1, 2 and m,n ∈ N. Hence {ui(·, Tn+ ·)} is a Cauchy sequence in BUC(Tn× [0,∞))
and therefore they converge to u∞i ∈ BUC (Tn × [0,∞)) for i = 1, 2.

By a standard stability result of the theory of viscosity solutions, (u∞1 , u
∞
2 ) is a solution

of (5.4.1), (5.4.2). Moreover for t > 0

max
i=1,2

max
x∈Tn

u∞i (x, t) = lim
n→∞

max
i=1,2

max
x∈Tn

ui(x, Tn + t) = lim
n→∞

M(Tn + t) =M,

and similarly
min
i=1,2

min
x∈Tn

u∞i (x, t) = m.

Let (x1, t1) and (x2, t2) satisfy maxi=1,2 u
∞
i (x1, t1) =M and mini=1,2 u

∞
i (x2, t2) = m. With-

out loss of generality, we assume that u∞1 (x1, t1) = maxi=1,2 u
∞
i (x1, t1) = M . By taking 0

as a test function from above of u∞1 at (x1, t1) we have

u∞1 (x1, t1)− u∞2 (x1, t1) ≤ 0

and therefore we obtain u∞1 (x1, t1) = u∞2 (x1, t1) = M . Similarly we obtain u∞1 (x2, t2) =
u∞2 (x2, t2) = m. In particular,

max
x∈Tn

u∞i (x, t) =M, min
x∈Tn

u∞i (x, t) = m (5.4.3)

for t > 0 and i = 1, 2.
On the other hand, we have

(u∞1 + u∞2 )t +H1(Du
∞
1 ) +H2(Du

∞
2 ) = 0. (5.4.4)

Integrate (5.4.4) over Tn, use (A6), and do the same way as in the proof of Proposition
5.4.1 to get

0 =
d

dt

∫

Tn
(u∞1 + u∞2 )(x, t) dx+

∫

Tn
[H1(Du

∞
1 ) +H2(Du

∞
2 )] dx

≥ d

dt

∫

Tn
(u∞1 + u∞2 )(x, t) dx+ α

∫

Tn
(|Du∞1 |2 + |Du∞2 |2) dx

≥ d

dt

∫

Tn
(u∞1 + u∞2 )(x, t) dx+ C,

where the last inequality follows from Lemma 5.4.3 below. Thus

d

dt

∫

Tn
(u∞1 + u∞2 )(x, t) dx ≤ −C,
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which implies

lim
t→∞

∫

Tn
(u∞1 + u∞2 )(x, t) dx = −∞.

This contradicts (5.4.3) and the proof is complete.

Lemma 5.4.3. There exists a constant β > 0 depending only on n, C such that
∫

Tn
|Df |2 dx ≥ β

for all f ∈ W 1,∞(Tn) such that ‖f‖W 1,∞(Tn) ≤ C, maxTn f = 1, and minTn f = 0.

Proof. We argue by contradiction. Were the stated estimate false, there would exist a
sequence {fm} ⊂ W 1,∞(Tn) such that ‖fm‖W 1,∞(Tn) ≤ C, maxTn fm = 1, minTn fm = 0,
and

∫

Tn
|Dfm|2 dx ≤ 1

m
. (5.4.5)

By Ascoli-Arzela’s theorem, we may assume there exists f0 ∈ W 1,∞(Tn) so that

fm → f0 uniformly on Tn

by taking a subsequence if necessary. It is clear that maxTn f0 = 1, minTn f0 = 0.
Besides, ‖fm‖H1(Tn) ≤ C for all m ∈ N. By the Rellich-Kondrachov theorem,

fm ⇀ f0 in H1(Tn)

by taking a subsequence if necessary. By (5.4.5), we obtain Df0 = 0 a.e. Thus f0 is
constant, which contradicts the fact that maxTn f0 = 1, minTn f0 = 0.

Remark 5.4.4. (i) Assumption (A7) is just for simplicity. Indeed we can always normalize
the Hamiltonians so that they satisfy (A7) by substituting (u1, u2) with (u1, u2), where











u1(x, t) := u1(x, t) +
H1(0) +H2(0)

2
t+

H1(0)−H2(0)

2

u2(x, t) := u2(x, t) +
H1(0) +H2(0)

2
t

for (x, t) ∈ Rn × [0, T ].

(ii) It is clear to see that we can get a similar result for systems with m-equations.
(iii) The same procedure works for the following more general Hamiltonians

Hi(x, p) = |p− bi(x)|2 − |bi(x)|2

for bi ∈ C1(Tn) with divbi = 0 on Tn for i = 1, 2. This type of Hamiltonians is related to
the ones in some recent works on periodic homogenization of G-equation. See [17, 80] for
details. The new key observation comes from the fact that

∫

Tn
bi(x) ·Dφ(x) dx = −

∫

Tn
(divbi)φ dx = 0
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for any φ ∈ W 1,∞(Tn). This identity was also used in [80] to study the existence of
approximate correctors of the cell (corrector) problem of G-equation. The divergence free
requirement on the vector fields bi for i = 1, 2 is critical in our argument. In particular, it
forces (E) to only have constant solutions (a, a) for a ∈ R. We do not know how to remove
this requirement up to now.

5.5 Third case

In this section we consider the third case pointed out in Introduction, i.e., we assume that
H = H1 = H2 and H satisfies (A1) and (A8). Then (C) reduces to

(C3)







(u1)t +H(x,Du1) + u1 − u2 = 0 in Rn × (0, T ),

(u2)t +H(x,Du2) + u2 − u1 = 0 in Rn × (0, T ),

u1(x, 0) = u01(x), u2(x, 0) = u02(x) on Tn.

Let (u1, u2) be the solution of (C3).

Proposition 5.5.1. The function (u1−u2)(x, t) converges uniformly to 0 on Tn as t→ ∞.

Lemma 5.5.2. Set γ(t) := maxx∈Tn(u1 − u2)(x, t). Then γ is a subsolution of

γ̇(t) + 2γ(t) = 0 in (0,∞). (5.5.1)

Proof of Lemma 5.5.2. Let φ ∈ C1((0,∞)) and τ > 0 be a maximum of γ − φ. Choose
ξ ∈ Tn such that γ(τ) = u1(ξ, τ)− u2(ξ, τ). We define the function Ψ by

Ψ(x, y, t, s) := u1(x, t)− u2(y, s)−
1

2ε2
(|x− y|2 + (t− s)2)− |x− ξ|2 − (t− τ)2 − φ(t).

Let Ψ achieve its maximum at some (x, y, t, s). By the definition of viscosity solutions we
have

t− s

ε2
+ 2(t− τ) + φ̇(t) +H(x,

x− y

ε2
+ 2(x− ξ)) + u1(x, t)− u2(x, t) ≤ 0,

t− s

ε2
+H(y,

x− y

ε2
) + u2(y, s)− u1(y, s) ≥ 0.

Subtracting the two inequalities above, we obtain

2(t− τ) + φ̇(t) +H(x,
x− y

ε2
+ 2(x− ξ))−H(y,

x− y

ε2
)

+ u1(x, t)− u2(x, t)− (u2(y, s)− u1(y, s)) ≤ 0. (5.5.2)

By the usual argument we may assume that

x, y → ξ, t, s→ τ,
x− y

ε2
→ p (5.5.3)
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as ε→ 0 by taking a subsequence if necessary. Sending ε→ 0 in (5.5.2), we get

φ̇(τ) + 2γ(τ) ≤ 0,

which is the conclusion.

Proof of Proposition 5.5.1. Let γ be the function defined in Lemma 5.5.2 and set C :=
‖u01 − u02‖L∞(Tn) and β(t) := Ce−2t for t ∈ (0,∞). Then

β̇(t) + 2β(t) = 0,

and β(0) ≥ γ(0). By the comparison principle we get γ(t) ≤ β(t) = Ce−2t. Hence u1(x, t)−
u2(x, t) ≤ Ce−2t for all x ∈ Tn, t ∈ (0,∞). By symmetry, we get u2(x, t)−u1(x, t) ≤ Ce−2t,
which proves the proposition.

In view of Proposition 5.5.1 we see that associated with the Cauchy problem (C3) is
the ergodic problem:

H(x,Dv(x)) = c in Tn. (5.5.4)

By the classical result on ergodic problems in [60], there exists a pair (v, c) ∈ W 1,∞(Tn)×R
such that v is a solution of (5.5.4). Then (v, v, c) is a solution of (E). As in Introduction
we normalize the ergodic constant c to be 0 by replacing H by H − c.

We notice that (v +M, v +M, 0) is still a viscosity solution of (E) for any M ∈ R.
Therefore subtracting a positive constant from v if necessary, we may assume that

1 ≤ ui(x, t)− v(x) ≤ C for all (x, t) ∈ Rn × [0, T ], i = 1, 2 and some C > 0 (5.5.5)

and we fix such a constant C.
We define the functions α±

η , β
±
η : [0,∞) → R by

α+
η (s) := min

x∈Tn,t≥s

(u1(x, t)− v(x) + η(t− s)

u1(x, s)− v(x)

)

, (5.5.6)

β+
η (s) := min

x∈Tn,t≥s

(u2(x, t)− v(x) + η(t− s)

u2(x, s)− v(x)

)

, (5.5.7)

α−
η (s) := max

x∈Tn,t≥s

(u1(x, t)− v(x)− η(t− s)

u1(x, s)− v(x)

)

,

β−
η (s) := max

x∈Tn,t≥s

(u2(x, t)− v(x)− η(t− s)

u2(x, s)− v(x)

)

for η ∈ (0, η0]. By the uniform continuity of ui and v, we have α±
η , β

±
η ∈ C([0,∞)). It

is easy to see that 0 ≤ α+
η (s), β

+
η (s) ≤ 1 and α−

η (s), β
−
η (s) ≥ 1 for all s ∈ [0,∞) and

η ∈ (0, η0].
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Lemma 5.5.3 (Key Lemma). Let C be the constant fixed in (5.5.5).
(i) Assume that (A8)+ holds. For any η ∈ (0, η0] there exists sη > 0 such that the pair of
the functions (α+

η , β
+
η ) is a supersolution of































max{(α+
η )

′

(s) +
ψη
C

(α+
η (s)− 1) + F (α+

η (s)− β+
η (s)),

α+
η (s)− 1} = 0 in (sη,∞), (5.5.8)

max{(β+
η )

′

(s) +
ψη
C

(β+
η (s)− 1) + F (β+

η (s)− α+
η (s)),

β+
η (s)− 1} = 0 in (sη,∞), (5.5.9)

where

F (r) :=







Cr if r ≥ 0,
r

C
if r < 0.

(ii) Assume that (A8)− holds. For any η ∈ (0, η0] there exists sη > 0 such that the pair of
the functions (α−

η , β
−
η ) is a subsolution of







































min{(α−
η )

′

(s) +
ψη
C

·
α−
η (s)− 1

α−
η (s)

+ F (α−
η (s)− β−

η (s)),

α−
η (s)− 1} = 0 in (sη,∞), (5.5.10)

min{(β−
η )

′

(s) +
ψη
C

·
β−
η (s)− 1

β−
η (s)

+ F (β−
η (s)− α−

η (s)),

β−
η (s)− 1} = 0 in (sη,∞). (5.5.11)

Proof. We only prove (i), since we can prove (ii) similarly. Fix µ ∈ (0, η0]. By abuse of
notations we write α, β for α+

η , β
+
η . Recall that α(s), β(s) ≤ 1 for any s ≥ 0. By Proposition

5.5.1, there exists sη > 0 such that |u1(x, t)− u2(x, t)| ≤ η/2 for all x ∈ Tn and t ≥ sη.
We only consider the case where (α − φ)(s) > (α − φ)(σ) for some φ ∈ C1((0,∞)),

σ > sη, δ > 0 and all s ∈ [σ − δ, σ + δ] \ {σ}, since a similar argument holds for β. Since
there is nothing to check in the case where α(σ) = 1, we assume that α(σ) < 1. We choose
ξ ∈ Tn and τ ≥ σ such that

α(σ) =
u1(ξ, τ)− v(ξ) + η(τ − σ)

u1(ξ, σ)− v(ξ)
=:

α2

α1
.

We write α for α(σ) henceforth.
Set K := T3n × {(t, s) | t ≥ s, s ∈ [σ − δ, σ + δ]}. For ε ∈ (0, 1), we define the function

Ψ : K → R by

Ψ(x, y, z, t, s)

:=
u1(x, t)− v(z) + η(t− s)

u1(y, s)− v(z)
− φ(s) +

1

2ε2
(|x− y|2 + |x− z|2) + |x− ξ|2 + (t− τ)2.
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Let Ψ achieve its minimum over K at some (x, y, z, t, s). Set

α1 := u1(y, s)− v(z), α2 = u1(x, t)− v(z) + η(t− s), α :=
α2

α1

,

p :=
y − x

ε2
and q :=

z − x

ε2
.

We observe the followings. Firstly, set

f1(y, s) := φ(s)− 1

2ε2
(|x− y|2 + |x− z|2)− |x− ξ|2 − (t− τ)2.

Noting that u1(y, s)− v(z) > 0, we see that u1(y, s)−
(

u1(x, t)− v(z)+ η(t− s)
)(

f1(y, s)+

minΨ
)−1

takes its maximum at (y, s). Secondly, set

f2(z) := φ(s)− 1

2ε2
(|x− y|2 + |x− z|2)− |x− ξ|2 − (t− τ)2.

Noting that for ε > 0 small enough, then α < 1, which implies −a := u1(x, t)− u1(y, s) +

η(t− s) < 0. Then we see that v(z)− a
(

f2(z) + minΨ− 1
)−1

takes its maximum at z.
Thus, we have by the definition of viscosity solutions















−η − 2α1(t− τ) +H(x,Dxu1(x, t)) + (u1 − u2)(x, t) ≥ 0,

− 1

α
(η + α1φ

′

(s)) +H(y,Dyu1(y, s)) + (u1 − u2)(y, s) ≤ 0,

H(z,Dzv(z)) ≤ 0,

(5.5.12)

where

Dxu1(x, t) = α1

{

p+ q + 2(ξ − x)
}

,

Dyu1(y, s) =
α1

α
p,

Dzv(z) =
α1

1− α
q.

By taking a subsequence if necessary, we may assume that

x, y, z → ξ and t→ τ, s→ σ as ε→ 0.

Since ui, v are Lipschitz continuous, we have

|x− y|
ε2

+
|x− z|
ε2

≤ M

for some M > 0 and all ε ∈ (0, 1). We may assume that

p :=
y − x

ε2
→ p, q :=

z − x

ε2
→ q
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as ε→ 0 for some p, q ∈ B(0,M).
Sending ε→ 0 in (5.5.12) yields

−η +H(ξ, P̃ +Q) + (u1 − u2)(ξ, τ) ≥ 0,

− 1

α(σ)
(η + α1φ

′

(σ)) +H(ξ, P ) + (u1 − u2)(ξ, σ) ≤ 0, (5.5.13)

H(ξ, Q) ≤ 0,

where
P :=

α1

α
p, Q :=

α1

1− α
q, P̃ = α(P −Q).

Recalling that (u1 − u2)(ξ, τ) ≤ η/2, we have

H(ξ, P̃ +Q) ≥ η/2.

Therefore, by using (A8)+, we obtain

H(ξ, P̃ +Q) ≤ αH(ξ, P )− ψη(1− α) (5.5.14)

for some ψη > 0.
Noting that

β(σ) ≤ u2(ξ, τ)− v(ξ) + η(τ − σ)

u2(ξ, σ)− v(ξ)
=:

β2
β1
,

we calculate that

(u1 − u2)(ξ, τ)− α(u1 − u2)(ξ, σ)

= − (u2(ξ, τ)− v(ξ) + η(τ − σ)) + α(u2(ξ, σ)− v(ξ))

= − β1
(β2
β1

− α
)

≤ − β1(β(σ)− α(σ)).

Therefore by (5.5.14) and (5.5.13),

η ≤H(ξ, P̃ +Q) + (u1 − u2)(ξ, τ)

≤α
( 1

α
(η + α1φ

′

(σ))− (u1 − u2)(ξ, σ)
)

− ψη(1− α) + (u1 − u2)(ξ, τ)

≤ η + α1φ
′

(σ)− ψη(1− α) + β1(α(σ)− β(σ)),

which implies

φ
′

(σ) +
ψη
C

(α(σ)− 1) +
β1
α1

(α(σ)− β(σ)) ≥ 0.

Combining the above inequality with the fact that 1/C ≤ β1/α1 ≤ C, we have

φ
′

(σ) +
ψη
C

(α(σ)− 1) + F (α(σ)− β(σ)) ≥ 0.
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Lemma 5.5.4.

(i) Assume that (A8)+ holds. The functions α+
η (s) and β

+
η (s) converge to 1 as s→ ∞ for

each η ∈ (0, η0].
(ii) Assume that (A8)− holds. The functions α−

η (s) and β
−
η (s) converge to 1 as s→ ∞ for

each η ∈ (0, η0].

Proof. Fix η ∈ (0, η0]. We first recall that, by definition,

α+
η (s) ≤ 1 ≤ α−

η (s), β
+
η (s) ≤ 1 ≤ β−

η (s)

for any s ≥ 0. On the other hand, one checks easily that the pairs

(

1 + (γ1 − 1) exp(−ψη
C
t), 1 + (γ1 − 1) exp(−ψη

C
t)
)

and
(

1 + (γ2 − 1) exp(− ψη
Cγ2

t), 1 + (γ2 − 1) exp(− ψη
Cγ2

t)
)

are, respectively, a subsolution and a supersolution of (5.5.8)-(5.5.9) and (5.5.10)-(5.5.11)
for γ1 = min{α+

η (0), β
+
η (0)}, and γ2 = max{α−

η (0), β
−
η (0)}. Therefore, by the comparison

principle in [57, 26, 52] , we get

α+
η (s), β

+
η (s) ≥ 1 + (γ1 − 1) exp(−ψη

C
t)

and

α−
η (s), β

−
η (s) ≤ 1 + (γ2 − 1) exp(− ψη

Cγ2
t),

which give us the conclusion.

By Lemma 5.5.4, we immediately get the following proposition.

Proposition 5.5.5 (Asymptotically Monotone Property).
(i) (Asymptotically Increasing Property)
Assume that (A8)+ holds. For η ∈ (0, η0], there exists a function δη : [0,∞) → [0, 1] such
that

lim
s→∞

δη(s) = 0

and
ui(x, s)− ui(x, t)− η(t− s) ≤ δη(s)

for all x ∈ Tn, t ≥ s ≥ 0 and i = 1, 2.
(ii) (Asymptotically Decreasing Property)
Assume that (A8)− holds. For η ∈ (0, η0], there exists a function δη : [0,∞) → [0, 1] such
that

lim
s→∞

δη(s) = 0

and
ui(x, t)− ui(x, s)− η(t− s) ≤ δη(s),

for all x ∈ Tn, t ≥ s ≥ 0 and i = 1, 2.
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Theorem 5.1.3 is a straightforward result of the above proposition and the proof follows
as in [7, Section 4] or [4, Section 5]. We reproduce these arguments here for the reader’s
convenience.

Since {ui(·, t)} is compact in W 1,∞(Tn) for i = 1, 2, there exists a sequence Tn → ∞ so
that {ui(·, Tn)} converges uniformly as n→ ∞ for i = 1, 2. By the maximum principle

‖ui(·, Tn + ·)− ui(·, Tm + ·)‖L∞(Tn×(0,∞)) ≤ ‖ui(·, Tn)− ui(·, Tm)‖L∞(Tn)

for i = 1, 2 andm,n ∈ N. Hence {ui(·, Tn+·)}n∈N is a Cauchy sequence in BUC (Tn×[0,∞))
and therefore it converges to u∞i ∈ BUC (Tn × [0,∞)) for i = 1, 2. For any x ∈ Tn and
t ≥ s ≥ 0, by Proposition 5.5.5 we get

ui(x, s+ Tn)− ui(x, t+ Tn) + η(s− t) ≤ δη(s+ Tn).

Sending n→ ∞ then η → 0, we get for any t ≥ s ≥ 0

u∞i (x, s) ≤ u∞i (x, t).

This implies u∞i (x, t) converges uniformly to vi(x) on T
n as t→ ∞ for some vi ∈ W 1,∞(Tn).

Then (v1, v2) is a solution of (E) by a standard stability result of the theory of viscosity
solutions.

Since {ui(·, Tn + ·)}n∈N converges to u∞i uniformly on Tn,

−on(1) + u∞i (x, t) ≤ ui(x, t + Tn) ≤ on(1) + u∞i (x, t),

where limn→∞ on(1) = 0. Therefore,

−on(1) + vi(x) ≤ lim inf
t→∞

∗[ui](x, t) ≤ lim sup
t→∞

∗[ui](x, t) ≤ on(1) + vi(x).

Eventually, letting n→ ∞, we get the result.

Finally we remark that if we want to deal, at the same time, with the Hamiltonians of
the form

H(x, p) := |p| − f(x),

we can generalize Theorem 5.1.3 as in [7]. We replace (A8) by

(A9) Either of the following assumption (A9)+ or (A9)− holds:

(A9)+ There exists a closed set K ⊂ Tn (K is possibly empty) having the properties

(i) minp∈Rn H(x, p) = 0 for all x ∈ K,

(ii) for each ε > 0 there exists a modulus ψε(r) > 0 for all r > 0 and ηε0 > 0 such
that for all η ∈ (0, ηε0] if dist (x,K) ≥ ε, H(x, p + q) ≥ η and H(x, q) ≤ 0 for
some x ∈ Tn and p, q ∈ Rn, then for any µ ∈ (0, 1],

µH(x,
p

µ
+ q) ≥ H(x, p+ q) + ψε(η)(1− µ).
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(A9)− There exists a closed set K ⊂ Tn (K is possibly empty) having the properties

(i) minp∈Rn H(x, p) = 0 for all x ∈ K,

(ii) for each ε > 0 there exists a modulus ψε(r) > 0 for all r > 0 and ηε0 > 0 such
that for all η ∈ (0, ηε0] if dist (x,K) ≥ ε, H(x, p + q) ≤ −η and H(x, q) ≥ 0 for
some x ∈ Tn and p, q ∈ Rn, then for any µ ∈ (0, 1],

µH(x,
p

µ
+ q) ≤ H(x, p+ q)− ψε(η)(µ− 1)

µ
.

Theorem 5.5.6. The result of Theorem 5.1.3 still holds if we replace (A8) by (A9).

Sketch of Proof. By the argument same as in the proof of Propositions 5.3.3, 5.3.4 we can
see (u1+u2)|K and max{u1, u2}|K are nonincreasing and therefore we see that ui converge
uniformly on K as t→ ∞ for i = 1, 2.

Setting Kε := {x ∈ Tn | d(x,K) ≥ ε}, we see that ui are asymptotically monotone on
Rn \Kε for every ε > 0, which implies that ui converges uniformly on Rn \K as t → ∞
for i = 1, 2 as in [7].

5.6 Auxiliary Lemmata

We present a sketch of the proof based on Proposition 5.2.1 from [9] for the reader’s
convenience.

Sketch of the proof of Proposition 5.2.1. Without loss of generality, we may assume c1 =
c2 = 1. The existence of (v1, v2, H1, H2) can be proved by repeating the argument same as
in the first part of Proposition 5.3.1. We here only prove that H1 +H2 is unique.

Suppose by contradiction that there exist two pairs (λ1, λ2) ∈ R2 and (µ1, µ2) ∈ R2

such that λ1+λ2 < µ1+µ2 and two pair of continuous functions (v1, v2), (v1, v2) such that
(v1, v2), (v1, v2) are viscosity solutions of the following systems

{

H1(x,Dv1) + v1 − v2 = λ1

H2(x,Dv2) + v2 − v1 = λ2
in Tn,

and
{

H1(x,Dv1) + v1 − v2 = µ1

H2(x,Dv2) + v2 − v1 = µ2

in Tn,

respectively.

For a suitably large constant C > 0, (v1 +
λ2 − λ1

2
− λ1 + λ2

2
t−C, v2 −

λ1 + λ2
2

t−C)

and (v1 +
µ2 − µ1

2
− µ1 + µ2

2
t + C, v2 −

µ1 + µ2

2
t + C) are respectively a subsolution and
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a supersolution of (C). By the comparison principle for (C), Proposition 5.2.2, we obtain
particularly

v1 +
λ2 − λ1

2
− λ1 + λ2

2
t− C ≤ v1 +

µ2 − µ1

2
− µ1 + µ2

2
t+ C, in Rn × [0, T ]

which contradicts the fact that λ1 + λ2 < µ1 + µ2.
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