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SLC38A9 is a member of the SLC38 class of sodium-coupled 
transporters1,2. Classified within the amino acid–polyamine 
organocation (APC) superfamily3, SLC38A9 belongs to the 

amino acid/auxin permease (AAAP) subfamily4. Thus far, members 
of the AAAP family have been found only in eukaryotic systems and 
share features like an extended N-terminal soluble domain and 11 
transmembrane helices4,5. In humans, at least 17 AAAP members 
have been found6, spanning the SLC32, SLC36 and SLC38 solute 
carrier families, although no structures have been determined so far. 
Transporters in the SLC32, SLC36 and SLC38 families essentially 
comprise half of the mammalian amino acid transport systems, 
with the other half consisting of SLC7 and SLC12 family members7. 
Regardless of the key roles of these transporters in mammalian 
physiology, there are few studies on the molecular principles under-
lying substrate binding, sodium ion selectivity and the transport 
mechanism. To obtain a structural basis for the AAAP family that 
would allow exploration of mechanistic insights, we set out to solve 
the structure of a vertebrate homolog of human SLC38A9. Notably, 
besides its ability to transport a variety of amino acids across the 
lysosomal membrane, SLC38A9 is also known to participate in the 
Ragulator–Rag GTPase complex and has an important role in the 
amino acid–dependent activation of mTORC11,2. As such, SLC38A9 
can be thought of as a ‘transceptor’, as it embodies two distinct  
and complementary functions: one as a transporter and the other 
as a receptor.

The first member of the SLC38 family was cloned in 20008,9, 
namely sodium-coupled neutral amino acid transporter 1 (SNAT1), 
encoded by the slc38a1 gene. Currently, 6 of the 11 SLC38 proteins 
have been characterized and integrated into two functional types 
named system A and system N10. SNAT1, SNAT2 and SNAT4 have 
a hallmark of transport activity inhibition by methylaminoisobutyr-
ate (MeAIB), an amino acid analog, and are hence referred to as 
system A. SNAT3, SNAT5 and SNAT7 are resistant to MeAIB and 
are referred to as system N11. SLC38A9 (SNAT9) is also resistant to 
MeAIB and is therefore a member of system N1. However, the broad 
substrate specificity of SLC38A9 is reminiscent of those of system A 

transporters12. The increasing ambiguity between system A and sys-
tem N transporters necessitates deep analyses of substrate binding 
and transport among the SLC38 family members. Here we present 
the crystal structure of SLC38A9 from zebrafish to demonstrate the 
binding mechanism for l-arginine in the transport cycle.

Results
Overall architecture and the luminal gating network of arginine-
bound drSLC38A9. In the present study, we determined the crys-
tal structure of SLC38A9 from zebrafish (Danio rerio; drSLC38A9 
hereafter) in complex with arginine at 3.17Å resolution (Fig. 1a,b 
and Table 1). This transporter consists of 11 transmembrane helices, 
with its N terminus located in the cytosol and its C terminus on 
the luminal side of the membrane (Fig. 1a). Consistent with other 
members of the APC superfamily6, drSLC38A9 adopts a LeuT-like 
pseudosymmetric bundle of five transmembrane helices form-
ing an inverted-topology repeat: the N-terminal half consists of 
TM1–TM5, and the C-terminal half consists of TM6–TM10. TM11 
flanks the transporter on one side. TM1 and TM6 are broken and 
line the substrate-binding site, where an arginine molecule was 
identified (Fig. 1b). Sequence alignment of this protein from zebraf-
ish, frog, mouse and human indicates that the 11 transmembrane 
regions are highly conserved (Supplementary Note 1). drSLC38A9 
has 61.9% identity and 86.6% similarity with the human homo-
log (hSLC38A9) (Supplementary Note 1). Despite major efforts 
to crystallize full-length drSLC38A9, only an N-terminally trun-
cated form (Δ​N-drSLC38A9) yielded ordered crystals amenable 
to diffraction studies. An antibody fragment, Fab-11D3, was used 
to further stabilize the luminal loops and optimize crystallization 
(Supplementary Figs. 1 and 2). As shown by an arginine uptake 
assay using drSLC38A9-reconstituted liposomes (Fig. 1c), the trun-
cated drSLC38A9 protein is active and able to bind arginine simi-
larly to the wild-type protein.

SLC38A9 is a member of the sodium-coupled amino acid trans-
porters1,2. As is often the case with these proteins, a density cor-
responding to a sodium ion was not identified in the structure 
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presented here. Instead, functional assays were performed to shed 
light on the possible coupling mechanism. Uptake assays with 
drSLC38A9-reconstituted liposomes were performed in buffers 
containing sodium, potassium or N-methyl-d-glucamine (NMG) 
(Fig. 1d). While uptake of arginine in the presence of potassium or 
NMG was not observed, robust uptake was observed in the pres-
ence of sodium. These results indicate that sodium is required for 
arginine uptake by SLC38A9, although it is not clear whether the 
sodium only binds to (and thereby activates) the transporter or if 
the sodium ion is also co-transported with the amino acid.

Because SLC38A9 is found in the lysosomal membrane, its 
cytosol-open state resembles an inward-open state for a transporter 
found in the cell plasma membrane (Fig. 1b). Superposition of 
drSLC38A9 on the arginine–agmatine antiporter AdiC13 indicates 
that drSLC38A9 in the cytosol-open state may undergo major con-
formational changes occurring at TM1 and TM6 during transport 
(Supplementary Fig. 3). In the cytosol-open state presented here, 
the luminal gate is closed while the cytosol side consists of a wide 
vestibule open to the cytoplasm (Figs. 1e and 2). On the luminal 
side, polar interactions of residues on TM1b, loop 5-6 and loop 7-8 
with residues on TM6a, TM10 and TM11 prevent solvent access 

to the substrate-binding site toward the center of the transporter 
(Fig. 1b,e). Unlike other APC transporters (such as LeuT, BetP, CaiT 
and MhsT) in their inward-open state14–17, drSLC38A9 does not use 
an inner gating system in its central region to keep solvent out. In 
contrast, it closes its luminal surface through the peripheral polar 
groups of Lys131 and Gln132 on TM1b, Arg344 on loop 5-6 and 
Glu411 on loop 7-8 (Fig. 1e).

Arginine bound in the cytosol-open conformation of drSLC38A9. 
drSLC38A9 was crystallized in the presence of its substrate arginine. 
The electron density map allowed us to identify an arginine mol-
ecule bound close to the center of drSLC38A9, adjacent to TM1a 
(Figs. 1b and 2). Recognition of arginine at this location involves 
interactions with Thr117, Met119, Thr121 and Ser122 from TM1a, 
Tyr204 from TM3 and Gln438 from TM8. The α​-amino group of 
arginine is hydrogen bonded to Thr121 and Ser122, and is further 
stabilized by the 4-hydroxyl group of Tyr204 across the cytoplasmic 
vestibule on TM3 (Fig. 2a). Notably, a surface area made from the 
backbone carbonyl groups of Asn116, Thr117, Met118 and Met119 
electrostatically draws the guanidinium group of the bound argi-
nine adjacent to TM1a (Fig. 2b). It has been shown in the human 
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Fig. 1 | Overall architecture and the luminal gating network of arginine-bound drSLC38A9. a, 2D topology model of drSLC38A9. The first ten 
transmembrane helices are folded into a characteristic twofold LeuT-like pseudosymmetry (five transmembrane helices in an inverted-topology repeat). 
Bound arginine is marked by a filled yellow triangle, next to the TM1a helix. Cyan, TM1–TM5; orange, TM6–TM10; gray, TM11. b, drSLC38A9 structure on 
the lysosomal membrane. Transmembrane helices are colored as in a. The position of the Fab fragment is shown by a gray triangle above the luminal loops. 
Lumen and cytosol domains are equivalent to extracellular (out) and intracellular (in) domains for a transporter expressed on the cell plasma membranes. 
An arginine (blue stick) is identified at the binding site next to TM1a. A 2mFo-DFc map contoured at 1.0σ​ is shown for the arginine. c, Uptake assay in 
drSLC38A9-reconstituted liposomes showing that the efficiency of arginine transport is similar for the wild-type protein and the truncated drSLC38A9 
used for crystallization. Error bars, s.e.m. from three independent proteoliposome preparations; n =​ 3 biological replicates (Supplementary Dataset 1). 
d, Uptake assay of liposomes reconstituted with wild-type drSLC38A9 in buffers containing sodium, potassium or NMG cations, showing the sodium-
dependent transport of arginine. The presence of sodium significantly increased the uptake of l-arginine, as compared to potassium (unpaired t test, 
P =​ 0.0007) and NMG (unpaired t test, P =​ 0.0005). Error bars, s.e.m. from three independent proteoliposome preparations; n =​ 3 biological replicates 
(Supplementary Dataset 1). e, Enlarged view of the boxed region in b encompassing the luminal gating residues. Glu411 of loop 7-8 acts as a network hub 
in the luminal gating of drSLC38A9, joined by Lys131 and Gln132 of TM1b and Arg344 of loop 5-6.
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homolog that a Thr133Gln substitution (equivalent to a Thr121Gln 
substitution in the present structure) abrogates transport activity for 
arginine18. Indeed, in our structure, Thr121 is a key residue involved 
in stabilizing the bound arginine.

TM1 stabilizes arginine at the TM1a binding site in drSLC38A9. 
As TM1 and TM6 change conformation, they affect the location 
and bonding of arginine. The arginine in drSLC38A9 was found at 
a different location than the arginine in AdiC (Fig. 3a). In AdiC, 
an arginine molecule was observed at the center of the transporter, 
lying roughly parallel to the plane of the membrane. However, in 
drSLC38A9, which is open to the cytosol, the arginine had a differ-
ent orientation in which it pointed toward the cytosol (Fig. 3a). This 
orientation of the arginine is stabilized by interactions with TM1a. 
Binding at the TM1a site requires a specific geometry of the amino 
acid, such as an elongated, positively charged side group. The loca-
tion of the bound arginine in drSLC38A9 is distinct from that of 
other substrates found in transporters that were also captured in an 
inward-open or occluded conformation, for example vSGLT, BetP, 
CaiT and MhsT15–17,19. For drSLC38A9, the unique binding site of 
arginine suggests that the present structure could represent a diver-
gent intermediate state in the transport cycle that arises upon argi-
nine binding (Fig. 3b).

The asymmetric unit in our crystals contained two molecules 
of drSLC38A9, one with bound arginine and the other without 

(Supplementary Fig. 1). Comparison of the structures of drSLC38A9 
with and without an arginine at the TM1a site provides a possible 
model of arginine release and binding by drSLC38A9 in two dif-
ferent states (Fig. 3b). When open to the cytosol (state 1), TM1a 
is arrested by two polar interactions, Gln115-Thr391 and Asn116-
Thr307, with TM5 and TM7, respectively. The TM1a anchor ren-
ders a new binding site next to TM1a for arginine, connecting the 
central binding site to the cytosol. The guanidinium group of argi-
nine comes in proximity to the TM1a site and occupies this location 
between TM1a and TM8. When arginine is released (state 2), the 
TM1a binding site is emptied by solvent diffusion into the cytosolic 
vestibule. TM1a becomes unstable, and the TM1a anchor is broken 
from TM5 and TM7.

The anchoring system of TM1a, TM5 and TM7. In the pres-
ent structure, anchoring of TM1a to TM5 and TM7 stabilizes 
drSLC38A9 in an intermediate state. The intricate interaction net-
work between TM1a, TM5 and TM7 was found following bind-
ing of arginine (Fig. 3c). A salt bridge is formed between Asp116 
and Thr307. While located next to Asp116, Trp115 is bonded to 
Thr391. Together, Trp115 and Asp116 mark the beginning of this 
anchor network on TM1a in the cytosol-open structure (Fig. 3c). 
The TM1a anchor suspends the helical segment of TM1a from its 
cytosolic end and contains a hydrophobic box formed by Met118 
and Met119 sandwiched between Gln115 and Tyr392 (Fig. 3d). This 
hydrophobic box is immediately followed by the unwound region of 
TM1, suggesting that the TM1a anchor may cause Met119 to expose 
its carbonyl oxygen to disrupt the α​-helix. Given the conservation of 
the WNTMM motif, a restrained TM1a in this conformation is likely 
to be important during transport by SLC38A9 homologs. Consistent 
with the structural insights mentioned above, an Asn128Ala sub-
stitution in the human homolog (hSLC38A9) has been shown to 
decrease transport activity1. While sequence alignment shows that 

Table 1 | Data collection and refinement statistics

SLC38A9–11D3 
(native)a (PDB 6C08)

SLC38A9–11D3  
(Se-Met)

Data collection
 Space group P1211 P1211

 Cell dimensions

 a, b, c (Å) 136.61, 82.81, 158.92 136.163, 82.795, 
158.922

 α, β, γ (°) 90, 100.02, 90 90, 100.005, 90

 Resolution (Å) 3.1 3.358

 Rmeas 0.127 (1.642) 0.07465 (1.812)

 I/σ​(I) 8.3 (1.1) 12.71 (0.86)

 CC1/2 0.997 (0.6) 0.999 (0.347)

 Completeness (%) 99.8 (98.1) 96.98 (81.17)

 Redundancy 8.3 (8.5) 3.4 (3.2)

Refinement
 Resolution (Å) 156.5 –3.17 (3.283 –3.17)

 No. reflections 58,098 (5,909)

 Rwork / Rfree 0.2670/0.2850 
(0.3580/0.3721)

 No. atoms

 Protein 12,332

 Ligand/ion 1 arginine

 B factors 113.00

 SLC38A9 141.23

 11D3-Fab 88.75

 Arginine 147.08

 R.m.s. deviations

 Bond lengths (Å) 0.006

 Bond angles (°) 1.36
aMerged from two crystals.
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human Asn128 corresponds to Asn116 in the zebrafish homolog 
(Supplementary Note 1), disturbing Asn116 in the WNTMM motif 
on TM1a is believed to impair the anchoring network along with 
sodium coordination, which can consequently undermine trans-
port. Met118Ala and Met119Ala substitutions in the WNTMM 
motif abolished transport of arginine, suggesting that the large, non-
polar side chains at this position are functionally important (Fig. 
3e). Presumably, the two ‘methionine fingers’ insert into the hydro-
phobic box during conformational changes and draw TM1a to open 
at the cytosol. Tracing up from TM1a, TM1 and TM6 draw close 
at the GTS motif toward the luminal end. In the cytosol-open state 
of drSLC38A9, TM1a alone mediates arginine binding and forms a 
stabilized conformation. To achieve the same task, other LeuT-like 
transporters (for example, vSGLT and CaiT) use both TM1 and 
TM6 to retain substrates in the inward-open state, involving the GTS 
motif at disrupted regions16,20.

Homology models of system A and system N transporters. This 
initial structural characterization of SLC38A9 allowed us to gen-
erate homology models for representatives of both system A (rat 
SLC38A2) and system N (rat SLC38A3) transporters (Fig. 4). These 
homology models appear to have many commonalities with the 
experimentally determined structure of drSLC38A9. A hydro-
phobic TM1a helix is present in both homology models, showing 
a preserved methionine-rich local structure. The experimentally 
verified sodium-binding site at Asn82 and Thr384 for rat SLC38A2 
and Asn76 and Thr380 for rat SLC38A3 mutually supports the 
homology models21–23. The presence of tyrosine at residue 337 in rat 

SLC38A2 and at residue 333 in rat SLC38A3 seems to be absolutely 
conserved in members of the SLC38 family, supporting the resem-
bling hydrophobic center formed from TM1 and TM7 in the cyto-
sol-open conformation. In TM3 of the homology models, both rat 
SLC38A2 and rat SLC38A3 contain a tyrosine side chain protrud-
ing into the cytosolic binding site, similarly to what we observed 
for Tyr204 in the drSLC38A9 structure (Supplementary Note 2), 
and hence TM3 likely also participates in substrate binding for rat 
SLC38A2 and rat SLC38A3. Interestingly, this tyrosine residue in 
TM3 is conserved in SNATs except for SNAT7 and SNAT8, in which 
the residue at this position is phenylalanine. From the two homol-
ogy models in the cytosol-open conformation, we could not draw 
a clear distinction between system A and system N transporters. It 
is possible that the distinction would only manifest itself in other 
functional conformations of the transporters.

Discussion
In this work, we describe the first structure of drSLC38A9, captured 
in the cytosol-open state, and discover a new TM1a arginine-bind-
ing site in the transporter. The TM1a binding site consists of an 
anchor with two critical methionine fingers inserted into a hydro-
phobic box. Movement of the TM1a anchor is proposed to lead to 
an intermediate state during arginine uptake or release, which may 
regulate amino acid transport and modify the transport efficiency 
of the transporter in the presence of arginine. Notably, the interme-
diate state of SLC38A9 described in this study suggests that argi-
nine binding could also affect the N terminus of the transporter 
by fixing TM1a, which directly links the transmembrane domain 
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the putative translocation of arginine during transport. b, Proposed cytosolic release of arginine by drSLC38A9. In state 1, arginine is bound at the TM1a 
binding site as elucidated in the crystal structure. TM1a is anchored by a pair of residues on TM5 and TM7, rendering a negatively charged binding site 
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TM1a with TM5 and TM7 are shown as dashed lines. d, Hydrophobic box between TM1a and TM7. Met118 and Met119 are confined by Trp115 and Tyr392. 
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and the N-terminal domain of SLC38A9. However, structures of 
SLC38A9 with a visible N-terminal domain in different conforma-
tional states will be needed to elucidate the precise process by which 
this transporter binds to the Ragulator–Rag GTPase complex and to 
advance understanding on lysosomal amino acid transport and its 
modulation of the mTORC1 signaling pathway. While the sequence 
conservation between drSLC38A9 and the human protein is high1,24 
(Supplementary Note 1), we note that data on coupling drSLC38A9 
to mTORC1 in zebrafish are limited and some differences between 
the human and zebrafish proteins may exist. Nonetheless, the struc-
tures presented here form the basis for future investigation into the 
function of these transceptors. Understanding of amino acid bind-
ing, transport and subsequent signaling by SLC38A9 could further 
assist the research community in combatting developmental and 
lysosomal-homeostasis-related disorders25,26.
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Published online: 5 June 2018
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Methods
drSLC38A9 cloning, expression and purification. The sequence encoding 
N-terminally truncated drSLC38A9 (GenBank Q08BA4), Δ​N-SLC38A9, was 
cloned into the pFastBac-1 vector (Invitrogen) with a sequence encoding an 
N-terminal 8 ×​ His tag and a thrombin cleavage site. Four mutations (encoding 
Asn227Gln, Asn235Gln, Asn252Gln and Asn263Gln) were introduced at the 
glycosylation sites. Plasmids were transformed into DH10bac for preparation 
of bacmids. Recombinant baculovirus was generated and used for transfection 
following the protocol provided for the Bac-to-bac Baculovirus Expression System. 
Δ​N-SLC38A9 was overexpressed in Spodoptera frugiperda Sf-9 insect cells, which 
were harvested 60 h after infection. Cell pellets were resuspended in lysis buffer 
containing 20 mM Tris (pH 8.0) and 150 mM NaCl and supplemented with 
protease inhibitor cocktail (Roche). Forty homogenizing cycles were then carried 
out to break cells on ice, followed by centrifugation at 130,000 g for 1 h. Pelleted 
membrane was resuspended and washed in high-salt buffer containing 1.6 M NaCl 
and 20 mM Tris (pH 8.0) and centrifuged again for 1 h at 130,000 g. The pelleted 
membrane was frozen in liquid nitrogen and stored at –80 °C until further use.  
To purify Δ​N-SLC38A9, the membrane pellet was solubilized in 2%  
n-dodecyl-β​-d-maltopyranoside (DDM), 20 mM Tris (pH 8.0), 150 mM NaCl,  
5% glycerol and 0.2% cholesteryl hemisuccinate Tris salt (CHS) for 4 h at 4 °C, 
followed by centrifugation for 1 h at 130,000 g. 20 mM imidazole (pH 8.2) was added 
to the supernatant before incubation with TALON beads for 16 h at 4 °C.  
Δ​N-SLC38A9-bound beads were washed with 6 column volumes of 20 mM imidazole, 
20 mM Tris (pH 8.0), 500 mM NaCl and 0.1% DDM. The resins were then equilibrated 
in buffer composed of 20 mM Tris (pH 8.0), 150 mM NaCl, 0.4% decyl-β​-d-maltoside 
(DM) and 0.02% DDM. At 4 °C, the 8 ×​ His tag was removed by on-column  
thrombin digestion overnight at an enzyme:protein molar ratio of 1:500. The cleaved 
Δ​N-SLC38A9 was collected in flow-through and was flash frozen in liquid nitrogen 
and stored at –80 °C until use. Se-Met-substituted Δ​N-SLC38A9 was overexpressed 
in Sf-9 cells using the same procedures described above for native protein except that 
100 mg/L seleno-methionine (Acros Organics) was added to cultures during  
the course of the 60-h period following infection. The purification procedure for  
Se-Met-substituted Δ​N-SLC38A9 was the same as for the native protein.

Fab production and purification. Mouse IgG monoclonal antibodies against 
Δ​N-SLC38A9 were produced by the Monoclonal Antibody Core (D. Cawley). 
330 µ​g of purified Δ​N-SLC38A9 in buffer containing 20 mM Tris (pH 8.0), 
150 mM NaCl, 0.02% DDM and 0.002% CHS was used to immunize mice in 
three injections. 15 ×​ 96-well plate fusions yielded 169 IgG-positive wells at a 1:30 
dilution. Native and denatured Δ​N-SLC38A9 proteins were then used in ELISA 
to search for candidates that bound the conformational epitopes27, where Ni-NTA 
plates were used for Δ​N-SLC38A9 immobilization. Thirty-five of the 169 fusions 
showed significant preference for binding against well-folded Δ​N-SLC38A9. 
Western blotting was performed to assess the binding affinity and specificity of the 
antibodies generated from hybridoma cell lines. Monoclonal antibody 11D3 was 
then purified from the hybridoma supernatants by 4-mercaptoethylpyridine (MEP) 
chromatography. Fab fragments were produced by papain digestion and purified in 
flow-through buffer containing 20 mM NaPi (pH 8.0) and 150 mM NaCl by protein 
A affinity chromatography.

Assembly of ΔN-SLC38A9–Fab complex. Purified Fab fragment of 11D3 was 
added to Δ​N-SLC38A9 at a 2:1 molar ratio, and the components were incubated for 
4 h to form stable complexes. Δ​N-SLC38A9–11D3 was concentrated by centrifugal 
filter vivaspin 20 at 50 kDa MWCO. The concentrated protein was further purified 
and underwent detergent exchange by gel filtration, Superdex-200 size-exclusion 
column, in buffer containing 20 mM Tris (pH 8.0), 150 mM NaCl and 0.2% DM. 
As judged by SDS–PAGE and size-exclusion chromatography elution profile 
(Supplementary Fig. 4), fractions containing appropriate Δ​N-SLC38A9–11D3 
complexes were pooled and concentrated to 5 mg/ml for crystallization.

Crystallization. An initial hanging-drop crystallization assay with purified  
Δ​N-SLC38A9 produced crystals grown under the condition of 30% PEG400, 
100 mM Tris (pH 8.0) and 400 mM LiCl at 4 °C. However, these crystals gave 
anisotropic diffraction to around 6 Å. Crystals showing adequate diffraction power 
were obtained only when Δ​N-SLC38A9 was co-crystallized as a complex with Fab 
prepared from hybridoma cell line 11D3 (IgG2a, kappa). The best crystal, which 
diffracted to 3.1 Å, was obtained under the condition of 26–30% PEG400, 100 mM 
ADA (pH 7.2) and 350 mM Li2SO4 at 4 °C. Before data collection, the crystals were 
soaked in the same crystallizing solution containing 30% PEG400 and 20 mM 
arginine (pH 7.2) for 1 h, and were rapidly frozen in liquid nitrogen. Se-Met crystals 
were grown and harvested in the same manner as the native crystals.

Data collection and structure refinement. X-ray diffraction datasets were 
collected at the Advanced Photon Source (Argonne National Laboratory, 
beamlines 24-IDC and 24-IDE) and processed in the online server RAPD, which 
uses XDS and the CCP4 suite package for integrating and scaling to resolutions 
of 3.1 Å (native) and 3.4 Å (Se-Met). Antigen-binding fragments (Fab) from 
PDB 1F8T28 were used in the initial molecular replacement as the search model. 
The Se-Met dataset was then phased by single anomalous dispersion in Phenix29 

using differences from 23 selenium atoms at λ =​ 0.9791 Å and the two Fab 
fragments previously placed using Phaser as a partial model (MRSAD)28. Helices 
were manually placed in the density-modified map and extended using Coot30. 
Subsequent cycles of density modification, model building and refinement were 
carried out in Phenix and Coot until structure completion. The final model 
contains two molecules of Δ​N-SLC38A9 (residues 108–549) and two pairs of the 
heavy-light chain of Fab in an asymmetric unit. Data collection and refinement 
statistics are presented in Table 1.

Preparation of proteoliposomes. Full-length and N-terminally truncated 
drSLC38A9 proteins were expressed and purified as described above. Liposomes 
were prepared by resuspending thin films of 35 mg/ml egg phosphatidylcholine 
(egg-PC) in buffer A (20 mM MES pH 5.0 and 1 mM DTT, with various 
concentrations of NaCl), followed by extrusion through membranes with a pore 
size of 0.4 µ​m. Triton X-100 was added to the extruded liposomes at a 10:1 (wt/wt)  
lipid:detergent ratio. The volume was then adjusted to a final concentration of 
14 mg egg-PC/ml with buffer A and incubated for 1 h, followed by reconstituting 
drSLC38A9 or Δ​N-SLC38A9 at a protein:lipid ratio of 1:400 (wt/wt) for 2 h. 
Detergents using removed by SM2 Bio-Beads (Bio-Rad) added to the protein–lipid 
mix and rotated overnight at 4 °C. The next day, proteoliposomes were collected, 
aliquotted and stored at –80 °C. For the KCl and NMG assay groups, the wild-type 
drSLC38A9 protein was reconstituted to the liposomes in the presence of buffer B 
(20 mM potassium succinate pH 5.0 and 100 mM KCl) or buffer C (20 mM NMG 
succinate pH 5.0 and 100 mM NMG HCl). To fully incorporate the buffer, the 
liposomes were pelleted by ultracentrifugation and resuspended in buffer B or 
buffer C before the reactions.

Radioligand uptake assays. Proteoliposomes of reconstituted drSLC38A9,  
Δ​N-SLC38A9, Met118Ala and Met119Ala mutants were thawed on ice. For 
transport assays of various constructs, transport reactions were initiated by 
adding [3H]l-arginine (American Radiolabeled Chemicals) to 100-µ​l aliquots of 
proteoliposomes containing 24 pmol of protein to a final concentration of 0.5 µ​M 
[3H]l-arginine. For transport assays in the presence of various cations, the pelleted 
liposomes were resuspended in buffer B or C, before being added to the respective 
buffer supplemented with 0.5 µ​M [3H]l-arginine at the dilution of 1:20 volume 
ratio. A negative control with protein-free liposomes was carried out in parallel 
to the experiment groups. At various time points, proteoliposomes were filtered, 
washed with 10 ml of buffer and collected on 0.22-µ​m GSWP nitrocellulose 
membranes. 10 ml of scintillation fluid was then added to each filter in a vial and 
counted. A time-course profile indicates that the retained radioligands reached 
saturation in 10 min. Measurements at various time points of arginine uptake 
were plotted to establish the transport comparisons between various constructs of 
drSLC38A9. Each of the experiments was repeated two or three times.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Comparative modeling. From the crystal structure of drSLC38A9–11D3 (PDB 
accession number: 6C08), the coordinates of drSLC38A9 were extracted and used 
as a template input in SWISS-MODEL for modeling under automated mode31.

Data availability. The atomic coordinates and structure factors of drSLC38A9–
Fab have been deposited in PDB under accession 6C08. Source data for Figs. 
1c,d and 3e are available with the paper online. Other data are available from the 
corresponding author upon reasonable request.

All figures in this paper were prepared with PyMOL v1.8.6.032 and assembled 
in Microsoft PowerPoint v15.18. Supplementary Note 1 was prepared using the 
program Clustal Omega33 for alignments and ESPript 3.034 for styling.
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