
Lawrence Berkeley National Laboratory
LBL Publications

Title
Designing a Framework for Solving Multiobjective Simulation Optimization Problems

Permalink
https://escholarship.org/uc/item/3gr340t0

Authors
Chang, Tyler H
Wild, Stefan M

Publication Date
2025

DOI
10.1287/ijoc.2023.0250

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gr340t0
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Designing a Framework for Solving Multiobjective Simulation

Optimization Problems

Tyler H. Chang1 and Stefan M. Wild2

1Mathematics and Computer Science Division, Argonne National Laboratory,, 9700 S Cass
Ave Bldg 240, Lemont, IL, USA 60439, tchang@anl.gov

2Applied Mathematics and Computational Research Division, Lawrence Berkeley National
Laboratory,, 1 Cyclotron Rd, Berkeley, CA, USA 94720, wild@lbl.gov

January 13, 2025

Abstract

Multiobjective simulation optimization (MOSO) problems are optimization problems with multiple
conflicting objectives, where evaluation of at least one of the objectives depends on a black-box numerical
code or real-world experiment, which we refer to as a simulation. While an extensive body of research is
dedicated to developing new algorithms and methods for solving these and related problems, it is chal-
lenging and time consuming to integrate these techniques into real world production-ready solvers. This
is partly due to the diversity and complexity of modern state-of-the-art MOSO algorithms and methods
and partly due to the complexity and specificity of many real-world problems and their correspond-
ing computing environments. The complexity of this problem is only compounded when introducing
potentially complex and/or domain-specific surrogate modeling techniques, problem formulations, de-
sign spaces, and data acquisition functions. This paper carefully surveys the current state-of-the-art in
MOSO algorithms, techniques, and solvers; as well as problem types and computational environments
where MOSO is commonly applied. We then present several key challenges in the design of a Parallel
Multiobjective Simulation Optimization framework (ParMOO) and how they have been addressed. Fi-
nally, we provide two case studies demonstrating how customized ParMOO solvers can be quickly built
and deployed to solve real-world MOSO problems.

Keywords: multiobjective optimization, simulation optimization, engineering design optimization, surro-
gate modeling, open-source software design

1 Introduction and Motivation

Multiobjective optimization problems (MOOPs) are optimization problems involving two or more potentially
conflicting objectives. Such problems arise in numerous fields of science, with examples such as multidisci-
plinary engineering design [1, 2], scientific model calibration [3], high-performance computing (HPC) library
autotuning [4], particle accelerator design [5], neural network architecture search [6, 7, 8], and computational
chemistry [9, 10]. In such problems the goal is to find a set of “good” points from a design space with respect
to a vector-valued objective function F : X → Ro. Here, X is called the feasible design space and is typically
assumed to be a compact simply-bounded subregion of Rn. In this paper we assume each objective Fi(x) is
bounded from below so that the feasible objective space F(X) is lower bounded in each dimension. In the
standard formulation, one seeks to minimize each objective (i.e., component of F), a problem that is written
as

min
x∈X

F(x). (1)

Since it is typically not possible to find one x ∈ X that simultaneously minimizes all o components of
F, the solution to (1) is generally a set of design points and corresponding objective values. Rather than

1

ar
X

iv
:2

30
4.

06
88

1v
3

 [
m

at
h.

O
C

]
 9

 J
an

 2
02

5

describe when an objective value corresponds to a solution for (1), it is easier to begin by describing when an
objective value does not correspond to a solution. An objective value F(x) ∈ F(X) is said to be dominated
if there exists a y ∈ X such that F(y) ≤ F(x). Here we use the vector-inequality “≤” to indicate that F(y)
is componentwise less than or equal to F(x) with strict inequality Fi(y) < Fi(x) in at least one component
i. Conversely, an objective value F(x⋆) is said to be nondominated in a set of objective values Ω ⊂ Ro if for
all F(y) ∈ Ω, F(y) ̸≤ F(x⋆).

If F(x⋆) is nondominated in F(X), then F(x⋆) is said to be Pareto optimal for (1), and x⋆ is said to
be efficient for (1). The set of all Pareto optimal objective values typically forms a (o − 1)-dimensional
trade-off surface, called the Pareto front (along a subset of the boundary of F(X)). For further details on
general MOOPs, we refer readers to the book by [11]. In general, a design point and objective value pair
(x⋆,F(x⋆)) are in the solution set for (1) if they are efficient/Pareto optimal. In a typical multiobjective
optimization application, a decision maker uses a multiobjective optimization solver to identify a subset of
all Pareto optimal objective values and select one or more of these as the preferred solution(s) based on
domain expertise and personal preference.

A large class of real-world MOOPs consists of those derived from expensive numerical simulations [3, 5,
1, 2], computer experiments [4, 6, 7, 8], and real-world experiments [12, 13, 9, 10]. We refer to such problems
as multiobjective simulation optimization (MOSO) problems. Often, the simulations in a MOSO problem
are black-box processes that are expensive to evaluate and do not admit derivative information. While the
objectives themselves may have components that are less expensive to evaluate and/or admit derivative
information, the MOSO problem as a whole is typically treated as a black box and solved by using black-box
optimization techniques [14]. Furthermore, due to the expected expense of evaluating the simulations, the
performance of MOSO algorithms is typically measured in terms of solution accuracy per number of total
simulation evaluations. In this paper we focus on designing solvers for MOSO problems. Consequently, here
we use the convention that “simulation” refers to an expensive black-box function that yields only zeroth-
order information. As described later in this paper, solving MOSO problems does not always preclude the
usage of some partial derivative information. However, we restrict ourselves to techniques that account for
the presence of a computationally expensive black-box process somewhere in the computing chain, and we
work under the assumption that the complete gradient for all objectives and constraints will not be available.

From an optimization researcher’s perspective, solving MOSO problems efficiently requires coordination
between state-of-the-art and emerging numerical techniques from a variety of fields of study, including design-
of-experiments, surrogate modeling, scalarization, uncertainty quantification, and optimization algorithms.
We elaborate on many of these techniques in Section 2.1.

From a practitioner’s perspective, solving real-world MOSO problems involves more than numerical
algorithms. First, even within the narrow field of MOSO problems, there can be significant variation in
problem definitions. This includes application and domain-specific modeling techniques, problem structures,
and feasible design spaces. Second, it is important to consider the resources and computing environment
where the problem will be solved. This includes wet-lab environments and HPC resources, any of which
may require additional steps and technologies to efficiently operate. We elaborate on these challenges in
Section 2.2.

Coordinating all of the above techniques from different fields of study into usable solvers that can be
deployed to solve real problems is a massive and time-consuming undertaking, which often limits the rate
at which novel methods can be adopted. The Parallel Multiobjective Simulation Optimization (ParMOO)
library implements a framework based on surrogate modeling for solving MOSO problems, with the goal of
providing an easy-to-use and modular interface for implementing and deploying a wide variety of MOSO
algorithms and emerging techniques. ParMOO was originally introduced in [15], with a focus on the quality
of the open-source software processes, intended user-base, and usability. This paper introduces the consid-
erations that have continued to drive ParMOO’s design and development, and the MOSO algorithms and
techniques that ParMOO currently supports. We begin by deconstructing surrogate-based MOSO solvers
into a system of simpler modules for performing subtasks that are common across many solver architectures.
We then present an abstract framework for integrating these modules, while reducing complexities. To
demonstrate ParMOO’s effectiveness in exploiting real-world problem structures, we conclude by providing
access to two computationally inexpensive benchmark problems exhibiting some of the challenging features
discussed above. These problems are easy to test on, since the expensive simulations have been replaced by
machine learning models trained on real-world datasets.

2

The remainder of the paper is organized as follows. In Section 2 we review existing techniques, problem
types, trends, and software in MOSO, and we describe the technical challenges and trade-offs involved in
building a general-purpose MOSO library that achieves all of our design goals. In Section 3 we introduce
our framework for addressing these challenges. In Section 4 we perform a brief performance study and
validation on a well-known multiobjective optimization test problem. We then present two case studies that
demonstrate the flexibility and power of our framework: Section 5 involves the calibration of a physics model,
and Section 6 involves the design of material in a wet-lab environment. We conclude in Section 7 with a
short discussion of our results.

2 Background and Design Principles

We now lay out the primary goals and requirements when designing a general framework for implementing
modern surrogate-based MOSO algorithms. These goals and requirements depend on an understanding of
the current state-of-the-art techniques and modern trends in MOSO, so we begin by reviewing these.

There are many different families of multiobjective optimization algorithms based on where in the opti-
mization process the decision maker expresses their preference for a solution. In this paper, we are interested
in a posteriori methods, where the decision maker expresses their preference after solving the problem. Other
methods such as a priorimethods and interactivemethods require different techniques. They are summarized
in the survey by [16].

It is useful to further divide a posteriori MOSO methods into three broad categories that are common in
the literature: multiobjective evolutionary algorithms and metaheuristics (MOEAs), which rely on random
combinations and/or perturbations to a so-called, “pool,” “archive,” or “population” of previously evaluated
design points; multiobjective direct search (MDS) methods, which rely on (often deterministically) evaluating
promising design points around one or more current iterates in search of multiobjective descent directions;
and multiobjective Bayesian optimization (MBO), which focuses on minimizing a multiobjective acquisition
function to select design points for evaluation. In Section 2.1, we summarize into each of the above methods,
and the current representative algorithms for solving MOSO problems. Additionally, there are other methods
– mostly based on either generic surrogate modeling or response surface methodology (RSM) – which do not
fit cleanly into any of the above categories. In Section 2.1, we explore these techniques as well.

2.1 Fundamental Methods for Solving MOSO Problems

We now summarize the key techniques that are prevalent among a posteriori MOSO algorithms, focusing on
those that are most relevant to our work; for a complete survey, see [17].

We begin by discussing scalarization, which is a classical technique that is still prevalent in many modern
MOSO algorithms and applications. Scalarization is the basis for almost all a priori methods, as it collapses
a MOOP into a single-objective subproblem that can be (approximately) solved with a single-objective
optimization solver. In a priori methods, the decision maker may provide some fixed set of scalarization
functions, which are carefully selected to target only the desired solution point(s), as pre-specified by the
decision maker. However, in the context of a posteriori methods, a family of multiple scalarization functions
can be used to produce a discrete approximation to the efficient set and/or Pareto front.

A scalarization is defined by a scalarization function Q : Ro → R, such that

argmin
x∈X

Q(F(x)) ⊂ argmin
x∈X

F(x).

The scalarized problem minx∈X Q(F(x)) can be solved by using any derivative-free optimization method.
The most commonly used scalarization technique is the weighted sum scalarization [11, Ch. 3], where the
objective is collapsed via a weighted average. Other common scalarization techniques include the epsilon-
constraint method [11, Ch. 4], Pascoletti-Serafini scalarization [18], the reference point method [19], quadratic
scalarization schemes [20], and (augmented) weighted Chebyshev scalarization [21].

In order to provide an approximation to the complete Pareto front, each of the above-mentioned ap-
proaches would need to be combined with some adaptive scheme for sweeping through different members
in a family of scalarization functions, thus producing numerous solution points covering the Pareto front
[22, 23, 18, 24]. Although it is a classical technique, scalarization is still widely used in MOEAs [25, 26],

3

MDS [27, 23], and MBO methods [28]. Even algorithms that do not explicitly rely upon scalarization still
use some of these scalarizations indirectly. For example, the MDS method MOIF [29] and the line search
technique DFMO [30] both select a multiobjective steepest descent direction that could be viewed through
the lens of scalarization.

Many newer MOSO algorithms (particularly in MOEAs) have replaced the scalarization function with
an indicator function, which focuses on assessing the quality of the Pareto front approximation when adding
a new point F(x). Given a dataset D = {(xi,F(xi))}Ni=1 of previously evaluated design points and objective
values, an indicator function I(D) calculates the quality of the Pareto front approximation given by the
nondominated objective values in D. Designing a good indicator function is also nontrivial, but it is generally
agreed that a good indicator should produce solution points that are on or close to the true Pareto front,
offer good coverage of the entire Pareto front, and are well distributed [31, 32]. By choosing a scalarization
function QD(x) = I(D∪{(x,F(x))} or QD(x) = −I(D∪{(x,F(x))}, the indicator can play the part of both
the scalarization function and its adaptive scheme. The key difference here is that an indicator-function-
driven scalarization depends upon the dataset D in addition to the value of F(x). One of the most commonly
used indicators in MOSO algorithms is the hypervolume improvement indicator, which measures the amount
of hypervolume between a potential objective value and previously observed objective values [33, 34]. This
indicator is used as the basis for many multiobjective algorithms, such as Archived Multiobjective Simulated
Annealing (AMOSA) [35].

Since each scalarization function reduces a MOSO problem to a single-objective subproblem, this tech-
nique must be coupled with a single-objective solver. Such a solver could implement a single-objective
evolutionary algorithm, heuristic, direct search method, Bayesian optimization solver, or any other single-
objective approach. It is also possible to apply a different MOSO solver (or a single iteration thereof) to
the MOSO problem, then select the solutions that best minimize the scalarization a posteriori. For a recent
survey of derivative-free optimization methods that could be used in the above context, see [36].

For MOSO problems where simulation evaluations are expensive, the total problem expense can get out
of hand if too many simulation evaluations are required. Therefore, many modern MOSO solvers reduce
the need for true simulation evaluations by combining one or more of the above-mentioned multiobjec-
tive algorithms with a computationally cheaper surrogate model [37, 32, 38]. Here, each component of an
expensive-to-evaluate objective F(x) = (F1(x), . . . , Fo(x)) is modeled by a computationally cheaper surro-

gate function F̂D =
(
F̂1, . . . , F̂o

)
, based on the current dataset D, and such that F̂1 ≈ F1, . . . , F̂o ≈ Fo.

Several “candidate solutions” can then be suggested by finding points that are efficient/Pareto optimal for
the surrogate problem

min
x∈X

(
F̂1(x), . . . , F̂o(x)

)
. (2)

When F is sufficiently more expensive to evaluate than F̂D in terms of computational time and resources,
the cost of finding (approximately) efficient/Pareto optimal points for (2) can be much less than the cost of
finding such points for (1). In practice, these surrogates could be any of a variety of classical approximation
or machine learning [39] models.

The main challenge when using surrogate models is that the surrogate models must be asymptotically
accurate for the optimization algorithm to convergence to an accurate solution. Typically, the accuracy of
the surrogate depends on the geometry and density of the dataset D in X , the componentwise smoothness
of the underlying function F, and the choice of surrogate model [40]. In most applications, the smoothness
of F is an unknown but fixed quantity. Therefore, we must rely on either the density and geometry of
D or uncertainty information returned from the surrogate models in order to ensure acceptable surrogate
accuracy.

In the context of model-based derivative-free optimization (DFO), one focuses on the local properties of
D around the current iterate x(k). As more design points are evaluated during the course of the optimization
algorithm, the density of D rapidly increases near local minima. Therefore, the focus is on maintaining
an acceptable conditioning for the surrogate modeling problem in the neighborhood of such minima, which
is determined by the local geometry of the design points in D [41]. This geometry can be maintained by
occasional requiring the optimization algorithm to evaluate model-improving design points instead of strictly
model minimizing points [42]. Since these techniques, focus on local quality of the surrogate model, the
surrogate problem (2) must be constrained with a local trust region (LTR) so that only candidate solutions
in the LTR are suggested by the optimization algorithm. There are currently a few surrogate-driven MOSO

4

algorithms that exactly follow this approach [43, 44], but none with software to our knowledge. Other
existing algorithms use aspects of this approach or are similar in spirit [32, 45]. From the single-objective
setting, this “model-based DFO” approach is known to produce fast converging highly scalable algorithms,
but only guarantees local convergence [46]. However, this approach can be coupled with global search or
multi-start techniques if global accuracy is desired [47].

On the other hand, Bayesian optimization leverages uncertainty models specific to surrogates. Cer-
tain surrogates, such as Gaussian processes, admit an uncertainty function ΣF̂,D : X → Ro

+ such that

ΣF̂,D(x) ∝
∣∣∣F(x)− F̂D(x)

∣∣∣, (where ‘∝’ can be understood as meaning “componentwise proportional”) [48].

In MBO, the scalarization/indicator functions are augmented with the value of ΣF̂,D to assess the overall
utility of evaluating a potential candidate design point x, in terms of both improving the Pareto front approx-
imation and maintaining global accuracy of the surrogate model [49, 50]. Notably, the ParEGO algorithm
uses the uncertainty information from a Gaussian process model to calculate the expected improvement in
the augmented Chebyshev scalarization [28], and the (q)EHVI algorithm uses (a quasi-stochastic approxi-
mation to) the expected improvement in the hypervolume indicator [51]. MBO produces globally convergent
methods, but with the drawback of a slower rate of convergence, particularly in high-dimensional design
spaces. Therefore, many methods aimed at high-dimensional design spaces use localization strategies such
as LTRs, similarly to the model-based DFO methods above [52].

An alternative framework from the statistics literature is multiobjective RSM. RSM begins with a
“search” step, which generates and evaluates a large design-of-experiments [53] or quasi-random sample
[54] to explore the design space and collect an initial dataset for surrogate modeling. Once enough data has
been collected to ensure sufficiently accurate surrogate modeling, the typical multiobjective RSM approach
applies a polynomial surrogate model, multiple scalarizations, and an optimization procedure to solve all
scalarized surrogate problems [13, Ch. 7]. Several existing multiobjective surrogate-modeling algorithms use
variations or multiple iterations of this approach, including VTMOP [32], SOCEMO [38], and PAWS [45].
Multiobjective RSM can be efficient in many-objective settings since a large portion of RSM’s computational
cost comes from the initial search step, whose results can be shared across all scalarizations. Therefore, the
incremental cost of solving for many objectives by applying many scalarizations is not much greater than the
cost of solving for a single scalarization by RSM. The drawback of this approach is that in high-dimensional
spaces, it may not be feasible to generate a sufficiently large design-of-experiments to guarantee global sur-
rogate accuracy. Still, all of the above methods also require an initial surrogate-modeling dataset, which
is often gathered by similar techniques as in RSM; see, e.g., the search techniques used in the Bayesian
optimization library BoTorch [55].

In practice, the lines between the types of algorithms discussed above are often blurred. Furthermore, not
all MOSO algorithms use all of the methods described above. In contrast, ParMOO focuses on techniques
that utilize:

• An acquisition function or similar technique for setting targets in the objective space;

• An optimization solver (or single iteration thereof) for generating the next iterate based on the acqui-
sition function;

• A surrogate model for approximating expensive functions and either an uncertainty function or model
improvement procedure for maintaining its accuracy; and

• A search technique for exploring the design space and generating the initial samples for surrogate
modeling.

Prior to the release of ParMOO, there was no open-source software for implementing generic MOSO
solvers that adhere to the above structure. [15] focused on the usage of ParMOO rather than the under-
lying algorithm, framework, and techniques supported. In this paper, we present the design strategies and
architecture used for solving MOSO problems via any algorithm that falls into the above framework, with a
focus on how such combinations can be most effectively applied in domain-specific applications.

2.1.1 Other Techniques in MOSO.

As previously stated, not all MOSO algorithms utilize all of the techniques discussed in Section 2.1.

5

One of the biggest departures from Section 2.1 is that not all MOSO algorithms use a technique that
can be cast under the umbrella of an acquisition function. However, most require a technique for selecting
the point or set of points to iterate from. For example, the MDS method MODIR [56] generalizes the
single-objective DIRECT algorithm by way of a multiobjective identification procedure. The MDS methods
DMulti-MADS [57], DMS [58], and MultiGLODS [59] use some combination of indicator functions and/or
trust-region radii to select each iterate. In the context of MOEAs, a dominance-based sorting metric is
typically applied during population selection [60, Ch. 2.3.3]. Such an approach is taken in the well-known
MOEA NSGA-II [61]. While many of these selection metrics could be calculated from the information
available to an acquisition function (in particular, the dataset D), these methods represent a significant
departure from the techniques discussed in Section 2.1. Additionally, it is worth noting that many of the
algorithms listed above do not rely on surrogate modeling as a core feature, which is another significant
departure from the techniques covered toward the end of Section 2.1.

While not all encompassing, the class of techniques covered in Section 2.1 give the core ingredients for
many MOSO algorithms. Algorithms of this nature are the primary focus of this paper.

2.2 Design Challenges when Building MOSO Solvers

We now explore the key design challenges addressed by ParMOO. ParMOO is designed to use the techniques
laid out in Section 2.1, specifically, acquisition/indicator/scalarization functions, surrogate modeling, and
design-of-experiments, to solve a diverse set of scientific MOSO applications. Therefore, we focus on chal-
lenges related to these techniques and how they can be deployed in real-world applications and scientific
computing environments.

2.2.1 State-of-the-Art and Domain-Specific Techniques.

First, as highlighted in Section 2.1, state-of-the-art surrogate-driven MOSO solvers require integrating several
different techniques, including acquisition functions, optimization solvers, surrogate models, and design-of-
experiments. This challenge is compounded when we consider the inclusion of domain- and problem-specific
techniques such as machine learning surrogates with physics-informed constraints [62] or acquisition functions
designed to target extremely rare events [63].

In ParMOO, we seek to support most such techniques, including domain-specific methods that we may
not yet be aware of. This requires a clean application programmer’s interface (API) for users to implement
new, domain-specific methods. This, in turn, requires a standardization of APIs for each individual method
and clear definition of how these methods will interact, which may not be easy to define for all of the
techniques in Section 2.1.

2.2.2 Structured Problem Formulations.

Beyond using domain- and problem-specific algorithms, one can go a step farther and explicitly model
domain- and problem-specific structures in the MOSO problem formulation. This includes modeling compos-
ite problem definitions, as described in [64, 65, 66], where the objective can be expressed as the composition
of one or more functions. In particular, we can modify the MOOP problem definition from (1), using

min
x∈X

F(x,S(x)) (3)

where F : X ×Rm → Ro and S : X → Rm. In this formulation, it is assumed that F is an algebraic function
that is cheap to evaluate and whose gradient function may be known, while S is a computationally expensive
simulation function, as previously discussed. This formulation decouples the “simulation” aspect of the
computation from the objective function, allowing for the usage of structured non black-box optimization
solvers.

One common example for F would be a sum-of-squares function Fi(x,S(x)) =
∑

j∈J Sj(x)
2, for one

or more component functions Fi and an index set J . In the single-objective case, this structure can be
exploited by Gauss-Newton inspired methods to achieve super-linear convergence rates [67], as is the case
in the derivative-free least-squares solver POUNDERS [68]. While the theoretical advantage may not be

6

as strong, explicitly modeling the composition in (3) typically leads to convergence with fewer simulation
evaluations for a variety of other algebraic F-functions [64, 65, 66].

Another structure of F that is specific to the multiobjective setting is a heterogeneous problem definition
[43], where one or more Fi is an algebraic function with no dependence on an expensive simulation output,
but other Fi are either the direct outputs or calculated from a simulation output. This sort of problem
definition has been acknowledged in previous works [32, 43], but we are not aware of a formal analysis. The
typical approach in the context of surrogate-based MOSO, is to apply surrogate models to the components
that depend upon simulation outputs and use the algebraic formulations instead whenever they are available.
This approach lends well to the abstraction in (3).

In ParMOO, we support problem definitions of the form (3), which is a slight departure from the standard
black-box optimization methodology. However, it is important to note that this formulation still involves a
black-box process, and therefore cannot be solved with purely gradient-based methods.

2.2.3 Changes to the Design Space – Mixed Variables and Constraints.

Thus far, we have assumed that X is a compact, simply-bounded subregion of Rn. However, widely used
MOSO software often support broad categories of design variables and constraints, including various com-
binations of real (continuous-valued), discrete (integer-valued), and/or categorical (nonordinal) variables, as
well as linear and nonlinear constraints [55, 69, 70, 71, 6, 72].

For mixed-type design variables, it is important to note that changing the domain X can result in a
completely different classification of problem requiring different techniques. For example, when X consists
of exclusively binary decision variables, a multiobjective ranking and selection algorithm would generally
be used [73], which significantly differs from the continuous MOSO algorithms described in Section 2.1.
However, many MOSO problems that are largely continuous have a small number of discrete variables,
which is something that can be reasonably supported without significantly changing the kind of techniques
used.

Since we are focused on methods that were designed for continuous MOSO, the primary challenge is
in handling the discrete design variables. For MOEAs, this would be supported by providing a mixed-
variable mating procedure to any existing MOEA [71]. For MBO and many MDS techniques it could be
sufficient to define a distance, kernel, or neighborhood function that supports integer and categorical variables
[74]. For a generic surrogate-based MOSO algorithm, however, one needs a function E : xi′ → [0, 1]ℓ for
embedding the discrete design variable xi′ into a continuous latent space [0, 1]ℓ, where ℓ is the dimension
of the embedding. Perhaps the most common example of a latent space embedding is a one-hot encoding,
which maps each category to either a 0 or 1, and assigns a value 1 if and only if the corresponding xi′

represents the corresponding category. This latent space is then modeled by the surrogate, which can be
used to relax the embedded design variables to a continuous representation. This approach has been widely
used in existing surrogate modeling software [39, 75]. For any of the above techniques, it can be difficult
to scale generic techniques for problems with a large number of categorical design variables. Therefore,
many domain-specific software packages and algorithms utilize domain-specific design space embedder or
distance functions [6, 10]. As an example in the context of material design, the Bayesian optimization solver
EDBO [10] uses the molecular descriptor calculator Mordred [76] to calculate a three-dimensional latent
space encoding molecule networks, and then solves a Bayesian optimization problem in this latent space.

Similarly, the introduction of linear and nonlinear constraints requires us to relax the previous assumption
that X is simply bounded. In practice, such constraints could be many combinations of known (e.g., part
of the problem formulation) or hidden (e.g., discovered at runtime), algebraic or dependent upon simulation
outputs, relaxable in the sense that the simulation can still be evaluated when the constraint is violated, and
quantifiable in the sense that we can quantify how much it has been violated or not [77]. Clearly, we will
not be able to support all combinations of the above, however, we seek to support as many combinations as
reasonably possible.

Given the composite objective function definition in (3), it is natural and simplifying to mirror this with
a composite constraint definition G(x,S(x)) ≦ 0, where “≦” denotes componentwise less than or equal to.
In this sense, we will support both simulation-based and algebraic inequality constraints and immediately
preclude hidden constraints. Then, we can decompose the feasible region X into a simply-bounded region
B (with n dimensions and possibly mixed variable types), where the bound constraints are unrelaxable, and

7

the relaxable nonlinear constraints defined by G. This produces ParMOO’s final problem formulation

min
x∈B

F(x,S(x)) subject to G(x,S(x)) ≦ 0. (4)

For generic nonlinear black-box constraints, there have been several approaches in the single-objective
optimization literature for handling the nonlinear constraints G, including barrier functions [78] and aug-
mented Lagrangian approaches [79]. Both of these approaches can be thought of as producing a penalty
function describing the constraint violation, which can be added to the objective to encourage feasibility.
However, the methods for achieving this differ. To extend these methods to the multiobjective case, it is suffi-
cient to apply a cumulative penalty function to all objectives [80]. Considering the options, barrier functions
tend be more flexible to apply without significant modification to the optimization algorithm. Among the
barrier methods, the two common methods are an extreme barrier, which adds an infinite penalty any time
a constraint is violated, and a progressive barrier, which adds a penalty based on the constraint violation
and progressively increases this penalty over time.

In ParMOO, we seek to support a limited number of mixed variables and relaxable nonlinear constraints
G. We pursue this through embeddings and barrier functions, which requires limited modification to the
techniques outlined in Section 2.1.

2.2.4 Parallel and Other Computing Environments.

Another challenge in MOSO is achieving efficient resource utilization in diverse computing environments.
Many existing optimization solvers provide parallelism through a single paradigm (e.g., Python multiprocess-
ing, OpenMP, or MPI) [71, 32, 72]. However, this may not be sufficient when dealing with diverse computing
environments including distributed systems, HPCs, laboratory clusters, and even wet-lab environments, any
one of which may not support one or more common parallel computing paradigms.

In order to address this complexity, many platforms [81, 12] and libraries/frameworks [82, 83] have
been created for coordinating parallel evaluations, complex simulations, data storage, and heterogeneous
resource utilization. Additionally, domain-specific tools for managing simulation, modeling, and optimization
interplay also manage distribution over parallel resources [84]. However, effectively utilizing these platforms
is nontrivial if the optimization software was not originally designed with mindfulness for these paradigms
[85, 86].

In ParMOO, we have designed with parallelism and simulation environment flexibility in mind, being
sure to decouple simulation evaluation from the solvers and techniques.

2.2.5 Maintainability and Usability.

A recent movement in the general scientific computing space is to reduce technical debt and improve scientist
productivity through better scientific software development practices [87]. Many scientific software libraries
are adopting such practices [82, 46], and several existing multiobjective optimization libraries have recently
been refactored to improve maintainability [88, 69].

One of our key goals in the design of ParMOO has been to build a software package that provides an API
for implementing the techniques discussed in the previous two sections, without sacrificing maintainability
and usability.

2.2.6 Design Goals.

In summary to the challenges and requirements laid out in this section, we now list five key goals in the
design of ParMOO.

1. We want to provide a highly customizable software framework for building and deploying surrogate-
based MOSO solvers.

2. We want to give the optimization solver access to any available structure in how the simulation outputs
are used to define the objectives.

3. We want to be flexible in our support for a wide variety of problem types, including mixed variables
and constraints.

8

4. We want to make our framework easy to deploy in a wide variety of scientific workflows.

5. Our software framework and workflow must be easy to use, maintain, and extend.

Goals 1, 2, and 3 require careful thought in terms of what kinds of MOSO algorithms, problem types, and
structures are supported and how these techniques will interact. Goals 4 and 5 are engineering problems,
which constrain the breadth of methods that we can reasonably support when addressing Goals 1, 2, and 3.
Although it constrains our decision making on the techniques we can use, ParMOO’s workflow and general
project structure (some of the main components of Goal 5) have previously been extensively discussed in
[15]. Therefore, we limit our discussion regarding Goal 5 to where it affects our decision making for the other
design goals.

2.3 Existing MOSO Software

In addition to the software laid out below, we acknowledge the existence of other special-purpose solvers for
domain-specific variations of the MOSO problem. In this work, however, we do not consider solvers that are
tied to a specific application, such as neural architecture search [8] and chemical experiment design [10], or
solvers that target other variations of the problem (1), including online multiobjective optimization [89] and
multiobjective reinforcement learning [90]. We also acknowledge that a similarity exists between surrogate-
based MOSO and active learning [91], which we consider to be a more generic problem than surrogate-based
MOSO.

In this section, we exclusively list open-source, production-quality software packages for solving MOSO
problems. The term “production quality” here focuses on software implementations that are advanced
enough for a non-expert to use in a non-academic application. Hallmarks of such software include some
combination of detailed user or API documentation, publication in a software journal, and a large user base.
Although often not distinguished, it is also important to clarify that not every well-known MOSO algorithm
has a one-to-one mapping with such a software implementation.

Much of the available software implements MOEAs. Widely used MOEA-based solvers include ParEGO
[28], which also integrates Gaussian process surrogate modeling, and SPEA2 [92]. There are also many
libraries, including Platypus [93], pymoo [71], PlatEMO [94], jMetal/jMetalPy [95, 69], and pagmo/pygmo
[70]. The majority of these libraries implement all of the well-known MOEAs, such as NSGA-II [61] and
NSGA-III [25, 26]. Although not specific to MOOPs, the framework DEAP [96] is also frequently used for
implementing distributed evolutionary algorithms in Python, including distributed MOEAs.

Packages with MDS methods include the following. The DFO-lib [97] contains serial Fortran implemen-
tations of MODIR and DFMO and both Matlab and Python implementations of MOIF. Serial and parallel
Fortran solvers are distributed in VTMOP [32], which utilizes RSM together with adaptive weightings and
trust-region methods. NOMAD is a parallel-capable C++ library of industrial-grade single- and multiob-
jective direct search methods, which until recently only contained the biobjective solver BiMADS [72]. In
a newer release of NOMAD v4 [88], an implementation of DMulti-MADS was added as well. BoostDFO
[98] is a MATLAB library containing parallel implementations of single- and multiobjective direct search
solvers, including DMS and MultiGLODS. PyMOSO [99] is a Python framework that is targeted primarily
at integer-valued problems.

In recent years several Bayesian optimization libraries and frameworks have emerged, supporting MBO.
The Python library Dragonfly [6], was designed for solving neural architecture search problems but can
be applied to generic MBO problems. Perhaps most relevant to our goals in this paper is the BoTorch
[55] framework for implementing and deploying parallel, production-ready, generic Bayesian optimization
(including multiobjective) algorithms while layering over the automatic differentiation PyTorch framework
[100].

To summarize this section, we present a list of the solvers and libraries discussed thus far in Table 1.
This table represents the relevance of these libraries in relationship to ParMOO’s design goals. Therefore, we
focus on the features offered by these libraries that relate to Design Goals 1–4 from Section 2.2.6. Notably,
support for domain- and application-specific problem definitions (related to Goal 2) is not shown since, of
the methods listed, only BoTorch and ParMOO support this kind of problem formulation at this time. We
acknowledge that many of these software packages are under active development and may add features in
the future, so we base our classifications by the documented features at the time of this publication.

9

Name Type Language Method Constr. Var. Types Surrogates

NOMAD v4 L C++ MDS yes mixed yes
BoostDFO L Matlab MDS some real yes
BoTorch L Python MBO yes mixed yes
DEAP L Python MOEA yes mixed no

DESDEO L Python any yes real yes
Dragonfly L Python MBO yes mixed yes

jMetal/jMetalPy L Java/Python MOEA yes mixed no
DFO-lib L Fortran/Python/Matlab MDS some real or int no
ParEGO S C MOEA/MBO no real yes
pagmo L C++ MOEA some mixed no

ParMOO L Python MDS/MBO yes mixed yes
PlatEMO L Matlab MOEA some mixed some
Platypus L Python MOEA yes mixed no
pygmo L Python MOEA some mixed no
pymoo L Python MOEA some mixed no

PyMOSO L Python MDS yes int no
SPEA2 S C MOEA no real no
VTMOP S Fortran MDS no real yes

Table 1: General-purpose open-source MOSO software. For each software package, the columns are labeled
as follows: “Type” indicates whether this is an individual solver (S) or library of solvers (L); “Language”
specifies the primary development language; “Method” classifies each software as primarily using MOEA,
MDS, or MBO; “Constr.” indicates whether nonlinear constraints are supported; “Var. Types” indicates
the types of variables supported; and “Surrogates” indicates whether surrogate modeling is used.

3 A Framework for Multiobjective Simulation Optimization

We now outline our framework for solving MOSO problems. In particular, we describe how this framework
addresses the design goals and challenges laid out in Section 2.2.6. The framework is implemented in the
software library ParMOO [15], which can be obtained by following the installation instructions in its online
documentation [101].

3.1 An Object-Oriented Modular Design

Despite the level of complexity necessary to achieve Goal 1, the biggest challenge of this work is maintaining
a usable, maintainable, and extensible API while managing the complexity of these interacting techniques
(Goal 5). To do so, we focus on a modular design, where each module addresses a particular component of
the larger problem through a common interface. The natural paradigm for implementing such a framework
is object-oriented programming (OOP). To this end, we have implemented abstract base classes (ABCs) for
each of the solver components. Referring back to Section 2.1, the four primary ABCs for ParMOO are

• the GlobalSearch class, which abstracts the API for utilizing design-of-experiments and other sampling
techniques;

• the SurrogateFunction class, which abstracts the API for fitting, updating, and evaluating a generic
surrogate function, plus either evaluating the uncertainty function or suggesting model improvement
points, as applicable;

• the AcquisitionFunction class, which abstracts the API for implementing an acquisition function
(including scalarization and indicator functions) and selecting the next iterate (if applicable); and

• the SurrogateOptimizer class, which accepts a scalarized, differentiable or non-differentiable func-
tion and uses an appropriate method to produce the next iterate or (if applicable) call for a model
improvement.

10

To allow users to utilize ParMOO without implementing each of these techniques, we provide a built-in
library of implementations for several standard techniques from each of the categories.

At the center of all of this, the MOOP class stores a potentially complex MOSO problem definition of the
form (4) and coordinates implementations of the ABCs to solve a MOSO problem. This is achieved using
the “builder” design pattern [102]. The MOOP class itself is also highly modular and extensible, with clearly
documented methods for performing both private and public tasks. Developers can easily overwrite certain
functionalities, such as the method that distributes expensive simulation evaluations, in order to adapt to
novel architectures and use cases. In this way, the modular OOP framework also addresses goal 5.

The downside of this approach is that the object-oriented API adds an additional level of complexity,
similar to that of learning a new modeling language, such as JuMP [103] or Pyomo [104]. It also requires users
to become aware of the basic components of a surrogate-based multiobjective solver, in order to correctly
utilize our library of components and framework. Ultimately, this mental overhead is significantly greater
than that required to learn to properly utilize other Python libraries of multiobjective solvers, such as pymoo
[71] and pagmo/pygmo [70]. However, we believe that this approach is a necessary compromise in order to
achieve Goals 1–3 as laid out in Section 2.2.6.

In this way, ParMOO is not comparable to many of the libraries and individual solvers listed in Table 1.
Of these software packages, ParMOO is perhaps most comparable to DEAP [96] and BoTorch [55], which
implement similar frameworks for solving slightly different classes of problems using different classes of
techniques.

3.2 Distinguishing between Simulations, Objectives, and Constraints

The next challenge that we need to address directly is Goal 2, which requires making simulation outputs
and function evaluations visible to the optimization solver, for the problems defined in (3) and (4). Our
key insight here is to manage and model simulation outputs separately from objective values and constraint
penalties. Figure 1 shows how ParMOO treats MOOPs, with a black-box simulation function S mapping
into an intermediate “simulation output space” S, before F maps X × S into the feasible objective space.

X

Feasible design space (X)

S
−→

S

Intermediate simulation space (S)

F
−→

Y

Pareto front

Feasible objective space (Y)

Figure 1: The feasible design space X (left) is mapped into an intermediate simulation output space S
(center) via the black-box simulation S, then to the feasible objective space Y (right) via the algebraic
objective function F.

The abstraction depicted in Figure 1 allows us to handle the problem formulations in (3) and (4). Instead
of applying surrogate modeling to the objectives using a dataset D of design point, objective value pairs,
(e.g., fitting F̂D(xi) ≈ F(xi)) we model surrogates of the intermediate simulation space ŜD(xi) ≈ S(xi)
using a dataset D of design point, simulation output pairs. Then, similarly as in (2), we use a solver to
approximately minimize an acquisition function or scalarization of the surrogate problem

min
x∈B

AD(F(x, ŜD(x)),ΣŜ,D(x)) subject to G(x, ŜD(x)) ≦ 0 (5)

where ΣŜ,D is the uncertainty function for ŜD given D.
In each iteration, the SurrogateOptimizer object has access to the scalarized outputsAD(F(x, ŜD(x)),ΣŜ,D(x)),

the objective function F, and the simulation surrogate ŜD, as well as the constraint violation function G.
This information is sufficient to implement a wide variety of composite-structure-exploiting optimization
solvers.

11

3.3 Managing Complexity through Problem Embeddings

To address Goal 3, we need to handle problems involving continuous, integer-valued, and categorical variables,
as well as nonlinear constraints, without requiring any problem-specific techniques or heavy modification to
the structure outlined in Section 3.1. To maintain usability and maintainability (goal 4), we must be careful
in the techniques that we use.

As discussed in Section 2.2.3, for handling mixed variables, our method of choice is to embed the problem
into a continuous latent space and then solve a relaxation of the problem. ParMOO abstracts this idea by
creating a hidden embedding layer based on built-in or user-provided embedder/extractor functions Ein and
Eout such that Ein(x) : X → [0, 1]ℓ and Eout(Ein(x)) = x; see Figure 2. Upon input, all design variables are
passed through their respective embedders, Ein, and any variables taking on discrete values are relaxed via
the surrogate model. After ParMOO solves the surrogate optimization problem, all candidate design points
are extracted from the latent space back into the original design space via Eout and binned to their nearest
legal values if necessary. ParMOO provides a default embedding for categorical variables, which utilizes a
one-hot encoding, followed by a dimension reduction procedure to eliminate unused dimensions of the latent
space (i.e., two different latent variables representing the same categorical variable cannot both have nonzero
values at the same time). However, this technique is not scalable to a large number of categorical variables.
Therefore, for problems with large numbers of categorical variables, ParMOO also allows users to provide a
custom embedding procedure. For continuous and integer design variables, the default embedding is based
upon a simple rescaling to the range [0, 1].

simulation
(data source)

embedder

optimization solver
(uses normalized
numerical data)

extractor

Figure 2: A depiction of the data flow in ParMOO. The embedder module takes possibly discrete values
from the design space and maps them to a normalized latent space [0, 1]ℓ. The extractor module accepts
candidate designs in the range [0, 1]ℓ from the optimization module, and maps them back into X .

The primary advantage of this approach is that it maintains a level of simplicity in the API and allows
us to focus on continuous optimization techniques regardless of the problem type. In particular, there is no
need to use customized search, surrogate modeling, or optimization techniques for solving mixed-variable
problems (although doing so may improve performance) since the default techniques are designed to operate
on the rescaled latent space. The flexibility to accept a custom embedding tool is also useful for domains
such as molecular engineering, where these tools are available [76]. As previously discussed, for problems
involving large numbers of categorical variables without any domain-specific embedding tools, the default
method may become inefficient and it may be advantageous to take a completely different approach that is
not based on continuous MOSO algorithms.

In order to incorporate a p-dimensional nonlinear constraint function G, we apply a cumulative penalty
function, P (x) = λ

∑p
i=1 max(Gi(x,S(x)), 0) or P (x) = λ

∑p
i=1 max(Gi(x, ŜD(x)), 0), to the surrogate

problem. This penalty is added to all of the objective functions when solving (5). Combining with the
embedder/extractor functions described above, we can reduce a nonlinearly constrained, partially discrete
feasible design space X to a bound-constrained, well-conditioned, continuous MOSO problem

min
x∈[0,1]ℓ

AD(F(Eout(x), ŜD(x)) + λ
∑

max(G(Eout(x), ŜD(x)),0),ΣŜ,D(x)), (6)

12

where the max is taken elementwise. The penalty parameter λ > 0 is progressively increased, on an expo-
nential schedule, whenever the solution to (6) is not expected to be feasible. This is similar to the progressive
barrier approach described in [78], and has been successfully applied with simulation-based constraints in
[5]. This approach has been shown to be effective when the constraints are hard to satisfy [105].

One of the downsides of this approach, is that the penalty function uses constraint violations, which im-
plicitly requires the constraint functions in G to be both relaxable and quantifiable. Therefore, in ParMOO,
only the upper/lower bound constraints on each design variables can be unrelaxable, which is a necessary
compromise to achieve reasonable performance on heavily constrained problems.

3.4 Flexibility and Extensibility to Novel Workflows

Goal 4 was to make our framework flexible enough that it is easy to deploy in a variety of scientific workflows.
Key examples include HPC and wet-lab environments.

To achieve this goal, we have designed ParMOO to issue simulation evaluations exclusively via the
wrapper function MOOP.evaluateSimulation(), which is exclusively called from within the solver rou-
tine MOOP.solve(). In situations where only the simulation command must be changed for integration
with existing workflow technology, this can be achieved by extending the MOOP class and overwriting the
MOOP.evaluateSimulation() method. In other situations, where control over the frequency with which
simulation evaluations are distributed is required (for example, when batching simulation evaluations), the
entire MOOP.solve() method can be overwritten. The latter approach is taken in ParMOO’s libE MOOP

class, which extends the MOOP class and overwrites the solve method to dynamically distribute simulation
evaluations on HPC systems using the libEnsemble library [82, 83]. The libE MOOP class is currently the
recommended method for achieving scalable parallelism with ParMOO.

3.5 The Resulting Framework

Putting everything together, we present our framework for solving MOSO problems as implemented in
ParMOO. In each iteration, ParMOO uses Algorithm 1 to generate the next batch of candidates (implemented
in the MOOP.iterate() method).

To fill in the various components of Algorithm 1, the user must create and fully populate a MOOP object.
When initializing the MOOP, the user must specify a SurrogateOptimizer for suggesting candidates for
solving or iterating upon (6) and a dictionary of hyperparameters. Next, the user must add problem details,
including

• n design variable dictionaries, each specifying a design variable for the problem and (if applicable) a
custom Embedder and Extractor routine;

• s simulation dictionaries, each defining a simulation/data source for the problem, plus the number of
intermediate outputs (mi), the GlobalSearch technique used to sample that simulation’s output space,
and the SurrogateFunction used to model that simulation’s output and either evaluate uncertainties
or perform model improvement iterates;

• o objective dictionaries, each specifying an algebraic function that can be used to calculate the objective
values from the design variables and simulation outputs and (optionally) the gradient of that objective;

• p constraint dictionaries, identical to the objective dictionaries but for the purpose of evaluating relax-
able constraint violations (i.e., the G functions); and

• q acquisition function dictionaries, each specifying an AcquisitionFunction that can be used to
scalarize the problem, where q also determines the batch size for parallel evaluations.

A UML diagram outlining this framework is shown in Figure 3. Note that only the relevant public
methods discussed in this section are shown. In the MOOP class’s implementation, several additional public
and private helper methods are included, as well as additional “setter” methods to facilitate saving, loading,
logging, and checkpointing [101].

13

Algorithm 1: A single iteration of ParMOO’s MOOP.iterate() method

input : k ≥ 0 is the current iterate.
input : q0 ≥ 0 is an initial search budget.
input : q is the batch size, i.e., the number of AcquisitionFunctions.
input : n is the dimension of the design space and ℓ is the dimension of the latent space.
input : Ein : X → [0, 1]ℓ is the cumulative embedder function for all design variables.
input : Eout : [0, 1]

ℓ → X is the extractor function (inverse of Ein).
input : S : X → Rm is the simulation function.
input : F : X × Rm → Ro is the objective function.
input : G : X × Rm → Rp is the constraint function.
input : D(k) is the set of all (x,S(x)) pairs evaluated prior to iteration k.
input : GlobalSearch.search(q0, ℓ) is a procedure that generates a design-of-experiments or

sample of size q0 in [0, 1]ℓ.

input : SurrogateFunction.fit(D) fits the surrogates ŜD : [0, 1]ℓ → Rm, and (if applicable) their
uncertainty function ΣŜ,D : [0, 1]ℓ → Rm.

input : SurrogateFunction.improve(T) produces a model improving step for ŜD in T ⊂ [0, 1]ℓ

(if applicable).

input : {A(i)
D }qi=1 is a set of q AcquisitionFunctions.

input : SurrogateOptimizer.solve(AD, F, G, ŜD, ΣŜ,D, x
(0))) solves (6), iterates toward the

solution to (6) starting from x(0), or calls the SurrogateFunction.improve(T) method
and provides a LTR T .

output: The batch C(k) of candidate design points after iteration k.
1 C(k) ← ∅;
2 if k = 0 then
3 C′ ←GlobalSearch.search(q0, ℓ);
4 foreach y ∈ C′ do
5 C(0) ← C(0) ∪ {Eout(y)};
6 else
7 D′ ← {(Ein(x),S(x)) : for all (x,S(x)) ∈ D(k)};
8 ŜD,ΣŜ,D ← SurrogateFunction.fit(D′);

9 for i← 1 to q do
10 x(0,i) ← argmin(x,S(x))∈D′ AD′(F(x,S(x)),0));

11 y(k,i) ← SurrogateOptimizer.solve(AD′ , F ◦Ein, G ◦Ein, ŜD, ΣŜ,D, x
(0,i));

12 if y(k,i) ̸∈ C(k) then
13 C(k) ← C(k) ∪ {Eout(y

(k,i))};
14 else
15 y′ ← SurrogateFunction.improve([0, 1]ℓ);

16 C(k) ← C(k) ∪ {Eout(y
′)};

17 return C(k);

3.6 Limitations of the Framework

We have endeavored to cover a great number of MOSO algorithms and techniques and make them easily
accessible for a wide variety of applications. While we have succeeded for a wide breadth of algorithms,
our framework is not without limitations. For MOSO algorithms that do not use acquisition functions or
surrogates, as discussed in Section 2.1.1, it would likely be inefficient to implement these in ParMOO’s frame-
work and thus shoehorn their iterations into Algorithm 1. Additionally, as acknowledged in Section 2.2.3,
ParMOO’s framework is fundamentally based upon techniques for continuous, bound-constrained MOSO
and handles mixed variables and nonlinear constraints by reducing these problems to bound-constrained,

14

<<class>> MOOP

SurrogateOptimizer object
hyperparams: dict

list of n design variables
list of s simulations
list of o objectives
list of p constraints

list of q AcquisitionFunction objects
list of s GlobalSearch objects

list of s SurrogateFunction objects
addDesign(*args)

addSimulation(*args)

addObjective(*args)

addConstraint(*args)

addAcquisition(*args)

evaluateSimulation(x, s name)

solve(budget)

getPF()

getSimulationData()

getObjectiveData()

<<dict>> Design Variable
name: str

des type: str

lb/ub: float (for continuous vars)
levels: list (for categorical vars)

embedder/extracter: func (for custom vars)

<<dict>> Simulation
name: str

m: int

sim func: func

search: GlobalSearch

surrogate: SurrogateFunction

hyperparams: dict

<<dict>> Objective
name: str

obj func: func

<<dict>> Constraint
name: str

constraint: func

<<dict>> Acquisition
acquisition: AcquisitionFunction

hyperparams: dict

Figure 3: UML diagram outlining the key dictionaries, components, and methods that make up a MOOP

object and its contents.

continuous MOSO problems. For problems with no continuous variables or unrelaxable constraints, this is
likely not the most effective approach and other frameworks and classes of algorithms may be better suited.

Although MOSO is typically a derivative-free endeavor, we have made efforts to offer limited support for
partial derivative information, since the algebraic functions F and G could be differentiable and ParMOO’s
optimization solvers can use their gradient information when available. However, this can become misleading
in the sense that ParMOO is designed to solve problems involving at least some computationally expensive
black-box simulations. If there is no black-box simulation function involved in the problem definition and if
gradients are available for all components of the objective and constraint definitions, then other approaches
not covered here would likely be more effective.

Finally, it is worth noting that ParMOO is fundamentally a framework, not an algorithm. Therefore, much
of the work in exploiting problem structures and implementing quality algorithms is left to the user. While
ParMOO’s framework and development is mature, the variety of techniques available is still under active
development and not all of the techniques listed in Section 2.1 are available at this time. Careful analysis
and clever algorithms are needed to gain a theoretical advantage when exploiting most problem structures,
although we will show in Section 5 and Section 6 that ParMOO can still gain some clear advantage in most
applications with relatively little work.

4 Performance Summary

In this section we apply a trust-region solver built in ParMOO to a common academic test problem from
the literature in order to assess its parallel scaling. Before doing so, we would like to caution about the
limitations of this study. First, as described in Section 3, ParMOO is a framework and software library for

15

implementing solvers, but not an algorithm in and of itself; there can be significant variations in ParMOO’s
performance depending on the methods used. Second, the focus of this paper and ParMOO’s design is
on achieving performance on real MOSO applications. Since the academic problem used here does not
necessarily reflect a real-world MOSO application, performance on this problem should be understood as
validating that ParMOO achieves reasonable performance on solvable problems, and not that the particular
ParMOO solver described is “better” or “worse” than existing methods. Thus, we have intentionally chosen
a single relatively easy problem from the multiobjective optimization literature, the DTLZ2 problem from
the widely-used DTLZ test suite [106]. We use the variation of this problem with 3 objectives and 10 design
variables. The problem has no constraints, no mixed variables, and no composite structures of the form
shown in Figure 1 to exploit. The simplicity of the problem allows us to focus on the correctness of our
implementation and parallel scaling under generic conditions.

Since the entire DTLZ2 problem is algebraic, we must create an artificial simulation. Therefore, we have
created a wrapper for the DTLZ2 function that turns it into a black-box simulation by creating an artificially
long runtime. This is done by uniformly sampling a runtime between one and three seconds, then waiting
for that amount of time using Python’s built-in time.sleep() function. The objectives (F-functions) are
then identity mappings from this artificial simulation’s three output fields.

As our sample solver, we have created a parallel ParMOO solver for this problem by instantiating
the libE MOOP builder class. The solver has been populated using the TR LBFGSB implementation of the
SurrogateOptimizer to solve a trust-region-constrained surrogate problem with L-BFGS-B; a combination
of the randomized epsilon-constraint scalarization RandomConstraint and fixed-weight weighted sum scalar-
ization FixedWeight for our AcquisitionFunctions; a GaussRBF (Gaussian RBF) SurrogateFunction;
and a Latin hypercube GlobalSearch. By varying the number of AcquisitionFunction objects, we are
able to create variations of this ParMOO solver that will generate batch sizes of 8, 16, and 32 candidate
simulations per iteration. Since ParMOO parallelizes simulation evaluations, this batch size determines the
largest amount of parallelism available in a single iteration.

Since the Latin hypercube sampling and default model-improvement procedures are randomized, we have
performed 5 runs of the above-defined ParMOO solver with different random seeds for each run. We have
solved with each random seed and each batch size serially and with 2-, 4-, and 8-way parallelism during
simulation evaluation with a budget of 1,000 total simulation evaluations.

To validate our results, we have calculated the widely-used hypervolume performance indicator at the
end of each run [31], averaged these values, and compared across runs. For the hypervolume indicator, larger
values are better, with the maximal value being the total volume between the Pareto and a reference point
(in this case, the point (1, 1, 1)). Hypervolume values are notoriously difficult to interpret, so for comparison,
we have also solved DTLZ2 on the same budget using the widely-used NSGA-II implementation in pymoo
[61, 71].

The results of the comparison are shown in Table 2. Even without exploiting any structures, this shows
that ParMOO solver’s performance on DTLZ2 (according to the hypervolume indicator) is consistently
higher than pymoo after 1,000 simulation evaluations, indicating that ParMOO achieves at least reasonable
performance on academic benchmark problems. There is slight variation between the performance of the
ParMOO solvers of different batch sizes, however, we would recommend against drawing conclusions on such
limited data, especially since DTLZ2 is not a particularly representative application for ParMOO.

Method pymoo ParMOO-8 ParMOO-16 ParMOO-32
Hypervolume 0.28 0.33 0.33 0.37

Table 2: Hypervolume indicator for pymoo and ParMOO with batch sizes 8, 16, 32. Larger values are better.

ParMOO does not change Algorithm 1 when running in parallel, it only parallelizes the simulation
evaluations in a batch. Therefore, we have not observed any changes in its convergence (as measured
by the hypervolume indicator) when increasing the number of threads other than minor and uncorrelated
fluctuations due to random number generation. Therefore, if we are able to reduce the walltime to perform
a 1,000 simulation run with any of the above solvers, this marks a distinct parallel advantage. In Figure 4,
we consider the total walltimes when running each ParMOO batch size with increasing number of threads.

16

Note that since the average simulation time is 2 seconds, the expected total walltime when performing 1,000
total simulation evaluations serially would be approximately 2,000 seconds plus any iteration costs incurred
by ParMOO.

� � � �

���

����

����

����

3DU022��

3DU022���

3DU022���

QXPEHU�RI�WKUHDGV

Z
D
OO
WL
P
H
��
V
H
F
R
Q
G
V
�

Figure 4: Walltimes when performing 1,000 1-3 second simulation evaluations in ParMOO (with batch sizes
8, 16, and 32) with increasing number of threads.

As seen in Figure 4, ParMOO iteration computations incur a bit of overhead for this solver configuration
and problem size (note that the single threaded walltime is a bit over 2,000 seconds) but the walltime to
solution decreases proportionally with the number of threads. This parallelism is slightly less than perfect
strong scaling and is limited by the candidate batch size. Still, for most reasonable solver configurations, when
performing 8 simulations in parallel requiring an average 2 seconds per simulation (±1 second variation),
one could expect to perform 1,000 simulations in ParMOO in just under 500 seconds.

5 Case Study: Solving a Multiobjective Inverse Problem

In this section we apply ParMOO to a multiobjective inverse problem, where the goal is to tune the param-
eters of the Fayans energy density functional (EDF) model based on experimental data. This problem is
fully described in [3]. The forward model is expensive to evaluate and not publicly available. Therefore, to
maintain reproducibility of results, we optimize a synthetic problem based on a neural network model that
was trained on the dataset above.

5.1 Background on Fayans EDF Calibration

We now review important aspects of the Fayans EDF calibration. Let Tx : s → t denote the Fayans EDF
model. A single forward evaluation of Tx accepts a normalized parameter vector x ∈ R13 and an input s
and produces a physical observation t. Given 198 observational data pairs (s1, t1), . . . , (s198, t198), the goal
of the Fayans EDF model calibration is to find “good” parameter vectors x⋆ ∈ R13 such that Tx⋆(si) ≈ ti
relative to a given standard error σi > 0 for i = 1, . . . , 198.

In traditional Fayans EDF calibration, it is assumed that all observations have been normalized by the
standard errors σ such that they have equal and independent normalized errors. It is then reasonable to
minimize the χ2 loss across all 198 observations via the single-objective formulation

min
x∈R13

198∑
i=1

(
Tx(si)− ti

σi

)2

. (7)

17

In [3], however, it is noted that the contributions to the χ2 loss may vary across 9 different observa-
tional types. Since the 9-objective formulation is prohibitively expensive to solve, we consider a simplified
three-objective formulation, where related observational types are combined, leaving just three observational
classes. This allows us to define the following multiobjective formulation of the Fayans EDF calibration:

min
x∈R13

Fx,j , j = 1, 2, 3, (8)

where Fx,j =
∑

i∈Φj

(
Tx(si)−ti

σi

)2

and Φ1,Φ2,Φ3 is a partitioning of {1, . . . , 198} based on the three obser-

vational classes described above.
In this section we solve the multiobjective formulation of the Fayans EDF calibration problem (8). In

this problem, evaluation of the forward model for all 198 observations [Tx(s1), . . . , Tx(s198)] is viewed as a
single computationally expensive black box. The three loss functions Fx,j (j = 1, 2, 3) all have a composite
structure, specifically, a sum-of-squares structure.

5.2 The Neural Network Residual Model

For our experiments, since Tx is expensive and we strive for reproducibility, we fit a multilayer perceptron

(MLP) to approximate the standardized residual functions Ri(x) = Tx(si)−ti
σi

, i = 1, . . . , 198. We do this
using a dataset of labeled observations for the residual functions R1(x), . . . , R198(x) for 52,079 distinct
values of x. This dataset was gathered by [3] and, as described in that paper, comes from running multiple
starting design points with several different single-objective solvers on the single-objective formulation of the
problem (7). Therefore, we note that the dataset is not uniformly distributed and has increased density in
the neighborhood of several local solutions to the single-objective problem (7).

The primary challenge when training the MLP used in this section is ensuring that the prediction accuracy
is high for optimal values of the multiobjective problem (8). In particular, large regions of the parameter
space were determined to be unstable for the single-objective formulation, and therefore no observational
data is available. Additionally, within the stable region, for several values of i, the observational data for
Ri(x) could range in magnitude from less than 1 to over 1020. While prediction errors that are greater than
1 in magnitude would be acceptable (and expected) for these large residuals, it is essential for our fidelity
to the original problem that we maintain prediction errors on the order of 10−2 in the neighborhood of the
true solutions.

To handle infeasible regions of the parameter space where no observational data is available, we impose
bound constraints for ParMOO, following the constraints given by [3], shown in Table 3. To handle the
wide range on observational values, we apply a double-logarithmic transformation to large values of Ri(x),
followed by a tanh transformation. Because this collapses huge error values, this transformation ensures
that, during training, the MLP places much higher importance on matching observations where the residual
function Ri(x) has a low score.

For the network architecture, we define an MLP with 13 inputs, 198 outputs, and 2 hidden layers, with
256 nodes per layer. We then apply tanh activation functions for every layer of the network (including the
output layer) and train the network using the transformed data defined above. For validation, we first stratify
the complete observational database by low/high residuals across all three observational classes defined in (8)
and then withhold 5% of the data across all stratifications for our validation set. The network was trained
in keras [107] using 5,000 epochs of RMS-prop. We verify that the trained model obtains low relative error
across all stratified residual ranges in the validation set. Most importantly, after descaling the outputs to
their original ranges, on the bottom stratification where the residuals are lowest in magnitude across all three
observational classes, we obtain a mean absolute error (MAE) of just 0.036 on the validation set, which is
acceptable accuracy for this problem.

In the remainder of this section we use the trained keras model described above as a synthetic represen-
tation of the original Fayans EDF calibration problem.

5.3 Exploiting Structure in ParMOO

The sum-of-squares structure is well studied in the single-objective black-box optimization literature. In
typical software implementations of this strategy [68], special care is taken to ensure that all geometric

18

Variable Name Lower Bound Upper Bound
ρeq 0.146 0.167
E/A -16.21 -15.50
K 137.2 234.4
J 19.5 37.0
L 2.20 69.6
hv
2− 0.0 100.0
as+ 0.418 0.706
hs
∇ 0.0 0.516
κ 0.076 0.216
κ′ -0.892 0.982
fξ
ex -4.62 -4.38

hξ
+ 3.94 4.27

hξ
∇ -0.96 3.66

Table 3: Upper and lower bounds on the stable region for the parameter space for the Fayans EDF model
Tx(s), as reported by [3]. We have access to observational data only in these ranges, and therefore the
trained MLP will be accurate only within these bounds.

conditions on the interpolation nodes hold, thus requiring the algorithm to occasionally take geometry-
improving evaluations and using a sequence of local (trust-region) approximations. However, it has also
been shown that simply modeling this composite structure typically leads to fewer simulation evaluations in
practice [64, 65, 66].

In ParMOO’s built-in LocalGaussRBF surrogate model implementation, the trust-region radius is adap-
tively chosen based on the distance to the (n+1)th nearest neighbor of the current iterate. Then, whenever
the solution to the trust-region-constrained surrogate problem fails to produce a sufficient decrease in the
scalarized objective value, the model-improving step is triggered, which draws a random sample from a
distribution whose variance is highest in directions of low variance in the current simulation dataset. This
approach does not guarantee any asymptotic convergence rate advantage (indeed, such a convergence rate
would be difficult to even define in the multiobjective setting). We will see empirically, however, that simply
modeling R(x) separately from F(x) greatly accelerates the practical convergence of our structure-exploiting
multiobjective solver.

5.4 The ParMOO Fayans EDF Solvers

To demonstrate its ability to utilize parallel function evaluations (as we would need to if we were evaluating
the true Fayans EDF model instead of our synthetic MLP model), we use ParMOO’s libEnsemble interface
to distribute simulation evaluations with a batch size of 10. This is achieved by using 9 epsilon-constraint
acquisition functions that target the solutions to (8) and one fixed weighting that targets the solution to the
single-objective formulation in (7), since it is equivalent to the χ2 loss. To define the problem, we create a
libE MOOP object in ParMOO and add 13 continuous design variables, with names and bounds as given in
Table 3.

To define a structure-exploiting variant as described in the preceding section, we then add a single
simulation function that models all 198 components of our synthetic MLP residual function using LTR
constrained Gaussian radial basis function (RBF) models and initializes its observational database using a
2, 000-point Latin hypercube sample (LHS). We next add three differentiable algebraic objective functions,
which calculate the sum of squares from the simulation outputs across each of the three different observational
classes. Then, to allow ParMOO to focus on interesting regions of the design space where none of the
observational classes result in terrible performance, we add three nonlinear constraints, each enforcing that
the squared residuals in a particular observable class should not exceed 10× its optimal values reported in
[3]. ParMOO then solves the surrogate optimization problems within the LTR using the L-BFGS-B [108]
implementation in SciPy [109].

19

To compare with the performance when the structure is not exploited, as would be the case with other
existing multiobjective software, we define a “black-box” variation of this problem. For the black-box variant,
the 198-output simulation described above was replaced by a 3-output “black-box” simulation, where the
sum of squares has already been computed across all three observational classes. Then, for each objective,
we provide an identity map from each simulation output to each objective. Otherwise, we define the problem
equivalently as with the structured variant.

In both cases, ParMOO is then run for 800 iterations. Since we begin with a 2, 000-point LHS search
and provide a batch size of 10 points per iteration, this results in a total budget of 10,000 simulation
evaluations for each solver. We note that for a typical simulation optimization problem, this budget of
10,000 simulation evaluations is unrealistically large. In fact, because of the complexity of our Gaussian
RBF surrogate models and cost of solving the surrogate optimization problem, for this large a budget our
iteration costs are extremely high. However, it is worth running to such a large simulation budget in order
to understand the solver’s performance in the limit.

Note that because of the complexity of solving the surrogate optimization problem and the nonnegligible
cost of evaluating the keras model, such a solve requires a substantial amount of compute time. To account
for randomness in the LHS searches and weight initializations, we perform 5 runs of each solver and average
the performance.

For reproducibility, this entire experimental setup, including the trained MLP that was used as a syn-
thetic problem representation, is available at https://github.com/parmoo/parmoo-solver-farm/tree/

main/fayans-model-calibration-2022. Note that for ease of use and compatibility reasons, we have
transferred our keras model’s weights into an equivalent torch model [100], and this is reflected in the
GitHub repository.

5.5 Results

The results of solving (8) based on the keras/torch residual model are presented here. In order to account
for variability resulting from randomness in the initial design-of-experiments, all performance results have
been averaged across five random seeds. First, borrowing the metric used in [3], we present the χ2 loss
across all observable classes in Figure 5. Note that for χ2 loss, small values are better. Next, to estimate the
multiobjective performance of our methods, we present a rescaling of the hypervolume performance indicator
in Figure 6. For the hypervolume indicator, large values are better.

Note that the hypervolume indicator is extremely sensitive to problem scaling and the choice of Nadir
point, so its raw values are difficult to interpret. In an effort to normalize values, we present the improve-
ment in hypervolume over that of the initial 2,000-point LHS design, as a percentage of the hypervolume
dominated by that original design. Even after this normalization, however, the absolute value of the hyper-
volume improvement is still difficult to interpret since it is still influenced by the total hypervolume between
the true Pareto front and Nadir point. In Figure 6 we see less than a 0.7% increase in total hypervolume.
This is because our Nadir point is determined by the lower-bound constraints that ParMOO enforced on
the range of interesting values, which were intentionally set to be overly pessimistic. However, the hyper-
volume improvements of the two methods relative to each other can still be taken as an indicator of relative
performance.

For both the χ2 loss and hypervolume improvement, the structured solver converges considerably faster
than does the black-box solver. With respect to the χ2 loss, in just 200 iterations (4,000 simulation evalua-
tions) the structured solver achieves better performance than the black-box solver will in all 800 iterations
(10,000 simulation evaluations). This result is to be expected: since one of our acquisition functions specif-
ically targets this solution with fixed scalarization weights, ParMOO behaves similarly to how a structure-
exploiting single-objective solver would for this performance metric.

With respect to the percent hypervolume improvement (a true multiobjective performance metric), the
ParMOO’s structured solver also achieves significantly improved performance. However, the convergence
appears to be slightly slower than for the χ2 loss. This is to be expected since solving the full multiob-
jective problem is considerably harder than solving a single scalarization. However, especially for limited
computational budgets, the performance of the structured solver is still dramatically improved.

20

https://github.com/parmoo/parmoo-solver-farm/tree/main/fayans-model-calibration-2022
https://github.com/parmoo/parmoo-solver-farm/tree/main/fayans-model-calibration-2022

� ��� ��� ��� ���

��

��

��

VWUXFWXUHG

EODFNER[

LWHUDWLRQ

Figure 5: Iteration vs. χ2 loss when solving the Fayans EDF calibration with ParMOO, exploiting the sum-
of-squares structure (structured) and with a standard (black-box) approach. The total simulations used by
the end of iteration k are calculated as 2000 + 10k.

� ��� ��� ���

�

���

���

���

VWUXFWXUHG

EODFNER[

LWHUDWLRQ

�
�L
Q
F
UH
D
V
H
�L
Q
�K
\
S
H
UY
R
OX
P
H

Figure 6: Iteration vs. percentage hypervolume improvement when solving the Fayans EDF calibration with
ParMOO, exploiting the sum-of-squares structure (structured) and with a standard (black-box) approach.
The total simulations used by the end of iteration k are calculated as 2000 + 10k.

6 Case Study: A Multiobjective Chemical Design

To demonstrate ParMOO’s effectiveness with heterogeneous objectives and flexibility to support diverse
scientific workflows, in this section we apply ParMOO to solve a materials engineering problem. Here, two
of the three objectives are derived from a continuous-flow chemistry experiment that is conducted in a
wet-lab environment, while the third objective is algebraic. As in Section 5, to make our results open and
reproducible, in this section we use a nonlinear model of the chemical response surface, based on real-world

21

data collected using nuclear magnetic resonance (NMR) spectroscopy on the solutions from a continuous-flow
reactor (CFR).

6.1 Background on CFR Material Design

In material manufacturing applications, our goal is to propose a technique for chemical manufacturing that
can be used to produce a desired material with high purity at scale. In particular, in this application
we are manufacturing the electrolyte 2,2,2-trifluoroethyl methyl carbonate (TFMC) by mixing one of two
predetermined potential solvents with one of two predetermined potential bases. Note that for confidentiality
reasons, we do not include the true names of these potential solvents and bases in this section; they are simply
labeled as S1, S2 and B1, B2, respectively. This does not affect the reproducibility of our results since they
are also labeled as such in the nonlinear model that we used to represent the problem in this section.

Our goal is to find an optimal pairing of solvents and bases and conditions (such as reaction time,
equivalence ratio, and temperature) for producing a pure solution of TFMC in a CFR. However, in addition
to producing a pure solution, we want to be able to use short reaction times, so that we can produce large
quantities of TFMC at scale. We expect that this will require us to use higher temperatures, which could
activate a side reaction and produce an unwanted byproduct, thereby reducing the purity.

6.2 The Chemical Response Surface Model

In the context of ParMOO, this problem has three continuous design variables and two categorical design
variables. These variable names and their ranges/potential values are given in Table 4. The response values
of interest are the integrals of TFMC and byproduct production values over a fixed-length time window, as
measured by using NMR spectroscopy.

Variable Name Var. Type Lower Bound Upper Bound Legal Vals.
temperature (T) continuous 35 C 150 C N/A

reaction time (RT) continuous 60 sec 300 sec N/A
equiv. ratio (EQR) continuous 0.8 1.5 N/A

solvent categorical N/A N/A S1,S2
base categorical N/A N/A B1,B2

Table 4: Variable types, bounds, and legal values for the CFR material optimization problem discussed in
this section. Note that continuous variables have bounds, while categorical variables have legal values.

Since we cannot provide access to the CFR for our experiments, in this section we use a nonlinear response
surface representing the physical continuous-flow chemistry experiment. These models were fit by using real-
world data that was collected by providing a physical CFR/NMR setup as a simulation that ParMOO could
query in closed loop. To do so, ParMOO’s extensible API was layered over the MDML tool [12], which
uses an Apache kafka backend to distribute requests for experiment evaluations to the CFR and collects and
returns NMR results directly to an online database that ParMOO can query for simulation results. For more
information on how this data was collected, see [110], which describes the collection of a smaller dataset by
using an identical experimental setup.

After a budget of 62 experiments, ParMOO had converged on several approximate solutions to the real-
world problem, and it was no longer economically viable to continue the real-world experiment since the cost
of real-world materials is nonnegligible. The resulting experimental database of design point/integral-value
pairs was used in this section to fit the nonlinear models described above. Since this dataset is relatively
sparse in the 5-dimensional input space, special care was taken to ensure that the resulting model does not
exhibit non-physical behaviors. In particular, to verify our model, we have ensured that both of our response
surfaces

• approximate the underlying data with low MAE, particularly for near-optimal design points;

• do not take on negative values anywhere in the feasible design space, which would be physically
impossible since the outputs represent time integrals of material production;

22

• do not have a sum that exceeds the total amount of solvent and base provided for any inputs in the
design space; and

• do not take unexpected maxima/minima along the boundaries of the design space, which could be an
artifact of a lack of data in those regions, allowing our model to overextrapolate.

To achieve these criteria, we hand-crafted a small number of physically meaningful nonlinear terms for
our response surface based on the expected chemistry of the reaction. We then fit the coefficients of these
terms to each of the two integrals, by using a combination of generalized linear regression with scikit-learn

[111]. The resulting MAE was found to be within the acceptable ranges. Using hyperparameter tuning with
the Powell solver from scipy.optimize.minimize [109], we were also able to guarantee that the individual
global minima for each model was nonnegative and the sum of the global maxima was within the acceptable
range. We then verified that the individual minima and maxima for each model were located in acceptable
regions of the design space, which agree with our physical intuition and empirical data.

In the remainder of this section we use these trained response surface models as the true chemical response
surfaces for both the TFMC and byproduct integrals.

6.3 Heterogeneous Problem Structure

In this problems, two of the three objectives are the result of a true black-box experiment, which must be
carried out in a wet-lab environment using real materials and with an extremely restrictive budget. However,
the third objective represents the reaction time, which is one of the directly controllable inputs. Therefore,
ParMOO is able to directly control this output, and is able to exploit this ability to accelerate its practical
convergence.

6.4 The ParMOO CFR Material Design Solver

To define the problem, we provide ParMOO with the five design variables shown from Table 4, with their
respective variable types and bounds/values. To handle the two categorical variables, we use ParMOO’s
default categorical variable embedder, which embeds the four distinct combinations of categorical variables
into a three-dimensional continuous latent space. Combined with the three continuous design variables, this
results in a six-dimensional effective optimization space.

For the structured variation of the problem, ParMOO is provided with the pretrained nonlinear model
of the chemical response surface, described in Section 6.2. ParMOO is configured to treat this as a single
simulation with two outputs, using a Latin hypercube sample (LHS) with 50 evaluations to produce the
initial database and Gaussian RBFs for surrogate modeling. Next, ParMOO is given three objectives, two
of which are identity mappings from the simulation outputs and the third of which is an identity mapping
from the reaction time design variable. Then, two epsilon-constraint functions and one fixed-weighting are
added, resulting in a batch size of three simulation evaluations per iteration.

For comparison and to demonstrate the advantage in exploiting the heterogeneous problem structure,
we also provide an identical implementation of ParMOO for this problem, where the third “reaction time”
objective is provided to ParMOO as a third black-box simulation output. This results in ParMOO modeling
the third output as a black-box function and ignoring the heterogeneous structure, as would occur when
using most other off-the-shelf multiobjective black-box optimization solvers. All other settings are identical
as in the structured variation defined above.

One of the critical challenges of performing automatic experimentation in the context of material manu-
facturing is the cost of raw materials and performing real-world experiments. Although we do not have these
costs for our computational model of the material response surface, we have run ParMOO with a restrictive
budget of just a 50-point initial design followed by 30 iterations with 3 acquisition functions (140 total ex-
periments). By exploiting the heterogeneous problem structure, we hope to still achieve good performance
(especially for our cheap objective) with this limited budget.

The response surface model described above and the code for reproducing the experiments presented here
are given at https://github.com/parmoo/parmoo-solver-farm/tree/main/cfr-material-design-2022.
The results are presented in the next section.

23

https://github.com/parmoo/parmoo-solver-farm/tree/main/cfr-material-design-2022

6.5 Results

The results of tuning manufacturing conditions based on our chemical response surface are presented here.
Again, all performance results have been averaged across 5 unique random seeds.

First, to assess our performance with respect to our one cheap objective, we present the average minimum
observed reaction times (in seconds) subject to a 75% purity constraint in Figure 7. Note that for these
reaction times, small values are better. Next, as in Section 5.5, we present the improvement in hypervolume
as a proportion of the gap between initial hypervolume and total possible hypervolume (with respect to the
ideal point) in Figure 8. Again, for the hypervolume improvement, large values are better.

� �� �� ��

��

��

��

��

���

���
VWUXFWXUHG

EODFNER[

LWHUDWLRQ

V
H
F
R
Q
G
V
�I
R
U
�!
�
�
�
�F
R
Q
Y
H
U
V
LR
Q

Figure 7: Iteration vs. minimum reaction time that achieves at least a 75% conversion rate when solving the
CFR chemical manufacturing problem with ParMOO, exploiting the heterogeneous structure (structured)
and with a standard (black-box) approach. The total simulations used by the end of iteration k are calculated
as 50 + 3k.

As in Section 5.5, the structured solver greatly outperforms the black-box approach by both metrics. We
note that although the time required to achieve over 75% conversion is a physically meaningful convergence
metric and demonstrative of ParMOO’s ability to directly control the reaction time (the algebraic objective),
this time we did not provide any fixed scalarization that would explicitly target this solution, reducing to a
single-objective problem.

We note that ParMOO’s structure-exploiting solver achieves excellent performance on both this problem
and the Fayans problem from Section 5.5 with little additional work from the user, even though these
structures are considerably different.

7 Discussion and Continued Work

In this paper we have described the design principles behind the design of the MOSO library ParMOO. To
summarize, our five main design goals are

1. customizability of solvers;

2. exploitation of composite structures in MOSO problem formulation;

3. flexibility in support for a wide variety of design spaces;

4. ease of use in scientific workflows; and

24

� �� �� ��

�

�

��

��
VWUXFWXUHG

EODFNER[

LWHUDWLRQ

�
�L
Q
F
UH
D
V
H
�L
Q
�K
\
S
H
UY
R
OX
P
H

Figure 8: Iteration vs. percentage hypervolume improvement when solving the CFR chemical manufacturing
problem with ParMOO, exploiting the heterogeneous structure (structured) and with a standard (black-box)
approach. The total simulations used by the end of iteration k are calculated as 50 + 3k.

5. usability, extensibility, and maintainability as an open-source software package.

We have achieved these goals through an object-oriented design that is highly modularized, utilizes an
intermediate simulation output space, and embeds complex problems into a continuous latent input space.
This framework has been demonstrated on open-source models of two real-world problems. These models
and the code for reproducing our results have been shared through our parmoo-solver-farm repository, and
a snapshot of all related code at the time of publication is available in [112].

Although these two problems exhibit completely different structures, ParMOO is able to effectively
exploit the structure in both cases and to considerably improve the convergence relative to that of a black-
box approach that does not exploit known structure. Notably, defining such a structure-exploiting solver
requires little additional work or customization from the user.

ACKNOWLEDGMENTS

We are grateful to Jared O’Neal, Witold Nazarewicz, and Paul-Gerhardt Reinhard for providing the Fayans
functional data and to Joseph Libera, Jakob Elias, Santanu Chaudhuri, and Trevor Dzwiniel for their re-
spective roles in the collection of the CFR materials data. We are also grateful to Jeff Larson, John-Luke
Navarro, and Steve Hudson for their advice on best practices in scientific software development and support
in our usage of libEnsemble. We are grateful to four anonymous reviewers for their comments, which have
improved the presentation of this work.

This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research’s SciDAC program under Contract Nos. DE-AC02-05CH11231 and DE-AC02-
06CH11357.

References

[1] J. Sobieszczanski-Sobieski, A. Morris, M. Van Tooren, Multidisciplinary Design Optimization Sup-
ported by Knowledge Based Engineering, John Wiley & Sons, Ltd., Chichester, UK, 2015.

25

[2] W. Zhao, R. K. Kapania, Multiobjective optimization of composite flying-wings with SpaRibs and
multiple control surfaces, in: Proc. 2018 Multidisciplinary Analysis and Optimization Conference,
AIAA, 2018, p. 3424. doi:10.2514/6.2018-3424.

[3] R. Bollapragada, M. Menickelly, W. Nazarewicz, J. O’Neal, P.-G. Reinhard, S. M. Wild, Optimization
and supervised machine learning methods for fitting numerical physics models without derivatives,
Journal of Physics G: Nuclear and Particle Physics 48 (2020) 024001. doi:10.1088/1361-6471/abd009.

[4] T. H. Chang, J. Larson, L. T. Watson, Multiobjective optimization of the variability of the high-
performance LINPACK solver, in: Proc. 2020 Winter Simulation Conference (WSC 2020), IEEE,
2020, pp. 3081–3092. doi:10.1109/WSC48552.2020.9383875.

[5] N. Neveu, T. H. Chang, P. Franz, S. Hudson, J. Larson, Comparison of multiobjective optimization
methods for the LCLS-II photoinjector, Computer Physics Communication 283 (2023). doi:10.1016/
j.cpc.2022.108566.

[6] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider, B. Poczos, E. P.
Xing, Tuning hyperparameters without grad students: Scalable and robust Bayesian optimisation with
Dragonfly, Journal of Machine Learning Research 21 (2020) 1–27. URL: http://jmlr.org/papers/
v21/18-223.html.

[7] F. Karl, T. Pielok, J. Moosbauer, F. Pfisterer, S. Coors, M. Binder, L. Schneider, J. Thomas, J. Richter,
M. Lang, E. C. Garrido-Merchán, J. Branke, B. Bischl, Multi-Objective Hyperparameter Optimization
in Machine Learning – An Overview, Technical Report 4, 2023. doi:10.1145/3610536.

[8] M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok, K. Roy, Bayesian multi-objective
hyperparameter optimization for accurate, fast, and efficient neural network accelerator design, Fron-
tiers in Neuroscience 14 (2020) Article No. 667. doi:10.3389/fnins.2020.00667.

[9] A. M. Schweidtmann, A. D. Clayton, N. Holmes, E. Bradford, R. A. Bourne, A. A. Lapkin, Machine
learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple
objectives, Chemical Engineering Journal 352 (2018) 277–282. doi:10.1016/j.cej.2018.07.031.

[10] B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams,
A. G. Doyle, Bayesian reaction optimization as a tool for chemical synthesis, Nature 590 (2021) 89–96.
doi:10.1038/s41586-021-03213-y.

[11] M. Ehrgott, Multicriteria Optimization, Lecture Notes in Economics and Mathematical Systems Series,
2 ed., Springer Verlag, Heidelberg, Germany, 2005. doi:10.1007/3-540-27659-9.

[12] J. R. Elias, R. Chard, J. A. Libera, I. T. Foster, S. Chaudhuri, The manufacturing data and machine
learning platform: Enabling real-time monitoring and control of scientific experiments via IoT, 2020
IEEE 6th World Forum on Internet of Things (WF-IoT) (2020) 1–2. doi:10.1109/WF-IoT48130.2020.
9221078.

[13] R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response Surface Methodology: Process and
Design Optimization Using Designed Experiments, 4 ed., John Wiley & Sons, Inc., Hoboken, NJ, USA,
2016.

[14] C. Audet, W. Hare, Derivative-free and blackbox optimization, Springer Series in Operations Re-
search and Financial Engineering, Springer International, Charm, Switzerland, 2017. doi:10.1007/
978-3-319-68913-5.

[15] T. H. Chang, S. M. Wild, ParMOO: A Python library for parallel multiobjective simulation optimiza-
tion, Journal of Open Source Software 8 (2023) 4468. doi:10.21105/joss.04468.

[16] T. R. Marler, J. S. Arora, Survey of multi-objective optimization methods for engineering, Structural
and Multidisciplinary Optimization 26 (2004) 369–395. doi:10.1007/s00158-003-0368-6.

26

http://dx.doi.org/10.2514/6.2018-3424
http://dx.doi.org/10.1088/1361-6471/abd009
http://dx.doi.org/10.1109/WSC48552.2020.9383875
http://dx.doi.org/10.1016/j.cpc.2022.108566
http://dx.doi.org/10.1016/j.cpc.2022.108566
http://jmlr.org/papers/v21/18-223.html
http://jmlr.org/papers/v21/18-223.html
http://dx.doi.org/10.1145/3610536
http://dx.doi.org/10.3389/fnins.2020.00667
http://dx.doi.org/10.1016/j.cej.2018.07.031
http://dx.doi.org/10.1038/s41586-021-03213-y
http://dx.doi.org/10.1007/3-540-27659-9
http://dx.doi.org/10.1109/WF-IoT48130.2020.9221078
http://dx.doi.org/10.1109/WF-IoT48130.2020.9221078
http://dx.doi.org/10.1007/978-3-319-68913-5
http://dx.doi.org/10.1007/978-3-319-68913-5
http://dx.doi.org/10.21105/joss.04468
http://dx.doi.org/10.1007/s00158-003-0368-6

[17] S. R. Hunter, E. A. Applegate, V. Arora, B. Chong, An introduction to multiobjective simulation
optimization, ACM Transactions on Modeling and Computer Simulation 29 (2019) 1–36. doi:10.
1145/3299872.

[18] G. Eichfelder, Scalarizations for adaptively solving multi-objective optimization problems, Computa-
tional Optimization and Applications 44 (2009) 249–273. doi:10.1007/s10589-007-9155-4.

[19] A. P. Wierzbicki, Reference point approaches, in: T. Gal, T. J. Stewart, T. Hanne (Eds.), Multicriteria
Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, Springer US,
Boston, MA, 1999, pp. 237–275. doi:10.1007/978-1-4615-5025-9_9.

[20] B. Dandurand, M. M. Wiecek, Quadratic scalarization for decomposed multiobjective optimization,
OR Spectrum 38 (2016) 1071–1096. doi:10.1007/s00291-016-0453-z.

[21] R. E. Steuer, E.-U. Choo, An interactive weighted tchebycheff procedure for multiple objective pro-
gramming, Mathematical programming 26 (1983) 326–344. doi:10.1007/BF02591870.

[22] I. Das, J. E. Dennis, Normal-boundary intersection: A new method for generating the Pareto surface
in nonlinear multicriteria optimization problems, SIAM Journal on Optimization 8 (1998) 631–657.
doi:10.1137/S1052623496307510.

[23] S. Deshpande, L. T. Watson, R. A. Canfield, Multiobjective optimization using an adaptive weight-
ing scheme, Optimization Methods and Software 31 (2016) 110–133. doi:10.1080/10556788.2015.
1048861.

[24] M. Laumanns, L. Thiele, E. Zitzler, An efficient, adaptive parameter variation scheme for metaheuris-
tics based on the epsilon-constraint method, European Journal of Operational Research 169 (2006)
932–942. doi:10.1016/j.ejor.2004.08.029.

[25] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part I: solving problems with box constraints, IEEE Transactions on
Evolutionary Computation 18 (2013) 577–601. doi:10.1109/TEVC.2013.2281535.

[26] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based
nondominated sorting approach, part II: Handling constraints and extending to an adaptive ap-
proach, IEEE Transactions on Evolutionary Computation 18 (2013) 602–622. doi:10.1109/TEVC.
2013.2281534.

[27] C. Audet, G. Savard, W. Zghal, A mesh adaptive direct search algorithm for multiobjective optimiza-
tion, European Journal of Operational Research 204 (2010) 545–556. doi:10.1016/j.ejor.2009.11.
010.

[28] J. Knowles, ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multi-
objective optimization problems, IEEE Transactions on Evolutionary Computation 8 (2006) 1341–66.
doi:10.1109/tevc.2005.851274.

[29] G. Cocchi, G. Liuzzi, A. Papini, M. Sciandrone, An implicit filtering algorithm for derivative-free
multiobjective optimization with box constraints, Computational Optimization and Applications 69
(2018) 267–296. doi:10.1007/s10589-017-9953-2.

[30] G. Liuzzi, S. Lucidi, F. Rinaldi, A derivative-free approach to constrained multiobjective nonsmooth
optimization, SIAM Journal on Optimization 26 (2016) 2744–2774. doi:10.1137/15M1037810.

[31] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators in multiobjective
optimization, European Journal of Operational Research 292 (2021) 397–422. doi:10.1016/j.ejor.
2020.11.016.

[32] T. H. Chang, L. T. Watson, J. Larson, N. Neveu, W. I. Thacker, S. Deshpande, T. C. H. Lux, Algorithm
1028: VTMOP: Solver for blackbox multiobjective optimization problems, ACM Transactions on
Mathematical Software 48 (2022) Article No. 36. doi:10.1145/3529258.

27

http://dx.doi.org/10.1145/3299872
http://dx.doi.org/10.1145/3299872
http://dx.doi.org/10.1007/s10589-007-9155-4
http://dx.doi.org/10.1007/978-1-4615-5025-9_9
http://dx.doi.org/10.1007/s00291-016-0453-z
http://dx.doi.org/10.1007/BF02591870
http://dx.doi.org/10.1137/S1052623496307510
http://dx.doi.org/10.1080/10556788.2015.1048861
http://dx.doi.org/10.1080/10556788.2015.1048861
http://dx.doi.org/10.1016/j.ejor.2004.08.029
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.1109/TEVC.2013.2281534
http://dx.doi.org/10.1016/j.ejor.2009.11.010
http://dx.doi.org/10.1016/j.ejor.2009.11.010
http://dx.doi.org/10.1109/tevc.2005.851274
http://dx.doi.org/10.1007/s10589-017-9953-2
http://dx.doi.org/10.1137/15M1037810
http://dx.doi.org/10.1016/j.ejor.2020.11.016
http://dx.doi.org/10.1016/j.ejor.2020.11.016
http://dx.doi.org/10.1145/3529258

[33] K. Bringmann, T. Friedrich, Approximation quality of the hypervolume indicator, Artificial Intelligence
195 (2013) 265–290. doi:10.1016/j.artint.2012.09.005.

[34] K. Shang, H. Ishibuchi, L. He, L. M. Pang, A survey on the hypervolume indicator in evolutionary
multiobjective optimization, IEEE Transactions on Evolutionary Computation 25 (2020) 1–20. doi:10.
1109/TEVC.2020.3013290.

[35] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb, A simulated annealing-based multiobjective opti-
mization algorithm: AMOSA, IEEE Transactions on Evolutionary Computation 12 (2008) 269–283.
doi:10.1109/TEVC.2007.900837.

[36] J. Larson, M. Menickelly, S. M. Wild, Derivative-free optimization methods, Acta Numerica 28 (2019)
287–404. doi:10.1017/S0962492919000060.

[37] E. Bradford, A. M. Schweidtmann, A. Lapkin, Efficient multiobjective optimization employing Gaus-
sian processes, spectral sampling and a genetic algorithm, Journal of Global Optimization 71 (2018)
407–438. doi:10.1007/s10898-018-0609-2.

[38] J. Müller, SOCEMO: Surrogate optimization of computationally expensive multiobjective problems,
INFORMS Journal on Computing 29 (2017) 581–596. doi:10.1287/ijoc.2017.0749.

[39] M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, J. R. Martins, A Python surrogate
modeling framework with derivatives, Advances in Engineering Software 135 (2019) 102–662. doi:10.
1016/j.advengsoft.2019.03.005.

[40] E. W. Cheney, W. A. Light, A Course in Approximation Theory, Graduate Studies in Mathematics,
AMS, Providence, RI, USA, 2009.

[41] A. R. Conn, K. Scheinberg, L. N. Vicente, Geometry of interpolation sets in derivative free optimization,
Mathematical programming 111 (2008) 141–172. doi:10.1007/s10107-006-0073-5.

[42] A. R. Conn, K. Scheinberg, L. N. Vicente, Introduction to derivative-free optimization, MPS-SIAM
Series on Optimization, SIAM, Philadelphia, PA, USA, 2009. doi:10.1137/1.9780898718768.

[43] J. Thomann, G. Eichfelder, A trust-region algorithm for heterogeneous multiobjective optimization,
SIAM Journal on Optimization 29 (2019) 1017–1047. doi:10.1137/18m1173277.

[44] M. Berkemeier, S. Peitz, Derivative-free multiobjective trust region descent method using radial basis
function surrogate models, Mathematical and Computational Applications 26 (2021) 31. doi:10.3390/
mca26020031.

[45] J.-H. Ryu, S. Kim, A derivative-free trust-region method for biobjective optimization, SIAM Journal
on Optimization 24 (2014) 334–362. doi:10.1137/120864738.

[46] T. M. Ragonneau, Z. Zhang, PDFO: Cross-platform interfaces for Powell’s derivative-free optimization
solvers, 2021. URL: https://github.com/pdfo/pdfo.

[47] J. Larson, S. M. Wild, Asynchronously parallel optimization solver for finding multiple minima,
Mathematical Programming Computation 10 (2018) 303–332. doi:10.1007/s12532-017-0131-4.

[48] R. Garnett, Bayesian Optimization, Cambridge University Press, 2023. URL: https://bayesoptbook.
com.

[49] M. Emmerich, K. Yang, A. Deutz, H. Wang, C. M. Fonseca, A multicriteria generalization of Bayesian
global optimization, in: P. M. Pardalos, A. Zhigljavsky, J. Žilinskas (Eds.), Advances in Stochastic and
Deterministic Global Optimization, Springer, 2016, pp. 229–242. doi:10.1007/978-3-319-29975-4.

[50] P. Feliot, J. Bect, E. Vazquez, A Bayesian approach to constrained single- and multi-objective opti-
mization, Journal of Global Optimization 67 (2016) 97–133. doi:10.1007/s10898-016-0427-3.

28

http://dx.doi.org/10.1016/j.artint.2012.09.005
http://dx.doi.org/10.1109/TEVC.2020.3013290
http://dx.doi.org/10.1109/TEVC.2020.3013290
http://dx.doi.org/10.1109/TEVC.2007.900837
http://dx.doi.org/10.1017/S0962492919000060
http://dx.doi.org/10.1007/s10898-018-0609-2
http://dx.doi.org/10.1287/ijoc.2017.0749
http://dx.doi.org/10.1016/j.advengsoft.2019.03.005
http://dx.doi.org/10.1016/j.advengsoft.2019.03.005
http://dx.doi.org/10.1007/s10107-006-0073-5
http://dx.doi.org/10.1137/1.9780898718768
http://dx.doi.org/10.1137/18m1173277
http://dx.doi.org/10.3390/mca26020031
http://dx.doi.org/10.3390/mca26020031
http://dx.doi.org/10.1137/120864738
https://github.com/pdfo/pdfo
http://dx.doi.org/10.1007/s12532-017-0131-4
https://bayesoptbook.com
https://bayesoptbook.com
http://dx.doi.org/10.1007/978-3-319-29975-4
http://dx.doi.org/10.1007/s10898-016-0427-3

[51] S. Daulton, M. Balandat, E. Bakshy, Differentiable expected hypervolume improvement for par-
allel multi-objective Bayesian optimization, in: H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, H. Lin (Eds.), Advances in Neural Information Processing Systems, volume 33, Curran As-
sociates, Inc., 2020, pp. 9851–9864. URL: https://proceedings.neurips.cc/paper/2020/file/

6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf.

[52] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, M. Poloczek, Scalable global
optimization via local bayesian optimization, Advances in Neural Information Pro-
cessing Systems 32 (2019) 1–12. URL: https://proceedings.neurips.cc/paper/2019/file/

6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf.

[53] S. S. Garud, I. A. Karimi, M. Kraft, Smart sampling algorithm for surrogate model development,
Computers & Chemical Engineering 96 (2017) 103–114. doi:10.1016/j.compchemeng.2016.10.006.

[54] P. T. Roy, A. B. Owen, M. Balandat, M. Haberland, Quasi-monte carlo methods in python, Journal
of Open Source Software 8 (2023) 5309. doi:10.21105/joss.05309.

[55] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wilson, E. Bakshy, BoTorch: A
framework for efficient Monte-Carlo Bayesian optimization, in: H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, H. Lin (Eds.), Advances in Neural Information Processing Systems, volume 33, Curran As-
sociates, Inc., 2020, pp. 21524–21538. URL: https://proceedings.neurips.cc/paper/2020/file/
f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf.

[56] E. F. Campana, M. Diez, G. Liuzzi, S. Lucidi, R. Pellegrini, V. Piccialli, F. Rinaldi, A. Serani, A multi-
objective DIRECT algorithm for ship hull optimization, Computational Optimization and Applications
71 (2018) 53–72. doi:10.1007/s10589-017-9955-0.

[57] J. Bigeon, S. Le Digabel, L. Salomon, DMulti-MADS: Mesh adaptive direct multisearch for blackbox
multiobjective optimization, Computational Optimization and Applications 79 (2020) 301–338. doi:10.
1007/s10589-021-00272-9.

[58] A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, L. N. Vicente, Direct multisearch for multiobjective
optimization, SIAM Journal on Optimization 21 (2011) 1109–1140. doi:10.1137/10079731x.

[59] A. L. Custódio, J. F. A. Madeira, MultiGLODS: global and local multiobjective optimization using
direct search, Journal of Global Optimization 72 (2018) 323–345. doi:10.1007/s10898-018-0618-1.

[60] A. Abraham, L. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization: Theoretical
Advances and Applications, Advanced Information and Knowledge Processing Series, Springer Verlag,
London, UK, 2005. doi:10.1007/1-84628-137-7.

[61] K. Deb, A. Pratap, S. Agarwel, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2002) 182–197. doi:10.1109/4235.
996017.

[62] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine
learning, Nature Reviews Physics 3 (2021) 422–440. doi:10.1038/s42254-021-00314-5.

[63] E. Pickering, S. Guth, G. E. Karniadakis, T. P. Sapsis, Discovering and forecasting extreme events via
active learning in neural operators, Nature Computational Science 2 (2022) 823–833.

[64] R. Astudillo, P. I. Frazier, Thinking inside the box: a tutorial on grey-box bayesian optimization,
in: Proc. 2021 Winter Simulation Conference (WSC 2021), IEEE, 2021. doi:10.1109/WSC52266.2021.
9715343.

[65] K. A. Khan, J. Larson, S. M. Wild, Manifold sampling for optimization of nonconvex functions that
are piecewise linear compositions of smooth components, SIAM Journal on Optimization 28 (2018)
3001–3024. doi:10.1137/17m114741x.

29

https://proceedings.neurips.cc/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6fec24eac8f18ed793f5eaad3dd7977c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
http://dx.doi.org/10.1016/j.compchemeng.2016.10.006
http://dx.doi.org/10.21105/joss.05309
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f5b1b89d98b7286673128a5fb112cb9a-Paper.pdf
http://dx.doi.org/10.1007/s10589-017-9955-0
http://dx.doi.org/10.1007/s10589-021-00272-9
http://dx.doi.org/10.1007/s10589-021-00272-9
http://dx.doi.org/10.1137/10079731x
http://dx.doi.org/10.1007/s10898-018-0618-1
http://dx.doi.org/10.1007/1-84628-137-7
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1109/WSC52266.2021.9715343
http://dx.doi.org/10.1109/WSC52266.2021.9715343
http://dx.doi.org/10.1137/17m114741x

[66] J. Larson, M. Menickelly, Structure-aware methods for expensive derivative-free nonsmooth com-
posite optimization, Mathematical Programming Computation 16 (2024) 1–36. doi:10.1007/
s12532-023-00245-5.

[67] H. Zhang, A. R. Conn, On the local convergence of a derivative-free algorithm for least-squares
minimization, Computational Optimization and Applications 51 (2012) 481–507. doi:10.1007/
s10589-010-9367-x.

[68] S. M. Wild, Solving derivative-free nonlinear least squares problems with POUNDERS, in: T. Terlaky,
M. F. Anjos, S. Ahmed (Eds.), Advances and Trends in Optimization with Engineering Applications,
SIAM, 2017, pp. 529–540. doi:10.1137/1.9781611974683.ch40.

[69] A. Beńıtez-Hidalgo, A. J. Nebro, J. Garćıa-Nieto, I. Oregi, J. Del Ser, jMetalPy: A Python framework
for multi-objective optimization with metaheuristics, Swarm and Evolutionary Computation 51 (2019)
100598. doi:10.1016/j.swevo.2019.100598.

[70] F. Biscani, D. Izzo, A parallel global multiobjective framework for optimization: pagmo, Journal of
Open Source Software 5 (2020) 2338. doi:10.21105/joss.02338.

[71] J. Blank, K. Deb, pymoo: Multi-objective optimization in Python, IEEE Access 8 (2020) 89497–89509.
doi:10.1109/ACCESS.2020.2990567.

[72] S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm, ACM
Transactions on Mathematical Software 37 (2011) Article No. 44. doi:10.1145/1916461.1916468.

[73] G. Feldman, S. R. Hunter, SCORE allocations for bi-objective ranking and selection, ACM Transac-
tions on Modeling Computer and Simulation 28 (2018). doi:10.1145/3158666.

[74] C. Audet, E. Hallé-Hannan, S. Le Digabel, A general mathematical framework for constrained mixed-
variable blackbox optimization problems with meta and categorical variables, in: Operations Research
Forum, volume 4, Springer, 2023, p. 12. doi:10.1007/s43069-022-00180-6.

[75] P. Saves, R. Lafage, N. Bartoli, Y. Diouane, J. Bussemaker, T. Lefebvre, J. T. Hwang, J. Morlier,
J. R. R. A. Martins, SMT 2.0: A Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed
Variables Gaussian Processes, Technical Report, arXiv preprint, 2023. doi:10.48550/arXiv.2305.
13998.

[76] H. Moriwaki, Y.-S. Tia, N. Kawashita, T. Takagi, Mordred: a molecular descriptor calculator, Journal
of Cheminformatics 10 (2018). doi:10.1186/s13321-018-0258-y.

[77] S. Le Digabel, S. M. Wild, A Taxonomy of Constraints in Black-Box Simulation-Based Optimization,
Technical Report 2, 2024. doi:10.1007/s11081-023-09839-3.

[78] C. Audet, J. E. Dennis, A progressive barrier for derivative-free nonlinear programming, SIAM Journal
on Optimization 20 (2009) 445–472. doi:10.1137/070692662.

[79] R. M. Lewis, V. Torczon, A globally convergent augmented Lagrangian pattern search algorithm for
optimization with general constraints and simple bounds, SIAM Journal on Optimization 12 (2002)
1075–1089. doi:10.1137/S1052623498339727.

[80] G. Cocchi, M. Lapucci, An augmented Lagrangian algorithm for multi-objective optimization, Com-
putational Optimization and Applications 77 (2020) 29–56. doi:10.1007/s10589-020-00204-z.

[81] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster, K. Chard, funcX:
A federated function serving fabric for science, in: Proc. 29th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’20), ACM, 2020, pp. 65–76. doi:10.1145/
3369583.3392683.

[82] S. Hudson, J. Larson, J.-L. Navarro, S. M. Wild, libEnsemble: A complete Python toolkit for dynamic
ensembles of calculations, Technical Report 92, 2023. doi:10.21105/joss.06031.

30

http://dx.doi.org/10.1007/s12532-023-00245-5
http://dx.doi.org/10.1007/s12532-023-00245-5
http://dx.doi.org/10.1007/s10589-010-9367-x
http://dx.doi.org/10.1007/s10589-010-9367-x
http://dx.doi.org/10.1137/1.9781611974683.ch40
http://dx.doi.org/10.1016/j.swevo.2019.100598
http://dx.doi.org/10.21105/joss.02338
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/10.1145/1916461.1916468
http://dx.doi.org/10.1145/3158666
http://dx.doi.org/10.1007/s43069-022-00180-6
http://dx.doi.org/10.48550/arXiv.2305.13998
http://dx.doi.org/10.48550/arXiv.2305.13998
http://dx.doi.org/10.1186/s13321-018-0258-y
http://dx.doi.org/10.1007/s11081-023-09839-3
http://dx.doi.org/10.1137/070692662
http://dx.doi.org/10.1137/S1052623498339727
http://dx.doi.org/10.1007/s10589-020-00204-z
http://dx.doi.org/10.1145/3369583.3392683
http://dx.doi.org/10.1145/3369583.3392683
http://dx.doi.org/10.21105/joss.06031

[83] S. Hudson, J. Larson, J.-L. Navarro, S. M. Wild, libEnsemble: A library to coordinate the concur-
rent evaluation of dynamic ensembles of calculations, IEEE Transactions on Parallel and Distributed
Systems 33 (2022) 977–988. doi:10.1109/tpds.2021.3082815.

[84] R. M. Kolonay, M. Sobolewski, Service oriented computing environment (SORCER) for large
scale, distributed, dynamic fidelity aeroelastic analysis, in: International Forum on Aeroelastic-
ity and Structural Dynamics (IFASD 2011), Optimization, Citeseer, 2011, pp. 26–30. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.656.7539.

[85] T. H. Chang, J. Larson, L. T. Watson, T. C. H. Lux, Managing computationally expensive blackbox
multiobjective optimization problems using libEnsemble, in: Proc. 2020 Spring Simulation Conference
(SpringSim 2020), the 28th High Performance Computing Symposium (HPC ’20), SCS, 2020, p. Article
No. 31. doi:10.22360/SpringSim.2020.HPC.001.

[86] C. Raghunath, T. H. Chang, L. T. Watson, M. Jrad, R. K. Kapania, R. M. Kolonay, Global determin-
istic and stochastic optimization in a service oriented architecture, in: Proc. 2017 Spring Simulation
Conference (SpringSim 2017), the 25th High Performance Computing Symposium (HPC ’17), SCS,
Virginia Beach, VA, USA, 2017, p. Article No. 7. doi:10.22360/springsim.2017.hpc.023.

[87] M. A. Heroux, L. McInnes, D. E. Bernholdt, A. Dubey, E. Gonsiorowski, O. Marques, J. D. Moul-
ton, B. Norris, E. Raybourn, S. Balay, R. A. Bartlett, L. Childers, T. Gamblin, P. Grubel, R. Gupta,
R. Hartman-Baker, J. C. Hill, S. Hudson, C. Junghans, A. Klinvex, R. Milewicz, M. Miller, H. Ah Nam,
J. O’Neal, K. Riley, B. Sims, J. Schuler, B. F. Smith, L. Vernon, G. R. Watson, J. Willenbring,
P. Wolfenbarger, Advancing Scientific Productivity through Better Scientific Software: Developer Pro-
ductivity and Software Sustainability Report, Technical Report ORNL TM-2020 1459 / ECP-U-RPT-
2020-0001, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2020. doi:10.2172/1606662.

[88] C. Audet, S. Le Digabel, V. Rochon Montplaisir, C. Tribes, Algorithm 1027: NOMAD version 4:
Nonlinear optimization with the MADS algorithm, ACM Transactions on Mathematical Software 48
(2022). doi:10.1145/3544489.

[89] S. Mannor, V. Perchet, G. Stoltz, Approachability in unknown games: Online learning meets
multi-objective optimization, in: Proc. 27th Conference on Learning Theory (PMLR), volume 35
of Proceedings of Machine Learning Research, PMLR, Barcelona, Spain, 2014, pp. 339–355. URL:
https://proceedings.mlr.press/v35/mannor14.html.

[90] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M. Reymond, T. Verstraeten,
L. M. Zintgraf, R. Dazeley, F. Heintz, et al., A practical guide to multi-objective reinforcement
learning and planning, Autonomous Agents and Multi-Agent Systems 36 (2022) 1–59. doi:10.1007/
s10458-022-09552-y.

[91] T. P. Sapsis, A. Blanchard, Optimal criteria and their asymptotic form for data selection in data-
driven reduced-order modelling with Gaussian process regression, Philosophical Transactions of the
Royal Society A 380 (2022) 20210197. doi:10.1098/rsta.2021.0197.

[92] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm,
TIK-report 103 (2001). doi:10.3929/ethz-a-004284029.

[93] D. Hadka, Platypus – multiobjective optimization in Python, Technical Report Version 1.0.4, GitHub,
2015. URL: https://platypus.readthedocs.io/en/latest.

[94] Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: A MATLAB platform for evolutionary multi-objective
optimization [educational forum], IEEE Computational Intelligence Magazine 12 (2017) 73–87. doi:10.
1109/MCI.2017.2742868.

[95] J. J. Durillo, A. J. Nebro, jMetal: A Java framework for multi-objective optimization, Advances in
Engineering Software 42 (2011) 760–771. doi:10.1016/j.advengsoft.2011.05.014.

31

http://dx.doi.org/10.1109/tpds.2021.3082815
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.656.7539
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.656.7539
http://dx.doi.org/10.22360/SpringSim.2020.HPC.001
http://dx.doi.org/10.22360/springsim.2017.hpc.023
http://dx.doi.org/10.2172/1606662
http://dx.doi.org/10.1145/3544489
https://proceedings.mlr.press/v35/mannor14.html
http://dx.doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1098/rsta.2021.0197
http://dx.doi.org/10.3929/ethz-a-004284029
https://platypus.readthedocs.io/en/latest
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014

[96] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné ”, DEAP: Evolutionary
algorithms made easy, Journal of Machine Learning Research 13 (2012) 2171–2175. URL: https:
//www.jmlr.org/papers/v13/fortin12a.html.

[97] G. e. a. Liuzzi, Dfo-lib, 2024. URL: https://github.com/DerivativeFreeLibrary.

[98] S. Tavares, C. P. Brás, A. L. Custódio, V. Duarte, P. Medeiros, Parallel strategies for direct multisearch,
Numerical Algorithms 92 (2022) 1757–1788. doi:10.1007/s11075-022-01364-1.

[99] K. Cooper, S. R. Hunter, PyMOSO: Software for multi-objective simulation optimization with R-
PERLE and R-MinRLE, INFORMS Journal on Computing 32 (2020) 1101–1108. doi:10.1287/ijoc.
2019.0902.

[100] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An imperative style, high-
performance deep learning library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 32, Cur-
ran Associates, Inc., 2019, pp. 1–12. URL: https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[101] T. H. Chang, S. M. Wild, H. Dickinson, ParMOO: Python library for parallel multiobjective simulation
optimization, Technical Report Version 0.3.1, Argonne National Laboratory, Lemont, IL, USA, 2023.
URL: https://parmoo.readthedocs.io/en/latest.

[102] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented
software, Addison-Wesley, Reading, MA, USA, 1995.

[103] I. Dunning, J. Huchette, M. Lubin, JuMP: A modeling language for mathematical optimization, SIAM
Review 59 (2017) 295–320. doi:10.1137/15M1020575.

[104] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, J. D. Siirola,
Pyomo – optimization modeling in Python, Springer Optimization and Its Applications, 2 ed., Springer
Cham, Cham, Switzerland, 2017. doi:10.1007/978-3-319-58821-6.

[105] G. Chen, T. H. Chang, J. Power, C. Jing, An integrated multi-physics optimization framework for
particle accelerator design, in: Proc. 2023 Winter Simulation Conference (WSC 2023), Industrial
Applications Track, 2023. doi:10.48550/arXiv.2311.09415.

[106] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems,
in: Proc. 2002 IEEE Congress on Evolutionary Computation (CEC ’02), volume 1, IEEE, 2002, pp.
825–830. doi:10.1109/CEC.2002.1007032.

[107] F. Chollet, et al., Keras, https://keras.io, 2015.

[108] C. Zhu, R. H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization, ACM Transactions on Mathematical Software 23 (1997) 550–560.
doi:10.1145/279232.279236.

[109] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, S. Contributors, SciPy 1.0:
Fundamental algorithms for scientific computing in Python, Nature Methods 17 (2020) 261–272.
doi:10.1038/s41592-019-0686-2.

32

https://www.jmlr.org/papers/v13/fortin12a.html
https://www.jmlr.org/papers/v13/fortin12a.html
https://github.com/DerivativeFreeLibrary
http://dx.doi.org/10.1007/s11075-022-01364-1
http://dx.doi.org/10.1287/ijoc.2019.0902
http://dx.doi.org/10.1287/ijoc.2019.0902
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://parmoo.readthedocs.io/en/latest
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1007/978-3-319-58821-6
http://dx.doi.org/10.48550/arXiv.2311.09415
http://dx.doi.org/10.1109/CEC.2002.1007032
https://keras.io
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1038/s41592-019-0686-2

[110] T. H. Chang, J. R. Elias, S. M. Wild, S. Chaudhuri, J. A. Libera, A framework for fully autonomous
design of materials via multiobjective optimization and active learning: challenges and next steps,
in: 11th Intl. Conf. on Learning Representation (ICLR 2023), Workshop on Machine Learning for
Materials (ML4Materials), 2023, pp. 1–10. URL: https://openreview.net/forum?id=8KJS7RPjMqG,
to appear.

[111] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research 12 (2011) 2825–2830. URL: https://www.jmlr.org/papers/volume12/
pedregosa11a/pedregosa11a.pdf.

[112] T. H. Chang, S. M. Wild, Designing a framework for solving multiobjective simula-
tion optimization problems, 2024. doi:10.1287/ijoc.2023.0250.cd, available for download at
https://github.com/INFORMSJoC/2023.0250.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan

33

https://openreview.net/forum?id=8KJS7RPjMqG
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://dx.doi.org/10.1287/ijoc.2023.0250.cd
http://energy.gov/downloads/doe-public-access-plan

	Introduction and Motivation
	Background and Design Principles
	Fundamental Methods for Solving MOSO Problems
	Other Techniques in MOSO.

	Design Challenges when Building MOSO Solvers
	State-of-the-Art and Domain-Specific Techniques.
	Structured Problem Formulations.
	Changes to the Design Space – Mixed Variables and Constraints.
	Parallel and Other Computing Environments.
	Maintainability and Usability.
	Design Goals.

	Existing MOSO Software

	A Framework for Multiobjective Simulation Optimization
	An Object-Oriented Modular Design
	Distinguishing between Simulations, Objectives, and Constraints
	Managing Complexity through Problem Embeddings
	Flexibility and Extensibility to Novel Workflows
	The Resulting Framework
	Limitations of the Framework

	Performance Summary
	Case Study: Solving a Multiobjective Inverse Problem
	Background on Fayans EDF Calibration
	The Neural Network Residual Model
	Exploiting Structure in ParMOO
	The ParMOO Fayans EDF Solvers
	Results

	Case Study: A Multiobjective Chemical Design
	Background on CFR Material Design
	The Chemical Response Surface Model
	Heterogeneous Problem Structure
	The ParMOO CFR Material Design Solver
	Results

	Discussion and Continued Work

