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ABSTRACT OF THE DISSERTATION
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Professor Ravi Arun Netravali, Co-Chair

Professor Todd D. Millstein, Co-Chair

Recent decades have seen an explosion in the diversity and scale of data analytics tasks. While

data analysis of the late 20th century was characterized by the dominance of relational databases

and highly structured querying languages, demand for less structured and more complex tasks has

resulted in new data analytics frameworks that break with the norms of historical systems.

This growth has come at the cost of breaking with the assumptions that guided automated

optimization in historical systems. Automated optimizations analyze the input program of a system

and extract insights that allow the system to better execute a given task with little to no human

effort. Absent these features, analysts must manually tune data processing frameworks to achieve

reasonable performance, a delicate and time-consuming endeavor.

In this thesis, I argue that automated optimization techniques, such as caching and physical de-

sign, that have long been deployed in relational frameworks remain both relevant and necessary to

achieving sustainable performance in modern systems. Via two projects, each targeting a different

class of analysis tasks, I identify new techniques to bridge the gap between modern data analytics

frameworks and established automated optimization techniques.
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CHAPTER 1

Introduction

Data analytics broadly encompasses any task that seeks to manipulate data, a process that allows

human analysts to explain, understand, or explore diverse types of information. For decades, data

analytics was nearly synonymous in computing with the relational querying model popularized in

the 1970s. One of the driving forces behind the early dominance of the relational model was its

explicit accommodation of automated optimization, which developers quickly realized would be

essential for efficient data analytics in realistic environments [Cod02]. Automated optimizations

analyze the input program, extracting insights that allow the framework to modify its execution to

optimize for performance, resource consumption, or some other desirable goal–all with little to no

programming effort on the part of the human data analyst.

The relational model was designed with the intent of making data processing frameworks

amenable to automated optimization. It introduced the notion of data independence, a principle

that separated the description of data processing tasks from any knowledge of how data was phys-

ically stored. Instead, data analysts could use the abstractions provided by the relational model to

reason logically about the end result of their programs (what to do?) while delegating the com-

plexity of finding an efficient execution plan (how to do it?) to the underlying system. This was

facilitated by declarative languages which implemented a mathematically precise set of operations,

establishing a set of coherent guarantees between the program and execution system: regardless

of how the framework actually executed each operator, it only needed to fulfill the guarantees

enforced by each operator.

The relational model emerged as a standard in part because of how difficult finding an effi-
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cient execution plan is in practice. Seminal efforts towards establishing automated optimization

highlight the inherent complexity of the task: an efficient execution framework needs to generate

a set of potential execution strategies, accurately estimate their cost, and select a reasonably well-

performing plan, all without introducing self-defeating overhead [DDD04,CN97,CN07]. Because

execution strategies and cost estimation both vary depending on not just the individual task and ca-

pabilities of the underlying system, but also the available resources and data size, this work needs

to be repeated when any of these variables change significantly. Absent automated optimization,

it falls to analysts to decide under each of these circumstances how the data processing framework

should best optimize the execution of each input program and write the corresponding code, a

pain-staking, error-prone, and time-consuming endeavor.

In recent years, access to cheap data storage and increased computing power has rapidly ex-

panded, enabling data analysts to capture even larger amounts of data and process it in increasingly

complex and diverse ways. This trend has ushered in a corresponding growth in the ecosystem of

automated data analytics frameworks that facilitate different types of tasks, including those that are

not supported by traditional relational frameworks. Unfortunately, many of these frameworks are

no longer amenable to the automated optimization techniques developed in relational databases for

two principle reasons.

First, to support the growing complexity of data analytic tasks, many of these frameworks

are intended to execute operations that are not supported by declarative languages. Declarative

languages define a set of mathematical operations that establish a crucial contract between the

intended logic of the program and execution strategy of the system. However, if an analyst needs

to perform an operation that is either not defined or not easily expressed by combining these pre-

defined operations, then they must use an auxiliary language, hampering the ability of the execution

system to find efficient execution plans.

Second, automated optimizations are closely tied to the frameworks that implement them. A

fundamental task of automated optimization is to generate a pool of execution strategies and ef-

ficiently search for the a relatively efficient approach; naturally the pool of execution strategies
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depends directly on the capabilities of the underlying system. As data analytics has shifted to in-

clude new modalities of data processing, data processing frameworks likewise must shift to explore

new potential execution strategies.

In this thesis, I argue that existing automated optimization techniques can bridge the gap that

has emerged between application logic and modern data processing frameworks in one of two

ways. They can analyze program and execution context and reconfigure themselves into existing

paradigms, by, e.g mapping application logic into existing declarative operators and re-organizing

their pipelines to mirror their predecessors. Alternatively, they can augment the language capabil-

ities and pool of execution strategies to better reflect modern demands, defining new declarative

operators and corresponding execution strategies to implement those operators. Throughout the

following two projects, we explore both of these methods, porting automated optimization into

frameworks representing two significant trends in modern data processing: distributed execution

and interactive visualizations.

Acorn: Aggressive Caching in Distributed Data Processing Frameworks identifies two

key hurdles common in modern distributed data processing systems that prevent these frameworks

from taking full advantage of aggressive caching techniques. Distributed data processing systems

such as Spark, Pig, and Presto are designed to scale the processing of very large datasets across

multiple computation centers. Programs written in these systems use a mix of the declarative,

relational operators from traditional databases, along with user-defined functions written in general

purpose programming languages. As we show in Chapter 3, both the input languages and execution

pipeline introduce obstacles to effective caching. Acorn demonstrates how simple pipeline re-

organization combined with powerful translation techniques can circumvent enable the automated

and aggressive caching, significantly improving the performance of several common classes of

data analytics tasks.

Jade: Physical Visualization Design is a middleware system that manages the physical data

layout of interactive visualization applications. Interactive visualizations facilitates data analysis

by providing a visual representation of data that users can then inspect for patterns, or modify

3



via interactions that sort, search, filter, and otherwise manipulate the represented data. These ap-

plications have specific performance requirements in order to remain responsive on a timescale

corresponding to human cognition, and developers of interactive visualization applications must

analyze the intended application and build custom execution architectures to meet these perfor-

mance requirements. Jade, described in Chapter 4, provides an automated solution to this, adapt-

ing classical physical design techniques used in relational databases to the unique, domain-specific

requirements of interactive visualizations.

4



CHAPTER 2

Background

Both projects described in the following chapters make frequent discussion of the relational alge-

bra, its most commonly used implementation, Structured Query Language (SQL), and the databases

that execute them. Section 2.1 begins with a basic introduction of the relational algebra and SQL

that can safely be skipped by those with a passing familiarity. Section 2.2 follows this with a

description of execution pipelines and relevant automated optimization techniques found in rela-

tional database management systems, given as grounding for the techniques described in following

chapters.

2.1 The relational model

Prior to the adoption of relational data, information retrieval was graph based. Navigational

databases linked units of data together with pointers, much like modern file structures. Users

who wished to query data would describe how to navigate to the items they wished to retrieve by

following pointers through the data storage unit. The primary drawback of this querying paradigm

was that information retrieval code was closely tied to file storage; if pointers were moved or

broken, then the application logic became obsolete.

The relational model, introduced by Codd in “A Relational Model of Data for Large Shared

Data Banks” pioneered the idea of data independence: by providing an abstraction for the orga-

nization of data that was independent of the underlying file system, application logic separated

information retrieval from information storage. In this abstraction, data is modeled as a set of re-
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Figure 2.1: A simple example of a relational schema, in which the relation Film references records

in the table Director.

lations, also called tables. Each relation has a defined schema that bestows a title and data type

to each column in the table. Consequently, each row (or record) in the table has a well-defined,

uniform structure. Each row may optionally have a unique ID, a primary key. A table can describe

relationships between individual records in another table by using a foreign key to indicate a

unique record in another table; an example of such a set of schemas is shown in Figure 2.1. The

advantage of the relational model, as Codd argued, was that it ”provides a basis for a high level

data language which will yield maximal independence between programs on the one hand and

machine representation and organization of data on the other.” The proposed language has math-

ematical foundations known as the relational algebra, which defines allows operations on one or

more relation. Each operation in the relational algebra is a simple primitive that defines the seman-

tics for performing a single operation. A query in the relational algebra composes these primitives

to specify a series of intended transformations. What follows is an overview of the primitives most

relevant to this thesis.

Select-Project-Join Taken together, Select-Project-Join form the operations in the most

basic set of relational queries, known as SPJ queries.
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Select The select operator, σ has as an argument a predicate that evaluates to true or false. Given

a relation R, it will produce a new relation with the same schema but consisting of the subset of

records for which the predicate evaluated to true. Using the set of relations in Figure 2.1 as a basis,

the selection expression σY ear>2000(Film) will produce a single row:

Title Year Director

The Babadook 2014 2

Project The project operator, π produce a new relation with only the subset of columns spec-

ified by its argument. The projection expression πT itle,Y ear(Film) will, for example, produce the

new relation:

Title Year

Legend 1985

The Babadook 2014

Gladiator 2000

Join Finally, the join ./θ operator takes as input two tables and produces as output the combi-

nation of both tables where the predicate θ is true. For example, the operation Film ./Director=ID

Director would produce the following table:

Title Year Director ID FirstName LastName

Legend 1985 1 1 Ridley Scott

The Babadook 2014 2 2 Jennifer Kent

Gladiator 2000 1 1 Ridley Scott

There are many common extensions to the join operator omitted from this discussion, as it

suffices to be familiar with its most basic form.

Set operations For relations that have identical schemas, set operations are supported in the rela-

tional algebra. The union of two relations, R∪S is a relation containing all non-duplicated records
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in either R or S. The intersection of two relations, R ∩ S is the relation consisting of all records

that appear in both R and S. The difference operation, R S produces a relation with all items in R

that are not in S.

Grouping and Aggregation Grouping and aggregation were added as an extension to the original

relational algebra. Combined with the Select-Project-Join primitives, these operations

form a class of queries commonly referred to as SPJGA queries.

An aggregation expression G, or equivalently λ, specifies one or more functions used to com-

bine multiple records. Common aggregation functions include sum, average, min, and max.

For example, the expression λcount(title)(Film) counts the number of (non-distinct) title entries in

the film table, producing the following table:

count(Title)

3

Aggregation expression may also combine records only if they share a value in a certain col-

umn. For example, the expression directorλcount(title)(Film) groups records that share the same

director value, and aggregates each group by counting the number of (non-distinct) title

entries in each group.

Director count(Title)

1 2

2 1

UDFs and other operators Many other operators have been proposed as extensions to the core

SPJGA operations. Different implementations and frameworks may provide support for all or some

subset of these additional operations. However, for desired operations not supported directly by

a database querying language, many systems provide support for user-defined functions (UDFs).

UDFs are functions written by a developer that take as input one or more columns as arguments,
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perform some operation on each row on the column, with the output value constituting a corre-

sponding row entry in a resulting column. For example, a user may define the following UDF that

squares an integer input value:

def squaredUDF(col: Integer){

return col * col;

}

Then the expression πsquaredUDF (Director)(Film) would produce the relation

squaredUDF(Director)

1

4

1

UDFs are useful for expressing non-standard operations; however, since UDFs are custom

functions, databases typically execute them as blackboxes, e.g. with making no assumptions about

the expected output or execution of the function. Thus, their use is discouraged since they typically

lead to poor performance.

2.2 Automated optimization in relational engines

In the relational model, a query is a combination of operations in the relational algebra. Several

declarative languages, most notable Standard Query Language (SQL) implement and define a syn-

tax for writing queries over the relational algebra with various extensions. Relational database

management systems (RDBMS) are the data processing engines responsible for taking an expres-

sion in the relational algebra and (efficiently) evaluating it against a physical data storage. There

are many ways to evaluate a given query but not all do so efficiently; the process of enumerating

and selecting an evaluation plan is known as optimization. In this section, we give a brief overview

of the optimization process, broken into two stages: query planning and physical design. In the
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former, the engine considers how data is currently physically stored internally and decides on a

set of operations to execute a given query. In the latter, the engine, given some information about

the expected workloads, makes decisions about how to organize the data it stores in order to best

generate efficient query plans for that workload.

2.2.1 Query Planning

While query planners are generally quite complex, most query planners used in RDBMS share a

similar pipeline. In this pipeline, there are three phases that are relevant to our discussion: parsing,

optimization, and physical planning. In the first phase, queries written in a declarative language are

parsed into a logical plan, an internal representation that transforms the set of operations described

in the query into a tree-like structure.

Next, during optimization, each relational expression in the logical tree undergoes a series of

transformations that result in a standardized format and ordering. Optimizations that happen in this

stage are known as algebraic optimizations or rewrites. Rewrites are guaranteed to be semantically

equivalent (i.e. always produces the same result when evaluated). One example of an algebraic

rewrite is constant propagation, in which a constant expression (e.g. 1+1) is replaced with the

constant 2.

Another example is re-ordering expressions within the logical tree. For example, a rewrite

known as “predicate pushdown” results in a query plan where σ operations happen earlier rather

than later. This frequently results in a more efficient plan, because it removes unnecessary records

as early as possible, requiring the engine to scan fewer records when evaluating later expressions.

Typically, these optimizations do not depend on the physical layout of the data.

Finally, the optimized logical tree is planned into a physical plan, a process in which the

engine decides how and in what order to physically access the data and compute each expression.

The most basic physical plan is to retrieve a table and scan it linearly applying each expression

in their original order to each record. In practice, this plan is almost never used in favor of more
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efficient plans found during optimization, but physical planning frequently depends on information

(metadata) about the physical data in the RDBMS: e.g. which access paths are available? How big

is each table? How frequently does a specific value occur?

For example, the operation σY ear>2000 can be executed by scanning the Year column of a table

and accumulating each row that evaluates to true. However, this requires scanning each individual

row in the table. A more efficient plan might take advantage of an additional access path available

for the table. RDBMS have the ability to create secondary indexes, which sorts the records by the

values in each column. For example, an index on the Year column would ensure all rows in the

table are sorted by year. Then, the expression σY ear>2000 only needs to find the first row with the

year 2000 and can then retrieve all remaining records. Which access paths are available depends

on which indexes (and other supporting structures) are currently created in the database, and the

process of deciding which access paths to make available is known as physical design.

2.2.2 Physical design

In addition to storing raw tables, RDBMS often also store duplicates of the data in secondary struc-

tures. The decision of which structures to create in support query planning is known as physical

design. As described in the previous section, the RDBMS engine’s freedom to generate efficient

plans is highly dependent on which secondary structures have been created, thus physical design

is crucial in maintaining reasonable execution times on many query workloads.

Secondary structures can loosely be divided into two categories. First, some data structures

replicate the entirety of the original input data but provide new access paths, such as indexes which

sort tables according to a particular value. Second, cached data stores the results of previously

executed queries, and typically only replicate a subset of the original data; this includes structures

such as materialized views or precomputed aggregates. Caching is best used for shared work across

multiple queries against data that are not expected to change often. For example, if two tables are

frequently joined together in the same manner across multiple queries, then caching the result of
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this join operation will help execute all such queries faster.
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CHAPTER 3

Aggressive Caching in Distributed Data Processing

3.1 Overview

Recent years have witnessed significant efforts to improve the speed with which large-scale data

processing frameworks like Apache Hadoop [Apa17] and Spark [ZCD] execute queries [KA10,

ZKJ08,NBD12,ORR15]. A common technique used to accelerate data processing tasks is result (or

view) caching [GMb,MB,TS,ZLF07]. With this optimization, results from prior query executions

are used to reduce the on-demand work needed to execute new queries.

Result caching has been successfully employed by traditional databases and early data process-

ing frameworks [JMH16, Hal01, CY12, EA12, NPM10, CCH16, GRT10, JKR18, KFM17]. Bene-

fits have been particularly pronounced for the iterative workloads common to machine learning

algorithms, and the incrementally constructed queries in graph processing and interactive data ex-

ploration sessions [AXL15]. However, several major trends in recent data processing frameworks

(e.g., Spark SQL [AXL15]) complicate the use of result caching.

First, many distributed data processing frameworks generate increasingly large query plans

which are both expensive to execute and expensive to optimize [ZCD12]. The reason is that, un-

like databases which perform data updates in-place, modern analytics frameworks operate on im-

mutable data [ORS, BBE15, AXL15]. This model treats data as read-only, and updates or queries

that data by maintaining a lineage of transformations whose intermediate results may be material-

ized. Although this simplifies debugging and failure recovery [ZCD12], transformation histories

(and query plans) can grow to immense sizes, particularly for iterative and incremental workloads.
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Aggressive result caching is a natural way to shrink query optimization overheads. However,

while there has been much work on deciding what results to cache [AX, RSS00, RRS00, FMC09],

modern frameworks still struggle with determining how to make the best use of cached results.

Frameworks such as Spark SQL elect to apply exact-match caching, rather than more powerful

techniques like predicate analysis that can also identify partial query equivalence matches (i.e.,

where the results for one query entirely or partially subsume the results for another query) [GL01].

The reason is that it is challenging to determine where in the query optimization pipeline (Fig-

ure 3.1) predicate analysis can be efficiently performed. Performing predicate analysis before

query optimization can reduce query plan sizes and optimization costs, but requires operating on

analyzed query plans (logical query plans that have not gone through the optimizer) which obfus-

cate caching opportunities since predicate pushdown has yet to be performed. Predicate analysis

after query optimization can benefit from optimized (canonicalized) query plans, but must fully

incur expensive optimization overheads.

Second, modern analytics frameworks increasingly make it easy for developers to interleave

declarative querying with user-defined functions (UDFs) expressed in general-purpose program-

ming languages (e.g., Java, Scala). For instance, 74% of DataBricks’ [Dat] client-facing clusters

run workloads that contain UDFs, with UDF execution accounting for 34% of median cluster exe-

cution time.1 This trend will likely grow, as in-language integration of data flow engines increases,

making UDF-heavy analytics programs easier to write [AXL15, FBE09, McK11].

Unfortunately, query optimizers treat UDFs as black boxes, and must thus resort to exact-

match caching. Recent work such as Froid [RPE17] shows how UDFs written in special SQL

procedural languages (i.e., T-SQL) can be translated into native SQL operator plans. However,

Froid provides limited support for UDFs expressed in general purpose languages, as Froid may

not preserve types and cannot support language constructs such as generics, reflection, and virtual

function invocations.

1Databricks only provided these statistics, not raw workloads.
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Figure 3.1: Spark SQL’s query planning pipeline. Grey boxes and dotted lines indicate Acorn’s

new components. Each stage generates or modifies a query plan and passes it down the pipeline;

query plans relevant to Acorn are labeled.

This paper addresses the use of result caching in large-scale data analytics frameworks through

the combination of judicious adaptation of existing techniques such as predicate and program anal-

ysis, and novel UDF analysis for general-purpose languages. Our goal is to enable aggressive result

caching without 1) burdening developers to provide hints or rewrite queries, 2) incurring unneces-

sary query optimization overheads, or 3) sacrificing the expressiveness of UDFs. We integrate our

ideas in Spark SQL, but the problems we tackle and our solutions broadly apply to large-scale data

processing frameworks (§3.7.3). We make three main contributions.

Our first contribution adapts the extensive caching and predicate equivalence concepts from the

database community [GL01, LSH14] to distributed query processing frameworks. Rather than in-

effectively performing predicate analysis on analyzed query plans or operating on optimized query

plans that have already incurred considerable optimization costs, our key insight is to perform a

cheap partial optimization pass that applies only the handful of optimizations (e.g., constant prop-

agation, predicate pushdown) that affect predicate analysis. In this way, queries only run through

the full optimizer after aggressive caching decisions are applied. Our predicate analysis identifies

total and partial subsumption relationships between analyzed plans and cached results.

Our second contribution translates UDFs written in a general-purpose language into equiva-

lent functions expressed solely with native query operators and API calls. This opens up UDFs to

the query optimizer, including the result caching mechanism, and enables the co-optimization of

UDFs and relational queries. To do this, we lower UDF Java bytecode into a type-preserving inter-

mediate representation, and use symbolic execution to quickly generate an equivalent query plan.
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Translation is completely transparent to developers (unlike VooDoo [PMZ], Weld [PTN18]), and

can support the advanced language features described above that Froid [RPE17] cannot. Although

our approach supports almost all Java and Scala features, it is best-effort and is mainly limited by

the target language (e.g., Spark) (§3.6.3).

Our third contribution is Acorn, an implementation of the aforementioned result caching op-

timizations in the latest version of Spark SQL (v2.4). We evaluated Acorn on two benchmark

workloads (TPC-DS and TPC-H [tpc]) with datasets sized between 1-100 GB, as well as on multi-

ple real-world Spark workloads. Experiments show that Acorn provides speedups of 2× and 5×

over Spark SQL for benchmark workloads with and without UDFs, respectively, while imposing

negligible overheads and no changes to the workloads. Benefits were 1.4×–3.2× for real graph

processing workloads. Further, other than 3 UDFs that are not expressible with Spark’s native API,

Acorn was able to translate all UDFs in our workloads, many of which Froid cannot.

3.2 Background

Using Spark SQL [AXL15] as an example, we discuss how distributed data processing frame-

works plan and execute queries, and how these design decisions affect result caching and their

programming environments.

Query Planning: Spark SQL’s query planner, Catalyst, advances queries through five phases to

translate a logical query plan into a physical one where operators have been moved, replaced, or

combined based on optimizations and disambiguation rules (Figure 3.1). In stage 1, the analyzer

resolves column names to a table or dataset, validating any column or table references in the

query, and outputting an analyzed query plan. If a query has previously been marked for caching

(described below), stage 2 retrieves the cached data by exactly matching the stage 1 plan to the

cache index. Stage 3 applies a set of rules to the (potentially modified) analyzed query plan,

restructuring and rewriting the query plan for efficiency, and outputting an optimized query plan.

Stages 4-5 choose physical operators for the query, such as a particular join strategy, and generate
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code for executing those operators. Many rule-based query planners [Cha98, GM91, Apa17] share

these steps, but Catalyst slightly differs in that stages 2-5 are lazily evaluated for efficient in-

memory execution [ZCD12].

Caching: Spark SQL uses immutable datasets and maintains a lineage graph (akin to a query plan)

associated with each materialized dataset. To minimize optimization times (§3.1), Spark SQL per-

forms caching prior to query optimization (stage 2 versus stage 3), allowing cache hits to skip the

optimizer. Caching in Spark SQL is primarily user-driven, where users explicitly mark intermedi-

ate results as cacheable.2 When a user requests that a query or dataset is cached, the Stage 2 cache

manager creates an index using the current analyzed plan (from Stage 1), and reserves space for

the to-be-computed dataset. As of the latest version of Spark SQL (v2.4), the cache manager uses a

hash-based canonicalizer to match analyzed plans during cache substitution. Thus, cache hits only

arise when the cache manager finds an exact match for the corresponding analyzed plan. This dif-

fers from traditional databases, where cache substitution happens after the optimization step, and

is thus performed on optimized query plans that facilitate the detection of caching opportunities

through in-exact matches [GL01, IR95, ZND01, CR00].

Programming Environment: Spark SQL maintains a DataFrame API that enables seamless in-

tegration of procedural and declarative tasks. Although raw SQL strings are accepted, developers

can write valid SQL queries by chaining procedural API calls that mirror SQL clauses. For ex-

ample, a projection clause typically found in the SELECT clause of a SQL query can be written

using the select() function in the DataFrame API. The DataFrame API also provides support

for data processing tasks such as those in MapReduce systems [AXL15].

Spark SQL also allows users to write user-defined functions (UDFs) in general-purpose pro-

gramming languages (e.g., Scala, Java, Python). UDFs can be registered with the query engine

(as they are in traditional databases), or they may manifest as lambdas and anonymous closure

functions. Certain UDFs may be used as operators, being mixed into a chain of native API calls.

2Recent implementations [Dat] support automatic caching, where intermediate results are optimistically cached
without user instruction.
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However, anonymous UDFs can only be passed as arguments to existing operators. Importantly,

both forms of UDFs are treated as black boxes by the query engine, which is unaware of how

a UDF will access or manipulate data. Registered UDFs preserve their user-given name across

appearances, while anonymous UDFs get a unique name each time. Thus, the former can benefit

from exact-match caching, while the latter cannot (the changed name results in a changed analyzed

plan).

3.3 Related Work

Multi-query Optimization: Materialized views [GL01,IR95,ZND01] and their maintenance [ZLE07,

MRS01, GMa] has received much attention in databases. We draw on many of these principles to

find containment relationships. However, our focus is on efficiently applying these techniques to

the new domain of data analytics frameworks with lazy query planning and UDFs. Further, view

maintenance does not apply in this environment since source relations are immutable (unlike with

databases). Other systems [NPM10] find work-sharing opportunities within intermediate results

for queries executed simultaneously. Our approach is complementary as we target result caching

for queries that are handled separately.

Result Caching in Data Processing Systems: ReStore [EA12] employs result caching and incre-

mental computation in MapReduce-like systems but uses graph-based searches to compare phys-

ical operators. Unlike Acorn, ReStore requires optimized query plans and also ignore UDFs.

PigReuse [CCH16] provides an alternative using predicate analysis on analyzed query plans. How-

ever, PigReuse’s methods are specifically designed for restricted variants of PigLatin; we focus on

general purpose languages with many more operators. CloudViews [JKR18] finds useful subex-

pressions for caching in shared cloud jobs. This, and similar related work which adds the caching

annotations assumed by Acorn, is fully complementary to our goal, although unwrapping UDFs

would strengthen such annotations.

Domain Specific Languages for Data Processing: Several prior approaches provide new, heav-
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ily optimized languages for data analytics environments [PMZ,PTN18,Mou18]. These techniques

provide expressive (but performant) languages that are alternatives for efficiently writing and eval-

uating UDFs. However, using these languages requires manual rewriting of workloads. Instead,

Acorn transparently accelerates unmodified workloads.

Optimizing UDFs: Several systems parse UDFs and extract information to aid the optimization of

program execution [CGD15b,CGD15a]. These approaches are orthogonal to Acorn, which can be

modified to extract similar optimization properties during UDF translation. This, however, would

require changes to Spark SQL’s query optimizer; in contrast, Acorn’s components are transparent

to downstream pipeline components.

Bytecode analysis can extract key properties from UDFs that are strong enough to enable re-

ordering [HPS12, RHH15]. However, the derived annotations are not strong enough to detect sub-

sumption relationships for aggressive caching [DN14, RLG17]. Other approaches have detected

subsumption relationships with UDFs [LSH14], but require manual UDF annotation and only work

with registered UDFs (limiting benefits for Spark SQL where anonymous UDFs are common).

Perhaps closest to our approach is Froid [RPE17] which inlines UDFs into SQL queries. Froid

translates each statement in isolation, cannot ensure type-safety with generics, and requires a sep-

arate, customized mapping class for each imperative construct. Instead, Acorn uses symbolic

execution (traditionally used for model checking and constructing logic formulas) to dynamically

connect sequences of statements. This is critical, since Java bytecode frequently erases generic

types, which are extensively used to declare lists and SQL relations.

For example, a UDF might create and fill a Row<T>. Froid’s parse-and-map strategy does

not allow user-defined types, let alone generics: because of bytecode type erasure, Froid would

create a table of Objects for use in subsequent statements in the UDF. This introduces exceptions

if the Row is later cast back to the original type. Instead, symbolic execution lets Acorn treat

the variable as Row<Object> until a cast is performed or a specific subtype is found, update

the type, and then propagate this type information to subsequent statements. Handling these subtle

details lets Acorn support UDFs with generics, reflection, and virtual function invocations, which
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Froid cannot. Thus, while Froid can effectively handle the constrained T-SQL language, it is

intractable (and unsafe) for general purpose languages.

Program Equivalence and Synthesis: Certain systems use equivalence detection techniques [SSS16,

CWC17] or program synthesis [AC18] to analyze imperative code in search of equivalent and

more performant rewrites (e.g., MapReduce programs). These systems can be used to automati-

cally rewrites UDFs into native equivalents. However, they are generally meant to run offline. For

example, despite the fact that Casper [AC18] accelerates the synthesis process by searching over

program summaries, it still takes an average of several minutes to run. In contrast, we target online

UDF translation.

3.4 Motivating Examples

We present several example queries that 1) expose the limitations of exact-match caching, 2) mo-

tivate the need for aggressively identifying result caching opportunities, and 3) explain how sup-

porting UDFs is critical for result caching. The presented queries are based on two hypothetical

data tables, people and siblings, that share the two-column schema, name and age.

3.4.1 Need 1: Aggressive Identification of Result Caching Opportunities

Spark SQL’s exact-match caching (§3.2) that only uses cached results if the corresponding query

plans exactly match, foregoes critical caching opportunities. For example, consider the following

queries:

// Query 1

people.join(siblings, "age").filter(people.age > 18)

// Query 2

people.join(siblings, "age").filter(siblings.age > 21)

Both queries perform a join on the people and siblings tables, finding siblings of the same

age. Thus, any predicate applied to people.age is in effect applied to siblings.age; these
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two columns can be treated as interchangeable for the rest of the query. Consequently, despite the

fact that the two queries employ seemingly different filters (shown in bold)—Query 1 filters the

age column in people, while Query 2 filters the age column in siblings—Query 2 should

be able to reuse results from Query 1. Specifically, since any age greater than 21 is also greater

than 18, Query 2’s result set will always be a subset of Query 1’s result set; that is, Query 1 totally

subsumes Query 2. Reusing results from Query 1 to compute Query 2 enables an in-memory

scan of a (potentially) much smaller table, rather than recomputing the expensive join. However,

Spark SQL’s cache manager would deem these queries as unrelated because it is unaware of the

equivalence relationship that the join creates between the seemingly different filter predicates.

Another result caching opportunity that would go undetected with Spark SQL’s exact-match

caching relates to the input of a join operation. For instance, consider the following queries:

// Query 3

people.filter(age > 18)

// Query 4

people.join(siblings, "age") .filter(people.age > 18)

Query 3 filters all rows that have an age greater than 18 in the people dataset. In contrast, Query 4

first joins the people dataset with the siblings dataset to find rows with matching age values,

and then applies the same exact filter. Thus, though Query 3’s result set does not entirely contain

Query 4’s result set, Query 3 does produce a useful input for the join in Query 4. In other words,

Query 3 partially subsumes Query 4.

To help understand why Spark SQL would fail to detect this relationship, consider the analyzed

and optimized query plans for these queries shown in Figure 3.2. Comparing only the analyzed

plans of each query (which Spark SQL’s cache manager does) hides the fact that Query 3 partially

subsumes Query 4. However, during optimization, Query 4’s filter predicate is pushed down

to below the join. This transformation highlights the fact that Query 3 is identical to the left join

child in Query 4, enabling caching.
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Figure 3.2: (1) The (identical) analyzed and optimized plans for Query 3, (2) analyzed plan for

Query 4, and (3) optimized plan for Query 4. Boxes show a cache opportunity: Query 3 can safely

be used as Query 4’s left join child.

3.4.2 Need 2: Result Caching Support for UDFs

Detecting the caching opportunities between the above queries relies on the ability to analyze query

predicates. However, UDFs hide query components from the query engine, obscuring even exact

cache matches (§3.2). Consider the following two queries:

// Query 5

people.select(lower("name"))

// Query 6

people.map(p => p.get("name").toLowerCase)

Both queries return the list of names, converted to lowercase format, from the people dataset.

Indeed, in the absence of null values, Query 5 and Query 6 will always return the same result set,

meaning that they are valid rewrites of one another. However, from the perspective of caching,

Query 5’s structure is preferable because it uses a native call to Spark SQL’s DataFrame API and

can thus be analyzed in detail by the optimizer; in contrast, Query 6 contains a UDF closure that

makes an external call to a Scala library, and is thus treated as a blackbox during planning. Simply

put, Query 6 uses a UDF while Query 5 does not, and this impacts caching.
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3.5 Aggressive Result Caching

This section presents a judicious adaptation of predicate analysis on analyzed query plans that

enables aggressive result caching without unnecessary query optimization.

3.5.1 Challenges and Approach

A natural and proven approach for detecting result caching opportunities (both exact match and

subsumption relationships) is predicate analysis [GL01,IR95,ZND01,CR00]. With predicate anal-

ysis, logical operators are grouped by how they manipulate a dataset (e.g., column-removing versus

aggregating). The most restrictive predicates within each group are then identified and compared

to infer caching opportunities. Predicate analysis can be used in queries containing selection, pro-

jection, joins, grouping, and aggregation.

Spark SQL’s use of immutable datasets does provide some advantages to performing predicate

analysis compared to a traditional database system. In particular, unlike with databases [GMa,

MRS01, ZLE07], we need not worry about stale (and inaccurate) cached data. However, the as-

sociated query optimization overheads (§3.1) makes it difficult to efficiently integrate predicate

analysis. To illustrate this challenge, we first discuss several potential integration approaches (and

the associated consequences), before presenting our solution; we empirically compare these ap-

proaches in §3.8.

Swap: Make caching decisions later in the pipeline. The most natural approach is to reorder the

pipeline such that cache substitution comes after query optimization (i.e., swapping stages 2 and

3), thereby exposing optimized query plans to predicate analysis. Unfortunately, this would forego

query optimization benefits as a query must pass through the entire optimizer before any caching

decisions can be made and applied (via predicate analysis and query rewriting). This is despite

the fact that optimizations must only be run on uncached query components. We show in §3.8 that

these passes through the query optimizer result in significant resource and delay overheads [Mar06,

Neu11].
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Double: Insert an additional cache retrieval step. In this scenario, the pipeline would have

a cache retrieval step both before and after query optimization. Early-stage caching can identify

exact matches on analyzed plans, while late-stage caching can use predicate analysis on optimized

query plans to more aggressively identify caching opportunities. Thus, this approach partially

addresses the limitations of Swap: query components handled by the cache (identified by exact

match) need not pass through the query optimizer. However, this approach has several limitations.

First, the potential in-exact query matches that predicate analysis identifies (which have proven

to be significant in databases and early data analytics frameworks [JMH16, CY12, EA12, NPM10,

CCH16, GRT10, JKR18, KFM17]) can still only be determined after costly query optimization,

leading to wasted work. Second, it doubles the size of the cache index by storing two or more

versions of query plans per cached job. This scales particularly poorly with cached jobs that have

many operators—jobs that are the best candidates for result caching.

Our solution: Given these tradeoffs, our solution is to partially optimize analyzed query plans,

only enforcing rules that result in canonicalized predicates that affect caching decisions. In this

way, predicate analysis can run early in the pipeline and still operate on standardized and information-

rich query plans necessary to make aggressive but correct caching decisions. Our key observation

is that only a few query optimizations influence predicate analysis (and thus caching decisions), so

the cost of this early and partial query optimization is small.

3.5.2 Detecting Subsumption on Analyzed Plans

We begin with the simpler “total subsumption” case where a cached query entirely contains the

result set of another query. We then discuss extensions to handle the scenario where the cache

contains only part of the new query’s results (i.e., “partial subsumption”).

Total Subsumption: We first seek to identify the set of optimizations that query optimizers per-

form which generate canonicalized predicates that affect predicate analysis (and caching deci-

sions). To answer this question, we classify optimizer rules based on how they affect the query
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tree. Optimizer rules may reorder, replace, or rewrite operators. Reorder rules do not affect pred-

icate analysis in total subsumption, as all operators are sorted during analysis anyway. Replace

rules may help generate efficient plans by swapping operators, but sorting predicates groups equiv-

alent operators and extracts their predicates with the same effect. Instead, rewrite rules yield a

standardized structure that is beneficial to predicate analysis, so we extract and apply these.

Analyzing the Spark SQL query optimizer rules revealed that out of the 19 total rules covering

100 structural patterns, only these 4 rules (covering 25 structural patterns) are rewriting rules that

standardize operator syntax for predicate analysis:

1. Typecast checking: lifts raw values out of cast expressions after confirming that the cast is type

safe.

2. Boolean simplification: standardizes Boolean expressions, for instance by rewriting not op-

erators into equivalent positive expressions.

3. Constant folding and propagation: evaluates constants and uses them when possible.

4. Operand ordering: standardizes operand orders for quick comparisons.

Thus, we prune the optimization suite to only include these 4 rules and run them iteratively to a

fixed point over the relevant predicates in analyzed query plans.

After canonicalizing predicates, we can directly apply existing algorithms to identify total sub-

sumption relationships on our partially optimized query plans [GL01]. Beginning with the cross

product of all source tables, the following must be met:

• Row Removal: The cached job must remove the same rows (or a subset of them) as the new

job. If predicates impose a range on the column, the range must be larger or equal to that of

the new job.

• Column Removal: The cached job must output all columns needed by the new job; specifi-

cally, it must contain the output columns of the new job and any columns needed to calculate
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any new predicates.

• Grouping: All groupings in the cached job must be supersets of groups in the new job, and

the cached job must be less aggregated.

• Other operators: Any other operators in the cached job are deterministic, and either invert-

ible or applied to the same inputs in the new job.

To further enhance the detectable caching opportunities with predicate analysis, we identify

column equivalence classes [GL01]. Equivalence classes are used to specify that seemingly differ-

ent columns are equivalent for a given query based on the query’s filtering predicates (e.g., Query 1

and Query 2 in §4.2). To build equivalence classes, each column begins in its own class. For every

predicate of the form ColA == ColB, the corresponding equivalence classes containing ColA and

ColB are merged, since these columns will always have the same value. The above conditions are

then checked using equivalence classes in place of columns.

If total subsumption scenarios are detected, Acorn rewrite the new query’s analyzed plan to

use the relevant cached results. Recall that with total subsumption, the cached results may include

extra rows beyond what the new query requires. Thus, we add the required filter predicates from

the original plan to remove extraneous rows. Since we only add filters, the full optimizer pass

addresses any introduced inefficiencies.

Partial Subsumption: A query A partially subsumes another query B if it totally subsumes a join

node in query B (e.g., Query 3 and Query 4 in §4.2). With optimized query plans, this relationship

can be found by running the total subsumption algorithm described above on the children of each

join node in query B. This would work because optimized plans employ predicate pushdown,

whereby predicates that remove columns or rows are pushed below a join if possible (using reorder

rules) [HS93].

Predicate pushdown is crucial for detecting many partial subsumption caching opportunities.

This is because the smaller a join’s child is, the more likely we can find a cached job that sub-

sumes its results. To increase our chance of success, we want to scan the entire query and push
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any operators that remove rows below a join if possible. However, even assuming a standard pred-

icate pushdown pass has been made, introducing partial cache subsumption breaks a critical safety

guarantee in the Spark architecture. The optimizer assumes all column references have been dis-

ambiguated with respect to the base tables of the query; when Acorn replaces a base table with a

partial subsumption match, it assumes responsibility for ensuring that this disambiguation remains

faithful to the original tables. For example, consider the following query pair:

val q1 = people.select("name")

val q2 = q1.filter("age" > 21)

Notice that q2 references age, which is not in q1’s output schema; Spark allows users to ref-

erence attributes that are not in the projection list because they will be resolved during reference

disambiguation. This can cause subtle errors when caching plans. For instance, consider the fol-

lowing cached plans:

P1: people.select("name").filter("age > 18")

The semantics of P1 are such that the filter clause can be evaluated. However the cached output

does not contain age. Thus, P1 is not suitable to replace q1 in q2’s plan, because age was

not materialized. By default, Spark’s reference disambiguation will incorrectly infer thatage is

available in people.select(‘‘name’’) of the cached plan P1.

To address this limitation, we present an algorithm for detecting partial subsumption on the

children of joins in analyzed query plans. Our approach uses a predicate sorting technique that

mimics the effect of predicate pushdown while simultaneously guaranteeing safe accesses to all

column references—neither predicate pushdown nor Spark’s projection analysis can achieve both

in a single pass.

Since we want to maximize constraints on each join child, we push down all filter predicates

that reference any column in the same equivalence class as a column originating from that join

child. At a high level, we tag all equivalence classes necessary to compute each predicate in the

entire query, then delete a predicate if the join child cannot supply a column in each equivalence

class.
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To carry out this approach, we first need to know, for each predicate P that appears anywhere

in the entire query, the set of all columns required to calculate that predicate (which we call the

refset). We compute refset by initializing it to the empty set and adding all equivalence classes

(EC) of each column directly referenced in that predicate,

refset(P)← EC1, EC2, ... ECN ,

where 1...N are ids for the columns referenced in P.

With this information, we can discard predicates that cannot be computed by the base tables of

this join child. To do this, we take the set of all columns that appear in a base table of the current

join child as the child column set (CCS). We then keep only predicates if its refset consists only

of equivalence classes with some column in the child’s base tables:

{P | ∀ EC ∈ refset(P): EC ∩ CCS 6= ∅}.

The above steps tell us what row-removing predicates we should keep. We also must know

what columns to keep, which we can find by using the refset: any column appearing in both the

CCS and any refset is required as output from the join child, and thus must be kept.

Once we have pushed down all the appropriate filter predicates and calculated the new output

set for a join child, we can perform total subsumption analysis on that join child to find caching

opportunities. Rewriting on a cache hit uses the same steps as with total subsumption.

Correctness: We meet both conditions proven to preserve correctness when moving predicates [HS93].

First, our approach does not change the order of join operations. Second, we ensure that every root-

to-leaf path in the query tree only refers to attributes produced by the join child. This follows from

the fact that, by definition, the refset contains all column references in a predicate. Cross referenc-

ing the refset with the CCS ensures that a predicate is only moved down if it can be independently

computed by the join child.
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Figure 3.3: The translation steps used to convert a simple UDF into a native Spark Expression.

Code segments and expression trees have been trimmed due to space constraints.

3.6 Transparent UDF Compilation

This section discusses our approach to transparently open up UDFs (written in a general purpose

language) to query planners to enable the aggressive result caching techniques presented in §3.5.

3.6.1 Goals and Solution Overview

We have several goals and requirements for UDF translation that existing techniques do not meet

(§3.3):

• Transparency: Users should not have to rewrite queries, annotate jobs for the sake of the

optimizer, or restrict themselves to only using registered UDFs.

• Speed: Translation overheads must be lower than optimization benefits.

• Safety: Translated expressions must behave exactly the same as the original expressions on

all inputs.

• Tractability: Translating general purpose languages like Java and Scala requires parsing

Java bytecode, which is a stack-based language with over 200 opcodes. Thus, the search

space is large and must be explored efficiently.
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• Extensibility: A UDF translator should be easily maintained and extended to support new

or modified language features.

While prior work meets some of these goals, no current solution satisfies all of them (§3.3).

UDF rewriting [PMZ, PTN18] and annotation techniques [LSH14] violate our transparency re-

quirement, while program synthesis approaches [AC18] take minutes to run. Further, UDF com-

pilers like Froid [RPE17] only operate on constrained languages (T-SQL), and cannot support

many general purpose language features (e.g., generics, reflection).

Our solution: We provide a best-effort UDF translator for general purpose languages that meets all

of the above requirements. The translation process passes each UDF through three steps. First, we

use an off-the-shelf bytecode parser to generate a typed, compact intermediate representation (IR)

for the UDF. We then use symbolic (simulated) execution and pattern matching to quickly generate

an equivalent query plan expressed solely with native query operators and API calls. Finally, we

optionally rewrite the UDF if compilation is successful.

Using a compact and typed IR significantly trims the search space to consider, ensuring tractabil-

ity and fast translation. Simulated execution ensures that each unique path through the function is

explored exactly once. Importantly, our simulated execution propagates types from the IR (rather

than inferring them). Collectively, these techniques ensure a type-safe, accurate, and efficient trans-

lation. Further, because our translation leverages Scala’s pattern matching capabilities [KM18],

new operators can be supported with a single line of code (for a new pattern), bringing extensibil-

ity. Our integration of this translation into query processing pipelines (§3.7) makes this entirely

transparent to users.

3.6.2 UDF Translation

Our translator accepts a Scala or Java function as input, and outputs an equivalent expression solely

with Spark native operators. To aid our description of the translation process, we will reference the

example command in Figure 3.3: p => p.getage < 30 is a Scala lambda UDF that is passed
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as an argument to the filter operator, and applied to a dataset named PersonDS.

3.6.2.1 Step 1: Lower to an Intermediate Representation

The translator initially receives the UDF in Java bytecode form. Raw Java bytecode is an stack-

based language with over two hundred opcodes and bytecode specific types. Thus, simulating

execution of Java bytecode directly would require the burdensome and error-prone tasks of main-

taining a stack and inferring types. To obviate the need for stack simulation or dynamic typing,

we instead opt to perform translation directly on an IR called Jimple [VH98]. Jimple reintroduces

high-level types and provides a concise, three-address format with only a few dozen opcodes. Rein-

troducing types ensures that the translator must only track types during compilation (rather than

inferring them) for type safety, while the three-address format obviates the need for simulating a

local variable stack.

Though translation with the Jimple IR greatly simplifies the process compared to working with

Java bytecode, we note that using an IR is not strictly necessary for the ensuing steps. In order

to compile down to Jimple, we use an off-the-shelf bytecode parser called Soot [VCG10], which

adds minimal overheads to the overall translation process (§3.8). Figure 3.3 shows a comparison

of our example lambda (written in Scala) with its Java bytecode and Jimple equivalents.

3.6.2.2 Step 2: Simulate Execution

The next step compiles the UDF’s Jimple representation into a Spark native expression. Our com-

piler accepts as input the Jimple function, the function arguments, and a schema for the correspond-

ing datatype. Spark SQL allows schemas to be defined as classes where each field is a column,

so the schema input may be a class definition or a struct pairing column names with types. For

example, the function from Figure 3.3 would be supplied with the argument for p and the Person

class schema.

Translation progresses by simulating execution of the Jimple function body. We use three tech-
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niques to explore the search space safely, efficiently, and comprehensively. First, we use a map to

keep track of a typed local environment. Types are propagated to the map from Jimple throughout

translation, guaranteeing a type-safe translation. Second, we use Scala’s pattern matching capa-

bilities to facilitate translation from Jimple into a Spark expression. Finally, we use reflection

to examine function signatures to decide whether to substitute recognized library functions with

Spark expressions or recursively translate the function call.

Local environment: To mimic a local environment, we use a map (rather than a stack) to pair

UDF variable names and types with Spark expressions. Assignment statements do not have a

corresponding Spark expression, and are instead used to populate or update the map. The right-

hand side of each assignment statement is translated and the resulting expression is placed in the

map. For instance, if the right-hand side is a constant or a column (as in line 3 of Figure 3.3), we

map the value into a Spark literal of the corresponding type. Similarly, if the right-hand side is

an expression, it is translated into the corresponding Spark expression and the operands are then

recursively translated. When any variable is read during subsequent translation steps, a typed Spark

expression value is supplied from the environment map.

Translation: Jimple code is organized as a series of statements, each of which is composed of

expressions, which are in turn composed of values. Spark expressions, our target language, are

structured as trees. To match Jimple expressions by type and create the corresponding Spark tree

node, we use Scala’s pattern matching capability [KM18]. Any Jimple subexpressions or values

are extracted via pattern matching, recursively translated, and added as children. This flow enables

subexpressions (e.g., child expressions) to be translated independently of higher level expressions

(e.g.,parent expressions). Further, adding a new operator only requires matching the correspond-

ing Jimple expression and creating the corresponding Spark expression tree node, which can be

expressed in a single line of code.

Path exploration: Simulating UDF execution requires systematic exploration of each path through

the function. In a function with only a single path, every Jimple statement creates or updates a

variable until a return statement is reached. Jimple always returns a variable, so the translator
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retrieves the associated expression from the local environment map and returns it.

The more common scenario is for a function to contain multiple execution paths, which arise

from conditional statements (e.g., line 4 of Figure 3.3). In this case, the conditional predicate is

translated, and the translation process forks to find an expression for each branch separately. Spe-

cial care is given to short-circuiting predicates as Spark SQL does not enforce the short-circuiting

semantics of Java and Scala logical operators. To address this, Acorn uses conditionals to mimic

short-circuiting behavior: short-circuiting ANDs are rewritten to be nested if statements (e.g.,

‘‘if x != null && x.a’’would be rewritten to ‘‘if x != null { if x.a }’’),

while ORs are broken into if-elif-else blocks.

The first conditional statement encountered during translation is considered the branching

point, and thus represents the root of all paths through the function. A branch is explored by

providing the translator with the relevant variable environment, original function arguments, and

a pointer indicating the first instruction of the branch. The translator executes from that instruc-

tion until it reaches a return. To ensure accuracy, conditional variable assignments are preserved;

branches maintain their own copies of the environment to prevent conflicts.

Function calls: Some expressions may invoke a function, like r1.age() in line 2 of our ex-

ample. In this case, we either invoke the translator and explore the provided age function or use

reflection to examine the function signature. The latter approach is preferred as it lets us bypass

the translator and directly supply the matching Spark expression. In our example, we would match

the age function with the Person class schema to determine that the function results in a column

reference. Since Spark operators usually handle null inputs quietly while library functions throw

exceptions, we are careful to reintroduce null exceptions where necessary. In cases where the

function signature is unknown but lies on the user class path, we attempt to translate the function

to find a matching Spark expression. This allows us to handle important library functions while

limiting expensive library function execution.
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3.6.2.3 Step 3: Rewrite the UDF

On successful translation, the UDF query tree should be rewritten to use the output Spark expres-

sion. Since query plans use a tree structure, rewriting only involves replacing the UDF node with

the root of the new Spark expression. This can happen in one of two ways. First, if a UDF node

appears directly as an operator, we simply replace the UDF node in the expression tree with the

root node of the generated Spark expression. Second, a UDF may be the argument to another

operator. In cases where the operator can take a function or a Spark expression as its argument

(e.g., filter), we translate the function and swap the parent operator for a version that accepts

a Spark expression. For operators that only take functions as arguments (e.g., map), we add an-

other version of the operator to Spark (that accepts Spark expressions as arguments) and use the

same process. If our translator cannot generate a native Spark equivalent (§3.6.3), we revert to the

original UDF path to ensure correctness; failed translation overheads are negligible (§3.8).

3.6.3 Correctness and Limitations

Our translator supports almost all features of the Java and Scala languages, and is primarily lim-

ited by the target language (i.e., Spark’s native API). We handle variable manipulation, control flow

statements, and logical, bitwise, and arithmetic operations. Additionally, unlike Froid [RPE17], we

preserve types and can support UDFs that use generics, reflection, and virtual function invocations.

The key limitation is that we are restricted to non-recursive function calls and statically bounded

loops. The impact of this limitation is mitigated by Spark’s requirement that query trees be acyclic

and its corresponding lack of support for loops. Note that we can translate loops that are unrolled

by the Java compiler or contained in a library function invocation. Examples of the latter class

include most String and Array manipulations, for which we translate based on the function signa-

ture. Additional library function invocations we support are type casting, column/row access, and

sorting. Nondeterministic functions (e.g., Random class functions) cannot be translated as they

complicate faithful simulated execution.
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3.7 Implementation

Acorn integrates our aggressive result caching optimizations (§3.5 and §3.6) into the query pro-

cessing pipeline (Figure 3.1) of the most recent version of Spark SQL (v2.4). As Spark itself is

written in Scala, so is Acorn. We note that Acorn does not increase the amount of cached content

(or memory usage), and instead only tries to make better use of what Spark already caches.

3.7.1 Judicious Predicate Analysis

Acorn implements predicate analysis in Stage 3 (cache substitution) of the Spark SQL pipeline.

To do this, Acorn edits the base class for analyzed plans, augmenting them with functions for

containment detection and rewriting. Acorn also modifies Spark SQL’s cache manager; instead of

using exact matching, the manager calls Acorn’s custom containment function which implements

subsumption detection (§3.5) in 250 lines of code. If a cache opportunity is detected, this function

rewrites and returns the query accordingly.

3.7.2 Transparent UDF Translation

UDF translation is structured as a standalone unit (400 lines of code) to simplify integration into

the pipeline. UDFs that appear as the argument to an operator are translated when the operator

itself is parsed. The operator is then rewritten to use the generated Spark expression instead of the

UDF. This happens just before stage 1, when the query is parsed and transformed into an input

for stage 1. For UDFs that act as an independent operator, Acorn adds a rule to the analyzer to

translate and rewrite the UDF during stage 1. Translation happens before cache replacement in

Stage 3 so translated UDFs undergo the caching optimizations described in §3.5.
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3.7.3 Generalizing Beyond Spark SQL

Although Acorn is implemented in Spark SQL, other data processing systems can naturally ben-

efit from its optimizations. Systems that struggle to reuse cached plans (e.g., SQLServer [Mar06]),

especially those that use immutable datasets (e.g., CouchDB [cou], Datomic [Kie13], BigTable [CDG08]),

can perform partial query optimization to use predicate analysis without unnecessary query opti-

mization. Acorn’s partial optimization rules are Spark-specific, but the approach to identify nec-

essary rules for partial optimization generalize (i.e., the grouping of rule types in §3.5.2). Similarly,

Acorn’s UDF translation is JVM-specific as it operates on Java bytecode, but the lowering and

UDF analysis can be implemented for Python or applied to other multi-language pipelines (e.g.,

Pandas [McK11], DyradLINQ [FBE09]) whose UDFs can be compiled to an IR (e.g., asm, .NET,

LLVM).

3.8 Evaluation

In this section, we experimentally evaluate Acorn and find that 1) Acorn can significantly accel-

erate workloads compared to Spark SQL, with benefits of 2× and 5× for benchmark workloads

with and without UDFs, respectively; 2) Acorn outperforms the alternatives for predicate analy-

sis described in §3.5 by avoiding unnecessary query optimization; 3) Acorn’s benefits range from

1.4×–3.2× for real graph algorithm workloads; 4) Acorn can translate 90% of UDFs collected

from multiple real Spark workloads, many of which Froid [RPE17] cannot; and 5) overheads for

Acorn’s predicate analysis and UDF translation techniques are negligible.

3.8.1 Methodology

We evaluate Acorn on three main workloads:

TPC-DS v2.1: From this big data benchmark [tpc], we use all 4 queries marked as “itera-

tive,” which each come with 2-5 variants. We also select 10 random “reporting” queries which

36



are parameterized by a random number generator; we create multiple variants by resampling the

parameter values. In total, we use 14 base queries from TPC-DS with 28 variants, for a total of 42

queries. To create UDF versions of the queries, we convert the SQL string to an equivalent query

that uses the Spark SQL DataFrame API (§3.2). We mark the first executed variant of each query

for caching, allowing queries later in the sequence to reuse previously cached queries; the cache is

cleared between runs.

TPC-H: For this benchmark [tpc], we use all 22 queries. These queries directly include 7 UDFs,

and we augment this list with the 12 additional UDFs used in the evaluation of Froid [RPE17]. In

total, this workload includes 19 UDFs and 34 UDF invocations; we manually rewrote each UDF

into an equivalent Scala version. We use dataset sizes of 1, 10, and 100 GB for this and TPC-DS.

Real-world workloads: We use two graph algorithms from the GraphFrames Spark graph pro-

cessing library [gra]: connected components and belief propagation. Belief propagation con-

tains one UDF to color the graph, while connected components has none. For datasets, we

use publicly available snapshots of graph data from the SnapNet project [LK14]: a snapshot

of the Twitter network from 2010 with 41.6 million vertices and 1.5 billion edges, and a snap-

shot of the Berkeley-Stanford web graph with 700K vertices and 7.6 million edges. In addition,

to evaluate Acorn’s UDF translation, we extract real UDFs from seven open-source reposito-

ries. [sry, men, Nic, Ryu, biy, Abh, nod]

We compare five systems. Our Baseline is unmodified Spark (v2.4), and we consider two ver-

sions of Acorn: Acorn cache only performs predicate analysis-based cache detection, while

Acorn also uses UDF translation. In addition, we implemented and evaluate the alternative pred-

icate analysis approaches described in §3.5: Swap and Double. Each workload is run five times

with each system, with the cache cleared between runs, and we report on the overall distributions.

Tests were conducted on a 16 machine cluster, where each machine ran Ubuntu 12.04 and had an

i7-4770 processor, 32 GB of RAM, and 1 TB disk.
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Figure 3.4: Evaluating Acorn on the SQL-only (no UDFs) TPC-DS workload. Bars represent

median workload completion times (i.e., summing across all queries in the workload), with error

bars spanning min to max.

3.8.2 Aggressive Caching with Acorn

Here we evaluate Acorn’s caching, without considering UDF translation (i.e., Acorn cache only).

Speedups: Figure 3.4 shows that subplan caching improves runtimes by 2.2× for the entire

1GB and 10GB TPC-DS workloads (161s, 662s saved respectively), and up to 2.7× for the 100GB

dataset (5942s saved). Since this workload doesn’t contain UDFs, Acorn, Swap, and Double iden-

tify caching opportunities for the same 26 queries (69%), compared to 14 (33%) for the baseline.

The larger improvements on the 100GB data are because the queries become disk-bound. On

smaller datasets, the data is read into memory once and used to serve all queries against that data.

For larger queries, the entire dataset must be paged into memory for each query since it cannot

entirely fit. Therefore, larger datasets see more benefit from caching since in-memory relations

can be used rather than reading from disk.

Sample TPC-DS queries: Figure 3.6 lists several example queries from the TPC-DS bench-

mark which illustrate various subsumption relationships which Acorn can identify and exploit.

The first segment shows the SQL syntax for Q39a and Q39b. As shown, Q39a omits the last pred-

icate, commented in red, which is present in Q39b—this represents a common total subsumption
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Figure 3.5: Breaking down Acorn’s execution, compared to Swap and Double, on the 29 queries

in the TPC-DS workload which automatically used some cached data. Results are for the 10 GB

dataset, and times are the median of five runs.

pattern in which an additional predicate is applied to the result of a previous query. Acorn is able to

recognize this total subsumption relationship and reuse the results of Q39a, unlike baseline Spark.

Q23a includes a union all operator over two subqueries; note that the subqueries are con-

densed for brevity as Subplan A and Subplan B. Q23b calculates an aggregate over one of

the output columns of Q23a, again demonstrating a total subsumption relationship. Q23c adds new

predicates to both Subplan A and Subplan B. Unlike baseline Spark which re-executes the

entire query, Acorn can reuse the subqueries from Q23a or Q23b.

Finally, the last example demonstrates how TPC-DS query parameters are re-rolled to generate

alternative versions of reporting queries. The Q37 template generates new queries by randomly

picking the parameters labeled (i), (ii), and (iii). There are three possible cases for reuse across

rolls. For total subsumption, (i) must exactly match, and the second rolls of (ii) and (iii) must either

match the first rolls exactly or produce subsets of the first roll values. For partial subsumption,

either (i) must be an exact match and (ii) must be a subset in which case the item table can be

reused, OR (iii) must be a subset in which case the inventory table can be reused. Acorn is

able to detect all three subsumption scenarios.
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Figure 3.6: A selection of TPC-DS queries with differences highlighted in red on commented lines.

These examples illustrate several caching opportunities missed by baseline Spark but detected by

Acorn.

Benefits of partial query optimization: Acorn, Swap, and Double identify the same caching

opportunities in TPC-DS. However, Figure 3.5 shows that Swap and Double can nearly double

the final runtimes of queries served from the cache due to excessive optimization overheads. The

reason is that both Swap and Double force some cached queries through the full optimizer: Swap
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Figure 3.7: Spark SQL’s full optimization (Baseline) versus Acorn’s partial optimization on the

connected components algorithm. Note that the y-axis is logarithmic.

fully optimizes all queries to find exact or inexact cache matches, while Double fully optimizes

queries without exact matches (including those with inexact matches). The median cost of this

unnecessary optimization for Swap and Double is 0.43ms per query (12.5s total). Since the median

query runtime is only 0.37ms, overheads of this optimization vary from 100–1000% of the overall

query runtimes.

High optimization costs are particularly relevant for iterative workloads (e.g., graph processing,

ML training) that append to larger and larger plans each iteration. Using the plan after each itera-

tion of GraphFrames’ connected components algorithm (§3.8.1), the full optimization cost grows

exponentially whereas Acorn’s partial optimization grows linearly (Figure 3.7). The same trend

holds for belief propagation, which we omit for space.

Cache search overheads: We now study the overhead of using predicate analysis to search the

cache by rerunning the TPC-DS iterative workload on a 10 GB dataset. In this experiment, we

filled Spark SQL’s cache index with all 104 TPC-DS queries and measure the time spent in the

search algorithm. The total time spent in search was 10.42s (.1s per query), in part because the

matching algorithm can terminate early at multiple places, such as comparing base tables. Note

that although the search time is runtime agnostic, this implies an overhead of <1% of execution

time.
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Figure 3.8: Baseline Spark versus Acorn on the TPC-H workload (scaled to 10 GB), with and

without UDFs.

3.8.3 Acorn’s UDF Translation

We now evaluate Acorn’s transparent UDF translation.

Cost of UDFs: Prior work in Froid [RPE17] showed that UDFs incur a 100-10,000× slowdown

compared to native relational operators. Thus, we first measure the overhead of using UDFs. Fig-

ure 3.8 compares the overhead of using UDFs by comparing baseline Spark on the 10GB TPC-H

benchmark without UDFs, with relational operators replaced with Scala UDFs as in Froid, and

Acorn on TPC-H with the same UDFs. TPC-H is non-iterative and no queries are cached, thus

the differences are due to opening the UDFs to the optimizer. Using UDFs slow baseline Spark

by 1.4×, whereas Acorn translates 100% of the UDFs, eliminating serialization overheads and

bringing Acorn’s performance in-line with the pure relational version. Per-operator UDF over-

head was 80-100×—we speculate that the discrepancy with Froid may be due to Spark’s efficient

Kryo serializer, our use of a 16-machine cluster rather than a single machine, and that SQLServer’s

native operators are faster than Spark’s.

Translating real UDFs: We extracted and ran the UDF translator on 30 Scala and Java UDFs from

seven open-source repositories [sry,men,Nic,Ryu,biy,Abh,nod] that contained Spark applications.

In total, Acorn translated 27 of them (90%). Two of these could not be translated because the UDF

performed some form of I/O which cannot be expressed as a native operator, an inherent limitation

of translation. The third required translating a call to an unrecognized, external library function;
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Figure 3.9: Original and Acorn-translated UDFs from real-world Spark workloads.

although Acorn can perform the translation, we are cautious and disallow it since it may lead

to loading large library binaries and cause JVM memory contention during translation. Example

UDF translations: Figure 3.9 shows three example UDF translations with Acorn. The first is a

UDF (written in Scala) taken from the TPC-H workload. The UDF includes common programming

language mechanics such as variable declaration and short-circuiting boolean logic. As discussed

in §3.6.2 and shown in the example, Acorn circumvents lack of short-circuiting recognition by

breaking conjunctive logic into nested if statements. We note that state-of-the-art translators like

Froid [RPE17] can translate UDFs with such features.

The second and third UDFs contain examples of language features which Froid does not sup-
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Figure 3.10: Acorn vs baseline Spark SQL on the TPC-H workload (10 GB dataset), with varying

fractions of query operators being replaced by UDFs.

port. The second is a closure that, when applied to a typed DataFrame, extracts a class field named

birth as a column and performs a simple filter. Note that the translation of this UDF depends

on the DataFrame to which it is applied, highlighting the importance of dynamic translation based

on the currently loaded class definition: if the DataFrame schema or class file does not have an

accessible class field named birth, the UDF will raise an error and Acorn’s translation will

change accordingly. The third UDF takes a row from a DataFrame, splits it according to a regular

expression, and then creates an object instance using the result.

Froid has no clear mechanism for translating object-to-relation constructs such as the class

field extraction in the second UDF and the object created in the third UDF. In contrast, Acorn

leverages its ability to encode an entire table definition as an expression and use of object reflection

to translate both UDFs.

Translation overheads: Translating UDFs with Acorn is a multi-step process. To understand the

associated overheads, we test a version of Acorn that performs all of the translation steps other

than rewriting. We evaluate this version of Acorn on all 24 UDFs in the TPC-H workload (10 GB),

and observe that the total translation time is 540 ms, or 22.5 ms per query, which is well within

the margin of variability for workload completion time. Indeed, median workload completion time

with this version of Acorn was still 872 ms faster than the baseline due to normal variance.
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Figure 3.11: Acorn vs baseline Spark SQL on two graph processing algorithms: connected com-

ponents (CC) and belief propagation (BP). Baseline (Optimized) manually forces materi-

alization of intermediate data structures. Experiments used snapshots of a Twitter follower graph

(Twitter) and the Berkeley-Stanford web (BerkStan) [LK14].

3.8.4 Acorn: Putting it all Together

We next investigate the effects of combining Acorn’s predicate caching and UDF translation.

Benchmarks: In this experiment, we replace relational operators in the TPC-DS benchmark with

UDF versions of those operators. To investigate how performance changes with different workload

properties, we vary the percentage of operators replaced with UDFs from 20%–100%. As shown in

Figure 3.10, Acorn significantly improves performance over the baseline. Speedups with Acorn

were 2.6× with 20% of operators replaced, and sharply increased to 4.35× and 5.3× for 80% and

100% replacements, respectively. The reason is that, unlike the baseline, Acorn’s performance

remains mostly flat as more UDFs are introduced, since it can translate those UDFs and find reuse

opportunities.

Graph algorithms: We also evaluated Acorn on two popular graph processing algorithms: con-

nected components and belief propagation (§3.8.1). As Spark SQL’s poor optimization perfor-

mance is well known, a common “hack” to subvert this inefficiency is for workloads to force mate-

rialization by caching datasets, converting them to a (now deprecated) internal data structure, and

converting them back. Compared to the optimized baseline, Acorn provides median speedups of

1.4× and 1.7× for connected components and belief propagation (Figure 3.11); Acorn’s speedups
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are 2.3× and 3.2× over the baseline—all without any developer intervention.

3.9 Summary

The benefits that modern data analytics frameworks have achieved by using immutable datasets and

increased support for UDFs have come at the cost of suboptimal result caching. This project pre-

sented two novel techniques to efficiently enable aggressive result caching in theese frameworks.

First, we described a judicious adaptation of predicate analysis on analyzed query plans that avoids

unnecessary query optimization. Second, we presented a UDF translator that transparently com-

piles UDFs, expressed in general purpose languages, into native equivalents. Experiments with

our implementation of these techniques, Acorn, on several benchmark and real-world datasets

revealed speedups of 2×–5× over Spark SQL. Though our implementation and results use Spark

SQL, the underlying techniques generalize to other distributed data processing systems.
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CHAPTER 4

Jade: A Physical Visualization Design Tool

4.1 Overview

Interactive visualizations are powerful tools for exploring and understanding large data sets. How-

ever, building these applications is difficult and resource intensive; not only do application devel-

opers need to design a functional front-end visual interface that expresses the appropriate set of

tasks, they also need to ensure that the workload expected by the application can be executed by

the back-end database at interactive speeds.

This task is particularly difficult for several reasons. First, interactive applications have strict

latency requirements; human perceptual and cognition studies clearly demonstrate that both user

experience and quality of analytical insights suffer with increased latencies. Moreover, additional

studies show that certain types of interactions (i.e. interactions that perform different analytical

tasks) are even less latency tolerant than others. In sum, interactive applications demonstrate a

workload with strict latencies set at task-level. Second, interactive applications consist of both

a client and server component. Clients run the visual side of the application and are capable of

performing light processing, while servers can offer higher storage and processing capacities at

the cost of incurring a network delay. An application developer must make judicious use of these

two components. Finally, as we demonstrate using the commit history of a real-world interactive

application, interactive visualizations are often developed iteratively as both desired analytic tasks

and data characteristics evolve. This means that the arduous work of developing an architecture

that can support interactive speeds must be continuously re-evaluated as the demands of the front-
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end application change; if those demands exceed the limits of the current set up, then significant

effort must be put into overhauling the supporting architecture.

There is a clear need for a design tool that can automate much of this work, as exists in other

analytical execution systems. At a high level, the problem description is Given an input work-

load, latency constraints, and a set of resources, what is a sufficient architecture for executing this

workload?. This formulation parallels that of physical database design tools, which select a set of

indexes and material views to support a target workload making physical database design (PDD)

a natural point of comparison for designing a physical visualization design tool (PVD). Here, we

highlight how PVD differs from PDD in several key ways.

• Strict latency requirements. As mentioned, landmark cognition and human perception

studies [LH14,BHP97,CMS99,CMN83,New90] have concluded that perceived delay enor-

mously impacts the quality of user experience during analytical tasks. Liu et al [LH14]

quantified this effect in the context of interactive visualizations, with key findings indicating

that response times over 1000ms represent significant degradation for most analytic tasks,

with some classes of knowledge discovery tasks demonstrating significant degradation af-

ter 100ms. Thus, unlike the problem formulation in PDD, which seeks to minimize overall

costs, PVD must optimize to meet constraints on the order of hundred of milliseconds to

prevent noticeable performance degradation.

• Granularity of optimization. Additionally, the same body of work finds that some types of

interactions (e.g. zooming, clicking on a link) are less sensitive (i.e. more tolerant) of delays

than others (e.g. hovering for details, adjusting a slider). Given a limited resource budget,

more sensitive interactions such as the latter ought to be prioritized by a physical design

system. However, PDD optimizes at the granularity of queries; in PVD, where a single

query can be shared by multiple interactions, optimization needs to happen at the granularity

of interactions. This type of conflicting latency constraint can be met bluntly by forcing an

entire query to perform at the most restrictive latency constraint. However, this approach
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is often resource intensive to the point of being infeasible; instead, it is necessary to use

techniques such as split execution that can refactor a single query into multiple execution

plans, each meeting the latency constraint of its constituent interactions.

• Architecture Third, existing PDD tools manage data structures that are stored in the back-

end database.By contrast, interactive visualizations are often designed as applications that

run either in-browser or natively with support from a server. Thus, PVD needs decide opti-

mum placement of a data structures between the client and the server, accounting for both

computational cost and the associated cost of data transfer.

• Diversity of physical structures. Finally, the configurations suggested by PDD tools consist

of a set of columnar indexes and materialized views. However, visualization applications

require a more diverse set of data structures in order to meet its strict latency requirements,

including spatial indexes, pre-aggregations, and multi-dimensional indexes. The set of data

structures considered by a physical design tool impacts both the size of the search space and

the analysis techniques used to suggest data structures for a workload.

Based on our observations about the differences between these two domains, we propose a new

approach to the key components of a physical design tool targeting the interactive visualization

domain.

First, we define a novel workload representation, called Difftrees. Chen et al [CW20] first

introduced tree-like structures that compress multiple potential abstract syntax trees into a single

tree using choice nodes. In our work, we define a formal semantics for choice nodes, integrating

them into the relational algebraic trees used during physical planning. Our semantics build on

that of parameterizations already in use in applications such as SQLServer; however, while pa-

rameterizations are limited to replacing literals in selection predicates (replacing the expressions

e.g. state = "HI", state = GA" with the single expression state = @param, choice

nodes are more powerful because they can represent structural (i.e. non-literals) transformations,

even if they don’t share a similar grammatical structure (e.g. combining state = "HI" and
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state NOT IN["HI", "AL"] with the single expression ANY{state NOT IN["HI",

"AL"], state = "HI"}.

This has several benefits beyond simply condensing multiple queries into a single expression.

Because choice nodes have a precise semantics within relational algebra, the optimizer can lever-

age transformations over those choice nodes to uncover patterns in the workload that can be better

optimized. This parallels the benefit of parameterized queries, which support optimization in PDD

by revealing which columns are most suitable for indexing; similarly, choice nodes support opti-

mization for other data structures such as pre-computed aggregates or sliced cubes in PVD.

Additionally, choice nodes are powerful because they introduce a user-level grammatical fea-

ture against which latency expectations can be specified. Since updating a choice node (or group of

choice node) corresponds directly to an interaction in application-level user space, developers can

specify that all queries updating a choice node need to run within a specific limit. By decoupling

latency specifications from entire queries and replacing them with choice nodes, the optimizer

can judiciously manipulate difftrees to isolate latency-intolerant choice nodes and optimize their

execution plan.

As our second contribution, we formalize physical visualization design as an optimization

problem with unique characteristics. We incorporate hard constraints at the granularity of interac-

tions and physical placement as variables within the optimization problem. We empirically show

that the search space is prohibitively large, even for small workloads. We then provide two novel

techniques for solving it.

First, we leverage the precise semantics of choice nodes to introduce transformation rules that

allows the optimizer to use standard rule-based transformations to find potential execution plans.

We then avoid the overhead of exhaustive search by integrating heuristic search within a standard-

rule-based optimizer. Heuristic search systematically compares the list of available data structures

against the list of available transformations transformations, pruning unreachable data structures.

Empirically, this allows our tool to rapidly navigate the search space of candidate data structures

without sacrificing quality of results.
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Second, we make use of an key insight to simplify architecture selection. Since latency ex-

pectations are a hard constraint, there is no marginal benefit between two execution strategies that

both satisfy the same constraint even if one is significantly faster. This insight allows us to search

for a configuration by only exploring tradeoffs in resource consumption on the client and server

(i.e. the amount of physical memory required in each location by an execution plan). We use

this observation as a basis for an alternate architecture selection strategy, in which we use the set

of Pareto optimal execution plans to successfully generate an application-wide architecture in a

non-exhaustive search.

4.2 Motivating Example

A major challenge that developers face when creating interactive visual interfaces is handling the

alterations that occur over time to either the interface’s design and/or the underlying dataset. The

difficulty stems from the fact that, to meet performance and functionality expectations, both the

interface and system design must be kept in sync with one another throughout the creation and

updating processes. We illustrate the challenges of interface and system co-design using the New

York Times (NYT) US Covid visualization1 as a running example. The discussion is based on our

analysis of the commits in the interface’s public Github repository.2

Interface Description: At the onset of the COVID-19 pandemic, news agencies including NYT

designed and continually redesigned interactive visualizations of local and national pandemic

statistics characterizing factors such as testing rates, case prevalence, and hospitalizations. As

of June 2021, the NYT visualization consists of the three main views illustrated in Figure 4.3. The

view in Figure 4.1 is a bar chart listing the daily new case counts since the start of the pandemic—

the bar chart is overlaid with a line chart listing the 7-day rolling average. A tool tip shows the

rolling average for a given day. Figure 4.2 shows the second view, a county-level map of the US,

1https://www.nytimes.com/interactive/2021/us/covid-cases.html

2https://github.com/nytimes/covid-19-data
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[t]
Figure 4.1: Daily reported COVID-19 cases in the USA (bars) and 7-day rolling average (line).

[t]

Figure 4.2: County-level map renders one of sive COVID-19 metrics, chosen via the panel above

the map. Hovering over a county shows detailed statistics for the metric.

Figure 4.3: July 2021 New York Times US COVID visualization.
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where a user can color code the counties by different statistics, e.g., risk levels, total cases, deaths,

vaccinations.

Changes Over Time: Unsurprisingly, both the interface design and the underlying system im-

plementation of the NYT visualization changed over the course of the pandemic. Initially, the

available data was small, and directly loaded and processed by the user’s browser. Since the avail-

able data was sparse, the bar chart only reported daily case counts, and the map reported statistics

at the state granularity.

As more COVID-19 data was collected, the bar chart began reporting 7-day rolling averages

and the map also offered statistics at the county granularity—users could then select a state or

county to interactively update the bar chart. Further, the interface was steadily updated to incor-

porate additional statistics as they became reliably reported, e.g., hospitalization and vaccination

counts.

Finally, as the dataset grew substantially over time, it needed to be pre-processed and served

from a backend server to keep the interface responsive. The live NYT graphic uses the Svelte.js

framework to maintain responsiveness, a library similar to React.js with the advantage of pre-

computing many of the calculations performed that React.js performs in-browser. However, not all

interactions were amenable to pre-processing. For instance, users expected the bar chart to update

quickly when selecting a new county or state. Given the formidable cost of loading precomputed

averages for every statistic and county pair, this approach could not be done at “interactive speeds.”

As a result, the interface developers opted to have the interaction for choosing a county result in a

page reload, which users are accustomed to taking a longer amount of time.

Takeaways: This example illustrates several common properties associated with designing and

maintaining interactive visualization interfaces: (1) the interface is redesigned regularly, either in

response to data changes, user needs, or performance opportunities/limitations, e.g., selecting a

county changed to a page reload rather than an interactive update to the bar chart;(2) data changes

commonly require architectural changes, e.g., moving from an in-browser to a client-server model,

and the set of pre-computed data changes based on interface redesigns (e.g., the map granularity)
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Figure 4.4: An overview of Jade.

and the presence of new statistics; (3) users implicitly expect different response times for different

interaction types, e.g., page reload versus fluid interactions.

PVD tools such as Jade are meant to aid developers by decoupling the interface designer from

the underlying architectural concerns. The next section describes how Jade takes as input a rep-

resentation of the interface’s data flows , called Difftrees, and uses it to optimize, recommend,

and deploy a suitable execution architecture.

4.3 System Overview

Jade is a middleware that manages the optimization, deployment, and execution of interactive

visualizations (Figure 4.4). In the offline design phase, Jade takes as input a representation of

the interface’s underlying data flows, the designer’s responsiveness expectations for different in-

teractions, and memory budgets on the client and server, and performs physical optimization to

determine whath data structures to materialize, and an execution plan that spans the client and

server. In the online interaction phase, the visualization responds to user interactions by calling the

Jade client runtime to update the data flow state; the runtime re-runs the appropriate subplans,

and passes updated query results to the visualization in order to update the interface. Below, we

use the county-level heatmap metrics and and tool-tip interactions (Figure 4.2) to walk through

both phases.
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4.3.1 Design Phase

Interface Definition. Each heat map metric is a group-by aggregation query. For instance, the Hot

Spots (left) and Cases per Capita (Right) maps are expressed as:

SELECT county,avg(cases) SELECT county,sum(cases)

FROM us_covid_data FROM us_covid_data

GROUP BY county GROUP BY county

Hovering over a county renders a tooltip with additional statistics for the countys; the specific

statistics depending on current metric. For instance, the Cases per Capita map displays the total

cases and deaths:

SELECT sum(cases), sum(deaths)

FROM us_covid_data

WHERE county = "Albany"

Each set of queries is rooted in a common query structure, but vary in the highlighted

portions—these are precisely the variations that Jade explicitly models in order to perform physi-

cal visualization design. To do so, we extend the SQL grammar and query operators with the notion

of Choice Nodes that encode this variation. At a high level, choice nodes are a generalization of

sargable parameters to arbitrary expressions, lists, and query fragments. We call query plans with

choice nodes Difftrees.

Our syntax is inspired by SQL Server’s parameterization syntax [@NAME] TYPE-DEF that

defines the choice node and optionally assigns it the name. As in existing systems, a parameterized

literal or column identifier specifies a name and type (e.g., @cty str), and can be bound to any

type-compatible value. We further introduce ANY and MULTI types that respectively choose a

single element or list of elements from a pre-defined set of choices. ANY{c1,..,ck} can express

any of its k children. MULTI[op]{C} can express a list containing zero or more bound copies of

its argument C, concatenated by the operator op; C is almost always a ANY type. For instance, the

set of tooltip and map queries described above can be expressed as:
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countyγ@metric ANY{avg(..),sum(..)}

πcounty, cases σcounty=@cty str

us_covid_data us_covid_data

γsum(cases),sum(deaths)

Hover Click 
1

3

2 4

Figure 4.5: Difftrees for NYT Covid map visualization. Blue arrows denote interactions that

bind to Choice Nodes in the Difftrees.

Q1:

SELECT sum(cases),

FROM us_covid_data

WHERE county=@cty str

GROUP BY county

Q2:

SELECT county, @metric ANY{ avg(cases),sum(cases)}

FROM us_covid_data

GROUP BY county

The arguments to ANY and MULTI can be any expression or query statement (including subquery

expressions), and they can be used in any place that expressions and query statements are allowed.

Choice nodes with query statements as arguments are parsed similarly to the SQL UNION operator;

otherwise, they are parsed as logical operators that take a list of expressions as arguments.

All possible combinations of choices in a Difftree generate a unique, syntactically valid

SQL query. Maintaining syntactic validity is straightforward; a choice node type checks if each of
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its individual choices would type check. §4.4 discusses choice nodes and their semantics, including

correctness, in more detail.

We have implemented the NYT Covid visualization, as well as 8 additional real-world applica-

tions, using this syntax. In addition, recent work such as Precision Interfaces [CW20,CW21] have

developed methods to generate Difftrees directly from example queries.

Specifying User Interactions. Choice nodes describe the variation that users interactions can

specify. Once a developer registers a Difftree query with the system, she can bind the named

choice nodes to values based on client interactions—a value choice can be bound to any type-

consistent value, ANY can be bound to one of its arguments, and MULTI accepts a list of bindings

that are each applied to its argument.

For instance, the following Javascript code registers the map and tooltip queries, updates the

map visualization whenever the result of Q2 changes. When the user clicks on a metric, the

onClick handler extracts the index of the metric idx, and binds the choice node @metric

to it; it further specifies that the interaction should be fast.

tooltipdt = Jade.register(Q1, "tooltipdt")

mapdt = Jade.register(Q2, "mapdifftree")

mapdt.onData((table) => renderMap(table))

iact = Jade.registerIact({

updates: [metric],

latency: "fast"})

let onClick = (event) => {

idx = getMetricIdx(event.x)

iact({metric: idx})}

To put things together, Figure 4.5 illustrates the corresponding Difftrees for the above
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queries, along with the end-to-end interaction flow. (1) shows the Difftree for the different

heatmap metrics, where the specific aggregation function is parameterized using an ANY operator.

(2) clicking on one of the metrics binds ANY operator to a specific argument (e.g., avg(cases)),

which will cause the query to re-run; its results are then re-rendered in the map visualization (4).

Finally, when the user hovers over a county, its name is bound to the @cty choice node which

re-runs the tool-tip query.

Physical Design.

The Jade physical designer is built on top of the Apache Calcite rule-based query optimization

framework. The registered Difftrees are first parsed into an abstract syntax tree which is

validated and then converted into a tree of logical operators. The designer takes as input these

logical plans, interactions, latency expectations, and memory resources on the client and server. It

then proposes data structures to materialize, along with an execution plan over these data structures,

that will meet the latency expectations while meeting the memory budget. The data structures are

chosen from an extensible library that includes hash indexes, data cubes, and spatial indexes (a full

list is in Table 4.1).

Jade models each data structure in its library as an optimizer rule. It defines a tree pattern that

matches fragments of a Difftree, and replaces the matched subtree with an operator that rep-

resents the data structure. We define transformation rules for the choice nodes and add optimizer

heuristics to preferentially rewrite the query plan to maximize the likelihood of a data structure

match. Each data structure is a physical operator that provides cardinality and latency estimates

that integrate into Calcite’s cost estimator. The optimizer independently proposes multiple candi-

date execution plans for each Diffplan, and Jade then encodes the plans into an integer linear

problem to choose the combination of execution plans that meet the developer’s latency and re-

source constraints. The output specifies the client/server caching policies for each data structure,

and a split execution plan for each Difftree.

Figure 4.6 illustrates three example execution plans. Figure 4.6(a) chooses to materialize the

entire Difftree query containing all of the projected expressions; the view is small enough
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Materialize
Q: SELECT county, 

avg(cases), sum(cases)
FROM us_covid_data

GROUP BY county

πcounty,ANY{avg(cases),sum(cases)}

(a) Map Difftree

HashIndex
Key: cty
Q: SELECT *

FROM us_covid_data
WHERE county = @cty

γsum(cases),sum(deaths)

(b) Tooltip Difftree 1

DataCube
Dims: county
fs: sum(cases), sum(deaths)
Q: SELECT *

FROM us_covid_data

(c) Tooltip Difftree 2

σcounty=@cty

Figure 4.6: Possible split execution plans for the map and tooltip Difftrees. Blue text de-

notes data structures to materialize, red text denotes choice nodes. The dashed gray line denotes

execution in the browser (above) and server (below).

that it is pushed to the browser. The user interaction then projects the desired metric from the

materialized view. In contrast, there are two candidates for the tooltip Difftree. Figure 4.6(b)

replaces the filter with a hash index that is stored on the server; when the user hovers over a county,

it probes the hash table and sends the results to the browser, which then aggregates the data. The

alternative plan Figure 4.6(c) computes a data cube that natively supports slicing on county, and

pushes it to the browser.

In order to perform the design optimization within a reasonable amount of time (under 1 minute

for 9 real world applications), our main insight is to re-frame physical design from a cost mini-

mization problem to a constraint satisfaction problem—the designer is either able to meet the

developer’s latency expectations or not able to. To avoid the need for accurate cost estimation,

we draw from the perceptual cognition literature [LH14,BHP97,CMS99,CMN83,New90], which

defines three time scales of human cognition. Perceptual fusion, such as tracking an animation or

directly manipulating an object, occurs at≈100ms; cognitive operations, such as clicking on a link

or selecting an object, takes ≈1s; more complex or multi-step tasks occur at longer time scales.

Following this categorization, we discretize latency expectations into fast (< 100ms) and medium

(< 1s), and translate those respectively into constant or linear (or sub-linear) cost estimates for

a candidate execution plan. This allows the optimizer to aggressively reduce the search space to

plans that avoid complex joins. We describe these details in §4.5.
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4.3.2 Interaction Phase

When the user loads the visualization, the Jade runtime manages re-computation in response

to user interactions. As described above, the developer writes code to bind choice nodes in the

registered queries to concrete values based on user interactions. Since the optimizer may have

moved, split, or merged choice nodes during optimization, Jade tracks these transformations and

the runtime automatically routes the developer bindings to the appropriate physical data structures

(§4.4.4). Jade then reruns the execution plans that contain the bound choice nodes.

The execution plans are split across the server and client, and Jade inserts data transfer op-

erators at the split points, similar to the Exchange operator [Gra94]. Since data structures and

relational operators may be implemented in different languages and be executed on the client or

server, serialization costs between physical operators can be prohibitive. Jade requires that all

operators consume and produce data in Apache Arrow format [McK19], which enables zero-copy

between operators, and allows the client and server to share the same operator implementations

(Javascript in our prototype).

4.4 Interface Specification

A Difftree generalizes a logical query plan with three types of Choice Nodes that represent

degrees of freedom, and user interactions bind these choice nodes to specific values. When all

relevant choice nodes have been bound, the Difftree reduces to a standard query plan. In this

way, a Difftree ∆ is a compact representation of all of its expressible queries. Below, we first

give a brief, informal overview of the Difftree structure, followed by its formal semantics.

We then describe the Difftree-specific transformation rules used in the optimizer and provide

guarantees of its correctness.
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4.4.1 The Difftree Structure

Queries written in the extended SQL syntax are parsed into ASTs, which are then validated to

verify the query is syntactically correct. We provide validation (type-checking) rules for choice

nodes that ensure syntactic correctness. Once validated, an AST is planned into a tree of operators

and expressions, following the same process as regular queries. Trees that contain choice nodes,

which may exist in either operators or their expression trees are called Difftrees.

As shown in the previous section, the ANY{c1,..,cn} node chooses one of its child nodes.

For instance, binding j will return cj . The ANY node is flexible as it can express optional clauses

(one child is a subtree, the other is a default/null),

The VAL{type} node is similar to ANY. It is is parameterized by a type and can be bound to

any literal with that type.

Finally, the MULTI[θ,n,m]{ANY{c1,..,cn}} node is used wherever lists appear in the

SQL grammar (e.g., project lists, group-by lists, conjuction of predicates, list of sources). Its child

is always an ANY node, and binds its child between n and m times (by default, 0 and∞, respec-

tively). θ is an optional separator, used to define conjunctions or disjunctions. For instance, the

predicate county = ‘‘Alameda’’ OR county = ‘‘Contra Costa’’ can be gener-

ated by the following:

MULTI[OR]{ANY{county = VAL{str}}}

In practice, ANY nodes in expression trees are rewritten so that they only appear at the operator

plan level. MULTI operators, which may only appear in lists, only appear as the top-level item

in a list or pushed as close to the top of the list as possible. For instance, the filter operator

σANY{a,b}=VAL{num} would be rewritten as ANY{σa=V AL{num}, σb=V AL{num}}, and the projection

operator π[a, ANY{b,c}] would be rewritten as πANY{[a,b], [a,c]}. This helps simplify the set of

transform rules in the optimizer.

We say a Difftree type checks if every query q ∈ {∆} type checks. Column parameteriza-

tions (VAL) type check if their specified literal type would type check. An ANY is typed as a union
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type of each of its individual choices; likewise, a MULTI is typed as a List<T> where T is the

union type of its choices.

Validation rules for choice nodes can be summarized as follows: For all SPJ queries, an ANY

or MULTI type checks (and can be validated) if each of its individual choices type check. If a

query includes grouping or aggregation, its AST is valid if one of two conditions are met: (1) All

choices in a SELECT clause are aggregations, or (2) all non-aggregation choices are in a static

(non-choice) grouping list. Finally, choice nodes in FROM clauses or subqueries must be UNION

compatible (i.e. always produce the same schema).

4.4.2 Formal Semantics

A Difftree ∆ represents the set of possible plans that the interface can express through all

combinations of valid bindings of its choice nodes. We denote this set as {∆}. For instance, the

set of plans for ANY{a,ANY{b,c}} would be {a, b, c}. In this section, we formally define all

operators in a Difftree with respect to the set of the plans they encode.

ANY is a choice node. Its children are an ordered tuple of subtrees consisting of either ANY

nodes or SQL operators:

∅ : ANY(c1 . . . cn)

ANY may have any arbitrary number of children; however, an instantiation of an ANY node

requires choosing exactly one of its children. As ANY has no operator type, it is preceded by the

empty signifier ∅. When it is clear from the context, we drop ∅ to simplify the notation.

An ANY node with children (c1...cn) represents the set of subtrees denoted by:

{ANY } =
n⋃
i

{ci}

If n = 1, then {ANY } = {c1}. Note that by the definition of 4.4.2.1 below, this means that

ANY (c1) = c1.
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MULTI is a choice node that appears where lists can appear in the SQL grammar.

Θ : MULTI〈∅ : ANY(c1 . . . cn)〉

MULTI’s only child is an ANY node and can be instantiated multiple times. Each instantiation

is an item from its associated ANY’s children c1...cn. Multiple choices by default generate a list,

but a combiner for logical expressions can be specified with AND or OR.

SQL operators are denoted by the form

Θ : SQL〈θ : EXP〉(c1...cn)

Θ is the relational algebra operator type (e.g., σ, γ). θ : EXP is the parameterizing expression tree

for that operator type, defined below. (c1...cn) is an ordered tuple of child nodes. For example,

the node π : SQL〈[attr1...attrn]〉(R1) denotes a SQL node that projects [attr1...attrn] and has a

single child, the relation R1. Where irrelevant, expression nodes are often omitted; e.g. the above

can be written π : SQL(R1). The set of trees that a non-choice (SQL) node represents is derived

from its children. The full set of possible subtrees rooted at a SQL node is the crossproduct of the

diffsets of each child:

{Θ : SQL(c1, .., cn}} = {Θ(s1, . . . , sn)}|si ∈ {ci}∀i ∈ [1, n]}

SQL Expressions are similar to SQL operators:

θ : EXP (c1 . . . cn)

Unlike SQL operators, all expression trees are bound to a Θ : SQL operator which they pa-

rameterize. Expressions can be attributes, literals (including numerics, text, or lists), functions, or

logical operators such as AND, OR, <,=, >, such as projection lists, filter expressions, aggre-

gate functions etc. Choice nodes may appear in expression trees, in which case their children must

all be expression nodes. The diffset is then derived in a similar manner as for SQL operators. For

readability, child tuples are omitted below.

{Θ : SQL〈ANY (θ1 : EXP . . . θn : EXP )〉}
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=
n⋃
i=1

{Θ : SQL〈θi : EXP 〉}

Note that we define the diffset of expression Difftrees in such a way that they can always

be rewritten as a Difftree of the operator they parameterize, as in the following:

{ANY (Θ : SQL〈θ1 : EXP 〉 . . .Θ : SQL〈θn : EXP 〉)}

Consequently, expression and operator trees are treated identically in the following transfor-

mations.

4.4.2.1 Equality

Informally, two Difftrees rooted at nodes namedD1 andD2 respectively are equivalent if their

diffsets are the same. Formally,

D1 = D2 ↔ {D1} ⊆ {D2} ∧ {D2} ⊆ {D1}

. Note that this does not require D1 and D2 to have the same diffnode type.

We further say that two Difftrees are equivalent if their set of plans are equivalent ∆1 =

∆2 ⇐⇒ {∆1} = {∆2}, and that Difftree ∆1 subsumes ∆2 if {D2} ⊆ {D1}.

4.4.3 Transformation Rules

Given an initial Difftree ∆, there are a large number of different Difftrees that are equiv-

alent or that subsume ∆, but enable different combinations of physical optimizations. In addition,

data structures define matching patterns as Difftree fragments. For both reasons, it is useful to

restructure and move choice nodes during optimization. To this end, we define three choice node

transformation rules. These rules are safe in that the resulting Difftree is equivalent to the input

Difftree, as demonstrated by the accompanying proofs.

Jade records the sequence of transformation rules that have been applied, so that interaction
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bindings written relative to the original Difftree can be correctly routed and translated to the

choice nodes in the final transformed plan.

4.4.3.1 Partition

A partition of a diffnode A = ANY (a1, . . . , an) splits its children into a proper partition. Let

Ψ : [1, n]→ [1,m] be a partitioning function that maps each child of A to one of m ≤ n partitions.

We define the resulting partitions s1 to sm as ordered lists:

si = [aj|j ∈ [1, n] ∧Ψ(j) = i]

We now define the partition function as follows, where we use splat notation to“unwrap” each

partition si as arguments in a new ANY node:

partitionΨ(ANY (a1, . . .))

→

ANY (ANY (s1...), . . . , ANY (sm...))

The partition of is valid if the following conditions for partitioning a set are met:

• ∀si, si 6= ∅

• ∪{si...sm} = {ai : a ∈ A}

• ∀s1, s2, s1 ∩ s2 = ∅

Proof. We show that partitionΨ as defined above preserves equivalence with respect to the result-
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ing diffsets.

{ANY (ANY (s1...), . . . , ANY (sm...))} (4.1)

=
m⋃
i=1

{ANY (si...)} (4.2)

=
m⋃
i=1

{
k⋃
j=1

aj|Ψ(j) = i} (4.3)

=
m⋃
i=1

⋃
Ψ(j)=i

{aj}} (4.4)

=
n⋃
k=1

{ak} (4.5)

= {ANY (a1, . . . , an} (4.6)

Equations 2 and 3 follow from the definition of a diffset, equations 4 and 5 follow from the defini-

tion of the partition function Ψ, equation 6 follows again from the definition of a diffset.

4.4.3.2 Push

The push operation requires that the input subtree is rooted at a SQL-type node that has at least

one child of type ANY:

P = Θ : SQL(p1..pk−1, ANY (c1..cm), pk+1...pn)

The push operation “pushes” the diffnode one level higher through the parent. Let Q be the output

node after the transformation; then,

P → ∅ : ANY (q1 . . . qm)

where

qi = Θ : SQL(p1...pk−1, ci, pk+1...pn)

We show that the push operation above preserves the equivalence {P} = {Q}.
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Proof.

P (p1 . . . pk−1, ANY (c1 . . . cm), pk+1 . . . pn) (4.7)

= {P (s1 . . . sn) : s1 ∈ {pk}∀i 6= k, sk ∈ {ANY (c1 . . . cm}} (4.8)

= {P (s1 . . . sn) : s1 ∈ {pk}∀i 6= k, sk ∈
m⋃
i=1

{ci}} (4.9)

= {P (s1 . . . sn) : s1 ∈ {pk}∀i 6= k, sk = {c1}} (4.10)

. . . ∪ {P (s1 . . . sn) : s1 ∈ {pk}∀i 6= k, sk = {cm}} (4.11)

=
m⋃
i=1

{P (s1 . . . sn) : s1 ∈ {pk}∀i 6= k, sk = {ci}} (4.12)

Equation 7 is the definition of the diffset of P. Equation 8 follows from the definition of the push

operation and Equation 9 follows from the definition of an ANY diffset. Equations 10 (and 11,

should be on one line) is a distribution of a union and Equation 12 is the definition a diffset.

4.4.3.3 Merge

Finally, we allow a subtree rooted at diffnode to “merge” the children of a child diffnode into its

own children, eliminating the merged child diffnode in the process:

ANY (c1...ck−1, ANY (d1...dm), ck+1...cn)→

ANY (c1..ck−1, d1...dm, ck+1...cn)
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Proof.

n⋃
i=1

{ci} (4.13)

=
k−1⋃
i=1

{ci} ∪ {ck} ∪
n⋃

i=k+1

{ci} (4.14)

=
k−1⋃
i=1

{ci} ∪
m⋃
j=1

{dj} ∪
n⋃

i=k+1

{ci} (4.15)

=
k−1⋃
i=1

{ci} ∪ {{d1} . . . {dm}} ∪
n⋃

i=k+1

{ci} (4.16)

Equation 13 is the definition of a diffset. Equation 14 follows from the definition of a union.

Equation 15 follows from the definition of a diffset and Equation 16 is the expansion of a union.

4.4.4 Semantic Rerouting

As diffnodes may be transformed with any of the three above operations which create, delete, and

reassign diffnodes, the global mapping and input relations must all be rerouted accordingly. This

process is detailed for each transformation type below. Push No new nodes are created or deleted

during a push transformation, so no re-routing is needed. Partition A partition transformation

creates m new choice nodes and reassigns the children of the transformed choice node. All of the

newly choice nodes in the subtree also need a routing list.

Recall that the partition function creates ordered list:

si = [aj|j ∈ [1, n] ∧Ψ(j) = i]

To generate the routing table for the newly created node labeled @c, we define an inverse partition

function unique to each partition that maps the original indexes to the partitioned indexes, where

Ψ−1
i corresponds to the diffnode with the ID i:
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Ψ−1
ı (j)→


∃si[k] = aj k

else −1

Merge The merge operation removes a choice node from a Difftree by merging its children

into its parents children.

For the parent diffnode @p with n children whose kth child @c merges its m children into @p,

we define a piecewise routing function for the merge operation:

merge(@p,@c) =


@p ∈ [1, k − 1]→ [1, k − 1]

@p = k → @p+ @c− 1

@p ∈ [k + 1, n]→ @p+m− 1

4.5 Physical Optimization

During physical optimization, Jade selects an optimization plan for the application. An opti-

mization plan consists of a set of physical plans for each Difftree, with physical operators

for each data structure encoding their respective placement policies. As in physical database de-

sign [CN98,BC08,DPA11], optimization happens in two steps. First, candidate physical plans are

generated for each individual Difftree, with each plan contributing a potential set of data struc-

tures. In the second step, the combination of candidate plans for each Difftree is enumerated;

each combination represents a potential optimization plan. Jade encodes each potential optimiza-

tion problem as an integer linear programming (ILP) problem, along with constraints regarding

resource usage and latency.

There are two unique challenges compared to PDD. First, PVD must navigate the very large

search space inherent to the number of potential data structures and potentially infinite number

transformations that can be applied to the query graph. Second, in order to meet strict latency
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Jade Data Structure Library

Name Description Source

Generic Datacube multi-dimensional aggregation Database

kd-Bush 2-D spatial index Jade

Prefix Sum Index cumulative sum Jade

Sorted Index range search on columns Jade

Hashcube multi-dimensional COUNT External

Nanocube multi-dimensional aggregation External

BitFilter Index static boolean filters Jade

R-tree multi-dimensional spatial index Jade

Key-Value Cache precomputed storage Jade

Table 4.1: A summary of data structures implemented by Jade.

bounds, PVD considers all optimizing data structures in a single plan as a unit, rather than adding

data structures to minimize overall latency.

Below, we first give an overview of the physical optimization process and cost model followed

by how new data structures are added to Jade and a description of the optimization process.

4.5.1 Data Structure Library

Different interactive visualizations benefit from a diverse set of optimizing data structures. Along

with general data structures such as data cubes, indexes, materialized views and key-value stores,

certain types of interactions can only achieve sufficiently interactive speeds by leveraging bespoke

data structures such as hashcubes [PSS16] or r-tree indexes [TLW19]. Consequently, Jade sup-

ports an extensible library of data structures that the optimizer chooses from, with our prototype

implementing the data structures listed in Table 4.1.

70



4.5.1.1 During Optimization

Jade models data structures as physical operators with expression trees. For example, a (simpli-

fied) datacube operator defined as having two expression trees (a grouping list and an aggregation

list), and a single child relational operator might define the constructor Datacube(groupList:

MULTI, aggList: ANY, child: RelOp). Additionally, data structure constructors

may use union types, e.g. MULTI<List<T>>|List<T> indicating that an expression tree may

be either a choice node or a static list. Union types allow more flexibility in defining operators. For

simplicity, we use singly typed constructors throughout our example but note of how union types

are accommodated.

Pattern matching rules provide instructions to the optimizer as to how the data structure can

be used in a plan. Utilizing pattern matching rules builds on the modularity-preserving approach

espoused by e.g. the Volcano optimizer [GM93] and modern frameworks such as Catalyst [CB18],

enabling compatibility in many physical optimizers and flexibility in how data structure rules are

applied.

Pattern matching rules transform a subtree in the Difftree to use a data structure operator.

Patterns identify a subtree by matching node types and parent-child relationships. Nodes in the

matched subtree can be bound to variables, which can then in turn be used to construct expression

trees and arguments to the data structure operator. For example, a pattern matching rule that

replaces an aggregation with the simplified data cube in our example might look like:

Aggregate(groups: MULTI<_>, aggs: _, child: _)

=>

new Datacube(groups, aggs, child)

indicates an unspecified (e.g. wildcard) type. Note that while here we borrow a Scala-like

syntax for conciseness and readability, rules in the prototype use a different syntax. Multiple

patterns may map to the same data structure; however, it is the developers responsibility to ensure

that the initialization of the data structure conforms to its constructors expected types.
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4.5.1.2 During Interaction

Jade manages query execution during application runtime. To do so, Jade requires that each

data structure provide two functions, build and query.

build provides instructions for how to physically instantiate a data structure. It takes as input

a table-like binary (an Arrow table) for each of its children. Its output is the a binary containing the

physical data structure built by its expression tree. As it may be called by Jade before interaction

begins, choice nodes in the data structure do not provide a binding and instead expose their type

information, including a list of choices for ANY and MULTI. In the data cube example, build

should create a data cube whose dimensions are all columns in the MULTI choice list and whose

measures are all aggregates in the ANY choice list. Data structures with union typed constructors

should inspect their expression trees and write build instructions accordingly.

query takes as input the data structure output by build. Jade guarantees that it will only

be called during when bindings are available for all choice nodes in the Difftree. The body

of query may make calls to the system function Jade.bind() for any of its expression trees

that are typed as choice nodes. In the running example, Jade.bind(groups) will bind the

MULTI choice node with a valid selection based on the application state. If Jade.bind() is

incorrectly called on a non-choice node, it will simply return the static value, making it safe to use

on union-typed expression trees. The output of query is a table-like binary (also an Arrow file)

containing the results of the executed query.

4.5.2 Cost estimation

Data structure operators must also provide functions that estimate the latency and size of the data

structure for use during optimization. To aid in calculating these metrics, data structures may

access the global catalogue for table schemas and cardinality metadata.

Latency (cost) estimation is a generally difficult problem, and Jade takes a simplified ap-

proach, relying on two metrics to estimate latency. Latency calculations take into account data
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transfer time and execution time. Data transfer depends on placement; if a data structure is co-

located with the application, then its transfer time is zero. Otherwise, it varies with output cardi-

nality (the amount of data transferred) and bandwidth speeds; Jade defaults to a transfer estimate

of 10Mb/s but allows users to customize this value.

Execution time is estimated as a function of the number of rows processed during execution.

Developers are therefore required to provide an estimate of rowCount. While developers are

free to implement arbitrarily complex estimations, Jade provides pre-defined traits indicating

that the data structure’s processing speed is “fast”, “medium” , or “slow”, roughly corresponding

to categorizations from human perception literature [LH14, CMN83]. These traits assume that

“fast” data structures process a constant number of rows (i.e. ¡ 10 rows processed). “Medium”

data structures are assumed to operate in linear time, and process rows amounting to the sum of

their child operators cardinality. Typically, optimizing data structures are not “slow”, but we

nonetheless define this class as processing the cross product of their inputs.

Jade makes probabilistic estimates for choice nodes, assuming each choice has an equal prob-

ability of being chosen unless given an alternative distribution. In the absence of an explicit upper

limit on the size of its list, a MULTI is estimated at its maximum size, which is the list produced by

selecting each item from among its potential choices. Given a limit m, MULTI estimates its size

and cost as the largest possible list with size m

Finally, developers should implement an estimation for the property size, indicate how much

physical space the data structure requires when built. There is no default implementation for size;

however, for the data structures used in the prototype, we found that data structures typically

provide size functions in their associated literature that can be directly translated into the data

structure operator.

With these three metrics (size, rowCount, and cardinality, Jade can recursively

generate reasonably accurate estimates for both size and latency. Jade calculates rowSize for a

given schema using catalogue metadata. Execution time for a single operator is then rowCount

* rowSize, divided by the processing speed. Processing speed depends heavily on the backend
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Figure 4.7: Conditional matching process on an input Difftree. In (1), the datacube transfor-

mation rule finds a conditional match, with the blue ANY interrupting a potential match. In (2), a

PushAnyRule is pushed to the top of the stack, moving the ANY again highlighted in blue out

of the way of the match. In (3) the datacube transformation rule fires again, this time successfully

replacing a subtree.

architecture, but we empirically found that a single modern PC can process about 350kB/ms. .

Similar calculations estimate data transfer (depending, again, on placement policies, discussed in

Section 4.5.5) and resource consumption.

4.5.3 Per-Difftree Optimization

The first step in the optimization problem is generating candidate data structures for a single

Difftree. Given a Difftree and a set of latency requirements, the problem at this step is

to generate all potential physical plans meeting the latency requirement that are reachable by ap-

plying transformation rules. Jade assumes that at this point Difftrees have been canonicalized

as described in Section 4.4.

Rules can be either the Difftree transformation rules described above or a data structure

rule which replaces a logical subtree with a physical operator. Standard logical transformation

rules otherwise supplied to the optimizer may also be included, but these rules typically do not
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match choice nodes and are thus omitted from this discussion for brevity. In this section, we

describe how Jade navigates the space of transformations and guides the search problem towards

beneficial states.

At each step in the search problem, the Difftree ∆ can take a transformation step t:

(∆) → ∆′. Each node in the input Difftree is considered as a potential root of a matching

subtree. If a potential root is found, pattern matching continues, recursively matching expression

trees and then children until either the full pattern is matched, in which case the pattern is applied,

or a mismatch is encountered, causing pattern matching to abort and begin at the next root. In an

exhaustive search, ∆ takes all transformation steps available, recursively applying transformations

to the output of each transformation steps. As a baseline for Jade, we implement exhaustive

search with the measures suggested by Volcano [GM93], including memoization, pruning of re-

source constraint violation, and cycle detection/elimination.

However, as we show in Section 4.6.3, we find that even optimized exhaustive search is either

non-terminating or does not reliably find useful plans within a five-minute time limit on even small

Difftrees. The primary reason for this is that Difftrees frequently need to be transformed

to match the most useful data structure pattern, but depth-first exhaustive search either gets stuck

in very deep, unhelpful branches while breadth-first exhaustive search meticulously explores many

similar combinations of rule applications before moving on.

We use these observations to shape the heuristics employed by Jade to guide the search algo-

rithm to useful transformations.

Heuristic Pruning. Based on the observation that Difftree transformations are useful only

when used to move a Difftree towards a data structure pattern, Jade uses a technique called

conditional match pruning. The heuristic pruning algorithm is based off a depth-first search

similar to the exhaustive search described above, with two differences.

First, unlike exhaustive search, only data structure pattern rules are initially considered as part

of a depth-first search. Second, when a mismatch is encountered, instead of aborting the current
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rule, a conditional match search begins. Conditional matching allows mismatches if and only if

the node in the input tree that caused a mismatch was a choice node (and can be “pushed” out of

the subtree) or the direct child of a choice node (and can be “partitioned” out of the choice node).

In either of these cases, the conditional match algorithm pushes the conditionally matched rule

and the appropriate Difftree transformation rule onto the stack. The transformation rule then

attempts to move the offending mismatching node, and the conditionally matched rules resumes

an attempt to match the rest of the pattern.

For example, one application we encountered defines a default list of grouping dimensions for

a dataset, but also optionally allows the user to select customizable groups. We represent this as an

Aggregate operation whose groups expression tree is an ANY choice between a preset list or

a MULTI operator (omitting irrelevant parts of the Difftree):

Aggregate(@g1 ANY{@g2 MULTI<List<ColID>>, List<ColID>}, ...)

This is a conditional match for the datacube transformation pattern, which matches a MULTI in a

grouping list. As illustrated in Figure 4.7, if @g1 is “pushed” out of the expression tree and into an

operator, the datacube transformation rule will generate a candidate plan.

Conditional matching is employed as part of a memoized depth-first exploration. This means

that all data structures that may match are explored independently, and transformation rules are

applied recursively to the output of a successful transformation step. As we show in Figure 4.13 it

is sufficient to drastically reduce the number of transformation steps and data structures explored,

while still finding all of the unique plans that would be found in an exhaustive search.

4.5.4 Candidate Generation

Conditional matching is employed as part of a memoized depth-first exploration. This means that

all data structures that may match are explored independently, and transformation rules are applied

recursively to the output of a successful transformation step. As we show in Figure 4.13 it is

sufficient to drastically reduce the number of transformation steps and data structures explored,
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while still finding all of the unique plans that would be found in an exhaustive search.

After a successful data structure transformation step t: (∆)→ ∆′, Jade further generates a

plan reflecting three placement policies. In the first two placement policies, data structures storage

and plan execution occur entirely on the client or entirely on the server. In the third placement

policy, the execution plan is split at the first data structure(s) encountered from the root on each

root-to-leaf path. This split divides the tree into a “top” half, containing the root (and no data

structure operators), and a “bottom” half containing all data structure operators: ∆′ → (∆′t,∆
′
b).

In this plan, ∆′b (and its data structures) is stored and executed on the server, with data structures

sent to the client for execution of ∆′t. This policy is particularly useful when ∆′t is a subtree with

only “fast” interactions and ∆′b is a subtree with interactions that can tolerate longer latencies. All

three placement policies are considered candidates in the configuration selection described next.

4.5.5 Cross-Difftree Optimization

Heuristic search yields a set of candidate physical plans for each view in an application. Jade

must then optimize across all Difftrees in an application to find, if possible, a configuration

that meets the resource and latency constraints. This problem can be formalized as a constrained

integer linear programming (ILP) problem, as shown in physical database design [PA07], such as in

AutoAdmin [BC08] and Cophy [DPA11]. Jade uses a problem formulation that takes a simplified

approach as the latter; here we provide a brief description of the ILP formulation, highlighting

modifications unique to Jade. For more detailed description of the general problem, we refer

readers back to prior literature.

The major difference between our problem formulation and that of PDD is that unlike PDD,

we do not consider a set of data structures and evaluate the cost of each Difftree depending on

adding and removing data structures from the set. This is because we seek to meet hard latency

constraints, where as PDD seeks to minimize the overall execution time of the workload. There-

fore, we choose from a set of plans that provide guarantees about hard latency constraints, and do
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not bother considering a data structure if it is not essential to a plan that meets those constraints. A

set of data structures and a physical plan are a single unit in the configuration problem, allowing

cost estimation to be inferred (and cached) directly in the plan.

ILP Formulation. We first consider an unconstrained version of the problem, where we seek to

minimize overall latency without resource constraints. The inputs to the optimization problem are

the resource budget for the client and server {Bc, Bs} respectively, user-provided per-interaction

latency constraints L = {l1...ln}, and a set of candidate plans for each Difftree in the interface.

The goal is to select one candidate plan for each Difftree that satisfies the latency constraints

for all interactions encoded in tree but that also fits in the resource budget.

Each candidate plan has an execution cost and a data transfer cost; its also contributes resource

consumption from either the client, server, or both. We use βdk to indicate the operator cost of

Difftree d using the candidate physical plan k and use αdka to indicate the data transfer cost

if plan k for Difftree d uses placement policy a. The unconstrained problem (e.g ignoring

resource and latency constraints) is then as follows.

Minimize:

∑
d∈D
k∈Kd

βdkxdk +
∑
d∈D
k∈Kd
a∈Ak

xdkykaαdka

for xdk ∈ [0, 1], ydka ∈ 0, 1

subject to:

∑
k∈[1,Kd]

xdk = 1,
∑

k∈[1,Kd]
a∈[1,Ak]

ydka = 1

xdk controls the selection of a plan for Difftree d while ydka controls the placement of each

data structure in k. Note that k and a are both unique to each query, with Kd indicating the total

set of plans for d and Ak indicating the set placement policies for plan k.
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Adding Constraints. From the general problem, adding constraints is straightforward; for exam-

ple, ensuring that Jade does not violate resource capabilities on the server and client are enforced

by the constraint:

∑
k∈[1,Kd]
a∈[1,Ak]

ydka × sizes(a) ≤ Bs

∑
k∈[1,Kd]
a∈[1,Ak]

ydka × sizec(a) ≤ Bc

More importantly, the constraint mechanism is used to enforce per-interaction latency bounds.

If we would only like to set a constraint against the entire Difftree, we can add a hard constraint

to the cost term of d, e.g. βdkxdk + αdkaxdkydka ≤ 500ms.

However, since a Difftree represents multiple interactions, we introduce another variable

to enforce constraints per-interaction:

βdkixdk + αdkiaxdkydkia ≤ “medium”

This constraint specifies that the cost of the subtree containing the choice nodes used by in-

teraction i in the Difftree d should operate within medium latency under the optimization plan

for d; in effect, we treat the interaction as its own Difftree.Note that this only differs from the

constraint against the entire tree if k uses a split-execution policy. Because Jade estimates cost

recursively, per-interaction costs are obtainable directly from the physical plan itself.

Heuristic Approximation The above problem increases with complexity depending on the num-

ber of generated candidates, constraints, and the number of interactions. Solving it can potentially

take minutes, as we show in evaluation. Thus, we devise a heuristic approach to its solution. The

heuristic approach relies on two observations. First, as this is a constraint satisfaction and not min-

imization problem, as long as latency constraints are met for an individual interaction, there is no

marginal benefit from speeding that interaction up further. Second, once we only consider plans

that satisfy latency constraints, the only remaining constraints dictate the trade off in resource us-
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(a) Only the blue-shaded plans satisfy latency

constraints.

(b) Red-shaded plan is strictly worse.

Figure 4.8: Observations that allow for initial pruning of plans that either (a) fail to satisfy latency

contraints or (b) are strictly worse in terms of resource consumption.

age between the client and server. Typically, reducing resource usage in one location causes an

increase in usage on the other (accounting also for resource sharing between plans).

Together, these observations indicate that latency-satisfying plans form a Pareto optimization

front with respect to resource usage. Noting that client resources are typically more constrained,

our heuristic approach begins by minimizing client usage, selecting the Pareto-element for each

Difftree that uses the least client resources. If client resources are overloaded, then there is no

solution; however, if server resources are overloaded, then we explore the next solution by replac-

ing the plan that maximizes the ratio ∆Server
∆Client

, e.g. the plan that adds the least additional resources

to the client while removing the most from the server. This solution degrades to exhaustive explo-

ration of all combinations of plans within their Pareto front; however, in our experiments, it finds

an available solution if one exists within seconds.

4.6 Evaluation

In this section, we attempt to answer the following research questions about physical visualization

design.

RQ1: How does Jade compare directly against commercial physical database design?
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RQ2: How important is per-interaction granularity and visualization specific data structures in

finding suitable physical designs?

RQ3: How long does optimization itself take?

To answer these we questions, we ported 9 visual applications found in news organizations,

public galleries, and scientific publications to the Jade system (Table 4.2). For each application,

we translated the charts and interactions into Difftrees and interaction mappings. We charac-

terize three of the applications as simple because they have a single chart updated by one or two

interactions. The rest are complex, as they mave multiple charts and interactions. Multiple charts

are difficult because their interactions compete for resources. We characterize each applications

complexity based on the number of views and interactions. Three of the nine applications are

classified as simple, consisting of a single updated view and only one or two interactions. The

remaining six applications we classify as complex, including the NYT Covid visualization shown

earlier in Figure 4.3. These applications have more than one view that can be updated by the

user (i.e. the bar chart and county map) and have multiple interactions that update different views

(i.e. hovering over a bar, changing a metric, or selecting a county). Key to this distinction is that

multiple views and interactions introduce competition for resources.

For each application, we downloaded their datasets and translated the charts, widgets, and in-

teractions into the Difftree grammar. Several applications ’classified’ as simple were intended

Interactive Application Benchmarks

Name Complexity Views Interactions

Cars [car] Simple Scatterplot of horsepower and miles per gallon Click-drag selection retrieves cars in bounding box

Yemen Data Project [ydp] Simple Charts the number of missile attacks in Yemen Retrieves details based on date and target

NPR Book Concierge [npr] Simple Displays book information and reviews Filter by year and tags to retrieve matches

JHU Covid [jhu] Complex Global map of COVID statistics Select country or metric, retrieve by date

NYT Vaccinations [nyta] Complex Map of vaccination rates in USA. Explore by state, county, and age group.

NYT Covid [nytb] Complex Map of COVID statistics by state and county in the USA. Set aggregation metric, explore by location

Flights [fli] Complex Bar and line graphs showing flight delay staistics. Subaggregate by e.g. airline, airport, date

iCheck [ich] Complex Compares individual voting records against a reference group. Set individual, reference group, date range

FairVis [CEH19] Complex Binary classification algorithm auditor Set aggregate metrics and create arbitrary subgroups.

Table 4.2: Visualization applications used in Jade benchmark.
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Figure 4.9: Scaling “simple” applications from 10k to 100M records. Reported values are the

mean latency across all interactions. Filled area indicates 95th percentiles.

to run on very small datasets and, as part of their design, fetched all records matching a user se-

lection. Because scaling such applications inevitably results in transferring untenable amounts of

data, we modified these applications by adding a limit clause. Across all experiments, Jade is

hosted on a 2015 15” MacBook Pro. We generate interactive input values by determining the do-

main of inputs for the interaction and using a random seed to select from that domain, weighted

by the input distribution. As the baseline for comparison varies for each experiment, we describe

them in the relevant section.

4.6.1 Scaling Single-Interaction Applications

In this experiment, we compare Jade to a commercial cloud database, Amazon Redshift, with

automated physical design capabilities such as automated caching workload-sensitive selection of

sort and distribution keys. We warm the Redshift (and auto-optimization selection) instance by

discarding the first 15 trials and reporting over the next 10. To evaluate Jade in this context, we

scale the input data for all simple applications from 10K records all the way to 100M records, and

set the latency expectations for all interactions to “fast”. Figure 4.9 reports the average latency of
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(a) iCheck Application (b) FairVis Application

Figure 4.10: Comparison of physical design plans generated by Jade and the Database Tuning

Advisor implementation of AutoAdmin in SQLServer on two representative applications.

all interactions across all three applications, along with 95th percentiles for each trial. Both the

baseline and Jade are capable of meeting interactive latency expectations for data sizes up to 1M

records. However, at or above 1M records the baseline begins to overshoot the desired latency.

At 100M records, it can no longer guarantee even subsecond response times; by contrast, Jade’s

performance remains nearly constant.

4.6.2 Optimizing Multi-Interaction Applications

Complex applications introduce both competition for resources and potentially conflicting latency

constraints. In this set of experiments, we compare the ability of Jade to find suitable physical

designs that satisfy latency constraints against commercial physical database design tools. First,

we compare directly to the commercial implementation of AutoAdmin, SQLServer’s Database

Tuning Adviser. To retrieve recommendations from AutoAdmin, we loaded a database with the

application data scaled to 10M records and provided the database tuning advisor with a sample 100

query workload, derived from interacting with the interface. The recommended indexes and views

were then instantiated. Figure 4.10 shows the results in two representative applications.

The first application, iCheck represents an ideal candidate for optimization by AutoAdmin, as

it is most amenable to support from the indexes and views supported by AutoAdmin, while the
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(a) Latencies for interactions in the “fast” perceptual category.

(b) Latencies for interactions in the “medium” perceptual category.

Figure 4.11: Jade is the latency of the execution plan generated when the optimizer included

a constraint reflecting the perceptual requirement. Jade-NC is the latency when the optimizer

attempted to minimize overall latency (i.e. no constraint.) Dataset size is 10M records. Error bars

indicate 5th to 95th percentiles.
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latter, FairVis, is characterized by heavy re-grouping and aggregation. Even with a candidate rated

highly amenable to standard database optimizations, the AutoAdmin baseline massively underper-

formed expectations. Neither application could achieve the desired interaction latencies using the

AutoAdmin configuration.

Because of the sizable performance difference, we instead compare the remaining applications

to the auto-optimized Redshift cluster. As an additional baseline, we also ran Jade on versions of

the applications without setting any interaction latency constraints (PVD-NC), effectively treating it

as a workload latency minimization problem as in AutoAdmin (but with the larger pool of potential

data structures than actual AutoAdmin), rather than a constraint satisfaction problem. Figure 4.11

shows the median latencies across all interactions for the fast and medium perceptual categories

per application.

As expected, Redshift is unable to achieve sub-100ms latencies, in part because of the need to

issue, execute, and serialize data. Moreover, it tends to maintain a consistent performance across

all perceptual categories, rather than optimizing for individual latency constraints. Jade-NC fares

comparatively to unmodified Jade except in two cases, iCheck and FairVis. At first, it appears

that without constraints, Jade-NC selects overall worse plans. Upon inspection, we realize that

in the absence of latency constraints, Jade-NC optimizes for interactions that generate the most

queries. Since interactions in the “medium” perceptual category generate many more queries in

both applications displaying the discrepancy, Jade-NC selects plans that optimize for the heavier

weight they contribute to the workload.

4.6.3 Optimization Time

To measure the efficiency of our optimization technique, we run two variations of the end-to-end

optimization algorithm on all applications. Candidate generation is the time taken to generate

candidates. An end-to-end optimization consists of candidate generation followed by either using

an ILP solver or the heuristic described in Section 4.5.5 to find a solution from the candidates.
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Figure 4.12: End-to-end optimization times for the nine applications used in the benchmark.

Both are reported in Figure 4.12

In addition, we demonstrate the necessity for using guided rule transformations to trim down

the search space during candidate generation. We compare using our guided transformations to

both exhaustive search and what we call optimized exhaustive search, which uses known cycle-

breaking and symmetry reductions tactics to reduce the number of transformations. We randomly

generate Difftrees with an increasing number of operators and choice nodes. Figure 4.13

shows the results as the number of steps taken, where a step is a Difftree generated by a

transformation rule. Note that the y-axis is logarithmic. We cut off any search where over 5000

steps are taken.

Jade shows a clear linear trend. While optimized exhaustive search improves over exhaustive

at small sizes, it eventually becomes indistinguishable. We note that although Jade takes a smaller

number of steps, it ultimately finds the same number of unique candidate plans. Exhaustive and

optimized exhaustive search do not lead to unique physical plans being generated; instead, they

incur additional steps via spurious transformations of the logical tree.
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Figure 4.13: Number of steps taken in variations of per-Difftree candidate generation, scaled

with increasing number of choice nodes. Note that y-axis is logarithmic.

4.6.4 Discussion

Direct comparisons to both commercial implementations of physical database design clearly indi-

cate that such systems, while suitable for achieving reasonable performance at the workload level,

are incapable of meeting the demands required by interactive applications, answering our first re-

search question. Neither AutoAdmin or AmazonRedshift could reliably provide fast performance

(< 100ms) at moderate data sizes, beginning to exceed this threshold at around 1 million records

on simple applications. On complex applications, comparing the latencies of interactions in the

“fast” versus “medium” categories on baselines systems suggest that databases seek to maintain

moderate performance across all queries in the workload, rather than the targeted allocation of

resources needed in interactive applications.

Second, we investigate whether simply adding more data structures to existing physical de-

sign is sufficient to meet desired latency thresholds via Jade-NC, or whether interactive-level

constraints are also necessary to achieve desired performance. Jade-NC behaves similarly to Au-

toAdmin, but introduces visualization specification optimizations. This modification demonstrates

that without interaction-level constraints (that can target sub-regions of an individual query), Jade

will, like AutoAdmin and Redshift, optimize for the weighted workload, resulting in undesirable

(and sometimes overall worse) behavior. We can answer RQ2 by noting that visualization specific
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data structures are necessary, but in some cases insufficient without per-interaction constraints.

Finally, in response to RQ3, Figure 4.12 illustrates that optimization time takes under three

minutes using a full ILP solver, a time that can potentially be reduced to under 30 seconds with

the use of the heuristic search described in Section 4.5.5. We deem this an acceptable time for a

physical design tool that is intended to be run offline during development.

4.7 Related Work

Interface Design Tools: Many commercial and academic systems support interactive, SQL-based

dashboards including Tableau, D3, and VizQL [STH02,Han06,HB10,BOH11]. Their architectures

dynamically generate SQL query strings that are sent to a supporting database server. They do not

support the integrated interface analysis and architectural optimizations proposed in this work.

Visualization-specific Optimizations Faster engines [PNV20,DCZ16,KN11], data cubes [LKS13,

PSS16], precomputation, prefetching [BCS16], spatial indexes [TLW19] are all optimization frame-

works proposed to guarantee interactive latencies for a subset of interactions. Jade analyzes the

workload patterns each framework optimizes and systematically weigh a cost-benefit analysis of

its use in a larger system. If the workload operations optimized by a given framework can be na-

tively described in SQL, Jade can incorporate the framework into its optimziation plan. The main

exceptions to this are binning [LJH13] and approximation [AMP13] techniques which are par-

ticularly difficult to describe in standard SQL; we view developing algebraic primitives for these

operations as potential future work.

Parameterized Query Optimization Parameterized query optimization [BBD08, HS02, TK16]

enumerates a set of query templates to be compiled by the database, with desirable query plans

cached along the range of potential parameterizations. Jade differs in two key ways; first, it

allows for safe parameterizations beyond simple literals extending into whole expressions and

column groups. Second, Jade encodes program level context to guide data structure selection,

while PQO is strictly concerned with query planning, not physical design.
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Physical database design: Physical database design [FST88, MDA10, ZRL04, ADS10, CS13]

solves a similar problem, identifying common access patterns in an arbitrary workload to build

an appropriate set of indexes and views. However, as we discuss, there are several key differences

between physical database design and physical visualization design; namely, the optimization goal

(hard vs soft constraints), granularity of optimization (interaction vs workload or query [BC08]),

architecture (database vs client-server), and the potential access patterns.

Self tuning and self driving databases: For instance, Pavlo et al [MVH18] model workloads as

clusters of query templates, where a templates are considered equivalent if they access the same

tables, use the same predicates, and return the same projections. In contrast, PVD explicitly spec-

ifies the query constructs that may be transformed, and thus does not require expensive, possibly

incorrect query sampling and clustering steps.

4.8 Summary

We present Jade, a tool for physical visualization design. Jade builds on the principles of

physical database design to introduce a novel language for describing interactive visualizations

at the data level, a modular interface for introducing new optimizations, and search heuristics that

leverage the properties of interactive visualizations to ensure tractable optimization times. Our

prototype implementation demonstrates the utility of Jade, scaling and re-designing simple ap-

plications and managing resource competition among multiple interactions to maintain interactive

latencies consistent with those required for perceptual interactivity.
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