
UCLA
UCLA Previously Published Works

Title
Enumerating (Multiplex) Juggling Sequences

Permalink
https://escholarship.org/uc/item/3gn653kz

Journal
Annals of Combinatorics, 13(4)

ISSN
0219-3094

Authors
Butler, Steve
Graham, Ron

Publication Date
2010-02-01

DOI
10.1007/s00026-009-0040-y

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gn653kz
https://escholarship.org
http://www.cdlib.org/

Ann. Comb. 13 (2010) 413–424
DOI 10.1007/s00026-009-0040-y
Published online January 12, 2010
© 2009 The Author(s)
This article is published with open access at Springerlink.com

Annals of Combinatorics

Enumerating (Multiplex) Juggling Sequences

Steve Butler1 and Ron Graham2

1Department of Mathematics, University of California, Los Angeles, CA 90095, USA
butler@math.ucla.edu

2Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA
graham@ucsd.edu

Received October 3, 2006

AMS Subject Classification: 00A08; 05A15

Abstract. We consider the problem of enumerating periodic σ-juggling sequences of length
n for multiplex juggling, where σ is the initial state (or landing schedule) of the balls. We
first show that this problem is equivalent to choosing 1’s in a specified matrix to guarantee
certain column and row sums, and then using this matrix, derive a recursion. This work is a
generalization of earlier work of Chung and Graham.

Keywords: juggling, multiplex, state diagram, recursions

1. Introduction

Starting about 20 years ago, there has been increasing activity by discrete mathe-
maticians and (mathematically inclined) jugglers in developing and exploring ways
of representing various possible juggling patterns numerically (e.g., see [1,2,3,4,5,6,
10,12,14]). Perhaps the most prominent of these is the idea of a juggling sequence (or
“siteswap”, as it is often referred to in the juggling literature). The idea behind this
approach is the following. For a given sequence T = (t1, t2, . . . , tn) of nonnegative in-
tegers, we associate a (possible) periodic juggling pattern in which at time i, a ball is
thrown so that it comes down at time i+ ti. This is to be true for each i, 1 ≤ i ≤ n. Be-
cause we assume this is to be repeated indefinitely with period n, then in general, for
each i and each k ≥ 0, a ball thrown at time i+ kn will come down at time i+ ti + kn.
The usual assumption made for a sequence T to be a valid juggling sequence is that
at no time do two balls come down at the same time. This assumption results in many
consequences, e.g., all of the quantities i+ ti (mod n) must be distinct, the number of
balls in the pattern is the average (1/n)∑n

k=1 tk, and the number of juggling sequences
with period n having fewer than b balls is bn (see [1]).

An important object for understanding the relationships and transitions between
various juggling sequences is the concept of state diagram, developed independently
(and almost simultaneously) by Boyce and Knutson [9]. This is a directed graph

414 S. Butler and R. Graham

where each vertex is called a state or landing schedule, a 0-1 vector indicating when
the balls that are currently in the air will land, and edges represent possible transitions
between states. The vertex and edge sets for the state diagram can be defined as
follows:

V = {〈a1, a2, a3, . . .〉 : ai ∈ {0, 1}, ∑iai = b} ,

E = {〈a1, a2, a3, . . .〉→〈b1, b2, b3, . . .〉 : ai ≤ bi−1, for i = 2, 3, . . .} .

More specifically, each juggling sequence T is associated with a state σ = σT =
〈σ1, σ2, . . . , σh, . . .〉 which can be found by imagining that the sequence has been
executed infinitely often in the past, with a final throw tn being made at time 0. Then
σi is 1 if and only if there is some ball still in the air at time 0 that will land at time i.
In this case we say that T is a σ-juggling sequence.

If we are now going to throw one more ball at time 1, transitioning to a (possibly)
new juggling state σ′, then we are restricted to throwing it so that it lands at some
time j which has σ j = 0. The new state σ′ = 〈σ′1, σ′2, . . .〉 then has σ′k = σk+1 for
k ≥ 1, k �= j−1 and σ′j−1 = 1. The preceding remarks assume that σ1 = 1. If σ1 = 0,
so that there is no ball available to be thrown at time 1, then a “no-throw” occurs, and
the new state vector σ′ satisfies σ′k = σk+1 for all k ≥ 1. These give the two basic
transitions that can occur in the state diagram. With this interpretation, it is easy to
see that a juggling sequence of period n exactly corresponds to a walk of length n in
the state diagram.

In [5], the problem of enumerating σ-juggling sequences of period n was studied,
which by the above comments is equivalent to counting the number of directed closed
walks of length n starting at σ in the state diagram. In the same paper, the related
problem of counting the number of “primitive” closed walks of length n was also
solved. These are walks in which the starting state σ is visited only at the beginning
and the end of the walk.

A particular unsolved problem mentioned in [5] was that of extending the analysis
to the much more complex situation of multiplex juggling sequences. In a multiplex
juggling sequence, for a given parameter m, at each time instance up to m balls can
be thrown and caught at the same time, where the balls thrown at each time can have
different landing times. Thus, ordinary juggling sequences correspond to the case
m = 1.

As before, we can describe a (multiplex) juggling sequence as a walk in a state di-
agram. Here a state α = 〈a1, a2, a3, . . .〉 can again be described as a landing schedule
where ai is the number of balls currently scheduled to land at time i. We also have a
state diagram which has as its vertices all possible states and for edges all ways to go
from one state to another state (see [10]). The state diagram is thus a directed graph
with two important parameters: b, the number of balls that are being juggled, and m,
the maximum number of balls that can be caught/thrown at any one time. The vertex
set and edge set are defined as follows:

V = {〈a1, a2, a3, . . .〉 : ai ∈ {0, 1, . . . , m}, ∑iai = b} ,

E = {〈a1, a2, a3, . . .〉→〈b1, b2, b3, . . .〉 : ai ≤ bi−1, for i = 2, 3, . . .} .

Multiplex Juggling 415

Since each state will only have finitely many nonzero terms, we will truncate the
terminal zero portions of the state vectors when convenient. The height of a state α
will be the largest index i for which ai > 0, and will be denoted by h(α). A small
portion of the state diagram when b = 3 and m = 2 is shown in Figure 1.

〈1,1,1〉 〈0,2,1〉

〈2,1〉

〈2,0,1〉

〈1,0,2〉

〈0,1,2〉

〈1,2〉

Figure 1: A portion of the state diagram when b = 3 and m = 2.

1.1. A Bucket Approach

To better follow the analysis (and make practical demonstrations easier) we can rein-
terpret multiplex juggling by a series of buckets and balls. The buckets will represent
future landing times for i = 1, 2, 3, . . . and the balls are distributed among these buck-
ets. A state vector is then a listing of how many balls are currently in each bucket,
and m is now the maximum number of balls that can fit inside of a bucket. Transitions
from state to state happen by having the buckets shift down by one and redistributing
any balls that were in the bottom bucket. This process is shown in Figure 2.

Initial state

= 〈2, 1, 0, 3, 2〉

Buckets advance one
step freeing balls in

the bottom bucket

Freed balls are redistributed
to available buckets to get the

next state = 〈2, 0, 3, 2, 0, 1〉

Figure 2: A bucket approach to multiplex juggling.

416 S. Butler and R. Graham

1.2. Multiplex Siteswap Notation

To describe a walk in the state diagram it suffices to know what state we start in and
how we transition from state to state. In transitioning from state to state the important
piece of information is what happened to the ball(s) in the bottom bucket. This can
be described by a multi-set which lists the new location(s) of the ball(s).

We can thus describe our walk by a series of multi-sets (T1, T2, . . . , Tn) such that
each set has m elements (when we have fewer than m balls to redistribute we will
indicate no-throws by 0). These sets are analogous to siteswap notation for juggling.
In particular, it can be shown that

n⋃

i=1

{i+ Ti (mod n)} =
{

1, . . . , 1︸ ︷︷ ︸
m times

, 2, . . . , 2︸ ︷︷ ︸
m times

, . . . , n, . . . , n︸ ︷︷ ︸
m times

}
, and

1
n

n

∑
i=1

∑
x∈Ti

x = b.

In the next section we will combine the idea of this multiplex siteswap notation
with the buckets.

2. A Matrix Interpretation

One way to use the buckets to find a sequence of length n that starts in state α =
〈a1, a2, . . .〉 and ends in state β = 〈b1, b2, . . .〉 (if one exists) is to start with the balls
arranged in the buckets as dictated by α. We then modify the capacities of the buckets
so that they are (starting at the first bucket)

m, m, . . . , m︸ ︷︷ ︸
n times

, b1, b2,

Finally, taking n steps (such as shown in Figure 2) being careful not to exceed the
capacity of any bucket and at the end, we will be forced into state β. On the other
hand, every possible way to start in α and end in β in n steps can be done in this
modified buckets approach.

Finding all of the walks of length n in the state diagram between α and β is
thus equivalent to finding all of the walks that can be run using this modified bucket
procedure. This is what we will actually enumerate. We start with the following
matrix, where h = max{h(α)−n, h(β)} (this is a 0-1 matrix, where any unspecified
entries are 0’s).

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1

1 1 · · · 1
...

...
...

...
...

......
...

...

...
...

......
...

...

...
...

......
...

...

. . .

. . .

. . .1 1 · · · 1 1 1 · · · 1 1 1 · · · 1 1 1 · · · 1

{ { {

{

m columns

m columns

m columns

m columns

(){

n
+

h
r
o
w

s

A = {

n blocks each with m columns

Multiplex Juggling 417

Each block of m columns will correspond to one transition in the state diagram/
buckets procedure. In a block, each column corresponds to a single element in the
multi-set describing our transition. The first 1 in a column corresponds to a no-throw
or a throw of height 0, the second 1 corresponds to a throw of height 1, the third 1 to
a throw of height 2 and so on. So we choose exactly one 1 in each column and by
reading the blocks of columns we will get the transitions Ti between states.

Each row will correspond to a bucket, and to incorporate the modified buckets
approach we specify a row sum for each row. The row sum will be the “unused
capacity” of the buckets. Beginning at the first row and going down the row sums
will be

m−a1, m−a2, . . . , m−an, b1 −an+1, . . . , bh −an+h.

As an example, suppose that we want a walk of length 4 that starts and ends in the
state 〈1, 2〉 in the state diagram shown in Figure 1. Then this corresponds to choosing
one 1 out of each column in the matrix below on the left so that the row sums are as
dictated on the side of the matrix.⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1 1 1
2 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1 1 1
2 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

One possible solution is shown in the matrix on the right which corresponds to the
walk

〈1, 2〉 → 〈2, 1〉 → 〈2, 0, 1〉 → 〈0, 1, 2〉 → 〈1, 2〉.
{0,2} {1,3} {3,3} {0,0}

Here we have indicated the sets Ti under each transition.
To see why this works we need to show that each multi-set given by a block of

columns is a valid transition in our modified buckets procedure. Starting with the
first block, the first row sum should be m−α1, this indicates that we currently have
an excess capacity of m−α1 in the bottom bucket and so we need to make m−α1
no-throws, i.e., throws of height 0, and by row sum restrictions we are forced to select
exactly m−α1 of the 1’s on the first row. This accounts for m−α1 of the columns
in the first block. The remaining α1 columns must have 1’s (i.e., balls) distributed
among the rows (i.e., buckets) which still have extra capacity. Thus the first block
must give a valid transition in the procedure. After selecting the 1’s for the first block
we then update the row sums according to our choices, remove the first block and
then repeat the same process n−1 times.

Conversely, it is easy to check that given the transitions T1, T2, . . . , Tn joining α to
β, we can find a selection of 1’s in the matrix A which corresponds to this walk and
satisfies the row/column sum restrictions.

Finally, since multi-sets are unordered, our choice of 1’s in columns is unique up
to permutation of the columns in a block, so we may assume that the heights of the
1’s in a block are weakly decreasing (as shown in the example above). We now have
the following general result.

418 S. Butler and R. Graham

Lemma 2.1. Suppose we are given a state diagram with capacity m and states α =
〈a1, a2, a3, . . .〉 and β = 〈b1, b2, b3, . . .〉, and h = max{h(α)− n, h(β)}. Then the
number of walks of length n starting at α and ending at β is equal to the number of
ways of choosing mn ones out of the matrix A given above such that:

• Each column sum is 1.
• The row sums are (in order from first to last)

m−a1, m−a2, . . . , m−an, b1 −an+1, . . . , bh −an+h.

• In each block of m columns the height of selected 1’s is weakly decreasing.

Remark 2.2. If for some i, bi < an+i, then one of the row sums will be negative which
is impossible and thus we have no solutions for the selection of 1’s. At the same time
it is easy to see that there can be no walks in the state diagram of length n joining α
and β by comparing their landing schedules.

Remark 2.3. When m = 1, if we ignore rows with row sum 0, then all the rows and
column sums will be 1. In this case we can count the number of walks joining two
states by calculating the permanent of a matrix. This is similar to the approach taken
by Chung and Graham [5].

3. Filling the Matrix

We now count the number of ways to fill the matrix A according to the restrictions
in Lemma 2.1. We will demonstrate the procedure by working through an example,
namely, counting the number of periodic multiplex juggling sequences of length n
that start and end in state 〈3〉 when m = 3.

The first thing to observe is that when the height of α is small compared to n then
the row sums have the following form:

initial
noise

∣∣∣∣ string
of m’s

∣∣∣∣ terminal
noise

We can form a recurrence based on this where we fill in the last block and then reduce
it to the case when there is one fewer m in the middle.

Without loss of generality we can assume that our noise at the end is a partition
of the b balls so that no part is larger than m, i.e., we can ignore any rows with row
sum 0 and by a simple correspondence we can assume that the row sums are weakly
decreasing.

For each partition γ of b with each part at most m, let xγ(k) be the number of ways
to fill the matrix A where the row sums are given by

m−a1, . . . , m−ah(α), m, . . . , m︸ ︷︷ ︸
k times

, γ.

In our example, there are 3 such partitions, 3 = 2+1 = 1+1+1, and so we will have
three functions x3(k), x2,1(k), and x1,1,1(k).

Multiplex Juggling 419

We now form a system of linear recurrences, xγ(k) = ∑δ aγ,δxδ(k−1), by exam-
ining the different ways to fill in the last block of columns. Note that the row sums
corresponding to the last block are m, γ. The m comes from the no-throws and af-
ter we have filled in the last block it will become incorporated into the new terminal
distribution. Thus at each stage we will decrease the number of middle m’s by 1.

For example, if we are considering x2,1 then we have the following 6 different
ways to fill in the last block satisfying the conditions of Lemma 2.1:

3 1 1 1
2 1 1 1
1 1 1 1
→ 2,1

3 1 1 1
2 1 1 1
1 1 1 1
→ 1,1,1

3 1 1 1
2 1 1 1
1 1 1 1
→ 2,1

3 1 1 1
2 1 1 1
1 1 1 1
→ 2,1

3 1 1 1
2 1 1 1
1 1 1 1
→ 2,1

3 1 1 1
2 1 1 1
1 1 1 1

→ 3

By looking at the new terminal distributions it follows that

x2,1(k) = x3(k−1)+ 4x2,1(k−1)+ x1,1,1(k−1).

Similar analysis shows that

x3(k) = 2x3(k−1)+ 2x2,1(k−1) and

x1,1,1(k) = x3(k−1)+ 3x2,1(k−1)+ 4x1,1,1(k−1).

We can rewrite this in matrix form as⎛
⎝ x3(k)

x2,1(k)
x1,1,1(k)

⎞
⎠ =

⎛
⎝ 2 2 0

1 4 1
1 3 4

⎞
⎠

⎛
⎝ x3(k−1)

x2,1(k−1)
x1,1,1(k−1)

⎞
⎠ . (3.1)

In general, we will have that
(
xγ(k)

)
= A

(
xγ(k−1)

)
where Aγ,δ = aγ,δ as given above.

Note that the matrix A will be independent of our choices of α and β, and depends
only on b and m. Varying α will change the initial conditions and varying β will
change which of the xγ we are interested in for our recurrence.

For our problem, we are interested in x3 as our terminal state is 〈3〉 (i.e., corre-
sponding to the partition 3). We want to transform our first-order system of linear
recurrences into a single recurrence for x3. Manipulating the recurrences in (3.1) it
can be shown that

x3(k + 3) = 10x3(k + 2)−27x3(k + 1)+ 20x3(k). (3.2)

This gives a recurrence for the number of periodic juggling sequence of length k for
k sufficiently large (i.e., we have shifted our sequences xγ(k) past the initial noise;
when counting periodic juggling sequences we need to remember to account for this
shift).

Remark 3.1. The characteristic polynomial of the matrix in (3.1) is x3−10x2 +27x−
20, the same coefficients as in (3.2). This is a consequence of the Cayley-Hamilton

420 S. Butler and R. Graham

Theorem. Namely, if the characteristic polynomial of the matrix A is xr + q1xr−1 +
· · ·+ qr then

(0) =
(
Ar + q1Ar−1 + · · ·+ qrI

)(
xγ(k)

)
= Ar (xγ(k)

)
+ q1Ar−1 (

xγ(k)
)
+ · · ·+ qr

(
xγ(k)

)
=

(
xγ(k + r)

)
+ q1

(
xγ(k +(r−1))

)
+ · · ·+ qr

(
xγ(k)

)
=

(
xγ(k + r)+ q1xγ(k +(r−1))+ · · ·+ qrxγ(k)

)
.

The recursion that the characteristic polynomial of A gives is universal for a fixed b
and m in the following sense. Let a(n) be the number of walks of length n joining
state α to state β. Then for n sufficiently large, a(n) satisfies the recursion given by
the characteristic polynomial of A (which is independent of α and β).

It remains to calculate enough initial terms to begin the recursion. Using Lemma
2.1 this can be handled by brute force or some careful case analysis. In general, we
will need to calculate the first h(α)+ r−1 terms where r is the number of partitions
of b with each part at most m. The first h(α)−1 terms are to handle the initial noise
caused by α and the next r terms are to help start the recursion. A calculation shows
that the sequence counting the number of periodic juggling sequences that start and
end at 〈3〉 starts 1, 4, 20. Now applying the recursion we get the sequence

1, 4, 20, 112, 660, 3976, 24180, 147648, 903140,

With the recursion and the initial values it is then a simple matter to derive a gen-
erating function for the number of juggling sequences of period n. The generating
function for this series and several others are given in Table 1.

State m Initial terms Generating Function

〈2〉 2 1, 3, 10, 35, 125, 450, 1625, 5875, . . . x−2x2

1−5x+5x2

〈1, 1〉 2 1, 3, 11, 40, 145, 525, 1900, 6875, . . . x−2x2 +x3

1−5x+5x2

〈2, 1〉 2 1, 4, 22, 124, 706, 4036, 23110, 132412, . . . x−4x2 +3x3

1−8x+13x2

〈1, 1, 1〉 2 1, 3, 18, 105, 606, 3483, 19986, 114609, . . . x−5x2 +7x3

1−8x+13x2

〈2, 2〉 2 1, 3, 21, 162, 1305, 10719, 88830, 739179, . . . x−11x2 +33x3 −27x4

1−14x+54x2−57x3

〈3〉 3 1, 4, 20, 112, 660, 3976, 24180, 147648, . . . x−6x2 +7x3

1−10x+27x2−20x3

〈2, 1〉 3 1, 5, 30, 182, 1110, 6786, 41530, 254278, . . . x−5x2 +7x3 −3x4

1−10x+27x2−20x3

Table 1: Number of periodic sequences of length n for some starting states.

Remark 3.2. Instead of calculating the first h(α)+r−1 terms we can instead calculate
the first h(α)− 1 terms and then compute the r values for the xγ(0). In at least one
case this is easier, namely, when the state is 〈b〉. Then it is easy to check that xγ(0) = 1
for all partitions γ and quickly bootstrap our sequence.

Multiplex Juggling 421

3.1. Calculating Recursion Coefficients

In this section we show how to quickly compute the recursion coefficients aγ,δ, which
can then (by taking determinants) quickly give us the recursion relationship for the
juggling sequences.

Lemma 3.3. Let γ and δ be partitions of b with no part more than m, and suppose
that γ = (γ1, γ2, . . . , γm) and δ = (δ1, δ2, . . . , δm) where γi is the number of parts of
the partition γ of size i, similarly for δi. Then

aγ,δ =
m

∏
i=1

(
(γi + · · ·+ γm)+ 1− (δi+1 + · · ·+ δm)

δi

)
. (3.3)

Proof. To see (3.3) recall that when filling in the last set of columns of the matrix
there is the partition γ and an additional row with row sum m. We then select m ones
such that (1) the height of the ones are weakly decreasing and (2) no row sum is
violated.

This process can be made equivalent to taking the partition γ and adding one part
of size m

(
to form a new partition γ ′ = (γ1, . . . , γm−1, γm + 1)

)
then reducing by a

total of m some part(s) of γ ′.
The coefficient aγ,δ is then the total number of ways that reducing some part(s)

of γ ′ by a total of m will result in the partition δ. We can however work backwards,
namely, if we want a desired partition from our reduction we can “insert” the desired
partition into γ ′ (i.e., associate each part of δ with some part of γ ′ which is at least as
large) and then finding the difference between the insertion and γ ′ (which difference
will sum to m) gives the reduction to use.

Thus aγ,δ is the total number of ways that we can insert δ into γ ′. We now enu-
merate by inserting the partition δ backwards, namely, we insert the largest parts first
and then work down. First note that here are δm parts of size m to insert and they can
be positioned into any of the γm + 1 parts of size m, which can be done in

(
γm + 1

δm

)

ways. There are then δm−1 parts of size m−1 to insert and they can be positioned in
any of the γm−1 + γm +1−δm parts of size at least m−1 that have not yet been used,
which can be done in (

γm−1 + γm + 1− δm

δm−1

)

ways. This process then continues, so that in general there will be δi parts of size i to
insert and they can be positioned in any of the (γi + · · ·+ γm)+ 1− (δi+1 + · · ·+ δm)
parts of size at least i that have not yet been used, which can be done in

(
(γi + · · ·+ γm)+ 1− (δi+1 + · · ·δm)

δi

)

ways. Putting it all together gives the result.

422 S. Butler and R. Graham

As a check for, suppose m = 2, γ = (a, b), and δ = (a−2c, b+c), then (3.3) gives

aγ,δ =

(
(a + b)+ 1− (b + c)

a−2c

)(
b + 1
b + c

)
=

(
a + 1− c

a−2c

)(
b + 1
b + c

)
.

To get a nonzero coefficient we must have b+1≥ b+ c so that c ≤ 1 and a+1− c≥
a−2c so that c ≥−1. Putting these in and simplifying we are left with

aγ,δ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 a(a−1), if c = 1;

(a + 1)(b + 1), if c = 0;
1
2 (b + 1)b, if c = −1;

0, otherwise.

This can be easily verified by hand.

4. Remarks

4.1. Primitive Juggling Sequences

We have demonstrated a way to count the number of periodic juggling sequences of
length n which start and end in a given state σ. A related problem is counting the
number of primitive periodic juggling sequences. These are special periodic juggling
sequences with the extra condition that the walk does not return to σ until the nth
step. This can be done by the following observation of Chung and Graham [5] (see
also [7, 8]): If a(n) is the number of periodic juggling sequences of length n that
start and end at σ and F(x) = ∑n≥1 a(n)xn, then b(n) counts the number of primitive
periodic juggling sequences of length n that start and end at σ where

∑
n≥1

b(n)xn =
F(x)

1 + F(x)
.

Applying this to the data in Table 1 we get the information about primitive jug-
gling sequences given in Table 2. Only one of the sequences shown in Tables 1 or 2
was previously listed in [11].

A related open problem is to find the number of prime juggling sequences which
start and end in a given state σ. A prime juggling sequence corresponds to a simple
cycle in the state diagram, i.e., it never visits any vertex more than once. Note that for
a primitive juggling sequence we are allowed to visit vertices other than σ as often as
we want.

4.2. Further Directions

One implicit assumption that we have made is that the height the balls can be thrown
to in the juggling sequence is essentially limited only by the period. This might be
unrealistic when trying to implement the procedure for an actual juggler. In this case
we would like to add an additional parameter which is the maximum height a ball
can be thrown. While it is not difficult to adopt the matrix A to handle this additional

Multiplex Juggling 423

Multiplex Juggling 423

State m Initial terms Generating Function

〈2〉 2 1, 2, 5, 14, 41, 122, 365, 1094, . . . x−2x2

1−4x+3x2

〈1, 1〉 2 1, 2, 6, 17, 48, 135, 379, 1063, . . . x−2x2 +x3

1−4x+3x2 +x3

〈2, 1〉 2 1, 3, 15, 75, 381, 1947, 9975, . . . x−4x2 +3x3

1−7x+9x2 +3x3

〈1, 1, 1〉 2 1, 2, 13, 68, 358, 1871, 9757, . . . x−5x2 +7x3

1−7x+8x2 +7x3

〈2, 2〉 2 1, 2, 16, 119, 934, 7463, 60145, . . . x−11x2 +33x3 −27x4

1−13x+43x2 −24x3 −27x4

〈3〉 3 1, 3, 13, 67, 369, 2083, 11869, . . . x−6x2 +7x3

1−9x+21x2 −13x3

〈2, 1〉 3 1, 4, 21, 111, 592, 3171, 17021, . . . x−5x2 +7x3 −3x4

1−9x+22x2 −13x3 −3x4

Table 2: Number of primitive sequences of length n for some starting states.

constraint, our recursion method will no longer work. For this setting, the simplest
method might be to find the adjacency matrix of the (now finite) state diagram and
take powers to calculate the number of walks.

Another implicit assumption that we have made is that the balls are identical,
it is easy to imagine that the balls are distinct and then we can ask given an initial
placement of balls and a final placement of balls how many walks in the state diagram
are there. This problem is beyond the scope of the methods given here. However,
Stadler [13] has had some success in this direction (using methods different from the
ones presented here), he was able to derive an expression involving Kostka numbers
enumerating the number of such sequences, as well as several other related sequences.

It would be interesting to know for each m, n, and b, which states σ have the
largest number of (primitive) σ-juggling sequences of length n. When m = 1, then it
seem that the so-called ground state 〈1, 1, . . . , 1〉 does. However, for larger values of
m, it is not so clear what to guess.

As can be seen there are still many interesting open problems concerning the
enumeration of multiplex juggling sequences.

References

1. Buhler, J., Eisenbud, D., Graham, R., Wright, C.: Juggling drops and descents. Amer.
Math. Monthly 101, 507–519 (1994)

2. Buhler, J., Graham, R.: A note on the binomial drop polynomial of a poset. J. Combin.
Theory Ser. A 66, 321–326 (1994)

3. Buhler, J., Graham, R.: Juggling patterns, passing, and posets. In: Hayes, D.F., Shubin, T.
(eds.) Mathematical Adventures for Students and Amateurs, pp. 99–116. The Mathemati-
cal Association of America, Washington (2004)

4. Chung, F., Graham, R.: Universal juggling cycles. Integers 7(2), #A8 (2007)

5. Chung, F., Graham, R.: Primitive Juggling Sequences. Amer. Math. Monthly 115(3), 185–
194 (2008)

424 S. Butler and R. Graham

6. Ehrenborg, R., Readdy, M.: Juggling and applications to q-analogues. Discrete Math. 157,
107–125 (1996)

7. Gessel, I.M., Stanley, R.P.: Algebraic enumerations. In: Graham, R.L., Grötschel, M.,
Lovész, L. (eds.) Handbook of Combinatorics Vol. II, pp. 1021–1061. Elsevier, Amster-
dam (1995)

8. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, Reading, MA (1994)

9. Juggling Information Service. http://www.juggling.org/
10. Polster, B.: The Mathematics of Juggling. Springer, New York (2000)
11. Sloane, N.: The On-Line Encyclopedia of Integer Sequences. Avaible at:

http://www.research.att.com/∼njas/sequences/

12. Stadler, J.D.: Juggling and vector compositions. Discrete Math. 258, 179–191 (2002)
13. Stadler, J.D.: personal communication
14. Warrington, G.S.: Juggling probabilities. Amer. Math. Monthly 112(2), 105–118 (2005)

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

