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ABSTRACT: Refractory metals have recently garnered significant
interest as options for photonic applications due to their superior
high-temperature stability and versatile optical properties. How-
ever, most previous studies only consider their room-temperature
optical properties when analyzing these materials’ behavior as
optical components. Here, we demonstrate structural color pixels
based on three refractory metals (Ru, Ta, and W) for high-
temperature applications. We quantify their optical behavior in an oxygenated environment and determine their dielectric functions
after heating up to 600 °C. We use in situ oxidation, a fundamental chemical reaction, to form nanometer-scale metal oxide thin-film
bilayers on each refractory metal. We fully characterize the behavior of the newly formed thin-film interference structures, which
exhibit vibrant color changes upon high-temperature treatment. Finally, we present optical simulations showing the full range of hues
achievable with a simple two-layer metal oxide/metal reflector structure. All of these materials have melting points >1100 °C, with
the Ta-based structure offering high-temperature stability, and the Ru- and W-based options providing an alternative for reversible
color filters, at high temperatures in inert or vacuum environments. Our approach is uniquely suitable for high-temperature
photonics, where the oxides can be used as conformal coatings to produce a wide variety of colors across a large portion of the color
gamut.
KEYWORDS: refractory metals, high-temperature photonics, structural colors, dielectric functions, in situ ellipsometry

■ INTRODUCTION
Structural color refers to any process where hue is generated
utilizing micro- or nanostructured surfaces. These surfaces
interact with incident light, changing its reflection or adding
absorption peaks, which can result in the production of vibrant
colors.1−4 The shades formed by this process are often far
more stable than traditional ink printing options and can offer
further printing precision given the microscopic or nanoscopic
scale of the fabrication. Many modern attempts at creating
artificial structural color can produce vivid, robust shades, but
rely on complex metasurfaces5 or many-layer geometries
designed to exploit Fabry−Perot resonances.6,7 Structural
colors are quickly growing in their usage, and have applications
in sensing,8−11 anticounterfeit technology,12−15 solar selective
absorbers for photovoltaics,16,17 and heat-resistant coatings.18

In an all-thin-film design, both metallic and dielectric
materials are needed to fulfill the thin-film interference
conditions required for forming reflective color filters [DOI:
10.1002/adom.202200159]. Yet, most previous structural
color designs would not be capable of withstanding high-
temperature treatment because the materials commonly used
present limited thermal properties (e.g., low melting point,
high thermal expansion, etc.). However, several refractory
metals and their oxides offer melting points above 1100 °C,
representing, thus, a promising platform for generating
structural colors that can be used under extreme high-

temperature conditions. As an example, prior works using W
and Mo oxides for this purpose have used nonstoichiometric
metal oxides fabricated via sputtering on a glass substrate17 or
on a different metallic substrate like Al or Cu.19

In this work, we circumvent the thermal limitations imposed
by the modest melting point of coin-age metals (Au, Ag, Cu)
by realizing a scalable geometry utilizing refractory metals and
their oxides for proof-of-concept structural color printing that
can operate at high temperatures. Our material selection entails
refractory metals with melting point >1100 °C, significantly
superior to the coin-age metals. While this class of material has
been underexplored for photonics thus far, we show that their
optical behavior (i.e., permittivity) is very suitable for devices
in the visible range of the electromagnetic spectrum. By
controlling in situ the oxidation of Ru, Ta, and W thin films, we
attain an alternative route for tailoring the spectrum. We
fabricate structural color filters that produce vivid colors
ranging from dark yellow to light pink and cyan, by performing
a controlled heating treatment while measuring the samples in
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situ with ellipsometry. The hues result from interference
between the incoming and outgoing light, which changes
depending on the thickness of the MOx layer and the dielectric
function of the metal. The colors are obtained by submitting
each refractory metal to a thermal treatment at 600 °C in an
oxidizing environment. Oxygen diffusion within these
refractory metals leads to a dual-layer dielectric/metal structure
that enables light interference, which, in turn, gives rise to the
primary printing colors. These hues are angle-insensitive up to
75° for RuO2, and up to 65° for Ta2O5 and WO3.
Furthermore, optical simulations of similar device structures
show that a large portion of the color gamut can be reached
simply by changing the thickness of the metal oxide layer. The
permittivity for all metals and their oxides has been
consistently modeled using general oscillators, and these data
are made fully available to enable other researchers to use them
when designing optical building blocks for additional high-
temperature applications. Our results illustrate how refractory
metals can be implemented for color printing, with the
flexibility of selecting either static or reversible responses at
temperatures beyond 1000 °C, depending on material and
environment. Given the thermal stability of Ta2O5 in inert
environments,20 these structural color systems would be ideal
optical coatings for space applications. Alternately, using
further oxidation of all three refractory-metal-based structural
color systems in an oxygen-rich environment, these structures
could be implemented as simple, yet highly sensitive oxygen
sensors. Materials that present suitable optical properties (low
loss) and are chemically controllable at high temperatures have
been increasingly sought after recently due to their potential
usage in ultrahigh-temperature, extreme conditions. In turn,
these findings are launching refractory-metal oxides as a class
of material for ultrahigh-temperature photonics.

■ RESULTS AND DISCUSSION
To obtain refractory metal oxides, we heat the samples to 600
°C in an oxidizing environment (mixture of air and Ar) while
measuring their optical properties using in situ spectroscopic
ellipsometry. We use a ramping rate of 3 °C min−1, stopping at
each 100 °C point for 22 min with additional steps of 50 °C
above 400 °C to allow the samples to thermalize (see Figure
S1 in the Supporting Information for temperature profile).
Figure 1 shows the in situ ellipsometry measurements of the
refractory metals from room temperature throughout the high-
temperature cycling process. The ellipsometric parameters Ψ
and Δ refer, respectively, to the ratio of the amplitude of the
reflected s- and p- polarized light, and the phase difference
between the reflected s- and p-polarized light.21,22 Together,
they characterize the reflection behavior from the surface of
our system. All three films show stark changes in their
reflective properties beginning at 500 °C, the temperature at
which oxygen will begin to diffuse into the bulk of the three
metals.23−26 Clear peaks develop at 500 °C and continue to
increase in magnitude for the remainder of the temperature
ramp process, coinciding with reflective interference due to the
growth of the corresponding dielectric layers.27,28 This
alteration is evidenced by a color change in the reflection
spectrum (see Figure S1 in the Supporting Information for
sample photographs). The location of these peaks shifts
slightly toward higher wavelengths as the temperature
increases, due to the increasing thickness of the dielectric
layer. Given this knowledge, the ability to perform an in situ
characterization of the samples via ellipsometry allows for the
precise control of the thickness of the oxide layer and their
optical properties.

Figure 1. High-temperature treatment. Ellipsometric parameters (a−c) Ψ and (d−f) Δ. In situ optical measurements through high-temperature
cycle for (a, d) Ru, (b, e) Ta, and (c, f) W on Si substrates. With these two parameters, we can characterize the optical properties of these materials
as they change with increasing temperature. All curves shown are at an angle of 70° from normal incidence. The black arrow shows the order of
measurements.
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We use X-ray photoelectron spectroscopy (XPS) to discern
the specific composition of the oxide layer and analyze any
change in surface chemistry with heat treatment. Figure 2
shows the XPS spectra before and after temperature treatment,
where the measured and fitted data are presented in black solid
line and gray dashed line, respectively. In Figure 2a−c, we see
the signature of thin native oxide layers in all samples before
high-temperature treatment. This oxide layer is less than 10 nm
thick, given the known penetration depth limitation of XPS.29

This aligns well with previous literature sources, which found
thicknesses of native oxides for all three materials to be less
than 2 nm at room temperature.23,26,30 For the pristine
samples, the XPS data are fitted by a combination of the metals

and their oxides in blue and red, respectively. Upon
temperature cycling, the intrinsic oxide layers develop by
slowly consuming the metals. From Figure 2d−f, the pure
elemental peaks are no longer present, indicating a metal oxide
thickness of at least 10 nm. Compared to the literature, we
determine the stoichiometry of the oxide layers to be
RuO2

31,32 for Ru, Ta2O5
33 for Ta, and WO3

34 for W.
Given the change in surface composition identified by XPS

and the predicted modification in optical behavior from Figure
1, we analyze the newly formed metal oxide layers by
measuring their dielectric functions at room temperature
before and after the heating cycle. Figure 3 presents the optical
properties of the three refractory metals (Ru, Ta, and W),

Figure 2. Chemical composition analysis. X-ray photoelectron spectroscopy (a−c) before and (d−f) after high-temperature treatment for Ru, Ta,
and W. All three samples suffer 100% surface oxidation after high-temperature treatment. In all plots, the black solid line and gray dashed line refer
to raw data and their respective fits using the contributions of all peaks in blue and red, respectively. The chemical compositions of each constituent
peak are shown in the plots for reference.

Figure 3. Optical behavior of refractory metals and their oxides. (a) Real (ε1) and (b) imaginary (ε2) components of the dielectric function of Ru
(pink), Ta (yellow), and W (cyan) thin films, showing metallic behavior. (c) Real and (d) imaginary components of the dielectric function for
RuO2, Ta2O5, and WO3 oxide layers, showing an overall dielectric behavior post-high-temperature cycle. Insets in (b) and (d) show real-color
photographs of the samples before and after high-temperature treatment at near-normal incidence (area 4 mm × 4 mm).
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measured via spectroscopic ellipsometry. The dielectric
function of all three metals is determined using the general-
oscillator model (tables of model parameters for metals and
oxides are available in Tables S1 and S2 in the Supporting
Information, respectively). We fabricate the thin films by
sputtering onto a standard Si wafer and onto a reference glass
substrate. By measuring transmission data from the glass
reference sample included in the thin-film deposition (Figure
S2 in the Supporting Information), we verify that all three
metal thin films are optically thick prior to high-temperature
treatment given that the intensity of transmitted light is less
than 5% in all cases. All three materials exhibit strongly metallic
behavior in the visible region as evidenced by their mostly
negative ε1, and begin silver in color, as shown in the insets of
Figure 3b. We observe limited oxidation prior to high-
temperature treatment as evidenced by Figure 2a−d, although
effects on the sample are negligible given that their behavior is
still strongly metallic and reflective. These results are
comparable to previous literature examples of each metal.35−37

As presented in Figure 3c−d, the oxide layers display an
overall dielectric optical behavior, exemplified in their
transparency across a wide wavelength range and their positive
ε1. The dielectric functions line up well with previous literature
sources for these oxides.38−40 Our model indicates the
presence of a remaining metallic layer underneath two of the
MOx (Ru and W); therefore, we obtain the dielectric function
of the metallic and oxide layer of these structures after high-
temperature treatment. Here, we observe a three-layer
structure with the newly formed metal oxide acting as a top
dielectric film, a metal intermediate layer, and a bottom
dielectric Si substrate. For the Ta sample, oxygen diffused
throughout the entire metallic layer where a Ta2O5/Si system
is formed (see Figure S3 in the Supporting Information for fits
to ellipsometric data, along with the calculated thicknesses of
each layer). Since Ta was fully oxidized, the dielectric function
for Ta presented in Figure 3a−b is determined using the pre-
high-temperature reflectivity data for the sample (see Figure S4

in the Supporting Information for fit to pristine Ta/Si
ellipsometric data). The relevance in accurately determining
the dielectric functions of these oxides lies in using this
information to realistically design structural color pixels for
printing in high-temperature settings, not possible with
conventional coin-age metals. Overall, the control of the
thickness of both metal and MOx films enables control over the
light interference within the structure, which produces vivid
coloration in all three samples, enabling vibrant reflected colors
as displayed in the inset of Figure 3d.
An important feature for color pixels is chromaticity and

angular insensitivity. Thus, we quantify the changes in hue as a
function of light angular incidence for all pixels by measuring
the reflection of each heat-treated sample every 10°. We plot
the reflectivity for each system in Figure 4, from 15 to 85° from
normal incidence for the visible wavelength range (see Figure
S5 for full range comparison and Figure S6 for full reflection
maps). The data are normalized at each angle such that each
curve has a minimum at 0 and a maximum at 1. All three
samples show bright coloration for a wide range of angle
values. The reflectivity of all three structures is angle-
insensitive up to at least 65° as has been previously
demonstrated from thin-film-interference-based structural
color or superabsorber systems,2 demonstrating the potential
for these materials as wide-angle visible reflectors for structural
color applications.
With the dielectric function of each metal and its MOx

counterpart, we simulate the expected reflection performance
for different values of oxide layer thickness on top of a 20 nm
metal layer using the transfer matrix method (TMM) (see top
row of Figure 5 for schematics).41 Figure 5a−c shows the
calculated normal-incidence reflection spectra for different
thicknesses of the metal oxide layer tox, varying from 10 to 100
nm in steps of 10 nm. For all three metals, the reflection
characteristics reliably shift to longer wavelengths as the oxide
thickness increases, suggesting that pixels across a wide range
of the color gamut should be fabricable simply by changing the

Figure 4. Angular dependence of chromaticity. Measured (open circles) and simulated (solid black curve) reflection spectra of structural color
filters for (a) RuO2/Ru/Si, (b) Ta2O5/Si, and (c) WO3/W/Si, as the orientation of the incident light varies from 15° (nearly normal incidence) to
85°. All samples show very bright colors for a wide-angle range. The insets are real-color photographs of the samples’ surface at each angle (with
area 4 mm × 4 mm).
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oxide layer thickness, which can be controlled by varying the
length of time a sample is held at 600 °C. Figure 5d−f shows
the chromaticity diagrams for the simulated structures for our
three samples as the thickness of the refractory metal oxide
layer varies from 0 to 100 nm in steps of 5 nm. As one can
observe, the color ranges across a large region of the color
gamut simply by increasing the thickness of the oxide layer.
The highly tailorable reflectivity and chromaticity achievable

with a three-layer reflector geometry, as demonstrated in
Figure 5, highlight these materials’ promise as photonic active
components for high-temperature applications.
Next, we calculate the color of different possible pixels by

varying both the metal and the oxide thickness using the
simulated reflectivity at normal incidence.42 Figure 6 shows the
simulated color for our three materials for film thicknesses
ranging from 0 nm to 200 nm in steps of 5 nm. When varying

Figure 5. Multiwavelength reflectors for color printing at elevated temperatures. Top row: device schematics for post-high-temperature-treated
structures. (a−c) Calculated reflection spectra for (a) RuO2/Ru/Si, (b) Ta2O5/Ta/Si, and (c) WO3/W/Si as the thickness of the refractory metal
oxide layer varies from 10 nm to 100 nm in steps of 10 nm. (d−f) Color gamut for calculated reflection spectra for (d) RuO2/Ru/Si, (e) Ta2O5/
Ta/Si, and (f) WO3/W/Si using experimental dielectric functions for all materials, as the thickness of the refractory metal oxide layer varies from 0
to 100 nm in steps of 5 nm.

Figure 6. Simulated color pixels for MOx/M/Si stacks. Simulated colors of (a) Ru, (b) Ta, and (c) W varying both the metal thickness (tmetal) and
the oxide thickness (tox) from 0 nm to 200 nm in steps of 5 nm.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.2c14613
ACS Appl. Mater. Interfaces 2022, 14, 55745−55752

55749

https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c14613?fig=fig6&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c14613?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


both thicknesses, we can achieve very vivid coloration across a
large portion of the color gamut. As seen in Figure 6a, Ru-
based samples present overall pastel shades, as a direct
consequence of their wider reflectance spectra as in Figure 4a.
Conversely, Ta2O5/Ta/Si and WO3/W/Si both offer bright
color options throughout most of the visible spectrum due to
the narrower peaks in the visible region of their reflectivity
spectra. These simulations show the promise of refractory
metal oxides for industry-scalable structural color pixels with
controllable high-temperature behavior (offering either static
or reversible response, depending on material selection), with
options ranging from pale to bright colors across the majority
of the visible color spectrum. The sharp changes in color with
very small changes in thickness also promote one possible use
for this structure: in high-temperature applications requiring
very low levels of oxygen, these quickly oxidizing samples can
serve as highly sensitive oxygen sensors, in which a color
change could quickly detect the presence of oxygen.
While all three structures are formed of materials with

melting points >1100 °C, the oxides present distinct
thermochemical properties. Ta2O5 has previously been
demonstrated to remain stable in inert environments at
temperatures beyond 1000 °C,20 while the other two oxides
(RuO2 and WO3) have been shown to reduce to their pure
constituent metals beyond 800 °C.43−45 Thus, the unique
material chemistry of each metal oxide is a feature: RuO2 or
WO3 can be implemented in situations that require color
reversibility, while Ta2O5 is the best choice to attain high-
temperature stability. For applications in oxygen sensing,
reusability is a highly desirable trait. With the reversibility of
the oxidation process for RuO2 and WO3 thin films, oxygen
sensors formed using Ru and W oxide thin films would be fully
reusable after reannealing the oxidized film in an inert
environment (Ar or N2). In contrast, the oxidation of Ta2O5
being irreversible presents benefits for applications requiring
stable coloration, for example as conformal coatings for space
applications.

■ CONCLUSIONS
In summary, we realized a platform for structural color filters
that can operate at temperatures beyond 1100 °C, based on
refractory metals and their oxides. We validated the suitability
of these materials by determining the changes in their optical
properties upon heating treatments in an oxidizing environ-
ment. As an example, we demonstrated vibrant hues across a
wide portion of the color gamut by submitting Ru, Ta, and W
to identical thermal treatments at 600 °C. The development of
a metal oxide dielectric layer produced interference that led to
vivid colors. The refractory, dielectric layers required for
interference are achieved using in situ oxidation, a reaction that
can be reversible or not, depending on the metal and medium.
A distinctive aspect of our approach is the promise of these
structures at high temperatures: given their high melting points
and differing thermochemical behavior, these structures offer
tailorable chromaticity and material-dependent reversibility
(RuO2, WO3) or static optical behavior (Ta2O5) upon high-
temperature treatment in inert environments. Furthermore,
our oxide growth method allows for very precise control of
dielectric layer thickness via in situ optical measurements,
which can determine the thickness in real time as the oxide
layer grows. Overall, these results show the potential of
refractory metals for photonics under extreme conditions and
how oxidation can be implemented as a powerful route to

attain dielectric layers in situ, which can work as optical
markers at elevated temperatures.

■ EXPERIMENTAL METHODS
Sample Fabrication. Samples were fabricated via DC magnetron

sputtering on a Kurt J. Lesker PVD 200 sputterer. All depositions
were in an inert environment (Ar). Deposition parameters for each
material are shown in Table S3. The metals were deposited onto a
standard Si wafer and onto glass, as a reference.
In Situ Ellipsometry. In situ ellipsometry results were measured

on a J. A. Woollam VASE ellipsometer, with a Linkam RC-2 heating
stage providing high-temperature control up to 600 °C. Samples were
heated from room temperature (25 °C) to 600 °C with a ramping rate
of 3 °C min−1, with holds at every 100 °C to allow the sample to
thermalize and to allow for detailed ellipsometric measurements.
Above 400 °C, we also stop every 50 °C to allow for finer visualization
of the high-temperature behavior of the samples. The full temperature
profile is shown in Figure S1 in the Supporting Information, along
with real-color photographs of each sample before and after high-
temperature treatment.
Ex Situ Optical Measurements and Simulations. The ex situ

ellipsometry measurements were taken on a J. A. Woollam M-2000
ellipsometer (193−1688 nm). Dielectric functions are determined by
fitting the ellipsometric parameters Ψ and Δ, fitting with general-
oscillator models for both the pure metals and the oxides after high-
temperature treatment using the CompleteEASE software. The
individual oscillators used for each model are shown in Table S1 in
the Supporting Information, using the standard equations for each
given in CompleteEASE.28 To confirm that the samples were optically
thick prior to high-temperature treatment, transmission and reflection
data were measured from samples deposited on glass in the same
deposition run; transmission measurements on each sample were
compared to a straight-through baseline in air. Reflectivity measure-
ments were taken on a J. A. Woollam W-VASE ellipsometer (290−
2440 nm). The optical simulations showing the reflection as a
function of changing oxide thickness, and the simulated color as a
function of changing metal and oxide thicknesses, were simulated in
CompleteEASE using the thicknesses and dielectric functions that
were determined using ex situ ellipsometry.
X-ray Photoelectron Spectroscopy (XPS). XPS measurements

were taken on a Kratos SUPRA Axis XPS with a monochromated Al
Kα source (1486.6 eV). The chamber’s base pressure was 2 × 10−8

Torr, with a 7 mA emission current and a scan size of 450 × 900 μm.
Peaks were fitted using Kratos ESCApe; normalization and Shirley
background subtraction were performed after fitting.
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