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Hadar Cohen-Duwek (hadar@nbel-lab.com) 
Elishai Ezra Tsur (elishai@nbel-lab.com) 

 
Neuro-Biomorphic Engineering Lab (NBEL), Department of Mathematics and Computer Science,  
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Abstract 

Visual perception initiated with a low-level derivation of 
Spatio-temporal edges and advances to a higher-level 
perception of filled surfaces. According to the isomorphic 
theory, this perceptual filling-in is governed by an activation 
spread across the retinotopic map, driven from edges to 
interiors. Here we propose two biologically plausible spiking 
neural networks, which demonstrate perceptual filling-in by 
resolving the Poisson equation. Each network exhibits a 
distinct dynamic and architecture and could be realized and 
further integrated in the brain.  

 

Keywords: cognitive architectures; computational perception; 
perception; vision; computational modeling; neural networks 

Introduction 
 

Visual perception initiates with low-level processing in the 
retina, from which it is propagated to the Lateral Geniculate 
Nucleus (LGN) and the primary visual cortex (V1). While in 
V1, visual data is transformed to represent Spatio-temporal 
edges (Marr, 1982), the perceived image has complete filled-
in surfaces, suggesting that the brain reconstructs visual 
constructs from their edges (Von Der Heydt et al., 2009) 
(Figure 1). 

Numerous visual phenomena shed light on the underlying 
neural mechanism of perceptual filling-in (Komatsu, 2006). 
Among them are the watercolor illusion (Pinna et al., 2001),  
the neon color spreading (Van Tuijl and Leeuwenberg, 1979), 
the Cornsweet illusion (Cornsweet, 1970), afterimage filling-
in (Barkan and Spitzer, 2017; Van Lier et al., 2009) and the 
filling-in in the blind spot (Ramachandran, 1992). Extensive 
empirical research on these phenomena has led to two 
prominent theories governing perceptual filling-in (Komatsu, 
2006): (1) Symbolic or cognitive theory, according to the 
contrast information at the surface edges is represented by 
low-level visual areas and the color and shape of the surface 
are described as metadata in higher areas; and (2) 
Isomorphic theory, according to perceptual filling-in, 
occurs as an activation pattern spreads across the retinotopic 
map of the visual cortex, from the surfaces’ edges to interiors. 
This activation pattern propagates across a two-dimensional 
grid of neurons, representing a planar field of view. 

 
 
 

The underlying mechanism of perceptual filling-in remains 
unclear, as there are experimental evidence supporting both 
hypotheses (Komatsu, 2006). 

A recent computational model (Cohen-Duwek and Spitzer, 
2018; Cohen Duwek and Spitzer, 2019) demonstrates many 
of the visual illusions, governed by perceptual filling-in, 
described above. The authors described a Poisson equation-
based model, which can be used to reconstruct an image from 
its gradients. While the model describes a mathematical 
formulation for perceptual filling-in, it does not imply how 
and where it is realized with the visual system's neural 
activity. 

In this work, we propose two neuronal implementations of 
the model proposed by Cohen-Duwek et al. (2018) using 
Spiking Neural Networks (SNN). These implementations 
support the isomorphic theory and demonstrate how 
biologically plausible neuronal models can lead to a 
perceived reconstruction of an image from its gradients. 
Particularly, we solve the Poisson equation by two distinct 
networks: (1) feedforward SNN in which a weight matrix was 
optimized to generate a solution (Figure 2, top); (2) Recurrent 
SNN, which follows evidence-based feedback connections, 
or horizontal connections (Gilbert and Wiesel, 1979; Hirsch 
and Gilbert, 1991) (Figure 2, bottom). 

 

 
 
 
Figure 1: Illustration of perceptual filling-in. A perceived 
image is reconstructed from Spatio-temporal edges that 
emerged in V1 using surfaces' filling in. Image was 
modified form Miquel Perello Nieto; CC BY-SA 4.0. 
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Methods 

Filling-in model  
The model proposed by (Cohen-Duwek and Spitzer, 2018, 
2019) demonstrates a variety of filling-in illusions through 
the reconstruction of an image from its gradients by using the 
diffusion/heat equation: 

 
!"!
!#
− ∆𝐼$(𝑥, 𝑦) = 𝑑𝑖𝑣(∇𝐼%),                       (1) 
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 ), 𝐼$ is the perceived image (i.e., the reconstructed image), 
and 𝐼%	is the input image (stimulus). With the diffusion 
model, the perceived image’s surfaces are gradually filled in 
from edges to interiors. 

 In accordance with previous psychophysical reports, the 
perceived image is assumed to be reconstructed very fast 
(Barkan and Spitzer, 2017; Pinna, 2008; Van Lier et al., 
2009) and was referred to as "immediate filling-in" (Von Der 
Heydt et al., 2009). Considering this fast dynamic, the 
dynamic phase of the diffusion equation !"!

!#
 can be ignored, 

reducing the diffusion equation to the steady-state Poisson 
equation: 

 
∆𝐼$(𝑥, 𝑦) = −𝑑𝑖𝑣(∇𝐼%).                            (2) 

 
While the Poisson equation can be realized numerically by 

various techniques (Mikula, 2002; Simchony et al., 1990; 
Weickert, 1996), here, it is solved with SNNs.  

Neural Engineering Framework 
SNNs closely follow biological, computational principles. 
They were utilized to design a broad spectrum of 
neuromorphic (brain-inspired) frameworks ranging from 
robotic control (Zaidel et al., 2021) to visual processing (Tsur 
and Rivlin-Etzion, 2020).  In this work, we utilized the Neural 
Engineering Framework (NEF) (Stewart and Eliasmith, 
2014) for SNN design and optimization. NEF brings forth a 
theoretical framework for neuromorphic encoding of 
mathematical constructs with spiking neurons, allowing for 
the implementation of functional large-scale neural networks 
(Stewart and Eliasmith, 2014). It provides a computational 
framework with which information, given in terms of vectors 
and functions, can be transformed into a set of interconnected 
ensembles of spiking neurons. A version of NEF was 
compiled to work on both analog and digital neuromorphic 
hardware (Hazan and Ezra Tsur, 2021). In NEF, spikes train 
𝛿) of neuron 𝑖 in response to stimulus 𝑥 is defined with: 

 
𝛿)(𝑥) = 𝐺)5𝛼)𝑒) + 𝐽)*9,                            (3) 
 
where 𝐺) is a spiking neuron model, 𝛼) is a gain term, 𝑒) is 
the neuron's preferred stimulus (encoding vector) and 𝐽)* is a 
fixed background current. An ensemble of neurons can 
encode a high-dimensional vector, which can be linearly 
decoded as 𝑥:	using: 

 
𝑥: = ∑ 𝑎)(𝑥)𝑑)+

) ,                                (4) 
 

where	𝑁 is the number of neurons, 𝑎)(𝑥) is the postsynaptic 
low-pass filtered response of neuron 𝑖	to stimulus 𝑥 and 𝑑) is 
a linear decoder that was optimized to reconstruct 𝑥 using 
least squared optimization. As the number of neurons 𝑁 

 
 
Figure 2: Two SNN architectures for perceptual filling-in. (top) Feedforward SNN. Dense connections of two spiking 
neuronal layers reconstruct an image from an input gradient image. (bottom) Recurrent SNN.  Image is reconstructed 
iteratively over time through recurrent (horizontal) connections. Dog image by Hebrew Matio; CC BY-SA 4.0. 
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increases, the mean squared error decreases as 1/𝑁,. 
Neuron's postsynaptic response is defined using: 
 
𝑎)(𝐱) = ∑ ℎ)- ∗ 𝛿)(𝑡 − 𝑡-(𝐱)),                        (5) 
 
where	ℎ) is the synaptic response function (usually an 
exponential with a time constant 𝜏 determined by the 
neurotransmitter type at the synapse), "*" is the convolution 
operator, and 𝛿)(𝑡 − 𝑡-(𝐱)) is the spike train produced by 
neuron 𝑖 in response to input 𝐱, with spike times indexed by 
𝑗. 

Equations (3) and (4) describe how vectors are encoded 
and decoded using neural spiking activity in neuronal 
ensembles. Propagation of data from one ensemble to another 
is realized through weighted synaptic connections (Stewart 
and Eliasmith, 2014), formulated with a weighted matrix.  

By integrating NEF's representation and transformation 
capabilities, we can realize intricate dynamic behavior by 
recurrently connecting neuronal ensembles. Particularly, 
NEF can be used to resolve a dynamic 𝑑𝑥 𝑑𝑡F = 𝑓H𝑥(𝑡)I +
𝑢(𝑡), where 𝑢(𝑡) is an input (the input can be from another 
neural population), by defining a recursive connection which 
resolves the transformation: 𝜏 ∙ 𝑓(𝑥) + 𝑥.  

SNN architectures 
Here, two NEF-based SNN architectures are proposed: 1) a 
feedforward SNN that solves the Poisson equation using a 
feedforward approach (Figure 2, top); and 2) a recurrent SNN 
that iteratively solves the Poisson equation using a recurrent 
approach (Figure 2, bottom). 

 

Feedforward SNN 
The feedforward SNN solves the Poisson equation by using 
matrix manipulations as follows. By using a finite difference 
numerical method (Volpert, 2014), the Poisson equation can 
be rewritten as a linear system:  

 
𝐴𝑢M⃗ = 𝑏	MMM⃗  ,                                    (6) 
 
where 𝑢M⃗ ./×1	and	𝑏M⃗./×1	are column vectors representing the 
pixels of the image 𝑈.×/ to be reconstructed and the edges 
(Laplacian) of the input stimulus, respectively (arranged in a 
natural ordering). 𝐴𝑚𝑛×𝑚𝑛 is the Laplace matrix defined with: 

 

𝐴𝑚𝑛×𝑚𝑛	= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐷 −𝐼 0
−𝐼 𝐷 −𝐼
0 −𝐼 𝐷

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
𝐷 −𝐼 0
−𝐼 𝐷 −𝐼
0 −𝐼 𝐷 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

,                (7) 

 
where 𝐼/×/	is the identity matrix and 𝐷/×/ is given by:  

 

𝐷/×/	= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
4 −1 0
−1 4 −1
0 −1 4

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
4 −1 0
−1 4 −1
0 −1 4 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.                 (8) 

 

 
 
Figure 3: Simulation results. The original image and its Laplacian are at the 1st  and 2nd columns, respectively. The results of 
the feedforward and recurrent (at iteration 1000) networks are at the 3rd and 4th columns, respectively. Recurrent methods at 
iteration 10-50 are at the 5th to 9th columns. Landscape image by BerryJ, Dog image by Hebrew Matio, Einstein photo by 
Miquel Perello Nieto, CC BY-SA 4.0. 
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Note that 𝐴 is composed of 𝑚×𝑚 blocks, each is a 𝑛 × 𝑛 
matrix. 𝐷 and 𝐼 are 𝑛 × 𝑛 blocks. The size of 𝐴 depends on 
the input dimensions. Here, we assume that the visual system 
is represented with a fixed 𝑊./×./ , where 𝑊 = 𝐴41, and 
the reconstructed image vector 𝑢M⃗  can be calculated as 
follows: 

 
𝑢M⃗ = 𝑊𝑏	MMM⃗ .                                           (9) 
 

This solution was implemented with a SNN by connecting 
two neuron ensemble layers with a weight matrix 𝑊 (Figure 
2, top). It should be noted that although 𝐴 is a sparse matrix, 
𝑊 is not as sparse (𝐴 is not a block diagonal matrix, but rather 
a “tridiagonal with fringes” matrix) (Press et al., 1986). 
Accordingly, 𝑊 represents an all-to-one connectivity 
scheme. 

 
Recurrent SNN 
The Recurrent SNN solves the Poisson equation iteratively 
by using the heat/diffusion equation dynamics. Rearranging 
the dynamic form of diffusion Eq. 1, as: !"!

!#
= 𝑑𝑖𝑣(∇𝐼%) + ∆𝐼, 

would allow us to define the feedback connection for the 
realization of the Poisson equation as: 

 
𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝐼) = 	𝜏 ∙ (𝑑𝑖𝑣(∇𝐼%) + ∆𝐼) + 𝐼,                       (10) 
 
which can be iteratively defined using:  
 
𝐼5 = 	𝜏 ∙ (𝑑𝑖𝑣(∇𝐼%) + ∆𝐼541) + 𝐼541.                            (11) 
 
The recurrent method iteratively reconstructs the perceived 
image 𝐼5 for each time step 𝑘. This equation can be 
discretized using:  

 
𝐼5 = 	𝜏 ∙ H𝐿(𝐼%) + 𝐿(𝐼541)I + 𝐼541,                  (12) 
 

where 𝐿 is the discrete Laplace operator:	h
0 −1 0
−1 4 −1
0 −1 0

i. 

 
 
 
 
 

 
Figure 5: Convergence plot of the feedback method with 20 
neurons per pixel (A) and with 10 neurons per pixel (B). x-
axis represents the number of iterations and  y-axis represents 
the maximum absolute difference between two sequential 
iterations. Only landscape 1 was shown in Figure 3. 

 
Figure 4: Raster plot for the black box image in the 
feedback (top) and the recurrent (bottom) methods. 
Spikes for the 100 neurons representing the central 5 
pixels are shown (each pixel is represented by 20 
neurons). 
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A solution to Equation 12 for a perceived 2D 𝐼(𝑥, 𝑦)5 image, 
in which the value of a pixel in location (𝑥, 𝑦) at time step k 
image is: 
 
𝐼(𝑥, 𝑦)5 = 	𝜏 ∙ (𝑑𝑖𝑣(∇𝐼(𝑥, 𝑦)%) + 𝐼(𝑥, 𝑦 − 1)541 + 𝐼(𝑥, 𝑦 +
1)541 + 𝐼(𝑥 − 1, 𝑦)541 + 𝐼(𝑥 + 1, 𝑦)541 − 4 ∙
𝐼(𝑥, 𝑦)541) + 𝐼(𝑥, 𝑦)541.                       (13) 
 
For each neuron, Equation 13 specifies four feedback 
connections to four neighboring neurons and one feedback 
connection to itself. In each time step 𝑘, neural activity is 
spread to the neuron’s neighbors. 

We implemented the recurrent Poisson solution using SNN 
with a single layer, where feedback connections were defined 
from the layer to itself. Therefore, this connectivity scheme 
can be referred to as horizontal connections (Gilbert and 
Wiesel, 1979; Hirsch and Gilbert, 1991) (Figure 2, bottom). 

It should be noted that the recurrent method is not restricted 
to horizontal connections, as it can also be implemented with 
multiple neural layers. Thus, instead of horizontal 
connections, signals can be transmitted to a higher layer and 
then transferred back to the original layer with recurrent 
connections (top-down feedback loop).  

Simulation and pre-processing 
To evaluate our SNNs, we implemented them using the 
Nango neural compiler, with which high-level descriptions 
can be translated to low-level spiking neurons (Bekolay et al., 
2014). The inputs to both simulations were the image 
Laplacian. The Laplace operator is commonly used as an 
approximation to the Difference of Gaussian (DOG) 
operator, representing the receptive fields of retinal ganglion 
cells (Marr, 1982). 10-20 spiking neurons encoded each pixel 
of the image's Laplacian with Spiking-Rectified-Linear 
activation function. Simulations were executed on an Azure 
virtual machine (6 cores, 56 GB RAM) and were accelerated 
by a GPU (Nvidia Tesla K80).  

Results 
 
We demonstrate both models' performance by comparing 
them with four different images (a photograph of Einstein, a 
dog, landscape, and black square). Figure 3 shows the 
original images, the image Laplacian (the divergence of the 
image gradients), and the resulted reconstruction (i.e., the 
perceived image) for both the feedforward and the recurrent 
methods shown.  

Feedforward method 
The results of the simulations are presented in Figure 3. The 
reconstructed images (the perceived images) are almost 
instantly reconstructed (or filled-in) from the image gradient 
(Laplacian). This filling-in process is rapid as the synaptic 
time constants determine its latency. The feedforward 
process's instantaneous nature is also demonstrated in Figure 
4, top, where the neuronal activity is homogenous over time. 

Recurrent method 
In contrast to the feedforward method, the recurrent method 
requires numerous iterations to converged and reconstruct the 
image. Notably, convergence is also apparent in the neuronal 
activity, as shown in the raster plots presented in Figure 4 
(bottom). The absolute maximal change across all pixels in 
the perceived image, over sequential iterations, is shown in 
Figure 5. Convergence is indicated when maximal change 
reduces to zero. To further realize the neuron number 
constraint, we monitored convergence, where the number of 
neurons representing a pixel reduced from 20 to 10 (Figure 5, 
A). It seems that with a small number of neurons, the solution 
diverges rather than converges, except the landscape image, 
which features long and continuous edges on many small 
surfaces (Figure 5, B). 

Discussion 
 
We introduced two biologically plausible computational 
methods in this work, which can serve as potential filling-in 
underlying neural mechanisms in the brain. Both methods 
were implemented using SNNs and were demonstrated with 
the reconstruction of an image from its Laplacian. Both 
methods are consistent with the isomorphic hypothesis since 
their resulted reconstruction was not directly stimulated by 
the input image. 

Although both approaches solve the same equation, their 
neural mechanisms are distinctive. While the recurrent 
method iteratively solves the Poisson equation using a 
horizontal connectivity scheme (Figure 2, bottom), the 
feedforward method uses a weight matrix representing direct 
dense connectivity to do the same (Figure 2, top). 

Several experimental findings support the spread of filling-
in activities in V1 area. For example, Huang and Paradiso 
(2008), found that the response to a surface interior is 
delayed, relative to the response to the surface's edge, in a 
time constant proportional to the distance between a receptive 
field and the edge. Our recursive method is consistent with 
this result, as the surface's interior is filled in at a later 
iteration than the area near the edges (Figure 3). Thus, 
suggesting that the recursive method may emulate the filling-
in process in V1.  

As demonstrated by the black square example in Figure 3, 
filling-in is not complete for input images containing a large 
surface. This uncompleted filling-in phenomenon is 
consistent with experimental findings. For instance, Zweig et 
al., (2015), measured V1 responses to spatially uniform 
chromatic and achromatic squares using voltage-sensitive 
dye imaging in macaque monkeys. They found that V1 
response to the center of the achromatic square increased with 
time, partially filling-in its center. Note that for small surfaces 
or input with multiple edges (such as a natural image with 
many small surfaces), the filling-in is completed, as no holes 
remain. It implies that natural images (with numerous edges) 
can be reconstructed at V1. This is also consistent with our 
findings, according to the filling-in of natural landscapes is 
less prone to neuronal resources. Both Zweig et al., (2015) 
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experimental findings and our model reveal an unfilled hole 
in the V1 area, suggesting that the recurrent model is 
insufficient to explain the neuronal representation of large 
uniform surfaces. Therefore, an additional mechanism might 
play a role in perceptual filling-in. 

In contrast to the recurrent method, the feedforward is a 
non-iterative, direct method. Its filling-in performance is 
better than the recurrent method, as the hole in the center of 
the black square image example was filled. In terms of 
biological plausibility, the drawback of this technique is that 
it entails all-to-one connections (dense matrix). This implies 
that neurons at a higher layer are connected to almost every 
neuron at a lower layer. A dense connectivity scheme is 
inconsistent with the receptive field organization, often a 
characteristic of neuronal visual layers (Salin and Bullier, 
1995). This biologically implausible architecture might be 
resolved by separating the visual field into distinct regions. 
Independent visual regions can be reconstructed (from their 
local gradients), and "stitched" together at a higher visual 
layer. Therefore, when searching for data to support a 
biologically plausible implementation of this method, we 
may wish to concentrate on higher visual areas. Indeed, 
experimental evidence for neural activity related to the 
filling-in process in the Cornsweet illusion, texture filling-in, 
and afterimage filling-in was found in V3 and V4 areas (De 
Weerd et al., 1995; Hong and Tong, 2017; Roe et al., 2005). 

It is important to note that neither the recurrent nor 
feedforward mechanisms of perceptual filling-in can 
comprehensively explain the filling-in governed visual 
illusions. Filling-in illusions involve other neuronal 
processes, such as attention and lateral inhibition, beyond the 
current model's scope. The color dove, Cornsweet, and 
watercolor illusions, for example, involve the projection of 
contextual information by feedbacks (Devinck and 
Knoblauch, 2019). Therefore, feedback connections, which 
inhibit or induce neuronal activity in the V1 area, are required 
to predict these illusions. The mathematical model suggested 
by Cohen-Duwek et al. (2018, 2019) describes these illusions 
by using a weight function that reflects the neuronal 
processes by modifying the stimulus edges ahead of 
reconstruction. By utilizing SNNs, we may implement the 
neuronal lateral inhibition and feedback processes and 
compare the recurrent and feedforward approaches with 
experimental findings to better understand the underlying 
mechanism of perceptual filling-in. 

 Examining both approaches, the recurrent method 
represents a slow spread of neural filling-in activities in V1, 
whereas the feedforward method represents fast neural 
filling-in activities at higher visual areas. It might be possible 
that both approaches are present in the brain, where feedback 
represents slower computation of surfaces in lower visual 
areas, and the feedforward represents a faster reconstruction 
of surfaces in higher visual areas. The fast pathway might be 
involved in cognitive functions such as attention and 
learning. Notably, these cognitive functions are projected 
back via recurrent signals to modulate isomorphic processes 

in early visual areas  (De Weerd, 2006; De Weerd et al., 2006; 
Herzog et al., 2016; Lin and He, 2012).  

 
Acknowledgments 

 
This work was supported by the Israel Innovation Authority 
(EzerTech) and the Open University of Israel research grant. 

References 
 
Barkan, Y., and Spitzer, H. (2017). The Color Dove Illusion 

(Vol. 1). Oxford University Press.  
Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., 

Stewart, T. C., Rasmussen, D. and Eliasmith, C. 
(2014). Nengo: a Python tool for building large-scale 
functional brain models. Frontiers in neuroinformatics, 
7, 48.  

Cohen-Duwek, H., and Spitzer, H. (2018). A Model for a 
Filling-in Process Triggered by Edges Predicts 
“Conflicting” Afterimage Effects. Frontiers in 
Neuroscience, 12, 559.  

Cohen Duwek, H., and Spitzer, H. (2019). A compound 
computational model for Filling-in processes triggered 
by edges: watercolor illusions. Frontiers in 
Neuroscience, 13, 225. h 

Cornsweet, T. (1970). Visual perception. Academic Press. 
De Weerd, P. (2006). Chapter 12 Perceptual filling-in: more 

than the eye can see. In Progress in Brain Research 
(Vol. 154, Issue SUPPL. A, pp. 227–245). Elsevier.  

De Weerd, P., Gattass, R., Desimone, R., & Ungerleider, L. 
G. (1995). Responses of cells in monkey visual cortex 
during perceptual filling-in of an artificial scotoma. 
Nature, 377(6551), 731-734.  

De Weerd, P., Smith, E., and Greenberg, P. (2006). Effects 
of selective attention on perceptual filling-in. Journal 
of Cognitive Neuroscience, 18(3), 335–347.  

Devinck, F., and Knoblauch, K. (2019). Central mechanisms 
of perceptual filling-in. In Current Opinion in 
Behavioral Sciences (Vol. 30, pp. 135–140). Elsevier 
Ltd.  

Gilbert, C. D., and Wiesel, T. N. (1979). Morphology and 
intracortical projections of functionally characterised 
neurones in the cat visual cortex. Nature, 280(5718), 
120–125.  

Hazan, A., & Ezra Tsur, E. (2021). Neuromorphic Analog 
Implementation of Neural Engineering Framework-
Inspired Spiking Neuron for High-Dimensional 
Representation. Frontiers in Neuroscience, 15, 109. 

Herzog, M. H., Thunell, E., and Ögmen, H. (2016). Putting 
low-level vision into global context: Why vision cannot 
be reduced to basic circuits. Vision Research, 126, 9–
18.  

Hirsch, J. A., and Gilbert, C. D. (1991). Synaptic physiology 
of horizontal connections in the cat’s visual cortex. 
Journal of Neuroscience, 11(6), 1800–1809.  

Hong, S. W., and Tong, F. (2017). Neural representation of 
form-contingent color filling-in in the early visual 

1075



cortex. Journal of Vision, 17(13).  
Huang, X., and Paradiso, M. A. (2008). V1 Response Timing 

and Surface Filling-In. Journal of Neurophysiology, 
100(1), 539–547.  

Komatsu, H. (2006). The neural mechanisms of perceptual 
filling-in. In Nature Reviews Neuroscience (Vol. 7, 
Issue 3, pp. 220–231).  

Lin, Z., and He, S. (2012). Emergent Filling In Induced by 
Motion Integration Reveals a High-Level Mechanism 
in Filling In. Psychological Science, 23(12), 1534–
1541.  

Maass, W. (1997). Networks of spiking neurons: The third 
generation of neural network models. Neural Networks, 
10(9), 1659–1671.  

Marr, D. (1982). Vision: A computational investigation into 
the human representation and processing of visual 
information. W. H. Freeman and Company. 

Mikula, K. (2002). Image processing with partial differential 
equations. In Modern Methods in Scientific Computing 
and Applications (pp. 283–321). Springer Netherlands.  

Pinna, B. (2008). Watercolor illusion. Scholarpedia, 3(1), 
5352.  

Pinna, B., Brelstaff, G., and Spillmann, L. (2001). Surface 
color from boundaries: A new “watercolor” illusion. 
Vision Research, 41(20), 2669–2676.  

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and 
Flannery, B. P. (1986). Numerical Recipes: The Art of 
Scientific Computing. Cambridge University Press.  

Ramachandran, V. S. (1992). Blind spots. Scientific 
American, 266(5), 86-91. 

Roe, A. W., Lu, H. D., and Hung, C. P. (2005). Cortical 
processing of a brightness illusion. Proceedings of the 
National Academy of Sciences of the United States of 
America, 102(10), 3869–3874.  

Salin, P. A., and Bullier, J. (1995). Corticocortical 
connections in the visual system: Structure and 
function. In Physiological Reviews (Vol. 75, Issue 1, 
pp. 107–154). American Physiological Society.  

Simchony, T., Chellappa, R., and Shao, M. (1990). Direct 
Analytical Methods for Solving Poisson Equations in 
Computer Vision Problems. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 12(5), 435–
446.  

Stewart, T. C., and Eliasmith, C. (2014). Large-scale 
synthesis of functional spiking neural circuits. In 
Proceedings of the IEEE (Vol. 102, Issue 5, pp. 881–
898). Institute of Electrical and Electronics Engineers 
Inc.  

Tsur, E. E., & Rivlin-Etzion, M. (2020). Neuromorphic 
implementation of motion detection using oscillation 
interference. Neurocomputing, 374, 54-63. 

Van Lier, R., Vergeer, M., and Anstis, S. (2009). Filling-in 
afterimage colors between the lines. In Current Biology 
(Vol. 19, Issue 8).  

Van Tuijl, H. F. J. M., and Leeuwenberg, E. L. J. (1979). 
Neon color spreading and structural information 
measures. Perception & Psychophysics, 25(4), 269–

284.  
Volpert, V. (2014). Elliptic Partial Differential Equations 

(Vol. 104). Springer Basel.  
Von Der Heydt, R., Friedman, H. S., and Zhou, H. (2009). 

Searching for the Neural Mechanism of Color Filling-
In. In Filling-In: From Perceptual Completion to 
Cortical Reorganization. Oxford University Press.  

Weickert, J. (1996). Theoretical Foundations of Anisotropic 
Diffusion in Image Processing (pp. 221–236).  

Zaidel, Y., Shalumov, A., Volinski, A., Supic, L., & Tsur, E. 
E. (2021). Neuromorphic NEF-based inverse 
kinematics and PID control. Frontiers in 
Neurorobotics, 15. 

Zweig, S., Zurawel, G., Shapley, R., and Slovin, H. (2015). 
Representation of Color Surfaces in V1: Edge 
Enhancement and Unfilled Holes.  

 

1076




