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ABSTRACT OF THE DISSERTATION 

 

Methodologic Issues in the Studies of Childhood Leukemia and 

Overhead Power Lines  

by 

Aryana Turandot Amoon 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2019 

Professor Leeka I. Kheifets, Co-Chair 

Professor Onyebuchi Aniweta Arah, Co-Chair 

 

Aims: While studies have consistently found an association between childhood leukemia risk and 

magnetic fields, similar associations between childhood leukemia and distance to overhead power 

lines suggest that other factors associated with magnetic fields and proximity to overhead power 

lines may be responsible for observed associations including bias, confounding, or other 

methodologic challenges, particularly when it comes to residential mobility and dwelling type.  

Methods: First, we pooled data from multiple studies to assess the association with distance and 

evaluate whether it is due to magnetic fields or other factors associated with distance from lines. 

We then analyzed a single study from California to assess predictors of residential mobility 

between birth and diagnosis, and account for potential confounding due to residential mobility. 

Next, we simulated a synthetic dataset based on that study and used it to assess the sensitivity of 
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electromagnetic field (EMF)-leukemia associations to different scenarios of uncontrolled 

confounding by mobility under two major hypotheses of the infectious etiology of childhood 

leukemia; then used the findings to conduct sensitivity analysis and empirically offset the potential 

bias due to unmeasured mobility in the actual California study. Finally, we assessed whether 

dwelling type is a risk factor for childhood leukemia, what covariates are related to dwelling type, 

whether dwelling type behaves as a confounder or as a potential effect measure modifier in the 

EMF-leukemia relationship. 

Results: Although we found no material association between childhood leukemia and distance to 

nearest overhead power line of any voltage, there was a slight increase in risk of leukemia among 

children living <50 m from 200+ kilovolt power lines, consistent with some previous findings. 

There was no association found with calculated magnetic fields in this set of studies, however, 

and odds ratios (ORs) remained unchanged with adjustment for potential confounders in the 

pooled analysis. 

In the California study, we found that mobility was strongly associated with age, dwelling type, 

and SES. Both EMF-leukemia associations were stronger in the stratum of non-movers, too, but 

adjustment for proxy variables had no effect. In the hybrid-simulation study, as expected, the 

stronger the assumed relationship between mobility and exposure and outcome, the greater the 

potential bias. However, no scenario created a bias strong enough to completely explain away 

previously observed associations. In all mobility analyses, only dwelling type seemed to affect the 

relationship based on a small subset of subjects, However, when expanded to a larger subset, 

dwelling type was neither associated with childhood leukemia risk, nor functioned as a confounder. 

Stratification revealed potential effect measure modification by dwelling type only. 
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Conclusion: Although uncontrolled confounding by residential mobility had some impact on the 

estimated effect of EMF exposures on childhood leukemia, it is unlikely to be the primary 

explanation for the associations observed between power lines exposure and childhood leukemia. 

Similarly, dwelling type does not appear to play a significant role as either a risk factor or 

confounder. Future research should explore the role of dwelling and mobility as an effect measure 

modifier and potential interaction effects. 
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1 Introduction 

1.1 Childhood Leukemia 

Childhood leukemia is the most common childhood cancer, affecting 51/1,000,000 children in the 

United States annually (SEER, 2018) and anywhere from 35/1,000,000 to 60/1,000,000 children 

annually in Europe (World Health Organization, 2014). There are two main types of childhood 

leukemia: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). ALL 

accounts for about 75% of all childhood leukemia cases with peak incidence occurring between 

ages 2 and 4, while AML, the second most common type, has greater incidence in the first two 

years of life followed by the teenage years (American Cancer Society, 2015; SEER, 1999). Chronic 

leukemia is rare in children. Incidence of childhood leukemia, particularly ALL, has increased 

slightly over the past century (Cancer Research UK, 2014; SEER, 1999; Svendsen, Feychting, 

Klaeboe, Langmark, & Schuz, 2007) but cannot be explained by improved diagnosis alone 

(Barrington-Trimis et al., 2017; Dalmasso et al., 2005; Linet, Ries, Smith, Tarone, & Devesa, 

1999; Shah & Coleman, 2007). 

Risk factors known to be associated with leukemia include age, sex, race/ethnicity, and 

socioeconomic status (SES) (Borugian et al., 2005; Oksuzyan et al., 2015a). In addition to variation 

in leukemia incidence by age, boys are more likely to develop leukemia than girls, and whites have 

higher incidences of ALL than African Americans (Belson, Kingsley, & Holmes, 2007). SES has 

been shown to be associated with both increased and decreased risk, depending on the surrogate 

measure used: studies using individual-level measures that often required some direct contact with 

subjects showed that lower SES was related to greater risk of leukemia, whereas record-based 

studies, which often used community-based measures of SES showed greater risk with higher SES 

(Poole, Greenland, Luetters, Kelsey, & Mezei, 2006). However, when comparing four different 
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surrogate measures captured in the same records-based study, no differences were found, as well 

as no association with childhood leukemia (Oksuzyan et al., 2015b), suggesting previous studies 

were influenced by selection bias. 

There are also known genetic risk factors; those with Down’s Syndrome (Hitzler & Zipursky, 

2005) and Li-Fraumeni syndrome (F. P. Li et al., 1988) are at substantially increased risk of 

leukemia. Ionizing radiation, a known carcinogen, is an also established risk factor for leukemia 

(Hsu et al., 2013). Other factors are suspected, but not conclusively linked to higher incidence, 

including factors related to immune systems (Schuz, Kaletsch, Meinert, Kaatsch, & Michaelis, 

1999), postnatal infections (McNally & Eden, 2004; O'Connor & Boneva, 2007) and 

electromagnetic fields (Kheifets & Swanson, 2014). 

1.2 Electromagnetic fields 

Electromagnetic fields, a form of non-ionizing radiation, have been classified as a Group 2B: 

possible human carcinogen (International Agency for Research on Cancer, 2002; World Health 

Organization, 2007). Over 40 retrospective epidemiologic studies have been conducted to assess 

the possible effect of magnetic fields on childhood leukemia risk, most of which use a surrogate 

measure for the assessment of historical exposure: either with wire codes (London et al., 1991; 

Savitz, Wachtel, Barnes, John, & Tvrdik, 1988; Wertheimer & Leeper, 1979), using present day 

measurements (Green et al., 1999; Kabuto et al., 2006; Linet et al., 1997; McBride et al., 1999), 

or using historical load and other information to calculate magnetic fields (Bunch, Swanson, 

Vincent, & Murphy, 2016; Feychting & Ahlbom, 1993; Kroll, Swanson, Vincent, & Draper, 2010; 

Pedersen, Johansen, Schuz, Olsen, & Raaschou-Nielsen, 2015; Tynes & Haldorsen, 1997; 

Verkasalo et al., 1993).  
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Pooled analyses show that greater magnetic fields, above 0.3 or 0.4 microTesla (μT), are associated 

with a small, but consistent, increase in the risk of childhood leukemia (Ahlbom et al., 2000; 

Greenland, Sheppard, Kaune, Poole, & Kelsh, 2000; Kheifets et al., 2010; Schuz et al., 2007). 

Kheifets et al. also looked at distance from nearby overhead power lines as another surrogate 

measure, and found comparable trends as for MF (Kheifets et al., 2010). Other studies assessing 

distance found similar results (Crespi et al., 2016; Draper, Vincent, Kroll, & Swanson, 2005; 

Kabuto et al., 2006; Sermage-Faure et al., 2013). However, distance is known to be a poor predictor 

of MF exposure (Feychting & Ahlbom, 1994), and therefore the question arises as to whether the 

association of increased childhood leukemia risk with distance is due to MF or to other factors 

associated with distance from overhead power lines that are unrelated to long-term average MF. 

Unlike MF, prior to this work, there was not a comprehensive pooled analysis on childhood 

leukemia and distance to power lines, which could help to answer this question. 

It is also important to consider the role of other factors which may affect the MF-leukemia 

relationship, either as an unconsidered/unmeasured confounder, through exposure 

misclassification, through affecting selection into studies, or even by effect measure modification. 

Two such factors are residential mobility and dwelling type. As often, only one home is analyzed 

in studies of residential exposures, the period of assessment may be etiologically irrelevant, or the 

exposure can be misclassified if the home captured was barely lived in (Urayama et al., 2009). The 

type of home may also affect not only the level of exposure (Brix, Wettemann, Scheel, Feiner, & 

Matthes, 2001; Calvente et al., 2014; Schuz, Grigat, Brinkmann, & Michaelis, 2001; Schuz et al., 

2000; Tomitsch, Dechant, & Frank, 2010), but also assessment (Feychting & Ahlbom, 1993; 

Vergara et al., 2015) of such exposure. Both mobility and dwelling type are related to SES 

(McCarthy, Rohe, & van Zandt, 2001; Urayama et al., 2009), which has been shown to be 
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associated with participation in studies where direct subject involvement is required (Mezei & 

Kheifets, 2006). 

The purpose of this dissertation is to quantify and describe the association between overhead power 

lines and childhood leukemia as well as to examine how residential mobility and dwelling type 

can influence this relationship. First, we provide a comprehensive assessment of the association 

between childhood leukemia and distance to overhead power lines not attempted previously by 

pooling together 11 studies from 10 countries. We also assessed whether such an association could 

be due to MF or other factors, and further consider whether bias, confounding, or other 

methodologic challenges have substantial influence on the results. Next, we dive further into the 

role of residential mobility, using the California Power Line Study (CAPS) to first describe what 

factors affect mobility and use them as proxies to adjust for, and evaluate, potential confounding 

due to residential mobility. As residential mobility was only available for cases, we devised a 

hybrid simulation study (Sudan, Arah, Olsen, & Kheifets, 2016) to further assess the impact of 

unmeasured residential mobility on EMF-leukemia associations using different scenarios of 

uncontrolled confounding by mobility. Finally, we look at the influence of dwelling type in the 

MF-leukemia relationship using CAPS to determine what covariates are related to dwelling type 

and examine whether dwelling type behaves as a confounder or an effect measure modifier in the 

MF-leukemia relationship.  
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2 Proximity to Overhead Power Lines and Childhood Leukaemia: An International 

Pooled Analysis  

 

Authors: Aryana T Amoon, Catherine M Crespi, Anders Ahlbom, Megha Bhatnagar, Isabelle 

Bray, Kathryn J Bunch, Jacqueline Clavel, Maria Feychting, Denis Hémon, Christoffer 

Johansen, Christian Kreis, Carlotta Malagoli, Fabienne Marquant, Camilla Pedersen, Ole 

Raaschou-Nielsen, Martin Röösli, Ben D Spycher, Madhuri Sudan, John Swanson, Andrea 

Tittarelli, Deirdre M Tuck, Tore Tynes, Ximena Vergara1, Marco Vinceti, Victor Wünsch-Filho, 

and Leeka Kheifets  

 

2.1 Abstract 

Background: While studies have consistently found an association between childhood leukemia 

risk and magnetic fields, the associations between childhood leukemia and distance to overhead 

power lines have been inconsistent. We pooled data from multiple studies to assess the association 

with distance and evaluate whether it is due to magnetic fields or other factors associated with 

distance from lines. 

Methods: We present a pooled analysis combining individual-level data (29,049 cases and 68,231 

controls) from 11 record-based studies.  

Results: There was no material association between childhood leukemia and distance to nearest 

overhead power line of any voltage. Among children living <50 m from 200+ kilovolt power lines, 

the adjusted odds ratio for childhood leukemia was 1.33 (95% CI: 0.92-1.93). The odds ratio was 

higher among children diagnosed before age 5 years. There was no association with calculated 

magnetic fields. Odds ratios remained unchanged with adjustment for potential confounders. 
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Conclusion: In this first comprehensive pooled analysis of childhood leukemia and distance to 

power lines, we found a small and imprecise risk for residences <50 m of 200+ kilovolt lines that 

was not explained by high magnetic fields. Reasons for the increased risk, found in this and many 

other studies, remains to be elucidated.   
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2.2 Introduction 

Thirty-five epidemiologic studies have examined the association between exposure to extremely 

low frequency magnetic fields (MF) and childhood leukemia (Kheifets & Swanson, 2014). 

Analyses that have pooled data from multiple studies (Ahlbom et al., 2000; Greenland et al., 2000; 

Kheifets et al., 2010; Schuz et al., 2007) report a small but consistent increased risk of childhood 

leukemia associated with exposures above 0.3 or 0.4 microTesla (μT). In one of these analyses, 

Kheifets et al. (Kheifets et al., 2010) pooled six studies for an analysis of the association between 

distance from power lines and childhood leukemia. They found an odds ratio (OR) of 1.59 (95% 

CI: 1.02-2.50) for the closest distance category, which was comparable to the result for MF. High 

MF can occur close (e.g. <100 meters (m)) to high voltage power lines (Vergara et al., 2015). 

However, distance is known to be a poor predictor of MF exposure (Feychting & Ahlbom, 1994), 

and therefore the question arises as to whether the association of increased childhood leukemia 

risk with distance is due to MF or to other factors associated with distance from overhead power 

lines that are unrelated to long-term average MF. Unlike MF, there has not yet been a 

comprehensive pooled analysis on childhood leukemia and distance to power lines, which could 

help to answer this question. 

Draper et al., reporting on a study in the United Kingdom (UK) using diagnosed cases from 1962-

1995, found an association between childhood leukemia and the distance between home address 

at birth and the nearest high voltage overhead line (Draper et al., 2005) with the apparent risk 

extending out to 600 m, a distance greater than would be expected for MF from high voltage lines 

because MF rapidly decline with distances and are very weak at distances beyond 100 m (Burgi, 

Sagar, Struchen, Joss, & Roosli, 2017; Swanson, 2008). Whether the risk truly persists at greater 

distances from power lines and what might be an explanation for this observation is unclear. 
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Several explanations have been proposed, including selection of controls, but none are fully 

satisfactory (Kheifets, Feychting, & Schuz, 2005), leaving open the possibility that some factor 

associated with distance other than MF is responsible.  

The Draper et al. study was extended to cover more recent time periods (diagnoses during 1962-

2008) and lower line voltages (Bunch et al., 2016). The updated study confirmed the raised 

leukemia risks reported for the earlier decades, but found that risk declined in the latest decades. 

A small Danish study of calculated fields also found higher risks in earlier decades (1968-1986) 

compared to more recent cases (1987-2003) (Pedersen et al., 2015). Two large studies in France 

and the United States (US), specifically California, reported that living within 50 m of a 200+ 

kilovolt (kV) line may be associated with a small increased risk of childhood leukemia (Crespi et 

al., 2016; Sermage-Faure et al., 2013). In these studies, no increase in risk was observed beyond 

50 m from 200+ kV lines or within 50 m of lower voltage lines. Both studies covered more recent 

time periods only (diagnosed in 1988 or later). Thus, the existence of similar temporal trends in 

risk in other countries is unresolved.  

Geographic information systems (GIS), maps, and on-site measurements have all been used to 

assess proximity to power lines (Blaasaas & Tynes, 2002), each with varying degrees of accuracy. 

In addition, the point of the home chosen for the start of measurement of the distance varied from 

study to study; some used the center of the building (Verkasalo et al., 1993), while others used the 

corner closest to the power line (Feychting & Ahlbom, 1993; Tynes & Haldorsen, 1997) or where 

the mailbox was located (Sermage-Faure et al., 2013). Some studies identified observations with 

poor geocoding accuracy and excluded them from analyses. If the association were real, one would 

expect it to be stronger when data with problematic geocoding are excluded from the analysis. On 

the other hand, such exclusions might inadvertently introduce bias. 
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In Sweden (Feychting & Ahlbom, 1993), the MF association with childhood leukemia was limited 

to single-family homes, although calculated MF levels were somewhat higher in apartments 

mainly due to fields from sources other than power lines, as verified by spot measurements. This 

resulted in lower correlation between calculated fields and spot measurements for apartments 

compared to single-family homes, which may explain why the association between calculated 

fields and childhood leukemia was limited to homes with better exposure prediction (i.e. single-

family homes).  

The association between socioeconomic status (SES) and leukemia is complex and varies based 

on the specific measures used. Individual measures, such as family income, tend to be negatively 

associated with childhood leukemia in most studies, while ecological measures, such as percent of 

neighborhood unemployment or deprivation index, tend to be positively associated (Adam et al., 

2015; Adam, Rebholz, Egger, Zwahlen, & Kuehni, 2008; Oksuzyan et al., 2015b; Poole et al., 

2006). Study participants often differ in SES and other factors from non-participants, possibly 

resulting in selection bias (Mezei & Kheifets, 2006; Slusky et al., 2014; Stiller & Boyle, 1996), 

but this is less of an issue in the record-based studies that comprise this analysis, which do not 

require active participation. Indeed, Poole et al. (Poole et al., 2006) argues that individual measures 

of SES often come from case-control studies requiring participation, whereas ecological measures 

often come from record-based studies less prone to this bias. Additionally, residence in single-

family homes may be associated with higher SES and with various exposures (including both 

distance and magnetic fields) and thus potentially confound an association. 

Power lines may be co-located with other potential risk factors such as motorways or railways, 

resulting in higher traffic-related air pollution exposure in proximity to power lines (Houot et al., 

2015; Langholz, Ebi, Thomas, Peters, & London, 2002), or specifically higher nitrogen dioxide 
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exposure from traffic (Feychting, Svensson, & Ahlbom, 1998). Several studies have reported 

associations between childhood leukemia and traffic density, proximity to major roads or 

highways, or exposure to air pollutants caused by traffic. A meta-analysis by Boothe et al. (Boothe, 

Boehmer, Wendel, & Yip, 2014) assessing childhood leukemia in relation to multiple pollutants 

found an increased risk for post-natal exposure but no association with pre-natal exposure. Most 

studies found an association with childhood leukemia overall, but the association tended to be 

stronger when examining just acute lymphoblastic leukemia (ALL) or acute myeloid leukemia 

(AML) for specific pollutants (Filippini, Heck, Malagoli, Del Giovane, & Vinceti, 2015).  

Studies of childhood leukemia and distance from power lines have assessed exposure at the birth 

home and/or diagnosis home. The critical time-period of exposure for a potential effect on 

leukemia development is unknown, and it is unclear whether birth home or diagnosis home is more 

representative of a child’s lifetime exposure and/or which exposure period is more relevant 

biologically. Of course, the former depends on the pattern of movement of the family between 

pregnancy and diagnosis. Residential mobility can manifest as selection bias, confounding, or 

increased measurement error, or it could also be a potential risk factor (Kheifets, Swanson, Yuan, 

Kusters, & Vergara, 2017).  

There are many unresolved issues regarding the association between childhood leukemia risk and 

distance from overhead power lines that are difficult to resolve in any single study. In this paper, 

we pool data from multiple studies to provide a more comprehensive assessment of the association 

between childhood leukemia risk and distance to power lines than previously attempted. We also 

assess whether the association is due to MF or other factors, and further consider whether bias, 

confounding, or other methodologic challenges inherent in these studies have substantial influence 

on the results using available data. 
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2.3 Methods  

Search and Inclusion 

The present study is a pooled analysis combining raw individual-level data from multiple studies, 

sometimes called an individual participant data (IPD) meta-analysis (Debray et al., 2015; Stewart 

et al., 2012). We searched the published literature through PubMed and a database of MF literature 

(EMF Portal https://www.emf-portal.org/en) to identify studies on childhood leukemia and 

proximity to overhead transmission lines. To locate studies potentially missed in our initial 

searches, we also searched the reference lists in identified papers and conducted an informal survey 

of epidemiologists involved in MF research. To be included in our analysis, a study must have 

used record-based exposure assessment, i.e., not requiring active participation of study subjects, 

with exposure (i.e., distance to power lines) determined at the individual level; thus, studies with 

ecologic or area-based exposure assessment were excluded. We excluded wire code studies 

(Fajardo-Gutierrez et al., 1997; Fulton, Cobb, Preble, Leone, & Forman, 1980; Green et al., 1999; 

Linet et al., 1997; London et al., 1991; McBride et al., 1999; Savitz et al., 1988; Wertheimer & 

Leeper, 1979). Although wire code studies use distance, they document only the power lines 

closest to the home, and thus higher voltage power lines might not have been recorded if there 

were any distribution lines that were closer. Studies with hospital controls were also excluded, 

because such controls may not be representative of the source population from which cases arose. 

We identified 21 studies on distance to power lines published between 1993 and 2016, of which 

13 met our inclusion criteria (Table 2.1). Eight studies were excluded; reasons for their exclusion 

are provided in the appendix (Supplementary Table 2.1).  

Table 2.1 provides a list of the 13 studies meeting our inclusion criteria along with each study’s 

characteristics and main results. We attempted to obtain data for all 13 studies; however, original 
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individual data on distance for Finland and Japan were unavailable. The 11 included studies were 

conducted in 10 different countries: Brazil, Denmark, France, Italy (2 studies in separate regions), 

Norway, Sweden, Switzerland, Tasmania, the UK, and the US (California). Exposure assessment 

in Brazil involved interviews with mothers as well as direct MF measurements inside the homes 

of children. However, the distance data used in our study were calculated using only grid maps for 

the Metropolitan Region of São Paulo without requiring participant involvement (Wunsch-Filho 

et al., 2011).  

Material 

Among the three largest studies, accounting for 88% of all cases and 76% of cases closest to lines, 

two (UK and US) were based on birth residencies and one (France) on the residence at time of 

diagnosis; most of the other studies focused on the residence at time of diagnosis in their original 

publications, but nearly all had some information available on birth homes as well. To focus on 

populations with higher exposure prevalence, some studies (Norway and Sweden) captured data 

from the time the child entered an area defined as homes within specified distances to overhead 

power lines. For Italy 2 we received data for 1998-2013 for the Modena and Reggio Emilia 

provinces, which is a broader time-period than in their original publication (Malagoli et al., 2010). 

All studies provided information on sex, age, and SES (with the exception of France with no 

information on sex for controls), five studies provided information on mobility (whether subjects 

moved between birth and diagnosis dates), and four studies provided data on type of dwelling and 

traffic exposure. We collected available MF information to examine potential impact from 

adjustments for calculated fields on distance. Most studies provided calculated MF (Brazil 

provided measured fields), while France, Switzerland, and Tasmania had no measured or 

calculated fields available.  
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All variables were recoded to make them as compatible as possible. Distance to power lines was 

coded into four categories as the primary analysis (<50 m, 50-<150 m, 150-<300 m, and ≥300 m 

as the reference); these cut points were selected based on available data and previous literature.  

The primary analyses estimated risk of any type of childhood leukemia associated with distance 

of residence from power lines and was restricted to participants who had study-defined accurate 

geocoding. A mixture of birth and diagnosis homes was used, based on available data, with the 

home used in prior publications given preference. We estimated risk for distance from closest 

overhead power line of any voltage and from closest power line with voltage of 200 kV or greater. 

Analyses were adjusted for age at diagnosis, sex (except for France where a dummy variable was 

used), and SES (either individual or ecological, depending on availability), all of which were coded 

as categorical variables.  

Statistical analysis  

We used two statistical approaches: one-stage meta-analysis and two-stage meta-analysis (Burke, 

Ensor, & Riley, 2017). In the one-stage approach, a traditional pooled analysis, data from all 

studies were entered simultaneously into a single mixed-effects logistic regression model with 

random intercepts for study. In the two-stage approach, effect estimates (log ORs) were obtained 

for each study separately and then combined using a random-effects meta-analysis model. A 

sensitivity analysis using the two-stage approach included Japan and Finland for which only 

summary data were available. The risk estimate for Finland comes from unpublished data from a 

previous pooled analysis (Ahlbom et al., 2000) and provided estimates based on living <50 m to 

any voltage line. For the primary analyses, estimates from these two methods were compared. For 

all further analyses, we used the one-stage approach. 



 

14 

 

Additional subgroup, confounder, and sensitivity analyses were performed. We fitted models for 

various subgroups: comparing subtypes of leukemia (ALL and AML), excluding children with 

Down syndrome, and comparing subjects younger than five years to those five years or older at 

diagnosis. To evaluate whether the strength of the association changed over time, we stratified by 

decade of diagnosis in a manner similar to that of Bunch et al (Bunch, Keegan, Swanson, Vincent, 

& Murphy, 2014), except that due to small numbers, we grouped the decades as 1960-1980, 1980-

2000, and 2000 and later. The latter analysis was conducted both with and without the UK study, 

because it was the hypothesis generating study. 

We examined the effects of confounder adjustments on risk estimates. Confounders examined 

included residential mobility (moving between the time of birth and diagnosis) for five studies, 

type of dwelling (single-family home or other) for four studies, traffic exposure (high, medium, or 

low) for four studies, urban versus rural setting for seven studies, ecological measures of SES for 

six studies, individual measures of SES for five studies, and MF for eight studies. The latter 

analysis was performed both with and without Brazil, the only country with measured rather than 

calculated fields. Completeness of collected confounder information varied across studies; many 

studies with confounder information had substantial subject-level missing data. We further 

analyzed the association between childhood leukemia risk adjusting for each confounder 

individually, controlling for age, sex, and SES. As confounder information was available only for 

subsets of studies, we present ORs from both minimally adjusted models (adjusted for age, sex, 

and SES) and models with confounders fit to the same subset of data.  

Sensitivity analyses included comparing the association based on birth homes to that in diagnosis 

homes, as well as the choice of the reference category (e.g. ≥300 m vs. ≥600 m). To assess how 

geocoding accuracy may result in exposure misclassification, we conducted an analysis of all 
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observations, regardless of geocoding quality, compared to one including only observations with 

good geocoding. Finally, we repeated the primary analysis using alternative controls. These 

analyses used data from studies that assessed other cancers in addition to leukemia (Italy 2, 

Sweden, Switzerland, Tasmania, UK, and US). We used controls matched to cases of other cancers 

(central nervous system tumors, lymphoma, and other cancers), and conducted an analysis 

combining all alternative controls.  

Analyses were conducted using SAS 9.3 and Stata 14.2. 

2.4 Results  

Our pooled data set included 30,200 childhood leukemia cases and 69,594 controls. After 

restriction to participants with study-defined accurate geocoded distances from overhead power 

lines to the home, we were left with 97,280 participants (29,049 cases, 68,231 controls). After 

removing observations with missing data on age, sex, or SES, there were 27,143 cases and 65,265 

controls available for the primary analysis. Studies included cases diagnosed as early as 1960s and 

as late as 2014; a larger percentage of cases and controls came from the time periods between 

2000-2015, as shown in Figure 2.1. 

Table 2.2 provides results for the primary analysis using the one-stage approach. There was no 

material association between childhood leukemia and distance to nearest line of any voltage for 

any distance category. Crude ORs and ORs adjusted for age, sex, and SES were virtually the same. 

Results were similar when distance of ≥600 m was used as reference (data not shown). For distance 

to high voltage lines (200+ kV), there was no difference between risk estimates for distances of 

50-<150 and 150-<300 m compared to those living 300 m or more away. However, among those 

living <50 m to a 200+ kV power line, the adjusted pooled OR was 1.33 (95% CI: 0.92-1.93). 
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Supplementary Figure 2.1 shows the distribution over time of subjects living within 50 m of an 

overhead power line.  

Table 2.3 provides study-specific results and estimates from random effects meta-analysis model 

based on the two-stage approach. Although the ORs for individual studies for distances <50 m to 

a 200+ kV power line ranged from 0.56 (UK) to 9.05 (Brazil), the results were sufficiently 

homogenous for pooling: I-squared 24.6%, p=0.25 (Figure 2.2). Several smaller studies did not 

have observations in the <50 m to a 200+ kV line category (Table 2.3). The inclusion of estimates 

from Japan and Finland, for which individual data could not be obtained, only slightly increased 

the meta-analysis OR. Reassuringly, results of one-stage and two-stage analysis approaches were 

similar. All further results examine distance to 200+ kV lines and ≥300 m as the reference utilizing 

one-stage analysis.  

An influence analysis showed that removal of studies one at a time had little effect on the pooled 

estimate, except that the OR increased from 1.33 to 1.58 on removal of the UK study 

(Supplementary Figure 2.2). The UK study contributed the largest number of participants to the 

pooled analysis, accounting for over 60% of the cases overall, but only six cases and thirteen 

controls lived within 50 m of a 200+ kV line. 

Subgroup Analyses 

When the analysis was restricted to ALL, the results were similar to those found for the primary 

analysis, with an OR of 1.39 (95% CI: 0.92-2.10) for children living <50 m from a 200+ kV power 

line compared to those ≥300 m away (Table 2.3). The association was not seen for AML (OR: 

0.82; 95% CI: 0.27-2.45). Excluding children with Down syndrome had no effect on the results 

(data not shown). 
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In the analysis stratified by age at diagnosis, the association between childhood leukemia and 

distance <50 m compared to ≥300 m from a 200+ kV line appeared to increase for children 

diagnosed before age five years (OR: 1.65; 95% CI: 1.02-2.67) (Table 2.4). When examining 

differences by time-period of diagnosis, we found the highest ORs for the years 1960-1980 for all 

distance categories, followed by the 2000-2010 in the <50 m category, with virtually null 

association in the middle decades, 1980-2000 (Table 2.4). When the UK study, which generated 

the hypothesis of a temporal trend, was excluded from this analysis, ORs were elevated for all time 

periods in the <50 m category. However, they were imprecisely estimated, with no apparent trend, 

and the 1960-1980 period was based on small numbers (Supplementary Table 2.2). 

Confounder Analyses 

Supplementary Table 2.3 provides results for the association of potential confounders with 

childhood leukemia risk, adjusted for age, sex, and SES. Most potential confounders examined, 

including traffic, urban versus rural setting, and SES, were not associated with risk of childhood 

leukemia. Calculated magnetic fields ≥ 0.4 μT were also not related to childhood leukemia (OR: 

1.07; 95% CI: 0.65-1.76) in these studies. An association between mobility and leukemia risk was 

observed; the odds of leukemia among participants who had ever moved between birth and 

diagnosis was 1.89 times higher than among those who had never moved (95% CI: 1.50-2.38). 

Participants living in single-family homes had lower odds of leukemia than those living in other 

types of residences (OR: 0.80; 95% CI 0.61-1.06), but results were imprecise. 

Table 2.5 presents ORs for the association between distance from power lines and childhood 

leukemia risk with and without adjusting for specific potential confounders. Different subsets of 

studies are included in each analysis due to the availability of variables in the studies. The 

association between power lines and childhood leukemia was slightly higher among the studies 
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that included individual measures of SES compared to those with ecological SES measures, but 

adjusting for SES did not change the observed risk estimates in either subset (Table 2.5). 

Adjustments for other confounders, including dwelling type, traffic, and urban versus rural 

setting, also had little impact on the risk estimates. Adjustment for mobility, which was 

associated with leukemia risk (Supplementary Table 2.3), did not affect the risk estimates either 

(Table 2.5). Further investigation determined that only two studies, Brazil and Sweden, 

contributed meaningfully to estimating the OR in this model, and mobility was associated with 

distance <50 m positively in Brazil and negatively in Sweden, which resulted in an overall lack 

of association. Adjusting for MF exposure using calculated fields did not materially change the 

OR for distance <50 m. Including Brazil, the only measurement-based study, in these analyses 

strengthened the association between proximity to power lines and childhood leukemia from 

1.32 to 1.47 (95% CI: 0.83-2.60) when adjusting for MF (Table 2.5), but results were imprecise.  

Analyses of the association between distance and leukemia risk stratified by various covariates 

revealed stronger associations with distance for participants who had ever moved and for 

participants from both single-family homes and other dwelling types, suggesting potential 

interaction effects between these covariates and proximity to power lines (Supplementary Table 

2.4). However, some results were based on small numbers, and the OR for distance among 

participants who had ever moved was driven by a single study (Sweden). In analysis stratified by 

MF level, there were too few observations in the category (<0.1 μT and <50 m to 200+ kV line), 

therefore we used a cut point of <0.2 μT and collapsed eight age categories to three to achieve 

meaningful comparisons. A raised OR was observed in the ≥0.4 μT stratum, for the <50 m to 200+ 

kV line category (OR: 6.25; 95% CI: 0.94-41.52), but based on small numbers. 

Sensitivity Analyses 
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The association between distance (<50 m compared to ≥300 m) to 200+ kV power lines and 

childhood leukemia was stronger for diagnosis homes (OR: 1.78; 95% CI: 1.13-2.81) compared to 

birth homes (OR: 1.23; 95% CI: 0.79-1.91), although the confidence intervals overlap 

(Supplementary Table 2.5). This was true even in the subset of studies that had information on 

both birth and diagnosis homes (Supplementary Table 2.6). When using all available data, 

including observations with less accurate geocoding, the minimally adjusted model provided an 

OR of 1.33 (95% CI: 0.92-1.91) for the shortest distance category to a 200+ kV power line 

(Supplementary Table 2.5), similar to the observed association using only accurately geocoded 

observations (Table 2.3). In the analysis with all alternative controls, the association weakened in 

comparison to the one observed in the primary analysis. Results were broadly similar for controls 

for other cancer types (Supplementary Table 2.5).  

2.5 Discussion  

We conducted a pooled analysis assessing proximity to overhead power lines and its association 

with childhood leukemia using individual-level data from 11 case-control studies. We found 

virtually no increase in risk of leukemia among children who lived within any distance, (including 

<50 m) to power lines of all voltages combined. We found a small, but imprecise, increase in risk 

of leukemia among children who lived in homes <50 m from higher voltage (200+ kV) power 

lines. We found no material association between childhood leukemia and MF in this set of studies.  

We did not find any association between childhood leukemia and urban versus rural, type of 

dwelling, traffic density, or SES in this set of studies. Further, adjusting for SES did not alter the 

associations whether ecological or individual measures of SES were used. Unfortunately, only the 

US study measured both types of SES, thus we were unable to compare these measures of SES in 

the pooled analysis. A previous analysis of the US data (Oksuzyan et al., 2015b) found that SES, 
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as an individual or ecological measure, was not clearly associated with the risk of childhood 

leukemia or its major subtypes.  

Of the potential confounders that we examined, only mobility was associated with childhood 

leukemia. Brazil obtained some of their data through interviews (however, data included in our 

main analysis were records-based), and therefore the data on mobility were prone to non-responder 

bias (9.5% of cases and 12% of controls refused participation). The stratified analyses showed a 

much stronger association between proximity to power lines and childhood leukemia for those 

who moved compared to those who never moved, but both strata had small numbers in their highest 

exposed categories (Supplementary Table 2.4). Given the uncertain relationship between mobility 

and proximity to power lines, the support for mobility as a confounder appears limited.  

We found higher ORs for distance when only studies with information on mobility, type of 

dwelling, or traffic were included; however, adjustments for these confounders had no effect on 

the estimates. Thus, these variables did not appear to confound the associations, but rather 

indicated potential selection of studies with higher ORs for close distance, perhaps due to higher 

quality of studies with more detailed examination of potential confounders and more accurate 

geocoding.  

Nevertheless, the role of mobility in the studies of childhood leukemia is not fully understood. 

Assessment of that role is complicated because it might be related to the age of the child, SES, 

type of housing (single-family vs. apartments), likelihood of successful geocoding, inclusion into 

the measurement component of the study, or exposure misclassification. Further exploration of the 

role of mobility on the association between proximity to power lines and childhood leukemia is 

warranted, whether it is through selection bias, confounding, or measurement error or as a risk 

factor itself.  
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In the age-stratified analyses, excess leukemia risk associated with close distance to power lines 

was limited to the younger age group, for whom any address might be more indicative of lifetime 

exposure and/or exposure during a critical time period. On the other hand, although we might 

expect exposure in birth homes to be more representative of exposure during the critical 

developmental time-period, power line proximity to diagnosis homes was more strongly associated 

with childhood leukemia than proximity to birth homes. This was the case when all studies were 

considered and when limiting to studies that had information on both birth and diagnosis homes 

(Supplementary Table 2.6). Another possible explanation for variation with age is the 

heterogeneity of childhood leukemia, involving a spectrum of lymphoid and myeloid diseases with 

different distributions of age at diagnosis and potentially differing etiologies.  

We did not confirm a sharp monotonic decline in the association in more recent decades as was 

suggested by a UK study (Bunch et al., 2016) with some support from the Danish study (Pedersen 

et al., 2015). When the UK data were excluded, the associations by period of diagnosis were similar 

(Supplementary Table 2.2). We used tighter distance intervals compared to the UK study closest 

distance of <200 m, which spans three of our distance categories. Studies in our pooled analysis 

had little overlap across time periods, and mostly smaller studies contributed cases before 1990 

with the non-UK studies in total contributing roughly equal numbers of highly exposed subjects 

as the UK study in this period. Thus, while we did not confirm the UK finding: excluding UK, 

there is only a slight suggestion of higher risk in the earliest period, all estimates are too imprecise 

to draw firm conclusions either way. Due to small numbers, it is difficult to explore this further 

even in this pooled analysis.  

Similarly, other methodologic considerations fail to offer good explanations for the observed 

association in our study. We only included record-based studies to reduce the possibility of 
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selection bias in our results (Law, Smith, Roman, & United Kingdom Childhood Cancer Study, 

2002). Some studies identified subjects with poor geocoding accuracy and excluded them from 

analysis. Exposure misclassification due to measurement error and potential selection bias was 

likely minimal, as the risk estimate did not change when including less accurately geocoded 

observations, although very little of the poor geocoding occurred at close distances. Similarly, and 

as expected, use of alternative controls reduced the risk estimates somewhat, but did not suggest 

strong bias. Once again, this observation may be due to the selection of the set of studies. 

In addition to increasing statistical power, IPD meta-analyses (or pooling) allowed us to 

standardize inclusion criteria and analyses across studies, and conduct analyses that were not done 

or possible in the individual studies (Burke et al., 2017). Increasing the precision of the estimates 

is especially important if the possible effect estimate is small, such as the association between 

proximity to power lines and childhood leukemia. Pooling also strengthened the study with 

standardization of data across studies, as the definitions of outcome, exposure, and potential 

confounders varied substantially between individual studies. Particularly problematic were varied 

definitions of “exposed” and reference categories for distance to power lines used in previous 

studies of childhood leukemia. Further, pooled analysis enabled consistent application of statistical 

analyses to all included studies, minimizing bias, and resulting in more stable results.  

There are inherent limitations when pooling data. First, the pooled dataset is only as good as the 

underlying data. Second, each study collected different information, which limited the adjustment 

and confounder analysis or required excluding studies. Restrictions to smaller subsets of studies 

in the sensitivity analyses are likely selective and not generalizable to the broader set of data.  

Although the studies we have included do not show an association with MF, our results are broadly 

consistent with previous pooled analyses of MF and childhood leukemia (Ahlbom et al., 2000; 
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Greenland et al., 2000; Kheifets et al., 2010; Schuz et al., 2007) in that the elevated risk we found 

was limited to <50 m of a 200+ kV lines, a distance at which MF are more likely to be elevated. 

On the other hand, the lack of association with MF and the fact that adjusting for MF did not 

weaken the association for distance supports alternative explanations for the associations observed 

between residential distance from power lines and leukemia risk, such as other correlates of 

distance or unmeasured confounders. Furthermore, although we included only record-based 

studies, which are less prone to bias, our results are somewhat weaker and less precise than that of 

previous MF pooled analyses, again arguing against MF as an explanation. 

In conclusion, we found a small, imprecise association between childhood leukemia and residence 

located within 50 m of 200+ kV lines, which was stronger for younger children, in our individual-

data pooled analysis of 11 studies. This association was not explained by exposure to high MF 

levels or by other measured confounders. We found no evidence for bias as a potential explanation 

and in particular, we only included record-based studies, making selection bias unlikely. While 

exposure misclassification is likely to be present, the risk of bias due to distance misclassification 

is quite small. The previous UK findings of risk estimates for distances beyond 200 m are not 

supported by the pooled data from other countries. The decrease in effect over time are not clearly 

supported by the pooled data from other countries, although numbers of exposed cases and controls 

for the earlier time period are small for both UK and for other countries combined. While pooled 

analysis is a powerful approach to integrating data, it is only as good as the underlying data. 

Reasons for the small yet fairly consistent increase in the risk of childhood leukemia in relation to 

proximity to power lines found in many studies remain to be elucidated. 
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Figure 2.1 Distribution of cases and controls, and studies by years of diagnosis. 
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Figure 2.2 Two-stage meta-analysis <50 m vs. 300+ m to 200+ kV line. 
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Table 2.1 Characteristics of Studies Meeting Criteria for Pooled Analysis of Childhood Leukemia and Distance to Power Lines. 

Table 1. Characteristics of Studies Meeting Criteria for Pooled Analysis of Childhood Leukemia and Distance to Power Lines. 

Country 

(First Author, 

Year) 

Population 

(Leukemia) 

Years of 

Diagnosis 
Age 

Voltages 

(kV) 

Home 

Analyzed 

Homes 

with 

Data 

Results  

(Shortest distance 

category to reference) 

Adjusted for 

Included: Cases/Controls   

Brazil 
162/565 2001-2009 0-8 

88, 138, 

230, 345, 

440, 750 

Diagnosis 

Birth COR (95% CI): 0.68 (0.25-1.84) 

Age, Sex, Race, Mobility, 

Education, Day Care, Down’s 

Syndrome, Flu History, 

Maternal Age, Maternal 

Occupational History, 

Maternal Smoking and 

Alcohol History 

(Wünsch-Filho, 2011) 

Diagnosis AOR (95% CI): 1.54 (0.26-9.12) 

Denmark 
1698/3396 1968-2006 0-15 

132, 150, 

220, 400 
Birth Birth 

COR (95% CI): 0.76 (0.40-1.45) 
Socioeconomic Status 

(Pedersen, 2014) AOR (95% CI): 0.76 (0.40-1.45) 

France 
2712/29797 2002-2007 0-14 

63, 90, 

150, 225, 

400 

Diagnosis Diagnosis AOR (95% CI): 1.2 (0.8-1.9) Age, Département (Sermage-Faure, 

2013) 

Italy 1 
119/476 1978-1997 0-14 

132, 220, 

380 
Diagnosis 

Birth N/A- distance not assessed in 

publication 
Age, Sex 

(Bianchi, 2000) Diagnosis 

Italy 2 
46/184 1986-2007 0-14 132, 380 Exposed1 

Birth N/A- distance not assessed in 

publication 

Age, Sex, Paternal and 

Maternal Education, Paternal 

Income 
(Malagoli, 2010) Diagnosis 

Norway 
148/579 1965-1989 0-14 

11, 18, 22, 

24, 50, 60, 

66, 132, 

300, 420 

Exposed1 

Birth 

COR (95% CI): 0.6 (0.3-1.3)   
(Tynes, 1997) 

Diagnosis 

Sweden 
39/151 1960-1985 0-16 

20, 50, 70, 

130, 220, 

400 

Diagnosis 
Birth 

COR (95% CI): 2.9 (1.0-7.3)   
(Feychting, 1993) Diagnosis 

Switzerland 
1109/5545 1985-2014 0-15 

100, 150, 

220, 380 
N/A 

Birth N/A- distance not assessed in 

publication 
  

(Spycher, 2011)2 Diagnosis 

Tasmania 
47/47 1972-1980 0-17 

88, 110, 

220 
All 

Birth N/A- only adults assessed in 

publication 
  

(Lowenthal, 2007) Diagnosis 
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UK 
17299/21059 1962-2008 0-14 

132, 275, 

400 
Birth Birth COR (95% CI): 1.00 (0.75-1.34)   

(Bunch, 2014) 

US 

4879/4835 1988-2008 0-15 

60, 69, 70, 

115, 138, 

230, 288, 

500 

Birth 

Birth 

AOR (95% CI): 1.4 (0.7-2.7) 
Age, Sex, Race/Ethnicity, 

Socioeconomic Status 
(Crespi, 2016) Diagnosis 

(cases 

only) 

Not Included:               
Reason for Non-

inclusion 

Finland 
Total= 134,800 1970-1989 0-19   Exposed   OR (95% CI): 1.47 (0.33-6.60)⁺ Original data not found 

(Verkasalo, 1993) 

Japan 
312/603 1999-2001 0-15   Diagnosis   OR (95% CI): 3.06 (1.31-7.13) Data not received 

(Kabuto, 2006) 

AOR, adjusted odds ratio; COR, crude odds ratio 

¹Home in region with power lines 

⁺Odds raNo for a subset of parNcipants obtained from private communicaNon 

2Distance used as confounder 
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Table 2.2 Odds ratios for childhood leukaemia by distance to closest overhead power lines: one-

stage results. 

 

Distance (m) Cases/Controls Crude OR (95% CI) Adjusted OR (95% CI) 

To Any Voltage 

300+ 25,713/60,603 1.00 (Reference) 1.00 (Reference) 

150-<300 783/2,559 0.98 (0.89-1.07) 0.98 (0.89-1.07) 

50-<150 449/1,498 0.98 (0.87-1.10) 0.98 (0.87-1.10) 

<50  198/605 1.02 (0.85-1.21) 1.01 (0.85-1.21) 

To 200+ kV Line 

300+ 26,434/63,197 1.00 (Reference) 1.00 (Reference) 

150-<300 304/898 0.97 (0.84-1.12) 0.97 (0.84-1.12) 

50-<150 152/469 0.98 (0.80-1.20) 0.97 (0.79-1.19) 

<50  50/123 1.35 (0.93-1.94) 1.33 (0.92-1.93) 

Analyses were conducted using a random intercept logistic regression model adjusted for age, 

sex, and SES.  
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Table 2.3 One-stage and two-stage results for childhood leukemia comparing <50 m to 300+ m 

distance to closest overhead power line. 

 

  Any Voltage   200+kV 

Study Ca/Co  OR (95% CI)   Ca/Co  OR (95% CI) 

Included 

Brazil 5/11 1.64 (0.54-4.95)   3/1   9.05 (0.89-91.90) 

Denmark 0/2 --   0/0 -- 

France 23/213 1.17 (0.75-1.81)   9/60 1.62 (0.80-3.30) 

Italy1 2/2    4.27 (0.57-31.91)   0/0 -- 

Italy2  1/4 1.00 (0.10-9.63)   0/0 -- 

Norway 8/43 0.70 (0.31-1.56)   0/6 -- 

Sweden 4/8     2.72 (0.45-16.57)   4/8  2.72 (0.45-16.57) 

Switzerland 34/199 0.88 (0.61-1.28)   5/20 1.34 (0.50-3.59) 

Tasmania 1/0 --   0/0 -- 

UK 22/34 0.82 (0.49-1.40)   6/13 0.56 (0.21-1.47) 

US 97/89 1.07 (0.80-1.43)   23/15 1.50 (0.78-2.88) 

Two-Stage  

(Meta-Analysis) 
  1.02 (0.85-1.22)     1.41 (0.88-2.24) 

One-Stage  

(Pooled Analysis) 
  1.01 (0.85-1.21)     1.33 (0.92-1.93) 

            

Not Included 

Japan   3.06 (1.31-7.13)     -- 

Finland   1.47 (0.33-6.57)     -- 

            

Meta-Analysis of 

All Studies 
  1.10 (0.88-1.38)     -- 

Denmark and Tasmania had no observations in <50 m category for any voltage. Italy1, Italy2, and Norway had no 

observations in the <50 m category for 200+kV. 

Analyses were adjusted for age, sex (where available), and socioeconomic status.      

Ca= cases; Co= controls.  Numbers can differ slightly from original publication due to different exclusion criteria. 
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Table 2.4 Odds ratios for childhood leukaemia by distance to closest overhead power line of 200 

kV or higher within subgroups. 

Subgroup 
Distance 

(m) 
Cases Controls OR 95% CI 

Leukemia Subtypea 

Acute 

Lymphoblastic 

Leukemia 

≥300 21,068 56,450 1 -- 

150-<300 240 785 0.99 0.84-1.17 

50-<150 120 418 0.96 0.77-1.21 

<50 40 108 1.39 0.92-2.10 
            

Acute Myeloid 

Leukemia 

≥300 3,916 33,986 1 -- 

150-<300 48 484 1.09 0.85-1.40 

50-<150 18 251 0.85 0.57-1.27 

<50 5 68 1.28 0.67-2.46 

Age at Diagnosis 

<5 Years 

≥300  14,940 29,322 1 -- 

150-<300  188 396 1.14 0.94-1.38 

50-<150  88 228 0.9 0.69-1.17 

<50  34 49 1.65 1.02-2.67 
            

>=5 Years 

≥300 11,683 34,418 1 -- 

150-<300  115 502 0.78 0.62-0.98 

50-<150  64 241 1.09 0.80-1.49 

<50  16 74 1.01 0.55-1.83 

Year of Diagnosis 

1960-1980 

≥300 5,213 5,933 1 -- 

150-<300 40 62 1.71 1.03-2.83 

50-<150 23 32 2.68 1.34-5.37 

<50 8 12 2.22 0.78-6.33 
            

1980-2000 

≥300 11,200 13,992 1 -- 

150-<300 110 176 0.89 0.69-1.15 

50-<150 65 99 1.04 0.75-1.45 

<50 14 22 1.07 0.52-2.18 
            

2000-2010 

≥300 10,210 43,815 1 -- 

150-<300 153 660 0.99 0.82-1.21 

50-<150 64 338 0.81 0.61-1.09 

<50 28 89 1.44 0.90-2.32 

Analyses were conducted using a random intercept logistic regression model adjusted for age, sex, and 

socioeconomic status. aSome controls overlap for subtypes. 
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Table 2.5 Comparison of the odds ratios for association between childhood leukemia and distance to closest overhead 200+ kV power 

line with and without adjustment for specific confounders. 

 

Confounder Model ≥300 m 150-<300 m 50-<150 m <50 m 

Ecological SES- Studies 2, 3, 8, 9, 10, 11 

not adjusted* 1.00 (reference) 1.01 (0.87-1.18) 0.90 (0.72-1.12) 1.28 (0.85-1.93) 

adjusted⁺ 1.00 (reference) 1.02 (0.87-1.18) 0.90 (0.72-1.12) 1.28 (0.85-1.93) 

Individual SES- Studies 1, 5, 6, 7, 11 

not adjusted* 1.00 (reference) 0.83 (0.63-1.10) 1.09 (0.77-1.54) 1.49 (0.85-2.59) 

adjusted⁺ 1.00 (reference) 0.83 (0.63-1.10) 1.09 (0.77-1.55) 1.48 (0.85-2.58) 

Mobility- Studies 1, 5, 6, 7, 9 

not adjusted* 1.00 (reference) 0.90 (0.43-1.90) 1.84 (1.00-3.38) 2.05 (0.78-5.36) 

adjusted⁺ 1.00 (reference) 0.87 (0.41-1.86) 1.72 (0.93-3.20) 2.09 (0.79-5.51) 

Dwelling Type- Studies 1, 6, 7, 11 

not adjusted* 1.00 (reference) 0.95 (0.51-1.79) 1.64 (1.04-2.58) 2.59 (1.35-4.99) 

adjusted⁺ 1.00 (reference) 0.96 (0.51-1.81) 1.66 (1.05-2.61) 2.62 (1.36-5.03) 

Traffic- Studies 3, 4, 7, 8 

not adjusted* 1.00 (reference) 0.99 (0.77-1.26) 1.02 (0.73-1.42) 1.78 (1.06-2.98) 

adjusted⁺ 1.00 (reference) 0.98 (0.77-1.26) 1.01 (0.72-1.41) 1.77 (1.05-2.97) 
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Urban Setting- Studies 1, 2, 3, 6, 7, 8, 10 

not adjusted* 1.00 (reference) 1.02 (0.87-1.21) 1.01 (0.80-1.28) 1.28 (0.81-2.02) 

adjusted⁺ 1.00 (reference) 1.02 (0.87-1.21) 1.01 (0.80-1.28) 1.28 (0.81-2.02) 

Calculated Fields- Studies 2, 4, 5, 6, 7, 10, 11 

not adjusted* 1.00 (reference) 0.95 (0.79-1.13) 0.98 (0.75-1.26) 1.16 (0.71-1.91) 

adjusted⁺ 1.00 (reference) 0.95 (0.79-1.13) 1.00 (0.75-1.32) 1.23 (0.67-2.26) 

Measured or Calculated Fields- Studies 1, 2, 4, 5, 6, 7, 10, 11 

not adjusted* 1.00 (reference) 0.95 (0.79-1.14) 0.97 (0.75-1.24) 1.32 (0.81-2.13) 

adjusted⁺ 1.00 (reference) 0.95 (0.79-1.14) 0.98 (0.75-1.28) 1.47 (0.83-2.60) 

Studies: 1-Brazil, 2-Denmark, 3-France, 4-Italy1, 5-Italy2, 6-Norway, 7-Sweden, 8-Switzerland, 9-Tasmania, 10-UK, 11-US. 

*Analyses were conducted using a random intercept logistic regression model, adjusting for age, sex and SES (except in SES models) in subjects who did not have missing values for the covariate of 

interest.     

⁺Analyses were conducted using a random intercept logistic regression model, adjusting for age, sex, SES, and the covariate of interest. 
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2.6 Appendices 

 

Supplementary Figure 2.1 Distribution of cases and controls <50 m of a 200+ kV line by years of 

diagnosis. 
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Supplementary Figure 2.2 Influence Analysis: <50 m vs. 300+ m to 200+ kV line. 

 

0.5 1 1.5 2 2.5

Country Removed

Odds Ratio and 95% CI

Brazil

California

Denmark

France

Italy1

Italy2

Norway

Sweden

Switzerland

Tasmania

UK

Overall OR
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Supplementary Table 2.1 List of excluded studies and reasons for exclusion. 

                  

Country 

First   

Author, 

Year 

Study Type 
Stated Disease 

 Diagnosis 

Study 

 Population 

Year of  

Diagnosis 

Age 

(years) 
Exposure Assessment Results 

Reason for  

Exclusion 

Greece 

Petridou, 

1997 

Matched Case-

Control 

study  

Childhood  

Leukemia 

     Cases = 117 

Controls = 202 1993-1994     0-14  

Shortest distance 

between the power 

line and center of 

residence  

OR for 4 EMF 

measures for the 

highest quintile: 

 [V/d]: OR = 1.5, 

95% CI  0.6,3.8 

Hospital controls;  

Not record based 

                        

Iran 

Sohrabi, 

2010 

Matched case-

control 

study 

Acute 

Lymphoblastic 

Leukemia (ALL) 

     Cases = 300 

Controls = 300 2009 1-18 

Shortest distance 

from the  

residence to nearest 

power line 

OR =2.6; 95%CI 

1.7, 3.9 

Hospital controls; 

Interviewed for 

history of 

residences near 

HVPL 

                        

  Feizi, 2007 

Matched case-

control 

Study 

Acute 

Lymphoblastic 

Leukemia (ALL) 

     Cases = 60 

Controls = 59 1998-2004 0-14 

Distance of the power 

line  

to nearest residence; 

Calculated fields 

OR = 8.7; 95% CI 

1.7, 58.4 

Hospital based 

controls including 

non-malignant 

hematology 

                        

Japan 

Mizoue, 

2004 

GIS-based 

Population 

study 

Childhood  

hematological 

malignancies 

    Exposed = 22,222 

(≤300m) 

Unexposed = 29,087 

(>300m) 1992-2001 0-14  

Distance from the 

HVPL(<300m); spot 

measurements in  

front of gates for 

home 

Districts with 

more than 50%  

of area ≤300 m  

of HVPL  

(referent: 

districts in which 

 no area fell in 

that range)  

IRR = 2.2; 95% CI 

0.5,9.0 

Study design; 

Exposure at district 

level 

                        

Malaysia 

Rahman, 

2008 

Hospital-based 

case control 

study 

Acute childhood 

Leukemias 

     Cases = 128 

Controls = 128 2001-2007 0-14 

Distance to the 

power line 

from the house 

Distance to 

power lines 

 ≤ 200 m 

(referent: >200 

m) 

OR = 2.3; 95% CI 

1.2, 4.5 

Hospital controls;  

Not enough detail is 

given on powerline 

data 
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Taiwan Li, 1998 

GIS-based 

population 

study 

Childhood  

Leukemia 

       Exposed = 11,802 

       (<100m)  

Unexposed  = 108,894 

        (>100m)  1987-1992     0-14  

Distance of each 

administrative region 

from 

HVPL 

Living  in 

households 

>100m vs   

< 100m from 

HVPL : 

 SIR = 2.4, 95% CI 

1, 5 

 

Similar design and 

exposure 

assessment more 

detailed but still not 

at individual level 

                        

  Lin, 1996 

GIS- based 

population 

study 

Childhood  

Leukemias Total = 145,000 1987-1992 0-14 

Distance of each 

administrative region 

from 

HVPL 

Living  in 

households 

>100m vs 

 < 100m from 

HVPL : 

 SIR = 2.7, 95% CI 

1.3, 5.8 

Study design;  

Exposure at district 

level 

                        

UK 

Skinner, 

2000 

Population 

based 

 Case-Control 

study 

Childhood  

hematological 

malignancies 

     Cases = 3,380 

Controls = 3,390 1991-1996 0-14  

Distance from HVPL, 

substations and 

underground cables; 

calculated fields from 

power lines 

Calculated MF ≥ 

0.2 µT (referent 

<0.1 µT)  

ALL : OR = 0.5, 

95% CI 0.1, 2.3 

All Leukemias : 

OR = 0.4, 95% Cl 

0.1, 1.9 

Subset of  Draper et 

al.  (2005) 

                        

*HVPL = High Voltage Power Line; V = Voltage; d = distance 

*MF = Magnetic Field 

*WC = Wire Codes  
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Supplementary Table 2.2 Odds ratio of childhood leukemia by distance to closest overhead power line of 200kV or higher by year of 

diagnosis, with and without hypothesis-generating study. 

 

    With UK Without UK 

Year 
Distance 

(m) 
Cases Controls OR (95% CI) Cases Controls OR (95% CI) 

1960-1980 

≥300 5,213 5,933 1.00 (reference) 548 1,240 1.00 (reference) 

150-<300 40 62 1.71 (1.03-2.83) 8 49 0.71 (0.25-1.99) 

50-<150 23 32 2.68 (1.34-5.37) 11 28 1.69 (0.63-4.52) 

<50 8 12 2.22 (0.78-6.33) 4 9 1.87 (0.46-7.58) 

1980-2000 

≥300 11,200 13,992 1.00 (reference) 3,378 6,105 1.00 (reference) 

150-<300 110 176 0.89 (0.69-1.15) 53 110 0.91 (0.64-1.29) 

50-<150 65 99 1.04 (0.75-1.45) 33 74 0.91 (0.58-1.41) 

<50 14 22 1.07 (0.52-2.18) 14 18 1.45 (0.68-3.07) 

2000-2010 

≥300 10,210 43,815 1.00 (reference) 6,257 36,195 1.00 (reference) 

150-<300 153 660 0.99 (0.82-1.21) 113 588 0.98 (0.78-1.22) 

50-<150 64 338 0.81 (0.61-1.09) 53 302 0.89 (0.65-1.23) 

<50 28 89 1.44 (0.90-2.32) 26 83 1.59 (0.97-2.62) 

Analyses were conducted using a random intercept model adjusted for age, sex, and SES. 
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Supplementary Table 2.3 Odds ratios for the association between childhood leukemia and other 

potential risk factors associated with proximity to overhead power lines. 

 

Covariate   OR (95% CI) 

        

Mobility¹ 
Never Moved   1.00 (reference) 

Ever Moved   1.89 (1.50-2.38) 

        

Dwelling² 
Other Residence   1.00 (reference) 

Single Family Home   0.80 (0.61-1.06) 

        

Traffic³ 

Low Exposure   1.00 (reference) 

Medium Exposure   1.00 (0.94-1.07) 

High Exposure   1.05 (0.98-1.13) 

        

Setting⁴ 
Urban   1.00 (reference) 

Rural   0.98 (0.94-1.03) 

        

Calculated 

Magnetic Fields⁵ 

<0.1 μT   1.00 (reference) 

0.1-<0.4 μT   0.95 (0.68-1.31) 

>=0.4 μT   1.07 (0.65-1.76) 

        

SES 

Low   1.00 (Reference) 

Medium-Low   1.04 (1.00-1.08) 

Medium   1.05 (1.01-1.10) 

Medium-High   1.05 (1.00-1.10) 

High   1.04 (1.00-1.09) 

Analyses were conducted using a random intercept logistic regression model 

adjusted for age, sex and SES. 

¹Studies included: Brazil, Italy2, Norway, Sweden, Tasmania     

²Studies included: Brazil, Norway, Sweden, US 

³Studies included: France, Italy1, Sweden, Switzerland     

⁴Studies included: Brazil, Denmark, France, Norway, Sweden, Switzerland, UK 

⁵Studies included: Denmark, Italy1, Italy2, Norway, Sweden, UK, US 
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Supplementary Table 2.4 Odds ratios for childhood leukemia by distance to closest overhead 

power line of 200kV or higher, stratified by various covariates. 

 

Model 
Distance 

(m) 
Cases Controls OR 95% CI 

            

Ever Moved¹ 

≥300 96 202 1 -- 

150-<300 4 36 0.66 0.16-2.72 

50-<150 11 22 2.84 0.96-8.36 

<50 4 4 6.22 0.98-39.49 

            

Never Moved¹ 

≥300 202 869 1 -- 

150-<300 9 30 1.51 0.63-3.64 

50-<150 9 27 1.69 0.74-3.82 

<50 3 11 1.29 0.34-4.90 

            

Single Family Home² 

≥300 190 747 1 -- 

150-<300 13 44 1.08 0.52-2.27 

50-<150 37 57 1.78 1.04-3.04 

<50 17 17 2.67 1.25-5.71 

            

Other Residence² 

≥300 52 143 1 -- 

150-<300 5 28 0.56 0.18-1.79 

50-<150 12 22 1.31 0.53-3.20 

<50 7 6 2.99 0.76-11.75 

            

Low Traffic Exposure³ 

≥300 1,253 12,045 1 -- 

150-<300 33 260 1.11 0.76-1.61 

50-<150 12 136 0.71 0.38-1.32 

<50 9 40 2.28 1.09-4.76 

            

Medium Traffic 

Exposure³ 

≥300 1,466 12,860 1 -- 

150-<300 12 201 0.51 0.28-0.92 

50-<150 11 107 0.8 0.43-1.51 

<50 6 28 1.74 0.71-4.26 

            

High Traffic Exposure³ 

≥300 1,041 9,993 1 -- 

150-<300 30 161 1.45 0.97-2.18 

50-<150 17 77 1.97 1.15-3.38 

<50 3 19 1.14 0.33-3.96 
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Urban⁴ 

≥300 18,765 46,426 1 -- 

150-<300 171 604 1.03 0.86-1.24 

50-<150 78 312 0.97 0.74-1.27 

<50 20 80 1.20 0.70-2.03 

            

Rural⁴ 

≥300 3,023 11,932 1 -- 

150-<300 43 186 0.97 0.67-1.41 

50-<150 25 100 1.12 0.69-1.81 

<50 7 27 1.53 0.64-3.67 

            

≥0.4 μT⁵ 

≥300 4 18 1 -- 

150-<300 0 0 -- -- 

50-<150 4 7 9.02 0.81-100.63 

<50 17 15 6.25 0.94-41.52 

            

0.2-<0.4 μT⁵ 

≥300 6 6 1 -- 

150-<300 1 1 -- -- 

50-<150 6 19 0.14 0.01-1.62 

<50 6 10 0.19 0.12-1.93 

            

<0.2 μT⁵ 

≥300 21,304 27,239 1 -- 

150-<300 219 305 0.95 0.80-1.14 

50-<150 98 130 1.07 0.82-1.41 

<50 8 13 0.75 0.31-1.84 

Analyses were conducted using a random intercept logistic regression adjusted for age, sex, and 

SES. 

⁺Analysis was conducted using standard logisNc regression adjusted for age, sex, and SES. 

¹Countries included: Brazil, Italy2, Norway, Sweden, Tasmania 

²Countries included: Brazil, Norway, Sweden, US 

³Countries included: France, Italy1, Sweden, Switzerland 

⁴Countries included: Brazil, Denmark, France, Norway, Sweden, Switzerland, UK 

⁵Countries included: Denmark, Italy1, Italy2, Norway, Sweden, UK, US 
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Supplementary Table 2.5 Odds ratios for childhood leukemia by distance to closest overhead 

power line of 200kV or higher applying different methodologies. 

Model   Distance   Cases Controls   OR 95% CI 

Exposure at Birth Home v. Diagnosis Home 

Birth Home¹ 

  300+   23,807 33,960   1 -- 

  150-<300   259 440   0.97 0.82-1.14 

  50-<150   127 212   1 0.79-1.26 

  <50   38 54   1.23 0.79-1.91 
                  

Diagnosis Home² 

  300+   4,549 38,648   1 -- 

  150-<300   104 688   1.15 0.93-1.42 

  50-<150   48 364   0.97 0.71-1.32 

  <50   24 98   1.78 1.13-2.81 

Ignoring Geocoding Accuracy 

All Observations 

  300+   29,768 74,532   1 -- 

  150-<300   332 945   0.99 0.86-1.14 

  50-<150   158 486   0.94 0.77-1.15 

  <50   52 125   1.33 0.92-1.91 

Alternative Controls 

All Alternative 

Controls³ 

  300+   22,086 55,117   1 -- 

  150-<300   254 778   1 0.85-1.18 

  50-<150   127 361   1.04 0.82-1.32 

  <50   38 87   1.11 0.70-1.74 
  

Lymphoma⁴ 

  300+   17,497 7,765   1 -- 

  150-<300   165 114   0.86 0.64-1.15 

  50-<150   79 51   1.17 0.75-1.81 

  <50   15 21   0.77 0.35-1.70 
                  

Other Cancers⁵ 

  300+   17,454 26,659   1 -- 

  150-<300   165 395   0.97 0.79-1.19 

  50-<150   79 160   1.2 0.89-1.63 

  <50   15 28   1.33 0.68-2.62 
                 

CNS⁶ 

  300+   22043 20693   1 -- 

  150-<300   254 269   1.08 0.89-1.31 

  50-<150   127 150   0.98 0.75-1.28 

  <50   38 38   1.11 0.67-1.84 
Analyses were conducted using a random intercept logistic regression model, adjusted for age, sex, and socioeconomic status. 

1. Studies included in birth home analysis: Brazil, Denmark, Italy1, Italy2, Norway, Sweden, Switzerland, Tasmania, UK, US 

2. Studies included in diagnosis home analysis: Brazil, France, Italy1, Italy2, Norway, Sweden, Switzerland, Tasmania 

3. Studies included: Italy2, Sweden, Switzerland, Tasmania, UK, US  

4. Studies included: Italy2, Sweden, Switzerland, Tasmania, UK         

5. Studies included: Sweden, Switzerland, Tasmania, UK         

6. Studies included: Sweden, Switzerland, UK, US    
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Supplementary Table 2.6 Odds ratios for childhood leukemia by distance to closest power line of 

voltage 200 kV or higher in birth homes compared to diagnosis homes in subset of studies with 

both. 

 

Home 

Analyzed 

Distance 

(m) 
Cases Controls OR 95% CI 

Birth 

300+ 1,321 6,443 1 -- 

150-<300 38 177 1.06 0.73-1.53 

50-<150 24 88 1.27 0.80-2.02 

<50 9 26 1.69 0.78-3.66 

            

Diagnosis 

300+ 2,012 10,001 1 -- 

150-<300 62 266 1.18 0.88-1.58 

50-<150 33 134 1.2 0.81-.178 

<50 15 38 1.94 1.06-3.56 

Analyses were conducted using a random intercept logistic regression model adjusted for age, sex, 

and SES. 

Studies included: Brazil, Italy1, Italy2, Norway, Sweden, Switzerland, Tasmania, US. 
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3 Residential Mobility and Childhood Leukemia 

 

Authors: Amoon, A.T., Oksuzyan, S., Crespi, C.M., Arah, O.A., Cockburn, M., Vergara, X., 

Kheifets, L. 

 

3.1 Abstract 

Aims: Studies of environmental exposures and childhood leukemia studies do not usually 

account for residential mobility. Yet, in addition to being a potential risk factor, mobility can 

induce selection bias, confounding, or measurement error in such studies. Using data collected 

for California Powerline Study (CAPS), we attempt to disentangle the effect of mobility. 

Methods: We analyzed data from a population-based case-control study of childhood leukemia 

using cases who were born in California and diagnosed between 1988 and 2008 and birth 

certificate controls. We used stratified logistic regression, case-only analysis, and propensity-score 

adjustments to assess predictors of residential mobility between birth and diagnosis, and account 

for potential confounding due to residential mobility. 

Results: Children who moved tended to be older, lived in housing other than single-family homes, 

had younger mothers and fewer siblings, and were of lower socioeconomic status. Odds ratios for 

leukemia among non-movers living <50 meters from a 200+ kilovolt line (OR: 1.62; 95% CI: 0.72-

3.65) and for calculated fields ≥0.4 microTesla (OR: 1.71; 95% CI: 0.65-4.52) were slightly higher 

than previously reported overall results. Adjustments for propensity scores based on all variables 

predictive of mobility, including dwelling type, increased odds ratios for leukemia to 2.61 (95% 

CI: 1.76-3.86) for living <50 meters from a 200+ kilovolt line and to 1.98 (1.11-3.52) for calculated 
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fields. Individual or propensity-score adjustments for all variables, except dwelling type, did not 

materially change the estimates of power line exposures on childhood leukemia. 

Conclusion: The residential mobility of childhood leukemia cases varied by several 

sociodemographic characteristics, but not by the distance to the nearest power line or calculated 

magnetic fields. Mobility appears to be an unlikely explanation for the associations observed 

between power lines exposure and childhood leukemia.  
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3.2 Introduction 

The majority of studies that have evaluated the role that environmental exposures play in the 

development of childhood leukemia have considered exposure at only a single residential address 

for each child (e.g., home at birth, home at time of diagnosis, longest lived home) and not the 

mobility of subjects. Residential mobility, or moving between time of birth and diagnosis, can 

involve short distances, such as moving within the same neighborhood, or longer distance moves; 

the likelihood of experiencing similar environmental exposures before and after a move may 

depend on distance. Subjects can also move out of the study area and be lost to follow-up. As only 

one residential address is available in most studies, few studies can directly assess residential 

mobility. 

Mobility has been considered a source of potential bias in childhood leukemia studies as it can 

affect study participation and selection, result in exposure misclassification, or confound the 

results (Kheifets, Swanson, et al., 2017). We explore each of the possible connections in 

subsequent paragraphs. Figure 3.1 provides a simplified directed acyclic graph illustrating how 

mobility could affect studies of childhood leukemia and electro-magnetic fields (EMF) in 

particular, but is relevant as well for many other environmental exposures. 

Exposure misclassification can occur if the period of assessment is not the etiologically relevant 

critical time period in a child’s development. This misclassification will affect sensitivity thereby 

reducing the power to detect associations. The problem can further be compounded by mobility, 

as the relevant exposure may occur at a different home than the one captured (Urayama et al., 

2009), leading to biased results when estimating risk of childhood leukemia, especially if mobility 

is differential between cases and controls. Several studies have reported higher residential mobility 
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among cases compared to age-matched controls (Green et al., 1999; Kleinerman et al., 1997; 

McBride et al., 1999). 

Mobility can affect selection through the availability of data. Often, cases are by design 

residentially more stable as they must both reside and be diagnosed in the same geographic area 

(region, state or country) while the same requirement does not apply to controls. There is, also, the 

possibility that subjects move outside the study area and are not captured as cases.  

Further, mobility may differ by exposure, either directly or through differential socioeconomic 

status (SES). In a California study, moving between time of birth and diagnosis was associated 

with lower community-based SES, as well as lower individual measures of SES, such as parental 

education and household income (Urayama et al., 2009). SES is also associated with exposure to 

magnetic fields as it could be related to the number, type, and quality of appliances within the 

home, the dwelling type (apartment vs. single-family home), and the location of the home in 

relation to overhead power lines (Hatch et al., 2000; Wartenberg, Greenberg, & Harris, 2010). SES 

has also been shown to be associated with participation in studies when direct subject involvement 

is required (Mezei & Kheifets, 2006).  

Type of dwelling, such as apartment or single-family home, can affect not only a subject’s 

exposure but also exposure assessment. For example, when geographic information system (GIS) 

methods are utilized to assess proximity to power lines and to calculate magnetic fields, mobile 

homes are more likely to result in poor GIS matching of the residential address. Similarly, 

apartments, particularly in complexes, may lead to greater misclassification of exposure 

(Feychting & Ahlbom, 1993; Vergara et al., 2015). Home ownership, and subsequently dwelling 

type, is also associated with SES and mobility (McCarthy et al., 2001). 
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Residential mobility can also function as a marker for other risk factors for childhood leukemia 

such as older age of the child at diagnosis, younger maternal age at birth, and maternal place of 

birth (Urayama et al., 2009). Additionally, mobility might be related to increased exposure to 

viruses or other infections possibly associated with higher leukemia risk (Kinlen, 2012; Sahl, 

1994). The distance moved (e.g. within vs. outside of a neighborhood) could be an indicator for 

exposure to new infections. A study of childhood leukemia in the United Kingdom (UK) found 

that increased migration from greater distances was associated with higher incidence of childhood 

leukemia (Stiller & Boyle, 1996). Another recent UK study (Kendall, Wakeford, Bunch, Vincent, 

& Little, 2015) found that 44% of childhood leukemia cases had not moved at all between birth 

and diagnosis, and about two-thirds of those who did move were living within 2 kilometers (km) 

of their birth residence. 

It has been hypothesized that mobility can explain an association between EMF and childhood 

leukemia (Sahl, 1994). A previous study (Jones, Shih, Thurston, Ware, & Cole, 1993) found that 

people who moved had a higher proportion of “high” wire codes (an imperfect exposure surrogate) 

than those who were residentially stable. Another study evaluated residential mobility of adults 

and proximity to power lines in the UK (Swanson, 2013), but found that proximity did not appear 

to clearly affect the likelihood of moving. Direct data on mobility of children is lacking. 

We conducted a large epidemiologic case-control study in California to examine the associations 

of childhood leukemia with calculated magnetic fields and with distance from the birth address to 

the nearest high-voltage overhead transmission line. In common with other case-control studies of 

childhood cancers, cases, but not controls, had to reside in California at time of diagnosis. The 

aims of this analysis are to: (i) describe factors that affect or predict mobility among childhood 

leukemia cases; (ii) use such factors as proxies to adjust for mobility; and (iii) evaluate potential 
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confounding due to residential mobility in the study of the potential effect of EMF exposure from 

nearby power lines on childhood leukemia.  

3.3 Methods 

The California Power Lines Study (CAPS) included childhood leukemia cases younger than 16 

years diagnosed in California between 1988 and 2008 who were also born in California. Cases 

were identified from the California Cancer Registry (CCR; www.ccrcal.org), which requires 

mandatory reporting of incident cancers and is 99% complete (Schoendorf & Branum, 2006). 

Information on child's age, sex, residence at the time of diagnosis, as well as information on cancer 

types and characteristics was extracted from the CCR. Cancer registry data were linked to the 

California Birth Registry (CBR; California Department of Public Health, Vital Statistics Branch) 

which is also over 99% complete (Schoendorf & Branum, 2006). Controls were randomly selected 

from the CBR and matched to cases (1:1). Controls were excluded if they were diagnosed with 

any type of cancer in California before the matched case’s date of diagnosis. Detailed descriptions 

of the study design and methods have been previously published (Kheifets et al., 2015), as have 

the results of the calculated magnetic fields and distance analyses (Crespi et al., 2016; Kheifets, 

Crespi, et al., 2017a).  

Although cases had to be both born in and diagnosed in California, because controls were selected 

from birth records, they were born in California, but were not required to be residing in the state 

at time of diagnosis of the corresponding case. Thus, we had birth addresses for both cases and 

controls, but address at diagnosis for cases only.  

The CBR provided information on socio-demographic and perinatal factors of study subjects, 

including mother’s residential address at time of birth, child's date of birth, sex, race and ethnicity, 

birth weight, birth order, number of live births living, parental ages, parental education, parental 
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race and ethnicity, and source of payment for delivery. We examine race and ethnicity separately 

and combined. Combined child race/ethnicity was defined as White if both parents were White, 

Black if either parent was Black, Asian if either parent was Asian, Hispanic if either parent was 

Hispanic and neither parent was Black or Asian, and Other otherwise. We also examined both 

individual SES and a census-based SES derived using principal component analysis based on 

seven indicator variables at the census block level (Yost, Perkins, Cohen, Morris, & Wright, 2001) 

(high if ≥60th percentile of the principal components score, low otherwise). In addition, because 

variables indicative of SES collected on birth records varied from year to year, we developed a 

composite SES indicator (high or low) based hierarchically as available for each subject: the 

father’s years of education (high if ≥12 years, low otherwise), mother’s years of education (high 

if ≥12 years, low otherwise), payment method for hospital delivery (low if government programs 

or no coverage, high otherwise), and, finally, census-based SES. More information on 

race/ethnicity and SES indicators in CAPS is available in previous publications (Oksuzyan, Crespi, 

Cockburn, Mezei, & Kheifets, 2012; Oksuzyan et al., 2015a, 2015b). 

We determined geocoded latitudes and longitudes for cases’ residential addresses using the 

University of Southern California (USC) GIS Laboratory’s open-source geocoder, which uses 

parcel level data for Los Angeles County and street level data for the whole of California (Goldberg 

& Cockburn, 2010). Only addresses with parcel or street segment matching, which corresponds to 

more precise geocoding, were included in this analysis.  

We created three categories of residential mobility for cases: 1) not moved, 2) moved within a 

neighborhood, defined as distance between birth and diagnosis addresses 50-2000 meters (m), and 

3) moved outside of a neighborhood, defined as distance between birth and diagnosis addresses of 

2000 m or further. For the primary analysis, the latter two were collapsed and cases were classified 
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as either residentially stable (did not move) or residentially mobile (moved). To allow for minor 

geocoding differences over the years, if the distance between birth and diagnosis addresses was 0 

to 50 m, we assumed the subject lived in the same property and did not move. This assumption 

was verified by examining Google satellite images for a larger set of residences (with distances 

<100 m between birth and diagnosis addresses). 50 m was chosen to increase specificity and make 

estimates more conservative. 

Proximity to power lines was defined as distance from the child’s address to any power line or to 

the nearest power line of 200 kV and above (Kheifets et al., 2015) and was classified into 8 

categories: <50 m, 50-<100 m, 100-<200 m, 200-<300 m, 300-<400 m, 400-<500 m, 500-<600 

m, and no lines within 600 m. Due to small numbers in one of the categories, a sensitivity analyses 

was run in which the closest two categories were combined (<100 m). Birth homes located close 

to lines were site-visited to verify distance, collect additional information needed for magnetic 

fields calculations, and ascertain dwelling type (single-family homes vs other). Site visits, only 

available for a subset of subjects (n=178), were conducted blind to case-control status to reduce 

bias. Calculated fields estimating fields at time of birth were classified into three categories: ≥0.4 

microTesla (μT), 0.1-<0.4 μT, and <0.1 μT (Vergara et al., 2015).  

We considered the following variables as covariates: child’s age at diagnosis, number of siblings 

living, census-based SES, race/ethnicity, mother's age, mother’s years of education, father's years 

of education, mother's place of birth, the payment source for delivery, type of dwelling, proximity 

to high voltage power lines, and calculated fields. All covariates were modeled as categorical 

variables. For more details, see a previous study (Oksuzyan et al., 2015b). 

3.3.1 Statistical Analysis 

3.3.1.1 Stratified Analyses 
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The primary analysis assessed the impact of mobility on the associations between proximity to 

overhead power lines 200 kV or greater and calculated fields and childhood leukemia. For this 

analysis, we stratified on mobility (not moved, moved within same neighborhood, moved outside 

neighborhood) and used logistic regression with case/control status as the dependent variable and 

exposure as the independent variable. To increase power and avoid sparse data, all controls were 

used in each stratum. Models were adjusted for age, sex, race/ethnicity, and composite SES. 

3.3.1.2 Case-Only Analyses Predicting Mobility 

We conducted case-only analysis using mobility as the outcome variable to determine covariates 

associated with moving. We fit logistic regression models with the binary outcome of moved 

versus did not move and with the 3-category multinomial outcome (did not move (reference), 

moved within neighborhood and moved outside of neighborhood).  

3.3.1.3 Comparison of Birth and Diagnosis Home Characteristics in Movers 

In residentially mobile cases, birth and diagnosis homes were compared to assess changes in 

census-based SES, distance to nearest power lines, and calculated magnetic fields. Changes in 

exposure categories were analyzed by chi-square tests; mean calculated fields and proximity to 

power lines at birth and diagnosis were compared using Wilcoxon signed-rank tests. 

3.3.1.4 Adjusted Analyses of Exposure-Leukemia Associations Indirectly Accounting for Mobility 

Mobility was not available for controls and thus direct adjustment for mobility as a potential 

confounder in the relation between exposure and childhood leukemia was not possible. We 

therefore conducted analyses adjusting for variables associated with mobility as proxies We 

examined models adjusting for each proxy singly, with additional adjustment for age and sex, and 

we also used propensity score methods to simultaneously control for all the proxies (Rosenbaum 

& Rubin, 1983; Guo & Fraser, 2014)], to avoid over adjustment. The propensity scores were 
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created using multinomial logistic regression with the variables associated with mobility as 

predictors. We estimated propensity scores for each subject as the predicted probability from the 

model based on their covariate values. We then fit logistic regression models for the outcome of 

childhood leukemia that included the exposure variable (proximity or calculated field) with and 

without adjusting for the propensity score, to assess whether the adjustment changed the childhood 

leukemia risk estimate. This approach assumes that including propensity scores in the model 

provides a reasonable proxy for adjusting for residential mobility. 

Analyses were conducted using SAS software version 9.3. Copyright © 2017 SAS Institute Inc. 

CAPS was approved by University of California, Los Angeles Office for the Protection of 

Research Subjects. 

3.4 Results 

Out of 6,645 eligible childhood leukemia cases identified from the CCR, 87.1% (5,788) were born 

in California and were successfully linked to birth records. Of these, 4,879 were matched at either 

parcel or street segment levels for both birth and diagnosis addresses and included in the analysis. 

A majority of cases were male (55.3%), Hispanic (52.1%), and had acute lymphoblastic leukemia 

(ALL) (81.5%). The median age at time of diagnosis was 3.8 years. Most cases (2,982, 61.1%) 

moved between birth and diagnosis. Among those who moved, 618 stayed within 2 km of their 

birth home, while 1,992 moved outside of their birth neighborhood. Additional characteristics are 

presented in Table 3.1. There were no differences in characteristics between cases and controls. 

However, among cases who moved, children tended to be older, live in housing other than single-

family homes, and have younger mothers. Fewer siblings and lower SES were also more common 

among children who moved.  

3.4.1 Stratified Analyses 
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As reported previously, using all leukemia cases and controls, we found an OR for childhood 

leukemia of 1.44 (95% CI 0.74-2.77) for those whose birth residence was within 50 m of a 200+ 

kV line, (Crespi et al., 2016) and an OR (95% CI) of 1.50 (0.70-3.21) for the highest exposure of 

calculated fields (≥0.4 μT) (Kheifets, Crespi, et al., 2017a). The results of analyses stratified by 

the mobility status of the cases are presented in Table 3.2.  

Among non-movers, moderate associations for childhood leukemia and both living within 50 m 

of voltage 200+ kV power line (OR: 1.62, 95% CI: 0.72-3.65) and living in higher calculated fields 

(OR: 1.71, 95% CI: 0.65-4.52) at birth home were observed. Among those who moved, the OR 

was slightly lower for the proximity analysis (OR: 1.28, 95% CI: 0.60-2.75) than the overall 

proximity OR (1.44) reported previously, but did not change for calculated fields. These analyses 

used all controls in each stratum because while similar point estimates were found when stratifying 

controls, the results were less stable (data not shown).  

We also conducted analyses stratifying cases by distance of move, with the strata of “moved within 

birth neighborhood” and “moved outside birth neighborhood.” A slightly stronger association was 

noted for those who moved out of the neighborhood for both those living <50 m from a 200+ kV 

line and those with ≥0.4 μT calculated fields at the birth home (Table 3.2). All results from 

stratified analyses were imprecise. 

3.4.2 Case-Only Analyses Predicting Mobility 

Results of the case-only analyses with mobility status as the outcome are presented in Table 3.3. 

In unadjusted analyses with a binary mobility outcome (moved vs. not moved), greater likelihood 

of mobility was associated with older age at diagnosis (p-value for trend <0.001), leukemia 

subtype, Black and Hispanic race/ethnicities, younger maternal age at birth, being an only child or 

having many siblings, non-US maternal place of birth, and lower SES. Not living in a single-family 
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home was also associated with likelihood of moving (OR:1.43; 95% CI: 0.52-3.93), but results 

were imprecise as type of dwelling was recorded only for site-visited homes. No association was 

detected for sex or Down syndrome (data not shown). Similar results were obtained when race and 

ethnicity were assessed separately (data not shown), thus for the remaining analyses, the combined 

race/ethnicity variable was used. Crude and adjusted ORs were similar for all variables associated 

with mobility (Table 3.3).  

Similar results were found in the multinomial logistic analysis using the three-level mobility as an 

outcome. Older child’s age at diagnosis was more strongly associated with moving outside the 

birth neighborhood than the association within the same neighborhood. In contrast, Hispanic 

race/ethnicity was associated with moving within a neighborhood but not with moving more than 

2 km away (Table 3.3). Neither calculated fields, nor proximity to 200+ kV power lines appeared 

to be associated with moving, although numbers were too small to assess movement with regards 

to the birth neighborhood (Table 3.3). 

3.4.3 Comparison of Birth and Diagnosis Home Characteristics in Movers 

Among cases who moved, there were few differences in characteristics between birth and 

diagnosis homes. Calculated fields changed in only 51 cases, unsurprising, since the overwhelming 

majority of subjects had calculated fields of <0.1 μT. Only two children changed exposure 

categories, possibly since only three exposure categories were used and few cases were classified 

at the highest exposure level (≥0.4 μT). Among those who moved, 6% of subjects moved into 

closer distance categories to overhead 200+ kV power lines while another 6% moved farther away. 

When considering all voltages, equal numbers of cases moved into the closer or farther categories 

(16%). Due to censoring of distance data beyond 2000 m, these percentages do not account for 

subjects who moved closer or father but remained beyond 2000 m. No differences were noted in 
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the average distances from the closest power lines, 200+ kV or any voltage, nor in average 

calculated fields for children who moved between birth and diagnosis (data not shown).  

About 17% of all subjects changed the status of their census-based SES from low to high or the 

reverse. Among both non-movers and movers, relative census-based SES appeared to increase 

from birth to diagnosis (7.6% and 13.6%, respectively), but this difference was not significant. 

These changes were not absolute changes, but change in quintile. Figure 3.2 shows the distribution 

of changes in census-based SES using quintiles.  

3.4.4 Adjusted Analyses of Exposure-Leukemia Associations Indirectly Accounting for Mobility 

Both unadjusted and adjusted results in subsets of observations using variables associated with 

mobility are presented for comparison (Table 3.4). Adjustment for most variables had no impact 

on the results. Analyses focusing on dwelling type of site-visited residences, showed a higher 

association between power lines and childhood leukemia in this subset across all strata, although 

estimates were imprecise due to smaller numbers. However, adjustment for dwelling type did not 

change the estimates in comparison to unadjusted analyses in the same subset. For distance, 

adjustment for maternal age at birth and number of siblings showed a minimal increase in 

associations with childhood leukemia among those who did not move. Adjustment for 

race/ethnicity showed a similar slight increase in associations in the analysis of calculated fields. 

All results were imprecise (Table 3.4). 

When all variables related to mobility except for dwelling type were included in the models via 

propensity scores, the OR for living <50 m from a 200+ kV line and for high calculated fields 

largely remained similar to unadjusted results in previous findings (Table 3.5). Dwelling type, 

assessed for a small subset of residences within specific distances from overhead power lines and 

with likely higher exposure to MF, was not available beyond 200 m for most subjects. With 
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dwelling included in the propensity score in the smaller subset of data, the OR for living <50 m 

from a 200+ kV line and for calculated fields ≥0.4 μT increased to 2.61 (95% CI: 1.76-3.86) and 

1.98 (95% CI: 1.11-3.52), respectively.  

3.5 Discussion 

In our study of residential mobility in CAPS, many childhood leukemia cases were mobile, with 

61% having changed residence between birth and diagnosis. This excludes about 13% of leukemia 

cases identified in the CCR born outside of California and an unknown, but likely smaller, number 

of children born in California who moved out of state before developing leukemia.  

Similar to previous findings (Urayama et al., 2009), cases diagnosed at older ages had higher odds 

of moving between birth and diagnosis, while older maternal age at birth was associated with 

decreased odds of moving. In our study, we also noted increased likelihood of moving with Black 

and Hispanic race/ethnicity, being an only child, and a non-US maternal place of birth when 

analyzed alone, although some associations disappeared when adjusting for other covariates. 

Racial and ethnic differences in moving preferences have been examined in previous studies, 

including specific factors such as neighborhood racial/ethnic compositions in California. Most 

respondents generally preferred neighborhoods comprised of their own race/ethnicity and were 

likely to move within such neighborhoods or into similar ones. Suburbanization also differed by 

race/ethnicity (Alba & Logan, 1991; Charles, Good, Hanusa, Chang, & Whittle, 2003; Clark, 

1992). Dwelling type was also associated with mobility, but the numbers were small, leading to 

imprecise estimates. Similar results were found when considering moving within and outside 

neighborhoods, with some variables showing slightly more pronounced results for those moving 

outside the birth neighborhood while Hispanic race/ethnicity and non-US maternal place of birth 

were more strongly associated with moving within the same neighborhood. Interestingly, neither 
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high calculated fields nor close proximity to 200+ kV power lines were associated with greater 

likelihood of moving.  

It seems obvious for age at diagnosis to be positively correlated with likelihood of residential 

mobility as more time means more opportunity to change residence. However, several studies 

indicated greater likelihood of moving around the time of birth, as families prepare or adjust to 

their new addition, particularly true for the birth of the first child (Clark & Huang, 2003; Kulu, 

2005; Rabe & Taylor, 2009). A Texas study on residential mobility, environmental exposures, and 

birth defects found ~30% each of case and control mothers moved between the time of conception 

and delivery (Canfield, Ramadhani, Langlois, & Waller, 2006). In a UK study, approximately 20% 

of mothers of infants moved (Champion, 2005). Further exploration of how mobility intersects 

with age of the child, parental age, birth order, and dwelling type is warranted.  

Using the composite SES, we found that lower SES was associated with greater likelihood of 

moving, as in previous studies (Urayama et al., 2009). Although for most participants, individual 

measures of SES were used, the composite SES variable also included census-based SES, which 

could differ between time of birth and diagnosis, even for residentially stable subjects, because 

census-based SES may change over time. The census-based SES measure was based on seven 

different factors, any number of which could have shifted for each census tract. Similarly, 

definitions of the factors may have also changed (e.g. federal poverty level, calculation of 

education index, etc.). However, there did not appear to be any material trend in changes in SES 

from birth to diagnosis or for distance to power lines or calculated fields among those who moved. 

To assess how mobility may affect the relationship of exposure to MF and childhood leukemia, 

we stratified by the mobility of the cases. In the strata of cases who did not move, a slightly stronger 

association was found for both proximity to power lines and MF, suggesting that birth home may 
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be a better indicator of exposure in these children. When looking at cases who moved greater than 

2 km away from their birth home, we also saw an increase in effect. Children moving outside their 

birth neighborhoods may have more opportunity to encounter new infections, consistent with the 

infectious disease etiology. Another possibility is that these cases moved due to pre-diagnostic 

conditions or perhaps other environmental characteristics associated with their proximity to power 

lines, but not captured in our dataset. This sub-group of movers might have unmeasured 

susceptibility to leukemia also associated with their moving farther away. However, all results 

were imprecise, so larger datasets would be needed to explore any of these hypotheses.  

While the mobility of controls was unknown, the variables associated with mobility were known 

for both cases and controls. Thus, we used them as a surrogate of mobility to evaluate if they 

modified the relationship between proximity to power lines and MF on childhood leukemia. We 

observed an increase in the ORs for both MF and distance. Dwelling type, in particular, seems to 

be a major predictor of mobility, however, this information was available only for site-visited 

homes within certain distances of overhead power lines (n=178). Dwelling type can indicate 

quality of exposure assessment, in particular for MF, where calculation of MF in non-single-family 

homes more likely to lead to misclassification (Feychting & Ahlbom, 1993; Vergara et al., 2015). 

Further exploration is needed in datasets with more complete residential information. 

Strengths of this study include the use of population registries to obtain data, thus avoiding 

participation bias and exposure assessment blind to case-control status to reduce information bias. 

To increase accuracy of exposure and outcome assessment, we excluded from analyses all cases 

and controls with imprecise geocode matching for birth or diagnosis address. Another strength was 

the large sample size, which increased the power to detect associations, should they exist. Despite 

the large sample size, in some analyses, especially those involving dwelling type, the analytic 
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sample was reduced because the variable was only available for site-visited residences. Since site 

visits were conducted blind to case-control status, the potential for biases was probably small, and 

the impact was mainly on the precision of the estimates.  

A potential limitation of our study was misclassification of residential mobility. We defined 

residential mobility by distance between the geocoded points of birth and diagnosis addresses of 

cases. Although some misclassification was inevitable, we minimized it by manually investigating, 

mapping, and visually inspecting all distances between birth and diagnosis residences that were 

less than 100 m. Based on our visual inspection and geocoding accuracy considerations, we 

developed the 50 m cut point to decide whether a case moved or not to maintain high specificity. 

A priori sensitivity analysis performed using differing cut points showed similar results 

(Oksuzyan, 2013). The propensity scores allowed us to adjust for the propensity to move for both 

cases and controls and thus partially overcome lack of mobility information for controls. 

Although CAPS focused on power lines and EMF exposure, we believe the findings on mobility 

are relevant to other environmental exposures and other childhood outcome studies. Exposure 

misclassification due to mobility in particular has been expressed as a concern in birth outcome 

studies (Chen, Bell, Caton, Druschel, & Lin, 2010; Lupo et al., 2010; Madsen et al., 2010; 

Schulman, Selvin, Shaw, & Malcoe, 1993). It may also be pertinent to consider maternal mobility 

during pregnancy as prenatal exposures are associated with a variety of birth and childhood 

outcomes.  

In conclusion, because our controls were potentially less residentially stable than our cases, we 

examined whether the observed association of childhood leukemia with exposure to MF or 

distance to power lines could be due to this potential difference. We found that the effects of 

distance to power lines and MF exposure on childhood leukemia were similar for a residentially 
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stable subset of cases and overall results were unchanged when we controlled for proxies of 

mobility, except for dwelling. These results suggest that confounding by mobility is an unlikely 

explanation for the associations observed.  
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Figure 3.1 Simplified directed acyclic graph (DAG) depicting possible connections of residential 

mobility in the study of EMF exposures on childhood leukemia. 
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Figure 3.2 Changes in census-based socioeconomic status from time of birth to diagnosis in cases, stratified by mobility. 
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Table 3.1 Characteristics of Cases by Mobility Status in California Power Lines Study, 1986-

2008. 

    Controls   Cases   Did Not Move   Moved 

Characteristic   n %   n %   n %   n % 

                          

Gender                         

Male   2,718 56.2   2,700 55.3   1,038 54.7   1,662 55.7 

Female   2,117 43.8   2,179 44.7   859 45.3   1,320 44.3 

                          

Age (years)                         

<1   349 7.2   323 6.6   240 12.7   83 2.8 

1-5   3,095 64   3,145 64.5   1,363 71.9   1,782 59.8 

6-9   821 17   828 17   205 10.8   623 20.9 

10-15   570 11.8   583 12   89 4.7   494 16.6 

                          

Race/Ethnicity                         

White   1,513 32.1   1,425 29.8   633 33.9   792 27.1 

Black   423 9   248 5.2   65 3.5   183 6.3 

Asian   467 9.9   535 11.2   245 13.1   290 9.9 

Other   87 1.9   86 1.8   35 1.9   51 1.8 

Hispanic   2,220 47.1   2,493 52.1   890 47.6   1,603 54.9 

                          

Leukemia Type                         

ALL   -- --   3,974 81.5   1,505 79.3   2,469 82.8 

AML   -- --   722 14.8   303 16   419 14.1 

Other   -- --   183 3.8   89 4.7   94 3.2 

                          

Downs Syndrome                         

Yes   4 0.1   36 1   16 1.1   20 0.9 

No   3,567 99.9   3,541 99   1,437 98.9   2,104 99.1 

                          

Dwelling Type at 

Birth 
                        

Single-Family Home   66 72.5   59 67.8   19 73.1   40 65.6 

Other   25 27.5   28 32.2   7 26.9   21 34.4 

                          

Maternal Age (years)                         

<25   1,704 35.3   1,562 32   429 22.6   1,133 38 

25-34   2,497 51.7   2,577 52.8   1,055 55.6   1,522 51.1 

>=35   633 13.1   739 15.2   413 21.8   326 10.9 
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Siblings                         

0   1,974 40.8   1,886 38.9   660 34.8   1,226 41.1 

1   1,545 32   1,549 31.8   636 33.5   913 30.6 

2   753 15.6   805 16.5   335 17.7   470 15.8 

3   327 6.8   368 7.5   166 8.8   202 6.8 

4+   236 4.9   271 5.6   100 5.3   171 5.7 

                          

Maternal Place of 

Birth 
                        

US   2,737 56.6   2,633 54   1,057 55.7   1,576 52.9 

Non-US   2,098 43.4   2,246 46   840 44.3   1,406 47.2 

                          

Socioeconomic 

Status 
                        

Low   3,294 70   3,296 69.4   1,187 63.4   2,109 73.3 

High   1,413 30   1,453 30.6   684 36.6   769 26.7 

ALL= acute lymphoblastic leukemia. AML= acute myeloid leukemia. 
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Table 3.2 Odds ratios of Leukemia by Calculated Fields and Proximity to Power Lines, Stratified by Mobility of Cases. 

 

    Total 
Cases Who Did 

Not Move 

Cases Who 

Moved 

Cases Who 

Moved <2 km 

Cases Who Moved 

≥2 km 

    AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI) 

Calculated 

fields 

<0.1 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

0.1-0.4 0.90 (0.57-1.41) 0.58 (0.29-1.18) 1.09 (0.66-1.78) 1.24 (0.55-2.80) 1.03 (0.54-2.00) 

>=0.4 1.49 (0.69-3.19) 1.71 (0.65-4.52) 1.50 (0.63-3.58) N < 5 1.64 (0.63-4.26) 

              

Distance 

to 200+ 

kV Power 

Line 

600+ 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

500-<600 1.18 (0.82-1.71) 1.34 (0.83-2.16) 1.08 (0.70-1.65) 0.94 (0.42-2.10) 1.12 (0.71-1.76) 

400-<500 0.87 (0.60-1.28) 0.74 (0.43-1.29) 0.95 (0.62-1.46) 0.78 (0.35-1.74) 1.01 (0.64-1.60) 

300-<400 1.11 (0.78-1.59) 1.17 (0.73-1.87) 1.07 (0.71-1.61) 1.28 (0.66-2.47) 1.03 (0.66-1.61) 

200-<300 0.85 (0.59-1.22) 0.96 (0.59-1.55) 0.78 (0.51-1.21) N < 5 0.89 (0.56-1.39) 

100-<200 0.77 (0.53-1.11) 0.72 (0.42-1.23) 0.79 (0.52-1.21) 1.17 (0.61-2.25) 0.68 (0.41-1.11) 

50-<100 0.96 (0.56-1.64) 0.42 (0.16-1.10) 1.31 (0.74-2.33) N < 5 1.42 (0.78-2.61) 

<50 1.38 (0.71-2.67) 1.62 (0.72-3.65) 1.28 (0.60-2.75) N < 5 1.54 (0.70-3.36) 

All controls were used in each stratum to increase stability of estimates and avoid small cell counts 

Analyses were adjusted for age, sex, race/ethnicity, and composite SES. 
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Table 3.3  Odds ratios for associations of residential mobility with selected characteristics in 

childhood leukemia cases in the California Power Lines Study, 1986-2008 – Case-Only. 

 

  Moved vs. Not Moved (reference) 

Moved Within 

Neighborhood vs. 

Not Moved 

(reference) 

Moved Outside 

Neighborhood vs. 

Not Moved 

(reference) 

Characteristic 
Crude Adjusted⁺ 

AOR⁺ (95% CI) AOR⁺ (95% CI) 
OR (95% CI) OR (95% CI) 

          

Age (years)         

<1 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

1-5 3.78 (2.92-4.90) 3.84 (2.90-5.09) 2.76 (1.78-4.27) 4.39 (3.18-6.06) 

6-9 8.79 (6.54-11.81) 8.26 (6.03-11.33) 6.04 (3.75-9.72) 9.37 (6.57-13.37) 

10-15 16.05 (11.46-22.47) 14.98 (10.51-21.35) 8.11 (4.83-13.62) 18.40 (12.47-27.17) 

          

Race/Ethnicity         

White 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

Black 2.25 (1.66-3.04) 1.69 (1.22-2.35) 1.41 (0.83-2.40) 1.75 (1.25-2.45) 

Asian 0.95 (0.78-1.16) 0.92 (0.72-1.16) 0.92 (0.63-1.36) 0.94 (0.73-1.20) 

Other 1.17 (0.75-1.81) 0.97 (0.60-1.57) 1.59 (0.81-3.12) 0.84 (0.50-1.40) 

Hispanic 1.44 (1.26-1.64) 1.13 (0.95-1.33) 1.54 (1.18-2.02) 1.03 (0.86-1.23) 

          

Leukemia Type         

ALL 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

AML 0.84 (0.72-0.99) 0.93 (0.77-1.12) 0.90 (0.68-1.19) 0.94 (0.77-1.15) 

Other 0.64 (0.48-0.87) 0.79 (0.57-1.11) 0.74 (0.44-1.26) 0.81 (0.57-1.16) 

          

Maternal Age (years)         

<25 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

25-34 0.55 (0.48-0.63) 0.59 (0.50-0.69) 0.59 (0.47-0.74) 0.59 (0.50-0.69) 

>=35 0.30 (0.25-0.36) 0.34 (0.27-0.42) 0.44 (0.32-0.61) 0.31 (0.24-0.39) 

          

Siblings         

0 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

1 0.77 (0.67-0.89) 0.86 (0.74-1.00) 0.92 (0.73-1.16) 0.84 (0.72-0.99) 

2 0.76 (0.64-0.89) 0.95 (0.79-1.15) 1.12 (0.85-1.48) 0.90 (0.74-1.10) 

3 0.66 (0.52-0.82) 0.85 (0.66-1.10) 0.80 (0.54-1.19) 0.87 (0.66-1.14) 

4+ 0.92 (0.71-1.20) 1.30 (0.96-1.77) 1.40 (0.91-2.14) 1.26 (0.91-1.75) 
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Maternal Place of 

Birth 
        

US 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

Non-US 1.12 (1.00-1.26) 1.13 (0.97-1.32) 1.58 (1.27-1.98) 1.01 (0.86-1.19) 

          

SES         

Low 1.00 (reference) 1.00 (reference) 1.00 (reference) 1.00 (reference) 

High 0.63 (0.56-0.72) 0.85 (0.74-0.98) 0.75 (0.60-0.94) 0.88 (0.76-1.03) 

          

Calculated Field (μT)         

<0.1 1.00 (reference) 1.00 (reference)˜ NA NA 

0.1-<0.4 1.77 (0.86-3.67) 1.81 (0.83-3.93)˜ NA NA 

≥0.4 0.94 (0.36-2.47) 1.07 (0.39-2.93)˜ NA NA 

          

Distance to Closest 200+kV Power Line (m)  

≥600 1.00 (reference) 1.00 (reference)˜ NA NA 

500-<600 0.90 (0.55-1.49) 0.74 (0.43-1.26)˜ NA NA 

400-<500 1.36 (0.76-2.43) 1.31 (0.71-2.40)˜ NA NA 

300-<400 1.00 (0.61-1.63) 0.79 (0.47-1.33)˜ NA NA 

200-<300 0.88 (0.52-1.50) 0.85 (0.48-1.51)˜ NA NA 

100-<200 1.21 (0.68-2.15) 1.22 (0.66-2.28)˜ NA NA 

50-<100 2.90 (1.10-7.66) 2.23 (0.82-6.06)˜ NA NA 

<50 0.79 (0.34-1.83) 0.97 (0.40-2.33)˜ NA NA 

⁺Adjusted for all other non-exposure-of-interest covariates in model. 

˜Adjusted for age of child, leukemia type, maternal age at birth, race/ethnicity, number of siblings, mother's place of birth and SES. Numbers too small to 

analyze with regards to neighborhood. 
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Table 3.4 Odds ratios for childhood leukemia by levels of calculated fields and proximity to 

200+ kV power lines adjusted for various characteristics associated with mobility, stratified by 

mobility status of cases. 

  Characteristic Adjustment Total Did Not Move Moved 

Distance to 

200+ kV Line  

<50 m  

(vs. ≥600 m) 

Race/Ethnicity 
Not adjusted¹ 1.43 (0.74-2.77) 1.61 (0.71-3.62) 1.31 (0.61-2.82) 

Adjusted² 1.37 (0.71-2.66) 1.59 (0.70-3.57) 1.28 (0.60-2.76) 

          

SES 
Not adjusted¹ 1.52 (0.79-2.91) 1.62 (0.72-3.64) 1.43 (0.68-3.02) 

Adjusted² 1.52 (0.79-2.92) 1.69 (0.75-3.81) 1.42 (0.67-3.00) 

          

Maternal Age at Birth 
Not adjusted¹ 1.51 (0.79-1.61) 1.63 (0.72-3.67) 1.42 (0.67-3.00) 

Adjusted² 1.51 (0.79-2.90) 1.75 (0.77-3.96) 1.43 (0.68-3.02) 

          

Mother's Place of 

Birth 

Not adjusted¹ 1.51 (0.79-2.91) 1.63 (0.73-3.67) 1.42 (0.67-3.00) 

Adjusted² 1.51 (0.79-2.91) 1.63 (0.72-3.67) 1.42 (0.68-3.01) 

          

Number of Siblings 
Not adjusted¹ 1.51 (0.79-2.91) 1.63 (0.73-3.67) 1.42 (0.67-3.00) 

Adjusted² 1.51 (0.79-2.91) 1.74 (0.77-3.93) 1.41 (0.67-2.98) 

          

Dwelling Type* 
Not adjusted¹ 2.82 (1.08-7.35) 3.99 (1.09-14.57) 2.31 (0.79-6.74) 

Adjusted² 2.94 (1.12-7.72) 4.18 (1.11-15.81) 2.49 (0.84-7.36) 

Calculated 

Fields  

≥0.4 μT  

(vs. <0.1 μT) 

Race/Ethnicity 
Not adjusted¹ 1.51 (0.70-3.22) 1.65 (0.63-4.35) 1.51 (0.64-3.58) 

Adjusted² 1.48 (0.69-3.18) 1.72 (0.65-4.55) 1.50 (0.63-3.59) 

          

SES 
Not adjusted¹ 1.52 (0.71-3.25) 1.66 (0.63-4.36) 1.53 (0.64-3.62) 

Adjusted² 1.52 (0.71-3.26) 1.68 (0.64-4.42) 1.51 (0.64-3.57) 

          

Maternal Age at Birth 
Not adjusted¹ 1.52 (0.71-3.25) 1.67 (0.63-4.41) 1.52 (0.64-3.60) 

Adjusted² 1.51 (0.71-3.23) 1.62 (0.61-4.33) 1.52 (0.64-3.61) 

          

Mother's Place of 

Birth 

Not adjusted¹ 1.52 (0.71-3.25) 1.67 (0.63-4.41) 1.52 (0.64-3.60) 

Adjusted² 1.51 (0.71-3.23) 1.67 (0.63-4.40) 1.52 (0.64-3.61) 

          

Number of Siblings 
Not adjusted¹ 1.52 (0.71-3.25) 1.67 (0.63-4.41) 1.52 (0.64-3.60) 

Adjusted² 1.50 (0.70-3.21) 1.66 (0.63-4.41) 1.53 (0.64-3.62) 

          

Dwelling Type* 
Not adjusted¹ 2.20 (0.80-6.08) 4.45 (1.07-18.54) 1.78 (0.54-5.81) 

Adjusted² 2.17 (0.79-6.01) 4.63 (1.11-19.29) 1.74 (0.53-5.69) 
¹Adjusted for age and sex. 

²Adjusted for age, sex, and the variable in question. 
*Only available for small subset of site-visited residences. 
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Table 3.5 Odds ratios for childhood leukemia by levels calculated fields exposure and proximity 

to 200+ kV power lines, adjusted for variables associated with mobility using propensity scores. 

 

  Without Dwelling With Dwelling 

Variable Case/Control AOR (95% CI)† Case/Control AOR (95% CI)‡ 

          

Distance (m) 

≥600 4,318/4,244 1.00 (reference) 33/43 1.00 (reference) 

100-<200 51/66 0.76 (0.67-0.87) 17/15 1.48 (1.05-2.07) 

50-<100 27/27 0.98 (0.81-1.19) 17/18 1.23 (0.89-1.71) 

<50 22/15 1.44 (1.14-1.82) 16/8 2.61 (1.76-3.86) 

          

Calculated Fields (μT) 

<0.1 4,604/4,533 1.00 (reference) 47/50 1.00 (reference) 

0.1-<0.4 37/40 0.91 (0.70-1.18) 24/29 0.88 (0.60-1.30) 

≥0.4 17/11 1.52 (0.98-2.36) 13/7 1.98 (1.11-3.52) 

†Adjusted for age of child, sex, race/ethnicity, SES, maternal age at birth, mother's place of birth, and number of 

siblings. 

‡Adjusted for age of child, sex, race/ethnicity, SES, maternal age at birth, mother's place of birth, number of 

siblings, and dwelling type. 
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4 The Sensitivity of Reported Effects of EMF on Childhood Leukemia to Uncontrolled 

Confounding by Residential Mobility: A Hybrid Simulation Study and an Empirical 

Analysis Using CAPS Data  

 

Authors: Aryana T. Amoon, Onyebuchi A. Arah, Leeka Kheifets 

 

4.1 Abstract 

Purpose: Residential mobility is considered as a potential source of confounding in studies 

assessing environmental exposures, including in studies of electromagnetic field (EMF) 

exposures and childhood leukemia.  

Methods: We present a hybrid-simulation study where we simulate a synthetic dataset based on 

an existing study and use it to assess the sensitivity of EMF-leukemia associations to different 

scenarios of uncontrolled confounding by mobility under two major hypotheses of the infectious 

etiology of childhood leukemia. We then used the findings to conduct sensitivity analysis and 

empirically offset the potential bias due to unmeasured mobility in the California Powerline 

Study (CAPS) dataset.  

Results: As expected, the stronger the assumed relationship between mobility and exposure and 

outcome, the greater the potential bias. However, no scenario created a bias strong enough to 

completely explain away previously observed associations.  

Conclusions: We conclude that uncontrolled confounding by residential mobility had some 

impact on the estimated effect of EMF exposures on childhood leukemia, but that it was unlikely 

to be the primary explanation behind previously observed largely consistent, but unexplained 

associations.   
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4.2 Introduction 

Residential mobility is considered as a potential source of bias in studies assessing environmental 

exposures since the majority of studies consider exposures at only a single residential address. 

Mobility has been hypothesized to explain observed association (Sahl, 1994) between 

electromagnetic fields (EMF) and childhood leukemia.  Mobility can affect an association through 

study selection and participation, through exposure misclassification, or even as a confounder 

(Amoon, Oksuzyan, et al., 2018; Kheifets, Swanson, et al., 2017).  

Mobility has been known to be associated with characteristics such as lower socioeconomic status 

(SES) (Urayama et al., 2009), which are related to a subject’s exposure to magnetic fields (Hatch 

et al., 2000; Wartenberg et al., 2010). SES can be related to the type, quality, and number of 

appliances within a home, as well as the location of the home with regards to overhead powerlines 

(Hatch et al., 2000; Wartenberg et al., 2010). Type of dwelling (single-family home vs. apartment) 

is also associated with exposure to EMF (Feychting & Ahlbom, 1993; Vergara et al., 2015) as well 

as with mobility (Amoon, Oksuzyan, et al., 2018; McCarthy et al., 2001).  

Increased mobility is also associated with older age of child at diagnosis, and younger maternal 

age at birth (Urayama et al., 2009) which can impact a child’s risk for leukemia. Mobility may 

also be related to increased exposure to viruses or other infections possibly associated with risk of 

childhood leukemia (Greaves, 2018; Kinlen, 2012; Sahl, 1994). There are two competing theories 

on the possible infectious etiology of childhood leukemia. In the “population mixing” hypothesis, 

the disease can develop as a rare response to a relatively common infection introduced to a 

previously isolated population (Kinlen, 2012). In such a case, exposure to infections would be 

associated with a greater risk of childhood leukemia. Alternatively, the “delayed infection” 

hypothesis suggests a protective effect of infections in early-childhood in the development of 
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leukemia through normal immune system development (Greaves, 2006). Possible routes of early 

childhood infection include having older siblings, breastfeeding, and attending daycare (Amitay 

& Keinan-Boker, 2015; Ma et al., 2005; Urayama, Buffler, Gallagher, Ayoob, & Ma, 2010; 

Urayama et al., 2011; Westergaard et al., 1997). 

We previously attempted to assess the effect of mobility on the EMF-leukemia relationship in a 

California Powerlines Study (CAPS) (Amoon, Oksuzyan, et al., 2018).  As the information on 

mobility was available only for cases, we determined variables predictive of mobility among cases: 

child’s age, maternal age at birth, socioeconomic status (SES), race/ethnicity, parity, and dwelling 

type.  We used a variety of approaches, including propensity score methods to control for those 

variables. Given the limitations in the available data and previous work, we extend this effort by 

simulation and sensitivity analysis.   

In this paper, we present a hybrid simulation study (Sudan et al., 2016) assessing the impact of 

unmeasured residential mobility on EMF-leukemia associations. The aims of this study are (1) to 

simulate a synthetic case-control study based on available CAPS data, and to use it to assess the 

sensitivity of the plausible EMF-leukemia associations to different scenarios of uncontrolled 

confounding by mobility, and (2) to use the simulation findings to conduct sensitivity analysis and 

offset the potential bias due to uncontrolled confounding by mobility in the empirical study of the 

associations between EMF exposures on childhood leukemia in CAPS. 

4.3 Methods 

We first conducted a simulation study that generated case-control data using inputs on the 

interrelations of childhood leukemia, EMF, and mobility conditional on other covariates from an 

existing case-control study, the California Powerlines Study (CAPS). We then analyzed the 

simulated dataset to investigate the extent to which not adjusting for various scenarios of 
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confounding by mobility could explain the magnitude and the direction of the associations between 

EMF exposures and childhood leukemia. Finally, we assessed the empirical relationship between 

EMF exposures and childhood leukemia in CAPS by offsetting potential confounding by mobility 

as seen in the simulation study. 

CAPS is a case-control study that enrolled childhood leukemia cases younger than 16 years 

diagnosed in California between 1988 and 2008. Cases were identified from the California Cancer 

Registry [CCR; www.ccrcal.org] and matched to the California Birth Registry [CBR; California 

Department of Public Health, Vital Statistics Branch]. Controls were randomly selected from the 

CBR and matched to cases 1:1. Controls were excluded if they were diagnosed with any type of 

cancer in California before the matched case’s date of diagnosis. Out of 6,645 eligible childhood 

leukemia cases identified from the CCR, 4,879 were matched to birth records and had accurate 

geocoding of both birth and diagnosis addresses. Similarly, 4,835 controls met these criteria (for 

birth address only). Details of this study have been previously described (Kheifets et al., 2015). 

Cases were required to be both born and diagnosed in California, but as controls were selected 

from the CBR, they were not required to be residing in California at the time of their case’s 

diagnosis. Hence, the mobility of controls is unknown.  

First, we analyzed CAPS data to extract information on the prevalences of our EMF exposures: 

living <50 meters (m) from an overhead powerline of 200 kilovolts (kV) or greater and exposure 

to calculated magnetic fields of 0.4 microTesla (μT) or greater. The prevalence of childhood 

leukemia, as well as, residential mobility among cases, was also retrieved. 

We used CAPS to estimate odds ratios (ORs) between the variables used in previous analyses 

(Crespi et al., 2016; Kheifets, Crespi, et al., 2017b) and distance to high-voltage overhead 

powerlines, calculated magnetic fields, and childhood leukemia to the extent possible with the 
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available data using both cases and controls. Table 4.1 lists the ORs and prevalences of our selected 

characteristics to both exposures of interest as well as to leukemia.  

Second, we simulated data for a new mobility variable as well as new exposure and outcome 

variables using the parameters in Table 4.1 based on a causal structure of mobility as a confounder 

in the EMF-leukemia association shown in the two directed acyclic graphs (DAGs). These DAGs 

were used to depict plausible scenarios based on accepted theory or evidence. Figure 4.1 is based 

on the population mixing hypothesis while Figure 4.2 is based on the delayed infection hypothesis. 

We simulated the new variables using equations with the defined parameter values in Table 4.1. 

All variables were binary. Mobility was drawn from a Bernoulli trial, B[1, p], where p was the 

probability of observing the variable as 1 (versus the reference 0) in the study. Since mobility 

information was not available for controls, we used the prevalence among cases for initial 

simulation values. In future analyses, mobility can be simulated using similar equations as those 

below taken from previous analyses (Amoon, Oksuzyan, et al., 2018). For the exposures, we used 

indicator variables for the most highly exposed children (living <50 m to a 200+ kV line; exposed 

to ≥0.4 μT calculated fields). 

In particular, the probability of living <50 m to an overhead powerline of 200 kV or greater used 

in the simulations was specified as: 

 1/(1 + exp(-(log -odds(PLbackground = 1) + log(ORage <1-PL)*age<1 + log(ORage 1-5-PL)*age1-5 

+ log(ORage 6-9-PL)*age6-9 + log(ORmale-PL)*male + log(ORhigh SES-PL)*highSES + log(ORHispanic-

PL)*Hispanic + log(ORother race-PL)*otherrace +log(ORasian race-PL)*asianrace + log(ORblack race-

PL)*blackrace + log(ORmoved-PL)*moved))), where PL stands for powerlines. 

The corresponding equation for exposure to ≥0.4 μT calculated fields was: 
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 1/(1 + exp(-(log-odds(CFbackground = 1) + log(ORage <1-CF)*age<1 + log(ORage 1-5-CF)*age1-5 

+ log(ORage 6-9-CF)*age6-9 + log(ORmale-CF)*male + log(ORhigh SES-CF)*highSES + log(ORHispanic-

CF)*Hispanic + log(ORother race-CF)*otherrace + log(ORasian race)*asianrace + log(ORblack 

race)*blackrace + log(ORmoved-PL)*moved))), where CF stands for calculated fields.  

Similarly, the probability of leukemia given these exposures and the other variables was specified 

as: 

1/(1 + exp(-(log-odds(Leukbackground = 1) + log(OREMF-Leuk)*newlygenertedEMFexposures 

+ log(ORage <1-Leuk)*age<1 + log(ORage 1-5-Leuk)*age1-5 + log(ORage 6-9-Leuk)*age6-9 + log(ORmale-

Leuk)*male + log(ORhigh SES-Leuk)*highSES + log(ORHispanic-Leuk)*Hispanic + log(ORother race-

Leuk)*otherrace + log(ORasian race-Leuk)*asianrace + log(ORblack race-Leuk)*blackrace + log(ORmoved-

Leuk)*moved))), where EMF would be either distance or calculated fields. 

The ORs for the covariates in the equations above are the same as Table 1, save for mobility, which 

is discussed below. The background prevalences of the exposure and outcome variables were 

based on their proportions in CAPS. To determine if confounding by mobility or other variables 

could affect previous findings of EMF-leukemia associations, we set the true effect of those 

associations as null. 

We copied our dataset 1000 times and simulated as many Monte Carlo samples of our new 

variables. We repeated this for different values for the association of mobility with leukemia 

(ORmoved-Leuks) as well as mobility with the EMF exposures (ORmoved-PL/CFs). For the population 

mixing hypothesis (Figure 1), we ran models where the association between mobility and outcome 

were assumed to be 1.3, 2.0, or 3.0 in accordance with moderate previous findings (Kinlen, 2012). 

In the case of the delayed infection hypothesis (Figure 4.2), we assumed the mobility-leukemia 

association to be negative and varied it at 0.3, 0.6 and 0.9 also based on previous literature 
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(McNally & Eden, 2004). The mobility-EMF associations were the same under both hypotheses: 

they were assumed to be positive but small. We assessed scenarios of the EMF-mobility 

association at 1.3, 2.0 and 3.0 to simulate a small, moderate, or large effect of mobility, 

respectively. Each of the generated samples were run through a “fully-adjusted-minus-mobility” 

model that included all other variables except mobility. In this model, any difference from null in 

the coefficient of the exposure would be due to mobility. The resulting 1000 ORs from each model 

of the 1000 replicates of the hybrid simulated datasets were summarized using the median as the 

point estimate and the 2.5th and 97.5th percentiles as the lower and upper limits of the 95% 

simulation interval in each scenario.  

Finally, to address the second main aim of this study, we used methods and formulas described by 

Arah and others (Arah, 2017; Arah, Chiba, & Greenland, 2008) to obtain the estimated bias 

generated by uncontrolled mobility in our simulated dataset and used it as a fixed offset in the 

empirically estimated associations between EMF exposures and childhood leukemia based on the 

real CAPS dataset. The formula used to derive the offset was given by: 

Offset = log(OREMF_Leuk)*Exposure where OREMF_Leuk is the observed biased OR for the 

association between EMF and leukemia when all other variables, except for mobility, are 

accounted for in the simulated datasets wherein EMF had no effect on leukemia. The observed 

OREMF_Leuk from the simulated datasets could, thus, only be due to uncontrolled confounding by 

mobility and is a bias factor on the OR scale. Offsetting this bias factor from the empirical 

estimated EMF-Leukemia OR is equivalent to dividing this biased empirical EMF-Leukemia OR 

by the bias factor to obtain a mobility-adjusted EMF-Leukemia OR (Arah, 2017; Arah et al., 2008). 

The main empirical analysis adjusted the variables sex, age, SES and race/ethnicity using a 

complete-case analysis. Sensitivity analyses involved using multiple imputations on observations 
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with missing values for the variables SES and race/ethnicity (10 imputations per missing value). 

We also included other predictors of mobility documented previously (Amoon, Oksuzyan, et al., 

2018): maternal age at birth, parity, and dwelling type in complete-case scenarios. 

All analyses were conducted using SAS software version 9.3. Copyright © 2017 SAS Institute Inc.  

4.4 Results 

The complete-case analysis included 9,244 subjects of which 4,659 were cases and 4,585 were 

controls. 61% of cases had moved between time of birth and diagnosis. The simulated impact of 

uncontrolled confounding by mobility on the associations between EMF exposures and childhood 

leukemia under the population mixing hypothesis is presented at the top of Table 4.2. For the 

analyses involving distance, removing mobility from the model increased the ORs up to 1.31. 

However, even with mobility associated with both exposure and outcome with an OR of 3.0, there 

was not enough bias introduced to explain a previously observed association of 1.41 (Crespi et al., 

2016). Naturally, as the effect of mobility increased, so did the amount of bias generated by leaving 

it out of the model. A similar trend was seen for calculated fields, where again, previously observed 

associations (such as OR of 1.50) were not reached (Kheifets, Crespi, et al., 2017b).  

The bottom of Table 4.2 shows the results of the simulations under the delayed infection 

hypothesis. It shows similar trends to the population mixing hypothesis but in the opposite 

direction. Scenario 3 with a mobility-exposure OR of 3.0 and mobility-leukemia exposure of 0.3 

showed similar levels of bias to the maxed-out scenarios under the population mixing hypothesis. 

Several scenarios with mobility-leukemia at an OR of 0.9 showed almost no bias remaining in the 

model, even when mobility was omitted, but this could be due to the fact that the chosen 

association was so weak.  



 

78 

 

The results of using offsets in CAPS to account for the potential bias of mobility is also presented 

in Table 4.2. For the population mixing hypothesis, as expected, the greater the potential bias 

introduced by mobility, the closer to null the association became when accounting for it, for both 

distance and calculated fields. However, even in our scenario with the greatest bias introduced, the 

effect of large calculated fields on the incidence of childhood leukemia is not erased completely, 

even if the effect is imprecise. In the case of the delayed infection hypothesis, accounting for the 

bias pulled the ORs away from the null.  

Using multiple imputation on the same variables did not change the results (results not shown). 

When maternal age at birth and parity were included in the model, the results were almost identical 

(Supplementary Table 4.1), suggesting that although these variables are predictive of mobility, 

they do not appear to alter the EMF-leukemia relationship.  

The associations were stronger for a site-visited subset: 1.73 (0.82-3.66) for distance and 1.99 

(0.84-4.72) for magnetic fields. When site-visited dwelling classification was included, all the 

estimates increased in magnitude (Supplementary Table 4.2), with the bias-adjusted distance ORs 

ranging from 1.28 to 1.62 for the population mixing hypothesis and from 1.66 to 2.25 under the 

delayed infection hypothesis. However, the sample size was greatly reduced for these analyses. In 

all cases, both exposures still showed associations with increased risk of childhood leukemia, even 

after accounting for the potential bias introduced by unmeasured mobility. 

4.5 Discussion 

In this paper, we created a synthetic case-control study based on information from CAPS on EMF  

exposures and childhood leukemia as well as related characteristics and used the computed bias 

from the simulation experiments to adjust the real CAPS dataset for uncontrolled confounding by 

residential mobility. We simulated different scenarios using the synthesized variables and 
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examined whether the reported associations between EMF exposures and childhood leukemia 

could be affected by unmeasured residential mobility, which could represent either infectious 

etiology of childhood leukemia or other ways mobility could affect such a relationship.  

In our study, although mobility appeared to be an important factor to adjust for, we find 

associations close to those previously found in CAPS: 1.41 for the association between living <50 

m from a high-voltage powerline and 1.50 for the association between exposure to ≥0.4 μT of 

calculated magnetic fields, except for strong postulated associations between mobility and both 

exposure and outcome. For mobility were to be truly responsible for the observed associations, the 

relationship between mobility and both EMF exposures and childhood leukemia would have to be 

strong (ORs > 3.0 in both cases). However, as previously assessed among the cases in CAPS, 

mobility did not appear to be associated greatly with EMF exposures (Amoon, Oksuzyan, et al., 

2018). Stronger trends were seen under both hypotheses. Of note were scenarios in the delayed 

infection hypothesis where mobility-leukemia had an OR of 0.9. In the distance analyses, omitting 

mobility from the fully adjusted model still showed a null effect. For calculated fields, we saw an 

OR of 1.02 as well as 1.01. This does not lend support to the delayed infection hypothesis, at least 

in CAPS. 

The most interesting finding was using the bias offsets in CAPS. It appeared as though mobility 

might play a role in the observed association between both EMF exposures and childhood 

leukemia. The ‘unadjusted’ ORs, however, were also lower than previously observed in CAPS 

analyses (Crespi et al., 2016; Kheifets, Crespi, et al., 2017b). Even with our “strongest mobility” 

scenario, neither bias-adjusted association of EMF exposure with leukemia appeared to be null, 

although the confidence intervals were relatively wider than before bias-adjustment. This further 

suggests that mobility alone might not completely explain away previously observed associations, 
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unless the true associations are extreme. This also does not rule out other risk factors that could 

explain them away. Information on infections, for example, was not available in this study to assess 

the infectious etiology theories more rigorously.  

The additional models with maternal age and parity included did not appear to change the results 

at all, suggesting that while they may be related to mobility, they are not substantially related to 

EMF exposures to have an effect on their relationship. Dwelling type, however, increased all ORs 

in magnitude, including the estimated bias introduced by mobility in the simulated datasets. This 

suggests that dwelling type is a major cofactor of mobility. Unfortunately, the subset for this 

analysis included only 240 subjects which also led to wide confidence intervals. Further analysis 

of dwelling type with additional identification of this information for subjects in CAPS is planned.  

Strengths of this study include the use of CAPS, which itself has a relatively large sample size to 

increase power, and used population registries to obtain data, eliminating potential for participation 

bias due to self-selection. Exposure assessment was also conducted blindly with respect to case-

control status, reducing the risk for information bias due to recorder bias.  

Potential limitations of this study involve residential mobility itself. In CAPS, it was defined by 

the distance between a case’s birth address and diagnosis address of more than 50 meters, but this 

could be misclassified. Additionally, we used the prevalence of mobility only among cases because 

it was unavailable among controls which may not accurately reflect the source population 

distribution of residential mobility. Also, previous studies have shown a discrepancy in mobility 

among cases and controls (Green et al., 1999; Kleinerman et al., 1997; McBride et al., 1999). 

Finally, as only initial and final address information was available, it is possible for a case to have 

moved, then returned to their birth home before being diagnosed, but we expect this to be rare.  
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Uncontrolled confounding by residential mobility appears to have impact on the estimated effects 

of EMF exposures, namely proximity to high-voltage powerlines and increased magnetic field 

exposure, on childhood leukemia. However, it is unlikely to be the primary driving force behind 

previously observed largely consistent, but unexplained associations.  
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Figure 4.1 DAG of a main causal structure under the population mixing hypothesis where 

mobility is positively associated with both EMF exposure and childhood leukemia and Z is the 

set of other associated measured factors. 
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Figure 4.2 DAG of a main causal structure under the delayed infection hypothesis where 

mobility is positively associated with EMF exposure and a protective factor for childhood 

leukemia and Z is the set of other associated measured factors. 
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Table 4.1 Input values for the relationship between the covariates and distance to powerlines, 

calculated magnetic fields, and leukemia in CAPS used to develop the synthetic cohort. 

 

Covariate 

<50 m to 200+ 

kV Line 

(OR)¹ 

≥0.4 μT 

(OR)² 

Distance -> 

Leukemia 

(OR)³ 

CF -> 

Leukemia 

(OR)⁴ 

Prevalence in 

CAPS 

(0 < p <1) 

Male Sex 1.01 0.37 0.96 0.96 0.56 

Asian Race (v. non-Hispanic White) 2.19 1.98 1.24 1.24 0.11 

Black Race (v. non-Hispanic White) 0.52* 1.34* 0.63 0.63 0.07 

Hispanic (v. non-Hispanic White) 1.44 1.45 1.20 1.20 0.50 

Other Race (v. non-Hispanic White) 1.96* N/A* 1.06 1.06 0.02 

<1 Years Old (v. 10-15 Years Old) 1.12* 1.11* 0.91 0.91 0.07 

1-5 Years Old (v. 10-15 Years Old) 1.81 1.24 0.99 0.99 0.64 

6-9 Years Old (v. 10-15 Years Old) 0.45 0.67 0.97 0.97 0.17 

High SES 0.62 0.63 1.05 1.05 0.30 

CAPS California Powerlines Study, m meters, kV kilovolts, μT microTesla, CF calculated fields, OR odds ratio, p probability, SES 

socioeconomic status. 

¹Effect of covariates on living <50 m from a 200+ kV line, adjusted for all other covariates. 

²Effect of covariates on having ≥0.4, adjusted for all other covariates. 

³Effect of covariates on leukemia risk, adjusted for all other covariates and distance. 

⁴Effect of covariates on leukemia risk, adjusted for all other covariates and calculated fields. 

*Cells n<5 

Mobility ORs not estimated due to no information for controls. 

  

  



 

85 

 

Table 4.2 Complete-case analysis of the impact of mobility on the association between EMF exposures and childhood leukemia. 

 

   <50 m distance to 200+ kV power lines ≥0.4 μT calculated fields 

 Varied Inputs Bias introduced Offset Analysis Bias introduced Offset Analysis 

Hypothesis 

Mobility 

-> 

Exposure 

(OR) 

Mobility 

-> 

Leukemia 

(OR) 

Distance -> Leukemia 

OR (95% CI) 

Before 

Adjustment 

OR (95% CI) 

After 

Adjustment  

OR (95% CI) 

CF -> Leukemia 

OR (95% CI) 

Before 

Adjustment 

OR (95% CI) 

After 

Adjustment 

OR (95% CI) 

Population 

Mixing 

1.30 1.30 1.03 (0.66-1.69) 

1.39 (0.72-2.68) 

1.34 (0.70-2.60) 1.06 (0.51-2.41) 

1.49 (0.69-3.19) 

1.40 (0.65-3.00) 

2.00 1.30 1.05 (0.72-1.60) 1.31 (0.68-2.54) 1.06 (0.55-2.14) 1.40 (0.65-3.01) 

3.00 1.30 1.08 (0.77-1.48) 1.29 (0.67-2.49) 1.06 (0.64-1.92) 1.40 (0.65-3.01) 

1.30 2.00 1.07 (0.66-1.79) 1.29 (0.67-2.50) 1.08 (0.49-2.81) 1.38 (0.64-2.97) 

2.00 2.00 1.13 (0.74-1.76) 1.22 (0.63-2.36) 1.14 (0.60-2.40) 1.30 (0.61-2.80) 

3.00 2.00 1.19 (0.83-1.70) 1.17 (0.60-2.26) 1.17 (0.72-2.25) 1.27 (0.59-2.72) 

1.30 3.00 1.08 (0.68-1.86) 1.28 (0.66-2.47) 1.14 (0.50-3.14) 1.31 (0.61-2.81) 

2.00 3.00 1.21 (0.78-1.94) 1.15 (0.59-2.22) 1.24 (0.64-2.81) 1.20 (0.56-2.57) 

3.00 3.00 1.31 (0.90-1.91) 1.06 (0.55-2.05) 1.30 (0.74-2.70) 1.14 (0.53-2.45) 

Delayed 

Infection 

1.30 0.90 1.00 (0.62-1.67) 

1.39 (0.72-2.68) 

1.39 (0.72-2.68) 1.02 (0.49-2.42) 

1.49 (0.69-3.19) 

1.46 (0.68-3.13) 

2.00 0.90 1.00 (0.67-1.49) 1.38 (0.71-2.67) 1.01 (0.52-1.97) 1.48 (0.69-3.17) 

3.00 0.90 0.99 (0.70-1.37) 1.40 (0.72-2.70) 0.98 (0.56-1.74) 1.52 (0.71-3.25) 

1.30 0.60 0.98 (0.58-1.57) 1.42 (0.73-2.74) 0.99 (0.45-2.13) 1.51 (0.70-3.23) 

2.00 0.60 0.94 (0.62-1.40) 1.48 (0.76-2.86) 0.94 (0.47-1.85) 1.58 (0.74-3.39) 

3.00 0.60 0.91 (0.63-1.24) 1.52 (0.79-2.95) 0.89 (0.50-1.56) 1.67 (0.78-3.58) 

1.30 0.30 0.94 (0.54-1.50) 1.47 (0.76-2.84) 0.96 (0.40-2.02) 1.55 (0.72-3.33) 

2.00 0.30 0.85 (0.52-1.29) 1.64 (0.85-3.17) 0.85 (0.39-1.63) 1.75 (0.82-3.75) 

3.00 0.30 0.77 (0.52-1.06) 1.81 (0.93-3.49) 0.77 (0.39-1.29) 1.93 (0.90-4.14) 

EMF electromagnetic fields, m meters, kV kilovolts, μT microTesla, CF calculated fields, OR odds ratio, CI confidence interval 

All models were adjusted for age, sex, socioeconomic status, and race/ethnicity. 
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4.6 Appendices 

Supplementary Table 4.1 Complete-case analysis of the impact of mobility on the association between EMF exposures and childhood 

leukemia with additional variables: maternal age at birth and parity (n=9,242). 

  <50 m distance to 200+ kV power lines ≥0.4 μT calculated fields 

    Bias introduced Offset Analysis Bias introduced Offset Analysis 

Hypothesis Set 

Distance -> Leukemia 

OR (95% CI) 

Before 

Adjustment 

OR (95% CI) 

After 

Adjustment  

OR (95% CI) 

CF -> Leukemia 

OR (95% CI) 

Before 

Adjustment 

OR (95% CI) 

After 

Adjustment 

OR (95% CI) 

Population 

Mixing 

1 1.03 (0.68-1.50) 

1.39 (0.72-2.69) 

1.34 (0.69-2.60) 1.03 (0.60-1.86) 

1.47 (0.69-3.16) 

1.43 (0.67-3.07) 

2 1.05 (0.76-1.44) 1.32 (0.68-2.55) 1.05 (0.65-1.77) 1.40 (0.65-3.01) 

3 1.07 (0.81-1.42) 1.30 (0.67-2.52) 1.06 (0.69-1.66) 1.39 (0.65-2.97) 

4 1.05 (0.71-1.62) 1.32 (0.68-2.56) 1.05 (0.62-1.86) 1.41 (0.66-3.02) 

5 1.12 (0.82-1.58) 1.24 (0.64-2.40) 1.12 (0.70-1.88) 1.32 (0.61-2.83) 

6 1.17 (0.90-1.56) 1.18 (0.61-2.29) 1.17 (0.77-1.82) 1.25 (0.58-2.69) 

7 1.08 (0.73-1.70) 1.28 (0.66-2.48) 1.09 (0.63-2.16) 1.35 (0.63-2.90) 

8 1.20 (0.86-1.76) 1.16 (0.60-2.25) 1.20 (0.74-2.15) 1.23 (0.57-2.64) 

9 1.29 (0.96-1.80) 1.08 (0.56-2.09) 1.30 (0.84-2.08) 1.14 (0.53-2.44) 

Delayed 

Infection 

1 1.00 (0.66-1.47) 

1.39 (0.72-2.69) 

1.38 (0.71-2.68) 1.01 (0.56-1.75) 

1.47 (0.69-3.16) 

1.46 (0.68-3.14) 

2 1.00 (0.71-1.38) 1.40 (0.72-2.70) 0.99 (0.59-1.68) 1.49 90.70-3.20) 

3 0.98 (0.73-1.31) 1.41 (0.73-2.73) 0.98 (0.63-1.47) 1.50 (0.70-3.22) 

4 0.97 (0.63-1.41) 1.43 (0.74-2.77) 0.97 (0.55-1.69) 1.51 (0.71-3.25) 

5 0.93 (0.66-1.29) 1.49 (0.77-2.89) 0.93 (0.56-1.53) 1.58 (0.74-3.39) 

6 0.90 (0.68-1.18) 1.55 (0.80-3.00) 0.89 (0.58-1.37) 1.66 (0.77-2.56) 

7 0.93 (0.58-1.40) 1.49 (0.77-2.89) 0.93 (0.49-1.63) 1.58 (0.74-3.38) 

8 0.84 (0.56-1.19) 1.66 (0.86-3.21) 0.84 (0.48-1.34) 1.75 (0.82-3.76) 

9 0.76 (0.55-1.03) 1.82 (0.94-3.53) 0.76 (0.48-1.16) 1.93 (0.90-4.15) 

EMF electromagnetic fields, m meters, kV kilovolts, μT microTesla, CF calculated fields, OR odds ratio, CI confidence interval, 

All models were adjusted for age, sex, socioeconomic status, race/ethnicity, maternal age at birth, and parity. 
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Supplementary Table 4.2 Complete-case analysis of the impact of mobility on the association between EMF exposures and childhood 

leukemia with additional variables: maternal age at birth, parity, and site-visited dwelling (n=240). 

  <50 m distance to 200+ kV power lines ≥0.4 μT calculated fields 

    Bias introduced Offset Analysis Bias introduced Offset Analysis 

Hypothesis Set 

Distance -> 

Leukemia 

OR (95% CI) 

Before 

Adjustment 

OR (95% CI) 

After 

Adjustment  

OR (95% CI) 

CF -> Leukemia 

OR (95% CI) 

Before 

Adjustment 

OR (95% CI) 

After 

Adjustment 

OR (95% CI) 

Population  

Mixing 

1 1.07 (0.59-1.95) 

1.73 (0.82-3.66) 

1.62 (0.77-3.42) 1.02 (0.47-2.34) 

1.99 (0.84-4.72) 

1.95 (0.82-4.61) 

2 1.10 (0.62-1.96) 1.58 (0.75-3.34) 1.06 (0.50-2.26) 1.89 (0.80-4.47) 

3 1.11 (0.62-2.05) 1.56 (0.74-3.30) 1.09 (0.54-2.21) 1.83 (0.77-4.33) 

4 1.09 (0.59-2.03) 1.59 (0.75-3.36) 1.04 (0.47-2.63) 1.91 (0.81-4.52) 

5 1.17 (0.64-2.07) 1.48 (0.70-3.13) 1.09 (0.54-2.43) 1.82 (0.77-4.32) 

6 1.23 (0.68-2.23) 1.41 (0.67-2.98) 1.17 (0.61-2.45) 1.71 (0.72-4.04) 

7 1.11 (0.59-2.05) 1.56 (0.74-3.29) 1.09 (0.47-2.75) 1.84 (0.78-4.34) 

8 1.22 (0.68-2.37) 1.43 (0.67-3.01) 1.20 (0.57-2.60) 1.66 (0.70-3.93) 

9 1.35 (0.73-2.55) 1.28 (0.61-2.71) 1.32 (0.65-2.88) 1.52 (0.64-3.59) 

Delayed 

Infection 

1 1.05 (0.56-1.88) 

1.73 (0.82-3.66) 

1.66 (0.78-3.50) 0.98 (0.44-2.24) 

1.99 (0.84-4.72) 

2.03 (0.86-4.79) 

2 1.03 (0.56-1.92) 1.69 (0.80-3.56) 0.99 (0.47-2.13) 2.01 (0.85-4.77) 

3 1.03 (0.57-1.84) 1.69 (0.80-3.57) 0.99 (0.49-2.01) 2.01 (0.85-4.75) 

4 1.01 (0.54-1.92) 1.71 (0.81-3.61) 0.97 (0.41-2.18) 2.05 (0.87-4.86) 

5 0.96 (0.51-1.82) 1.80 (0.85-3.80) 0.93 (0.40-1.95) 2.14 (0.91-5.07) 

6 0.93 (0.50-1.69) 1.86 (0.88-3.93) 0.90 (0.43-1.84) 2.22 (0.94-5.24) 

7 0.95 (0.49-1.80) 1.82 (0.86-3.85) 0.93 (0.35-1.93) 2.15 (0.91-5.09) 

8 0.85 (0.44-1.62) 2.03 (0.96-4.29) 0.84 (0.33-1.80) 2.37 (1.00-5.61) 

9 0.77 (0.39-1.48) 2.25 (1.06-4.74) 0.76 (0.35-1.55) 2.64 (1.12-6.24) 

EMF electromagnetic fields, m meters, kV kilovolts, μT microTesla, CF calculated fields, OR odds ratio, CI confidence interval, 

All models were adjusted for age, sex, socioeconomic status, race/ethnicity, maternal age at birth, parity, and dwelling. 
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5 The Role of Dwelling in the California Power Line Study of Childhood Leukemia 

 

Authors: Amoon, A., Crespi, C.M., Nguyen, A., Zhao, X., Vergara, X., Kheifets, L. 

 

 

5.1 Abstract 

Aims: The type of dwelling where a child lives is an important factor when considering residential 

exposure to environmental agents in studies of childhood leukemia. In this paper, we explore the 

role of dwelling type in the magnetic field (MF)- leukemia relationship using data from the 

California Power Line Study (CAPS), a population-based case-control study of childhood 

leukemia. Dwelling type could affect the magnetic field (MF)-childhood leukemia relationship in 

a number of ways: as a surrogate for other factors; as a confounder; through exposure 

misclassification; or as an effect measure modifier.  

Methods: In the original study, residence type was ascertained only for a small subset. For this 

analysis, we obtained information on over 2,000 subjects. Using logistic regression, we assessed 

whether dwelling type is a risk factor for childhood leukemia, what covariates are related to 

dwelling type, whether dwelling type behaves as a confounder or as a potential effect measure 

modifier in the MF-leukemia relationship. 

Results: A majority of children lived in single-family homes or duplexes (70%). As expected, 

dwelling type was associated with race/ethnicity and socioeconomic status. Dwelling type was 

neither associated with childhood leukemia risk, nor functioned as a confounder. Stratification 

revealed potential effect measure modification by dwelling type. 
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Conclusion: Dwelling type does not appear to play a significant role in the MF-leukemia 

relationship in the CAPS dataset as either a risk factor or confounder. Future research should 

explore the role of dwelling as an effect measure modifier and potential interaction effects. 
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5.2 Introduction 

Dwelling is an important factor when considering residential exposure to environmental agents in 

studies of childhood leukemia. However, it has been little studied in the context of magnetic fields 

(MF). Type of dwelling (single-family home, apartment, etc.) could affect the MF-childhood 

leukemia relationship in a number of ways: as a surrogate for other factors, such as socioeconomic 

status (SES) or radon; as a confounder; through potential exposure misclassification; or as an effect 

measure modifier. A directed acyclic graph illustrating these possibilities is presented in Figure 

5.1.  

Dwelling type could be a risk factor for leukemia by acting as a proxy for other unknown or 

unmeasured exposures. In studies of childhood leukemia, attributes related to a residential 

dwelling such as the structure, materials, and even age can affect the levels of exposure to gamma 

radiation or radon gas (Calvente et al., 2014; Kavet, Zaffanella, Pearson, & Dallapiazza, 2004; C. 

Y. Li et al., 2007). Previous research has shown both that dwelling type is (Del Risco Kollerud, 

Blaasaas, & Claussen, 2014; Feychting & Ahlbom, 1993; Raaschou-Nielsen et al., 2008) and is 

not (Amigou et al., 2011; London et al., 1991) related to childhood leukemia when comparing 

single-family vs multi-family housing. Type of residence may also affect the MF-leukemia 

relationship through association with other covariates implicated in MF-childhood leukemia 

research. Socioeconomic status is associated with dwelling type (McCarthy et al., 2001); dwelling 

type or home ownership has often been used as a surrogate for SES. Residential mobility, or 

moving between time of birth and diagnosis, is also associated with dwelling type. When used as 

a proxy for mobility in adjusting MF-leukemia estimates, we saw a difference in the models 

excluding dwelling compared to those including it. However, the sample size was limited (Amoon, 
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Oksuzyan, et al., 2018). Homeownership, and subsequently dwelling type, is also strongly 

associated with race/ethnicity (United States Census Bureau, 2018).  

Dwelling type could function as a confounder if it is associated with MF exposures in addition to 

childhood leukemia. While two pooled analyses did not show dwelling type to be a confounder in 

the MF-leukemia relationship (Ahlbom et al., 2000; Amoon, Crespi, et al., 2018), residence type 

has been shown to be a strong predictor of measured magnetic fields (McBride et al., 1999). 

Several studies have found greater exposure to magnetic fields in apartments when using both 

measurements (Brix et al., 2001; Calvente et al., 2014; Schuz et al., 2001; Schuz et al., 2000; 

Tomitsch et al., 2010) and calculations (Feychting & Ahlbom, 1993). Not only can the dwelling 

type affect the level of MF exposure, it can also affect assessment of said exposure, especially 

when voltage of, and proximity to, power lines is used to calculate magnetic fields (Kheifets, 

Swanson, et al., 2017). For example, measured or calculated MF might be higher in a smaller 

dwelling (apartment) compared to larger dwelling (single-family home). On the other hand, 

calculated MF may be less accurate for an apartment if its exact location within a structure is 

unknown. Thus, certain dwelling types (non-single-family homes) are more likely to result in 

exposure misclassification (Amoon, Oksuzyan, et al., 2018; Feychting & Ahlbom, 1993; Vergara 

et al., 2015). To date, there are no data on the association between dwelling type and proximity to 

overhead power lines.  

Previous studies suggest that dwelling type could potentially function as an effect measure 

modifier with different strengths of the MF-leukemia association for different dwelling types 

(Amoon, Oksuzyan, et al., 2018). The relationship seems to depend on the surrogate of MF 

exposure: a Swedish study showed stronger association for calculated fields and leukemia in 

single-family homes despite lower recorded calculated magnetic fields than apartments (Feychting 
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& Ahlbom, 1993), while a study in Colorado showed lower risks of childhood leukemia when 

using spot measurements in single-family homes (Savitz et al., 1988). No recent studies have 

undertaken such stratified analysis. 

In this paper, we explore the role of dwelling type in the MF-leukemia relationship using data from 

the California Power Line Study (CAPS). The aims of this study are (1) to determine whether 

dwelling type is a risk factor for leukemia, (2) determine what covariates are related to dwelling 

type, (3) examine whether dwelling type behaves as a confounder in the MF-leukemia relationship, 

and (4) to analyze the role of dwelling type as a potential effect modifier in the MF-leukemia 

relationship. 

5.3 Methods 

CAPS is a state-wide case-control study that included childhood leukemia cases younger than 16 

years of age diagnosed in California between 1988 and 2008. Cases were identified from the 

California Cancer Registry [CCR; www.ccrcal.org] and matched to the California Birth Registry 

[CBR; California Department of Public Health, Vital Statistics Branch]. Controls were randomly 

selected from the CBR and matched to cases 1:1. Controls were excluded if they were diagnosed 

with any type of cancer in California before the matched case’s date of diagnosis. Out of 6,645 

eligible childhood leukemia cases identified from the CCR, 4,879 were matched to birth records 

and had accurate geocoding of birth addresses. Similarly, 4,835 controls met these criteria. Details 

of this study have been previously described (Kheifets et al., 2015). Exposure assessment for 

distance to overhead power lines was three-tiered. First, geographic information systems (GIS) 

information was obtained from electric power companies and distance from home address was 

calculated for all subjects living within 2000 meters (m) of one. Google Earth aerial imagery was 

used to confirm distance for about a third of the subjects. Finally, for homes within distances close 
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enough to generate non-zero magnetic fields, site visits were conducted to measure the actual 

distance as well as to collect other relevant information.  

In the original study, residence type was ascertained only for site-visited homes (n=252) for whom 

addresses were available. For this analysis, we obtained information on residence type for 1,799 

additional subjects. The 1,799 additional subjects included (1) all subjects with potential for high 

exposure and (2) a stratified random sample (without replacement), where the stratification was 

by distance to nearest power line of 200 kV or greater. Sampling weights were calculated as the 

inverse of the probability of selection. Once these subjects were selected, this sample was 

combined with the site-visited sample, their order was randomized, and a unique ID was generated 

for each subject. A dataset that contained only the unique ID, and latitude and longitude were 

provided to an analyst who used Google Earth and Google Map’s Street View to determine 

dwelling type using the current day image (no historical data was used). Thus, the analyst was 

blinded to the cases/control status of the subjects. Homes were classified as single-family 

residence, apartment, duplex, or mobile home. In some instances, real estate websites were used 

to confirm single- vs multi-family home. Additionally, for each subject, a confidence score was 

recorded (high: the residence was identified and was in the middle of a neighborhood with 

homogeneous dwelling types; medium: residence not clearly identified, but homogeneous 

neighborhood; low: unsure of precise location of residence in the mixed neighborhood).  

For the main analyses, for the subjects with both site-visited and Google Earth-determined 

dwelling type, the site-visit information was used. Sensitivity analyses include (1) using all 2,051 

observations but with only Google Earth information; (2) using only those with high confidence 

score for dwelling code (n=1,883); and (3) using only the site-visited subset. Sampling weights 

were used in all analyses. All models were adjusted for age, sex, SES, and race/ethnicity unless 
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otherwise stated. Multiple imputation was used for observations with missing SES (n=308) or 

race/ethnicity (n=44) information. Analyses used all four dwelling types as well as a binary 

classification in which duplexes and single-family homes were combined into one category and 

mobile homes with apartments in another. The binary category was based on previous literature 

showing similar risk estimates for both detached and semi-detached dwellings compared with 

other types of housing (Calvente et al., 2014; Maslanyj et al., 2007; Myers, Clayden, Cartwright, 

& Cartwright, 1990; Schuz et al., 2000). We also looked at a binary classification where mobile 

homes, apartments, and duplexes were all considered “non-single-family” residences, but found 

duplexes to be more similar to single-family homes for most factors (data not presented). 

We first assessed whether dwelling type could be a risk factor for childhood leukemia. These 

analyses used unconditional logistic regression with dwelling type as the independent variable and 

case/control status as the dependent variable. We fit both crude and adjusted models. Next, we 

examined whether dwelling type was associated with other variables known to be relevant in the 

MF-leukemia relationship using chi-square tests and logistic regression. The variables examined 

included age, sex, SES, race/ethnicity, maternal age at birth, and mobility. Third, to assess whether 

dwelling is a confounder, unconditional logistic regression was performed using categorical 

exposures for MF as the independent variables and case/control status as the outcome, with and 

without dwelling included in the model. Distance to high-voltage (≥200 kV) lines was categorized 

into 0-<50, 50-<200, 200-<600, 600-<2000, and 2000+ m (reference). Categories for calculated 

fields were as follows: <0.1 (reference), 0.1-<0.4, and ≥0.4 μT. Finally, to assess whether dwelling 

is an effect modifier, we conducted unconditional logistic regression analyses stratified by the 

different dwelling types and examined the estimated relationship between distance and MF 

exposures and childhood leukemia risk. 
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Analyses were performed using SAS software version 9.3. Copyright © 2017 SAS Institute Inc. 

CAPS was approved by University of California, Los Angeles Office for the Protection of 

Research Subjects. 

5.4 Results 

A majority of children in the 1,799 newly sampled set lived in single-family homes or duplexes 

(69.7%), which is comparable to the site-visited subset (72.2%). Of the 252 site-visited residences, 

thirty-four were misclassified using Google Earth inspection (13.5%). Of these, 22 were marked 

as high confidence. Eighteen single-family residences were misclassified by the Google Earth 

inspection, 14 as apartments and 4 as duplexes, with 10 marked as high-confidence. Even after 

double-checking the 34 discrepant observations using Zillow.com and other such sites, 18 

remained misclassified (7.1% of 252).  

Childhood leukemia cases appeared less likely to live in mobile homes or duplexes (Table 5.1); 

however, results were imprecise. No differences in risk estimates were observed when dwelling 

was dichotomized (single-family homes and duplexes vs apartments and mobiles homes). 

Adjustments left estimates unchanged. There was no difference in results when only Google Earth 

classification was used or when the analysis was restricted to those with a high confidence score 

(results not shown). In the site-visited subset, however, the adjusted odds ratios for childhood 

leukemia for living in an apartment as compared to a single-family home increased slightly, but 

remained imprecise (Table 5.1). This increase was also noticeable when dwelling type was binary.  

Table 2 shows the relationships of dwelling type with other residential characteristics. As expected, 

SES, race/ethnicity, and residential mobility were all associated with dwelling type. Those with 

low SES were more likely to live in housing other than duplex or single-family homes (odds ratio 

(OR): 1.71, 95% confidence interval (CI): 1.29-2.28). Similarly, subjects who were Black, Asian 
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or Hispanic or had moved at least once between birth and diagnosis were also less likely to live in 

single-family homes. Conversely, living close to high-voltage overhead power lines (OR: 0.62, 

95% CI: 0.28-1.37) and increased calculated fields (OR: 0.63, 95% CI: 0.25-1.37) were more likely 

in single-family homes, but these estimates were imprecise. All results were drawn towards the 

null in the adjusted models (Table 5.2).  

The results of the confounder analysis are presented in Table 5.3. In the distance analyses, 

adjustment for dwelling had no effect (OR: 1.50, 95% CI: 0.88-2.58). The same was true for 

calculated fields (from OR: 1.39 to OR: 1.41). The high confidence subset exhibited the same 

results, as did the site-visited subset. However, the site-visited subset revealed larger ORs, 

suggesting that better exposure and confounder assessment may be a factor in the observed results. 

Table 5.4 shows the results of the stratified analyses aimed at assessing whether dwelling type is 

an effect modifier for the EMF-childhood leukemia relationship. While there are small numbers 

for apartment and mobile home-dwellers living close to high-voltage lines and in the highest 

calculated magnetic fields, there does appear to be a difference in strength of association between 

those who live in duplexes and single-family homes compared to the total. For distance less than 

50 m from 200+ kV lines, in the total sample of 2,051 subjects, the OR (95% CI) decreased from 

1.50 (0.88-2.57) overall to 1.31 (0.72-2.37) for children living in duplexes and single-family 

homes. Meanwhile, despite higher calculated fields among those living in duplexes and single-

family homes (Table 5.2), there was no difference in OR compared to the total sample (1.39 vs 

1.38, respectively). The high confidence and site-visited subsets showed similar trends, albeit with 

greater differences given the smaller sample sizes. Interestingly, the binary classification of single-

family home vs non-single-family home showed different results in the site-visited subset of this 
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analysis (Supplementary Table 5.1), with the effect estimate for distance in single-family homes 

dropping to null, while the effect estimate for calculated fields was increased. 

5.5 Discussion 

In this paper, we explored the possible roles of dwelling type on the MF-leukemia relationship. 

Duplexes and mobile homes appeared to be less common among cases than controls, even after 

adjusting for SES, but results were imprecise. Within the smaller, more accurately assessed, site-

visited subset, however, apartments and mobile homes were more common in cases, compared to 

single-family homes and duplexes, after adjusting for age, sex, SES, and race/ethnicity (Table 5.1). 

Although we found no differences in the overall effects when using only Google Earth 

classifications compared to the best info for the 252 site-visited, the possibility of dwelling type 

misclassification is high considering 13.5% of the 252 site-visited dwellings were misclassified. 

We do not, however, expect this misclassification to be differential as the analyst was blind to 

case/control status.  

As expected, dwelling type was associated with both race/ethnicity and SES, although Schuz et al. 

found that residence type only appeared to be associated with other measures of SES in urban areas 

compared to rural areas (Schuz et al., 2001). Our study had no information on urban/rural status. 

However, Tomitsch et al. reported that differences between urban and rural areas could be 

explained by residence type (Tomitsch et al., 2010), so we did not seek this information to be 

included in the model when both SES and dwelling type were present. Neither age nor maternal 

age at birth were associated with dwelling type (Table 5.2). 

Most previous findings for measured fields showed higher MF in non-single-family dwellings 

(Brix et al., 2001; Calvente et al., 2014; Schuz et al., 2001; Tomitsch et al., 2010), whereas our 

results showed the opposite. While we used calculated fields, based on the voltage of and distance 
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from nearby overhead power lines, instead, our findings were still contrary to a previous study 

using calculated fields (Feychting & Ahlbom, 1993). On the other hand, Table 5.2 shows that close 

proximity to higher-voltage lines was also less common among non-single-family residences, 

consistent with previous studies (Myers et al., 1990). Compared to a previous California study 

where over 80% of subjects lived in single-family homes (Does et al., 2011), the subjects in this 

study were more likely to live in apartments (29.2%). As mentioned previously, exposure 

assessment is limited in apartment dwellings, and calculations are often not as accurate (Feychting 

& Ahlbom, 1993).  

We did not find evidence of confounding by dwelling for either distance or magnetic fields (Table 

5.3). Similarly, dwelling type did not affect a previously observed multiplicative interaction 

between calculated fields and distance (Crespi, Swanson, Vergara, & Kheifets, 2019), although 

numbers were small. These observations are consistent with previous findings for dwelling type 

in pooled analyses (Ahlbom et al., 2000; Amoon, Crespi, et al., 2018). Both ORs at the highest 

exposure levels were consistent with previous findings (Crespi et al., 2016; Kheifets, Crespi, et al., 

2017a), albeit our results were slightly higher for proximity to power lines (OR: 1.50) and slightly 

lower for higher calculated fields (OR: 1.39) due to the dwelling sample subset. These results, 

combined with the elevated effect estimates in the site-visited subset, suggest that the ability to 

detect an association, should one exist, may depend on the of quality of exposure assessment.  

Although evidence of confounding was minimal, we appeared to find effect measure modification 

by dwelling type when comparing the MF-leukemia relationship in those who lived in single-

family homes compared to those who did not (Table 5.4). Due to small numbers, however, the 

results were extremely imprecise and will need to be replicated in future studies. The two 

exposures revealed different trends, with distance showing weaker associations in single-family 
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homes and calculated fields remaining mostly unchanged. This, too, was in contrast to some 

previous findings which showed an OR of 5.6 for exposure to calculated fields ≥0.2 μT in single-

family homes, but only 1.1 in apartments (Feychting & Ahlbom, 1993).  

Strengths of our study include the use of population registries for identification of cases and 

controls, avoiding participation bias and exposure and confounder assessment blind to case-control 

status to reduce information bias. However, misclassification of dwelling type and magnetic field 

exposure is possible, but we do not expect such misclassification to be differential with respect to 

case/control status. Additionally, while we attempted to estimate calculated fields and distance 

using historical data, we did not ascertain dwelling types in actual birth years due to the issues 

with historic Google Earth images. Again, we do not expect this bias to be differential and changes 

of residences from apartments to single family homes are uncommon. Another limitation was 

small sample sizes for our effect modification analysis. Even with dwelling types grouped together, 

the numbers in the highest exposed categories remained small. Interaction effects between the MF 

exposures and dwelling type should be studied in future analyses where the sample size allows.  

In conclusion, dwelling type does not appear to play a significant role in the MF-leukemia 

relationship in the CAPS dataset as either a risk factor or confounder. As mentioned previously, 

different countries have different types of building structures, materials, and electrical wiring 

practices. Accurate exposure and confounder assessment are crucial to the study of this matter. 

Future research should explore the role of dwelling as an effect modifier and potential interaction 

effects.  
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Figure 5.1 Directed acyclic graph depicting possible influence of dwelling on EMF-leukemia 

relationship 

 

 

  



 

101 

 

Table 5.1 Risk of childhood leukemia by dwelling type in CAPS (n=2,051). 

 

Set Dwelling Type Cases Controls COR (95% CI) AOR (95% CI)* 

All 

observations 

(n=2,051) 

Apartment 293 306 1.06 (0.83-1.36) 1.04 (0.81-1.34) 

Duplex 20 25 0.75 (0.35-1.60) 0.74 (0.34-1.60) 

Mobile Home 9 8 0.68 (0.20-2.27) 0.65 (0.19-2.25) 

Single-Family (reference) 697 693 1.00 (reference) 1.00 (reference) 

Apartment or Mobile 302 314 1.06 (0.83-1.36) 1.04 (0.81-1.33) 

Duplex or Single (reference) 717 718 1.00 (reference) 1.00 (reference) 

Site-visited 

(n=252) 

Apartment 34 35 1.09 (0.62-1.91) 1.31 (0.71-2.44) 

Duplex 2 4 N/A N/A 

Mobile Home 0 1 N/A N/A 

Single-Family (reference) 83 93 1.00 (reference) 1.00 (reference) 

Apartment or Mobile 34 36 1.08 (0.62-1.88) 1.29 (0.70-2.38) 

Duplex or Single (reference) 85 97 1.00 (reference) 1.00 (reference) 

CAPS California Power Line Study, COR crude odds ratio, AOR adjusted odds ratio. 

*Adjusted for age, sex, socioeconomic status and race/ethnicity. Missing variables multiply imputed. 

 

  



 

102 

 

Table 5.2  Association of various residential characteristics with dwelling type. 

 

Characteristic 

Apt 

+ 

Mob 

SFH  

+  

Dup 

(Apt + Mobile) vs.  

(Duplex + Single-Fam) [reference] 

COR (95% CI) AOR (95% CI)* 

Age (years) 

<2 126 279 0.75 (0.51-1.09) 0.98 (0.77-1.26) 

2 102 238 0.71 (0.48-1.07) 0.88 (0.67-1.15) 

3 92 229 0.76 (0.51-1.14) 0.98 (0.75-1.29) 

4-6 145 366 0.75 (0.53-1.08) 0.98 (0.79-1.23) 

7+ 151 323 1.00 (reference) 1.00 (reference) 

Sex 
Male 337 797 0.92 (0.72-1.18) 0.97 (0.86-1.10) 

Female 279 638 1.00 (reference) 1.00 (reference) 

SES 
Low 456 930 1.71 (1.29-2.28) 1.25 (1.07-1.45) 

High 139 475 1.00 (reference) 1.00 (reference) 

Race/ethnicity 

White 130 475 1.00 (reference) 1.00 (reference) 

Black 56 71 2.28 (1.37-3.82) 1.64 (1.03-2.59) 

Asian 62 153 1.95 (1.24-3.08) 1.49 (0.97-2.26) 

Hispanic 343 687 1.98 (1.47-2.69) 1.36 (0.98-1.86) 

Other 7 23 0.63 (0.17-2.30) 0.39 (0.13-1.15) 

Maternal Age 

at Birth 

(years) 

<25 248 439 1.26 (0.86-1.86) 1.07 (0.88-1.30) 

25-35 293 780 0.97 (0.67-1.40) 0.93 (0.78-1.11) 

≥35 75 291 1.00 (reference) 1.00 (reference) 

Moved 
No 79 311 0.44 (0.30-0.65) N/A 

Yes 223 406 1.00 (reference) N/A 

Distance to 

200+ kV Line 

(meters) 

<50 8 30 0.62 (0.28-1.37) 0.74 (0.39-1.38) 

50-<100 16 41 0.90 (0.51-1.59) 1.03 (0.63-1.67) 

100-<200 33 90 0.85 (0.56-1.29) 0.99 (0.68-1.44) 

200-<600 153 346 1.02 (0.81-1.29) 1.13 (0.87-1.46) 

≥600 406 928 1.00 (reference) 1.00 (reference) 

Calculated 

Fields (μT) 

≥0.4 6 22 0.63 (0.25-1.57) 0.98 (0.55-1.75) 

0.1-<0.4 18 62 0.67 (0.39-1.15) 0.78 (0.49-1.23) 

<0.1 592 1,351 1.00 (reference) 1.00 (reference) 
Dup duplex, Apt apartment, Mob mobile home, SFH single-family home, SES socioeconomic status, kV 

kilovolts, μT microTesla 

*All models are adjusted for age, sex, SES, and race/ethnicity. Mobility was not included as it is only known 

for cases. Missing values multiply imputed. 
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Table 5.3 Effect of MF exposures on childhood leukemia with and without dwelling as a 

confounder. 

 

  Exposure Counts Without 

Dwelling 
With Dwelling 

Sample Set Distance (m) Cases Controls 

All 2,051, 

using site-visit 

info for 252 

<50 23 15 1.50 (0.88-2.57) 1.50 (0.88-2.58) 

50-<100 28 29 0.93 (0.60-1.44) 0.94 (0.60-1.45) 

100-<200 53 70 0.77 (0.54-1.08) 0.77 (0.54-1.08) 

200-<600 251 248 0.99 (0.78-1.24) 0.98 (0.78-1.24) 

600+ 664 670 1.00 (reference) 1.00 (reference) 

1,883 high 

confidence 

<50 20 13 1.53 (0.86-2.74) 1.53 (0.85-2.73) 

50-<100 24 27 0.89 (0.56-1.41) 0.90 (0.57-1.42) 

100-<200 45 62 0.75 (0.52-1.08) 0.75 (0.52-1.08) 

200-<600 236 236 1.00 (0.78-1.27) 1.00 (0.78-1.27) 

600+ 612 608 1.00 (reference) 1.00 (reference) 

252 site-

visited subset 

<50 23 14 1.72 (0.85-3.49) 1.75 (0.84-3.64) 

50-<100 26 29 0.97 (0.53-1.77) 1.00 (0.53-1.89) 

100-<200 29 38 0.79 (0.43-1.46) 0.79 (0.41-1.49) 

200-<600 2 3 N/A N/A 

600+ 39 49 1.00 (reference) 1.00 (reference) 

  Calculated 

Fields (μT) 

Counts Without 

Dwelling 
Four Dwellings 

Sample Set Cases Controls 

All 2,051, 

using site-visit 

info for 252 

≥0.4 17 11 1.39 (0.82-2.35) 1.41 (0.83-2.38) 

0.1-<0.4 38 42 0.82 (0.55-1.21) 0.81 (0.55-1.20) 

<0.1 964 979 1.00 (reference) 1.00 (reference) 

1,883 high 

confidence 

>=0.4 15 10 1.39 (0.81-2.41) 1.39 (0.80-2.40) 

0.1-<0.4 32 38 0.79 (0.52-1.19) 0.79 (0.52-1.20) 

<0.1 890 898 1.00 (reference) 0.79 (0.53-1.20) 

252 site-

visited subset 

≥0.4 17 10 1.63 (0.92-2.90) 1.70 (0.95-3.07) 

0.1-<0.4 37 42 0.81 (0.53-1.25) 0.79 (0.51-1.22) 

<0.1 65 81 1.00 (reference) 1.00 (reference) 
MF magnetic fields, m meters, μT microTesla 

All models adjusted for age, sex, socioeconomic status, and race/ethnicity, using multiple imputations for missing 

values. 
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Table 5.4 Odds ratios for childhood leukemia by MF exposures, stratified by dwelling type. 

 

Sample 

Set Exposure 

Total Apt + Mob Dup + SFH 

OR (95% CI) ca/co OR (95% CI) ca/co OR (95% CI) 

Distance to 200+ kV lines (m) 

All 

(n=2,051) 

<50 1.50 (0.88-2.57) 6/2 N/A 17/13 1.31 (0.72-2.37) 

50-<100 0.93 (0.60-1.44) 8/8 0.86 (0.35-2.11) 20/21 0.95 (0.56-1.58) 

100-<200 0.77 (0.54-1.08) 16/17 0.80 (0.39-1.66) 37/53 0.72 (0.48-1.07) 

200-<600 0.99 (0.78-1.24) 65/88 0.59 (0.35-0.98) 186/160 1.18 (0.90-1.55) 

600+ 1.00 (reference) 207/199 1.00 (reference) 457/471 1.00 (reference) 

High 

confidence 

(n=1,833) 

<50 1.53 (0.86-2.74) 8/1 N/A 12/12 1.05 (0.54-2.04) 

50-<100 0.89 (0.56-1.41) 5/8 0.55 (0.20-1.50) 19/19 1.05 (0.61-1.79) 

100-<200 0.75 (0.52-1.08) 13/15 0.63 (0.28-1.44) 32/47 0.74 (0.48-1.13) 

200-<600 1.00 (0.78-1.27) 60/83 0.55 (0.30-1.01) 176/153 1.21 (0.91-1.62) 

600+ 1.00 (reference) 183/175 1.00 (reference) 429/433 1.00 (reference) 

Site-visit 

(n=252) 

<50 1.72 (0.85-3.49) 6/2 N/A 17/12 1.33 (0.54-3.30) 

50-<100 0.97 (0.53-1.77) 6/8 16.87 (4.15-68.58) 20/21 0.90 (0.40-2.01) 

100-<200 0.79 (0.43-1.46) 7/8 33.27 (8.37-132.25) 22/30 0.65 (0.30-1.41) 

200-<600 N/A 0/2 N/A 2/1 2.00 (0.21-19.27) 

600+ 1.00 (reference) 15/16 1.00 (reference) 24/33 1.00 (reference) 

Calculated Fields (μT) 

All 

(n=2,051) 

≥0.4 1.39 (0.82-2.35) 4/2 N/A 13/9 1.38 (0.77-2.47) 

0.1-<0.4 0.82 (0.55-1.21) 11/7 0.99 (0.40-2.46) 27/35 0.77 (0.49-1.19) 

<0.1 1.00 (reference) 287/305 1.00 (reference) 677/674 1.00 (reference) 

High 

confidence 

(n=1,833) 

≥0.4 1.39 (0.81-2.41) 5/3 N/A 10/7 1.41 (0.73-2.75) 

0.1-<0.4 0.79 (0.52-1.19) 9/5 1.18 (0.46-3.04) 23/33 0.72 (0.44-1.17) 

<0.1 1.00 (reference) 255/274 1.00 (reference) 635/624 1.00 (reference) 

Site-visit 

(n=252) 

≥0.4 1.63 (0.92-2.90) 4/2 N/A 13/8 1.57 (0.82-3.03) 

0.1-<0.4 0.81 (0.53-1.25) 11/7 1.16 (0.41-3.28) 26/35 0.75 (0.46-1.24) 

<0.1 1.00 (reference) 19/27 1.00 (reference) 46/54 1.00 (reference) 
MF magnetic fields, Dup duplex, Apt apartment, Mob mobile home, SFH single-family home, ca cases, co controls, OR odds ratio, CI 

confidence interval, kV kilovolts, m meters, μT microTesla 

All models adjusted for age, sex, socioeconomic status, and race/ethnicity, using multiple imputations for missing values. 

*Cells n<5 
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5.6 Appendix 

Supplementary Table 5.1 Odds ratio for childhood leukemia by MF exposures, stratified by 

alternative binary dwelling type in site-visited subset. 

 

Exposure 

Total Dup + Apt + Mob SFH 

OR (95% CI) ca/co OR (95% CI) ca/co OR (95% CI) 

Distance to 200+ kV lines (m) 

<50 1.72 (0.85-3.49) 7/2 N/A 16/12 1.00 (0.40-2.53) 

50-<100 0.97 (0.53-1.77) 7/8 22.90 (6.56-79.96) 19/21 0.86 (0.37-1.98) 

100-<200 0.79 (0.43-1.46) 7/9 25.27 (7.09-89.98) 22/29 0.66 (0.30-1.49) 

200-<600 N/A 0/2 N/A 2/1 N/A 

600+ 1.00 (reference) 15/19 1.00 (reference) 24/30 1.00 (reference) 

Calculated Fields (μT) 

≥0.4 1.63 (0.92-2.90) 5/3 N/A 12/7 1.79 (0.84-3.79) 

0.1-<0.4 0.81 (0.53-1.25) 11/7 1.32 (0.50-3.50) 26/35 0.68 (0.40-1.17) 

<0.1 1.00 (reference) 20/30 1.00 (reference) 45/51 1.00 (reference) 
MF magnetic fields, Dup duplex, Apt apartment, Mob mobile home, SFH single-family home, ca cases, co 

controls, OR odds ratio, CI confidence interval, kV kilovolts, m meters, μT microTesla 

All models adjusted for age, sex, socioeconomic status, and race/ethnicity, using multiple imputations for 

missing values. 
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6 Conclusion and Public Health Implications 

This dissertation first examined whether proximity to overhead power lines showed similar 

increases in risk for childhood leukemia as compared to magnetic fields and found a small, but 

imprecise, effect for those living closer than 50 meters from higher voltages lines only. No 

associations were found when using lines of all voltages or calculated magnetic fields in the same 

subset of studies. Further, in the set of countries analyzed, urban versus rural setting, traffic density, 

and SES type did not affect the association, only residential mobility did. 

Using the record-based California study, we then assessed how residential mobility may affect the 

EMF-leukemia relationship. As expected, several risk factors for childhood leukemia were also 

associated with residential mobility. We highlight the importance of accounting for residential 

mobility in the estimation of environmental exposures, as most of the cases had moved between 

time of birth and diagnosis. However, we found that the association between EMF exposures and 

leukemia was stronger in the stratum of cases who did not move. We saw a similar increase in risk 

for children who moved out of their birth neighborhood, giving some credence to the infectious 

etiology hypotheses for childhood leukemia.  

As residential mobility information was only available for cases, we used variables associated with 

mobility among cases as surrogates in the model to control for mobility, but saw no change in 

effect. We decided to synthesize a dataset based on CAPS to compute potential bias that could be 

introduced via uncontrolled confounding of residential mobility. However, we found that mobility 

would have to be strongly associated (ORs > 3.0) with both EMF exposures and childhood 

leukemia. However, we did not find the former to be the case.  

In all mobility analyses, only dwelling type seemed to influence the association in any way. 

Dwelling type, like mobility, can act as a proxy for other unknown or unmeasured exposures, act 
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as a confounder, affect the quality of exposure assessment, or influence the relationship through 

effect measure modification. In the final part of this dissertation, based on a newly collected data, 

we analyzed the role of dwelling type in CAPS. We found that higher calculated fields were less 

common in non-single-family residences, contrary to previous findings (Feychting & Ahlbom, 

1993), but did not find evidence of confounding. However, there was some evidence of effect 

measure modification: although single-family homes showed larger magnetic fields, the effect of 

EMF exposures on leukemia was weaker in those homes, again, in contrast to previous findings 

(Feychting & Ahlbom, 1993).  

While these results broadly corroborate previous pooled analyses of MF and childhood leukemia 

(Ahlbom et al., 2000; Greenland et al., 2000; Kheifets et al., 2010; Schuz et al., 2007), they support 

alternative explanations for the associations observed between residential distance from power 

lines and leukemia risk, such as other correlates of distance or unmeasured confounders. Future 

analyses should explore the interaction of EMF exposures and dwelling type and mobility on risk 

of childhood leukemia. Although this dissertation focused on EMF exposures, we believe the 

findings on mobility and dwelling are relevant to other environmental exposures and other 

childhood outcome studies.  
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