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Abstract

The volume and diversity of data in biomedical research has been rapidly increasing in recent 

years. While such data hold significant promise for accelerating discovery, their use entails many 

challenges including: the need for adequate computational infrastructure, secure processes for data 

sharing and access, tools that allow researchers to find and integrate diverse datasets, and 

standardized methods of analysis. These are just some elements of a complex ecosystem that 

needs to be built to support the rapid accumulation of these data. The NIH Big Data to Knowledge 
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(BD2K) initiative aims to facilitate digitally enabled biomedical research. Within the BD2K 

framework, the Commons initiative is intended to establish a virtual environment that will 

facilitate the use, interoperability, and discoverability of shared digital objects used for research. 

The BD2K Commons Framework Pilots Working Group (CFPWG) was established to clarify 

goals and work on pilot projects that would address existing gaps toward realizing the vision of the 

BD2K Commons. This report reviews highlights from a two-day meeting involving the BD2K 

CFPWG to provide insights on trends and considerations in advancing Big Data science for 

biomedical research in the United States.
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Introduction

New emerging and diverse technologies that profile biological samples, including cells and 

tissues, are increasingly producing large quantities of data. The accumulation of such “Big 

Data” presents an unprecedented opportunity to discover new knowledge that would likely 

lead to rapid development of novel therapeutics projected to revolutionize health care. 

Approaches that utilized those new technologies that produce masses of data are 

transforming disciplines, including pharmacology [1], neuroscience [2], and genomics [3]. 

However, despite rapid progress, harnessing the full potential of Big Data has many 

challenges. For example, there is a need to develop effective and more elaborate 

computational infrastructure, improve methods for data sharing and access, and establish the 

ability for researchers to integrate diverse datasets, as well as standardize analytical 

methods. A complex infrastructure must be developed in order to permit the effective use of 

the digital resources to keep pace with their swift growth in volume and diversity.

The trans-NIH Big Data to Knowledge (BD2K) initiative was established in 2012 to 

facilitate digital research in biomedical science for the purpose of enabling further scientific 

discovery and promoting engagement of the scientific community [4]. BD2K encompasses 

four main aims intended to improve the utility of Big Data employed in biomedical research. 

First, the initiative seeks to promote the widespread use of biomedical digital resources by 

ensuring that they are Findable, Accessible, Interoperable, and Reusable (FAIR). Second, 
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BD2K is mandated to develop software tools and methods that will facilitate a more 

organized approached for the analysis of big biomedical data. Third, BD2K aims to enhance 

training to engage more students to enter the field, and to disseminate methods and tools 

useful for biomedical discovery using Big Data; Finally, the BD2K initiative aims to 

facilitate a data ecosystem that will promote new discoveries through data reuse and data 

integration.

The BD2K Commons initiative was established within the BD2K framework [5]. One idea 

behind developing the Commons environment was to make digital objects accessible by a 

diverse community of researchers through the biomedical and healthCAre Data Discovery 

Ecosystem (bioCADDIE) data discovery index. The Commons idea was defined at a high 

conceptual level with a need to begin putting parts of it into practice. The BD2K Commons 

Framework Pilots Working Group (CFPWG) met in March 2016, in Bethesda, Maryland, to 

plan the group’s activities, clarify goals of the Year 1 Commons pilot projects, and identify 

gaps within the existing Commons framework. Participants included representatives from 

the BD2K Centers of Excellence, the Human Microbiome Project, the Model Organism 

Database, the Anonymization and Sharing groups, the Commons Credit Pilot initiative, the 

BioCADDIE project, the BD2K Interoperability projects, and NIH staff. Moderated 

discussions were held on topics including computational infrastructure, data indices, the 

development of an NIH Cloud Credits model, and metrics of success for software 

development projects. This report summarizes some of the key points from this two-day 

meeting. The report touches general considerations in Big Data biomedical science and 

presents some innovative solutions.

Developing an Ecosystem for Finding, Accessing, Interoperating, and 

Reusing Biomedical Data Digital Objects

The Implementation of the FAIR Principles

The digital objects shared among biomedical researchers on the BD2K Commons platform 

are expected to be Findable, Accessible, Interoperable, and Reusable (FAIR) [6] (Figure 1). 

The FAIR principles were developed by FORCE11, a growing online community of 

stakeholders who aim to accelerate and facilitate the sharing of scientific research output 

through information technologies. FORCE11 motto is that we should not be communicating 

science results and ideas primarily through print, when there are more advanced digital 

option now available. Distinct from other guidelines, the FAIR principles are not tied to any 

specific technology, but instead focused on essential features of data and the metadata that 

enable the maximization of data reuse. FAIR-compatible datasets require deep metadata 

elements. The metadata that should be associated with each type of data can be defined in a 

guideline, and Biosharing.org is a leading resource for the curated collection of data 

standards that include metadata reporting guidelines [7]. However, while it is agreed upon 

that having more and better metadata is desired and even required, obtaining it is 

challenging.

Several BD2K initiatives have adopted the FAIR principles as a core strategic component. 

These are the NIH BD2K bioCADDIE project, the BD2K Center for Expanded Data 
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Annotation and Retrieval (CEDAR), the BD2K Library of Integrated Network-based 

Cellular Signatures (LINCS) Data Coordination and Integration Center (DCIC), and the Big 

Data for Discovery Science Center (BDDS). bioCADDIE seeks to develop a search engine 

for biomedical data objects, namely DataMed (Table 1). The search engine is expected to 

improve through learning by engagement with the biomedical research community. It is an 

extramural effort modeled after the popular and successful search engine for biomedical 

publications, PubMed. To achieve the goal of producing a useful search engine for digital 

objects, bioCADDIE is promoting rich metadata collection and adherence to a shared high-

level schema that was recently defined (http://biorxiv.org/content/early/2017/01/25/103143). 

CEDAR directly complements bioCADDIE by developing infrastructure to help data 

submitters craft rich, standards-compliant, and repository-mandated metadata [4]. The 

CEDAR technology aims to facilitate the capture of standardized metadata via reusable 

templates and template elements that can be linked to terminologies by integration with the 

National Center for Biomedical Ontology (NCBO) BioPortal, a registry for biomedical 

ontologies [8]. This is expected to improve data discovery and reuse of biomedical research 

digital objects. Toward aiding data providers and data consumers to understand the degree to 

which digital resources adhere to the FAIR principles, a Commons working group has been 

formed to explore the feasibility and utility of FAIRness metrics with the goal of developing 

a rating system that could be used to grade resources. This project is still at a conceptual 

level of discussion that is expected to lead to the development of a prototype tool that would 

begin to realize these concepts into practice. Via working groups, and in alignment with 

other BD2K and international efforts, the bioCADDIE project also develops 

recommendations for data identifiers, data citation, and search result ranking. The BD2K-

LINCS DCIC is ensuring that data produced by the LINCS data generation centers 

maximally adhere to the FAIR principles. The BDDS center is developing tools, services, 

and standards for organizing, naming, and describing large biomedical datasets for 

interoperability [9]. In collaboration with bioCADDIE, the BDDS has extended the BagIT 

specification [10] to enable the exchange of big biomedical datasets. BagIt is a general 

purpose hierarchical file packaging format.

Lessons from Related Approaches

The working group discussions included a comparison of differing data management 

strategies employed by industry leaders, including a manually curated directory vs. an 

automated indexing strategy. Although the scope of the search universe is remarkably 

different when comparing general web page search engines, with a search system designed 

specifically for biomedical digital objects, the successes and failures of early versions of 

general search engines such as Yahoo and Google led the group to discuss these examples.

The original strategy of Yahoo was to create a directory that required content producers to 

submit and classify their websites [11]. Such activity can be considered a bottom-up 

approach. It requires manual curation and manual updating to ensure that entries are 

classified correctly, and the directory is balanced and was free of spam. Historically, the 

Yahoo strategy was not scalable but provided a valuable lesson to subsequent development. 

In contrast, Google indexed websites with a web-bot that crawled pages and ranked them for 

search without the need for manual curation, a top-down approach. Google’s innovative 
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PageRank algorithm rated websites in a mechanical and objective manner, gauging the level 

of human interest associated with each page by the number of other pages pointing at it [12]. 

Google improved its search engine by learning from users’ queries and from their clicks on 

results pages, as well as by implementing other enhancements to the PageRank algorithm; 

for example, personalizing PageRank vectors using URL features including internet domains 

[13] and generating query-specific importance scores for webpages [14]. The CFPWG 

discussed the advantages and drawbacks of different approaches, as well as the differences 

in scope and resources. The consensus was that a hybrid strategy that combines automated 

and manual (bottom-up and top-down) curation of digital biomedical objects would likely fit 

best the diverse nature of biomedical datasets and tools. High-quality metadata by manual 

curation was viewed as particularly necessary for the discovery of biomedical resources, 

while some automation would be required for scalability. The bioCADDIE metadata 

specifications, which are aligned with schema.org [15], represent one way for data producers 

to expose their datasets for passive retrieval by bioCADDIE for indexing into DataMed.

Indexing of Data, Metadata, and Other Digital Objects

Data Discovery

The bioCADDIE initiative has engaged several working groups involving stakeholders from 

different countries to plan the implementation of the DataMed platform. Processes for 

ingesting data from existing data repositories, designing and evaluating user interfaces, and 

developing benchmarks for the information retrieval task were determined by the various 

working groups. Different ranking algorithms that have been implemented, or are intended 

to be employed include: a) Salton’s vector space model [16] using Term Frequency (TF) and 

Inverse Document Frequency (IDF), a widely used approach employed by Elasticsearch 

[17]; b) Citation count, which is an alternative metric for certain repositories including the 

Gene Expression Omnibus (GEO); c) Ranking in reverse chronological order, as employed 

by PubMed; and d) Result relevance after terminology-based query expansion. The 

DataMed platform does not host the actual data and relies solely on indexing, searching and 

ranking metadata.

The Importance of Metadata Capture at Publication Submission

Capturing sufficient metadata at the stage of data generation or publication is much more 

cost- and time-efficient than undertaking subsequent metadata curation. However, this is not 

current practice because of various reasons, including the lack of advanced annotation tools 

that make this task easier for experimentalists. When accepted manuscripts report new data, 

for example transcriptomic gene expression data, or a solved three-dimensional structure of 

a protein, scientific journals often require that the authors deposit these data into an 

appropriate repository, with corresponding metadata, and provide an accession number to 

mention in the publication. Provisions for data deposition help promote data reuse and 

facilitate reproducibility of results. However, currently not all journals require this type of 

deposition, and for some data types there is not a clear choice for the repository. 

Additionally, metadata quality in some repositories does not always conform to standards, 

making computation across datasets difficult. High-quality metadata is important for data 

integration, but currently there are few incentives for data producers to annotate their data 
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for proper reuse. While bioCADDIE currently focuses on ingesting data from many 

repositories and mapping metadata into a global metadata specification schema, other efforts 

within the BD2K consortium, in particular CEDAR and BD2K-LINCS DCIC, are 

developing tools, specifications, and best practices to better capture deep and standardized 

metadata. This can be achieved with auto-complete web forms; machine learning methods 

that suggest metadata; as well as methods to incentivize the submission of high-quality 

metadata. Proper metadata annotation involves the mapping of named entities to qualified 

standard identifiers. These identifiers are subsequently mapped to higher-order relationship 

models such as ontologies. If structured correctly, these knowledge models can enable 

sophisticated semantic search and seamless data integration that can facilitate new biological 

discovery. While most of the discussions at the meeting stayed at an abstract level, some 

specific technical recommendations were made. For example, a practical solution for 

improved sharing of data objects on the web is the JavaScript Object Notation for Linked 

Data (JSON-LD), a standard format that makes dataset files interpretable by machines [18].

Educational and Other Efforts to Involve the Community

Crowdsourcing

Crowdsourcing in biomedical research involves the distributed effort of numerous 

individuals to solve substantial and complex problems. In biomedical research, this strategy 

can be divided into two principal types: microtasks and megatasks [19]. Microtasks are 

useful to achieve many simple tasks that together produce a quality resource, for example, 

genome annotation [20, 21], drug indication curation [22], extraction of gene expression 

signatures [23], and human gene-disease annotation [24], as well as many other examples in 

recent years [25]. Megatasks address more challenging problems and are set as a 

competition between teams or individual experts, for example, the reconstruction of the 

topology of biological networks, or the imputation of missing data by the development of 

novel algorithms [26]. Challenges related to the use of crowdsourcing include task 

completion, efficient assessment, and allocation of resources. The BD2K Commons is 

interested in further promoting the participation of citizen scientists and further engaging the 

biomedical research community through crowdsourcing opportunities. Participation of 

individuals with varying levels of scientific experience could be facilitated by tutorials, 

courses, webinars, and discussion forums within the BD2K Commons initiative.

Expanding Public Use of Big Data and Promoting Associated Education

Among the aims of the BD2K initiative is to enhance training activities related to the 

methods essential to advance biomedical research involving Big Data. The NIH offers its 

Commons Data Science training events, Data Science Distinguished Seminar Series, and 

Frontiers in Data Science Lecture Series to contribute toward this part of the BD2K 

initiative. Massive open online courses (MOOCs), including the Big Data Science with the 

BD2K-LINCS Data Coordination and Integration Center Coursera offering (https://

www.coursera.org/learn/bd2k-lincs), provide instructions on how to get started with LINCS 

and other related Omics resources as well as general instruction about mainstream methods 

such as clustering, supervised learning and gene set enrichment analysis. Additionally, 

BD2K established a training and education center that coordinates training activities across 
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the BD2K Centers and other BD2K components. The Big Data for Patients (BD4P) initiative 

is a data science training program that provides patient advocates with a basic understanding 

of this platform in order to facilitate their active participation in Big Data research. Several 

modes of patient engagement have been reported, including crowdsourcing, dynamic 

consenting, and the use of social networking platforms. The BD2K initiative will benefit 

from embracing these diverse forms of patient involvement with Big Data, and involving 

patients to actively participate in the Big Data analysis community. However, it was noted at 

the meeting that such community involvement also presents risks. As health care becomes 

more personalized and participatory [27], there is a risk that patients will more likely make 

uninformed decisions about their own health choices, and due to their lack of proper 

training, jeopardize their own health.

Software and Systems

The CFPWG established four working subgroups with the aim of bringing some of the high 

level concepts established by the BD2K Commons into practice. These four working 

subgroups include: 1) Development of FAIR-ness Metrics; 2) Interoperability of APIs; 3) 

Data-Object Indexing; and 4) Workflow Sharing & Docker Registries. These working 

subgroups are open to all interested participants. The working groups are summarized in 

Table 1, and to join them, the group chairs may be contacted.

The division of the working groups into four segments is aligned with various existing 

standards and software development efforts. In Table 2 we list some relevant efforts divided 

into the following categories: API, computational platforms, initiatives, metrics, searching 

and indexing projects, and standards.

Software Repositories, APIs, Docker Containers, and Interactive Notebooks

Tools and workflows operate on raw experimental data to generate new knowledge by 

abstracting, visualizing, summarizing, and integrating it with other data. Datasets are 

processed in many different ways, and new datasets can result from the processing of the 

original data (Figure 2). It is thus critical that all the tools, algorithms, pipelines, and 

workflows are considered as digital objects, and are also catalogued and annotated in a 

similar way that DataMed (Table 2, searching and indexing category) is indexing datasets for 

search. Besides improved data handling with enhanced metadata for tools and pipelines, 

there is also a need to develop better standards, including metadata, for organizing and 

indexing tools and workflows. For example, one effort carried out by the HeartBD2K center, 

named Aztec (Table 2, searching and indexing category) is developing a directory of 

bioinformatics tools with their corresponding metadata. Aztec provides the ability to 

automatically create pipelines of tools by relating the upstream/downstream or input/output 

relationships of these tools. This feature is also being developed by other tool repositories 

such as OMICtools [62]. There are other efforts to build directories of bioinformatics tools, 

including the Online Bioinformatics Resources Collection (OBRC) [28] and ExPASy:SIB 

[29]. A complementary effort led by CEDAR in collaboration with the HeartBD2K center 

aims to develop smartAPI (Table 2, API category), a coordinated facility for the intelligent 

annotation of web-based APIs. smartAPI aims to improve finding and reusing APIs 
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developed for accessing and operating on biomedical research data. The smartAPI initiative 

is built on the code base of the Swagger editor [30]. The Swagger editor is a standards-

compliant API metadata authoring tool. The API Interoperability Commons working 

subgroup is examining the usability and utility of smartAPI and other API interoperability 

technologies.

Another important development in this area has been the introduction of Docker containers 

[31] (Table 2, Computing Platform category). This entails the ability to package software 

tools developed using different technologies as a relatively lightweight executable and 

installable package that can run on any server that supports Docker. Dockerizing apps makes 

software applications more reusable and accessible [32]. It also provides the opportunity to 

chain tools for developing workflows and pipelines. The Dockstore.org project (Table 2, 

Searching and Indexing category) is jointly developed by the Ontario Institute for Cancer 

Research (OICR), the BD2K Center for Big Data in Translational Genomics (BD2K 

Genomics Center), and the Global Alliance for Genomics and Health (GA4GH) [33, 34]. It 

is similar to Aztec.bio in that it is developing a curated repository of tools and workflows 

with searchable metadata. Moreover, Dockstore provides all tools in Docker containers 

ready to be added to workflows by using the Common Workflow Language (CWL) [35] and 

the Workflow Description Language (WDL) (Table 2, Standards category). Docker 

containers that are coded in CWL and WDL facilitate scalable, efficient, and reproducible 

deployment of tools across platforms including cloud environments. In addition, the BD2K 

Genomics Center has developed Toil [36] (Table 2, Standards category), and the BDDS 

center has developed Globus Genomics [37] (Table 2, Computing Platform category). 

Similar to Cromwell, Nextflow, and Arvados (Table 2, Computing Platform category), the 

aim of Toil and Globus Genomics is to make it easier for users to run large-scale analyses. 

For Toil, this was recently demonstrated in a single combined workflow facilitating the 

successful analysis of 20,000 next-generation sequencing (NGS) samples on the Amazon 

Web Services (AWS) platform in under four days across 32,000 processing cores. The pilot 

project Reproducibility by Design complements these efforts by providing the iDASH [38], 

a HIPAA-compliant compute environment in which Docker containers can be used to 

analyze protected health information, including human genome sequences and 

corresponding phenotypes derived from electronic medical health records.

Yet another relevant development is the emergence of online interactive notebook [39]. 

Systems such as Jupyter/IPython or R Markdown provide a web-based platform where users 

can interactively execute open source scripts online [40], together with embedded markup 

text, and interactive animated figures. Such systems can make publication of data processing 

pipelines transparent, shareable, and modifiable for reuse. The ability of interactive 

notebooks to provide an easy way to document code by incorporating text and figures within 

a notebook, can potentially become a new mode of publishing biomedical research results. It 

was suggested at the meeting that scientific journals should better support this form of 

publication.
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Usability of Software Tools

One aspect of software development that is not rewarded by current funding mechanisms is 

investment in the improvement and sustainability of existing useful tools and databases. 

Most tools that are developed and published in the area of bioinformatics do not always 

consider the user perspective and requirements first [41]. One recommendation from the 

meeting is to start thinking about how to incentivize more user-centered design principles 

[42]. While initially slowing the development process, the implementation of these 

principles can accelerate the development phase and ultimately yield tools that are more 

suitable for their intended use. It was recommended at the meeting that the inclusion of user-

centered design in proposed projects to develop computational resources should be 

considered as a criteria for evaluating grant applications by funding agencies. Key usability 

metrics include effectiveness, efficiency, and the perceived satisfaction of bioinformatics 

experts and bench researchers. Usability metrics can be categorized according to aspects 

such as: time to complete a task, layout complexity, error frequency, and task effectiveness. 

Techniques for studying and improving usability might include user testing sessions, user 

surveys and focus groups, design workshops, and the provision of user guides and training 

resources [43]. The social context influencing the use of bioinformatics tools requires further 

consideration [44]. At the meeting, the presence of social media and community message 

boards was brought up. Sites such as ResearchGate [45], Biostars [46], and StackOverflow 

[47] have been highly successful, suggesting that community-building platforms, which are 

living ecosystems that benefit their users, should be considered by BD2K as key resources 

for accomplishing a variety of goals, including better implementation of software. In 

general, proven practices in usable design and web engineering could inform the 

development of effective bioinformatics tools [48]. This is a new endeavor for extramural 

NIH-funded projects, but new policies and approaches are expected to eventually penetrate.

A related concern is the lack of incentives for academic investigators to maintain widely 

used tools. If funding expires, there is a risk that successful tools will disappear due to 

insufficient support and upgrades. Current mechanisms for NIH grant support, and 

guidelines for the review process, require innovation and discovery, so grant proposals that 

request funds to maintain and incrementally enhance an existing valuable tool are at risk of 

not receiving funds. It was recommended at the meeting that funding agencies consider 

establishing new mechanisms that would support existing digital resources that are valuable 

to the research community in addition to maintaining existing mechanisms that promote 

innovation. Dockerizing tools and databases opens the opportunity to host such applications 

on a public server so they can continue to serve their users, even after the projects expire. It 

was noted at the meeting that there are too many dead links to previously published tools 

and resources that can potentially benefit existing users.

The Commons Cloud Credits Business Model

A central and timely consideration for BD2K is the transition of software and data to the 

cloud. In the 1970s and 1980s, the cost of personal computers was high, and hence most 

scientific computation was done through a client-server environment. In the 1990s and the 

2000s, there was a shift, and most bioinformatics tools were designed to run locally on a 

desktop. However, the past 10 years have seen a shift back to client-server computing. Most 
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of the newest and popular bioinformatics tools and databases are web-based, and 

increasingly also cloud-based, due to lower storage costs, faster speed of communication 

networks, and increased size of data files, particularly for genomic sequencing and imaging 

data. The cloud provides several additional advantages over local computing. Cloud 

providers manage the hardware and software resources such that storage and computing are 

done remotely without the need of the user, or the tool developer, to know exactly where and 

how this is accomplished. Managing the cost of cloud computing services for biomedical 

research was a central topic of the meeting. Practical questions arose such as: Who should 

pay for cloud services? If the NIH covers cloud computing costs, should a principal 

investigator be required to submit a proposal for using such services? How much cloud 

computing is needed to enable scientific progress? Can usage of tools by laboratories help 

track demand for better allocation of resources? The BD2K team at NIH has developed a 

cloud credits pilot model to begin addressing some these questions and needs.

Benchmarking to Employ the Best Available Tools

Disconcertingly, highly cited bioinformatics tools often draw the most users, whereby the 

adoption of newer, potentially superior solutions can be overlooked. For example, a popular 

method to process DNA or RNA sequencing, or mass spectrometry data, may miss 

important results that could be detected by a better but less widely adopted pipeline. This 

situation is due to a lack of established objective benchmarks that can be used to compare 

and evaluate tools (Figure 2). In addition, improved provenance of tools and data processing 

pipelines is required to ensure the reproducibility of results. There are many factors that 

influence users’ choice of bioinformatics tools [49]. These factors can be grouped into 

system-related factors such as: platform, interface, and cost; considerations of functionality 

include: customizability, scalability, and speed; overall quality of the tool; and personal 

factors such as: usability and availability of documentation. The development of a system to 

filter and rank bioinformatics tools according to their objective performance to extract more 

knowledge from the data is an important goal of BD2K.

Benchmarking Pipelines

Benchmarking involves the comparison of algorithms and related tools for processing data at 

different stages of analysis (Figure 2). Best practices for benchmarking must consider that: 

1) Evaluation metrics can vary widely and influence the rankings of tools and the algorithm 

implemented within them; 2) The data used to compare tools may be critical in affecting the 

rankings; 3) Evaluation metrics have different aspects such as speed, scalability, usability, 

accuracy, precision, and sensitivity, which have different levels of importance for different 

types of data and research projects; and 4) The use of synthetic data vs. real data can 

influence the results, with each type of data having advantages and disadvantages. 

Benchmarking is directly related to megatask crowdsourcing challenges such as those run by 

the Dialogue on Reverse-Engineering Assessment and Methods (DREAM) [50] or Kaggle 

[51]. For example, the bioCADDIE team developed an information retrieval crowdsourcing 

challenge and generated benchmark indexing data to evaluate the submissions of teams 

(https://biocaddie.org/biocaddie-2016-dataset-retrieval-challenge-registration). The 

discussions at the meeting emphasized the importance of such crowdsourcing projects to 

benchmark biomedical informatics practices.
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Case Studies

There are several pilot projects and new tools and databases that have been already 

developed by BD2K awardees to address some of the challenges discussed. For example, the 

BD2K LINCS-DCIC developed a system that aggregates knowledge about genes and 

proteins called the Harmonizome [52]. The Harmonizome resource was brought online in 

September 2015, and since then, as of April 30th 2017, the Harmonizome website and API 

attracted over 112,585 unique users based on Google Analytics. The BD2K LINCS-DCIC 

also conducted a successful crowdsourcing project in which participants used a Chrome 

extension developed by the center [53] to extract gene expression signatures from the Gene 

Expression Omnibus (GEO) for single drug, gene, and disease perturbations. The outcome 

of the project was the identification of many novel associations between genes, drugs, and 

diseases [23]. As mentioned previously, the bioCADDIE project, which started two years 

ago, developed a prototype search engine for datasets based on indexing of 63 highly 

utilized repositories. The DataMed search engine backend already indexed more than 1.3 

million datasets. Community engagement was achieved through working groups and funded 

pilot projects on various topics, including data citation, result ranking, and automated 

metadata extraction.

The Commons Ecosystem

Risks of Decisions Driven by Big Data

The proper use of Big Data has great promise in informing medical and scientific decisions; 

with sound analysis, more comprehensive collection of data is expected to reveal better 

biomarkers for diseases [9] and to improve health care in numerous other ways [54]. 

However, the use of Big Data also raises challenges associated with incompleteness and 

inaccuracy of data collection, processing, and analysis [55]. In addition, if multiple datasets 

are integrated, challenges related to differences in formatting and nomenclature among 

datasets often arise. Caution is needed when interpreting reports generated by Big Data 

methodologies because large sample size can lead to inferential errors. Biases associated 

with errors that stem from poor study design or biased sampling can be magnified [56]. It 

should be considered that at least currently data-driven decisions are not always more correct 

that decision made by expert knowledge, and hence, caution is advised when advancing 

toward data-driven solutions.

Metrics and Evaluation

One area in which Big Data is already making strides and demonstrating impact is improved 

metrics and evaluation of researchers’ output and resources’ impact. The opportunity is to 

make evaluation more objective and transparent so that resources are allocated to efforts that 

are more productive. Not long ago, biomedical research relied on few sources for such 

evaluation, mostly through peer review and journal citation. With digitization of research 

output, and tracking analytics tools such as Google Analytics [57] and Altmetric [58] there 

is an increase in the ability for instant assessment of the popularity and usage of research 

output. These metrics and analytics tools can provide more objective assessment of impact 

and productivity. However, relying on algorithms alone to objectively assess impact and 
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productivity of scientific research can be dangerous because elements of scientific quality 

are complex [59]. Impact and productivity have a temporal aspect; it may take time for a 

method to become adopted, or for a researcher’s work to be fully appreciated. The numbers 

do not always tell the whole story. Caution should be used when comparing reported 

statistics for websites and tools because different web analytics providers use different 

methods to compute web access statistics. Reported statistics currently have few methods for 

systematic verification.

Future Vision

The attendees of the meeting selected several objectives on which to focus in near-future 

activities; a working subgroup has been formed for each of these objectives. The digital 

object registry subgroup has specified that this registry should be open source in nature, 

standardized, customizable, scalable, extensible, redeployable, decentralized, collaborative 

and semantic, using ontologies to describe content. The working subgroup addressing API-

related planning has been developing API metadata requirements based on a survey 

performed to assess the properties of metadata elements, and to specify necessary attributes 

(smartAPI, Table 2). The intention is that these subgroups will begin translating the BD2K 

Commons principles into practice with the hope that the BD2K Commons will gradually 

emerge. The Commons is expected to consist of many interacting components where some 

efforts will succeed while others may fail. It is possible that major impact may only be 

realized in the long term, so measuring it now could be challenging.

It should be mentioned that there are domestic and international initiatives similar to BD2K. 

The National Science Foundation (NSF) established the eXtreme Science and Engineering 

Discovery Environment (XSEDE) program with the aim to serve diverse and integrated 

digital resources and advanced cyberinfrastructure supporting a wide range of scientific 

endeavors, from biological and geological sciences, to social, economic, and behavioral 

research, and electrical and structural engineering [60]. XSEDE has a strong Training, 

Education, and Outreach Services (TEOS) program that seeks to diversify the STEM 

workforce by offering training classes and online training resources, and working in 

collaboration with higher education institutions to develop certificate and degree programs 

in STEM fields. The XSEDE initiative complements BD2K, with the former having a broad 

scientific focus across numerous theoretical, experimental, and engineering disciplines, and 

the latter having a more strictly biomedical research focus to improve human health and cure 

disease. Additionally, ELIXIR is a European initiative that is similar to BD2K in its focus on 

biomedical research, Big Data solutions, and training activities [61]. ELIXIR aims to 

improve the interoperability and accessibility of bioinformatics resources for academia and 

industry in Europe.

In the future, the BD2K Commons initiative seeks to extend biomedical discovery through 

the development of a computing environment that supports the access, use, and storage of 

biomedical research digital objects; to support the transition of publicly available datasets to 

be more compliant with the FAIR principles; and to facilitate software tools and services that 

are scalable, shareable, and interoperable with other registries, repositories, and resources. 
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Input from the research community and the public will be essential to realize these goals, 

ensuring that an accessible and useful organization of resources is developed.
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Highlights

• The NIH BD2K initiative facilitates digitally enabled biomedical research.

• The BD2K Commons Framework Pilots Working Group met to clarify goals.

• This report summarizes key topics of discussion during this March 2016 

meeting.

• Four BD2K working groups facilitate and advance use of digital objects for 

research.

• Methods and tools are being developed to promote interoperable exchange of 

data.
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Figure 1. The Findability, Accessibility, Interoperability, and Reusability (FAIR) principles in the 
context of software harmonization, organization of methods, metadata management, hardware 
infrastructure, resource allocation, and usability
Organization of Methods illustrates crowdsourcing efforts to establish benchmarks for 

pipelines and algorithm performance. Metadata Management can include hybrid indexing 

that pairs manual submissions by users with automated analyses (bottom-up and top-down 

approaches). Metadata standards and forms are employed to implement this concept. 

Hardware Infrastructure includes cloud-based storage and high-performance computing 

solutions. Resource Allocation employs the idea of cloud computing credits model in which 

funds for computational resources are allocated based on need and cost. Usability 
considerations include training and education related to using digital resources, employing 

of interactive notebooks to allow reproducible and open analyses, and developing interactive 

data visualizations that permit dynamic modifications of displays for different data views. 

Software Harmonization facilitates compatibility between application programming 

interfaces (APIs), and Docker containers can encapsulate implementation detail to facilitate 

the management, reuse and indexing of tool and data repositories.
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Figure 2. Workflows for biomedical research involving Big Data
Wet bench experiments collect measurements of cellular and tissue variables under different 

conditions and time points; the resulting data are processed via pipelines that perform data 

processing in a series of sequential steps. Different analysis steps can be benchmarked to 

objectively evaluate the quality of a pipeline by comparing pipelines through an objective 

benchmark. At the final step of the analysis, data is visualized into interactive web-based 

figures, and integrated with other data using statistical mining approaches such as 

correlation analyses, enrichment and network analyses. The publications, or other final 

products that result from the analyses are hosted on platforms that include PubMed, 

DataMed, and GEO. These repositories facilitate reuse and integration. Data, tools, and 

pipelines are hosted on the cloud.
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Table 1

NIH Commons Pilot Projects Working Groups

Working Group Chairs Brief Description Topics

Development of FAIR-ness 
Metrics

Neil McKenna (Baylor) 
& Michel Dumontier 
(U. Maastricht)

Identify and prototype methods to assess 
the FAIRness of a digital resource.

Identification of stakeholders, 
structured reporting methods, 
quantifying FAIRness, community 
engagement strategies, utility and 
usability of capture, and reporting 
interfaces

Data-Object Registry

Lucila Ohno- Machado 
(UCSD) & Michel 
Dumontier (U. 
Maastricht)

Promote integration of activities related 
to the development of easy- to-use, 
broad-scope “catalogs” of data objects.

Metadata for datasets, rating of data 
resources, tools to facilitate indexing 
and search for data objects, and 
evaluation of search engine results

Workflow Sharing and 
Docker Registry

Umberto Ravaioli (U. 
Illinois) & Brian 
O’Connor (UCSC)

Promote best practices for software 
development, deployment, and sharing, 
through the use of modular workflow 
pipelines and virtualization based on 
Docker containers.

Efficient scalability of cloud computing 
platforms, simplifying the realization of 
interoperable and reproducible software 
applications

Interoperability of APIs

Chunlei Wu (Scripps 
Research Institute) & 
Michel Dumontier (U. 
Maastrict)

Develop a strategy for maximizing 
interoperability and reuse of web- based 
biomedical APIs.

Topics of interest include API 
standards, API metadata requirements, 
Linking API Data, terminologies, 
hypermedia controls, matchmaking, 
and workflows
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Table 2

Online Resources for Digital Object Sharing in Biomedical Research

Resource Name Description URL Category BD2K?

Big Data Genomics: ADAM API proxy to harmonize genomics-
oriented APIs http://bdgenomics.org/projects/adam/ API Yes

SmartAPI Enables API publishers to annotate 
their services https://github.com/Network-of-BioThings/smartAPI API Yes

Arvados Platform for data science employing 
very large datasets https://arvados.org/ Computing Platform No

Docker Bundle software into packages https://www.docker.com/ Computing Platform No

Globus Genomics Galaxy-based platform for NGS 
analysis http://www.globus.org/genomics Computing Platform Yes

Nextflow Data-driven computational pipelines https://www.nextflow.io/ Computing Platform No

Project Jupyter Interactive, web-based 
computational environment https://github.com/jupyter/ Computing Platform No

ELIXIR

European effort similar to BD2K; a 
distributed infrastructure that 
coordinates, integrates, and 
maintains bioinformatics resources

http://www.elixir-europe.org/ Initiative No

FORCE11 International consortium focused on 
the future of scientific publications https://www.force11.org/ Initiative No

NIH Commons
A shared environment for the use, 
interoperability, and discoverability 
of digital research objects

https://datascience.nih.gov/commons/ Initiative Yes

XSEDE NSF Big Data initiative https://www.xsede.org/ Initiative No

Altmetric Efficient platform to measure the 
impact of research http://www.altmetric.com/ Metrics No

Orbitera Tracks expenses from cloud 
computing providers http://www.orbitera.com/ Metrics Yes

Aztec Indexing for software http://aztec.bio/ Search and Indexing Yes

BioCADDIE Discovery index search engine https://biocaddie.org/ Search and Indexing Yes

DataMed Prototype biomedical data search 
engine https://datamed.org/ Search and Indexing Yes

DockerStore
Depository for Docker containers 
for tools and workflows from 
science

https://dockstore.org/ Search and Indexing Yes

Harmonizome Repository for aggregating data 
collected from genes and proteins http;//amp.pharm.mssm.edu/Harmonizome Search and Indexing Yes

Common Workflow Language A language for computational 
pipelines https://github.com/common-workflow-language/ Standards Yes

Cromwell Workflow execution engine using 
Workflow Description Language https://github.com/broadinstitute/cromwell/ Standards No

Toil Specification for pipelines https://github.com/BD2KGenomics/toil/ Standards Yes

Workflow Description Language Language used to implement 
Docker containers https://github.com/broadinstitute/wdl/ Standards No

Biosharing.org A repository of biomedical 
standards, policies, and databases https://biosharing.org/ Standards Yes
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http://bdgenomics.org/projects/adam/
https://github.com/Network-of-BioThings/smartAPI
https://arvados.org/
https://www.docker.com/
http://www.globus.org/genomics
https://www.nextflow.io/
https://github.com/jupyter/
http://www.elixir-europe.org/
https://www.force11.org/
https://datascience.nih.gov/commons/
https://www.xsede.org/
http://www.altmetric.com/
http://www.orbitera.com/
http://aztec.bio/
https://biocaddie.org/
https://datamed.org/
https://dockstore.org/
https://github.com/common-workflow-language/
https://github.com/broadinstitute/cromwell/
https://github.com/BD2KGenomics/toil/
https://github.com/broadinstitute/wdl/
https://biosharing.org/
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