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Mutation timing in a spatial model of evolution

Jasmine Foo∗, Kevin Leder†, and Jason Schweinsberg‡

January 7, 2020

Abstract

Motivated by models of cancer formation in which cells need to acquire k mutations
to become cancerous, we consider a spatial population model in which the population is
represented by the d-dimensional torus of side length L. Initially, no sites have mutations, but
sites with i− 1 mutations acquire an ith mutation at rate µi per unit area. Mutations spread
to neighboring sites at rate α, so that t time units after a mutation, the region of individuals
that have acquired the mutation will be a ball of radius αt. We calculate, for some ranges of
the parameter values, the asymptotic distribution of the time required for some individual to
acquire k mutations. Our results, which build on previous work of Durrett, Foo, and Leder,
are essentially complete when k = 2 and when µi = µ for all i.

1 Introduction

Cancer is widely thought to arise due to a series of oncogenic mutations accumulating in a cell.
Mathematical work on this subject goes back to the celebrated 1954 paper of Armitage and Doll
[1], who proposed a model in which a cell that has already acquired k − 1 mutations receives a
kth mutation at rate µk. They showed that for small t, the probability that such a cell receives
its kth mutation in the time interval [t, t+ dt] is approximately

µ1µ2 . . . µkt
k−1

(k − 1)!
dt.

They also examined data on 17 types of cancer and found that in many instances the cancer
incidence rate increases proportional to a power of age, consistent with their multi-stage model.

More recently, the model of Armitage and Doll has been extended in multiple ways. Some
authors have incorporated cell division and death by considering a Moran-type model of N cells
in which each cell dies at rate one, at which time a cell is chosen at random from the population
to divide into two. For some results on the distribution of the time required for two mutations
to appear in this model, see [11, 12, 14]. Results on the distribution of the time required for
k mutations to appear were obtained in [9] for some ranges of values of the mutation rates
µ1, . . . , µk, and essentially complete results for the case when µi = µ for all i were established in
[20]. Another extension of the model is to allow for the possibility that cells that have acquired
several mutations along the pathway to cancer may have a selective advantage over other cells.
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‡Supported in part by NSF Grant DMS-1707953
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In this case the number of cells with these mutations will evolve like a supercritical branching
process. Results for the distribution of the time required for some cell to accumulate k mutations
in this setting were established by Durrett and Moseley [7], with further extensions in [5, 6].

Another extension, which is especially relevant for solid tumors, is to consider a model
with spatial structure. One of the earliest spatially explicit stochastic models was developed
by Williams and Bjerknes [21] who used an interacting particle system on Z

2 to model the spread
of cancer cells in epithelial tissue. In this model, each site of the lattice is occupied by either a
healthy or cancer cell. Healthy cells divide at rate 1, and cancer cells divide at rate 1+β for some
positive β. Upon a cell division the daughter cell randomly replaces one of the four nearest lattice
neighbors. This stochastic process would later become known to the probability community as
the biased voter model. Using the gambler’s ruin formula, Williams and Bjerknes were able to
derive results on the probability that the tumor cell and its descendants would eventually take
over the entire population. In addition, they made several conjectures about the shape of the
mutant cell population (conditioned on survival) that were later disproven in [17]. The work
of Williams and Bjerknes motivated Bramson and Griffeath [2, 3] to establish a rigorous shape
theorem for the biased voter model in 2 and higher dimensions. More recently Komarova [13]
studied a model that is very similar to this in one dimension, and then Durrett and Moseley
[8] extended her work by calculating the asymptotic distribution of the time required for some
individual to acquire two mutations in d ≥ 2. Durrett and Moseley considered the case in which
cells with one mutation have close to the same fitness level as cells with no mutations. Durrett,
Foo, and Leder [4] performed a similar analysis for the case in which cells with one mutation do
have a selective advantage. See also [15, 16] for related work.

For some of their results, Durrett, Foo, and Leder [4] worked not with the biased voter model
but with a simpler model with continuous space which, in view of the shape theorem proved
by Bramson and Griffeath [2, 3], should approximate the behavior of the biased voter model.
In addition [10, 19] used this model to make quantitative predictions regarding the cancer field
effect. In this paper, we will consider a slight variation of their model, which we now describe.
We consider the d-dimensional torus [0, L]d, where d ≥ 1, and let N = Ld be the volume of
the torus. Each site on the torus will be assigned a type, representing the number of mutations
carried by the individual at that site. At time zero, all sites have type zero. At the times and
locations of a homogeneous Poisson process of rate µ1 per unit area, a mutation to type 1 occurs.
A region of type 1 individuals then grows outward from this point at rate α per unit time. This
means that t time units after the original mutation, the region of type 1 individuals will be a ball
of radius αt, which eventually expands to cover the entire torus. Type 1 individuals acquire a
second mutation at rate µ2 per unit area, causing a region of type 2 individuals to grow outward
at rate α per unit time. This process then continues indefinitely, with type k − 1 sites acquiring
a kth mutation at rate µk per unit area, producing a region of type k individuals which grows
outward at rate α per unit time. We denote by σk the first time at which some site has acquired
k mutations.

The model described here is essentially the model considered in [4], except that here we
consider only the “successful” mutations, whereas the model in [4] also attempted to account for
the mutations that quickly die out. Because we are only modeling the successful mutations, the
mutation rate µi corresponds to uis in [4]. Our parameter α, which measures the rate at which a
beneficial mutation spreads to neighboring sites, is called cd(s) in [4]. Ralph and Coop [18] also
considered a spatial model very similar to the one studied here.

Our goal in this paper is twofold. First, we calculate the asymptotic distribution of σ2. This
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builds on the work of Durrett, Foo, and Leder [4], who calculated this distribution for some ranges
of the parameter values. Second, we extend these results by computing, for some ranges for the
parameters, the asymptotic distribution of σk for k ≥ 3, which is relevant for types of cancer that
have more than two stages in their development. In this case, because of the complexity of the
problem, while we state some of our results for general mutation rates µi, our results are only
essentially complete in the case when we assume all mutation rates are the same, so that µi = µ
for all i. We always assume that mutations spread at rate α, which is essentially equivalent to
the assumption that the selective advantage of type i individuals over type i−1 individuals is the
same for all i. One could consider a more general model in which a region of type i individuals
spreads at rate αi, but we do not pursue this extension here. Note that it is only clear how to
formulate this model when α1 ≥ α2 ≥ . . . because if αi > αi−1, then eventually the type i region
could completely swallow the type i− 1 region and become adjacent to regions of type k − 2 or
lower, presumably allowing it to expand faster.

In Section 2, we describe our results for the asymptotic distribution of σ2, and we explain
heuristically why these should results should be true. We give similar heuristics for the asymptotic
distribution of σk for k ≥ 3 in Section 3. We then give mathematically precise statements of the
results, as well as complete proofs of the results, in Section 4.

2 Waiting for two mutations: results and heuristics

We summarize here the asymptotic results as N → ∞ for the distribution of σ2, the time that it
takes for some site to acquire two mutations. The distribution of σ2 depends on the values of the
parameters µ1, µ2, α and N . Note that it should be understood that these parameters depend on
N , even though this dependence is not recorded in the notation. There are 11 different behaviors
that are possible, depending on the parameter values. We will let γd denote the volume of the
unit ball in R

d, which appears in several of the limit theorems.
Given sequences (aN )

∞
N=1 and (bN )

∞
N=1, the notation aN ≪ bN means limN→∞ aN/bN = 0,

and aN ≫ bN means limN→∞ aN/bN = ∞. Also, aN ≍ bN means 0 < lim infN→∞ aN/bN ≤
lim supN→∞ aN/bN <∞. We use ⇒ to denote convergence in distribution as N → ∞.

Case 1: µ1 ≪
α

N (d+1)/d
and µ2 ≫ µ1.

The time that it takes before the first mutation appears is exponentially distributed with rate
Nµ1. Because L = N1/d, and the maximum distance between any two points on the d-dimensional
torus is

√
dL/2, the time required for a mutation to spread to the entire population (or fixate)

is (
√
dN1/d)/(2α). Thus, when N1/d/α ≪ 1/(Nµ1), which is equivalent to the assumption that

µ1 ≪ α/N (d+1)/d, the time required for the first mutation to spread to fixate, once it appears,
is much less than the time that it takes for the mutation to appear. When µ2 ≫ µ1, the second
mutation appears much faster than the first one. The dominant waiting time is therefore the
time to wait for the first mutation, and we have

Nµ1σ2 ⇒W, W ∼ Exponential(1).

Case 2: µ1 ≪
α

N (d+1)/d
and µ2 ≪ µ1.
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As in Case 1, the first mutation fixates very soon after it appears. This time, the waiting
time for the second mutation is much longer, which means

Nµ2σ2 ⇒W, W ∼ Exponential(1).

Case 3: µ1 ≪
α

N (d+1)/d
and

µ2
µ1

→ c ∈ (0,∞).

As in Case 1, the first mutation fixates very soon after it appears. This time, the waiting
times for the first and second mutations are the same order of magnitude, so the limit distribution
is a sum of independent exponential random variables. Therefore,

Nµ1σ2 ⇒ W1 +W2,

whereW1 ∼ Exponential(1), W2 ∼ Exponential(c), andW1 andW2 are independent. The results
for Case 1, Case 2, and Case 3 all follow from Theorem 1 in Section 4 below, as explained in the
paragraph following the statement of Theorem 1.

Case 4: µ1 ≫
α

N (d+1)/d
and µ2 ≫

(Nµ1)
d+1

αd
.

When µ1 ≫ α/N (d+1)/d, it takes longer for a mutation to fixate, once it has appeared, than
it takes for a mutation to appear. This means that many mutations will appear before the entire
population has acquired a mutation. A mutation that appears at a given time will have grown
to size γd(αr)

d after time r, and so the probability that a second mutation appears in this ball
within t time units after the original mutation occurs is

1− exp

(

−
∫ t

0
µ2γd(αr)

d dr

)

= 1− exp

(

− γd
d+ 1

· µ2αdtd+1

)

. (1)

It follows that the second mutation occurs when t is comparable to (µ2α
d)−1/(d+1). Therefore,

when (µ2α
d)−1/(d+1) ≪ 1/(Nµ1), which is equivalent to our second assumption, this second

mutation appears more quickly than the first mutation. The dominant waiting time is therefore
the time to wait for the first mutation, and we have, and we have

Nµ1σ2 ⇒W, W ∼ Exponential(1).

This result was proved by Durrett, Foo, and Leder, as part of Theorem 3 of [4], so we do not give
a proof here. This case can be illustrated as follows:

❥r

Case 5: µ1 ≫
α

N (d+1)/d
and

µ2α
d

(Nµ1)d+1
→ c ∈ (0,∞).

4



In this case, the time between the first and second mutations is the same order of magnitude
as the time to wait for the first mutation. As a result, there could be several small regions with
one mutation before the second mutation appears. Writing t′ = t/(Nµ1), using (1), and making
the substitution y = Nµ1(t

′ − r), we have, as shown in Theorem 4 of [4],

P (Nµ1σ2 > t) ≈ exp

(

−
∫ t′

0
Nµ1

(

1− exp
(

− γd
d+ 1

· µ2αd(t′ − r)d+1
))

dr

)

→ exp

(

−
∫ t

0

(

1− exp
(

− cγdy
d+1

d+ 1

))

dy

)

.

Note that assumption (A1) in [4] is equivalent to the condition µ1 ≫ α/N (d+1)/d when µ2α
d

and (Nµ1)
d+1 are the same order of magnitude, as we are assuming here. Also, the assumption

µ2α
2/(Nµ1)

d+1 → c is equivalent to Γ → 1/c in the notation of [4]. This case can be illustrated
as follows:

❡❥r ❤

Case 6: µ1 ≫
α

N (d+1)/d
and

(µ1α
d)1/(d+1)

N
≪ µ2 ≪

(Nµ1)
d+1

αd
.

The second inequality in the second assumption ensures that the second mutation will not
appear until the number of regions with one mutation is large. When the number of regions
with one mutation is large, the fraction of the space filled with type 1 individuals should be well
approximated by its expectation because no individual region contributes a large fraction of the
type 1 individuals. At time t, the probability that a particular site is occupied by an individual
of type 1 or higher is

q(t) = 1− exp

(

−
∫ t

0
µ1γd(αr)

d dr

)

= 1− exp

(

− γd
d+ 1

· µ1αdtd+1

)

, (2)

which means that mutants fill a large fraction of the space when t is of the order (µ1α
d)−1/(d+1).

For smaller values of t, we can use the approximation 1− e−x ≈ x to estimate q(t), and therefore

P (σ2 > t) ≈ exp

(

−
∫ t

0
Nµ2q(r) dr

)

≈ exp

(

− γd
(d+ 1)(d+ 2)

·Nµ1µ2αdtd+2 dt

)

.

This means that the second mutation arises when t is of the order (Nµ1µ2α
d)−1/(d+2), which is

much smaller than the time that it takes for mutants to fill a large fraction of the space precisely
when the first inequality in the second assumption holds. We then get

P
(

(Nµ1µ2α
d)1/(d+2)σ2 > t

)

→ exp

(

− γdt
d+2

(d+ 1)(d + 2)

)

.

This result is Part 1 of Theorem 10 below. This case can be illustrated as follows:
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❡✐r ❢❢❡
❡
❝ ❡
❡❝
❝
❜❜

❡

Case 7: µ1 ≫
α

N (d+1)/d
and

Nµ2
(µ1αd)1/(d+1)

→ c ∈ (0,∞).

In this case, the time when the second mutation appears is the same order of magnitude as the
time when type 1 individuals start to fill a large fraction of the space. This means that the overlaps
between different type 1 regions become significant and we can no longer use the approximation
to q(t) that was used in Case 6. Instead, we use (2) directly. Writing t′ = t/(Nµ1µ2α

d)1/(d+2)

and making the substitution y = r(Nµ1µ2α
d)1/(d+2), we have

P
(

(Nµ1µ2α
d)1/(d+2)σ2 > t

)

≈ exp

(

−
∫ t′

0
Nµ2

(

1− exp
(

− γd
d+ 1

· µ1αdrd+1
))

dr

)

→ exp

(

− c(d+1)/(d+2)

∫ t

0

(

1− exp
(

− γdy
d+1

(d+ 1)c(d+1)/(d+2)

))

dy

)

.

This result is Part 2 of Theorem 10 below. This case can be illustrated as follows:❡✐r
❢❢ ❡

❡
❝ ❡
❡❝
❝
❝

❜ ❡❤ ✐
❤
❡
✐❢❡✐ ❤ ✐❝❤ ✐
❡

❤
❤❢❤ ✐ ❡

❤
❤❢❤ ❡

❢❤
❤❢ ❤❡❥❤✐
❧

Case 8: µ1 ≫
α

N (d+1)/d
and µ2 ≪

(µ1α
d)1/(d+1)

N
.

In this case, the second mutation does not appear until after the space has been almost
completely filled with many type 1 regions. By that point, second mutations are occurring at
rate approximately Nµ2, so just as in Case 2, we have

Nµ2σ2 ⇒W, W ∼ Exponential(1).

See Theorem 11 below for the precise statement and proof.

Case 9: µ1 ≍
α

N (d+1)/d
and µ2 ≫

(Nµ1)
d+1

αd
.

When µ1 ≍ α/N (d+1)/d, the time required for the first mutation to appear is comparable to
the time required for the first mutation to fixate. When µ2 ≫ (Nµ1)

d+1/αd, the second mutation
appears on a faster time scale. Therefore, the waiting time for the first mutation is the dominant
waiting time, which means

Nµ1σ2 ⇒W, W ∼ Exponential(1).

This was proved as part of Theorem 3 in [4]. Note that this case is very similar to Case 4, and
the two cases could easily be combined, as they were in [4].
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Case 10: µ1 ≍
α

N (d+1)/d
and µ2 ≪

(Nµ1)
d+1

αd
.

As in Case 9, the time required for the first mutation to appear is comparable to the time
required for the first mutation to fixate. However, when µ2 ≪ (Nµ1)

d+1/αd, it takes much longer
for the second mutation to appear. Therefore, the dominant waiting time is the time to wait for
the second mutation after the first has fixated, and much as in Case 2, we have

Nµ2σ2 ⇒W, W ∼ Exponential(1).

This result is proved in Theorem 2 below.

Case 11: µ1 ≍
α

N (d+1)/d
and µ2 ≍

(Nµ1)
d+1

αd
.

In this case, the time that it takes for the first mutation to appear, the time that it takes
for the first mutation to fixate once it has appeared, and the time that it takes for the second
mutation to appear after the first one are all on the same time scale. As a result, we can not
consider just a single region of type 1 individuals as in Case 4, nor can we assume the type 1
regions are disjoint as in Case 5, nor can we assume that the fraction of the population with type 1
is approximately deterministic as in Cases 6 and 7, nor can we assume the type 1 individuals
almost completely fill the space as in Case 8. Instead, the full geometry of the problem must be
taken into account. We have

Nµ1σ2 ⇒ X,

where X is a nondegenerate random variable. This result is established in Corollary 13 below.
We do not have a complete description of the distribution of X, but some information about
the distribution is established in Propositions 14 and 15 below. This case can be illustrated as
follows:

✣✢
✤✜
✧✦
★✥r
✫✪
✬✩

3 Waiting for k mutations: results and heuristics

In this section, we summarize our asymptotic results for the distribution of σk when k ≥ 3. We
focus here on the case in which all of the mutation rates are the same, that is, we have µi = µ
for all i, although some of the results in Section 4 will be stated in greater generality when that
can be done without additional effort. This time, there are three cases to consider.

Case 1: µ≪ α

N (d+1)/d

In this case, it takes longer to wait for a mutation than it does for a mutation to fixate
once it has appeared. The waiting time for k mutations is therefore approximately a sum of k
exponentially distributed random variables, which leads to the result

Nµσk ⇒ Y, Y ∼ Gamma(k, 1).
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This result is similar to Cases 1, 2, and 3 when k = 2 and can be deduced from Theorem 1, as
noted in the paragraph following the statement of Theorem 1.

Case 2: µ≫ α

N (d+1)/d

In this case, mutations appear on a faster time scale than what is required for mutations to
fixate, and so for j ≥ 2, we end up with many small regions with j − 1 mutations before any
individual acquires a jth mutation. Because there are many small regions with j − 1 mutations,
we are able to approximate the total size of these regions by its expectation.

We will define an approximation vk(t) to the volume of regions with at least k mutations at
time t. We set v0(t) = N for all t. Because, at time r, mutations to type k are occurring at rate
µkvk−1(r), and such a mutation will lead to a type k region of size γd(α(t − r))d at time t, we
define

vk(t) =

∫ t

0
µkvk−1(r)γd(α(t− r))d dr. (3)

One can then verify by induction on k that

vk(t) =
γkd (d!)

k

(k(d+ 1))!

( k
∏

i=1

µi

)

Nαkdtk(d+1). (4)

To see this, one can first use the induction hypothesis to get

vk(t) =
γkd (d!)

k−1

((k − 1)(d + 1))!

( k
∏

i=1

µi

)

Nαkd
∫ t

0
r(k−1)(d+1)(t− r)d dr,

and then make the substitution y = r/t and use that
∫ 1
0 y

a(1 − y)b dy = a!b!/(a + b + 1)! for
nonnegative integers a and b to obtain the result. Equation (4) leads to the approximation

P (σk > t) ≈ exp

(

−
∫ t

0
µkvk−1(r) dr

)

= exp

(

− γk−1
d (d!)k−1

((k − 1)d+ k)!

( k
∏

i=1

µi

)

Nα(k−1)dt(k−1)d+k

)

.

In particular, defining

βk =

(

Nα(k−1)d
k
∏

i=1

µi

)−1/((k−1)d+k)

, (5)

we get

P
(

σk > βkt) → exp

(

− γk−1
d (d!)k−1

((k − 1)d+ k)!
· t(k−1)d+k

)

. (6)

This result is part 3 of Theorem 10.
In (3), we are double counting the volume in places where two or more type k regions overlap.

Consequently, (4) will only be a good approximation to the total volume of the type k regions
if this overlap is small. This will be the case if vk(t) ≪ vk−1(t), so that only a small fraction of
the cells that have acquired at least k− 1 mutations have also acquired a kth mutation. We have
vk(t) ≪ vk−1(t) if and only if t ≪ (µkα

d)−1/(d+1). Indeed, equation (6) indicates that σk should
be of the order βk, and when µi = µ for all i, one can check that the condition βk ≪ (µαd)−1/(d+1)

is equivalent to the condition for Case 2.
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Note that if we use (6) to obtain an asymptotic expression for P (σk ≤ βkt) for small t, then
use the approximation 1 − e−x ≈ x and differentiate with respect to t, we see that the rate of
cancer incidence at time t is roughly proportional to t(k−1)(d+1). This is different from the power
laws obtained by Armitage and Doll [1] in a non-spatial setting.

Case 3: µ ≍ α

N (d+1)/d

In this case the time at which the first mutation appears, the time at which the regions with
one mutation spread to a significant fraction of the space, the time at which a second mutation
appears, the time at which the regions with two mutations spread to a significant fraction of the
space, and the time at which a third mutation appears are all the same order of magnitude. That
is, at the time the third mutation appears, there are already large regions with two mutations
inside large regions with type 1 mutations, and these regions may overlap. We have

Nµσk ⇒ X, (7)

where X is a nondegenerate random variable. This result is a special case of Theorem 12 below,
and is similar to Case 11 when k = 2. We are unable to describe completely the distribution of
X, but Propositions 14 and 15 provide some information about the distribution.

4 Proofs of Limit Theorems

We first introduce some notation. Denote the d-dimensional torus of side-length L by T = [0, L]d.
For real numbers x, y ∈ [0, L], define their distance as

dL(x, y) = min{|x− y|, L− |x− y|}.

For points x, y ∈ T , we write x = (x1, . . . , xd) and y = (y1, . . . , yd) and define their distance as

|x− y|2 =
d
∑

i=1

dL(x
i, yi)2.

Denote a ball of radius r centered at x by Bx(r). For a set A ⊂ T , denote its Lebesgue measure
by |A|. Let N = Ld = |T | be the volume of the torus.

For each x ∈ T and t ≥ 0, denote the type of that space-time location by T (x, t). For i ∈ N0,
define the set of type i sites by

χi(t) = {x ∈ T : T (x, t) = i}

and the set of sites whose type is greater than or equal to i by

ψi(t) = {x ∈ T : T (x, t) ≥ i}.

Let Xi(t) = |χi(t)| denote the total volume of type i sites at time t, and let Yi(t) = |ψi(t)| denote
the total volume of sites at time t whose type is greater than or equal to i.

It will be useful to construct our whole process from a sequence of independent Poisson point
processes. Let (Πk)

∞
k=1 be a sequence of independent Poisson point processes on T × [0,∞) such

that Πk has constant intensity µk. The points of Πk represent the space-time points at which an
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individual can acquire a kth mutation. More specifically, if (x, t) is a point of Πk and x ∈ χk−1(t),
then we say that the individual at site x mutates to type k at time t. The type k individuals
then spread outward at rate α. For example, if Π1 ∩ (T × [0, t]) = {(x1, t1), . . . (xk, tk)}, we have

ψ1(t) =

k
⋃

j=1

Bxj(α(t− tj)).

Let
R(x, t) = {(y, s) ∈ T × [0, t] : x ∈ By(α(t− s))}. (8)

Note that if a mutation occurs at a space-time location (y, s) ∈ R(x, t), then the mutation will
spread to the site x by time t. Therefore, we have x ∈ ψ1(t) if and only if Π1 ∩ R(x, t) 6= ∅.
More generally, for k ≥ 1, we have x ∈ ψk(t) if and only if there is a point (y, s) of Πk such
that (y, s) ∈ R(x, t) and y ∈ ψk−1(s). Note that this claim would still hold if we replaced the
condition y ∈ ψk−1(s) by the condition y ∈ χk−1(s). However, it will be more convenient to work
with ψk−1(s) because with this construction, for all k ≥ 2, the random set ψk−1(s) is completely
determined by the Poisson processes Π1, . . . ,Πk−1.

4.1 Cases 1, 2, 3, and 10 for k = 2, and Case 1 for k ≥ 3

In this subsection, we establish the results in the cases when it takes longer for mutations of
a given type to appear than it does for them to fixate, in which case the time to wait for k
mutations is well approximated by a sum of independent exponentially distributed waiting times.
We will prove the following theorem, which includes Cases 1, 2, and 3 when k = 2 and Case 1
when k = 3.

Theorem 1. Suppose µi ≪ α/N (d+1)/d for i ∈ {1, . . . , k−1}. Suppose there exists j ∈ {1, . . . , k}
such that µj ≪ α/N (d−1)/d and

µi
µj

→ ci ∈ (0,∞] for all i ∈ {1, . . . , k}.

Let W1, . . . ,Wk are independent random variables such that Wi has an exponential distribution

with rate parameter ci if ci <∞ and Wi = 0 if ci = ∞. Then

Nµjσk ⇒ W1 + · · ·+Wk.

Note that if k = 2 and the conditions of Case 1 are satisfied, then we take j = 1 and get
c1 = 1 and c2 = ∞. This leads to the result that Nµ1σ2 ⇒ W1, which is the result of Case 1. If
k = 2 and the conditions of Case 2 are satisfied, then we take j = 2 and see that c1 = ∞ and
c2 = 1. It follows that Nµ2σ2 ⇒ W2, which is the result for Case 2. If k = 2 and the conditions
of Case 3 are satisfied, then we take j = 1, which implies that c1 = 1 and c2 = c. Then we have
Nµ1σ2 ⇒ W1 +W2, matching the result for Case 3. Finally, suppose k ≥ 3 and the conditions
of Case 1 are satisfied, so that µi = µ for all i. Then, for any choice of j, we have ci = 1 for
all i ∈ {1, . . . , k}. This leads to the result that Nµσk ⇒ W1 + · · · +Wk, where each Wi has an
exponential distribution with rate 1 and thus W1 + · · · +Wk has a Gamma(k, 1) distribution,
confirming the result that we previously claimed.

10



Proof. Set t0 = 0, and for i ≥ 1, let

ti = inf{t > 0 : Yi(t) = N} (9)

be the first time at which all individuals have type i or higher. Define the time elapsed between
the first appearance of a type i individual and the time at which all individuals have type i or
higher as

t̂i = ti − σi. (10)

For i ≥ 2, let Ai be the event that Πi ∩ (T × [σi−1, ti−1]) = ∅. On the event Ai, no individual
acquires an ith mutation before the entire population has type i− 1. For i ≥ 1, let

σ̂i = inf{t : Πi ∩ (T × [ti−1, t]) 6= ∅},

which is the first time, after time ti−1, that there is a potential mutation to type i. We have
σi = σ̂i on the event Ai. In particular, on the event A2 ∩ · · · ∩Ak, we have

σk =

k
∑

i=1

(σ̂i − ti−1) +

k−1
∑

i=1

t̂i. (11)

Here t̂i is the time required for the ith mutation to spread to the entire population once it appears,
and σ̂i− ti−1 is the waiting time for the ith mutation to appear once i−1 mutations have fixated
in the population.

For x, y ∈ T , we have |x− y| ≤
√
d
2 L, which implies that

t̂i ≤
√
dN1/d

2α
. (12)

In particular, because µj ≪ α/N (d+1)/d, we have

Nµj

k−1
∑

i=1

t̂i → 0. (13)

Moreover, because the Poisson process Πi has constant rate µi, and the random time ti−1 depends
only on Π1, . . . ,Πi−1 and thus is independent of Πi, the times σ̂1 − t0, σ̂2 − t1, . . . , σ̂k − tk−1 are
independent, and σ̂i − ti−1 has an exponential distribution with rate Nµi. Because µi/µj → ci
by assumption, it follows that Nµj(σ̂i − ti−1) ⇒Wi for all i ∈ {1, . . . , k}. Combining this result
with (13) and the independence of the random variables σ̂i − ti−1, we have

Nµj

(

k
∑

i=1

(σ̂i − ti−1) +

k−1
∑

i=1

t̂i

)

⇒W1 + · · ·+Wk.

In view of (11), the statement of the theorem will follow if we show that P (A2∩· · ·∩Ak) → 1.
Because the Poisson point process Πi has constant rate µi, it follows from (12) that

P (Ai) ≥ exp

(

−Nµi ·
√
dN1/d

2α

)

≥ 1−
√
dµiN

(d+1)/d

2α
.

11



Because µi ≪ α/N (d+1)/d for i ∈ {1, . . . , k − 1} by assumption, it follows that P (Ai) → 1 for
i ∈ {2, . . . , k − 1}. If we also have µk ≪ α/N (d+1)/d, then P (Ak) → 1 as well, and the proof is
complete.

On the other hand, suppose we do not have µk ≪ α/N (d+1)/d. Then the argument needs
to be adjusted because the kth and final mutation may happen faster than the others, and in
particular may occur between times σk−1 and tk−1. In this case, we have j 6= k and µk/µj → ∞,
which means Wk = 0. In place of (11), on the event A2 ∩ · · · ∩Ak−1, we can write

σk = (σk − σk−1) +
k−1
∑

i=1

(σ̂i − ti−1) +
k−2
∑

i=1

t̂i,

and we know from the argument given above that

Nµj

(

k−1
∑

i=1

(σ̂i − ti−1) +
k−2
∑

i=1

t̂i

)

⇒W1 + · · ·+Wk−1.

Furthermore, we still have
σk − σk−1 ≤ t̂k−1 + (σ̂k − tk−1).

We have Nµj t̂k−1 → 0, and because Nµj(σ̂k − tk−1) has an exponential distribution with rate
µk/µj → ∞, we have Nµj(σ̂k− tk−1) → 0 in probability, which now implies the conclusion of the
theorem.

The following theorem establishes the result for Case 10 when k = 2.

Theorem 2. Assume that the assumptions for Case 10 hold. Then for t > 0,

lim
N→∞

P (Nµ2σ2 > t) = e−t.

Proof. Define t1 and t̂1 as in (9) and (10). Write

Nµ2σ2 = Nµ2t1 +Nµ2(σ2 − t1),

and recall that t1 = σ1 + t̂1. We first establish that as N → ∞, Nµ2t1 → 0. Because

µ2
µ1

≪ N

(

Nµ1
α

)d

≍ 1,

we have µ2 ≪ µ1, and therefore Nµ2σ1 → 0. Also, under the assumptions of Case 10,

Nµ2t̂1 ≤
√
dN (d+1)/dµ2

2α
≍ µ2
µ1

≪ 1.

We can thus conclude that as N → ∞, Nµ2t1 → 0.
It thus remains to find the limit of P (Nµ2(σ2 − t1) > t). Note that because Y1(s) = N for

s ≥ t1, we have

P (Nµ2(σ2 − t1) > t) = E

[

exp

(

−µ2
∫ t1

0
Y1(s)ds − µ2

∫ t1+t/(Nµ2)

t1

Y1(s)ds

)]

= e−tE

[

exp

(

−µ2
∫ t1

0
Y1(s)ds

)]

.

12



Since 0 ≤ µ2
∫ t1
0 Y1(s)ds ≤ Nµ2t1, we know that as N → ∞, µ2

∫ t1
0 Y1(s)ds → 0. Thus, by the

dominated convergence theorem,

lim
N→∞

E

[

exp

(

−µ2
∫ t1

0
Y1(s)ds

)]

= 1.

The result follows.

4.2 Proof for Cases 6, 7 and 8 when k = 2 and Case 2 when k ≥ 3

We begin with a simple first moment result.

Lemma 3. If 0 ≤ t ≤ N1/d/(2α), then

E[Y1(t)] = N

(

1− exp

(

− µ1γdα
dtd+1

d+ 1

))

.

Proof. Recall that 0 ∈ ψ1(t) if and only if Π1 ∩ R(0, t) 6= ∅, where R(0, t) was defined in (8).
Using also the spatial homogeneity of the torus, we have

E[Y1(t)] = E

[
∫

T
1{x∈ψ1(t)} dx

]

= NP (0 ∈ ψ1(t)) = N(1− e−µ1|R(0,t)|).

When 0 ≤ t ≤ N1/d/(2α), we have αt ≤ L/2, and therefore a ball of radius αt in the torus of
side length L has the same volume as a ball of the same radius in R

d. Therefore,

|R(0, t)| =
∫ t

0
|B0(α(t − s))| ds =

∫ t

0
γdα

d(t− s)d ds =
γdα

dtd+1

d+ 1
,

and the result follows.

When k ≥ 2, we are not able to obtain an exact formula for E[Yk(t)]. However, we are able
to obtain useful estimates. Define

yk(t) =
vk(t)

N
=
γkd (d!)

kαkd

(k(d+ 1))!

( k
∏

i=1

µi

)

tk(d+1).

The next lemma gives an upper bound for E[Yk(t)].

Lemma 4. For t > 0 and integers k ≥ 0, we have P (0 ∈ ψk(t)) ≤ yk(t) and E[Yk(t)] ≤ vk(t).

Proof. Recall that 0 ∈ ψk(t) if and only if there is a point of the Poisson process Πk in the set
R(0, t) ∩ {(x, s) : x ∈ ψk−1(s)}. For k ≥ 1, define

Λk−1(t) = µk

∫ ∫

R(0,t)
1{x∈ψk−1(s)} dx ds. (14)

Conditional on Π1, . . . ,Πk−1, the number of points of Πk in the set R(0, t)∩{(x, s) : x ∈ ψk−1(s)}
has the Poisson distribution with mean Λk−1(t). Note that for this claim to hold, it is important
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to work with ψk−1(s) rather than χk−1(s) because ψk−1(s) depends only on Π1, . . . ,Πk−1 and
therefore is independent of Πk. Therefore, using the spatial homogeneity of the process,

P (0 ∈ ψk(t)) = E
[

1− e−Λk−1(t)
]

≤ E [Λk−1(t)]

= µk

∫ t

0

∫

B0(α(t−s))
P (x ∈ ψk−1(s)) dx ds

= µk

∫ t

0
P (0 ∈ ψk−1(s))|B0(α(t− s))| ds

= µkγdα
d

∫ t

0
P (0 ∈ ψk−1(s))(t− s)d ds. (15)

We now prove the upper bound on P (0 ∈ ψk(t)) by induction. Because y0(t) = 1 for all t,
the k = 0 case is trivial. Let k ≥ 1, and suppose P (0 ∈ ψk−1(t)) ≤ yk−1(t) for all t > 0. By (15),
for all t > 0,

P (0 ∈ ψk(t)) ≤ µkγdα
d

∫ t

0

γk−1
d (d!)k−1α(k−1)d

((k − 1)(d + 1))!

( k−1
∏

i=1

µi

)

s(k−1)(d+1)(t− s)d ds

=

( k
∏

i=1

µi

)

γkd (d!)
k−1αkd

((k − 1)(d + 1))!

∫ t

0
s(k−1)(d+1)(t− s)d ds.

Making the substitution u = s/t and then using that
∫ 1
0 u

a(1 − u)b du = a!b!/(a + b + 1)! for
nonnegative integers a and b, we get

P (0 ∈ ψk(t)) ≤
( k
∏

i=1

µi

)

γkd (d!)
k−1αkd

((k − 1)(d + 1))!
· tk(d+1)

∫ 1

0
u(k−1)(d+1)(1− u)d du = yk(t). (16)

Thus, by induction, P (0 ∈ ψk(t)) ≤ yk(t) for all t > 0 and all nonnegative integers k. The upper
bound for E[Yk(t)] now follows from the formula

E[Yk(t)] =

∫

T
1{x∈ψk(t)} dx (17)

and the spatial homogeneity of T .

When µjα
dtd+1 → 0 for all j ∈ {1, . . . , k}, we see that yj(t) → 0 for all j ∈ {1, . . . , k}, so

most individuals have not yet acquired mutations by time t. Also, we have yj(t)/yj−1(t) → 0 for
all j ∈ {1, . . . , k}, which means that among the individuals with at least j − 1 mutations, only a
small fraction will have acquired a jth mutation. As a result, there will not be much overlap in
the regions affected by different mutations to type j − 1. Under this condition, E[Yk(t)] can be
approximated by vk(t), as shown below.

Lemma 5. Fix a positive integer k. Suppose µjα
dtd+1 → 0 as N → ∞ for all j ∈ {1, . . . , k}.

Then

lim
N→∞

E[Yk(t)]

vk(t)
= 1.
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Proof. Recall the definition of Λk−1(t) from (14). Using that 1 − e−x ≥ x − x2/2 for x ≥ 0 and
proceeding as in (15), we get

P (0 ∈ ψk(t)) = E
[

1− e−Λk−1(t)
]

≥ E[Λk−1(t)]−
1

2
E
[

Λk−1(t)
2
]

.

We have

E
[

Λk−1(t)
2
]

= µ2kE

[

(
∫ t

0

∫

B0(α(t−s))
1{x∈ψk−1(s)} dx ds

)2
]

= µ2k

∫ t

0

∫

B0(α(t−s))

∫ t

0

∫

B0(α(t−r))
P (y ∈ ψk−1(s), x ∈ ψk−1(r)) dx dr dy ds.

Whether or not y ∈ ψk−1(s) is determined entirely by the restrictions of the Poisson point
processes Π1, . . . ,Πk−1 to the space-time region R(y, s), and likewise for the event x ∈ ψk−1(r).
Note that

R(x, r) ∩R(y, s) = ∅ ⇔ |x− y| > α(s + r) ⇔ x /∈ By(α(s + r)),

and thus if x /∈ By(α(s + r)) we have

P (y ∈ ψk−1(s), x ∈ ψk−1(r)) = P (y ∈ ψk−1(s))P (x ∈ ψk−1(r)) .

Let A(s, r, y) = B0(α(t− r)) ∩By(α(s+ r))c and B(s, r, y) = B0(α(t− r)) ∩By(α(s+ r)). Then

E
[

Λk−1(t)
2
]

= µ2k

∫ t

0

∫

B0(α(t−s))

∫ t

0

∫

A(s,r,y)
P (y ∈ ψk−1(s))P (x ∈ ψk−1(r)) dx dr dy ds

+ µ2k

∫ t

0

∫

B0(α(t−s))

∫ t

0

∫

B(s,r,y)
P (y ∈ ψk−1(s), x ∈ ψk−1(r)) dx dr dy ds

≤ E[Λk−1(t)]
2 + µ2k

∫ t

0

∫

B0(α(t−s))
P (y ∈ ψk−1(s))

(
∫ t

0
|B0(α(t− r))| dr

)

dy ds

= E[Λk−1(t)]
2 + µkE[Λk−1(t)]

(
∫ t

0
|B0(α(t− r))| dr

)

= E[Λk−1(t)]

(

E[Λk−1(t)] +
µkγdα

dtd+1

d+ 1

)

≤ E[Λk−1(t)]

(

yk(t) +
µkγdα

dtd+1

d+ 1

)

.

Let ε > 0. Because µkα
dtd+1 → ∞ as N → ∞, it follows that for sufficiently large N , we have

P (0 ∈ ψk(t)) ≥ E[Λk−1(t)]

(

1− yk(t)

2
− µkγdα

dtd+1

2(d + 1)

)

≥ (1− ε)E[Λk−1(t)].

From (15), we have

E[Λk−1(t)] = µkγdα
d

∫ t

0
P (0 ∈ ψk−1(s))(t− s)d ds.

We now show by induction that for all j ∈ {0, 1, . . . , k} and all s ∈ [0, t], we have

P (0 ∈ ψk(s)) ≥ (1− ε)kyk(s).
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Because y0(s) = 1 for all s ∈ [0, t] and P (0 ∈ ψ0(s)) = 1, the result holds for j = 0. Let j ≥ 1,
and suppose P (0 ∈ ψj−1(s)) ≥ (1 − ε)j−1yj−1(s) for all s ∈ [0, t]. Then for s ∈ [0, t], using the
induction hypothesis and repeating the calculation in the derivation of (16),

P (0 ∈ ψj(s)) ≥ (1− ε)E[Λj−1(s)]

≥ (1− ε)µjγdα
d

∫ s

0
P (0 ∈ ψj−1(u))(s − u)d du

≥ (1− ε)jµjγdα
d

∫ s

0
yj−1(u)(s − u)d du

= (1− ε)jyj(s).

Because ε > 0 was arbitrary, the result now follows from (17), the spatial homogeneity of T , and
the upper bound in Lemma 4.

We next establish a variance bound using the independence of points that have disjoint space-
time cones.

Lemma 6. For all t ≥ 0, and positive integer k, we have

Var(Yk(t)) ≤ γd(2αt)
dE[Yk(t)].

Proof. We have

E[Yk(t)
2] = E

[
∫

T

∫

T
1{x∈ψk(t)}1{y∈ψk(t)} dx dy

]

=

∫

T

∫

T
P
(

x ∈ ψk(t), y ∈ ψk(t)
)

dx dy.

Note that if R(x, t) ∩ R(y, t) = ∅ or, equivalently, if x /∈ By(2αt), then the events {x ∈ ψk(t)}
and {y ∈ ψk(t)} are independent, and therefore

P
(

x ∈ ψk(t), y ∈ ψk(t)
)

= P (x ∈ ψk(t))P (y ∈ ψk(t)).

On the other hand, if x ∈ By(2αt), then

P
(

x ∈ ψk(t), y ∈ ψk(t)
)

≤ P (y ∈ ψk(t)).

Because the volume of a ball in the torus is bounded above by the volume of a ball of the same
radius in R

d, it follows that

E[Yk(t)
2] ≤

∫

T

∫

T \By(2αt)
P (x ∈ ψk(t))P (y ∈ ψk(t)) dx dy +

∫

T

∫

By(2αt)
P (y ∈ ψk(t)) dx dy.

≤
∫

T

∫

T
P (x ∈ ψk(t))P (y ∈ ψk(t)) dx dy + γd(2αt)

d

∫

T
P (y ∈ ψk(t)) dy

= (E[Yk(t)])
2 + γd(2αt)

dE[Yk(t)],

which implies the result.

The next result gives conditions under which the value of Y1(t) can be approximated by its
expectation. The condition Nµ1t → ∞ ensures that many mutations have occurred by time t,
which means the region ψ1(t) will not be dominated by the effect of a single mutation. The
condition αt ≪ N1/d ensures that no single mutation has had a chance to spread to a large
fraction of the space by time t. These conditions together stipulate that ψ1(t) consists of a union
of many small balls, which are possibly overlapping.
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Lemma 7. Suppose Nµ1t→ ∞ and αt ≪ N1/d. Then for all ε > 0,

lim
N→∞

P
(

(1− ε)E[Y1(t)] ≤ Y1(t) ≤ (1 + ε)E[Y1(t)]
)

= 1.

Proof. By Lemma 6 and Chebyshev’s Inequality,

P
(
∣

∣Y1(t)− E[Y1(t)]
∣

∣ > εE[Y1(t)]
)

≤ Var(Y1(t))

ε2(E[Y1(t)])2
=

γd(2αt)
d

ε2E[Y1(t)]
. (18)

It remains to show that the right-hand side of (18) tends to zero as N → ∞. Note that the
assumption that αt ≪ N1/d means that the conclusion of Lemma 3 holds for sufficiently large N .
We consider two cases. First, suppose µ1α

dtd+1 → 0. Then by Lemma 3, as N → ∞, we have

E[Y1(t)] ∼
Nµ1γdα

dtd+1

d+ 1
.

Therefore, the assumption that Nµ1t→ ∞ implies that

γd(2αt)
d

ε2E[Y1(t)]
∼ 2d(d+ 1)

ε2
· 1

Nµ1t
→ 0.

Alternatively, suppose
lim inf
N→∞

µ1α
dtd+1 > 0.

Then by Lemma 3, the expectation E[Y1(t)] is bounded below by a constant multiple of N ,
and therefore the assumption that αt ≪ N1/d implies that the right-hand side of (18) tends to
zero. Because the right-hand side of (18) tends to zero in both cases, a subsequence argument
completes the proof.

The next result is similar to Lemma 7 but holds for k ≥ 2. Note that condition (19) below
reduces to the condition that Nµ1t → ∞ when k = 1. This condition ensures that many
mutations to type k will happen before time t, which is necessary to obtain a concentration
result. The condition µjα

dtd+1 → 0 is stronger than the corresponding hypothesis in Lemma 7.
As noted above, this condition ensures that among the individuals with at least j − 1 mutations,
only a small fraction will have acquired a jth mutation.

Lemma 8. Suppose that as N → ∞, we have µjα
dtd+1 → 0 for all j ∈ {1, . . . , k} and

( k
∏

i=1

µi

)

Nα(k−1)dt(k−1)d+k → ∞. (19)

Then

lim
N→∞

P
(

(1− ε)E[Yk(t)] ≤ Yk(t) ≤ (1 + ε)E[Yk(t)]
)

= 1.

Proof. By Lemma 6 and Chebyshev’s Inequality,

P
(
∣

∣Yk(t)− E[Yk(t)]
∣

∣ > εE[Yk(t)]
)

≤ Var(Yk(t))

ε2(E[Yk(t)])2
=

γd(2αt)
d

ε2E[Yk(t)]
, (20)

so it remains to show that (αt)d/E[Yk(t)] → 0. By Lemma 5, this is equivalent to the condition
that (αt)d ≪ vk(t), which is equivalent to (19).
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Our next result establishes conditions when a monotone stochastic process can be well ap-
proximated by a deterministic function.

Lemma 9. Suppose, for all positive integers N , (YN (t), t ≥ 0) is a nondecreasing stochastic

process with finite mean for all t > 0. Assume there exist sequences of positive numbers (νN )
∞
N=1

and (sN )
∞
N=1 and a continuous nondecreasing function g such that for all t > 0 and ε > 0, we

have

lim
N→∞

P
(

|YN (sN t)− E[YN (sN t)]| > εE[YN (sN t)]
)

= 0 (21)

and

lim
N→∞

1

νN
E[YN (sN t)] = g(t). (22)

Then for all ε > 0 and δ > 0, we have

lim
N→∞

P
(

νNg(t)(1 − ε) ≤ YN (sN t) ≤ νNg(t)(1 + ε) for all t ∈ [δ, δ−1]
)

= 1.

Proof. Choose θ > 0 sufficiently small that (1 + 2θ)(1 + θ) ≤ 1 + ε and (1− 2θ)/(1 + θ) ≥ 1− ε.
Because g is continuous, and thus uniformly continuous over compact intervals, we can choose a
positive integer M depending on δ and θ and positive real numbers δ = r1 < r2 < · · · < rM = δ−1

such that for k ∈ {1, . . . ,M}, we have

g(rk+1) ≤ (1 + θ)g(rk). (23)

Therefore, (21) implies that

lim
N→∞

P
(

(1− θ)E[YN (sNrk)] ≤ YN (sNrk) ≤ (1 + θ)E[YN (sNrk)] for all k ∈ {1, . . . ,M}
)

= 1.

(24)

Define the event

AN (θ) = {(1− 2θ)νNg(rk) ≤ YN (sNrk) ≤ (1 + 2θ)νNg(rk) for all k ∈ {1, . . . ,M}} ,

and note that (22) and (24) imply that

lim
N→∞

P (AN (θ)) = 1. (25)

Suppose rk ≤ r ≤ rk+1 for some k ∈ {1, . . . ,M − 1}. Because t 7→ YN (t) is nondecreasing, on the
event AN (θ) we have

YN (sNr) ≤ Y (sNrk+1) ≤ (1 + 2θ)νNg(rk+1) ≤ (1 + 2θ)(1 + θ)νNg(rk) ≤ (1 + ε)νNg(r)

and

YN (sNr) ≥ Y (sNrk) ≥ (1− 2θ)νNg(rk) ≥
(1− 2θ)νNg(rk+1)

1 + θ
≥ (1− ε)νNg(r).

The result of the lemma thus follows from (25).

We finally establish a limit theorem for σk in Cases 6 and 7 when k = 2, and Case 2 when
k ≥ 3. Note that when k ≥ 3, we are assuming that µi = µ for all i. Recall that βk was defined
in (5).
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Theorem 10. For all t > 0, we have the following three statements.

1. If k = 2 and the parameters satisfy the conditions of Case 6 then

lim
N→∞

P (σ2 > β2t) = exp

(

− γdt
d+2

(d+ 1)(d + 2)

)

.

2. If k = 2 and the parameters satisfy the conditions of Case 7 then

lim
N→∞

P (σ2 > β2t) = exp

(

−c(d+1)/(d+2)

∫ t

0

(

1− exp

(

− γdu
d+1

(d+ 1)c(d+1)/(d+2)

))

du

)

.

3. If k ≥ 3 and the parameters satisfy the conditions of Case 2 then

lim
N→∞

P (σk > βkt) = exp

(

−γ
k−1
d (d!)k−1td(k−1)+k

(d(k − 1) + k)!

)

.

Proof. Let Gk−1 be the σ-field generated by the Poisson processes Π1, . . . ,Πk−1, and note that
the process (Yk−1(t), t ≥ 0) is measurable with respect to Gk−1. Therefore,

P (σk > t|Gk−1) = exp

(

−µk
∫ t

0
Yk−1(s)ds

)

.

Next, for a continuous non-negative function g, a sequence (νN )
∞
N=1 of positive numbers, and

positive constants δ and ε, define the Gk−1-measurable set

Bk−1
N (δ, ε, g, νN ) =

{

g(u)(1 − ε)νN ≤ Yk−1(βku) ≤ g(u)(1 + ε)νN , for all u ∈ [δ, δ−1]
}

.

Suppose r ∈ [δ, δ−1]. Observe that on Bk−1
N (δ, ε, g, νN ) we have

P (σk > βkr|Gk−1) ≤ exp

(

−µk
∫ βkr

βkδ
Yk−1(s)ds

)

= exp

(

−µkβk
∫ r

δ
Yk−1(βku)du

)

≤ exp

(

−µkβkνN (1− ε)

∫ r

δ
g(u)du

)

.

We thus conclude that

P (σk > βkr) ≤ exp

(

−µkβkνN (1− ε)

∫ r

δ
g(u)du

)

+ P
(

Bk−1
N (δ, ε, g, νN )c

)

. (26)

To obtain a lower bound, we use the inequality e−x ≥ 1− x to get

P (σk > βkr) = E

[

exp

(

−µk
∫ βkr

0
Yk−1(s)ds

)]

≥ E

[(

1− µk

∫ βkδ

0
Yk−1(s)ds

)

exp

(

−µk
∫ βkr

βkδ
Yk−1(s)ds

)]

≥ E

[

exp

(

−µk
∫ βkr

βkδ
Yk−1(s)ds

)]

− E

[

µk

∫ βkδ

0
Yk−1(s)ds

]

.
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Reasoning as in (26) we get

E

[

exp

(

−µk
∫ βkr

βkδ
Yk−1(s)ds

)]

≥ P
(

Bk−1
N (δ, ε, g, νN )

)

exp

(

−νN (1 + ε)βkµk

∫ r

δ
g(u)du

)

.

By Lemma 4,

E[Yk(t)] ≤
Nγkd (d!)

kαkd

(k(d+ 1))!

( k
∏

i=1

µi

)

tk(d+1).

Therefore we can use the definition of βk to see that

µk

∫ βkδ

0
E[Yk−1(s)]ds ≤

( k
∏

i=1

µi

)

Nγk−1
d (d!)k−1α(k−1)d

((k − 1)(d + 1))!(d(k − 1) + k)
β
d(k−1)+k
k δd(k−1)+k

=
γk−1
d (d!)k−1

(d(k − 1) + k)!
δd(k−1)+k.

Therefore, we have the lower bound

P (σk > βkr)

≥ P
(

Bk−1
N (δ, ε, g, νN )

)

exp

(

−νN (1 + ε)βkµk

∫ r

δ
g(u)du

)

− γk−1
d (d!)k−1

(d(k − 1) + k)!
δd(k−1)+k. (27)

We will now prove that for each of our three scenarios we can choose νN and g such that
limN→∞ νNβkµk exists and P (Bk−1

N (δ, ε, g, νN )) goes to 1 as N → ∞. We will do this by using
Lemma 9. Since δ > 0 and ε > 0 are arbitrary, the result will then follow from (26) and (27).

We now prove the three statements of the theorem. First, suppose k = 2 and the parameters
satisfy the conditions of Case 6. We set νN = 1/(β2µ2) and define the function

g2(u) = γdu
d+1/(d+ 1).

To use Lemma 9, we first show the hypotheses of Lemma 7 are satisfied, that is, αβ2 ≪ N1/d

and Nµ1β2 ≫ 1. To show that αβ2 ≪ N1/d note that using the second assumption of Case 6,

(

αdβd2
N

)d+2

=
α2d

N2(d+1)µd1µ
d
2

=

(

αdµ1
(Nµ2)d+1

)(

αdµ2
(Nµ1)d+1

)

≪ 1.

To show that Nµ1β2 ≫ 1, use the definition of β2 to conclude that

(Nµ1β2)
d+2 =

(Nµ1)
d+1

µ2αd
,

which goes to infinity under the assumptions of Case 6. Therefore, Lemma 7 applies if k = 2 and
the parameters satisfy the Case 6 assumptions. Also, the assumptions of Case 6 imply that

(µ1α
dβd+1

2 )d+2 =
µ1α

d

(Nµ2)d+1
→ 0,

and therefore it follows from Lemma 3 that

lim
N→∞

β2µ2E[Y1(β2t)] = g2(t).
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Thus, Lemma 9 applies and we can conclude that for δ and ε positive,

lim
N→∞

P

(

Bk−1
N

(

δ, ε, g2,
1

β2µ2

))

= 1,

and the result is proven if k = 2 and the parameters satisfy the Case 6 assumptions.
Suppose k = 2 and the parameters satisfy the conditions of Case 7. We set νN = N and

define the function

g∗2(u) = 1− exp

(

− γdu
d+1

(d+ 1)c(d+1)/(d+2)

)

.

To use Lemma 9, we first show the hypotheses of Lemma 7 are satisfied, that is, αβ2 ≪ N1/d

and Nµ1β2 ≫ 1. The assumptions of Case 7 imply that Nµ2 ≍ (µ1α
d)1/(d+1) and therefore

β2 ≍ (µ1α
d)−1/(d+1). It follows that under the assumptions of Case 7,

Nµ1β2 ≍ Nµ
d/(d+1)
1 α−d/(d+1) → ∞

and
αβ2 ≍ µ

−1/(d+1)
1 α1/(d+1) ≪ N1/d.

We thus conclude that Lemma 7 applies. By Lemma 3 and the assumptions of Case 7,

lim
N→∞

N−1E[Y1(β2r)] = lim
N→∞

(

1− exp

(

− µ1γdα
d(Nµ1µ2α

d)−(d+1)/(d+2)rd+1

d+ 1

))

= g∗2(r).

We can thus apply Lemma 9 to conclude that for δ > 0 and ε > 0,

lim
N→∞

P
(

Bk−1
N (δ, ε, g∗2 , N)

)

= 1,

when the parameters satisfy the conditions of Case 7. To conclude the proof in this setting note
that the assumptions of Case 7 imply

lim
N→∞

Nβ2µ2 = c(d+1)/(d+2) .

We next consider k ≥ 3 and parameters that satisfy Case 2, so that µi = µ for all i. In this
case we set νN = 1/(βkµ) and set g = gk, where

gk(t) =
γk−1
d (d!)k−1t(k−1)(d+1)

((k − 1)(d + 1))!
.

From the definitions of βk and vk−1(t) it is immediate that

βkµvk−1(βkt) = gk(t).

A short calculation yields

µαdβd+1
k =

(

µ−dN−(d+1)αd
)1/((k−1)d+k)

→ 0. (28)

Thus, we can apply Lemma 5 to see that as N → ∞, we have vk−1(βkt) ∼ E[Yk−1(βkt)] and
therefore

lim
N→∞

βkµE[Yk−1(βkt)] = gk(t).
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Application of Lemma 9 thus requires that we prove (21) for the process (Yk−1(t), t ≥ 0) with
sN = βk and νN = 1/(βkµ). By Lemma 8, we need to check (19), which in this case means

showing that Nµk−1α(k−2)dβ
(k−2)d+k−1
k → ∞. Using (28),

Nµk−1α(k−2)dβ
(k−2)d+k−1
k =

Nµk−1α(k−1)dβ
(k−1)d+k
k

αdβd+1
k

=
1

µαdβd+1
k

→ ∞.

Thus, Lemma 9 implies that P (Bk−1
N (δ, ε, 1/(βkµ), gk)) → 1 as N → ∞, which completes the

proof.

We finish this section with a limit theorem for σ2 in Case 8.

Theorem 11. Assume the conditions of Case 8 hold. Then for t > 0,

lim
N→∞

P (Nµ2σ2 > t) = e−t.

Proof. Fix ε > 0 and define

t1(ε) =

(

(d+ 1) log(1/ε)

µ1αdγd

)1/(d+1)

.

Note that under the assumptions of Case 8, t1(ε) ≪ N1/d/α, and we can therefore apply Lemma
3 to see that E[Y1(t1(ε))] = N(1− ε).

We next will use Lemma 7 to show that with high probability Y1(t1(ε)) ≥ N(1 − ε)2. We
verify the first condition of Lemma 7 by noting that, by the first condition of Case 8,

Nµ1t1(ε) ≍
Nµ

d/(d+1)
1

αd/(d+1)
=

(

N (d+1)/dµ1
α

)d/(d+1)

→ ∞.

The second condition of Lemma 7 is satisfied because t1(ε) ≪ N1/d/α as noted above. Thus
Lemma 7 implies that

lim
N→∞

P
(

Y1(t1(ε)) ≥ N(1− ε)2
)

= 1.

In addition, if we define the event Dε(N) = {Y1(t) ≥ (1 − ε)2N for all t ≥ t1(ε)}, then the
monotonicity of Y1 gives us that P (Dε(N)) → 1 as N → ∞.

We now write
Nµ2σ2 = Nµ2t1(ε) +Nµ2(σ2 − t1(ε)).

We will show that the first term on the right hand side converges to zero and that the second
term converges to an Exponential(1) random variable. Note that from the second condition of
Case 8 that

Nµ2

(µ1αd)
1/(d+1)

≪ 1,
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and thus Nµ2t1(ε) ≪ 1. Finally consider

P (Nµ2 (σ2 − t1(ε)) > t) = E

[

exp

(

−µ2
∫ t1(ε)+t/(Nµ2)

0
Y1(s) ds

)]

≤ E

[

exp

(

−µ2
∫ t1(ε)+t/(Nµ2)

t1(ε)
Y1(s) ds

)]

= E

[

exp

(

−µ2
∫ t1(ε)+t/(Nµ2)

t1(ε)
Y1(s) ds

)

1Dε(N)

]

+ E

[

exp

(

−µ2
∫ t1(ε)+t/(Nµ2)

t1(ε)
Y1(s) ds

)

1Dε(N)c

]

≤ exp
(

−(1− ε)2t
)

+ P (Dε(N)c).

Next, we get the lower bound

P (Nµ2 (σ2 − t1(ε)) > t) = E

[

exp

(

−µ2
∫ t1(ε)+t/(Nµ2)

0
Y1(s)ds

)]

≥ e−t exp (−µ2Nt1(ε)) .

We thus conclude that

e−t ≤ lim inf
N→∞

P (Nµ2 (σ2 − t1(ε)) > t) ≤ lim sup
N→∞

P (Nµ2 (σ2 − t1(ε)) > t) ≤ e−t(1−ε)
2

,

and since ε > 0 is arbitrary the result follows.

4.3 Proof of Case 3 when k ≥ 3 and Case 11 when k = 2

Given positive integers d and k and positive real numbers c1, . . . , ck, we define a random variable
Zd,k(c1, . . . , ck) that has the same distribution as σk when L = 1, α = 1, and µi = ci for all
i ∈ {1, . . . , k}. That is, we assign a type to each site on the torus [0, 1]d. At time zero, all sites
have type 0. At the times and locations of a homogeneous Poisson process of rate c1 per unit
area, a mutation to type 1 occurs, causing a region of type 1 individuals to grow outward from
this point at rate one. That is, t time units after the mutation, the radius of the type 1 region
resulting from the mutation will be t. Type 1 sites acquire a second mutation at rate c2 per unit
area, causing a region of type 2 individuals to grow outward from this point at rate one. This
process continues until some site has type k. Then Zd,k(c1, . . . , ck) denotes the first time that
some site has type k.

Theorem 12 below describes the asymptotic behavior of σk in Case 3 when k ≥ 3. Note that
under the assumptions of Case 3 when k ≥ 3, we have α/N1/d ≍ Nµ, so the scaling in Theorem 12
is comparable to the scaling in (7). As can be seen from Corollary 13 below, Theorem 12 also
implies the result for Case 11 when k = 2.

Theorem 12. Fix a positive integer k ≥ 2. Suppose there are positive real numbers c1, . . . , ck
such that as N → ∞, we have

µiN
(d+1)/d

α
→ ci

for all i ∈ {1, . . . , k}. Then, as N → ∞, we have

ασk
N1/d

⇒ Zd,k(c1, . . . , ck).
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Proof. Consider a rescaling of the original process defined on the torus [0, 1]d of side length 1 such
that the type of the site x in the rescaled process at time t is the same as the type of the original
process at the site N1/dx at time N1/dt/α. After this time and space rescaling, the radius of a
region of type i individuals is expanding at rate

α · 1

N1/d
· N

1/d

α
= 1,

where the second factor on the left-hand side accounts for the rescaling of space and the third
factor accounts for the rescaling of time. For this rescaled process, the rate of type i mutations
per unit volume is given by

µi ·N · N
1/d

α
=
µiN

(d+1)/d

α
.

Therefore, the distribution of the time before a type k site appears in the rescaled process is
exactly the same as the distribution of

Zd,k

(

µ1N
(d+1)/d

α
, . . . ,

µkN
(d+1)/d

α

)

.

By assumption, we have µiN
(d+1)/d/α → ci as N → ∞ for all i ∈ {1, . . . , k}. Because it is easy

to see that for any positive integers d and k, the distribution of Zd,k(c1, . . . , ck) is a continuous
function of c1, . . . , ck, it follows that the distribution of the time until some individual acquires
k mutations in the rescaled process converges as N → ∞ to the distribution of Zd,k(c1, . . . , ck).
This observation implies the result, after taking into account the rescaling of time.

Corollary 13. Suppose there are positive real numbers c1 and c2 such that as N → ∞, we have

µ1N
(d+1)/d

α
→ c1,

µ2α
d

(Nµ1)d+1
→ c2. (29)

Then, as N → ∞, we have
α

N1/d
σ2 ⇒ Zd,2(c1, c2c

d+1
1 ).

Proof. Note that (29) implies that

µ2N
(d+1)/d

α
→ c2c

d+1
1 .

The result therefore follows from Theorem 12 when k = 2.

The last two propositions collect facts about the random variables Zd,k(c1, . . . , ck).

Proposition 14. SupposeW1, . . . ,Wk are independent exponentially distributed random variables

with rate parameters c1, . . . , ck respectively. We write X � Y if Y stochastically dominates X.

Then
k
∑

i=1

Wi � Zd,k(c1, . . . , ck) �
(k − 1)

√
d

2
+

k
∑

i=1

Wi. (30)
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Proof. We first obtain a stochastic lower bound for Zd,k(c1, . . . , ck). Consider a modification of
the process such that as soon as the first type i mutation occurs, every site instantly becomes
type i. This change can only reduce the time until some site acquires a kth mutation. In this
modified model, the distribution of the time until some individual acquires k mutations is exactly
the distribution of

∑k
i=1Wi. The lower bound in (30) follows.

For the stochastic upper bound, consider a different modification of the process in which,
once the first type i mutation occurs, all further mutations are suppressed until every site has
type i. This change can only increase the time until some site acquires a kth mutation. For
all x, y ∈ [0, 1]d, we have |x − y| ≤ 1

2

√
d. Therefore, because the radius of the region of type i

individuals increases at unit speed after the mutation, it takes a time of exactly 1
2

√
d for this

mutation to spread to the entire torus. Therefore, in this modified model, the distribution of the
time until some individual acquires two mutations is exactly the distribution of k−1

2

√
d+
∑k

i=1Wi,
as we must take into account not only the waiting times for the k mutations but also the times
for the first k − 1 of these mutations to spread to the rest of the torus. This observation implies
the upper bound in (30).

Proposition 15. For all positive integers d and k and all positive real numbers c1, . . . , ck, we
have

lim
t→0

t−((k−1)d+k)P (Zd,k(c1, . . . , ck) ≤ t) =
(d!)k−1γk−1

d c1 . . . ck
((k − 1)d + k)!

.

Proof. We will consider the process in which L = 1, α = 1, and µi = ci for all i ∈ {1, . . . , k}. We
first obtain an upper bound on the probability that k mutations occur by time t. Let mk(t) be
the mean volume of the region with type k individuals at time t. The expected rate of mutations
to type k at time u is bounded above by ckmk−1(u), and if such a mutation occurs at time u,
then the volume of the type k region created by this mutation at time t will be at most γd(t−u)d.
It follows that

mk(t) ≤
∫ t

0
ckmk−1(u)γd(t− u)d du.

Also, because the entire torus has volume 1, we know that m0(t) ≤ 1. Therefore, by the same
inductive argument used to establish (4) with N = 1, α = 1, and µi = ci for all i, we get that for
all positive integers k,

mk(t) ≤
(d!)kγkdc1 . . . ckt

k(d+1)

(k(d+ 1))!
. (31)

Therefore, the expected number of mutations to type k that occur by time t is

∫ t

0
ckmk−1(u) du ≤ (d!)k−1γk−1

d c1 . . . ckt
(k−1)d+k

((k − 1)d + k)!
.

It now follows from Markov’s Inequality that

P (Zd,k(c1, . . . , ck) ≤ t) ≤ (d!)k−1γk−1
d c1 . . . ckt

(k−1)d+k

((k − 1)d+ k)!
. (32)

It remains to obtain a lower bound. For the lower bound, we will consider a modified process
in which, for all j ≥ 1, only the first mutation to type j is permitted. This modification can only
reduce the probability of observing a mutation to type k by time t. We will assume that t < 1/2,
so that if a mutation appears at time s < t, the volume of the region to which the mutation has
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spread by time u, where s < u < t, is exactly γd(u − s)d. Let σ∗j denote the time at which the
jth mutation appears in this modified model. Let τ1 = σ∗1 , and for j ≥ 2, let τj = σ∗j − σ∗j−1.
Note that

P (Zd,k(c1, . . . , ck) ≤ t) ≥ P (σ∗k ≤ t) = P (τ1 + · · ·+ τk ≤ t).

Now τ1 has an exponential distribution with rate parameter c1, so its probability density function
is

f1(u) = c1e
−c1u, u > 1/2.

For j ≥ 2 and u < 1/2, we have

P (τj > u) = exp

(

− cj

∫ u

0
γd(u− s)d ds

)

= exp

(

− cjγdu
d+1

d+ 1

)

.

Therefore, denoting by fj the probability density function of τj , we have for 0 < u < 1/2,

fj(u) = cjγdu
d exp

(

− cjγdu
d+1

d+ 1

)

.

Furthermore, the random variables τ1, . . . , τk are independent. Therefore,

P (τ1 + · · ·+ τk ≤ t) ≥
∫ t

0

∫ t−s1

0
. . .

∫ t−s1−...−sk−1

0
f1(s1) . . . fk(sk) dsk . . . ds1.

Writing

Jk(t) = e−c1t
k
∏

j=2

exp

(

− cjγdt
d+1

d+ 1

)

,

it follows that

P (τ1 + · · ·+ τk ≤ t) ≥ Jk(t)γ
k−1
d c1 . . . ck

∫ t

0

∫ t−s1

0
. . .

∫ t−s1−...−sk−1

0
sd2 . . . s

d
k dsk . . . ds1.

A tedious calculation yields that the k-fold integral above equals

(d!)k−1t(k−1)d+k

((k − 1)d + k)!
.

Therefore,

P (Zd,k(c1, . . . , ck) ≤ t) ≥ Jk(t)(d!)
k−1γk−1

d c1 . . . ckt
(k−1)d+k

((k − 1)d+ k)!
. (33)

Because
lim
t→0

Jk(t) = 1,

the result follows from (32) and (33).
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