
UC Irvine
UC Irvine Previously Published Works

Title
Computing zeta functions of large polynomial systems over finite fields

Permalink
https://escholarship.org/uc/item/3gk3h9xd

Authors
Cheng, Qi
Rojas, J Maurice
Wan, Daqing

Publication Date
2020-07-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gk3h9xd
https://escholarship.org
http://www.cdlib.org/

COMPUTING ZETA FUNCTIONS OF LARGE POLYNOMIAL SYSTEMS
OVER FINITE FIELDS

QI CHENG, J. MAURICE ROJAS, AND DAQING WAN

Abstract. In this paper, we improve the algorithms of Lauder-Wan [LW] and Harvey [Ha]
to compute the zeta function of a system of m polynomial equations in n variables over the
finite field Fq of q elements, for m large. The dependence on m in the original algorithms
was exponential in m. Our main result is a reduction of the exponential dependence on m to
a polynomial dependence on m. As an application, we speed up a doubly exponential time
algorithm from a software verification paper [BJK] (on universal equivalence of programs
over finite fields) to singly exponential time. One key new ingredient is an effective version
of the classical Kronecker theorem which (set-theoretically) reduces the number of defining
equations for a “large” polynomial system over Fq when q is suitably large.

1. Introduction

Let Fq be the finite field of q elements with characteristic p. Let F be a polynomial system
with m equations and n variables over Fq:

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, ..., xn)),

where each fi ∈ Fq[x1, . . . , xn] is a polynomial in n variables of degree at most d. Note that
the total number of digits needed to write down the monomial term expansion of such a
system is O(m(d + 1)n log q). So it is natural to use m(d + 1)n log q as a measure of input
size for F when we start discussing algorithmic efficiency. For our purposes here, and for
reasons to be made clear shortly, we will call the polynomial system F large if the number
m of equations is at least n+ 2.

A basic algorithmic problem in number theory is to compute the numberNq(F) of solutions
of the polynomial system F = (0, . . . , 0) over Fq. More precisely, we set

Nq(F) :=
{

(x1, . . . , xn) ∈ Fnq
∣∣ F (x1, . . . , xn) = (0, . . . , 0)

}
.

The special case (m,n)=(1, 2) already plays a huge role in cryptography, since curves with
a specified number of points are crucial to the design of many cryptosystems (see, e.g.,
[CFADLNV]).

An even deeper basic problem is to consider all extension fields of Fq and compute the full
sequence Nq(F), Nq2(F), . . . , Nqk(F), . . . or, equivalently, the generating zeta function

Z(F, T) = exp

(
∞∑
k=1

Nqk(F)

k
T k

)
.

Understanding this generating function occupied a good portion of 20th century algebraic
and arithmetic geometry. Interestingly, this generating function has found a recent appli-
cation to software engineering, specifically, in program equivalence [BJK]. (We clarify this

Date: July 28, 2020.
1

ar
X

iv
:2

00
7.

13
21

4v
1

 [
m

at
h.

N
T

]
 2

6
Ju

l 2
02

0

in the next section.) It is not at all obvious from the definition that this zeta function is
effectively computable, so let us briefly recall how it actually is.

A deep and celebrated theorem of Dwork from 1960 says that the zeta function is a
rational function in T . A theorem of Bombieri [Bo] from 1988 says that the total degree
of the zeta function is effectively bounded. It then follows, from basical manipulation of
power series, that the zeta function is effectively computable, although practical efficiency
is far more subtle: See [Wa] for a survey on algorithms for computing zeta functions. A
general deterministic algorithm to compute Z(F, T) was constructed in Lauder-Wan [LW]
with running time

2m(pmndn log q)O(n).

For small characteristic p, this general purpose algorithm remains the best so far. However,
for large characteristic p, the dependence on p has been improved by Harvey [Ha], who
constructed an algorithm with running time

2mp(mndn log q)O(n).

(There is also a variant in [Ha] with time complexity linear in
√
p instead, but at the expense

of increasing the space complexity to roughly the same order as the time complexity.) The
algorithms from [LW] and [Ha] are, however, fully exponential in m, even for fixed n.

To improve the dependence on m, we briefly explain how the exponential factor 2m arises
in the algorithms of [LW] and [Ha]. Both algorithms, in the case m = 1 (the hypersurface
case), are obtained via p-adic trace formulas (meaning linear algebra with large matrices
over the polynomial ring (Z/pλZ)[t], arising after some cohomological calculations). The
case m > 1 is then reduced to the case m = 1 via an inclusion-exclusion trick [Wa] to
compute the zeta function for each of the 2m hypersurfaces defined by fS =

∏
i∈S fi, where

S runs through all subsets of {1, 2, . . . ,m} and deg(fS) ≤ |S|d ≤ md.
In this paper, we improve the Lauder-Wan algorithm and the Harvey algorithm by using a

different reduction to reduce the exponential factor 2m to m. One key new idea is to prove an
effective version of Kronecker’s theorem which reduces the number m of defining equations
to n+ 1 if q is suitably large: See Section 3 below.

Our main result is the following:

Theorem 1.1. There is an explicit deterministic algorithm which computes the zeta function
Z(F, T) of the system F over Fq (with m equations, n variables, of degree at most d) in time

mp(nndn log q)O(n).

We will see in the next section how our theorem enables us to speed up a doubly expo-
nential time algorithm (from [BJK]) for program equivalence to singly exponential time. In
particular, we will now briefly review some of the background on programs over finite fields.

2. Programs, Their Equivalence, and Zeta Functions

A basic and difficult problem from the theory of programming languages is determining
when two programs always yield the same output (hopefully without trying all possible
inputs). This problem — a special case of program equivalence — also has an obvious
parallel in cryptography: a fundamental problem is to decide whether a putative key for an
unknown stream cipher (that one has spent much time decrypting) is correct or not, without
trying all possible inputs. In full generality, program equivalence is known to be undecidable

2

in the classical Turing model of computation. However, program equivalence (and formal
verification, in greater generality [LMSU]) remains an important need in software engineering
and cryptography. It is then natural to ask these questions in a more limited setting.

For instance, Barthe, Jacomme, and Kremer (in [BJK]) describe a programming language
which enables a broad family of calculations (and verifications thereof) involving polynomials
over finite fields. They proved that program equivalence in their setting is decidable, and gave
an algorithm with doubly exponential complexity. We now briefly review their terminology
(from [BJK, Sec. 2.2]), and how their algorithm requires a non-trivial use of zeta functions.

To be more precise, in their restricted setting, a program is a sequence of logical/polynomial
expressions over a finite field. To define this rigorously, one first fixes a set I of input variables
and a set R of random variables. Then all possible expressions making up a program can be
defined recursively (building up from (1) and (2) below) as follows:

(1) a polynomial P ∈ Fq[I, R];
(2) the failure statement ⊥;
(3) an “if” statement of the following form:

if b then e1 else e2

where e1 and e2 are expressions, and b is a propositional logic formula, whose atoms
are of the form Q = 0 for some Q ∈ Fq[I, R].

Remark 2.1. Programs in [BJK] are written using semi-colons as delimiters, similar to
some real-world program languages such as C or Java.�

The size of a program is defined to be the number of characters in a program. The
presence of random variables enables our programs to use randomization, and give answers
with a certain probability of failure. We denote the set of all such programs by Pq(I, R).
Polynomials in a program are represented by arithmetic formulas, so the degree of any
polynomial in the program is bounded from above by the size of the program. Note that
programs in this core language do not have loops. If a program has neither “if” statements
nor failure statements then we call the program an arithmetic program. The set of all
arithmetic programs is denoted by P̄q(I, R).

The number of expressions at the top level of a program P — denoted by |P| — is simply
the length of the sequence defining P. (In a real-world programming language, the “top
level” of a program simply means one ignores subroutines and, e.g., statements inside of an
“if” statement.) Note also that since our programs can use random variables, our programs

thus send input values in F|I|
qk

to a probability distribution over F|P|
qk

for any positive integer

k. Assuming that the program does not fail (i.e., there is no evaluation of ⊥ that halts the

program), this can be viewed as the following map of inputs to maps: F|I|
qk
→ (F|P|

qk
→ [0, 1]).

It is clear that understanding the semantics of a program requires counting solutions of a
polynomial system.

Example 2.2. Fixing I = ∅ and R={x}, the program
x ∗ x ; x ∗ x ∗ x

outputs a uniformly random square and a uniformly random cube from Fq, though these two
3

numbers are not independent.1 Let N(α, β) denote the number of solutions in Fqk of

x2 = α

x3 = β

The program outputs a distribution sending (α, β) ∈ F2
qk

to N(α, β)/qk. �

Example 2.3. Let I = {x} and R = {y, z}. The following program P1 is in P(I, R)

if ¬(x = 0) then y + 1 else y + 2; z ∗ z

The program P1 yields the probability distribution on F2
qk

corresponding to the first coordinate
being uniformly random in Fqk and the second coordinate a uniformly random square in Fqk .
�

To calculate the distribution, the sample space consists of the assignments to random
variables so that the program does not fail. For example, the following program (I = {x}
and R = {y}) computes the inverse of x with probability 1:

if x = 0 then 0 else if x ∗ y = 1 then y else ⊥

Given two programs, we would like to check whether they produce the same distribution
for any input. More generally, let P1,Q1 be programs and P2,Q2 be arithmetic programs.
We write P1|P2 ≈ Q1|Q2 if, taking any input c under the condition that P2 = ~0, P1 outputs

the same distribution as Q1 taking c as input under the condition Q2 = ~0. To calculate the
distribution, we only need to consider the random values such that none of P1 and Q1 output
⊥.

Remark 2.4. Observe that the set of inputs yielding a fixed sequence of outputs is nothing
more than a constructible set over Fqk , i.e., a boolean combination of algebraic sets over Fqk .
In particular, the set of inputs making two programs differ is also a constructible set over a
finite field. �

The question of equivalence can be raised for a fixed k, or for all positive integers k. The
latter case is called universal equivalence, which is most relevant to our discussion here. For
example, let Q1 be the program defined by:

y; 7 ∗ (z + 1) ∗ (z + 1).

If 7 is a nonzero square in Fq then P1 is universally equivalent to Q1, i.e., P1|0 ≈ Q1|0.
Otherwise, P1|0 and Q1|0 are not equivalent over Fq, and hence not universally equivalent.

2.5. How [BJK] reduces from general to arithmetic programs. Note that in greater
generality, checking universal equivalence means checking if a sequence of constructible sets
consists solely of empty sets (per Remark 2.4 above). As observed in [BJK], this can be
done by a single zeta function computation. This is, in essence, how [BJK] proved that
universal equivalence for arithmetic programs can be done in singly exponential time. For
universal equivalence of conditional programs, the same ideas apply, but [BJK] proved a
doubly exponential complexity upper bound. More precisely, for general programs P1,Q1

1We use x ∗ x in place of x2 since polynomials are represented by arithmetic formulas.
4

and arithmetic programs P2,Q2 , they defined a reduction, to obtain four arithmetic programs
P′1,P′2,Q′1 and Q′2 so that

P1|P2 ≈ Q1|Q2 if and only if P′1|P′2 ≈ Q′1|Q′2
It is clear that one needs to be able to remove failure statements (⊥) and “if” statements

from P1 (and repeat the procedures on Q1) in order for such a reduction to work. Here,
we will use examples to illustrate the ideas in the reduction. See [BJK] for the full, formal
treatment.

We may assume that there is at most one occurrence of the failure statement in P1, since
we can collect the conditions for failure together. For example, the following program

if A1 then ⊥ else P1; if A2 then P2 else if A2 then ⊥ else P3

is equivalent to

if A1 ∨ (¬A2 ∧ A2) then ⊥ else P1; if A2 then P2 else P3

The new program has length polynomial in the length of the old program, since the number
of ⊥ in the input program is bounded from above by the length of the input. Without loss
of generality, suppose that P1 has the form

if b then P1 else ⊥; · · ·
where ⊥ occurs only once in the program. If the condition b is a disjunction of literals2

then we can find a single polynomial B whose vanishing represents b. For example, if b is
(P2 = 0) ∨ ¬(P3 = 0) ∨ ¬(P4 = 0), then we construct the polynomialB =P2(t3P3 − 1)(t4P4 − 1).
The new programs become

P′1 = P1; · · ·
P′2 = P2;B; t3(t3P3 − 1);P3(t3P3 − 1); t4(t4P4 − 1);P4(t4P4 − 1)

Q′1 = Q1

Q′2 = Q2;B; t3(t3P3 − 1);P3(t3P3 − 1); t4(t4P4 − 1);P4(t4P4 − 1)

Here t3 and t4 are new random variables but they are uniquely determined by P3 and P4

under the constraints. Namely if P3 = 0, then t3 = 0, otherwise t3 = 1/P3. For a more
general proposition formula b, we first convert it to a CNF formula,3 which may result in
a conjunction of exponentially many disjunctions, hence exponentially many polynomials
B1, B2, · · · , Bm, in addition to polynomials like ti(tiPi − 1) and Pi(tiPi − 1) etc. The new
equivalence is

P1; · · · |P2, B1, B2, . . . ≈ Q1|Q2, B1, B2, . . .

Nevertheless we only introduce polynomially many new variables, since we need at most one
new variable for each polynomial in the original program. Also the P′2 may be exponentially
long, but the P′1 is actually shorter than the original P1.

Observe that we may also assume that all the inputs to conditional statements are literals.
For example we can replace

if A1 ∨ A2 then P1 else P2

2A disjunction is simply a boolean “OR” applied to several propositions. A literal is simply a variable, or
the negation thereof.

3Conjunctive Normal Form, meaning “an AND of ORs”...
5

by
if A1 then P1 else if A2 then P1 else P2.

Then, to remove “if” in a conditional statement such as

· · · ; if ¬(B = 0) then P1 else P2; · · · |P2

we can use classical tricks such as replacing disequalities by equalities with an extra variable
to obtain

· · · ;P2 + (tB)(P1 − P2); · · · |P2;B(Bt− 1); t(Bt− 1)

Note that this step may increase the length exponentially, but the number of variables grows
only polynomially.

In conclusion, we can reduce general program equivalence to deciding P′1|P′2 ≈ Q′1|Q′2,
where P′1,P′2,Q′1 and Q′2 are all arithmetic programs. Let ` be the input size of the original
programs, namely, the sum of the sizes of P1,P2,Q1 and Q2. The new arithmetic programs
have length exp(`) (the output size of the reduction). They have exp(`) many polynomials,
but number of variables polynomial in `. The degree of each polynomial is at most exp(`).
This reduction is a slightly improved version of the reduction [BJK] used to derive their
doubly exponential algorithm to solve the general universal equivalence. Using our new
algorithm for computing zeta functions of varieties, we can thus achieve a singly exponential
time complexity.

Let us now detail a key trick behind our improved zeta function algorithm.

3. Effective Kronecker theorem over finite fields

A classical theorem of Kronecker [Kr] says that any affine algebraic set defined by a system
of m polynomials in n variables over an algebraically closed field K can be set theoretically
defined by a system of n + 1 polynomials in n variables over the same field K. Kronecker
stated his theorem without a detailed proof; see [Pe] for a self-contained proof. The theorem,
as stated, is actually true for any infinite field K, not necessarily algebraically closed. But it
fails for the finite field Fq, which is our main concern here. In this section, we follow the ideas
in [Pe] to show that Kronecker’s theorem remains true for a finite field Fq if q is suitably
large and we give an effective version of it tailored for our algorithmic application.

Recall that if I is an ideal in the commutative ring Fq[x1, ..., xn], then its radical ideal

is defined as
√
I = {f ∈ Fq[x1, ..., xn] | f i ∈ I for some i ≥ 1}. It is then clear that the two

ideals I and
√
I have the same set of Fqk-rational points for every k. In particular, they have

the same zeta function.

Theorem 3.1 (Affine version). Let fi ∈ Fq[x1, . . . , xn] with deg(fi) ≤ d for all 1 ≤ i ≤ m.
Assume that q > (n + 1)dn. Then there is a deterministic algorithm with running time
m(ndn log q)O(n) which finds n + 1 polynomials gj ∈ Fq[x1, . . . , xn] with deg(gj) ≤ d for all

1 ≤ j ≤ n+ 1 such that their radical ideals are the same:
√

(f1, . . . , fm) =
√

(g1, . . . , gn+1).

This theorem follows immediately upon dehomogenizing the following homogeneous ver-
sion.

Theorem 3.2. [Homogeneous version] Let fi ∈ Fq[x1, . . . , xn] be homegenous polynomials of
degree d for all 1 ≤ i ≤ m. Assume that q > ndn−1. There is a deterministic algorithm with
running time m(ndn log q)O(n) which finds n homogenous polynomials gj ∈ Fq[x1, . . . , xn] of

6

degree d for all 1 ≤ j ≤ n such that their radical ideals are the same:
√

(f1, . . . , fm) =√
(g1, . . . , gn).

Proof of Theorem 3.2. If m ≤ n, the theorem is trivial as we can just take gj = fj for
j ≤ m and gj = f1 for j > m. We now assume that m > n. By induction, it is enough
to prove the case m = n + 1. Now, the n + 1 polynomials {f1, ..., fn+1} in n variables
are algebraically dependent over Fq. That is, there is a non-zero homogenous polynomial
AM(y1, . . . , yn+1) of some positive degree M in Fq[y1, . . . , yn+1] such that

AM(f1, . . . , fn+1) =
∑

k1+···+kn+1=M

Ak1,...,kn+1f
k1
1 · · · f

kn+1

n+1 = 0.

This polynomial relation gives a homogenous linear system over Fq with
(
M+n
n

)
variables

Ak1,...,kn+1 and
(
Md+n−1
n−1

)
equations. If

(
M+n
n

)
>
(
Md+n−1
n−1

)
, the homogenous linear system will

have a non-trivial solution. Now, choose M = ndn−1. It is clear that Md+ i ≤ d(M + i) for
all i ≥ 0 and (

M+n
n

)(
Md+n−1
n−1

) =
M + n

n

n−1∏
i=1

M + i

Md+ i
≥ M + n

n

(
1

d

)n−1
> 1.

Solving the linear system which takes time at most((
M + n

n

)
log q

)ω
= (M log q)O(n) = (ndn log q)O(n),

(with ω < 2.373 the matrix multiplication exponent [Va]), we can then clearly find a non-
trivial solution Ak1,...,kn+1 ∈ Fq, with k1 + · · ·+ kn+1 = M .

Next, we would like to make an invertible Fq-linear transformation

fu =
n+1∑
v=1

bu,vgv, bu,v ∈ Fq, u = 1, 2, . . . , n+ 1

such that when AM(f1, . . . , fn+1) is expanded as a polynomial in {g1 · · · , gn+1} under the
above linear tranformation, the coefficient of gMn+1 is non-zero. Such an invertible linear
transformation may not exist if q is small. We shall prove that it does exist if q > M = ndn−1:
Expand and write

AM(f1, . . . , fn+1) =
∑

k1+···+kn+1=M

Bk1,...,kn+1g
k1
1 · · · g

kn+1

n+1 .

One checks that the coefficient of gMn+1 is∑
k1+···+kn+1=M

Ak1,...,kn+1b
k1
1.n+1 · · · b

kn+1

n+1,n+1 = AM(b1,n+1, . . . , bn+1,n+1).

This is a non-zero homogeneous polynomial in the (n+ 1) variables bu,n+1 (1 ≤ u ≤ n+ 1) of
degree M with coefficients in Fq. Since M < q, the non-zero polynomial AM(y1, . . . , yn+1) is
not the zero function on Fn+1

q . Now, a non-zero univariate polynomial h(x) over Fq of degree
at most M has at most M roots in Fq. By trying at most M + 1 ≤ q elements of Fq, we
find a non-root of h(x) in Fq. Recursively applying this observation to the non-zero leading

7

coefficient (with respect to any one variable) of the non-zero polynomial AM(y1, . . . , yn+1),
we find a non-zero vector (b1,n+1, . . . , bn+1,n+1) ∈ Fn+1

q such that

c := AM(b1,n+1, . . . , bn+1,n+1) ∈ F∗q.

This takes at most (M+1)n+1 = (ndn−1+1)n+1 trials. The non-zero vector (b1,n+1, . . . , bn+1,n+1)
can be easily extended to an invertible square matrix (bu,v) ∈ GLn+1(Fq). For instance, if
bn+1,n+1 6= 0, then we can simply take bu,v = 0 for u 6= v and 1 ≤ v ≤ n, and bu,v = 1 if
u = v ≤ n. In this way, we obtain the desired invertible transformation.

Now, write our established polynomial relation in the form

AM(f1, . . . , fn+1) = cgMn+1 +G1(g1, . . . , gn)gM−1n+1 + · · ·+GM(g1, . . . , gn) = 0,

where Gi(g1, . . . , gn) is a homogenous polynomial in {g1, . . . , gn} of degree i for 1 ≤ i ≤ M .
Since the leading coefficient c is not zero, we deduce that gMn+1 ∈ (g1, . . . , gn). It follows that√

(f1, . . . , fn+1) =
√

(g1, . . . , gn+1) =
√

(g1, . . . , gn).

The theorem is proved. �

4. The Computation of Zeta Functions: Proving Theorem 1.1

Let F be the following polynomial system with m equations and n variables over Fq:

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, ..., xn)),

where each fi ∈ Fq[x1, . . . , xn] is a polynomial in n variables of degree at most d. To compute
the zeta function Z(F, T), we need the following explicit degree bound of Bombieri:

Lemma 4.1. [Bo] The total degree (the sum of the degrees for numerator and denominator)
of the zeta function Z(F, T) is bounded by (4d+ 5)2n+1. �

Note that this total degree bound is independent ofm. This already suggests the possibility
of improving the dependence on m in earlier algorithms for computing zeta functions. By
applying our effective Kronecker theorem (Theorem 3.1), we are now ready to prove our
main result.

Proof of Theorem 1.1: If q > (n+ 1)dn then we can apply the affine effective Kronecker
theorem in the previous section to replace the large polynomial system F by a smaller
polynomial system G = (g1(x1, . . . , xn), . . . , gn+1(x1, ..., xn)), where each gj ∈ Fq[x1, . . . , xn]
is a polynomial in n variables of degree at most d. The smaller system G can be constructed
in time

m(ndn log q)O(n) = m(nndn log q)O(n),

thanks to Theorem 3.1. The two systems F and G have the same number of solutions
over every extension field Fqk . In particular, their zeta functions are the same, namely,
Z(F, T) = Z(G, T). Now, by the algorithms in [Ha], the zeta function Z(G, T) can be
computed in time

2n+1p((n+ 1)ndn log q)O(n) = p(nndn log q)O(n).

Thus, the zeta function Z(F, T) can be computed in time

mp(nndn log q)O(n).
8

If q ≤ (n + 1)dn, we cannot apply the effective Kronecker theorem directly. So we use a
somewhat different argument instead. Let B = (4d+5)2n+1 be the upper bound in Bombieri’s
lemma. By [Wa], it is enough to compute the following B numbers

Nqk(F), k = 1, 2, ..., B.

If qk ≤ (n + 1)dn, namely, k ≤ log((n + 1)dn)/ log q, we use the trivial exhaustive search
algorithm to compute Nqk(F). For each such k, this takes time

qk(n+1)m(dn log q)O(1) ≤ ((n+ 1)dn)n+1m(dn log q)O(1) = m(nndn log q)O(n).

If qk ≥ (n + 1)dn, namely, log((n + 1)dn)/ log q ≤ k ≤ B, then we can apply the effective
Kronecker theorem to the system over the extension field Fqk to produce a new system

Gk = (gk,1(x1, . . . , xn), . . . , gk,n+1(x1, ..., xn)),

where each gk,j ∈ Fqk [x1, . . . , xn] is a polynomial in n variables of degree at most d. Now,

Nqk(F) = Nqk(Gk).

The system has only n + 1 equations and thus the number Nqk(Gk) (in fact the full zeta
function of Gk over Fqk) can be computed by [Ha] in time

2n+1p(k(n+ 1)ndn log q)O(n) = p(Bnndn log q)O(n) = p(nndn log q)O(n).

Thus, the total time to compute Z(F, T) is bounded by

Bmp(nndn log q)O(n) = mp(nndn log q)O(n). �

References

[BJK] Gilles Barthe, Charlie Jacomme and Steve Kremer, Universal equivalence and majority of probabilistic
programs over finite fields, LICS ’20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, July 2020, pp. 155–166.

[Bo] Enrico Bombieri, On exponential sums in finite fields, II, Inventiones Math., 47 (1988), 29-39.
[CFADLNV] Henri Cohen; Gerhard Frey; Roberto Avanzi; Christophe Doche; Tanja Lange; Kim Nguyen;

and Frederik Vercauteren (editors), Handbook of elliptic and hyperelliptic curve cryptography, Discrete
Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006.

[Ha] David Harvey, Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc., 111 (2015),
no. 6, pp. 1379–1401.

[Kr] Leopold Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grossen, J. Reine Ang.
Math., 92 (1882), pp. 1–123.

[LMSU] Shuvendu K. Lahiri, Andrzej Murawski, Ofer Strichman, and Matttias Ulbrich (ed-
itors), Program Equivalence, report from Dagstuhl Seminar 18151, April 8–13, 2018,
http://www.dagstuhl.de/18151 .

[LW] Alan Lauder and Daqing Wan, Counting rational points on varieties over finite fields of small charac-
teristic, in Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, 579-612,
Math. Sci. Res. Inst. Publ., 44, Cambridge Univ. Press, Cambridge, 2008.

[Pe] Oscar Perron, Beweis und Verschärfung eines Satzes von Kronecker, Math. Ann., 118 (1941/1943),
441-448.

[Va] Virginia Vassilevska-Williams, “Limits on All Known (and Some Unknown) Approaches to Matrix
Multiplication,” Proceeding of International Symposium on Symbolic and Algebraic Computation
(ISSAC, 2019, Beijing, China), 2019.

[Wa] Daqing Wan, Algorithmic theory of zeta functions over finite fields, Algorithmic Number Theory:
Lattices, Number Fields, Curves and Cryptography, pp. 551–578, Math. Sci. Res. Inst. Publ., 44,
Cambridge Univ. Press, Cambridge, 2008.

9

http://www.dagstuhl.de/18151

University of Oklahoma, School of Computer Science, Norman, OK 73019
E-mail address: qcheng@ou.edu

Texas A&M University, Department of Mathematics, College Station, TX 77843-3368
E-mail address: rojas@math.tamu.edu

University of California, Irvine, Department of Mathematics, Irvine, CA 92697-3875
E-mail address: dwan@math.uci.edu

10

	1. Introduction
	2. Programs, Their Equivalence, and Zeta Functions
	3. Effective Kronecker theorem over finite fields
	4. The Computation of Zeta Functions: Proving Theorem 1.1
	References

