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Instrumented indentation has been developed and widely utilized
as one of the most versatile and practical means of extracting
mechanical properties of materials. This method is particularly
desirable for those applications where it is difficult to experimen-
tally determine the mechanical properties using stress–strain data
obtained from coupon specimens. Such applications include mate-
rial processing and manufacturing of small and large engineering
components and structures involving the following: three-
dimensional (3D) printing, thin-film and multilayered structures,
and integrated manufacturing of materials for coupled mechanical
and functional properties. Here, we utilize the latest develop-
ments in neural networks, including a multifidelity approach
whereby deep-learning algorithms are trained to extract elasto-
plastic properties of metals and alloys from instrumented indenta-
tion results using multiple datasets for desired levels of improved
accuracy. We have established algorithms for solving inverse prob-
lems by recourse to single, dual, and multiple indentation and dem-
onstrate that these algorithms significantly outperform traditional
brute force computations and function-fitting methods. Moreover,
we present several multifidelity approaches specifically for solving
the inverse indentation problem which 1) significantly reduce the
number of high-fidelity datasets required to achieve a given level of
accuracy, 2) utilize known physical and scaling laws to improve
training efficiency and accuracy, and 3) integrate simulation and
experimental data for training disparate datasets to learn and min-
imize systematic errors. The predictive capabilities and advantages
of these multifidelity methods have been assessed by direct com-
parisons with experimental results for indentation for different
commercial alloys, including two wrought aluminum alloys and sev-
eral 3D printed titanium alloys.

3D printed materials | stress–strain behavior | multifidelity modeling |
transfer learning | machine learning

Instrumented Indentation for Extracting Mechanical
Properties of Materials
Instrumented indentation has been a research topic for scientific
investigations as well as industrial applications during the past
several decades (1–9). Here, the loading force (P) of the indenter
tip and the resultant depth of penetration (h) of the tip into the
material are continuously recorded both during loading and
unloading. Such depth sensing or instrumented indentation has,
in recent years, emerged as an appealing means of probing the
mechanical properties of hard and soft materials, devices, com-
ponents, and structures over a wide spectrum of size scales, from
nanometers to meters, with sufficient resolution to measure
forces over the range of micronewtons to kilonewtons, and dis-
placements over the range of nanometers to centimeters (7, 8).
Some key advantages of instrumented indentation as a method
to extract properties include the need to test only a relatively
small volume of the material (in relation to its overall volume),
which for many applications would render it an essentially non-
destructive probe. Furthermore, it offers the potential to de-
termine processing-induced residual stresses (2), anisotropic

properties (10), property gradients arising from compositional,
microstructural, or residual-stress gradients in materials (11, 12),
as well as coupled electrical–mechanical responses of integrated
systems such as those involving piezoelectric materials (13, 14). It
is especially suited for extracting material properties in a wide
variety of applications involving additive manufacturing, near–
net-shape manufacturing, and integrated manufacturing (e.g.,
load-bearing mechanical structures and components embedded
with electronic, optical, magnetic, or biological components).
Indeed, in some cases it may be the only viable and practical
method for determining local and volume-averaged properties,
as, for example, in the context of evaluating in situ thin-film
mechanical properties or mapping the local mechanical prop-
erty variations across grain/phase boundaries or along gradients
in structures (8). Similarly, in order to evaluate detailed layer-by-
layer mechanical characteristics of a three-dimensionally (3D)
printed material, instrumented indentation appears to be the
only practically viable method to probe how processing condi-
tions lead to evolution of properties and structural integrity.
With the commercial availability of sophisticated and inexpensive
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robotic tools, depth-sensing indentation measurements can
readily be incorporated into the processing and fabrication of
materials and components by such means as layer-by-layer additive
manufacturing.
In general, a forward indentation algorithm for a metallic

material provides indentation response (i.e., force vs. displace-
ment [P vs. h] curve during indentation loading and retraction of
the indenter) for a given set of elastoplastic properties (elastic
modulus, Poisson’s ratio, yield strength, strain-hardening expo-
nent, and tensile strength). The inverse indentation problem, on
the other hand, should lead to the unique determination of the
elastoplastic properties from a set of indentation P−h data.
The hardness (H) of a material has long been used as a

property from which yield strength (σy) can be estimated (7, 8,
15, 16), although their connection is known to be only highly
approximate (5, 16). In order to address this limitation of simple
hardness measures, dimensional analyses and scaling functions
have been developed (5, 8, 17), and explicit universal scaling
functions have been established for solving the forward and in-
verse problems in depth-sensing indentation by recourse to sin-
gle (5) and multiple sharp indenter tip geometries (6, 18–20).
Additionally, studies have also focused on efforts to extract
elastoplastic properties from load–displacement curves for
spherical indenters (21–25). Due to the inherent difficulties in
accurately accounting for the contact area and the initial contact
point involved with spherical indentation, and given that spher-
ical indentation introduces an additional dimension (i.e., the
indenter diameter), which needs to be properly reconciled with
the various structural dimensions of the material being tested,
sharp indentation has become the more preferred method. We
therefore focus our present study on sharp indentation, with the
full recognition that the tip radius effects of nominally “sharp”
indenters need to be carefully accounted for in relation to the
depth of penetration of the indenter into the material and the
characteristic structural dimensions of the material, so as to
avoid the effects of the radius of the sharp indenter tip on the
estimated properties of the materials.
The high sensitivity of traditional brute force calculations to

solve the inverse indentation problem and the uncertainty in-
herent in such calculations in uniquely extracting elastoplastic
properties from indentation responses are known to arise from
functional nonlinearity (5, 6, 9). Furthermore, there are pres-
ently no general methods available that can accurately account
for tip radius effects on the elastoplastic properties extracted
from indentation analyses. This situation is further compounded
by the fact that within a portion of the parametric space for the
wide spectrum of engineering materials for which instrumented
indentation could serve as a useful property assessment tool, the
inverse indentation problem may not provide a unique set of
predictions for mechanical properties from the indentation data.
Therefore, there exists a critical need to explore new ways of
determining the elastoplastic properties of materials from depth-
sensing instrumented indentation with a greater degree of con-
fidence in their uniqueness, accuracy, and fidelity before the
potential for the broad adoption of the method for many
emerging areas of technology can be fully realized. Furthermore,
to establish a scalable method for a wide variety of applications,
and to minimize errors in extracting mechanical properties, it
becomes inevitable to assess ways in which the latest developments
in deep learning (DL) can be employed to harvest significant im-
provements for solving the inverse indentation problem.

Recent Advances in DL and Multifidelity Methods
Recent developments of data-driven methods, such as deep
neural networks (NNs), provide us with opportunities that can-
not be tackled solely through traditional methods. In addition to
well-known applications of machine-learning (ML) algorithms in
such fields as image/video analysis (26, 27) and natural language

processing (28), ML has also been used for various engineering
problems, such as in the discovery of new materials (29) and in
health care (30). However, data-driven methods usually require a
large amount of data to train the NN model, and in many en-
gineering problems, it is often difficult to obtain necessary data
of high accuracy. In these situations, it may be advantageous to
complement the dataset of expensive experimental measure-
ments by employing synthetic data derived from simulations of
physical models. An example of such an approach entails the use
of density functional theory calculations to train NNs so that DL
algorithms can be developed to determine the least energetically
expensive means of modulating the bandgap of a semiconductor
material through elastic strain engineering (31).
Multifidelity methods (32) using Bayesian modeling to integrate

high- and low-resolution simulations can serve as one possible means
for training data. This type of data fusion could help to train DL
models when limited experimental data that lead only to insufficient
levels of accuracy are available. The training data could come from
different sources, e.g., from instruments with different resolutions
and/or from simulations using different levels of accuracy in pre-
dictive capabilities. The multifidelity method (32) is hierarchical so
that high-fidelity and low-fidelity data can be identified and assigned
to train DL algorithms. This Bayesian multifidelity modeling based
on Gaussian process regression (GPR) (33) can also alleviate the
extreme computational cost of training. However, the GPR method
suffers from two critical shortcomings: 1) it is computationally
prohibitive to manage big datasets, and 2) it is not sufficiently
accurate when dealing with nonlinear correlations. To overcome
some of these limitations, it is possible to resort to a scalable
multifidelity approach based on NNs (34), although the efficacy of
such an approach has not yet been tested and validated for ap-
plications. In this work, we present a multifidelity NN (MFNN)
method that is capable of fusing together different sets of data
with different fidelity levels, arising from different experimental
measurement accuracy or from different levels of sophistication of
computational modeling (e.g., two-dimensional [2D] vs. 3D com-
putational simulation and different levels of finite element mesh
refinement).

Prior Work on ML for Computational Mechanics and Inverse
Indentation Problems
Some prior work has explored use of ML to solve both forward
and inverse problems in computational mechanics and, in par-
ticular, has trained NNs to extract material properties from
instrumented indentation data. The training process in these
cases usually involved fitting a numerical simulation dataset. For
example, based on data points of spherical indentation load–
displacement curves from finite-element simulations, a trained
NN was established to estimate material parameters (35–38).
Trained NNs were generated to reproduce the loading portion of
sharp nanoindentation load–displacement curves (39). A NN-
based surrogate model was used in order to reduce the number
of finite-element method (FEM) conical indentation simulations
to extract material properties (40). Besides NNs, other ML ap-
proaches have also been employed to solve the indentation
problems, such as identification of plastic properties from conical
indentation using Bayesian-type analysis (41). These methods,
however, were generally cumbersome to use in practice as they
required training using all data points within individual in-
dentation loading (and/or unloading) curves or extensive iterations
with finite-element simulations. In addition, they were not sys-
tematically tested throughout the broad parameter space for a
wide variety of engineering materials to establish their predictive
capabilities and levels of accuracy. They have also not been ex-
tensively validated by comparisons with experimental observa-
tions. In summary, the latest advances in DL have not yet been
fully utilized for solving a highly nonlinear inverse problem, such
as that involving an inverse indentation problem.
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Objectives of the Present Study
In the present study, we present a unique combination of the
latest developments in DL and multifidelity methods with the
specific objective of significantly enhancing the accuracy, re-
liability, and predictability of mechanical properties of elastoplastic
materials from inverse analyses of depth-sensing instrumented in-
dentation results. Specifically, this study is aimed at achieving the
following objectives:

1) Establish algorithms for solving the inverse problem in instru-
mented indentation for single, dual, and multiple indenta-
tion, whereby the elastoplastic properties of the indented
material can be predicted with much greater accuracy than
currently feasible through traditional brute force computa-
tion and function-fitting methods that rely on the same set
of available training data.

2) Establish a scalable and stable MFNN that can

a) significantly reduce the required number of high-fidelity
data for instrumented indentation to achieve a desired level
of accuracy in the prediction of mechanical properties;

b) utilize known physical and scaling laws to improve train-
ing efficiency and prediction accuracy; and

c) integrate simulation data and experimental data for training
in order to significantly reduce systematic errors, in indenta-
tion analyses, arising from material variability or experimental
conditions.

3) Validate the methods presented here through direct compar-
isons with indentation experiments for several different ma-
terials, including two traditionally made (wrought) 6061 and
7075 aluminum alloys and six 3D printed Ti-6Al-4V alloys.

Results
We begin here with a graphical illustration of problem statement
in Fig. 1, showing the forward and reverse analysis of sharp
instrumented indentation (Fig. 1A), in order to connect our re-
sults to the relevant parameters and nomenclature. Representations
of the NN architecture are shown for the single-fidelity (Fig. 1B)
datasets, the multifidelity datasets (Fig. 1C) without residual con-
nection (34), and the multifidelity datasets proposed in this work

with residual connection (Fig. 1D). In this section, we first show the
results using the single-fidelity NN architecture (Fig. 1B) to dem-
onstrate how they improve the estimation of mechanical properties
of elastoplastic materials compared to those extracted solely from
previously established dimensionless fitting functions for inverse
analysis of conical indentation (5). These fitting functions were
obtained based on brute force finite-element simulations covering
the commonly observed elastic and power-law plastic parameter
space for engineering metals (5) and using the dimensional analysis
of indentation process (3, 5, 17). This is followed by training the
NNs on results from 2D and 3D simulations of conical or Berkovich
indentation tests using the FEM. Subsequently, we extend the scope
of the DL analyses to include results from different multifidelity
approaches. For all of these results, we compare them with exper-
imental results involving using the Berkovich indentation on Al-
6061, Al-7075, and 3D printed Ti alloys. More details of the
method and nomenclature used in the present study can be found in
Methods and SI Appendix.

Improving Inverse Analysis Results for Sharp Indentation Using
Single-Fidelity NN Architecture.
Training NNs using data generated from dimensionless fitting functions.
To demonstrate that NNs are capable of representing the cor-
relation between (C, dP/dh, Wp/Wt) and E* (or σy), where C, dP/dh,
and Wp/Wt are loading curvature, initial unloading slope, and
the ratio of residual plastic work and total work, respectively
(see more details in SI Appendix), we first generate a dataset
using the previously established dimensionless fitting func-
tions. The data points used for fitting were obtained through
FEM simulations covering commonly observed elastic and
power-law plastic parameter space for engineering metals in
ref. 5 for conical indentation with a half included-tip-angle of
70.3°. We then train NNs using these data points (SI Appendix,
Fig. S1A). The mean absolute percentage error (MAPE) de-
fined as follows,

MAPE=
1
N

XN

i=1

����
Ai −Fi

Ai

����,

is calculated against the same dataset, where N is the number of
data points, and Ai and Fi are the true and prediction values of

A

B C D

Fig. 1. DL methods to solve inverse problems in depth-sensing instrumented sharp indentation. (A) Schematic illustration of the power-law elastoplastic
stress–strain behavior used in the present study (Left) and a typical load (P) vs. displacement (h) response of an elastoplastic material to instrumented sharp
indentation (Right). (B–D) Flowcharts of the NNs for solving (B) single-fidelity inverse problems, e.g., single indentation, and dual/multiple indentation, and (C
and D) multifidelity inverse problems involving datasets of different fidelity and accuracy. Input variables such as x1 and x2 represent parameters such as C,
dP=dh, and Wp=Wt, and output variable y represents material properties such as E* or σy. We only show two variables as the NN inputs for clarity, but the
number of inputs could be three or four for single indentation or dual/multiple indentation problems. The NN inputs of all cases and training datasets used
are summarized in SI Appendix, Tables S1 and S2. (C) The original MFNN in ref. 34. (D) The MFNN proposed in this paper involves a residual connection (red
line) from the low-fidelity output yL to the high-fidelity output yH. σ and I are the nonlinear and linear activation functions, respectively.
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the ith data point, respectively. We observe from SI Appendix,
Fig. S1A that the errors associated with the extracted values of
yield strength σy (∼50% or higher) are much larger than those
for the effective indentation elastic modulus, E* (∼10%). This is
an illustration of the inherently high sensitivity of the inverse
problem, especially for plastic properties. As expected, when
only data generated from the fitting functions for training are
used, the trained NNs do not perform any better than the fitting
functions, and only reach the same performance with a high
number of training data points.
Training NNs using data obtained from 2D FEM simulations. Next, we
consider a dataset generated by conical (2D axisymmetric) FEM
simulations (see ref. 5 for model setup). The FEM dataset in-
volved simulations for 100 different elastoplastic parameter
combinations, and we removed three data points with n > 0.3
and σy/E* ≥ 0.03, where the inverse problem may have non-
unique solutions. The possible nonuniqueness comes from the
fact that increasing elastic modulus, plastic yield strength, or
strain-hardening exponent can all result in an increased loading
curvature, with the consequence there may exist multiple elas-
toplastic parameter sets in achieving nearly identical indentation
loading/unloading curves (see more detailed discussions in ref.
5). The green curves with solid square symbols in Fig. 2 A and B
(also see SI Appendix, Fig. S1B) show the results of training NNs
for E* and σy using different numbers of conical indentation
FEM simulation data points. By using merely 20 training points
for E*, the trained NN already performs better than the pre-
viously established fitting functions in ref. 5. For σy, 50 or more
data points are required to achieve better accuracy than the
previous algorithm established by direct fitting of the finite-
element data points (5). With 80 data points for training, the
average error for E* can be improved to ∼5% significantly lower
than ∼8% from using the algorithm established in ref. 5.
Training NNs using FEM data obtained from multiple indenter geometries.
Fig. 2 shows the results of training NNs for E* and σy using two
or four indenters with different tip geometries. The trained two-
indenter and four-indenter NNs perform better than the single-
indention NNs. More indenter geometries improve accuracy.
With a large enough size of training datasets (≥20 for E*; ≥90
for σy with two indenters; and ≥60 for σy with four indenters), the
trained NNs begin to outperform the dual-indentation algorithm
(6). For the trained two-indenter NNs, the average error for E*
is about 2%—much better than that achieved in ref. 5 or 6 using
traditional fitting functions. For the trained four-indenter NNs,
the average error for E* is <2%, and for σy, the average error
becomes <7%. Note that with traditional algorithms, it is not
straightforward to utilize “redundant” information for solving
unknown variables, while in the case of training the two-indenter
or four-indenter NNs more/redundant input variables and data
can be easily utilized to improve accuracy in the estimation of
elastic and plastic properties.

Inverse Analysis Using MFNNs.
Approach 1: Integrating data generated from fitting functions (low
fidelity) and FEM simulation data (high fidelity). In this example, we
test the multifidelity approach for the conical single-indentation
data using only materials with n≤ 0.3 (which still covers the
material parameter space for a wide spectrum of engineering
metals and alloys), as shown in Fig. 3 A and B. The low-fidelity
data use 10,000 (for E*) or 100,000 (for σy) data points from the
formulas in ref. 5, and the high-fidelity data are from the finite-
element simulations. All data in Fig. 3 A and B pertain to a
conical (2D axisymmetric) indenter with a half-included tip angle
of 70.3°. By using the multifidelity approach, 1) higher accuracy
is achieved compared to using only high-fidelity data, and 2) the
number of high-fidelity data points required for achieving high
accuracy is also significantly reduced. Only 10 high-fidelity data
points are needed to achieve 5% average error for E*, and only

40 high-fidelity data needed to achieve better accuracy for σy
than the traditional fitting functions (5).
Here, we compare our MFNN method using the residual

connection technique introduced in this paper (Fig. 1C; see more
details in Methods) with the MFNN used in ref. 34 without the
residual connection (Fig. 1B). We test the performance of these
two methods on the property predictions based on multifidelity
datasets as described in Methods. Note that in this case low
fidelity refers to data obtained using the fitting functions, and
high fidelity refers to 2D FEM data. SI Appendix, Fig. S2A (blue
line) shows that the training of the original MFNN is quite un-
stable with a large standard deviation. When comparing the
mean error of E* in SI Appendix, Fig. S2A (blue and red lines),
note that the error becomes more stable, i.e., the training of NNs
becomes more stable with the addition of residual connection.
For those well-trained networks, the error in E* is similar. Fur-
thermore, as shown in SI Appendix, Fig. S2B, our proposed
MFNN with the residual connection also achieves higher accu-
racy than the fitting functions for the case of σy, in addition to
being more stable.
Approach 2: Integrating 2D axisymmetric FEM data (low fidelity) and 3D
FEM data (high fidelity). Fig. 3 C and D show the results of MFNNs
trained by integrating 2D axisymmetric FEM simulation results

A

B

Fig. 2. Results of mean absolute percentage error (MAPE) as a function of
the training dataset size for single, dual, and multiple indenters. Results of
training NNs for (A) E* and (B) σy using computational simulations of sharp
conical indentation using FEM with one, two, or four different indenter tip
geometries. The black dotted line and the red dash-dotted line show the
average error of directly applying the single-indentation fitting functions in
ref. 5 and dual-indentation fitting functions in ref. 6, respectively. The one-
indenter data are obtained using conical tip with 70.3° half-included tip
angle; the two-indenter data are obtained using conical tips with 70.3° and
60° half-included tip angles; and the four-indenter data are obtained using
conical tips with 70.3°, 50°, 60°, and 80° half-included tip angles.
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(low fidelity) together with 3D FEM simulation data for a Ber-
kovich indenter (high fidelity) to estimate E* and σy. Here,
MAPE is calculated with respect to the 3D FEM data, which
have higher fidelity than the 2D axisymmetric FEM data. Al-
though conical indentation FEM results with a 70.3° included
half-angle are considered good approximations of the actual
indentation results from a 3D Berkovich or Vickers indenter tip
(5, 6, 9, 18–20), significant errors can still occur due to the in-
herent high sensitivity of the inverse problem, especially for
extracting plastic properties, as shown in Fig. 3 C and D. The
foregoing results illustrate that the multifidelity approach leads
to much more accurate estimates of mechanical properties from
instrumented sharp indentation data with a smaller number of
high-fidelity data points than both the single-fidelity approach
and the fitting functions.
Approach 3: Integrating high-fidelity experimental data and synthetic data
for error correction. Here, we first test the trained NNs obtained
above (approach 2) for the Berkovich indenter tip for two in-
dentation experimental datasets from traditional (wrought) Al
alloys Al6061-T6511 (six experiments) and Al7075-T651 (six ex-
periments) with the indentation characteristics summarized in SI
Appendix, Table S3. The indentation raw datasets used are the
same as those used in ref. 5, and dP

dh

��
hm

is evaluated by the best

linear fitting within 5% of each unloading curve. The elastoplastic
properties of Al6061-T6511 are Young’s modulus E = 66.8 GPa
(E* = 70.2 GPa), yield strength σy = 284 MPa, and strain-
hardening exponent n = 0.08; and the properties of Al7075-T651
are E = 70.1 GPa (E* = 73.4 GPa), σy = 500 MPa, and n = 0.122.
In addition, to reduce the incurred systematic experimental errors,
we use NNs to learn from three randomly selected experimental
data points added as high-fidelity data in the NN training process
in multifidelity approach 3. Specifically, the low-cost 2D axisym-
metric finite-element datasets are still used as low-fidelity data,
and the limited number of 3D Berkovich indentation finite-
element data are used together with three additional experimen-
tal data points as high-fidelity data for the case of Al6061-T6511 or

Al7075-T651 alloy. There are up to 20 unique combinations for
randomly selecting three out of six experiments in each case. Here,
the results are obtained by exhausting all 20 possibilities.
Fig. 4A summarizes the inverse analysis results using different

approaches. The NNs trained by 2D axisymmetric FEM results
(low fidelity) together with 3D FEM simulation data (high
fidelity) perform better than the previous established equations
in ref. 5. The NNs trained by adding experimental results as high-
fidelity training data to the 2D and 3D FEM data perform very
well for both E* and σy with MAPE less than 4% for both
Al6061-T6511 and Al7075-T651, leading to significantly im-
proved accuracy for σy with this “hybrid” multifidelity approach.
Assuming power-law strain-hardening behavior, our proposed
method can also be used to extract strain-hardening character-
istics from instrumented indentation. To achieve that, we first
train NNs to predict stresses at different plastic strains, and then
compute the strain-hardening exponent by least-squares fitting of
the power-law hardening function.
Fig. 4B shows the inverse analysis results of using MFNNs to

extract additional data points from the stress–strain curve (i.e., to
determine strain-hardening behavior), where selected stress values
at 3.3%, 6.6%, and 10% plastic strains are obtained. The NNs
trained by adding experimental results as part of the high-fidelity
training data also perform very well for σ3.3%, σ6.6%, and σ10% with
MAPE less than 4% for both Al6061-T6511 and Al7075-T651,
significantly improving the accuracy for evaluating stresses at dif-
ferent plastic strain using the hybrid multifidelity approach. Fig. 5
shows the corresponding stress–strain curves obtained by least-
square fitting of the power-law hardening behavior, exhibiting
good matching of the experimental data (with experimentally
extracted hardening exponent n = 0.08 and 0.122), whereas n =
0.073 and 0.127 for Al6061-T6511 and Al7075-T651, respectively,
estimated using the hybrid multifidelity approach. Note that when
hardening is low (i.e., n→ 0), directly estimated errors of n can be
misleading because very small variations in hardening response
can lead to large fractional errors for elastic-perfectly plastic metal
alloys. Comparing errors in stresses at different plastic stains is a

A B

C D

Fig. 3. Mean average percentage error as a function of training dataset size for MFNNs trained by 2D and 3D FEM simulations of inverse indentation. (A and
B) Results of MFNNs trained by integrating low-cost low-fidelity data using fitting functions (5) together with limited number of high-fidelity FEM data for (A)
E* and (B) σy. In A and B, the low-fidelity data use 10,000 (for E*) or 100,000 (for σy) data points from the formulas in ref. 5. All 2D axisymmetric FEM data are
assuming a conical indenter with a half-included tip angle of 70.3°. (C and D) Results of MFNNs trained by integrating 2D axisymmetric FEM results (low
fidelity) together with 3D FEM simulation data (high fidelity) for (C) E* and (D) σy. The low-fidelity 2D FEM data in C and D include 97 axisymmetric FEM
simulations with different elastoplastic parameters. All 3D FEM data are using a 3D Berkovich indenter, which has a three-sided pyramid sharp tip that can
maintain its self-similar geometry to very small indentation depth. The Berkovich indenter has a half-angle of 65.3°, measured from the tip axis to one of the
pyramid surfaces.
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more objective way in evaluating the accuracy with respect to the
stress–strain behavior or the hardening behavior.
Next, we test the NN algorithms on an extensive set of ex-

periments performed on six different, 3D printed, Ti-6Al-4V
alloys. Full details of the 3D-printing conditions, the ensuing
microstructures of the six Ti alloys, and the tensile stress–strain
characteristics are all available in ref. 42. The six 3D printed Ti
alloys with different microstructures are designated as B3067,
B3090, B6067, B6090, S3067, and S6067 (42). We carried out
depth-sensing instrumented nanoindentation experiments of
these 3D printed Ti alloys using the method described in Meth-
ods. There are 144 repeated indentations conducted for each 3D
printed Ti alloy. We perform inverse analyses of these six alloys
and estimate their elastoplastic properties using the various ML
approaches introduced in this paper. We then compare these
predictions with direct and independent experimental assess-
ments of the elastoplastic properties of the six alloys from the
tensile stress–strain responses obtained in ref. 42. SI Appendix,
Table S4A summarizes the indentation characteristics of six 3D
printed Ti-6Al-4V alloys extracted directly from raw indentation
curves. SI Appendix, Table S4B lists the indentation character-
istics of two 3D printed titanium alloys from indentation curves
corrected with an estimated indenter tip radius of 0.6 μm (see
details of the tip radius estimation and tip radius effect correc-
tion method in SI Appendix, based on the method suggested in
ref. 43), all using the same experimental setup with a maximum
indentation load of 9 mN for each indentation experiment. The
yield strength values, σy, of B3067, B3090, B6067, B6090, S3067,
and S6067 are 1,121, 1,168, 1,102, 1,151, 1,121, and 1,063 MPa,

respectively, and the nominal Young’s modulus of these 3D
printed Ti alloys is E = 110 GPa (E* = 109.6 GPa).
For indentations made on Ti-6Al-4V (B3067), Fig. 6 sum-

marizes the inverse analysis results using the different ap-
proaches introduced in this paper for both E* and σy. The results
labeled as “NN (raw)” and “NN (tip)” are obtained by applying
NNs trained by integrating 2D axisymmetric FEM data (low
fidelity) with 3D Berkovich FEM data (high fidelity), either by
directly applying the raw indentation data or by using the in-
dentation data after correcting the raw data for the indenter tip
radius effects, respectively. NNs trained using only FEM data,
when operating directly on raw indentation data, exhibit medium
accuracy of 24.2 ± 4.6% MAPE in estimating the elastic mod-
ulus, but an unacceptably high MAPE of 105.5 ± 16.7% in
evaluating σy. However, when tip radius effect-corrected in-
dentation data are used in the analyses, we observe significantly
reduced inverse analyses errors for both E* (MAPE = 5.4 ±
3.1%) and σy (MAPE = 40.3 ± 8.3%). With tip radius effect
correction, we find that the extracted values of E* and σy are
much closer to the uniaxial test results shown in figure S1 in ref.
42. When using the NN (raw) results, it is evident that systematic
bias occurs in the extraction of both E* and σy; from the NN (tip)
results, there appears to be systematic bias for σy, even after the
significant improvement in predictive capability by applying tip
radius effect correction.
We now apply our multifidelity approach 3 described in

Methods in an attempt to further reduce systematic errors in the
inverse analyses. For this purpose, we randomly select five ex-
perimental data points out of 144 as additional input to high-fidelity
data in the NN training process. Specifically, the low-cost 2D

A

B

Fig. 4. Inverse analysis results of mean average percentage error (MAPE) of
(A) E* and σy, and (B) σ3.3%, σ6.6%, and σ10% for two aluminum alloys Al6061-
T6511 and Al7075-T651 (here, the subscripts 3.3%, 6.6%, and 10% for σ
represent plastic strains). The results labeled as “fitting functions” are
obtained directly using previously established equations in ref. 5. The results
labeled as “NN (2D + 3D FEM)” are obtained using NNs trained by in-
tegrating 2D axisymmetric FEM data (low fidelity) with 3D Berkovich FEM
data (high fidelity), and the results labeled “NN (2D + 3D FEM + EXP)” are
obtained using NNs trained by adding experimental results as high-fidelity
training data in addition to the 2D and 3D FEM training data.

A

B

Fig. 5. Inverse analysis results of hardening exponent for two aluminum
alloys Al6061-T6511 and Al7075-T651. The hardening exponent is obtained
by least-squares fitting of σy, σ3.3%, σ6.6%, and σ10% predicted by NNs trained
by (A) 2D and 3D FEM data, and (B) 2D, 3D FEM data and three experimental
data points. Here, the subscripts 3.3%, 6.6%, and 10% for σ represent plastic
strains.
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axisymmetric finite-element datasets are still used as low-fidelity
data, while the limited number of 3D Berkovich indentation finite-
element data are used together with three additional experimental
data points as high-fidelity data. The results are pooled together
by exploring the full spectrum involving 10 uniquely different ways
of random selection of such data. In Fig. 6, the results labeled
“NN self (raw, 5)” and “NN self (tip, 5)” are obtained by applying
NNs (trained by adding the five randomly selected B3067 exper-
imental indentation curves as high-fidelity training data in addition
to the 2D and 3D FEM training data) to the raw indentation data
and to the tip radius effect-corrected indentation data, re-
spectively. NNs, trained using the hybrid multifidelity approach
that included the added experimental training data now signifi-
cantly reduce errors when operating directly on raw indentation
data and when operating on tip radius effect-corrected indentation
data. Specifically, for E* MAPE drops to 3.0 ± 3.3% and 2.3 ±
2.4% for raw indentation data and tip radius-corrected data, re-
spectively, and for σy MAPE drops to 5.1 ± 7.0% and 3.9 ± 4.8%,
respectively. Although NNs operating on tip radius effect-
corrected data still perform better, the hybrid multifidelity ap-
proach introduced here is found to be substantially more effective
in learning from the data and in correcting errors from tip radius

effects and other systematic biases arising from uncorrected raw
data. Similar results are shown for indentations made on another
3D printed Ti-6Al-4V alloy (B3090) in Fig. 6 for both E* and σy.
Finally, we test a more practically useful variation of hybrid

multifidelity approach. Here, we aim to reduce systematic errors
by randomly selecting indentation experimental data points from
a different calibration material (while using the same experi-
mental/postprocessing setup) as added high-fidelity data in the
NN training process in multifidelity approach 3. Specifically, the
low-cost 2D axisymmetric finite-element datasets are still used as
low-fidelity data while the limited number of 3D Berkovich in-
dentation finite-element data are used together with some ad-
ditional experimental data points from a different calibration
material B3067 (with 1 to 20 data points randomly selected from
a total of 144 data points) as high-fidelity training data; the
trained NNs are used to analyze B3090 indentation data.
Fig. 7 summarizes the indentation inverse analysis results for

B3090 using this approach (denoted as “Peer”) compared to the
results where the added high-fidelity training data are from the
same material (B3090) with the same experimental conditions
(denoted as “Self”). Here, MAPE (log scale) is plotted against
the number of randomly selected experimental training data, nexp
(linear scale) from either the same material (Self) or from an-
other Ti alloy (Peer). Except when no experimental data are
added for training (at 0), each data point in Fig. 7 represents the
results pooled together from 10 uniquely different ways of ran-
dom selection. The notion of “(raw)” and “(tip)” in the labels

A

B

Fig. 6. Inverse analysis results of (A) E* and (B) σy for two 3D printed Ti-6Al-
4V alloys B3067 and B3090. The results labeled as “NN (raw)” and “NN (tip)”
are obtained by applying NNs trained by integrating 2D axisymmetric FEM
data (low fidelity) with 3D Berkovich FEM data (high fidelity), using directly
the raw indentation P–h data and using the tip radius effect-corrected in-
dentation data, respectively. The results labeled “NN self (raw, 5)” and “NN
self (tip, 5)” are obtained by applying NNs trained by adding five randomly
picked experimental indentation curves as high-fidelity training data in
addition to the 2D and 3D FEM training data, using directly the raw in-
dentation data and using the tip radius effect-corrected indentation data,
respectively. Full details of the experimental data on instrumented in-
dentation and stress–strain response for both B3067 and B3090, along with
the conditions for 3D printing and depth-sensing indentation, and micro-
structure evolution can be found in ref. 42; a brief summary of these liter-
ature data are provided in SI Appendix.

A

B

Fig. 7. Inverse analysis of a 3D printed Ti-6Al-4V alloy B3090. (A) E* and (B)
σy vs. the number of randomly selected experimental training data either
from B3090 (denoted as Self) or from B3067 indentation experiments (Peer).
The notion of “(raw)” and “(tip)” in the labels indicate all experimental data
used are from the uncorrected raw indentation data and the tip radius
effect-corrected indentation data, respectively.
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indicate all experimental data used are either the uncorrected
raw indentation data or those corrected for tip radius effects,
respectively. It is clear from Fig. 7 that adding experimental
training data from the same material (Self) or from a different
calibration material (Peer) under the same experimental condi-
tions can significantly reduce systematic errors for both E*
(MAPE < 4%) and σy (MAPE < 5%). However, we note that the
benefits of adding experimental training data begins to saturate
when nexp ≥ 5. With sufficient training data, the hybrid multi-
fidelity approach shows remarkable ability to learn and correct
from the raw data any systematic errors from tip radius effects
and other factors directly. As expected, adding experimental
training data from the same material (Self cases) normally per-
forms better than adding from a different calibration material
(Peer cases) under the same experimental conditions; in partic-
ular, we observe error reduction at nexp = 20 by as much as one
and two orders of magnitude for estimating E* and σy, re-
spectively, from the inverse analysis.
Fig. 8 and SI Appendix, Fig. S4 summarize the inverse analysis

results of MAPE for E* and σy for 3D printed Ti-6Al-4V alloys
(B3067, B3090, B6067, B6090, S3067, and S6067) as a function
of nexp for randomly selected experimental training data from
B3067 indentation experiments. Except when no experimental
data are added for training (at 0), each data point represents the
results pooled together from 10 uniquely different ways of such
random selection. All indentation experimental data used are
from the uncorrected raw indentation data. The black dashed
line is the Self training case for B3067, while the curves

representing other colors are the Peer training cases using B3067
indentation data for training. Again, all of the trends noted in
Fig. 7 are also observed here in Fig. 8 and SI Appendix, Fig. S4,
showing the general applicability of this hybrid multifidelity ap-
proach by adding Peer experimental data as high-fidelity training
data for improved inverse analysis accuracy.
Assuming, once again, power-law strain-hardening behavior,

we can evaluate stresses at different plastic strain values, and
then compute the strain-hardening exponent by least-squares
fitting of the power-law hardening function for 3D printed tita-
nium alloys. Fig. 9 shows the inverse analysis results of selected
stresses at 0% (i.e., σy), 0.8%, 1.5%, and 3.3% plastic strains and
the fitted stress–strain curves for two 3D printed Ti-6Al-4V al-
loys using the hybrid multifidelity approach. Analogous to eval-
uating the yield strength (stress at zero plastic strain), our
predicted stress–strain curves are close to the experimental
curves when a few experimental data points are added as part of
the high-fidelity data for the training of NNs.

Transfer Learning. In the results presented so far, the hybrid
training of NNs for each aluminum alloy and each 3D printed
titanium alloy is conducted with a fresh start without any direct
connections to the other trained NNs. On the other hand, to
speed up the training of NNs, we have also developed a transfer
learning technique, where the whole multifidelity network (both
low- and high-fidelity subnetworks) is first trained using all of the
2D and 3D FEM data as baseline training. Next, given the ad-
ditional new experimental data, only the high-fidelity subnetwork
is further trained using these additional experimental data
points. The errors from the networks before and after transfer
learning are shown in Fig. 10. This figure indicates that we can
first establish a comprehensive baseline training and then add
additional case-specific training later for improved training ef-
ficiency and faster accumulated learning.

Discussion and Concluding Remarks
We have demonstrated in this work a general framework for
extracting elastic and plastic properties of engineering alloys
through a suite of unique approaches that combine the latest
advances in depth-sensing instrumented indentation with com-
putational simulations of the mechanical properties of materials
and the latest developments in DL using NNs. We have shown
how different single-fidelity and multifidelity approaches can be
customized to extract different levels of accuracy, even when
only a small set of training data are available. Furthermore, our
method establishes how long-recognized and hitherto-unaddressed
limitations of extracting plastic properties of materials from in-
dentation data, such as uniqueness of the estimated property values,
systematic errors, and uncertainties arising from the effects of tip
radius of nominally sharp indenters, can be overcome to produce a
significantly higher level of accuracy and fidelity in the inverse
analysis approach.
We have introduced in this work three multifidelity ap-

proaches, along with single-, dual-, and multi-indenter analyses,
with the goal of significantly reducing the required number of
high-fidelity datasets to achieve a chosen level of accuracy, and
to significantly improve the accuracy and reliability of the me-
chanical properties extracted from depth-sensing instrumented
indentation. Specifically, the methods outlined here, are shown
to 1) significantly reduce the number of high-fidelity datasets
needed to achieve a chosen level of accuracy; 2) utilize pre-
viously established physical and scaling laws to improve the ac-
curacy and training efficiency; and 3) integrate simulation data
and experimental data (i.e., data fusion) for training and signif-
icantly reducing material and/or experimental setup related
systematic errors.

A

B

Fig. 8. Inverse analysis of three 3D printed Ti-6Al-4V alloys. (A) E* and (B) σy
for 3D printed Ti-6Al-4V alloys (B3067, B6067, and S6067) vs. the number of
randomly selected experimental training data from B3067 indentation ex-
periments. All experimental data used are from the uncorrected raw in-
dentation data. See also SI Appendix, Fig. S4 for additional comparisons.
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Our results are validated with independent experimental data
and sources for different types of wrought aluminum and 3D
printed titanium alloys.
In order to expedite the training of NNs, we have also developed

a transfer learning technique, where the entire multifidelity net-
work (both low- and high-fidelity subnetworks) is first trained using
all of the 2D and 3D FEM data as the baseline training. This
baseline training covers the material parameter space for the
majority of engineering metals and alloys under an idealized
testing condition. When given the additional experimental data for
materials under a specific experimental setup, only the high-fidelity
subnetwork needs to be further trained. The results in Fig. 10 show
that we can first establish a comprehensive baseline training and
then add additional case-specific training later for improved
training efficiency and accumulated learning. With a small number
of high-fidelity experimental data points added for training, sig-
nificant improvements are achieved. This is due to the fact that, for
a nominally homogeneous material, instrumented indentation ex-
periments are known to produce highly repeatable force vs. pen-
etration depth curves when using the same indenter instrument
and the same experimental setup conditions. When we have a
reliable method that can effectively learn and correct systematic
errors, we can then use the method to calibrate the indenter and
obtain accurate and reliable inverse analyses results. Additional
discussion on the sensitivity of the inverse indentation problem in
extracting plastic properties can be found in SI Appendix, Fig. S5.
There are several potentially appealing consequences of the

results obtained in this work. 1) The approach described here

provides unique pathways to extract critically needed information
on mechanical properties, which cannot be easily obtained by
other means, in a wide variety of engineering applications in-
volving both structural and functional materials of different types
and size scales. 2) With the cost effectiveness and sophistication of
instrumented indentation, robotics, and computing tools, the
present approaches can readily be incorporated in a wide variety
of manufacturing settings (such as those involving 3D printing) for
in situ and real-time estimation of material properties. 3) The
approach is also highly adaptable and dynamic in that refinements
in the choice of a particular DL approach can be made “on-the-
fly” depending on the processing conditions, specimen geometry,
material characteristics, speed of manufacturing, and the level of
accuracy sought in the extracted values of properties. 4) The ap-
proaches described here can also be further enhanced, with ap-
propriate modifications, to account for such factors as a) the
buildup of residual stresses during the processing of the material,
b) level of anisotropy in material properties, c) multicomponent
architectures involving particle-reinforced, fiber-reinforced, or
layered composite materials, and d) tailoring of surface and bulk
properties through the deliberate introduction of structural,
compositional, geometrical, and property gradients.

Methods
General Considerations.We implicitly utilize physically based scaling laws such
as Kick’s law (44) to simplify the problem and reduce data noise. For this
purpose, instead of the common practice of directly using data points within
the individual indentation curves for training, we choose key indentation

parameters such as loading curvature C, initial unloading slope, dPdh
��
hm

, plastic

work ratio, Wp/Wt, etc., for indentation inverse problem input and the

A

B

Fig. 10. Inverse analysis results of (A) E* and (B) σy for NNs via transfer
learning for two aluminum alloys Al6061-T6511 and Al7075-T651 and two
3D printed Ti-6Al-4V alloys B3067 and B3090. An MFNN is first trained on the
dataset of the 2D FEM as the low-fidelity data and 3D FEM as the high-
fidelity data (the results labeled as “2D + 3D FEM”). Next, the high-fidelity
subnetwork is continued to be trained using three- and five-experiment data
for aluminum alloys and 3D printed Ti-6Al-4V alloys, respectively, which the
low-fidelity subnetwork does not change (the results labeled “Transfer
learning”).

A

B C

Fig. 9. Inverse analysis results of hardening exponent for two 3D printed Ti-
6Al-4V alloys B3067 and B3090. (A) Mean average percentage error of σy,
σ0.8%, σ1.5%, and σ3.3% for B3090 predicted by NNs trained by 2D axisymmetric
FEM data (low fidelity) with 3D Berkovich FEM data and five randomly
picked Self and Peer experimental indentation curves (high fidelity). (B and
C) The hardening exponent is obtained by least-squares fitting of σy, σ0.8%,
σ1.5%, and σ3.3% for (B) Self and (C) Peer experimental indentation curves. The
experimentally extracted best-fit hardening exponent is n = 0.068 for both
B3090 and B3067 uniaxial experiments, i.e., near zero low hardening. With
additional experimental data added for training, the NNs predicts accurately
the yield strength and low hardening behaviors. Here, the subscripts 0.8%,
1.5%, and 3.3% for σ represent plastic strains.
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power-law elastoplastic material parameters Young’s modulus, E (or re-
duced modulus, E*), yield strength, σy, hardening exponent, n, etc. (defined

in equations 1–4 in SI Appendix, SI text) as the output.
On the other hand, since different datasets are obtained for different maxi-

mum depth of indenter penetration into the substrate, hm, we apply the scaling
law (established through dimensional analysis in ref. 5) between dP

dh

��
hm

and hm:

dP
dh

����
hm

∝hm,

to scale all of the datasets with different hm, thereby reducing the required
amount of training data.

NN Architecture for Single Indentation and Dual/Multiple-Indentation Inverse
Problems.
Single indenter inverse problem. For solving the single-indentation inverse
problem, two fully connected NNs are trained separately to represent the
mapping from (C, dP/dh, Wp/Wt) to E* and σy, respectively. Each NN has
three layers with 32 neurons per layer (Fig. 1B). The nonlinear activation
function is chosen as the scaled exponential linear unit (SELU) (45). To avoid
overfitting, regularization can be applied to limit the freedom of the model
by adding a penalty on the involved model parameters. Here, we use the
standard L2 regularization (46) with a strength of 0.01. Throughout our
work, the level of accuracy in estimating any mechanical property is quan-
tified by the MAPE (47). The NNs are optimized using the Adam optimizer
(48) with learning rate 0.0001 for 30,000 steps.
Dual/multiple-indenter inverse problem. For solving the dual/multiple-indentation
inverse problem, there exist different possibilities for selecting the input
parameters. In the present study, we choose (C, dP/dh, Wp /Wt) extracted
from indentation curves using the 70.3° conical tip and C from indentation
curves using the 60° conical tip as the inputs of NNs. For solving the
multiple-indentation inverse problem, we choose (C, dP/dh, Wp /Wt)
extracted from indentation curves using the 70.3° conical tip and loading
curvatures ðCÞ from indentation curves using 50°, 60°, and 80° conical tips
as the inputs of NNs. For the dual/multiple-indentation problem, the
same NN architecture is applied as that is utilized in solving the single-
indentation inverse problem (Fig. 1B), except that a faster learning rate of
0.001 is taken.

Experimental Method for Obtaining Indentation Datasets from 3D Printed Ti
Alloys. Nanoindentation experiments were performed on samples (5 mm ×
5 mm square cross-section and 10-mm height) that were electro-discharge-
machined from larger 3D printed coupons with selected printing (laser
melting) conditions (see ref. 42 for details on the printing conditions and
postprinting heat treatment for B3067, B3090, B6067, B6090, S3067, and
S6067 samples). The cut samples were first polished using emery paper
(particle size, 9 μm) and then electropolished before indented using a
Hysitron Triboindeter (Hysitron) equipped with a Berkovich diamond in-
denter tip in load control mode, under the following experimental condi-
tions: peak load, 9 mN; loading rate, 0.9 mN/s; hold time at the peak load, 5
s; unloading rate, 1.8 mN/s. A total of 144 nanoindentations were performed
on each sample over a 360 × 360-μm2 area, with a distance of 30 μm (in both
x and y directions) between two adjacent indents. Before each set of
nanoindentation experiments, the tip was calibrated using a standard ref-
erence sample of fused quartz. Load, P, vs. depth of penetration, h, data
were recorded.

MFNN and Unique Inverse Problem Setups.
Residual-based MFNN. For the MFNN, we propose a new residual-based MFNN
(Fig. 1D), extending the method first developed by Meng and Karniadakis
(34) (Fig. 1C). As shown in Fig. 1 C and D, the low-fidelity function yL is the
output of a neural network NNL with input x. In ref. 34, the high-fidelity yH is a
weighted summation of a linear function and a nonlinear function (Fig. 1C):

yHðxÞ= α1flinearðx, yLðxÞÞ+ α2fnonlinearðx, yLðxÞÞ,

where flinearðx, yLÞ and fnonlinearðx, yLÞ are linear and nonlinear functions of

inputs ðx, yLÞ, respectively. In particular, fnonlinearðx, yLÞ is another NN, repre-
sented by NNH in Fig. 1C, while flinearðx, yLÞ is a single neuron with no acti-
vation function. In addition to the parameters in flinearðx, yLÞ and
fnonlinearðx, yLÞ, α1 and α2 are also two additional parameters to be trained.

We extended this method by adding an extra connection from yL to yH,
and adopting a specific form of α1 and α2 to correlate the high- and low-
fidelity data (Fig. 1D):

yH = αLyL + eðtanh α1 · flinearðx, yLÞ+ tanh α2 · fnonlinearðx, yLÞÞ,

where α1 and α2 are two parameters to be learned. The coefficient αL rep-
resents the ratio of the high-fidelity to low-fidelity outputs, and e represents
the ratio of the residual to the high-fidelity output. In principle, αL can also
be a learnable parameter as α1 and α2, but here we choose αL to be 1, be-
cause in the indentation problems we considered yL is usually of the same
order of yH, i.e., the residual yH − yL is much smaller than yL and yH. For the
same reason, we choose e as a small positive number to be 0.1. The network
prediction is not very sensitive to the values of αL and e, if their magnitudes
are chosen correctly. However, the network may be trained to a wrong state
if the values are incorrectly selected. In addition, at the beginning of
training, we initialize α1 and α2 to be 0, such that the learning of yH starts
from yL.

Our proposed MFNN makes the training process more stable and yields
better accuracy compared to the original MFNN. The reason is that it is much
easier for flinearðx, yLÞ and fnonlinearðx, yLÞ to learn the residual yH − yL than to
learn yH directly. This residual approach was first proposed with the name
“ResNet” (49), and since then it has been widely used in many computer
vision tasks.

We follow three multifidelity ML approaches in the present study. All
versions of MFNNs are implemented in DeepXDE (50), a user-friendly Python
library designed for scientific ML.
Approach 1: Integrating data generated from fitting functions (low fidelity) and FEM
simulation data (high fidelity).We first test the proposed multifidelity approach
using the conical single indentation data for materials with n≤ 0.3 (still
covering the material parameter space for majority of engineering metals).
The low-fidelity dataset is generated by using the fitting functions from ref.
5, while the high-fidelity dataset is based on the 2D axisymmetric finite-
element simulations.
Approach 2: Solving inverse 3D indentation problems (e.g., with Berkovich tip) by
integrating 2D axisymmetric FEM data (low fidelity) with 3D FEM data (high fidelity).
Traditionally, algorithms based on conical indentation finite element results
were used for obtaining approximate solutions of Vickers or Berkovich 3D
indentation problems (5, 6, 9, 18–20). Here, we integrate the low-cost 2D
axisymmetric finite-element data (low fidelity) with a limited number of 3D
finite-element simulation data (high fidelity) to solve the Berkovich in-
dentation inverse problem.
Approach 3: Learning and correcting material- and/or setup-specific systematic
errors by including a few experimental data as part of the high-fidelity training data.
In instrumented-indentation experiments, material-specific (e.g., for a ma-
terial that is not well represented by power-law hardening) and/or
equipment-specific (e.g., nonlinear machine compliance) systematic errors
can be significantly enlarged when performing inverse analyses. We attempt
to overcome this issue by adding a few experimental data as part of the high-
fidelity training data in approach 2. Specifically, the experimental data added
for training can come from the same material using the same experimental
setup or from a different calibration material tested under the same
experimental conditions.

Data Availability. The code and related input data have been deposited in
GitHub at https://github.com/lululxvi/deep-learning-for-indentation. All other
data are included in the manuscript and SI Appendix.
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