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Abstract—Conditions such as multiple sclerosis or arthritis 
impair normative hand function by diminishing motor control 
and limiting finger range of motion (ROM), respectively. Day-
to-day variation of these symptoms makes it difficult for 
physicians to track clinically relevant changes in function. This 
is worsened in populations that lack general access to 
healthcare. A smartphone holds the potential to be used as a 
frequent self-screening platform for changes in hand function. 
We use a custom smartphone application for detecting 
deviations in force control due to tremors and differences in 
finger ROM through simple tapping and swiping gestures. We 
conduct a 17-participant cross-sectional study, which includes 
two participants with known hand tremors. From the 
smartphone data during tap-and-hold, we see that people with 
hand tremors demonstrate less touchscreen force control than 
normative subjects. During the swiping task, we find a 
statistically significant moderate correlation between the path 
length of the swiping gesture and the maximum proximal 
interphalangeal joint flexion angle of the index finger. We find 
that different processing methods for the swiping data can 
reveal additional correlations with metacarpophalangeal 
flexion. These results are a promising start for the smartphone 
as an accessible screening tool for tremors and changes in finger 
ROM. 

Keywords—hand function, physical human-computer 
interaction, smartphone, human health 

I. INTRODUCTION 

Both finger force control and joint range of motion 
(ROM) are important in activities of daily living. A decrease 
in finger ROM can lead to a decrease in hand function and is 
measured when assessing recovery therapy and rehabilitation 
[1,2]. Simultaneously, exhibiting healthy finger force control 
allows the manipulation of small objects [3,4]. Various 
conditions can interfere with these functions. In arthritis, for 
example, inflammation can cause joint stiffness and prevent 
full ROM. Multiple sclerosis (MS), on the other hand, affects 
individuals’ motor control and can deteriorate cutaneous 
sensation and finger force control, and can lead to hand 
tremors [3,5]. Regular screening of these symptoms is 
important as their severity can increase over many years [6–
8]. 

Clinical tools to measure finger joint ROM include 
radiography. While this method is accurate, it is rarely done 
due to its high cost [9,10]. The goniometer, an inexpensive 
alternative, measures joint ROM through manual 
measurements. While less precise, this is seen as the gold 
standard for assessing finger joint ROM due to its portable 
and economical nature [9–11]. For MS, physical assessment 
of the hands is infrequently performed and, when done, relies 
on subjective clinical judgment and the patient’s self-report 
of symptoms [12]. Smartphones recently emerged as a 
potential solution to increase the frequency of objective 
health monitoring in various conditions [13]. We investigate 

whether simple smartphone screen gestures provide 
information to infer hand tremor and finger joint ROM. 

Smartphone quantification of finger joint ROM 
previously focused on using internal measurement units 
(IMU) or computer vision. IMUs replicate the measurement 
of individual joint angles by statically placing the phone on 
different phalanges with results matching a goniometer 
[9,10,14]. This method is not easily operated [9] and requires 
the hands to be rigidly held in static positions. Using 
computer vision algorithms, images of the hands are 
analyzed for joint angles, with comparable results to the 
goniometer [2,15,16]. However, this requires mounts to 
position a smartphone at the required distance and 
instructions for keeping the hand in the camera’s view frame. 
Finger joint ROM has not yet been correlated with 
touchscreen-tracked swiping trajectories. 

Smartphones for people with MS have been used to 
investigate fatigue using tapping gestures [17], dexterity 
through pinching motions [18], and general progression of 
the condition through non-invasive keyboard gestures [19]. 
To the best of the authors’ knowledge, force control for 
people with MS has not been investigated using smartphone 
screen measurements. 

II. METHODS  

A. Participants 

Individuals over the age of 18 were recruited from the 
University of California, Berkeley (UCB) and the local 
community through digital flyers. A total of seventeen 
participants took part in the study. Three participants self-
reported as having MS with two reporting they had hand 
tremors. One normative participant did not follow study 
instructions during the tapping task and was removed from 
the tapping related analysis. The two participants with MS 
and hand tremors were unable to complete the swiping 
gesture task. A total of sixteen participants completed the 
tapping task (mean age: 33.6 ±16.1), while fifteen completed 
the swiping task (mean age: 32.4 ±15.0). 

Joint angles were measured using a goniometer with 1◦ 
resolution. To measure index finger ROM, participants 
actively flexed their metacarpophalangeal joint (MCPj), then 
their proximal interphalangeal joint (PIPj), and distal 
interphalangeal joint (DIPj). The MCPj abduction was 
measured with the participant’s hand on a table, while 
actively abducting the MCPj. Zero pose is defined as the 
natural position of the fully extended joint with relative 
flexion reported as positive values. For the individuals who 
completed the swiping task, the mean voluntary joint flexion 
of the joints is as follows: MCPj is 83.40°±11.20°, PIPj is 
94.37°±10.39°, DIPj is 70.43°±9.11°, and mean abduction of 
the MCPj is 37.57°±4.80°. 
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B. Smartphone Test Bed and Procedures 

An iPhone X (5.7x2.79x0.3 in) running iOS 14.4.2 
(Apple Inc.) with a screen resolution of 2436  1125 pixels 
was used in this study. This smartphone samples touch input 

at 120Hz, capturing touchscreen interactions including the x 

and y position of the touch. It can also measure the radius of 

touch, or z, which is the circular approximation of the contact 

area of the fingertip with the touchscreen with 0.1 cm 
resolution. This phone model also uniquely measures on-
screen normal forces using a parallel plate capacitor [20], 
characterized in Ref. [21]. These captured metrics can be 
seen in Fig. 1. 

 

Fig. 1. Smartphone gestures can be used to capture various hand 
functionality parameters. (a) shows the tap and hold task that participants 
performed, and the forces generated over time during various trials of the tap 
and hold gesture for a normative participant. (b) shows the downward 
swiping task used in this study, and a single tested trajectory example. Both 
tasks (a) and (b) measure the x and y contact coordinates, with (a) 
additionally measuring z, representing the radius of touch. 

1) Tapping Task: In a study preprint published [21], we 
found a correlation between participant cutaneous 
sensation and the detection of smartphone vibrational 
feedback. During this experiment, participants used 
their dominant index finger to tap and hold onto the 2.5 
 2.5 cm square at the bottom of the touchscreen (Fig. 
1(a)). They were instructed to use as much force as they 
typically applied when opening an app on their 
smartphone. A minimum of 21 tapping trials were 
conducted for each subject. Here, we present the normal 
force and radius of touch applied during these tap-and-
hold gestures.  

2) Swiping Task: For the swiping task, participants were 
asked to first hold the phone such that their palm was 
touching the chin of the smartphone and to hold the 
sides of the phone with the first and fifth digits of their 
dominant hand (Fig. 1(b)). The swiping gesture 
occurred on the touchscreen on a 5.08  7.62 cm 
interaction area. To start the gesture, participants 
double-tapped the furthest top point of this area as an 
initialization step. They were then instructed to try and 

swipe downwards, along the y direction, in a straight 

line from their starting point. Three trials per subject 
were completed. 

C. Swipe Data Metric Generation 

The swiping task produced motion traces as shown in Fig. 
2(a) from initial contact to finger lift-off. We consider how 
to parameterize these trajectories and whether motion 
artifacts produced at the start and end of the swipe must be 
trimmed using either force or time thresholds. For the force 
trim, any point with force lower than 90% of the trial median 
force is removed (Fig. 2(b)). For the time trim, the data points 
generated in the first 30% and last 20% of the trial gesture 
are removed, leaving 50% of the gesture time (Fig. 2(c)). Cut-

off asymmetry reflects how more data points are generated 
during the initialization step than during lift-off. 

 

Fig. 2. A sample graph for a participant’s swiping gesture including the 
applied forces. (a) shows the un-edited gesture with traces from initial 
contact to finger lift-off. (b) shows the force trim. (c) shows the time trim 
along with the various distance metrics used to quantify a swipe. 

For the raw gesture, force trim, and time trim, we extract 
(1) the path length, (2) the vertical distance from the smallest 

y coordinate to the largest y coordinate (Min to Max Line 

Distance), (3) the straight line distance from the first to last 
data points generated (First to Last Distance), (4) the sum of 

the absolute value of the x distance from each data point to 

the line created from the first and last point (First to Last Line 
Deviation Sum), and (5) the absolute value of the deviation 

in x from the theoretical straight line (TSL) (Deviation from 

TSL). TSL is the line that would be generated if the 
participant drew a perfectly straight line from the first point 
of contact until the end of the gesture. A sample of this is 
shown overlaid atop the time trim in Fig.  2(c). Metrics (1)-
(3) are hypothesized to correlate with finger flexion while (4) 
and (5) are hypothesized to correlate with abduction. 

III. RESULTS  

A. Tapping Task Results 

For participants without hand tremors, the forces 
generated follow a parabolic shape as shown in Fig. 1(a). At 
touch-down, forces rise to a plateau and eventually tap off 
during lift-off. Participants with tremors demonstrate more 
variability in this pattern. All of the force readings during the 
tapping tasks are amalgamated and binned for each subject. 
Figure 3(a) shows the percent of data points generated 
(%DPG) for each of the bins. The two participants with MS 
and tremors (15 and 16 as designated with a T) have a wider 
distribution of points across the different bins, reaching as 
high as 3N. Figure 3(b) shows a similar graph using the 

radius of touch, z; there is less difference between subjects 

with and without tremors as compared with force 
measurement. Figure 3(c) shows the volume of the 3D shape 
encompassing all x, y, and z generated points, calculated 
using the boundary function in MATLAB with a shrink factor 
of 0.1. Two sample 3D shapes are provided for a normative 
participant and one with MS and hand tremors. The volume 
metric shows more separation between people with and 

without tremors, as compared with z alone. 
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Fig. 3. N = 16 (a) A heatmap of the normal forces (F) applied to the 
smartphone touchscreen as a percentage of data points generated (%DPG). 
(b) a heatmap of the radius of touch of touchscreen interaction as a %DPG. 
The volume of the 3D shapes created that encompass all x, y, and z points 
as well as sample 3D shapes for a normative and an MS + Tremor participant 

B. Swiping Task results 

Table I shows the three trial average metrics for the 
different distance parameters obtained in the raw, time trim, 
and force trim methods. The time trim method provides the 
smallest distance metrics with the smallest standard 
deviation. The sum of the deviations from the First to Last 
Line are largest in the raw gesture as these include more data 
points than the trim methods. Deviations from the TSL are 
similar across the raw and two trim methods. 

TABLE I. PHONE METRICS (N=15) 

 Raw Time Trim Force Trim 

Mean STD Mean STD Mean STD 

Avg. Path Length 
(cm) 

4.89 1.72 2.72 1.35 3.50 1.48 

Avg. Min to Max 
Line Distance 
(cm) 

4.57 1.72 2.59 1.30 3.41 1.52 

Avg. First to Last 
Distance (cm) 

4.57 1.74 2.69 1.36 3.44 1.51 

Avg. Deviation 
from TSL (cm) 

0.30 0.21 0.21 0.15 0.24 0.18 

Avg. First to Last 
Line Deviation 
Sum (cm) 

14.92 10.39 4.98 4.72 6.51 3.83 

 

 
Table II shows the Speraman’s rank correlation between 

distance metrics for the different trim methods and the active 
maximum flexion angles of the MCPj, PIPj, and DIPj at a 

significance level of 0.05. The PIPj flexion angle is 
moderately to highly positively correlated for all distance 
metrics for all trim methods. The MCPj flexion angle is 
moderately correlated only in the time trim method. The 
MCPj abduction angle is not significantly correlated to any 
of the deviation metrics for either the raw or two trim 
methods. 

TABLE II. CORRELATION BETWEEN PHONE METRICS AND JOINT ROM 

N = 15 

 Raw Time Trim Force Trim 

r p r p r p 

Avg. Path 
Length 

MCP 
Flex 

0.30 0.282 0.54* 0.037 0.47 0.074 

PIP 
Flex 

0.58* 0.023 0.71* 0.003 0.66* 0.007 

DIP 
Flex 

0.07 0.800 0.36 0.183 0.27 0.340 

MCP 
Flex 

0.36 0.190 0.61* 0.016 0.47 0.075 

Avg. Min to 
Max Line 
Distance 

PIP 
Flex 

0.57* 0.026 0.72* 0.002 0.64* 0.010 

DIP 
Flex 

0.11 0.698 0.45 0.090 0.32 0.247 

MCP 
Flex 

0.30 0.276 0.54* 0.037 0.46 0.082 

Avg. First to 
Last 

Distance 

PIP 
Flex 

0.54* 0.037 0.72* 0.003 0.66* 0.007 

DIP 
Flex 

0.07 0.805 0.45 0.183 0.24 0.389 

Avg. 
Deviation 
From TSL 

MCP 
Abduct 

-0.10 0.728 0.13 0.655 0.05 0.846 

Avg. First to 
Last Line 
Deviation 

Sum 

MCP 
Abduct 

-0.25 0.374 0.09 0.755 0.05 0.859 

 

IV. DISCUSSION 

We present data from tapping and swiping as an initial 
study of using these simple gestures for smartphone-enabled 
detection of hand health metrics. Tapping results show how 
force measurements from the smartphone screen capture 
variations in contact loads due to known hand tremors. Such 
variation is expected because tremors are associated with a 
reduction in force control [4]. The iPhone X is one of the last 
models to incorporate the ability to measure touchscreen 
forces. Therefore, we also explore alternative ways of 
replicating force reading. While the radius of touch is 
sometimes associated with force, the results show less 
separation between subjects with and without tremors. This 
results from an individual’s fingertip deforming nonlinearly 
with force, or the low-resolution measure of radius of touch 
from the phone. Combining the position of touch with the 
radius of touch into a 3D volume, however, amplifies the 
differences between those with and without tremor. This 
study includes only two participants with MS and tremors, 
and the standard characterization of subject tremor severity 
is not quantified. Regardless, this experiment motivates 
further study into smartphone tapping gestures for force 
control deviations due to tremors. 

We find that the vertical swiping gesture is consistently 
correlated with PIPj ROM in all data post-processing 
methods and metrics hypothesized to depend on finger 
flexion. Using the time trim post-processing method only, the 
MCPj flexion angle shows a significant correlation. This 
methodology highlights the center portion of the gesture, and 
future work is needed to explore further this relationship. 
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While the MCPj abduction angle is not significantly 
correlated with any of the deviation metrics, this is 
reasonable given that the tested gesture explicitly asks 
participants to limit lateral movement. While natural gestures 
are captured in health metrics including tremors and joint 
ROM in the future, this study restricted the individual’s 
interaction area and movement on the screen to reduce 
variability and test for the presence of a measurable effect. 
Therefore, we cannot extrapolate these results to unstructured 
common smartphone use. The smartphone also does not 
guarantee consistent contact detection and can produce data 
gaps, e.g., in the middle of the swipe in Fig. 2. This is due to 
the participant’s fingernail preventing them from making 
fleshy contact with the touchscreen. While the current study 
is limited to a controlled laboratory setting and specific tasks, 
it demonstrates the potential of smartphones to capture 
metrics for detecting differences in hand tremors and joint 
ROM. Future studies will look at more natural interactions 
with the smartphone and how these alter the results. 
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