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ABSTRACT OF THE DISSERTATION

Algorithms for Determining Differentially Expressed Genes and Chromosome
Structures From High-Throughput Sequencing Data

by

Yi-Wen Yang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2015

Dr. Tao Jiang, Chairperson

Next-generation sequencing (NGS) technologies are able to sequence DNA or RNA

molecules at unprecedented speed and with high accuracy. Recently, NGS tech-

nologies have been applied in a variety of contexts, e.g., whole genome sequencing,

transcript expression profiling, chromatin immunoprecipitation sequencing, and small

RNA sequencing, to accelerate genomic researches. The size of NGS data is usually

gigantic such that the data analysis in these applications of NGS largely relies on

efficient computational methods. Due to the critical demand for high performance

computational algorithms, in the past few years, my research interest was focused

on designing novel algorithms to address challenges in NGS data analysis. The main

theme of this dissertation includes algorithmic solutions to three crucial problems

in NGS data analysis, two arising from differential expression analysis using high-

throughput mRNA sequencing (RNA-Seq) and the other from chromosome structure

capture using high-throughput DNA sequencing (Hi-C). (1) In differential expression
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analysis of RNA-Seq data, long or highly expressed genes are more likely to be de-

tected by most of existing computational methods. However, such bias against short

or lowly expressed genes may distort down-stream data analysis at system biology

level. To further improve the sensitivity to short or lowly expressed genes, we de-

signed a new computational tool, called MRFSeq, to combine both gene coexpression

and RNA-Seq data. The performance of MRFSeq was carefully assessed using simu-

lated and real benchmark datasets and the experimental results showed that MRFSeq

was able to provide more accurate prediction in calling differentially expressed genes

than the other existing methods such that the distortion due to the bias against

short and lowly expressed genes was significantly alleviated. (2) Most of the existing

differential expression analysis tools are developed for comparing RNA-Seq samples

between known biological conditions. However, differential expression analysis is also

important to other biological researches where the predefined conditions of samples

are not available as a priori. For example, differential expressed transcripts can be

used as biomarkers to classify a cohort of cancer samples into subtypes such that bet-

ter diagnosis and therapy methods can be developed for each subtype. So, the first

computational method, called SDEAP, was proposed to identify differential expressed

genes and their alternative splicing events without the requirement of the predefined

conditions. SDEAP provided accurate predition in our experiments on simulated

and real datasets. The utility of SDEAP was further demonstrated by classifying

subtypes of breast cancer, cell types and the cycle phases of mouse cells. (3) Chro-
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mosome structures in nucleus play important roles in biological processes of cells.

The Hi-C technology allows biology researchers to reconstruct the three dimensional

structures of chromosomes in nucleus of cells on a genome-wide scale and thus serves

as a vital component in studies of chromosome structures. During the experimental

steps of Hi-C, systematic biases may be introduced into Hi-C data. Hence, elimi-

nating the systematic biases is essential to all the applications using Hi-C data. We

developed an improved bias reduction algorithm, called GDNorm. By taking advan-

tages of a Poisson regression model that explicitly formulates the causal relationship

of Hi-C data, systematic biases and spatial distances in chromosome structures, our

experimental results showed that GDNorm was able to remove the biases from Hi-C

data such that the corrected Hi-C data could lead to accurate reconstruction of chro-

mosome structures. In the near future, with the rapid accumulation of NGS data, we

expect these efficient computational methods to become valuable tools for discovering

novel biological knowledge and benefit numerous genomic researches.

viii



Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Differential Transcript Expression Analysis Based on High-Throughput

mRNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Chromosome Conformation Capture using High-Throughput Sequenc-

ing and Bias Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Organization of the Rest of the Dissertation . . . . . . . . . . . . . . 9

2 Differential Gene Expression Analysis Using Coexpression and RNA-
Seq Data 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Terminology and Notations . . . . . . . . . . . . . . . . . . . 17
2.2.2 Markov Random Field Model . . . . . . . . . . . . . . . . . . 19
2.2.3 Maximum a Posteriori Estimation . . . . . . . . . . . . . . . 23
2.2.4 Confidence Levels of Prediction . . . . . . . . . . . . . . . . . 25
2.2.5 RNA-Seq Datasets . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Selection of Differential Gene Expression Analysis Methods . . 29
2.3.2 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Performance on Real RNA-Seq Data . . . . . . . . . . . . . . 35
2.3.4 Performance on Genes with Low Read Counts . . . . . . . . . 42
2.3.5 Comparison with Cuffdiff 2 . . . . . . . . . . . . . . . . . . . 44
2.3.6 Consistency of Predictions by DESeq and MRFSeq . . . . . . 45

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



3 SDEAP: A Splice Graph Based Differential Transcription Expres-
sion Analysis Tool for Population Data 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Discovery of ASMs . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Evaluation of Expression Features Using ASMs . . . . . . . . 64
3.2.3 Analysis of Background Variance . . . . . . . . . . . . . . . . 66
3.2.4 Testing Differential Transcript Expression . . . . . . . . . . . 67
3.2.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Experiments on Simulated Data . . . . . . . . . . . . . . . . . 74
3.3.2 Experiments on Real Data . . . . . . . . . . . . . . . . . . . . 85

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 GDNorm: An Improved Poisson Regression Model for Reducing
Biases in Hi-C Data 94
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Genomic Features . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.2 A Bias Correction Method Based on Gradient Descent . . . . 99

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Performance on Real Hi-C Data . . . . . . . . . . . . . . . . . 111

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 122

x



List of Figures

1.1 The central dogma of molecular biology. Source: adapted from [6] . . 2
1.2 RNA-seq workflow. Source: adapted from [129] . . . . . . . . . . . . 5
1.3 Overvoew of the Hi-C protocol. Plot (a) shows a typical Hi-C ex-

periment and plot (b) illustrates a contact frequency matrix and the
corresponding chromosome structures reconstructed from the matrix.
Source: adapted from [74] . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The precision-sensitivity curves comparing the prdiction accuracy of
all methods on the simulated datasets in the interval [0,10) of true DE
genes. Clearly, MRFSeq has the best overall performance. . . . . . . 34

2.2 Performance assessment at various sequencing depths. The X-axis
shows the number of used lanes and the Y-axis indicates various assess-
ment measures. In the upper column of plots, the LR threshold b is set
as 0.5 and in the lower column b=2.0. Plots (a) and (d) compare the
precision scores at different sequence depths. Plots (b) and (e) depict
the sensitivity scores while plots. (c) and (f) illustrate the F-scores. . 39

2.3 Comparison of the methods when different confidence thresholds are
applied. Plots (a) and (b) show the precision-senitivity curves when
the LR threshold b is set as 0.5 and 2.0, respectively. . . . . . . . . . 40

2.4 The precision-sensitivity curves assess the prdiction performance of
MRFSeq and Cuffdiff 2 on the MAQC dataset. The dotted line shows
the sensitivity value corresponding to the common FDR threshold 0.1.
Note that sensitivity increases with FDR, and thus the region to the
left of the dotted line might be more interesting in practice. . . . . . 45

2.5 Comparison of the average edge degrees of incorrectly inverted genes
and all genes in the coexpression networks used in the simulated and
MAQC dataset. Savg is the average edge degree of all genes in the coex-
pression networks used in the simulation while Si.i. is the average edge
degree of all incorrectly inverted genes. Mavg is the average edge degree
of all genes in the coexpression networks used in the MAQC datasets
while Mi.i. is the average edge degree of the incorrectly inverted genes. 47

xi



2.6 Precision-sensitivity curves for comparing the prediction accuracy of
MRFSeq and SimpleNetwork on the MAQC dataset with the LR values
(a) b=0.5 and (b) b=2. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Precision-sensitivity curves for comparing the prediction accuracy of
MRFSeq NOISeq, MRFSeq, DESeq, and NOISeq on the (a) simulated
and (b) MAQC datasets. . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 A counterexample to the graph modular decomposition algorithm used
in DiffSplice. Plot (a) shows the counterexample where the vertices of
the two ASMs H(v1, v6) and H(v1, v7) n ot detected by the algorithm
are highlighted in yellow and red, repectively. In plot (b), the reduced
graph H(u, v)/Emax is illustrated. . . . . . . . . . . . . . . . . . . . . 64

3.2 The dendrograms of the hierarchical clustering for the breast can-
cer dataset. Plots (a) and (b) depict the clustering by SDEAP and
DEXUSexon. The Y-axis is the measurement of similarity between the
samples and X-axis are the labels of each sample. The HER2 samples
are colored red, the TNBC samples green and the non-TNBC samples
blue. The three red boxes in each dendrogram illustrates three clusters
obtained by the corresponding method. . . . . . . . . . . . . . . . . . 87

3.3 Hierarchical clustering of 12 mECS and 12 Pr cells based on the DTE
genes predicted by SDEAP and DEXUSexon. Plots (a) and (b) depict
the dendrograms obtained by DEXUSexon and SDEAP, respectively.
The Y-axis is the measurement of similarity between the samples and
the X-axis shows the labels of the mESC and Pr cells. The mESC cells
are colored red and the Pr cells blue. The two red boxs illustrate two
clusters obtained from each clustering consistent with the cell types. 88

3.4 The PCA transformation of expression features and the hierarchical
clstering of the mESC cells using the DTE features identified by SDEAP
and DEXUSexon. Plots (a) and (b) are the projections of predicted
DTE features by SDEAP and DEXUSexon. Every red dot is a cell in
the G1 cell-cycle phase and every blue dot a cell in the G2/M phase.
Cells in the S phase are represented by green dots. Plots (c) and
(d) depict the dendrograms made from the DTE features predicted by
SDEAP and DEXUSexon. The Y-axis is the measurement of similarity
between samples and the X-axis shows the labels of the mECS cells in
the three cell-cycle phases. The labels are colored in the same away as
in plots (a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii



4.1 Alignment between the reference chromosome 3D structures and struc-
tures predicted by GDNormsde, HiCNormsde and BACH on simulated
data. The red curves indicate the predicted structures and blue curves
the reference structures. The results of GDNormsde, HiCNormsde and
BACH are shown from left to right. The top row is for the helix and
bottom for the random walk. The quality of each structural alignment
is evaluated by an RMSD value. . . . . . . . . . . . . . . . . . . . . . 106

4.2 Comparison of the predicted spatial distance values with the 10 great-
est and 10 smallest systematic biases. For each structure prediction
method studied, two sets of 10 distance values form the two boxes
in a comparison group. The left box depicts the distribution of the
distance values for contacts with the greatest systematic biases while
the right shows the distribution of the distance values for contacts with
the smallest systematic biases. Clearly, GDNormsde produced the most
consistent distance values and HiCNormsde the least. . . . . . . . . . 111

4.3 Comparison of the reproducibility between two biological replicates
achieved by GDNorm, HiCNorm, YT, ICE, and BACH on the 23 chro-
mosomes, chr1 to chr23 (chrX), in the GM06990 cell line at 1M resolu-
tion. The distribution of Spearman’s correlation coefficients achieved
by a bias reduction method is represented as a solid curve over the 23
chromosomes. Plot (a) illustrates the overall reproducibility and plot
(b) shows the reproducibility of high contact frequencies (RHCF). . . 114

4.4 Comparison of the reproducibility in the mESC dataset. Plots (a) and
(b) illustrate the overall reproducibility and RHCF of GDNorm, HiC-
Norm, YT, and ICE on the 20 chromosomes, chr1 to chr20 (chrX),
in the mESC cell line at 40kb resolution, respectively. Here, the dis-
tribution of Spearman’s correlation coefficients achieved by each bias
reduction method is represented as a solid curve over the 20 chromo-
somes. Plots (c) and (d) show the overall reproducibility and RHCF
of GDNorm and BACH at 1M resolution, respectively. . . . . . . . . 115

4.5 The running time of GDNorm and HiCNorm on the mESC data at four
different resolutions. The Y-axis shows the running time in seconds and
the X-axis indicates the number of genomic segments at each resolution.120

xiii



List of Tables

2.1 The pathways used in the simulation study. Nodes and Edges rep-
resent the number of nodes and edges in the coexpression network
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Comparison of different methods on simulated datasets. Levels shows
the range of the abundance levels of DE genes. Avg is the average per-
centage of DE genes among the 10 test datasets at the level. Methods
are the names of the methods . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Comparison of the prediction accuracy on Griffith’s dataset. TP is the
number of true positives and PP is the number of predicted positives. 42

2.4 Comparison of the prediction results on genes with low read counts.
RTPl/h is the ratio of true positives with low read counts over the
true positives with high read counts. RPPl/h is the ratio of predicted
positives with low read counts over the predicted positives with high
read counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Comparison of the prediction accuracy with Cuffdiff 2. . . . . . . . . 45
2.6 Performance assessment of MRFSeq on gene coexpression networks

obtained by adding random edges. Edge is the percentage of randomly
added edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Performance assessment of MRFSeq on the gene coexpression networks
obtained by deleting random edges. Edge is the percentage of randomly
deleted edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Comparison of the two DTE analysis methods on simulated datasets
from binary conditions. The configuration (n1, n2) indicates the num-
ber of replicates in each condition. AUCpr, PRE and REC denote the
area under the precision-recall curve, precision and recall scores, re-
spectively, averaged over the 10 repetitions. The standard deviation
of each score is included in the parentheses following the score. The
last row, AVG, shows the the average of AUCpr, PRE and REC in 6
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xiv



3.2 Comparison of the two DTE analysis methods on simulated datasets
from 3 or more conditions. The configuration (n1, n2, ...) indicates the
number of replicates in each condition. Again, AUCpr, PRE and REC
denote the area under the precision-recall curve, precision and recall
scores, respectively, averaged over the 10 repetitions. The standard
deviation of each score is included in the parentheses following the
score. The last row, AVG, shows the the averages of AUCpr, PRE and
REC in 6 experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Comparison of the two DTE analysis methods on simulated single-cell
RNA-Seq data. The configuration (n1, n2, ...) indicates the number of
replicates in each condition. Again, AUCpr, PRE and REC denote
the area under the precision-recall curve, precision and recall scores,
respectively, averaged over the 10 repetitions. The standard deviation
of each score is included in the parentheses following the score. The
last row, AVG, shows the the averages of AUCpr, PRE and REC in 4
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Comparison of the performance in differential splicing analysis. . . . 83
3.5 Comparison of the numbers of the manually selected and qPCR vali-

dated maker genes for the mESC and Pr cells in the DTE genes pre-
dicted by SDEAP and DEXUSexon. The second column indicates the
total numbers of manually selected or qPCR validated marker genes.
The numbers of manually selected or validated maker genes that ap-
pear in the DTE genes predicted by the two methods are given in the
third and fourth columns. . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 RMSD values of the predicted structures on noisy data. . . . . . . . 110
4.2 Correlation between normalized contact frequencies at 40kb resolution

and spatial distance measured by FISH experiments in the two biolog-
ical replicates of the mESC data. . . . . . . . . . . . . . . . . . . . . 119

4.3 The running time on the GM06990 and mESC datasets. . . . . . . . 120

xv



Chapter 1

Introduction

Nucleic acid sequencing is to determine the order of nucleotides in given DNA

or RNA molecules and has numerous applications in biology researches. In the past

decade, the next generation sequencing (NGS) technologies allow us to sequence all

DNA or RNA molecules in cells on a whole-genome scale by generating millions of

sequenced cDNA fragments in parallel. Because of its efficiency, NGS has plenty of

applications in biological researches such as assembling the sequences of large genomes

[5, 126, 76], studying the variation between genomes of the same species [2], report-

ing the interaction features of DNA-binding proteins [94], and profiling genome-wide

epigenetic modifications [72]. However, due to the size and complexity of NGS data,

the data analysis of NGS data largely relies on efficienct computational tools. The

demand for high performance computational algorithms has been highly emphasized

in the literature [6]. Hence, in the past few years, my research interest was focused

on innovating and improving computational algorithms for NGS data analysis. In

this dissertation, three novel computational algorithms are proposed for differential
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transcript expression analysis using high-throughput mRNA sequencing (RNA-Seq)

and systematic bias reduction in high-throughput chromosome conformation capture

(Hi-C) data. For better understanding the details of the proposed computational algo-

rithms, the background knowledge of the RNA-Seq and Hi-C technologies is reviewed

in the sections 1.1 and 1.2 respectively.

Figure 1.1: The central dogma of molecular biology. Source: adapted from [6]
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1.1 Differential Transcript Expression Analysis Based

on High-Throughput mRNA Sequencing

Proteins serve as basic function units in a cellular system and synthesized in cells

by genes through transcription and translation. As illustrated in Figure 1.1, the pro-

cess to produce proteins by transcription and translation is called the central dogma

of molecular biology. In transcription, messenger RNAs are copied and edited from

the exons in individual genes. In translation, amino acids of proteins are assembled

using the complementary triplet (or codons) of the transcripted mRNAs. Note that

exons of a gene may be joined together in various ways to produce different mRNA

variants known as isoforms. The process of synthesizing the variants of mRNA is

called alternative splicing. In the human genome more than 90% of the genes have

multiple mRNA isoforms [69].

The transcriptome is the set of all RNA molecules, including mRNA, rRNA,

tRNA, and other non-coding RNA transcribed in cells. Uncovering the complexity of

transcriptome provides great insight into the biological processes of cellular activity

and has long been of interest to biologists [129]. In recent years, RNA-Seq has taken a

major role in the quantitative analysis of transcript expression and variant discovery

and becomes a vital component for both discovery and quantification of transcripts

in these genomic researches [123]. The overall workflow of RNA-Seq is illustrated in

Figure 1.2. To measure the expression levels of transcripts, a collection of purified
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RNAs is first sheared and converted into a cDNA fragments. The cDNA fragments

are sequenced from either one or both ends on a high-throughput platform such

as Illumina, SOLiD or Roche454. Every short sequence of the cDNA fragments

obtained by the process is called a read. To measure abundance of transcript, then

millions of reads are aligned to known reference genome sequences by computational

alignment algorithms such as Tophat [121]. All mapped reads can be divided into

three categories. The first are junctions, reads spanning multiple exons. The second

are exonic reads, reads completely falling into a exonic region. The other is Poly-A

reads, reads containing Poly-A tails. Note that the Poly-A tails of the mapped reads

are usually truncated after being aligned. The proportion of reads matching a given

transcript is used as quantification of the expression level of the transcript [78].

In addition to the quantification of transcript expression, studying the regula-

tion of transcripts in biological processes of interests requires sensitive differential

expression analysis to compare transcript expression in RNA-Seq samples. Earlier

differential transcript expression analysis was mostly done at gene level. . However,

most of the differential gene expression analysis tools have poor performance on lowly

expressed or short genes. The estimation bias against lowly expressed or short genes

may further propagate in downstream analyses at the systems biology level if it is not

corrected. To obtain a better inference of differential gene expression, we propose a

new efficient algorithm based on a markov random field (MRF) model, called MRF-

Seq, that uses additional gene coexpression data to enhance the prediction power.

4



Figure 1.2: RNA-seq workflow. Source: adapted from [129]

As illustrated in Chapter 2, our main technical contribution is the careful selection

of the clique potential functions in the MRF so its maximum a posteriori (MAP)

estimation can be reduced to the well-known maximum flow problem and thus solved

in polynomial time. The results from our simulated and real RNA-Seq experiments

demonstrate that MRFSeq is more accurate and less biased than the existing methods

based on RNA-Seq data alone and suggeste MRFSeq could serve as a vital component

in many genomic researches.
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Although, recently, several computational tools have been proposed for perform-

ing differential expression analysis at both gene and transcript levels [123], most of

the differential expression analysis tools were developed to compare RNA-Seq samples

of known biological conditions. The requirement of the predefined conditions restrict

the applications of differential expression analysis to the case-control study. Differ-

ential expression analysis without predefined conditions is also critical to biological

studies. For example, it can be used to discover biomarkers to classify cancer samples

into subtypes such that better diagnosis and therapy methods can be developed for

each subtype [66]. To the best of our knowledge, there is no method for performing

differential transcript expression analysis without predefined conditions in the litera-

ture. Hence, we propose the first differential transcript expression analysis algorithm,

called SDEAP, to compare transcript expression in RNA-samples without given pre-

defined conditions. As demonstrated in Chapter 3, by taking advantage of a new

graph modular decomposition algorithm on splice graphs for discovering alternative

splicing events and a robust clustering approach to deal with data from an arbitrary

number of conditions, SDEAP is able to provide accuracy prediction in differential

expression analysis. Moreover, the prediction of SDEAP allows us to classify the

subtypes of breast cancer and the cycle phases of mESC cells correctly.
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1.2 Chromosome Conformation Capture using High-

Throughput Sequencing and Bias Reduction

Three dimensional (3D) conformations of chromosomes in nuclei have known to be

highly involved in many chromosomal mechanisms such that studying the variation

of chromosome conformations becomes a important topic in epigenetics researches

[74]. As a revolutionary tool, the Hi-C technology enables the study of chromosome

structures at an unprecedentedly high throughput and resolution. The workflow of

Hi-C technology is shown in Figure 1.3(a). Chromosomes of cells are firstly cross-

linked with formaldehyde. DNA is digested with a restriction enzyme, e.g., NcoI or

HindIII, that leaves a 5′ overhang. The 5′ overhang is filled with a biotinylated residue

that results in a blunt-end fragment. Every blunt-end fragment between the cross-

linked DNA fragments is then ligated under dilute conditions. Here, every ligated

fragment represents a contact of two chromosome segments that are originally closed

to each other in the nucleus. All ligated fragments are then sheared by sonication.

Among all the sheared fragments, the fragments containing biotin are pulled down

by antibodies and sequenced from their both ends using massively parallel DNA

sequencing. To summarize the total amount of the contacts between every pair of

genomic regions, the pair-end reads are aligned to the reference genome sequences.

The number of mapped pair-end reads spanning two genomic regions, called contact

frequency, is used to measure the spatial proximity of the two regions. In general, the
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contact frequency of two genomic regions is assumed to be negatively proportional to

the spatial proximity of the two regions. The contact frequencies of all the pairs of

genomic regions are usually presented as a two dimensional matrix where the rows

and columns correspond to the genomic regions as shown in Figure 1.3(b). The two

dimensional matrix of contact frequencies can be alternatively considered as a distance

matrix of genomic regions such that the three dimensional structure of chromosomes

can be reconstructed from the distances of genomic regions. More experimental details

of the Hi-C technology are discussed in [74]

During the experimental steps of Hi-C, systematic biases from different sources

are introduced into the Hi-C data such that some parts of the genome are under or

overrepresented in the terms of contact frequencies [135]. Regions with a high density

of restriction fragments tend to be overrepresented in the read library. Fragments of

various lengths have different propensity of forming ligation products with other frag-

ments such that longer fragments appearing more frequently in true ligation events

compared to shorter ones. The uniqueness of the genome sequence is called mappa-

bility. In Hi-C data, only uniquely mapped reads are used such that low-mappability

(repetitive) regions contain fewer uniquely mapped reads than high-mappability re-

gions. GC-content mainly affects the polymerase chain reaction amplification and

results in different amplification efficiency for GC-rich and GC-poor sequences.

Removing the systematic biases from Hi-C data is essential to all applications of

Hi-C data. Hence, we propose an improved Poisson regression model and an efficient
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gradient descent based algorithm, GDNorm, for eliminating biases in Hi-C data. The

details of the algorithm are presented in Chapter 4. GDNorm has been tested on both

simulated and real Hi-C data. The experimental results show that GDNorm is able to

conduct more comprehensive bias reduction and leads to better chromosome structure

prediction when combined with a chromosome structure determination method such

as ChromSDE. Moreover, the corrected Hi-C data obtained by GDNorm are well

correlated to the spatial distance measured by florescent in situ hybridization (FISH)

experiments. In addition to accurate bias reduction, GDNorm had the highest time

efficiency on the real data.

1.3 Organization of the Rest of the Dissertation

The rest of this dissertation consists of three self-contained chapters. In each of the

three chapters, I will review relevent biological background and previous work, define

computational problems, present corresponding algorithmic solutions, and discuss

experimental results. The two novel differential expression analysis tools, MRFSeq

and SDEAP, are introduced in Chapter 2 and 3 respectively while the bias reduction

tool GDNorm is presented in Chapter 4.

Chapter 2 starts with a comprehensive review of differential expression analysis at

gene level in Section 2.1. The algorithm of MRFSeq is given in Section 2.2. The terms

and notations used in our algorithms are defined in Section 2.2.1 while Section 2.2.2

provides the formulation of the Markov random field model and the design of its clique
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potential functions. The parameter estimation of the Markov random field model is

shown in Section 2.2.3 and 2.2.4. The experimental results are described in Section

2.3, which also contains a comparison between MRFSeq and existing differential ex-

pression analysis methods. In particular, Section 2.3.4 compares the performance of

the methods on genes with low read counts and shows that MRFSeq achieves not only

an overall significantly higher accuracy but also provides a less biased prediction. A

few concluding remarks are given in Section 2.4.

In Chapter 3, related work on differential expression analysis with or without

predefined biological conditions are reviewed in Section 3.1, where the motivation

of designing a differential transcript expression analysis tool without biological con-

ditions is emphasized. The main algorithm of SDEAP is illustrated in Section 3.2.

Section 3.2.1 provides the graphical modular decomposition algorithm to locate alter-

native splice events in genes. The quantification of transcript expression in SDEAP

is shown in Section 3.2.3. The details of the differential expression test procedure

of SDEAP are presented in Section 3.2.3 and 3.2.4. The experimental results are

demonstrated in Section 3.3. In Section 3.3.1, the performance of SDEAP is assessed

by several benchmark datasets simulated using configurations from real RNA-Seq

data. Moreover, SDEAP is used to identify differential expressed transcripts in real

RNA-Seq datasets containing samples of different biological conditions. The predicted

differential expressed transcripts are compared with the qPCR validation and used to

classify the samples of different biological conditions in the datasets. The results of
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the classification is presented and discussed in Section 3.3.2. The contributions and

future work of SDEAP are concluded in Section 3.4.

Chapter 4 presents a comprehensive study on bias reduction for Hi-C data. Overview

of the Hi-C experimental protocol is provided in Section 4.1 where systematic biases

in Hi-C data and existing computational methods to remove the biases are also intro-

duced. The details of the GDNorm algorithm are described in Section 4.2. The causal

relationship between genomic features and the systematic biases is formulated in Sec-

tion 4.2.1. Based on the formulation, in Section 4.2.2, a Poisson regression model is

developed to estimate and remove the biases from Hi-C data. Several experimental

results on simulated and real human and mouse data are presented in Section 4.3.1

and 4.3.2 respectively. The experimental results by different bias reduction methods

are discussed compared in terms of accuracy, reproducibility and time efficiency. The

contributions of GDNorm are concluded in Section 4.4.
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Figure 1.3: Overvoew of the Hi-C protocol. Plot (a) shows a typical Hi-C experiment
and plot (b) illustrates a contact frequency matrix and the corresponding chromosome
structures reconstructed from the matrix. Source: adapted from [74]
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Chapter 2

Differential Gene Expression
Analysis Using Coexpression and
RNA-Seq Data

2.1 Introduction

Next generation sequencing technologies (NGS) have been widely used in genomics

research. RNA-Seq, one of the most exciting applications of NGS, is used to reveal

the complexity of tanscriptomes in biological systems [129]. Many unprecedented

discoveries are being made by RNA-Seq, such as the inference of novel isoforms, char-

acterization of the modes of antisense regulation and study of intergenic expression

patterns [18, 84, 44, 122]. In recent years, RNA-Seq has taken a major role in the

quantitative analysis of gene expression and transcript variant discovery. In the past

decade most of these applications were dominated by microarray-based technologies.

In these quantitative assays, RNA populations are partially sequenced and the ob-

tained read sequences are aligned back to the reference genome. The aligned reads
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are then assigned to genes based on the common regions that they share in the align-

ment. The number of reads assigned to a gene is called the read count of the gene

which has been shown to be nearly linearly correlated with the expression level of a

gene [78].

Differential gene expression analysis is to identify if genes express differently be-

tween biological conditions of interest. Given RNA-Seq read count data, detecting

differentially expressed (DE) or equally expressed (EE) genes can be done by checking

if the observed difference of the read counts is significant or not, i.e., greater than

some natural random variation. To test the significance of the difference between

RNA-Seq read counts, the distribution of read counts was first assumed to be Poisson

in [78, 128, 112]. However, the Poisson distribution may underestimate the variance

of read counts and cause unexpected false positives in differential gene expression

analysis [84, 102]. To solve the problem, negative binomial distributions were applied

to RNA-Seq read data [4, 102, 103, 101] and have become the-state-of-the-art sta-

tistical model. Other than the methods based on the Poisson or negative binomial

distributions, two data-driven probabilistic methods, baySeq [46] and NOISeq [118],

have also been proposed. Moreover, given annotated or inferred mRNA transcripts

(or isoforms) of genes, some statistical methods for detecting differential expression

at the transcript level have been published recently [70, 123, 45, 143]. Since the ex-

pression level of a gene with known (or inferred) isoforms can be calculated by simply

summing up the expression levels of its isoforms, these transcript-level methods can
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be used as alternative methods for detecting differential expression of isoforms [123],

although the accuracy of these methods clearly depends on the quality of the provided

isoforms.

Although the statistical properties of RNA-Seq data have been well studied and

taken into account in the above statistical methods, these methods suffer from the

following issues. First, it has been observed that statistical power increases with read

count values [93, 92, 137]. Note that the read count of a gene is proportional to

the gene expression level multiplied by the gene length. As a result, long or highly

expressed genes are more likely to be detected as DE genes compared with their short

and/or lowly expressed counterparts. This bias in DE gene detection is unavoidable

even when normalization or rescaling is applied to read count data [93, 137]. It is

known that the selection bias on DE genes, if uncorrected, may lead to biased down-

stream analyses [93, 92, 137]. Second, the dependency among the expression of genes

is not utilized in these methods. In gene expression analysis based on microarray

data, the prior knowledge of gene coexpression patterns has been used to improve the

performance of algorithms for detecting phenotype-related pathways [99], searching

for significant pathway regulators [110], identifying differential gene expression pat-

terns [53], and the classification of microarray data [100]. In particular, to obtain

more accurate inference of DE genes, Wei and Li [133] proposed a markov random

field (MRF) model that integrates the gamma-gamma model based on microarray

data [87, 58] and gene coexpression networks extracted from KEGG pathways [56]
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such that DE genes can be determined by the maximum a posteriori (MAP) estima-

tion of the MRF model. Their experimental results demonstrate that the additional

gene coexpression information can help detect more subtle changes of gene expres-

sion (e.g., local disturbances within known pathways) and significantly improve the

overall prediction accuracy of DE genes [133]. However, due to the difference between

continuous microarray intensity values and discrete RNA-Seq read counts, The MRF

model in [133] cannot be applied to RNA-Seq data immediately. Moreover, since the

MAP estimation problem for an MRF model is generally NP-Hard [11], the MRF

model in [133] was solved by a heuristic method, iterated conditional modes (ICM),

which provides an approximately optimal prediction with no confidence scores.

In this work, we propose a novel MRF model, MRFSeq, combining RNA-Seq read

counts with the prior knowlwdge of gene coexpression networks to infer DE genes.

Different from the MRF model in [133], we choose the clique potential functions of

the MRF model carefully so that the MAP estimation of DE genes can be reduced

to the well-known maximum flow problem on flow networks based on the work of

Kolmogorov and Zabih [64]. Since the maximum flow problem is polynomial-time

solvable, our MRF model can be solved exactly in polynomial time. Moreover, we

introduce a loopy belief propagation method [134, 82] to calculate the confidence of

each inferred DE or EE gene. Our extensive experiments on simulated and real RNA-

Seq data demonstrate that MRFSeq achieves a much improved overall estimation

performance by gaining considerable sensitivity without losing precision. A detailed
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analysis of the prediction results indicates that the DE genes predicted by MRFSeq are

distributed more evenly across different values of read counts than those recovered by

the existing methods using RNA-Seq data alone. Hence, MRFSeq can help alleviate

the selection bias of DE genes against genes with low read counts. Our analysis

further shows that most of the DE or EE genes that can be correctly predicted from

RNA-Seq data alone are also correctly predicted by MRFSeq, implying that the use

of the prior knowledge of gene coexpression does not introduce new biases in the

differential analysis result. Moreover, we compare MRFSeq with a very recently

published transcript-level method, Cuffdiff 2 [123], on the real RNA-Seq data using

the annotated transcriptome from UCSC hg19 [81]. The comparison shows that

MRFSeq is much more sensitive than Cuffdiff 2.

2.2 Methods

2.2.1 Terminology and Notations

Let G = {g1, g2, ..., gn} be the genes to be tested for differential expression and

X = {x1, x2, ..., xn} the binary random variables such that each xi ∈ {0, 1} indicates

the DE state of gene gi. The random variable xi = 1 if the gene gi is a DE gene and

xi = 0 indicates that the gene is an EE gene. Two random variables xi and xj are

assumed to be correlated if the two genes gi and gj form a pair of coexpressed genes.

A configuration x is a 0-1 assignment to the random variables X. Assume that there
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are p and q replicates in the two conditions, A and B, of interest, respectively. Let

the read counts aij and bij be the number of the reads aligned to gene gi in the j-th

replicate of the conditions A and B, respectively. For each gene gi, two sets of the read

counts RA,i = {ai1, ai2, ..., aip} and RB,i = {bi1, bi2, ..., biq} are summarized from all the

replicates of the two conditions A and B after mapping all the reads to the reference

genome. Popular statistical measurements for the observed difference of read counts

are the false discovery rates (FDR, i.e., the p-value corrected for multiple testing [8])

and prior probability. The current statistical methods infer DE genes by checking

independently for each gene if the difference measurement of its read count exceeds a

certain threshold [92]. In our method, DE genes are determined by the configuration

that maximize a likelihood function of both observed difference of read counts and

gene coexpression while no prior knowledge of the thresholds is required. MRFSeq

uses, but is not limited to, the FDR qi from DESeq [4] as the difference measurement

of the read counts RA,i and RB,i, where qi ∈ [0, 1]. To improve the computational

efficiency of our algorithm, the FDR qi is further discretized by binning the interval

[0,1] into 20 intervals of the same length 0.05. Let yi ∈ {1, 2, , 20} denote the interval

where the observed difference qi belongs to and Y = {y1, y2, ..., yn} be the collection

of all the discretized FDRs. The joint probability of the hidden variables X given its

observed values Y is then formulated by an MRF model, a graphical model capable

of capturing the statistical dependency of random variables [62], described in the

next subsection. Given the joint probability of X conditional to Y , estimating the
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DE states of the genes actually involves two inference problems. The first is the

MAP estimation problem, i.e., searching for a configuration x∗ such that Pr(x∗|Y ) is

maximized. The algorithm for the MAP estimation problem will be discussed later

in the section. The second is the marginal probability problem, i.e., computing the

probability Pr(xi|Y ) as a confidence level of the configuration on each gene gi. The

loopy belief propagation method for the marginal probability problem is given in the

supplementary materials.

2.2.2 Markov Random Field Model

Let H = (Vx, E) be an undirected graph representing the coexpression network

for G such that every node vxi ∈ Vx is associated with the random variables xi ∈ X

and every edge (i, j) shared by the nodes vxi and vxj encodes the dependency of the

two correlated random variables xi and xj. Two variables xi and xj are assumed to be

correlated if the two genes gi and gj are coexpressed. To determine which pair of the

genes are the coexpressed genes, the correlation coefficient ci,j defined in COXPREdb

[89] is used as the measurement of gene coexpression between the two genes gi and

gj. Two genes are considered as a pair of coexpressed genes if ci,j is greater than a

threshold ρ. We use ρ = 0.5 throughout this work because it is widely used in the

literature [95, 131].

In our model, we think that the DE state of each gene should depend on its

observed difference in read counts and the DE states of its coexpressed genes. In
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other words, we can assume that every random variable is conditionally independent

to the variables indexed by non-adjacent vertices in H. Hence, the following property

is satisfied:

Pr(xi|X) = Pr(xi|xj, vxj ∈ N(vxj)), (2.1)

where N(vxj) represents the neighbors of vxi in H. By the Hammersley-Clifford

theorem [9], a joint distribution of the random variables X given Y can be factorized

as a form of clique potential functions TC(C), the positive functions for configurations

over cliques in the given graph H such that Pr(X|Y ) =
∏

C∈H TC(C).

To model the pairwise dependency between coexpressed genes, we may use an

MRF model consisting of only potential functions for cliques of sizes at most 2. This

type of MRFs is called the pairwise MRFs [10] and will be used in our work. There

are two types of potential functions adopted in our MRF model. One is the unary

functions φi(xi) that score how compatible the random variable xi is with its observed

evidence yi. The other is the pairwise potential functions ψ(i,j)(xi, xj) that measure

the statistical dependency between every pair of correlated variables xi and xj. By

the definition of the potential functions, the joint distribution of X given Y can be

written as:

Pr(X|Y ) = 1
Z

∏
(i,j)∈E ψ(i,j)(xi, xj)

∏n
i=1 φi(xi),

(2.2)

where Z is the normalized term to assure that the joint probability Pr(X|Y ) sums

up to 1. Let P(1,i) = Pr(xi = 1|yi) and P(0,i) = Pr(xi = 0|yi). The unary function
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φi(xi) is defined as follows:

φi(xi) =


P(1,i)/P(0,i), if P(1,i) > P(0,i), xi = 1

P(0,i)/P(1,i), if P(0,i) > P(1,i), xi = 0

1, otherwise,

(2.3)

To calculate the unary functions, the ratio between the two prior probabilities Pr(xi =

1|yi) and Pr(xi = 0|yi) should be given as a known parameter in our MRF model.

To estimate the parameter, the read counts of four replicates (two per condition) for

10000 DE genes and 10000 EE genes are first synthesized. Our simulation of the

read counts of the DE and EE genes follows the same steps as used in the simulation

study of DESeq [4]. For the DE genes, the log2 fold change rate of the observed

read counts between two conditions is randomly drawn from the normal distribution

with mean 0 and variance 0.7. For the EE genes, the mean is set to be 0 and the

variance 0.2. After the simulation of read counts, the discretized FDRs introduced

previously are calculated as the observed difference in the synthesized read counts.

Assume that there are myi DE genes and nyi EE genes whose discretized FDR is yi in

this simulation. We further assume the equality of the two background probabilities

of xi holds, i.e., Pr(xi = 1) = Pr(xi = 0). By Baye’s rule, the ratio of the prior

probabilities is obtained as follows:

Pr(xi = 0|yi)
Pr(xi = 1|yi)

=
Pr(yi|xi = 0)Pr(xi = 0)

Pr(yi|xi = 1)Pr(xi = 1)
=

nyi
myi

, (2.4)
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Symmetrically, we have Pr(xi = 1|yi)/Pr(xi = 0|yi) = myi/nyi .

For the pairwise function ψ(i,j)(xi, xj) of every pair of coexpressed genes gi and

gj, the correlation coefficient ci,j defined in COXPREdb [89] is used as the measure

of the statistical dependency between xi and xj. The pairwise potential functions are

thus defined as follows:

ψ(i,j)(xi, xj) =


eci,j , if xi = xj,

1, otherwise,

(2.5)

This completes the specification of the joint distribution of X. To facilitate the pre-

sentation of our algorithms, the joint distribution of X can be rewritten by taking

negative logarithm on both sides of Eq. (2) as below:

E(X|Y ) = −γ −
n∑
i=1

αi(xi)−
∑

(i,j)∈E

β(i,j)(xi, xj), (2.6)

where γ is a constant, αi(xi) = lnφi(xi) and β(i,j)(xi, xj) = lnψ(i,j)(xi, xj). E(X|Y )

is called the pseudo-energy function when each αi is a unary term and each β(i,j)

is a pairwise term of the energy. A configuration maximizing the joint probability

Pr(X|Y ) is actually the configuration minimizing the pseudo-energy function E(X|Y )

[10].
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2.2.3 Maximum a Posteriori Estimation

Different from the heuristic method, ICM, used to approximate the MAP of the

MRF model of Wei and Li [133], we show in this subsection that, by designing the

potential functions in MRFSeq carefully, the MAP estimation problem for MRFSeq

is no longer an NP-Hard problem because it can be reduced to the maximum flow

problem on flow networks and solved optimally in polynomial time.

A random variable xi is said to be inverted by a configuration x if the state

assignment to xi violates its prior probability, i.e., xi = 1 if Pr(xi = 0|yi) > Pr(xi =

1|yi) or xi = 0 if Pr(xi = 1|yi) > Pr(xi = 0|yi). For an inverted random variable

xi, αi(xi) = 0 instead of |lnφi(1)− lnφi(0)|. We define |lnφi(1)− lnφi(0)| as the cost

of the inversion. Two correlated variables xi and xj are said to be separated by a

configuration x if the assigned states of xi and xj are different, i.e., xi 6= xj. For

a pair of separated variables xi and xj, β(i,j)(xi, xj) = 0 instead of ci,j. The cost

of the separation is ci,j. Kolmogorov and Zabih [64] proved that when the pairwise

term β(i,j)(xi, xj) of the pseudo-energy function E(X|Y ) is submodular, that is, the

following property is satisfied:

β(i,j)(0, 0) + β(i,j)(1, 1) ≥ β(i,j)(0, 1) + β(i,j)(1, 0), (2.7)

searching for a configuration that minimizes the pseudo-energy function can be done

by looking for a configuration minimizing the total the cost of inversion and sepa-
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ration. That is, the MAP estimation problem on an MRF model can be reduced to

the maximum flow (or minimum cut) problem over a flow newtwork H ′ such that a

minimum cut of H ′ corresponds to a MAP estimation of the MRF model and the

saturated capacity of the cut is exactly the total cost of the inversion and separation.

It is easy to verify that our paiwise term is submodular. β(i,j)(0, 0) + β(i,j)(1, 1)

sums up to 2ci,j, where ci,j ≥ 0.5, while β(i,j)(0, 1) + β(i,j)(1, 0) is 0. The reduction

from our MRF model whose graph representation is H = (Vx, E) to the flow network

H ′ = (Vx ∪ {s, t}, E ′) can be done as follows. The nodes of H ′ are the union of the

nodes of H and two additional nodes, the source s and sink t. Every undirected edge

(i, j) of H is transformed into two directed edges (i, j) and (i, j) with capacity ci,j.

For every node xi, two directed edges (s, i) and (i, t) are added to E ′. The capacity

of the edge (s, i) is |lnφi(1) − lnφi(0)| if Pr(xi = 1|yi) > Pr(xi = 0|yi). Otherwise,

the capacity of the edge (s, i) is 0. Symmetrically, the capacity of the edge (i, t) is

|lnφi(1) − lnφi(0)| if Pr(xi = 0|yi) > Pr(xi = 1|yi). Otherwise, the capacity of the

edge (i, t) is 0. After running a standard maximum flow algorithm, e.g., the Edmond

and Karp algorithm [32], on the flow network H ′, a minimum cut Q = {Vs∪s, Vt∪{t}}

is obtained, where Vs are the nodes adjacent to s and Vt the nodes adjacent to t. It

represents a 0-1 assignment such that all the random variables corresponding to the

nodes of Vs are assigned 1 and all the random variables corresponding to the nodes

of Vt are assign 0. Then, a gene gi is inferred as a DE gene if xi is 1, or an EE gene

otherwise.
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2.2.4 Confidence Levels of Prediction

To calculate the marginal probabilities of the random variables X (as a way of

estimating the confidence of our inferred configurations), Pearl proposed an exact in-

ference algorithm for MRF models whose graph representations are trees [97]. How-

ever, to the best of our knowledge, there is no efficient way to calculate the marginal

probability of a random variable xi for MRF models that contain cycles. A popular

heuristic algorithm, called the loopy belief propagation algorithm [82, 134], will be

adopted in our work to approximate marginal probabilites.

The belief of a random variable xi given the observed values Y is the marginal

probability Pr(xi|Y ). Loopy belief propagation [82, 134] is a heuristic algorithm to

compute the belief of variables by iteratively passing and updating partially computed

results, called messages, between variables until the belief converges. To be specific,

let the function m(i,j)(xj) denote the message passed from node vi to node vj. The

message function m(i,j)(xj) is defined as

ρ(i, j) =
∏

vk∈N(vi)−{vj}m(k,i)(xi),

m(i,j)(xj) = α
∑

xi
ψ(i,j)(xi, xj)φi(xi)ρ(i, j),

(2.8)

where α is a normalizing constant such that m(i,j)(0) +m(i,j)(1) = 1. Then, the belief
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of each variable xi can be written in a product form of the messages as follows:

Pr(xi|Y ) = βφi(xi)
∏

vj∈N(vi)

m(j,i)(xi), (2.9)

where β is a constant such that Pr(xi = 1|Y ) +Pr(xi = 0|Y ) = 1. In our implemen-

tation, the message functions are initialized to the uniform distribution functions. To

perform the loopy belief propagation algorithm, a spanning tree of the given graph H

is constructed at first and the postorder, vp1vp2 ...vpn , of the tree nodes is used as the

order for propagating messages. At every iteration of i from 1 to n, every message

m(pi,pj)(xpj) associated with the edge (vp1 , vp2) is updated by Eq. 2.8. The update is

iteratively performed and it terminates when the change of the belief is smaller than

10−4. Once the updating process converges, the marginal probabilities of the variables

can be calculated by Eq. 2.9. The loopy belief propagation algorithm is used here as

a secondary prediction algorithm that provides us with the marginal probability of

each variable as the confidence of prediction. Because it is a heuristic algorithm for

calculating the marginal probabilities, for a very small fraction of the genes considered

(fewer than 1% in our experiments), the algorithm may yield a conflicting prediction

result against the MAP estimation configuration, e.g., xi = 1 in the MAP estimation

but the loopy belief propagation algorithm returns Pr(xi = 1|Y ) < 0.5. In such a

case, the DE state of the concerned gene will be determined by the MAP estimation

result.
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2.2.5 RNA-Seq Datasets

Two publicly available human RNA-Seq datasets, the MAQC dataset [107, 15]

and Griffth’s dataset [45], will be used as the benchmark datasets to assess the per-

formance of our selected differential gene expression analysis methods. Each of the

dataset is associated with an additional qRT-PCR dataset to validate the DE states

of genes. The MAQC dataset consists of two samples, Ambion’s human brain ref-

erence RNA (brain) and Stratagene’s human universal reference RNA (UHR). Each

sample provides seven replicates and a total of 45 million single-end RNA-Seq reads

of length 35 bps. The read counts for the MAQC dataset is obtained from 71 million

uniquely mapped reads calibrated by ReCounts [39]. Griffith’s dataset was made

from the qRT-PCR validation for the DE or alternatively expressed genes highlighted

by ALEXA-Seq [45]. It contains 96 and 198 million pair-end reads across two hu-

man colorectal cancer cell lines that only differ in fluorouracil resistance phenotypes.

To equilibrate sequencing depth in both samples, as done in [118], the read library

size is set to be about 100 million reads per condition. Raw RNA-Seq reads of the

MAQC dataset were downloaded from the SRA database [67] while the RNA-Seq

reads of Griffith’s dataset were downloaded from the FTP site of the ALEXA-Seq

website. The gene association across platforms was performed with BioMart [140].

Unmatched genes were discarded in downstream analysis steps. To obtain the read

counts for Griffith’s dataset, the raw RNA-Seq reads were aligned against the high-

coverage assembly of the human genome UCSC hg19 [81] using Tophat [121] where
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two mismatches were allowed and reads mapped to multiple locations were removed.

Finally, the read counts for each gene in Griffith’s dataset were summarized by using

the R packages GenomicFeatures and RSamtools from Bioconductor along with the

genome annotation information from Ensembl (version 60) [38] and only exonic reads.

For a fair comparison, a pseudo read count, 1, was applied to all genes with zero read

counts to avoid the divided-by-zero problem in some statistical calculations.

2.2.6 Evaluation Metrics

Following the assessment method of Bullard et al. [15], all our experimental

results are evaluated in terms of precision (PRE), PRE = TP/(TP + FP) × 100%,

and sensitivity (SEN), SEN = TP/(TP + FN) × 100%, where TP is the number of

true positives, FP the number of false positives and FN the number of false negatives.

To combine the two evaluation measures, the F-score (FS) [124], defined as FS = [2×

(PRE×SEN)/(PRE + SEN)]×100%, is used as a measure of the overall performance

of a prediction method in our tests.
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2.3 Experimental Results

2.3.1 Selection of Differential Gene Expression Analysis Meth-

ods

To compare our method with the existing gene differential analysis methods, the

same selection criteria proposed by Tarazona et al. [118] was followed. However,

Fisher’s exact test [36], which was compared in [118], was excluded here because its

performance was shown to be far lower than those of the other methods. At the end,

four methods including edgeR [101], DESeq [4], baySeq [46], and NOISeq [118] were

selected to be compared in our tests. Note that NOISeq has two versions, NOISeq real

and NOISeq sim, and the version NOISeq real is used in our experiments because

numbers of replicates in our simulated and real datasets are always greater than one.

Some reasonable cutoff values are required in these methods (except MRFSeq) to

decide the significance of a statistical difference measurement. To obtain comparable

performance analysis scenarios, the cutoff values adopted in the literature are applied

in our experiments. More specifically, the FDR 0.1 chosen in DESeq is used for

DESeq and edgeR. We choose the probability 0.8 and 0.999, as done in the work of

[118], for NOISeq and baySeq, respectively. Experiments at two levels of difficulty

are conducted to compare our method MRFSeq with the other selected methods. At

the first level, all read counts of the benchmark datasets are generated from the same

distribution as assumed in the simulation studies of DESeq. At the second level, all
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read counts of the genes are accumulated from the two real datasets, the MAQC and

Griffith’s datasets, and may contain low read counts. In addition to the comparisons

with the gene-level methods, MRFSeq is also compared with the recently published

transcript-level method Cuffdiff 2 on the two RNA-Seq datasets.

2.3.2 Simulation Studies

Simulation experiments

Our simulation experiments follow the framework in [133]. All gene sets associated

with the 186 KEGG pathways in MSigDB [117] were downloaded. The coexpression

networks of the 186 gene sets were then defined using COXPREdb [89] and they

formed 186 undirected graphs. A gene set was discarded if the number of the edges in

its coexpression network is less than the number of the nodes. After the filtration, 37

gene sets consisting of 2194 different genes were kept. The 37 coexpression networks

listed in Table 2.1 were merged as a global network consisting of 2194 nodes and

8512 edges. All the methods are tested at five different abundance levels of true

DE genes. The performance assessment is categorized into five classes, where each

class represents a abundance level interval of 10% such that the five classes cover

abundance levels of DE genes ranging from 0% to 50% as done in [133]. At each of

the five levels, we randomly choose 10 combinations of the pathways to form the sets

of true DE genes, while keeping the rest of the genes as true EE genes, such that the
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Table 2.1: The pathways used in the simulation study. Nodes and Edges represent
the number of nodes and edges in the coexpression network respectively.
Pathways Nodes Edges

KEGG ALLOGRAFT REJECTION 38 94
KEGG ALZHEIMERS DISEASE 169 791
KEGG ANTIGEN PROCESSING AND PRESENTATION 89 291
KEGG ASTHMA 30 40
KEGG AUTOIMMUNE THYROID DISEASE 53 120
KEGG CALCIUM SIGNALING PATHWAY 178 436
KEGG CARDIAC MUSCLE CONTRACTION 80 163
KEGG CELL ADHESION MOLECULES CAMS 134 244
KEGG CELL CYCLE 128 618
KEGG CITRATE CYCLE TCA CYCLE 32 40
KEGG COMPLEMENT AND COAGULATION CASCADES 69 139
KEGG DILATED CARDIOMYOPATHY 92 127
KEGG DNA REPLICATION 36 221
KEGG ECM RECEPTOR INTERACTION 84 141
KEGG ENDOCYTOSIS 183 201
KEGG FOCAL ADHESION 201 284
KEGG GRAFT VERSUS HOST DISEASE 42 113
KEGG HUNTINGTONS DISEASE 185 857
KEGG HYPERTROPHIC CARDIOMYOPATHY HCM 85 110
KEGG INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION 48 54
KEGG LEISHMANIA INFECTION 72 96
KEGG MAPK SIGNALING PATHWAY 267 321
KEGG MISMATCH REPAIR 23 56
KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY 137 235
KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION 272 487
KEGG NUCLEOTIDE EXCISION REPAIR 44 52
KEGG OOCYTE MEIOSIS 114 188
KEGG OXIDATIVE PHOSPHORYLATION 135 854
KEGG PARKINSONS DISEASE 133 801
KEGG PRIMARY IMMUNODEFICIENCY 35 52
KEGG PROTEASOME 48 291
KEGG RIBOSOME 88 2545
KEGG SPLICEOSOME 128 703
KEGG SYSTEMIC LUPUS ERYTHEMATOSUS 140 296
KEGG TYPE I DIABETES MELLITUS 44 97
KEGG T CELL RECEPTOR SIGNALING PATHWAY 108 129
KEGG VIRAL MYOCARDITIS 73 116
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Table 2.2: Comparison of different methods on simulated datasets. Levels shows the
range of the abundance levels of DE genes. Avg is the average percentage of DE genes
among the 10 test datasets at the level. Methods are the names of the methods

Levels Avg Methods PRE SEN FS
(%) (%) (%) (%)

[0,10) 5.7

MRFSeq 75.55(11.0) 71.99(12.8) 73.36(10.3)
baySeq 66.23(10.2) 53.49(4.3) 59.02(6.4)
DESeq 68.57(10.3) 47.78(4.7) 55.87(4.3)
edgeR 63.07(12.8) 57.07(2.9) 59.11(4.8)
NOISeq 50.04(17.3) 58.32(3.0) 52.29(9.3)

[10,20) 15.3

MRFSeq 71.70(4.1) 72.10(7.3) 71.70(4.4)
baySeq 68.70(3.1) 61.50(0.8) 64.90(1.4)
DESeq 73.60(3.0) 53.40(1.2) 61.80(0.7)
edgeR 74.00(3.5) 54.90(1.6) 63.00(0.4)
NOISeq 68.70(4.3) 55.90(0.7) 61.60(1.4)

[20,30) 22.2

MRFSeq 74.50(3.6) 72.20(5.1) 73.20(3.0)
baySeq 70.00(1.8) 63.10(0.8) 66.40(1.0)
DESeq 75.90(2.2) 53.60(0.5) 62.80(0.9)
edgeR 77.10(2.3) 52.80(0.8) 62.60(0.4)
NOISeq 75.90(2.5) 46.70(0.7) 57.80(0.6)

[30,40) 32.2

MRFSeq 77.50(2.5) 68.10(4.4) 72.40(3.1)
baySeq 71.00(1.1) 66.40(1.0) 68.70(0.9)
DESeq 78.90(1.4) 55.00(0.4) 64.80(0.6)
edgeR 79.70(1.4) 51.70(0.5) 62.70(0.2)
NOISeq 78.60(1.5) 45.20(0.7) 57.40(0.3)

[40,50) 41.7

MRFSeq 83.70(2.0) 70.90(2.2) 76.70(1.8)
baySeq 75.10(1.6) 68.90(1.6) 71.90(1.6)
DESeq 83.80(2.3) 55.70(0.3) 66.90(0.9)
edgeR 84.70(2.1) 50.30(0.4) 63.10(0.3)
NOISeq 83.80(2.3) 43.80(0.3) 57.50(0.4)
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percentage of the true DE genes is within the range of the level. The 10 different

combinations form 10 benchmark datasets and read counts are randomly obtained by

following the same steps for simulating read counts used in DESeq. The simulated

read counts range from 25 to 401. All the methods are applied to the 50 benchmark

datasets. The complete assessment on all 5 intervals is presented in Table 2.2. For

the convenience of the reader, the precision-sensitivity curves are also provided in

Figure 2.1 .
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Figure 2.1: The precision-sensitivity curves comparing the prdiction accuracy of all
methods on the simulated datasets in the interval [0,10) of true DE genes. Clearly,
MRFSeq has the best overall performance.

Comparisons of the methods on simulated data

MRFSeq has clearly the best F-scores (i.e., the overall performance) and signifi-

cantly improved sensitivity over the other methods. Its F-score is 14.2%, 6.8%, 6.8%,

3.7%, and 4.8% greater than the second best in the five interval while its improvement

on sensitivity is 13.6%, 10.6%, 9.1%, 1.7%, and 2%, respectively. Although baySeq

provides close sensitivity scores in the intervals [30,40) and [40,50), it fails to obtain

comparable precision scores and hence has an inferior overall performance. While

achieving a considerable improvement on sensitivity in the interval [0,10), MRFSeq
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improves the precision by at least 6.9%. In the other four intervals, MRFSeq’s pre-

cision is slightly lower than those of the other methods. The difference between the

precision of MRFSeq and the best precision in these intervals is 2.3%, 1.4%, 2.2%,

and 1%, respectively, which are actually smaller than the standard deviations. The

standard deviations of the sensitivity and F-score of MRFSeq are greater than the

standard deviations of the other methods. This is because the performance of MRF-

Seq is somewhat correlated to the topological distributions of the true DE genes on

the coexpression network. The amount of improvement achieved by MRFSeq may

vary depending on the topological distribution. Nevertheless, the simulation results

demonstrate that coexpression data could help improve differential gene expression

analysis by increasing the coverage of true DE genes significantly.

2.3.3 Performance on Real RNA-Seq Data

Experiments on the MAQC dataset

In addition to the previous simulation study, the performance for inferring DE

genes is assessed on the MAQC dataset. Previously, [118] tested the selected meth-

ods on different numbers of replicates (or lanes), from 2 replicates to 7 replicates per

condition, in the MAQC dataset to see how sequencing depth would affect the per-

formance of the methods. The results indicated that increasing the sequencing depth

would decrease the precision of all selected methods except NOISeq. To compare

the performance and understand how the precision of MRFSeq would change as the
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sequencing depth increases, the experiments designed by Tarazona et al. are used in

our work. Different numbers of replicates are considered such that the read library

size varies from 14 to 45 million reads in each of the two samples. The expression

levels of the genes in the MAQC dataset were measured by the normalized threshold

cycle values (CT) of qRT-PCR. To validate the true DE genes of the MAQC dataset,

a gene is defined as a true DE gene if the log2 fold change ratio (LR) of its CT values

is greater than a certain threshold b, e.g., 0.5 or 2, while a gene is a true EE gene if its

LR is smaller than threshold a, e.g. 0.2 [15]. Any gene whose LR is between the two

thresholds a and b is considered as a borderline gene. In the previous studies, all bor-

derline genes were discarded [15, 118]. Due to the detection limitation of qRT-PCR,

lowly expressed genes may be absent in some of the qRT-PCR assays. A gene that

was detected in at least one of the qRT-PCR assays would also be removed if it failed

to appear in at least three fourths of the qRT-PCR assays [15]. Different from the

previous studies, we do not throw away those borderline genes. To further test the

inference power on genes with low read counts, lowly expressed genes are also kept in

our experiments. This gives us a total of 836 genes. We define a gene as a true DE

gene if its LR is larger than the threshold b. Otherwise, the gene is a true EE gene.

There are 669 true DE genes when the threshold b is set to be 0.5 and 373 true DE

genes when b is 2.0. The coexpression network of the 836 genes forms a graph of 836

nodes and 2426 edges. All the methods are tested at these two different abundance

levels (or LR values) of DE genes. The prediction results are again assessed in terms
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of precision, sensitivity and F-score as summarized in Figure 2.2.

Comparison of the performance on the MAQC dataset

Similar to the results in the simulation study, MRFSeq achieves significantly im-

proved sensitivity scores and F-scores at both abundance levels of true DE genes. The

improvement on sensitivity is at least 9.2% and 8.8% for all sequencing depths con-

sidered when b=0.5 and 2, respectively. While achieving the best sensitivity scores,

the precision scores of MRFSeq are also comparable to the precision of the others

except NOISeq who exhibits extremely high precision. Note that although NOISeq

has the best precision among all methods, its sensitivity is much lower than the scores

of the others and its overall performance (as measured by F-score) suffers from this.

As the sequence depth increases, the precision of NOISeq remains stable while all

other methods lose some precision. The precision of DESeq drops 4.0% and 4.7%,

respectively, for the two values of b, when the number of replicates increases from

two to seven. The decrease in precision is 5.4% and 6% for baySeq while edgeR loses

2.0% and 2.6%. At the same time, the precision of MRFSeq only decreases 1.6% and

2.8%. The relative small loss of the precision for MRFSeq can be explained by the

fact that many false positives, if not predicted at a strong confidence level, could be

eliminated by MRFSeq using the coexpression information. Hence, these results on

the MAQC dataset show that coexpression information not only helps gaining more

coverage of the true DE genes but also keeps precision relatively stable against the
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increase of sequencing depth. Moreover, it could help reduce our reliance on deeply

covered RNA-Seq data in differential gene expression analysis.

Taking confidence scores into consideration

Like the FDRs of DESeq and edgeR or the prior probability of baySeq and NOISeq,

MRFSeq estimates the confidence (i.e., marginal probability) for each predicted DE

gene and a confidence threshold can be applied to select DE genes for the output

(instead of following the MAP estimation algorithm). We are interested in the per-

formance of MRFSeq on the MAQC dataset when different thresholds are applied to

the confidence. To calculate the confidence scores, the loopy belief propagation algo-

rithm is run on all 7 replicates in the MAQC dataset. To compare the performance

of MRFSeq with the other methods, a precision-sensitivity curve where each point

represents the precision and sensitivity under a certain threshold, is depicted for each

of the selected methods, as done in [118]. To depict the precision-sensitivity curves

for DESeq and edgeR the range of the FDR threshold from 10−6 to 1 is selected.

Note that this range for FDR cutoffs covers all the threshold values used in practice

and these FDR thresholds yield sensitivity values between 45% and 100%. For the

other methods that do not use FDRs, equivalent thresholds that lead to sensitivity

within the same range, i.e., 45% to 100%, are applied to draw the precision-sensitivity

curves. The precision-sensitivity curves in Figure 2.3 show that, in general, MRFSeq
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Figure 2.3: Comparison of the methods when different confidence thresholds are
applied. Plots (a) and (b) show the precision-senitivity curves when the LR threshold
b is set as 0.5 and 2.0, respectively.

provides more accurate confidence scores than the other methods. Note that un-

like the MAP estimation algorithm, using the marginal probabilities obtained by the

loopy belief propagation algorithm to infer DE genes requires additional knowledge

to choose an approproate confidence (marginal probability) threshold. Besides, the

loopy belief propagation algorithm is a heuristic and thus does not guarantee correct

marginal probabilities. Hence, MRFSeq uses the MAP estimation to select DE genes

and the loopy belief propagation algorithm only to estimate the confidence score of

each selected DE gene.

Comparisons of the performance on Griffith’s dataset

The qRT-PCR data of Griffith’s dataset consists of 193 exons assays on 94 protein

coding genes. Different to the LR of the MAQC dataset, a two-tailed t-test was

40



applied to identify the true DE genes from the qRT-PCR data of Griffith’s dataset.

A p-value of the t-test was considered significant if it is smaller than 0.05 [45]. Under

this criterion, 83 true DE genes and 11 true EE genes are identified and used in

testing the selected methods. The coexpression network of the 94 genes extracted

from COXPREdb forms a graph of 94 nodes and 25 edges. The performance of the

methods on Griffith’s dataset is shown in Table 2.3. MRFSeq still has the best overall

performance, although its improvement over the other methods is not as significant as

on the MAQC data. Please see the supplementary materials for a detailed discussion.

Its sensitivity is 1.2% better than the second best. The prediction accuracy of all

the methods on this dataset is generally higher than those in the previous tests on

the MAQC data. Because Griffith’s dataset was made from the DE or alternatively

expressed genes selected by ALEXA-Seq [45], the difference of read counts between

the two conditions is more apparent and hence the inference task becomes easier.

However, at the same time, the room for improvement gets smaller. There are only

25 pairs of coexpressed genes in this dataset according to COXPREdb[89]. The large

independence of gene expression makes it hard for MRFSeq to achieve an improved

performance. Nevertheless, MRFSeq still outperforms the other methods in the test,

although the difference between the F-score of MRFSeq and the second best is not

as significant as on the MAQC data.
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Table 2.3: Comparison of the prediction accuracy on Griffith’s dataset. TP is the
number of true positives and PP is the number of predicted positives.

Methods TP PP PRE(%) SEN(%) FS(%)
MRFSeq 80 90 88.9 96.3 92.4
baySeq 74 81 91.3 89.1 90.2
DESeq 79 89 88.7 95.1 91.8
edgeR 73 84 86.9 87.9 87.4
NOISeq 57 60 95.0 68.7 79.7

2.3.4 Performance on Genes with Low Read Counts

Genes with low read counts

To understand how the methods perform on genes with different read count levels,

the prediction on the real datasets is further analyzed. The genes in the datasets are

separated into two classes, genes with low read counts and genes with decent read

counts. In [15], a gene is said to have a low read count if it has fewer than 10 reads

in every replicate of the two conditions. Otherwise, the gene is said to have a decent

read count. Since Griffith’s dataset contains only genes with decent read counts, we

consider the MAQC dataset only below. Among the 836 genes in the MAQC dataset,

there are 453 genes with low read counts and 383 genes with decent read counts.

The methods baySeq and NOISeq provide an additional option for normalizing gene

lengths. These two methods with normalized gene lengths are denoted as baySeqlen

and NOISeqlen, respectively. To further study the effect of the normalization on genes

with low read counts, baySeqlen and NOISeqlen are also applied to the MAQC dataset.

By choosing a threshold of b = 0.5 for the LR values, the prediction results on genes

with low read counts by different methods are compared in Table 2.4.
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Table 2.4: Comparison of the prediction results on genes with low read counts. RTPl/h

is the ratio of true positives with low read counts over the true positives with high
read counts. RPPl/h is the ratio of predicted positives with low read counts over the
predicted positives with high read counts.

Methods aRTPl/h(%) bRPPl/h(%) PRE(%) SEN(%) FS(%)
MRFSeq 43.1 42.7 84.8 38.8 53.3
baySeq 6.8 6.2 100.0 5.5 10.4
baySeqlen 7.4 6.8 100.0 6.1 11.5
DESeq 12.5 13.0 82.6 11.0 19.4
edgeR 13.0 13.3 83.3 11.6 20.4
NOISeq 0.0 0.0 - 0.0 -
NOISeqlen 4.5 5.0 84.6 3.2 6.1

Significant improvement on genes with low read counts

On the genes with low read counts, the sensitivity of MRFSeq is 38.8% while

the second best sensitivity is only 11.6%. Similarly, MRFSeq achieves an F-score of

53.3% while the second best F-score is only 20.4%. In addition to these significant

improvements, the prediction of MRFSeq shows a more balanced pattern between

genes with low read counts and genes with decent read counts. The RTPl/h of MRFSeq

is 43.1% while its RPPl/h is 42.7%. The second best RTPl/h and RPPl/h are only

13.0% and 13.3% (obtained by edgeR). This result shows that all the other methods

are quite biased against genes with low read counts. Most of their predicted DE genes

are from the genes with decent read counts. After applying the normalization of gene

lengths on genes with low read counts, the performance of baySeq and NOISeq is

slightly improved. However, the length normalization does not really improve the

overall performance on genes with low read counts much or correct the selection bias.
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2.3.5 Comparison with Cuffdiff 2

Different from gene-level methods that use raw read counts, Cuffdiff 2 requires the

mapping of reads to the given transcripts of genes as input to call differential gene

expression [123]. To assess the performance of Cuffdiff 2 on the MAQC and Griffith’s

datasets, the RNA-Seq reads of the two real datasets are mapped to the annotated

transcriptome UCSC hg19 using Tophat as done in [123]. The same threshold 0.1 for

the FDR values is used to call DE genes for Cufflink 2. The prediction accuracies

of MRFSeq and Cuffdiff 2 on the two datasets are summarized in Table 2.5, with

the LR threshold b = 2 and the cutoff p-value 0.05 for the MAQC and Griffith’s

datasets, respectively. The precision-sensitivity curves also are illustrated in Figure

2.4. The table shows that MRFSeq has a signicantly better F-score (and thus overall

performance) by achieving a higher sensitivity, while Cuffdiff 2 achieves a better

precision. The precision-sensitivity curve also suggests that MRFSeq has a better

overall performance than Cuffdiff 2 when we consider the full spectrum of FDR or

restricting the FDR value to at most 0.1. A detailed analysis shows that Cuffdiff 2

predicts fewer true DE genes with relatively small LR values than MRFSeq. In the

MAQC dataset, there are 290 true DE genes with the LR values from 0.5 to 2. The

prediction of MRFSeq covers 171 of the 290 genes while Cuffdiff 2 can only detect

140 of the true DE genes. In Griffith’s dataset, 9 true DE genes are associated with

p-values, which measure the significance of the difference between the LR values, from

0.005 to 0.001. All of the 9 true DE genes are predicted by MRFSeq, but Cuffdiff 2
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Figure 2.4: The precision-sensitivity curves assess the prdiction performance of MRF-
Seq and Cuffdiff 2 on the MAQC dataset. The dotted line shows the sensitivity value
corresponding to the common FDR threshold 0.1. Note that sensitivity increases with
FDR, and thus the region to the left of the dotted line might be more interesting in
practice.

Table 2.5: Comparison of the prediction accuracy with Cuffdiff 2.

Datasets Methods PRE(%) SEN (%) FS (%)

MAQC
MRFSeq 46.9 95.7 63.0
Cuffdiff 2 59.3 61.3 60.3

Griffith’s
MRFSeq 84.6 93.9 89.0
Cuffdiff 2 96.9 37.2 53.8

could only identify 4 of the DE genes. This result is consistent with the discussion in

[123]. In general, Cuffdiff 2 may report fewer DE genes with relatively low LR rates

because of its control of variance in expression owing to fragment count uncertainty.

2.3.6 Consistency of Predictions by DESeq and MRFSeq

A gene is defined to be incorrectly inverted if its DE state is correctly predicted

by using RNA-Seq data alone but incorrectly predicted by MRFSeq. Although our
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above results demonstrate that utilizing the prior knowledge of gene coexpression

significantly improves the overall accuracy of differential gene expression analysis and

helps to alleviate the bias against genes with low read counts, it raises the question if

the prior knowledge might introduce some new prediction biases. In this subsection,

we estimate the number of incorrectly inverted genes in the prediction of MRFSeq

compared with prediction by a popular RNA-Seq based method DESeq and analyze

the types of genes in coexpression networks that are more likely to be incorrectly

inverted. The detailed prediction results of DESeq and MRFSeq on our above sim-

ulation and real datasets are compared. In the 40 simulation benchmark datasets,

only 3092 of the 73619 (4.2%) correctly predicted genes by DESeq are incorrectly

inverted by MRFSeq. In the MAQC and Griffith’s datasets, only 16 (3.5%) and 0

(0%) genes correctly predicted by DESeq are incorrectly inverted by MRFSeq, re-

spectively. Generally, most of the correctly predicted genes by DESeq remain correct

in the MRFSeq prediction. Moreover, we observe that the incorrectly inverted genes

tend to have higher edge degrees in gene coexpression networks than the other genes.

The comparison of the average edge degree of all genes and that of the incorrectly

inverted genes in gene coexpression networks is shown in Figure 2.5. The significance

of the difference between the edge degrees is confirmed by using one-tailed t-test [42].

The p-value of the t-tests on the simulation and MAQC datasets are 5.1× 10−14 and

5.1 × 10−4, respectively. However, since gene coexpression networks usually possess

the well-known scale-free property, only a small number of genes have high edge de-
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Figure 2.5: Comparison of the average edge degrees of incorrectly inverted genes and
all genes in the coexpression networks used in the simulated and MAQC dataset.
Savg is the average edge degree of all genes in the coexpression networks used in the
simulation while Si.i. is the average edge degree of all incorrectly inverted genes. Mavg

is the average edge degree of all genes in the coexpression networks used in the MAQC
datasets while Mi.i. is the average edge degree of the incorrectly inverted genes.

grees [115, 17]. This property should limit the number of incorrectly inverted genes,

and thus most of the DE or EE genes correctly predicted based on RNA-seq data

alone (by, e.g., DESeq) are well preserved in the result of MRFSeq.

2.4 Conclusion

In this work, we have proposed a new statistical method, MRFSeq, that combines

both RNA-Seq data and coexpression information and obtains a MAP estimation of

the differentially/equally expressed genes efficiently. The improvement benefits from
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our graphical model is assessed by comparing MRFSeq with a simple method, called

SimpleNetwork, that uses the median of the DESeq FDR values of each gene and its

neighbors in the coexpression network as the predicted FDR for the gene. SimpleNet-

work is run on the MAQC dataset and the precision-sensitivity curves of MRFSeq,

SimpleNetwork and DESeq are shown in Figure 2.6. The results demonstrate that,

even for a simple method like SimpleNetwork, the introduction of coexpression data

improves the performance of calling DE genes. However, the accuracy of SimpleNet-

work is much worse than that of our graphical model MRFSeq. This is because the

correlation coefficients in the gene coexpression data are not fully utilized and the

reliability of each predicted FDR value is not taken into account.

Using extensive experiments on both simulated and real data, we have shown that

MRFSeq is able to take advantage of coexpression information and this additional

piece of information can help provide a more accurate and less biased differential gene

expression analysis. Clearly, our improved performance (especially on genes with low

read counts) critically depends on the existence of a high quality gene coexpression

network. To investigate how much the performance of MRFSeq will be deteriorated

when the gene coexpression networks contains incorrect coexpression relationship, we

modified the coexpression network of the MAQC dataset by randomly inserting 10%

to 30% additonal edges into the network or deleting 10% to 30% random edges from

the network. The weight of an added edge is randomly and uniformly drawn from

0.5 to 1. The performance of MRFSeq on the resulting networks are summarized
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Figure 2.6: Precision-sensitivity curves for comparing the prediction accuracy of
MRFSeq and SimpleNetwork on the MAQC dataset with the LR values (a) b=0.5
and (b) b=2.
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Table 2.6: Performance assessment of MRFSeq on gene coexpression networks ob-
tained by adding random edges. Edge is the percentage of randomly added edges

aEdges bTP cPP PRE (%) SEN (%) FS (%)
0 445 528 84.28 66.51 74.35
10 447 537 83.24 66.51 73.94
20 457 595 76.80 68.31 72.31
30 456 624 74.67 68.16 71.26

Table 2.7: Performance assessment of MRFSeq on the gene coexpression networks
obtained by deleting random edges. Edge is the percentage of randomly deleted
edges

aEdges bTP cPP PRE (%) SEN (%) FS (%)
0 445 528 84.28 66.51 74.35
10 441 520 83.24 65.91 74.17
20 429 505 84.95 64.12 73.07
30 419 493 84.98 62.63 72.11

in Table 2.6 and 2.7. Clearly, the deletion of random edges introduced mainly false

negatives while the addition of random edges introduced more false positives.

Finally, MRFSeq uses the DE analysis results of DESeq. It would be interesting to

study how MRFSeq performs when the DE analysis results of other tools are used in-

stead. To demonstrate the flexibility of MRFSeq so that MRFSeq can incoporate with

different differential gene expression analysis tools, the variant of MRFSeq, denoted

as MRFSeq NOISeq, that uses the results from NOISeq instead of DESeq is imple-

mented. In MRFSeq NOISeq, we set Pr(xi = 0|yi) = yi , where yi is the prior proba-

bility provided by NOISeq. Both MRFSeq and MRFSeq NOISseq are run on a simu-

lated dataset from the interval [0,10) of true DE genes and on the MAQC dataset with

the LR threshold b=0.5. The precision-sensitivity curves in Figure 2.7 illustrate that

the introduction of coexpression data using our probabilistic graph model can improve

50



the prediction accuracy of both DESeq and NOISeq. On the MAQC dataset where

NOISeq outperforms DESeq, the performance of MRFSeq NOISeq is better than that

of MRFSeq. On the simulated dataset where DESeq outperforms NOISeq, the perfor-

mance of MRFSeq is better than that of MRFSeq NOISeq. We will make the version

MRFSeq NOISeq available to the user on the website in the near future. We plan to

make MRFSeq flexible so it can be combined with any DE analysis tool in the near fu-

ture. Our experiments used COXPREdb [89], which consists of coexpression data for

seven model organisms. One could also consider using other sources of coexpression

data such as ACT [77]), ATTED-II [88], CSB.DB [113], CoP[91], etc. or contructing

custom gene coexpression networks from publicly available expression data such as

GEO (http://www.ncbi.nlm.nih.gov/geo/), ENCODE (http://encodeproject.

org/ENCODE/), modENCODE (http://www.modencode.org/), etc., especially for or-

ganisms (or tissues) not covered by COXPREdb. Moreover, the threshold ρ used for

extracting pairs of coexpressed genes from a given gene coexpression network may

also have an impact on the performance of our algorithm. We set ρ = 0.5 empirically

in our experiments based on the literature [95, 131] and some preliminary tests on

the MAQC data. Clearly, a higher ρ may decrease the sensitivity of MRFSeq while

a lower ρ may decrease the precision of MRFSeq. We plan to explore the impact

of different coexpression networks (including the choice of ρ) on the performance of

MRFSeq and study automatic methods for choosing an optimal ρ in future work.
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Figure 2.7: Precision-sensitivity curves for comparing the prediction accuracy of
MRFSeq NOISeq, MRFSeq, DESeq, and NOISeq on the (a) simulated and (b) MAQC
datasets.

52



Chapter 3

SDEAP: A Splice Graph Based
Differential Transcription
Expression Analysis Tool for
Population Data

3.1 Introduction

Understanding the relationship between genetic (or epigenetic) variation and tran-

scriptional regulation is a major goal in many large-scale genomic analysis. [19, 123]

In recent years, RNA-Seq has taken a major role in the quantitative analysis of tran-

script expression and variant discovery, and become a vital component of genomic

and transcriptomic research [122]. Studying the regulation of transcripts in biological

processes of interests requires sensitive and specific detection of changes in transcript

abundance. Earlier differential expression methods such as DESeq and edgeR detect

changes in the absolute abundance of genes [4, 101]. Recently, several differential tran-

script expression (DTE) analysis methods, such as Cuffdiff 2 [123], DEXSeq [3] and
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ALEXA-Seq [45], report genes that have differentially expressed transcripts whose

abundance values alter between biological conditions. Along with a list of differen-

tial expressed genes, DEXSeq and ALEXA-Seq provide differentially expressed exons

and alternative splicing events, respectively, to indicate where the expression of tran-

scripts diverges. Cuffdiff 2 further infers the absolute abundance of transcripts to

portrait the comprehensive alternation in transcript expression. In addition to the

DTE methods, differential splicing (DS) analysis methods, such as MISO [57], FDM

[109], MATS [106], and DiffSplice [50], are focused on identifying difference in rela-

tive abundance of transcripts. Note that a change in the absolute abundance of a

transcript may result from a change in the basal expression level of the corresponding

gene or its splicing ratio. In other words, DTE methods should be able to discover DS

events but not vice versa. Nevertheless, these DTE or DS methods provide precious

transcriptomic information useful to many down-stream applications.

These DTE or DS methods are developed to compare the expression of tran-

scripts between two biological conditions. The requirement of predefined biological

conditions restricts their applications to case-control studies only. However, the DTE

and DS analysis may also find many find important applications in population based

studies, where predefined conditions are unavailable a priori. For example, a recent

population study to improve the diagnosis and prognosis for breast cancer shows that

triple-negative breast cancer can be further classified into six subtypes based on differ-

ential analysis of the expression profiles of patients [66]. Each of the six subtypes has
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different sensitivities to targeted therapies. Moreover, to understand the functions

and mechanisms during cell development or differentiation, differentially expressed

transcripts are used to characterize cell types or specificity in a mixed population

[13, 14, 120]. Due to the emergent demand for computational tools for DTE and DS

analysis in population data, several methods have been proposed recently. SIBER

and DEXUS test differential expression at the gene level by looking at the numbers

of reads mapped to individual genes [119, 63]. An extended protocol of DESeq2 has

been published recently to identify differentially expressed genes for single-cell RNA-

Seq data [13]. SigFuge compares the areas under normalized read-depth curves to

call DS genes [61]. To the best of our knowledge, there is no DTE analysis tool in

the literature for population data without predefined biological conditions. Hence, in

this paper, we present the first DTE analysis method, called SDEAP, that discovers

genes with differentially expressed transcripts and the corresponding alternative splic-

ing events on samples without predefined biological conditions. Note that alternative

splicing events could be valuable in down-stream applications on their own right, e.g.

as biomarkers in several cancer studies [139, 23, 127].

As observed in SigFuge [61], the numbers of reads mapped to individual exons

can be used as the input of DEXUS to conduct DTE analysis and identify genes

with differential transcript expression (i.e., DTE genes). Although this modified

version of DEXUS, denoted as DEXUSexon, can regarded as a DTE analysis method,

its prediction results do not directly suggest how and where transcription diverges
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in the population. To address this problem, a graphical data structure, called the

splice graph, is used to model the structures and expression of all transcripts of a

gene such that alternative splicing events can be represented by decomposing the

graph into alternative splicing modules (ASMs) as originally proposed in DiffSplice

[50]. However, the graph modular decomposition algorithm proposed in DiffSplice is

not used because we have found a counterexample, discussed in Section 3.2.1, to its

correctness. A corrected algorithm is provided in this manuscript and implemented

in SDEAP.

Generally, there are two main steps in differential expression analysis without

predefined conditions [61]. The first is to cluster the individuals in a population

based on some numerical features used to summarize the expression of each gene

(or transcript), called expression features (e.g., read counts of genes in DEXUS and

areas under normalized read-depth curves in SigFuge), and then test the statistical

significance of the difference between the features in different clusters for each gene.

However, both DEXUS and SigFuge assume that the input population consists of only

two groups and always cluster the individual into two clusters. This assumption is

unrealistic in many applications and an incorrect partition of individuals may lead to

unreliable conclusions of differential expression tests. Hence, in SDEAP, the numbers

of clusters in population data are not predefined and learned from the data by using

Dirichlet infinite mixture models. This robust clustering method helps improve the

performance of our method, as demonstrated in our experiments. Moreover, methods
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accounting for variability due to outliers across biological or technical replicates of

an RNA-Seq experiment have been utilized to reduce the number of false positives

in differential expression analysis [4, 101, 13]. To control false positives, a similar

regression model proposed in DESeq and edgeR is used in SDEAP to dynamically

estimate the observed variance due to outliers across individual genes.

To assess the prediction accuracy of SDEAP, several computational experiments

on both simulated and real data are conducted to compare SDEAP with DEXUSexon.

SIBER is excluded from our comparisons because DEXUS has been proved to signif-

icantly outperform SIBER and, moreover, SIBER can only be run on large datasets

of more than 50 RNA-Seq samples [119]. We simulated RNA-Seq data that reflect

the variance and noise in real RNA-Seq data. In our simulated experiments, SDEAP

showed better control of false positives, achieved the best overall performance and

retained robustness on noisy data that contain outliers often seen in single-cell RNA-

Seq data. More specifically, on simulated standard and single-cell RNA-Seq data,

SDEAP outperformed DEXUSexon by 0.17 in the area under precision-recall curve

(or AUCpr) on average. On these data, DEXUSexon achieved lower accuracy with

much higher false positive rates. Moreover, its performance dropped significantly

when the population consists of groups with skewed sizes or the number of groups is

greater than two. Although DS analysis is not the main purpose of SDEAP, we com-

pared it with SigFuge in the detection of changes in relative abundance of transcripts

by repeating the simulated experiments in SigFuge [61]. SDEAP discovered more DS
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genes than SigFuge without producing any false positives. To further demonstrate

the value of SDEAP in biological applications, we downloaded three real RNA-Seq

dataset, one standard RNA-Seq dataset from breast cancer patients and two single-

cell RNA-Seq datasets, and used the alternative splicing events found by SDEAP as

biomarkers to classify cancer subtypes, cell types and cell-cycle phases. The clas-

sification of RNA-Seq samples using the alternative splicing events from SDEAP is

much more consistent with the real biological conditions (i.e., cancer subtypes, cell

types and cell-cycle phases). SDEAP outperformed DEXUSexon by 0.28 and 0.13 in

Jaccard index for classifying cancer subtypes and cell-cycle phases, respectively. The

prediction results of the both methods are also compared to qPCR validations of

gene expression. More validated DTE genes are covered by the prediction of SDEAP.

These experimental results show that SDEAP performs DTE analysis well on real

population data.

3.2 Methods

A splice graph is a data structure that represents the structures and abundance

of the transcripts (or isoforms) of a gene. In the literature, there are slightly different

definitions of splice graphs. Here, we follow the definition of splice graphs used in

DiffSplice [50]. An expressed segment is an exonic region delimited by two exon

boundaries. Note that an expressed segment does not necessarily correspond to a

whole exon. An exon can be split into several expressed segments due to its alternative
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splicing sites. A splice graph G(V ∪ {s, t}, E) of a gene g is a weighted and directed

acyclic graph where every vertex v ∈ V denotes an expressed segment Rv. For every

pair of vertices u and v, there is a directed edge (u, v) from u to v if the expressed

segment Rv immediately follows Ru in some transcript of the gene g. In addition

to the vertices V representing expressed segments, two artificial vertices s and t are

included in G to indicate the beginning and end of all transcripts of the gene g,

respectively. The vertex s is connected to every vertex corresponding to the very

first expressed segment of a transcript of the gene g and every vertex denoting the

last expressed segment of a transcript is connected to t. Thus, every (s, t) path in G

represents a transcript of g. In SDEAP, we assume that splice graphs are provided as

the input. Given all RNA-Seq reads mapped to the gene g in an RNA-Seq sample,

the weight of a vertex v, w(v), is defined as the number of reads mapped to the region

Rv and the weight of the edge (u, v), w(u, v), is the number of reads that span the

two expressed segments Ru and Rv.

A vertex u ∈ V pre-dominates a vertex v ∈ V if every path from the artificial

vertex s to v contains u. The vertex u is called a pre-dominator of the vertex v. A

vertex w ∈ V post-dominates a vertex v ∈ V if every path from v to the artificial t

contains w. The vertex w is called a post-dominator of the vertex v. An ASM (or

alternative splicing module) is an induced subgraph H(s1, t1) = {VH , EH , s1, t1} of

G with the entry s1 and the exit t1 outside H that satisfies the following conditions

[50]: (1) (Single entry) All edges from (G−H) to H come from s1; (2) (Single exit)
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All edges from H to (G−H) go to t1; (3) (Alternative paths) Let d+(u) denote the

number of outgoing edges from the vertex u and d−(u) the number of incoming edges

of u. Then d+(s1) > 1 and d−(t1) > 1; (4) (Minimality) There does not exist a vertex

v ∈ VH , such that v post-dominates s1 or pre-dominates t1 in H(s, t). Moreover, an

ASM H1(t1, s1) can be a subgraph of another ASM H2(t2, s2). If there is no ASM

that contains H1 and is contained by H2, H1 is said to be immediately contained by

H2. By the definition of ASMs, an ASM is allowed to be only immediately contained

by one another ASM such that the containment of ASMs can be represented as a

tree that is called the hierarchy tree T of ASMs. In the hierarchy tree T , H1(s1, t1)

is said to be a child ASM of H2 and H2 is the parent ASM of H1. The abstraction

of an ASM H2(s2, t2) is a graph obtained by replacing every child ASM H1(s1, t1) of

H2(s2, t2) with an artificial edge (s1, t1). An ASM path is a path from s2 to t2 in the

abstraction of an ASM H2(s2, t2).

3.2.1 Discovery of ASMs

In this subsection, we present a modular decomposition algorithm to identify all

ASMs of an input graph G and construct the hierarchy tree of the ASMs. In this

algorithm, every ASM is discovered before its parent and then shrunk into an artificial

edge right after being identified such that the parent of the shrunk ASM is known

when the ASM that contains the artificial edge is being discovered. The discovery

of an ASM H1(s1, t1) hinges on locating its entry s1 and exit t1. When the entry s1
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and exit t1 are anchored, the ASM H1 is the union of the paths from s1 to t1. The

out-degree of every entry s of an ASM is greater than 1. For every vertex u with

the out-degree d−(u) > 1, u is a candidate of an entry of some ASM. Similarly, for

every vertex v with the in-degree d+(v) > 1, v is a candidate of the exit of an ASM.

Given a candidate entry-exit pair (u, v), we check if u and v are the entry and exit

of an ASM by verifying whether the union of the paths from vertex u to vertex v

satisfies the four properties of an ASM. If the subgraph is an ASM H(u, v), shrink

H(u, v) into an artificial edge connecting vertex u and v. For an ASM H1(s1, t1) and

its parent ASM H2(s2, t2), as long as the pair (s1, t1) is tested before the pair (s2, t2),

H1(s1, t1) is ensured to be identified before its parent ASM H2(s2, t2). This can be

done by enumerating all candidate entry-exit pairs in the following order.

Assume that all vertices of the input splice graph G are sorted by topological sort

[20]. Let β be the topological order of vertices and β(u) the index of vertex u in the

order. If there is a path from vertex u to vertex v, β(u) > β(v). For every ASM

H1(s1, t1) whose parent is H2(s2, t2), if all vertices are traversed in the order of β, the

exit t1 of H1 must be traversed before the exit t2 of its parent H2, i.e., β(t1) < β(t2).

Let β̄ be the reverse of the topological order β. If all vertices of G are traversed in the

order of β̄, the entry s1 of the ASM H1(s1, t1) is always traversed before the entry s2

of the parent ASM H2(s2, t2), i.e., β̄(s1) < β̄(s2). Moreover, for any ASM H(s1, t1),

it follows from an ASM that β(s1) < β(t1). Hence, all candidates of the entry are

traversed in the order of β̄. When a candidate entry u of some ASM is visited, for
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every candidate exit v such that β(v) > β(u), v is chosen in the order of β to pair up

with u as a candidate entry-exit pair (u, v). In this order of enumerating candidate

entry-exit pairs, for every ASM H1(s1, t1) and its parent H2(s2, t2), the candidate

entry-exit pair (s1, t1) is always tested before (s2, t2). Thus, every ASM is guaranteed

to be identified before its parent.

The time complexity of topological sorting is linear in the number of vertices

and edges, i.e., O(|V | + |E|). Enumerating all candidate entry-exit pairs takes time

O(|V |2). For every candidate entry-exit pair (u, v), the union of the u − v paths

is verified as an ASM by checking the conditions (1) and (2) in the ASM definition,

which requires O(|V |+ |E|) time. Therefore, the time complexity of identifying ASMs

from a splicing graph G is O(|V |3 + |V |2|E|).

We have discovered a counterexample to the graph modular decomposition algo-

rithm used in DiffSplice [50]. Before presenting the counterexamples, we first describe

the algorithm below for completeness. Let the input splice graph be G(V ∪{s, t}, E).

A vertex u ∈ V pre-dominates a vertex v ∈ V if every path from the artificial vertex

s to v contains u. The vertex u is called a pre-dominator of the vertex v. A vertex

w ∈ V post-dominates a vertex v ∈ V if every path from v to the artificial t contains w.

The vertex w is called a post-dominator of the vertex v. A vertex u ∈ V immediately

pre-dominates a vertex v ∈ V if there is no vertex p ∈ V, y 6= u that pre-dominates

v on the paths from u to v. Similarly, A vertex w ∈ V immediately post-dominates

a vertex v ∈ V if there is no vertex q ∈ V, y 6= u that post-dominates v on the paths
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from v to w. In the graph modular decomposition algorithm of DiffSplice [50], all

edges are ordered such that edge (u, v) is said to be greater than (u′, v′), denoted as

(u, v) > (u′, v′) if and only if there exists a directed path from u to u′ and a directed

path from v′ to v. An edge (u, v) is called a maximal edge in a subgraph H of G if

there is no edge in H greater than (u, v).

According to the pseudocode given in [50], the graph modular decomposition

algorithm consist 3 steps and decomposes the input splice graph recursively in a

top-down fashion. The first step is to calculate all immediate pre-dominators and

post-dominators for every vertex. To achieve this, it enumerates every vertex u with

d+(u) > 1 (or d−(u) > 1) as a candidate of the entry (or exit) of an ASM, respectively.

The second step is to enumerate every candidate of the entry. For every candidate u

of the entry, u is paired up with a candidate v of the exit where v is an immediate

post-dominator of u. The subgraph H(u, v) bounded by the vertices u and v is a

candidate ASM. However, the exit of an ASM is not necessarily a post-dominator of

the entry. Hence, in the third step, the maximal edges Emax of H(u, v) are removed

from H(u, v). The above three steps are then repeated on the reduced subgraph

H(u, v)/Emax recursively until no more ASMs are detected.

A counterexample is given in Figure 3.1(a). The splice graph in the figure contains

three ASMs: H(v1, v8), H(v1, v6) and H(v1, v7). However, we can show that DiffSplice

is unable to identify the ASMs H(v1, v6) and H(v1, v7). Note that vertex v8 is the only

post-dominator of vertex v1. In the very first iteration, v1 is paired up with v8 such
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that Emax = {(v1, v3), (v1, v5), (v2, v6), (v4, v7)}. Figure 3.1(b) shows H(u, v)/Emax

after deleting Emax from H(v1, v8), which is used as the input graph in the second

iteration. Except for v1 and v8, every vertiex now has only one in-coming and one

out-going edge. No vertex will be considered as the entry of a new ASM and hence the

ASM H(v1, v6) and H(v1, v7) will not be discovered. Therefore, the graph modular

decomposition algorithm in DiffSplice fails to detect all ASMs in this counterexample.

Figure 3.1: A counterexample to the graph modular decomposition algorithm used
in DiffSplice. Plot (a) shows the counterexample where the vertices of the two ASMs
H(v1, v6) and H(v1, v7) n ot detected by the algorithm are highlighted in yellow and
red, repectively. In plot (b), the reduced graph H(u, v)/Emax is illustrated.

3.2.2 Evaluation of Expression Features Using ASMs

Expression features are numerical features used to summarize the expression of

transcripts (or genes). In SDEAP, the expression features concern expressed segments,

junctions and ASM paths. If there are n RNA-Seq samples in a population data, every

expression feature f has n abundance values, F = {f1, f2, ..., fn}. If the number
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of paths in an ASM is greater than 4, we simply use the abundance values of the

expression segments and junctions in the ASM as its expression features. This is

because observed that the estimation of the abundance of paths may suffer from non-

identifability and our observation is consistent with the discussion in DiffSplice [50].

If the number of paths in an ASM is less than or equal to 4, the abundance values

of the paths in the ASM are used as the expression features. Here, abundance is

measured by the average RNA-Seq fragment coverage per thousand bps per million

fragments (FPKM) [122] and are estimated as follows.

For an expressed segment, the FPKM is the number of fragments mapped to the

expressed segment divided by the length of the segments in kilo bps and the size

of the RNA-Seq fragment library in millions. For a junction, because the length

of mapped reads is the length of the region where each junction read spans, the

FPKM of a junction is the number of mapped reads divided by the read length

and the size of the library. Given an ASM H(u, v), let the ASM paths of H(u, v)

be P = {p1, p2, ..., pN} such that all expressed segments and junctions covered by

the paths can be represented as a numerical matrix AM×N = (ai,j), 1 ≤ i ≤ M

and 1 ≤ N ≤ j, where each of the M rows represents an expressed segment or a

junction and each of the N columns represents a path. If the path pj includes an

expressed segment j, ai,j = li, where li is the length of the expressed segment. If

the path pj includes a junction j, ai,j = l̂i, where l̂i is the length of the RNA-Seq

reads. Otherwise, ai,j = 0. Let the abundance values (FPKMs) of the paths be

65



X = {x1, x2, ..., xN}. Note that the first and last vertices and artificial edges of each

path are not included in the rows of AM×N . All mapped reads are assumed to be

evenly distributed on each of the paths. The expected number r̂i of reads falling

into the i-th expressed segment or junction is proportional to both the length of the

expression feature and the sum of the expression levels of all paths containing the i-th

expressed segment or junction such that r̂i =
∑N

j=1 ai,jxj. Let the observed number of

reads falling into the i-th expressed segment or junction be ri. The expression levels

of the paths, X = {x1, ..., xN}, are then determined by using the abundance values

X∗ that minimizes the following residual sum of squares:

X∗ = arg max
X

1

2
(ri − r̂i)2 = arg max

X

1

2
(ri −

N∑
j=1

ai,jxj)
2 (3.1)

with respect to the constraints that xj ≥ 0 for all 1 ≤ j ≤ N . In the implementation

of SDEAP, an R package opt is used to solve the quadratic optimization problem by

the L-BFGS-B algorithm [16].

3.2.3 Analysis of Background Variance

SDEAP chooses expression features with observed variance significantly greater

than the background variance. In the literature [4, 101], the observed variance of

expression features is postulated as due to technical noise and biological variation

among biological conditions. Thus, the technical noise is usually used as the back-
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ground variance. For an expression feature f , the expected variance ρ due to tech-

nical noise is modeled as a quadratic function of the observed mean µf such that

ρ(µf ) = µf + φµf
2, where the parameter φ is called the dispersion of samples. When

the biological conditions of the input samples are given, the dispersion φ is estimated

by regression using the conditioned mean and variance (µ̂fA , ρ̂fA) of each expressed

feature f , where the conditioned sample mean µ̂fA and variance ρ̂fA are the observed

mean and variance in the samples of the same condition A. However, in our case,

the biological conditions are not given a priori In this case, the quadratic function

ρ(µf ) is suggested to be fitted to the overall mean and variance (µ̂f , ρ̂f ), where µ̂f

is the average and ρ̂f is the variance of the expression feature f in all samples, to

approximate the real dispersion [14]. In the implementation of SDEAP, the model

fitting is implemented by using the general linear regression model GLM package in

R [29]. After the estimation of the dispersion, for every feature f , the expected vari-

ance ρ(µf ) is used as the background variance at its expression level µf . In general,

expression features with low background variance are preferred, e.g., less than 0.3

[13]. An expression feature f is selected as an informative feature if ρ̂f/ρf > γ̂ where

γ̂ is given as a user defined threshold, as employed in [4, 14].

3.2.4 Testing Differential Transcript Expression

Testing the difference of an informative feature f without given biological con-

ditions includes two main steps: (1) clustering the instances of f in the population
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and (2) testing the statistical significance of difference between the clusters of the

instances. In SDEAP, the clustering is done by using Dirichlet infinite mixture mod-

els. Then, the one-way ANOVA test is used to provide the statistical measurement

of significance [37].

To illustrate a Dirichlet infinite mixture model, we start from the Gaussian mix-

ture model of fixed k components and then let k goes to infinity. When the input

population data consist of n RNA samples S = {s1, s2, s3, ..., sn}, every expression

feature f has n instances, F = {f1, f2, ..., fn}, where fi is the instance of feature f

in the RNA-Seq sample si. Each of the instances, fi, is assumed to follow the Gaus-

sian distribution of some mean µ and variance ρ and denoted as fi ∼ N(µ, ρ). In

the Gaussian mixture model, the instances of f are assumed to be generated from

exactly k Gaussian distributions. Let C = {c1, c2, ..., cn}, ci ∈ {1, 2, ..., k} be a set of

component indices such that each index ci indicates which component fi belongs to.

Let µ = {µ1, µ2, ..., µk} and ρ = {ρ1, ρ2, ..., ρk} be the means and variance of the k

components. The likelihood function of C given F can be written as:

Pr(C,F |π, µ, ρ) =
n∏
i=1

k∑
j=1

I(ci = j)πjN(fi|µj, ρj) (3.2)

where π = {π1, π2, ..., πk} such that πj is the probability of instance fi belonging to

component j, I is an indicator function and N(fi|µj, ρj) is the probability that fi

is drawn from a normal distribution with the mean µj and variance ρj. When k is
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fixed, the clustering C of the feature instances and the model parameters µ, ρ can be

determined by the parameters that maximize the likelihood function given in Eq. (2)

by using the EM algorithm [27]. However, if k is not given as a prior and allowed to

be infinitely large, Eq. (2) is intractable and the estimation of the likelihood function

cannot be done by the EM approach. The MCMC algorithm is a well-known technique

to get around the intractability [86] . The main idea of the MCMC algorithm is

to sample parameters from the conditional posterior of the parameters and update

each parameter in turn. To apply the MCMC algorithm, the posterior probability

functions of ci = cj and ci 6= cj for all i 6= j given the model parameters µ, ρ and

the observed feature values F are required for sampling. To derive the posterior

probability functions, the prior probability functions of the parameters are assumed

as follows. The vector π is assigned a Dirichlet prior, π ∼ Dirichlet(α/k, ..., α/k),

with k concentration parameters α/k where α is a hyper parameter given as a prior.

Note that α/k approaches zero when k goes to infinity. By integrating the the mixing

proportion π, the prior probability that ci = j given c1, ..., ci−1 is written as

Pr(ci = j|c1, ..., ci−1) =
ni,j + α/k

i− 1 + α
, (3.3)

where ni,j is the number of the component index ci′ = j given all the indicator

ci′ , i
′ < i. If k approaches infinity, the conditional prior probability of fi belonging to
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component j, i.e., ci = j, is

Pr(ci = j|c1, ..., ci−1)→
ni,j

i− 1 + α
(3.4)

Similarly, the conditional prior probability of fi not belonging to any component ci′

is

Pr(ci 6= ci′ , i
′ < i|c1, ..., ci−1)→

α

i− 1 + α
(3.5)

By combining the likelihood function of Eq. (2) with Eq. (4) and Eq. (5), the con-

ditional posterior probability functions for ci = cj with the given model parameters,

µ and ρ, and observed feature values F are

Pr(ci = j|C−i, F, µ, ρ) ∝ b
ni,j

i− 1 + α
N(fi|µj, ρj), (3.6)

where b is a constant for normalization. The conditional posterior probability func-

tions for ci 6= cj, j 6= i are

Pr(ci = j|C−i, F, µ, ρ) ∝ b
α

i− 1 + α

∫
N(fi|µj, ρj)dG0, (3.7)

where G0 is the prior probability of µ and ρ. The component indicators C are de-

termined by sampling from a Markov chain of the posterior probabilities with Eq.

(6) and Eq. (7) as its equilibrium distribution. More detailed derivation of the prior

and posterior probabilities of the parameters is discussed in [86]. In the implemen-
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tation of SDEAP, a python package scikit-learn is used [98]. After the clustering of

the feature values F , a one-way ANOVA test is performed to test if the clusters are

indeed significantly different. The null hypothesis for ANOVA is that the mean is

the same for all clusters of F . In SDEAP, the p-values from the ANOVA test are

corrected to the false discovery rate (FDR), the rate of type I errors in multiple null

hypothesis testing [8]. If the FDR value is small enough, e.g., less than 0.1, we reject

the null hypothesis and conclude that the feature f is different among the RNA-Seq

samples. If an ASM has a differentially expressed feature, the ASM will be reported

as an alternative splicing event. If a gene has a differentially expressed feature, the

genes will be predicted as a DTE gene.

3.2.5 Evaluation Metrics

All our experimental results are evaluated in terms of precision (PRE), PRE =

TP/(TP + FP), and recall (REC), REC = TP/(TP + FN), where TP is the number

of true positives, FP the number of false positives and FN the number of false neg-

atives. To combine the two evaluation measures, the area under the precision-recall

curve (or AUCpr) is used as a measure of the overall performance of a prediction

method in our tests. To assess the similarity of In this manuscript, an R package

PRROC is used to calculate the PRE, REC and AUCpr scores [43]. To measure the

similarity between clusters of RNA-Seq samples and real biological conditions, Jac-

card indices are calculated as follows [111]. Given two clusterings, C and C ′, of the
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input RNA-Seq samples, let s be the number of pairs of samples that belong to the

same cluster in both clusterings, d1 the number of pairs of samples that belong to

the same cluster in clustering C but not in C ′, and d2 the number of pairs of samples

that belong to the same cluster in clustering C ′ but not in C. The Jaccard index J

is then defined as J = s/(s + d1 + d2).

3.3 Experimental Results

SDEAP and DEXUSexon are tested on both simulated and real datasets. In our

simulation study, several realistic configurations of real RNA-Seq data are considered.

In the first simulation, bimodal RNA-Seq data are simulated, while data are generated

from three or more overlapping groups in the second simulation. Noise unique to

single-cell RNA-Seq is introduced in the third simulation to test the robustness of

the methods in dealing with data with high background variance. To avoid biased

assessment of prediction accuracy due to random sampling, the simulation experiment

on every configuration is repeated 10 times and the average performance of each

method is reported. The simulation performed in [61] is also repeated as the forth

simulation experiment to assess the performance of SDEAP in calling DS genes. The

results of SDEAP are then compared with those of SigFuge reported in [61]. In our

experiments on real data, the predicted expression features of DTE genes are used to

cluster the input RNA-Seq samples. In particular, the differentially expressed exons

of each DTE gene predicted by DEXUSexon are used as the expression features of that
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gene for DEXUSexon, while differentially expressed ASMs are the expression features

for SDEAP. To avoid biases due to the sizes of genes, if a predicted DTE gene has more

than one differentially expressed feature, the feature with the greatest significance

measurement, i.e., FDR in SDEAP or I/NI scores in DEXUSexon, is selected as the

informative expression feature for the DTE gene. Given the expression features,

all samples are clustered by a widely used hierarchical clustering package MADE4

in gene expression analysis [22]. The performance of SDEAP and DEXUSexon are

compared by the similarity between the clustering and known biological conditions in

the real dataset, because we believe the variance of expression features from correctly

predicted DTE genes can reflect the biological conditions in the data. Note that

SigFuge is not included in the comparisons of clustering results here because it is

a DS analysis method and it only provides p-values that measure the variance of

individual genes among samples. In other words, it is difficult to extract expression

features from the prediction by SigFuge that can be used to cluster samples. Although

our real data analysis will include two experiments on single-cell RNA-Seq data, the

extended protocol of DESeq2 for single-cell RNA-Seq data is not compared in the

experiments because it requires spike-in ERCC information and our single-cell RNA-

Seq datasets do not contain spike-in ERCC information [13].
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3.3.1 Experiments on Simulated Data

Simulation of RNA-Seq samples

A population is a collection of RNA-Seq samples with different biological con-

ditions. In our simulation experiments, each biological condition is associated with

an expression profile of transcripts. The expression profiles of transcripts are gener-

ated by different protocols for different study purposes and will be discussed later in

each simulation experiment. Given an expression profile of transcripts, to synthesize

RNA-Seq reads for an RNA-Seq sample, we first randomly draw a number of cDNA

fragments from each transcript in the RNA-Seq library of the sample according to the

negative binomial distribution. In our simulation, a moderate size, 40 million reads,

RNA-Seq library is assumed. Hence, for every transcript, the mean of the negative

binomial distribution is set as the product of the transcript expression value (FPKM),

the length of the transcript in thousand bps and the size of the RNA-Seq library in mil-

lions (40), while the dispersion value of the distribution is set as φ = 0.179 as done in

the literature [61]. Then, paired-end RNA-Seq reads of 50 bps each are obtained from

both ends of each synthesized cDNA fragment. However, in real RNA-Seq data, the

observed variance of transcript expression is @articlePRROC, title=PRROC: comput-

ing and visualizing precision-recall and receiver operating characteristic curves in R,

author=Graul,J. and others, journal=Bioinformatics, volume=31(15), pages=2595-

2597, year=2015 significantly greater than the sample variance modeled by the neg-

ative binomial distribution [90]. Two studies based on real RNA-Seq data show that
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approximately 5% genes in the same biological condition have significantly higher

variance of transcript expression than expected due to outliers [90, 40]. To simulate

datasets that reflect real RNA-Seq data as much as possible, 5% genes are selected as

genes that contain outliers in their expression profiles. Extreme high values of tran-

script expression are usually detected in approximately 10% real RNA-Seq samples

in the expression profiles [40]. To simulate extreme high values of transcript expres-

sion, we allow the cDNA fragments from the corresponding transcripts of the selected

genes to have 10% probability of being amplified from 5 to 10 times as employed

by [144]. In addition to the extreme high expression values of transcripts, a study

shows the exons of lowly expressed transcripts are ubiquitously missing in every one

of two technical or biological replicates [80]. To include the missing-value events,

among the 5% selected genes, the transcripts of lowly expressed genes whose expres-

sion values are lower than 1.0 have a probability from 30% to 50% of being assigned

zero cDNA fragments. During the synthesis of cDNA fragments, a positional profile

that reflects positional biases due to complementary DNA fragmentation is used for

each transcript as done in [73]. Afterwards, simulated RNA-Seq reads are used as

the input data to evaluate the DTE analysis methods. Throughout our simulation

experiments, the hg38 transcript annotation of the human genome from the UCSC

genome browser is used as the annotation of transcripts for SDEAP and DEXUSexon.

Only genes that have at least two transcripts in the annotation are considered in our

simulated datasets.
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Performance on RNA-Seq data from two conditions

In this simulation experiment, RNA-Seq samples are generated from two ex-

pression profiles of transcripts and used to assess the performance of SDEAP and

DEXUSexon on RNA-Seq data from two biological conditions. The two expression

profiles that correspond to two biological conditions are created as follows. In the

first of the two expression profiles of transcripts, the expression value (FPKM) of each

transcript is randomly drawn from a log-normal distribution as done in the literature

[73]. Every transcript with a decent FPKM (> 0.1) is regarded as an expressed tran-

script. Each genes without expressed transcripts is removed such that our benchmark

datasets are comprised of 3089 genes. To create the second expression profile, among

the 3089 genes, 308 (∼10%) genes are chosen as DTE genes. All the DTE genes are

evenly divided into three categories: up-regulated, down-regulated and differentially

spliced genes. For each up-regulated gene, a detectable transcript is randomly se-

lected and its abundance is increased by a factor of at least 4, a widely used threshold

to define differential expression in the literature [136, 15]. Similarly, from each down-

regulated gene, the abundance of a randomly selected transcript is decreased by a

factor of at least 4. For each differentially spliced genes, the maximum and minimum

abundance values of its transcripts are swapped. For the other 2781 EE genes, the

abundance values of their transcripts remain the same in the both expression profiles.

We choose a specific number of replicates in each biological condition, n1 and

n2, to evaluate the prediction accuracy of SDEAP and DEXUSexon on balanced and
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unbalanced data of various group sizes. If n1 > n2, the n1 RNA-Seq samples are

called the majority group and the n2 samples are called the minority group. The

configurations (6,6), (50,50), (9,3), and (20,4) of (n1, n2) are chosen from the simula-

tion experiments for DEXUS and SigFuge [63, 61]. To further study the performance

on unbalanced data of greater group sizes, the unbalanced configurations (9,3) and

(20,4) are multiplied by 4 to create another two configurations (36,12) and (80,16).

The performance of both methods on all group size configurations is summarized in

Table 3.1.

SDEAP clearly outperforms DEXUSexon in terms of the AUCpr. The average

AUCpr for SDEAP over all configurations is 0.809 and the average AUCpr for DEXUSexon

is only 0.624. SDEAP outperforms DEXUSexon by at least 0.09 and 0.1 in the pre-

cision and recall scores, respectively. In general, increasing the number of samples

benefits the accuracy of prediction. Both methods achieve the best performance on

the balanced configuration (50,50) of the largest size. We observe that the precision

scores of SDEAP are generally higher than those of DEXUSexon. This is because

the background variance estimation performed in SDEAP makes it less sensitive to

the background noise. Notably, the prediction accuracy of DEXUSexon is somehow

related to the proportion of the minority group and drops drastically, from 0.789

to 0.513 in the AUCpr, when the proportion of the minority groups decreases. The

performance of SDEAP is more robust with respect to the decrease of the proportion

of the minority group until it drops down to 16.6% in the last two experiments with
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configurations (20,4) and (80,16). In these experiments, the observed variance in the

expression profiles of true DTE genes is close to the background variance due to the

outliers.

Table 3.1: Comparison of the two DTE analysis methods on simulated datasets from
binary conditions. The configuration (n1, n2) indicates the number of replicates in
each condition. AUCpr, PRE and REC denote the area under the precision-recall
curve, precision and recall scores, respectively, averaged over the 10 repetitions. The
standard deviation of each score is included in the parentheses following the score.
The last row, AVG, shows the the average of AUCpr, PRE and REC in 6 experiments.

SDEAP DEXUSexon

Configuration AUCpr PRE REC AUCpr PRE REC

(6, 6) 0.837 (0.02) 0.911 (0.03) 0.887 (0.03) 0.766 (0.02) 0.702 (0.03) 0.665 (0.03)
(50, 50) 0.838 (0.01) 0.838 (0.01) 0.977 (0.01) 0.789 (0.01) 0.749 (0.01) 0.873 (0.01)
(9, 3) 0.857 (0.02) 0.905 (0.03) 0.873 (0.03) 0.533 (0.02) 0.681 (0.03) 0.655 (0.03)
(36, 12) 0.858 (0.01) 0.896 (0.02) 0.893 (0.02) 0.579 (0.01) 0.680 (0.02) 0.715 (0.02)
(20, 4) 0.726 (0.01) 0.835 (0.02) 0.788 (0.02) 0.513 (0.01) 0.678 (0.02) 0.642 (0.02)
(80, 16) 0.737 (0.01) 0.833 (0.01) 0.831 (0.01) 0.565 (0.01) 0.705 (0.01) 0.701 (0.01)
AVG 0.809 0.869 0.874 0.624 0.699 0.708

Performance on RNA-Seq data from three or more conditions

To evaluate the performance of SDEAP and DEXUSexon on population data from

three or more biological conditions, we simulate RNA-Seq samples using three or five

expression profiles of transcripts. In these simulation experiments, the expression

of transcripts is generated from groups (i.e., conditions) that largely overlap with

each other. The experimental configurations for generating the mixture of expression

values is set up to reflect the reality in some challenging practical applications, e.g.,

RNA-Seq data sampled at serial time points [1]. Given the two expression profiles of
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Table 3.2: Comparison of the two DTE analysis methods on simulated datasets from
3 or more conditions. The configuration (n1, n2, ...) indicates the number of replicates
in each condition. Again, AUCpr, PRE and REC denote the area under the precision-
recall curve, precision and recall scores, respectively, averaged over the 10 repetitions.
The standard deviation of each score is included in the parentheses following the
score. The last row, AVG, shows the the averages of AUCpr, PRE and REC in 6
experiments.

SDEAP DEXUSexon

Configuration AUCpr PRE REC AUCpr PRE REC

(10,10,10) 0.701 (0.02) 0.886 (0.03) 0.681 (0.03) 0.545 (0.02) 0.631 (0.03) 0.483 (0.03)
(10,10,30) 0.645 (0.01) 0.907 (0.01) 0.506 (0.01) 0.466 (0.01) 0.485 (0.01) 0.272 (0.01)
(10,10,10,10,10) 0.625 (0.01) 0.887 (0.01) 0.486 (0.01) 0.446 (0.01) 0.467 (0.01) 0.255 (0.01)
(20,10,10) 0.767 (0.02) 0.894 (0.02) 0.85 (0.02) 0.641 (0.02) 0.696 (0.02) 0.662 (0.02)
(20,10,30) 0.677 (0.01) 0.886 (0.01 ) 0.633 (0.01) 0.507 (0.01) 0.590 (0.01) 0.422 (0.01)
(20,10,10,10,10,10) 0.669 (0.01) 0.887 (0.01) 0.612 (0.01) 0.487 (0.01) 0.581 (0.01) 0.403 (0.01)
AVG 0.681 0.891 0.628 0.515 0.575 0.416

transcripts in the previous simulation experiments for binary conditions, we generate

three additional expression profiles of transcripts as follows. The third expression

profile of transcripts is the average of the first and second profile, i.e., the average

of each transcript in the first and second profiles is calculated and assigned as the

expression value of the transcript in the third expression profile. Similarity, the

fourth expression profile is the average of the first and the third profile and the

fifth expression profile is the average of the second and the third profile. Again, we

consider different combinations of group sizes to study the performance of SDEAP

and DEXUSexon on balanced and unbalanced data of multiple biological conditions.

The prediction accuracy of SDEAP and DEXUSexon is assessed in Table 3.2.

Again, SDEAP shows better performance than DEXUSexon. The AUCpr scores

of SDEAP are at least 0.126 higher than the score of DEXUSexon in every experi-
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ment setting. Note that DEXUSexon yields very low recall scores, 0.272 and 0.255,

on configurations (10, 10, 30) and (10, 10, 10, 10, 10). This may be due to its lack

of ability to determine the correct numbers of clusters for the expression features.

The assumption of binary conditions in DEXUSexon may likely lead it to two in-

separable clusters of expression features that could negatively impact the statistical

test for the significance of difference. Moreover, we find that the precision scores

of SDEAP across different configurations of the group sizes are much higher than

those of DEXUSexon, which suggests that the control of false positives in SDEAP

is better than that in DEXUSexon. We also notice that the recall scores of SDEAP

and DEXUSexon increase, from 0.506 to 0.612 and from 0.255 to 0.405, respectively,

with the proportion of samples in the first two groups. This is because the observed

variance of the expression features of true DTE genes increases with the proportion

of the samples in the first two groups and when the observed sample variance of true

DTE genes is significantly higher than the background variance, calling the true DE

(i.e., differentially expressed) genes becomes much easier for both methods.

Robustness on noisy data

Single-cell RNA-Seq serves as a fundamental tool to measure the expression of

transcripts in individual cells and has numerous applications in biological research

[14]. However, due to the low abundance of transcripts in an individual cell, the

technical noise in single-cell (SC) RNA-Seq data is much higher than that in the
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Table 3.3: Comparison of the two DTE analysis methods on simulated single-cell
RNA-Seq data. The configuration (n1, n2, ...) indicates the number of replicates in
each condition. Again, AUCpr, PRE and REC denote the area under the precision-
recall curve, precision and recall scores, respectively, averaged over the 10 repetitions.
The standard deviation of each score is included in the parentheses following the
score. The last row, AVG, shows the the averages of AUCpr, PRE and REC in 4
experiments.

SDEAP DEXUSexon

Configuration AUCpr PRE REC AUCpr PRE REC

(50,50) 0.615 (0.01) 0.649 (0.01) 0.837 (0.01) 0.406 (0.01) 0.376 (0.01) 0.483 (0.01)
(80,16) 0.432 (0.01) 0.556 (0.01) 0.561 (0.01) 0.271 (0.01) 0.025 (0.01) 0.025 (0.01)
(10,10,10) 0.414 (0.02) 0.621 (0.03) 0.662 (0.03) 0.250 (0.02) 0.186 (0.03) 0.198 (0.03)
(20,10,10) 0.474 (0.02) 0.673 (0.02) 0.698 (0.02) 0.304 (0.02) 0.222 (0.02) 0.231 (0.02)
AVG 0.484 0.624 0.689 0.308 0.202 0.234

standard RNA-Seq data. To evaluate the performance of SDEAP and DEXUSexon

on simulated SC RNA-Seq data, technical noise unique to SC data is included in the

simulation. In a typical SC data, the transcripts of a gene with moderate or high

abundance in one cell may not be detected in another cell. The failure of detecting

the transcripts is called a dropout event. In a previous study [14], 13.3% of the

genes were observed to have experienced dropouts in a real SC RNA-Seq sample [59].

Hence, 13.3% genes in our simulations are selected as genes with dropout events. The

probability that the transcripts of a gene are not detected in a sample is called the

dropout rate of the gene. The dropout rate of a gene is known to be related to the

read count of the gene [59]. To estimate the dropout rates in a real SC dataset, 12

SC RNA-Seq samples of the same cell type from mouse mESC cells are downloaded

from the NCBI GEO database with accession code GSE42268 [105]. In each of the

samples, the read counts of all genes (in millions) are calculated and normalized by
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the total number of reads in the sample. The logarithm of the normalized read counts

(LRC) from 0 to 2 is discretized by binning the interval [0,2] into 20 intervals of the

same length 0.1. Then, all genes with LRC from 0 to 2 are first assigned to the 20

bins according to their LRCs. The remaining genes with LRC < 0 are assigned to the

first bin and the genes with the LRC > 2 to the last bin. For every gene in a bin, the

proportion of the samples where the gene has zero abundance is calculated and then

the average of the proportion is used as the dropout rate for all the genes whose LRC

is in the corresponding interval of the bin. In addition to dropout events, the observed

dispersion rate in SC data is also higher than the dispersion estimated from standard

RNA-Seq data. Thus, the dispersion rate is increased to 0.25 when generating the

number of cDNA fragments for each transcript in our simulations. Here, we reuse the

group sizes in some experiments on standard RNA-Seq data to study the prediction

accuracy of SDEAP and DEXUSexon on balanced and unbalanced SC data. The

results on four simulated SC dataset are summarized in Table 3.3.

Similar to the results in the previous simulations of standard RNA-Seq data,

SDEAP significantly improves the precision and recall scores of DEXUSexon by at

least 0.273 and thus achieves much better overall performance. Due to high technical

noise, the performance of both methods declines, but in very different scales. The

average precision scores of SDEAP decreases by 0.241 and its recall score drops only

0.133, while the average precision and recall scores of DEXUSexon drop 0.48 and 0.429,

respectively. This shows that SDEAP is more robust with respect to the increased
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technical noise. Note that among the four configurations, DEXUSexon has very low

prediction accuracy, at most 0.222 and 0.231 in precision and recall, respectively,

except on the balanced binary configuration (50,50). This suggests that DEXUSexon

may not be suitable for treating SC data. The conclusion is consistent with the results

of our later experiments on real SC data.

Table 3.4: Comparison of the performance in differential splicing analysis.

Setting No. (ψ1, ψ2) SDEAP SigFuge DEXUSexon

1 (50, 50) 0 2 0
2 (50, 50) 100 89 13
2 (75, 25) 100 98 10
3 (50, 50) 100 99 23
3 (75, 25) 100 60 56

Detecting changes in relative abundance of transcripts

In order to study the effectiveness of SDEAP in DS analysis, we perform simulation

experiments to compare its with performance with DEXUSexon and SigFuge. In our

simulations, two hypothetical gene models concerning two transcripts, isoform t1 and

t2, are considered as illustrated in Supplementary Figure S1. The first model is a three

exon gene model that has a cassette exon excluded from isoform t1 but retained in

isoform t2. The second model is a four exon gene model containing mutually exclusive

cassette exons. The length of each exon is 400 bps. Three different experimental

configurations are considered in the simulations. For each configuration, RNA-Seq
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samples of binary groups are simulated. Let the relative abundance values of the

two transcripts t1 and t2 be ψ1 and ψ2, respectively. In the first configuration, the

three exon model is used where the relative abundance values, (ψ1, ψ2), are set as

(0.5, 0.5) for both groups in order to evaluate the number of false positives in the

prediction. In the second configuration, (ψ1, ψ2) is set as (0.75, 0.25) and (0.25, 0.75)

for the first and second groups of the three exon model, respectively, in order to

evaluate the number of true positives (or sensitivity). In the third configuration, the

same abundance values of the two transcripts in the second configuration are used

in the two sample groups but the gene model has four exons. In each configuration,

two combinations of group sizes (n1, n2), (50, 50) and (75, 25), are considered. The

numbers of RNA-Seq reads for each of the two transcripts are sampled from two

negative binomial distributions with means l1 × α× ψ1 and l2 × α× ψ2, respectively,

and dispersion φ = 0.179 where α = 100 is the fixed read coverage per bp, l1 and

l2 are the lengths of the two transcripts. Then, for each sample and each isoform,

50bp reads are synthesized uniformly across the two isoforms in the gene models.

The simulated reads are used as mapped reads and provided to the three methods as

the input data. The experiment in each configuration is repeated 100 times and the

results are summarized in Table 3.4.

In the first configuration, only SigFuge makes two false positive calls when DEXUSexon

and SDEAP predict no false positives. In the second and third configurations, no true

positive is missed in the prediction by SDEAP. SigFuge also provides high sensitivity
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in the second configuration. However, its sensitivity drops in the third configuration

when the sizes of the groups become unbalanced. Notably, DEXUSexon predicts with

low sensitivity in both the second and third configurations. The poor performance

of DEXUSexon could be due to the limited number of expression features in the gene

models used here. In other words, the number of expression features is not sufficient

for estimating the parametric model of DEXUSexon accurately. In contrast, SDEAP

consistently provides high sensitivity and zero false positives in all three experimental

settings. This good performance may be attributed to its robust clustering algorithm

and feature selection method.

3.3.2 Experiments on Real Data

SDEAP detects different cancer subtypes

Some critical diseases, e.g., breast cancer (BC), are known as heterogeneous dis-

eases with a variety of transcriptomic alterations that severely affect the diagnosis

and prognosis of the diseases. Identifying DTE genes as the transcriptomic biomark-

ers of the subtypes of such diseases could be important for the design of clinical trials

to investigate targeted treatments. In this experiment, SDEAP and DEXUSexon are

applied to a recently published RNA-Seq dataset including 17 individual human tis-

sues belonging to three subtypes of breast cancers: TNBC, Non-TNBC and HER2-

positive. The RNA-Seq reads of the BC samples are aligned against the Ensembl

GRCh37.62 B (hg19) reference genome using TopHat [121] and the mapped reads are
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used as the input data for the two methods.

SDEAP predicts 1366 DTE genes with the FDR under 0.1. These DTE genes

are compared with the top 1366 genes in the ranked list of DTE genes predicted by

DEXUSexon in the following analysis. In the BC dataset, 6 differentially expressed

genes are validated experimentally by qPCR with fold change rates greater than

5.0. Three of the six validated DE genes are predicted by SDEAP while two are

among the predicted DTE genes by DEXUSexon. The dendrograms of hierarchical

clustering using the DTE genes predicted by SDEAP and DEXUSexon are illustrated

in Fig. 3.2. The 17 samples in each dendrogram are partitioned into three clusters

and compared with the three subtypes of BC. In the clustering by SDEAP, only one

of the 17 samples is misclassified while there are three misclassified samples in the

clustering by DEXUSexon. The Jaccard index of SDEAP’s clustering is 0.760, which

is significantly higher than that of DEXUSexon (0.481). The better clustering of the

BC samples achieved by SDEAP is an evidence suggesting that SDEAP might have

predicted more accurate DTE genes specific to the BC subtypes, while DEXUSexon

might be more sensitive to random outliers.

SDEAP identifies more validated marker genes specific to cell types

Understanding the development and functions of a tissue or an organ requires the

identification of all of its cell types [120]. The expression patterns of transcripts in
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Figure 3.2: The dendrograms of the hierarchical clustering for the breast cancer
dataset. Plots (a) and (b) depict the clustering by SDEAP and DEXUSexon. The
Y-axis is the measurement of similarity between the samples and X-axis are the labels
of each sample. The HER2 samples are colored red, the TNBC samples green and the
non-TNBC samples blue. The three red boxes in each dendrogram illustrates three
clusters obtained by the corresponding method.

individual cells of various cell types can be revealed by the SC RNA-Seq technology

and the DE transcripts have been used as biomarkers to separate different cell types

and to analyze alternative cellular functions of the cell types [105]. In this experiment,

a SC RNA-Seq dataset of two cell types, 12 mouse ES cells and 12 primitive endo-

derm (PrE) cells, is downloaded from the NCBI GEO database with accession code

GSE42268. The RNA-Seq reads are mapped to the mouse reference genome (mm9)

by TopHat and used as the input data for SDEAP and DEXUSexon. On this dataset,
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Figure 3.3: Hierarchical clustering of 12 mECS and 12 Pr cells based on the DTE
genes predicted by SDEAP and DEXUSexon. Plots (a) and (b) depict the dendrograms
obtained by DEXUSexon and SDEAP, respectively. The Y-axis is the measurement
of similarity between the samples and the X-axis shows the labels of the mESC and
Pr cells. The mESC cells are colored red and the Pr cells blue. The two red boxs
illustrate two clusters obtained from each clustering consistent with the cell types.

SDEAP predicts 1614 genes with the FDR less than 0.1, and the top 1614 DTE genes

predicted by DEXUSexon are used in the following analysis. The predicted DTE genes

by SDEAP and DEXUSexon are compared with manually selected biomarkers [105]

and the expression features of the predicted DTE genes are used to cluster the 24 SC

samples.

More specifically, 17 DE genes associated with critical cellular functions during cell

differentiation are manually selected as the biomarkers [105]. The 17 biomarkers are

all predicted by SDEAP while four of them are missed by DEXUSexon. Among the 17

DE genes, 8 were further validated by qPCR in [105]. Although all of these 8 validated
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biomarkers are among the DTE genes predicted by SDEAP, 2 of them are missed by

DEXUSexon. The detailed prediction results are summarized in Table 3.5. The better

coverage of the biologically meaningful biomarkers by SDEAP suggests that it can

provide a more comprehensive picture of transcript expression and is thus valuable

for understanding the development and functions of cells. Although the comparison

of the DTE prediction results by SDEAP and DEXUSexon to the manually selected

biomarkers shows significant difference, the clustering of the 24 samples using their

predicted DTE genes are equally well. The samples are perfectly separated by their

cell types as shown in Figure 3.3. This can perhaps be explained by the fact that

the two cell types have redundant biomarkers in the sense even though some of them

were missed by DEXUSexon, the rest are still able to separate the cell types.

Table 3.5: Comparison of the numbers of the manually selected and qPCR validated
maker genes for the mESC and Pr cells in the DTE genes predicted by SDEAP and
DEXUSexon. The second column indicates the total numbers of manually selected or
qPCR validated marker genes. The numbers of manually selected or validated maker
genes that appear in the DTE genes predicted by the two methods are given in the
third and fourth columns.

Type All SDEAP DEXUSexon
manually selected 17 17 13
aPCR validated 8 8 6

SDEAP is better at separating cell-cycle phases

Heterogeneity of transcript expression is not only found across different cell types

but also observed between different cell-cycle phases of the same cell type [14]. To

investigate the performance of the two DTE analysis methods in detecting DTE
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between different cell-cycle phases, 35 SC RNA-Seq samples of mESC cells, where

the cell-cycle phases of each cell is known a priori, are used as the benchmark data.

Among the 35 samples, there are 20 cells in the Growth 1 phase (G1), 8 in the

pre-mitotic/mitotic (G2/M) phase and 7 in the synthesis (S) phase. The SC RNA-

Seq dataset is also downloaded from the NCBI GEO database with the accession

code GSE42268. All sequenced reads of each RNA-Seq sample are aligned against

the Ensembl GRCh37.62 B (mm9) reference genome using TopHat and the mapped

reads are used as the input for SDEAP and DEXUSexon.

Since this dataset does not offer any qPCR validated DTE genes, we use the clus-

tering results of the 35 cells to indirectly examine whether cell-cycle dependent hetero-

geneity features among the mESC cells can be identified by SDEAP and DEXUSexon.

The same FDR threshold of 0.1 is used to call DTE genes in SDEAP. 532 genes are

predicted as DTE genes by SDEAP. They are then compared with the top-ranked

532 DTE genes predicted by DEXUSexon. The reason that SDEAP predicted fewer

DTE genes than in the previous study concerning cell types can be explained by the

subtle difference of transcript expression between cell-cycle phases. The similarity of

the 35 SC samples encoded by the expression features of the predicted DTE genes

is visualized in the 3D space by principal component analysis (PCA), as shown in

Fig. 3.4(a) and 3.4(b). In the PCA transformation using the DTE genes predicted

by SDEAP, although some S cells are mixed with G1 and G2/M cells, the cells of the

three cell-cycle phases are still visually separable. However, in the PCA transforma-
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tion using the DTE prediction of DEXUSexon, all cells of the three cell-cycle phases

are mixed together such that the separation between the cell-cycle phases becomes

more subtle. The hierarchical clustering using the DTE features identified by SDEAP

and DEXUSexon are illustrated in Fig 3.4(c) and 3.4(d), respectively. To assess the

quality of the clustering, all cells in the dendrograms are partitioned into three clus-

ters, as shown by the red boxes. The clusters are then compared with the three

cell-cycle phases. In the clustering by SDEAP, some S cells are clustered together

with G1 cells while the other S cells are with G2/M cells. This makes some sense

because the S cell-cycle phase is between the G1 and G2/M phases in the cell-cyle

and hence the expression profiles of some S cells are closer to those of G1 cells while

the other S cells might be closer to G2/M cells. In general, the G1 cells and G2/M

cells are well separated by SDEAP. However, the clustering by DEXUSexon fails to

provide a reasonable partition consistent with the cell-cycle phases. As a result, the

Jaccard index of the DEXUSexon clustering (0.261) is much lower than that of the

SDEAP clustering (0.391).

In our simulation experiments, we concluded that SDEAP is less sensitive to

outliers in SC RNA-Seq data than DEXUSexon and is able to discover more true

DTE genes that characterize the biological conditions in a population. The above

clustering results on real SC RNA-Seq data support these claims.
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3.4 Conclusion

We have introduced SDEAP, an algorithm to identify DTE genes for a popula-

tion of RNA-Seq samples with unknown conditions based on the splice graph data

structure. SDEAP takes advantages of an accurate graph modular decomposition

algorithm for discovering ASMs, efficient feature extraction for reducing the impact

of technical noise, and a robust Dirichlet mixture model for inferring the groups in

a population without assuming the number of biological conditions. These features

make SDEAP more suitable for many practical applications. As shown in our simu-

lation and real data experiments, the DTE features identified by SDEAP suffice to

separate the subtypes of cancer, detect cell types and classify cell-cycle phases. We

expect that SDEAP will serve as a useful differential expression/splicing analysis tool

for RNA-Seq data in population studies with unknown biological conditions.
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Figure 3.4: The PCA transformation of expression features and the hierarchical clster-
ing of the mESC cells using the DTE features identified by SDEAP and DEXUSexon.
Plots (a) and (b) are the projections of predicted DTE features by SDEAP and
DEXUSexon. Every red dot is a cell in the G1 cell-cycle phase and every blue dot a
cell in the G2/M phase. Cells in the S phase are represented by green dots. Plots (c)
and (d) depict the dendrograms made from the DTE features predicted by SDEAP
and DEXUSexon. The Y-axis is the measurement of similarity between samples and
the X-axis shows the labels of the mECS cells in the three cell-cycle phases. The
labels are colored in the same away as in plots (a) and (b).
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Chapter 4

GDNorm: An Improved Poisson
Regression Model for Reducing
Biases in Hi-C Data

4.1 Introduction

Three dimensional (3D) conformation of chromosomes in nuclei plays an important

role in many chromosomal mechanisms such as gene regulation, DNA replication,

maintenance of genome stability, and epigenetic modification [26]. Alterations of

chromatin 3D conformations are also found to be related to many diseases including

cancers [49]. Because of its importance, the spatial organization of chromosomes has

been studied for decades using methods of varying scale and resolution. However,

owing to the high complexity of chromosomal structures, understanding the spatial

organization of chromosomes and its relation to transcriptional regulation is still

coarse and fragmented [74].

An important approach for studying the spatial organization of chromosomes is
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florescent in situ hybridization (FISH) [33]. In FISH-based methods, florescent probes

are hybridized to genomic regions of interests and then the inter-probe distance val-

ues on two dimensional fluorescence microscope images are used as the measurement

for spatial proximity of the genomic regions. Because FISH-based methods rely on

image analysis involving a few hundred cells under the microscope, they are generally

considered to be of low throughput and resolution [49]. Recently, the limitation of

throughput and resolution was alleviated by the introduction of the 3C technology

that is able to capture the chromatin interaction of two given genomic regions in a

population of cells by using PCR [25]. Combining this with microarray and next gen-

eration sequencing technologies has yielded more powerful variants of the 3C methods.

For example, 4C methods [108, 142] can simultaneously capture all possible interact-

ing regions of a given genomic locus in 3D space while 5C methods can further identify

complete pairwise interactions between two sets of genomic loci in a large genomic

region of interests [30]. However, when it comes to genome-wide studies of chromatin

interactions, 5C methods require a very large number of oligonucleotides to evaluate

chromatin interactions for an entire genome. The cost of oligonucleotide synthesis

makes the 5C methods unsuitable for genome-wide studies [49]. To overcome this

issue, another NGS-based variant of the 3C technology, called Hi-C, was proposed to

quantify the spatial proximity of the conformations of all the chromosomes [74]. By

taking advantages of the NGS technology, Hi-C can quantify the spatial proximity

between all pairs of chromosomal regions at an unprecedentedly high resolution. As a
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revolutionary tool, the introduction of Hi-C facilitates many downstream applications

of chromosome spatial organization studies such as the discovery of the consensus con-

formation in mammalian genomes [28], the estimation of conformational variations of

chromosomes within a cell population [49], and the discovery of a deeper relationship

between genome spatial structures and functions [79].

The Hi-C technology involves the generation of DNA fragments spanning genomic

regions that are close to each other in 3D space in a series of experimental steps, such

as formaldehyde cross-linking in solution, restriction enzyme digestion, biotinylated

junctions pull-down, and high throughput paired-end sequencing [74]. The number

of DNA fragments spanning two regions is called the contact frequency of the two re-

gions. The physical (spatial) distance between a pair of genomic regions is generally

assumed to be inversely proportional to the contact frequency of the two regions and

hence the chromosome structure can in principle be recovered from the contact fre-

quencies between genomic regions [49, 141]. However, during the experimental steps

of Hi-C, systematic biases from different sources are often introduced into contact fre-

quencies. Several systematic biases were shown to be related to genomic features such

as number of restriction enzyme cutting sites, GC content and sequence uniqueness in

the work of Yaffe and Tanay [135]. Without being carefully detected and eliminated,

these systematic biases may distort many down-stream analyses of chromosome spa-

tial organization studies. To remove such systematic biases, several bias reduction

methods have been proposed recently. These bias reduction methods can be divided
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into two categories, the normalization methods and bias correction methods according

to [49]. The normalization methods, such as ICE [52] and the method in [21], aims at

reducing the joint effect of systematic biases without making any specific assumption

on the relationships between systematic biases and related genomic features. Their

applications are limited to the study of equal sized genomic loci [49]. In contrast, the

bias correction methods, such as HiCNorm [48] and the method of Yaffe and Tanay

(YT) [135], build explicit computational models to capture the relationships between

systematic biases and related genomic features that can be used to eliminate the joint

effect of the biases.

Although it is well known that observed contact frequencies are determined by

both systematics biases and spatial distance between genomic segments, the existing

bias correction methods do not take spatial distance into account explicitly. This

incomplete characterization of causal relationships for contact frequencies is known

to cause problems such as poor goodness-of-fitting to the observed contact frequency

data [48]. In this paper, we build on the work in [48] and propose an improved

Poisson regression model that corrects systematic biases while taking spatial dis-

tance (between genomic regions) into consideration. We also present an efficient

algorithm for solving the model based on gradient descent. This new bias correction

method, called GDNorm, provides more accurate normalized contact frequencies and

can be combined with a distance-based chromosome structure determination method

such as ChromSDE [141] to obtain more accurate spatial structures of chromosomes,
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as demonstrated in our simulation study. Moreover, two recently published Hi-C

datasets from human lymphoblastoid and mouse embryonic stem cell lines are used

to compare the performance of GDNorm with the other state-of-the-art bias reduc-

tion methods including HiCNorm, YT and ICE at 40kb and 1M resolutions. Our

experiments on the real data show that GDNorm outperforms the existing bias re-

duction methods in terms of the reproducibility of normalized contact frequencies

between biological replicates. The normalized contact frequencies by GDNorm are

also found to be highly correlated to the corresponding FISH distance values in the

literature. With regard to time efficiency, GDNorm achieves the shortest running

time on the two real datasets and the running time of GDNorm increases linearly

with the resolution of data. Since more and more high resolution (e.g., 5 to 10kb)

data are being used in the studies of chromosome structures [54], the time efficiency

of GDNorm makes it a valuable bias reduction tool, especially for studies involving

high resolution data.

4.2 Methods

4.2.1 Genomic Features

A chromosome g can be binned into several disjoint and consecutive genomic

segments. Given an ordering to concatenate the chromosomes, let S = {s1, s2, ..., sn}

be a linked list representing all n genomic segments of interest such that the linear
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order of the segments in S is consistent with the sequential order in the concatenation

of the chromosomes. For each genomic segment si, the number of restriction enzyme

cutting sites (RECSs) within si is represented as Ri. The GC content Gi of segment

si is the average GC content within the 200 bps region upstream of each RECS

in the segment. The sequence uniqueness Ui of segment si is the average sequence

uniqueness of 500 bps region upstream or downstream of each RECS. To calculate

the sequence uniqueness for a 500 bps region, we use a sliding window of 36bps

to synthesize 55 reads of 35 bps by taking steps of 10bps from 5′ to 3′ as done in

[48]. After using the BWA algorithm [71] to align the 55 reads back to the genome,

the percentage of the reads that is still uniquely mapped in the 500 bps region is

considered as the sequence uniqueness for the 500 bps region. These three major

genomic features have been shown to be either positively or negatively correlated to

contact frequencies in the literature [135]. In the following, we will present a new

bias correction method based on gradient search to eliminate the joint effect of the

systematic biases correlated to the three genomic features, building on the Poisson

regression model introduced in [48].

4.2.2 A Bias Correction Method Based on Gradient Descent

Let F = {fi,j|1 ≤ i ≤ n, 1 ≤ j ≤ n} be the contact frequency matrix for the

genomic segments in S such that each fi,j denotes the observed contact frequency

between two segments si and sj. HiCNorm [48] assumes that the observed contact
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frequency fi,j follows a Poisson distribution with rate determined by the joint effect

of systematic biases and represents the joint effect as a log-linear model of the three

genomic features mentioned above (i.e., the number of RECSs, GC content and se-

quence uniqueness). In other words, if the Poisson distribution rate of fi,j is θi,j,

then

log(θi,j) = β0 + βrecslog(RiRj) + βgcclog(GiGj) + βseqlog(UiUj), (4.1)

where β0 is a global constant, βrecs, βgcc and βseq are coefficients for the systematic

biases correlated to RECS, GC content and sequence uniqueness, and Ri, Gi and

Ui are the number of RECSs, GC content and sequence uniqueness in segment si,

respectively. The coefficient βseq was fixed at 1 in [48] so the term log(UiUj) acts as

the Poisson regression offset when estimating θi,j.

However, this log-linear model does not capture all known causal relationships

that affect the observed contact frequency fi,j, because the spatial distance di,j is not

included in the model. To characterize more comprehensive causal relationships for

observed contact frequencies, in a recently published chromosome structure determi-

nation method BACH [49], the spatial distance was modeled explicitly such that

log(θi,j) = β0 + βdistlog(di,j) + βrecslog(RiRj) + βgcclog(GiGj) + βseqlog(UiUj), (4.2)

where β = {βrecs, βgcc, βseq} again represents the systematic biases, βdist represents
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the conversion factor and D = {di,j|1 ≤ i ≤ n, i < j} are variables representing

the spatial distance values to be estimated. However, without any constraint or

assumption on spatial distance, the model represented by Eq. 4.2 is non-identifiable,

because for any constant k, βdistlog(di,j) = k × βdistlog(di,j
1/k). BACH solved this

issue by introducing some spatial constraints from previously predicted chromosome

structures. (Eq. 4.2 was used by BACH to iteratively refine the predicted chromosome

structure.) Hence, Eq. 4.2 is infeasible for bias correction methods that do not

rely on any spatial constraint. To get around this, we introduce a new variable

zi,j = β0 + βdistlog(di,j) and rewrite Eq. 4.2 as follows:

log(θi,j) = zi,j + βrecslog(RiRj) + βgcclog(GiGj) + βseqlog(UiUj), (4.3)

where the systematic biases β and Z = {zi,j|1 ≤ i ≤ n, i < j} are the variables to be

estimated. Note that applying a Poisson distribution on read count data sometimes

leads to the overdispersion problem, i.e., underestimation of the variance [75], which

is generally solved by using a negative binomial distribution instead. However, the

results in [48] suggest that there is usually no significant difference in the performance

of bias correction methods when a negative binomial distribution or a Poisson distri-

bution is applied to Hi-C data. For the mathematical simplicity of our model, we use

Poisson distributions.

Let θ denote the set of θi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Given the observed contact
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frequency matrix F and genomic features of S, the log-likelihood function of the

observed contact frequencies over the Poisson distribution rates can be written as:

log(Pr(F |β, Z)) = log(Pr(F |θ)) = log(
n∏

i=1,i<j

Pr(fi,j|θi,j)) = log(
n∏

i=1,i<j

e−θi,jθfi,j

fi,j!
)

=
n∑

i=1,i<j

−θi,j + fi,jlog(θi,j)− log(fi,j!). (4.4)

We can estimate the variables Z and systematic biases β by finding parameters x∗ =

{β∗, Z∗} to maximize the log-likelihood function in Eq. (4.4), which is equivalent to

solving the following multivariate optimization problem:

x∗ = arg min
x
−log(Pr(F |β, Z)) = arg min

x
−log(Pr(F |θ))

= arg min
x

n∑
i=1,i<j

θi,j − fi,jlog(θi,j) (4.5)

However, without any constraint on the variables Z, the above model is still generally

non-identifiable since for any β, we can always choose a zi,j such that fi,j = θi,j

and the likelihood function is maximized. Therefore, we require that for any i, j,

|zi,i+1 − zj,j+1| ≤ ε for some threshold ε, since we expect that the distance between

neighboring segments is roughly the same across a chromosome.

Observe that Eq. 4.5 cannot be solved by using the same Poisson regression fitting

method as in HiCNorm, because Eq. 4.5 is no longer a standard log-linear model

like Eq. 4.1. A popular technique for solving multivariate optimization problems is
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gradient descent. Gradient descent searches the optimum of a minimization problem

with an objective function g(x) from a given initial point x1 at the first iteration

and then iteratively moves toward a local minimum by following the negative of

the gradient function −∇g(x). In other words, at every iteration i, we compute

xi ← xi−1 − α∇g(x), where α is a constant. In our case, the objective function to

be minimized is the negative of the above log-likelihood function g(x) = g(β, Z) =

−log(Pr(F |β, Z)). By taking partial derivatives of the objective function with respect

to the variables β and Z, we have the gradient function −∇g(x) = {∂g(x)
∂β

, ∂g(x)
∂Z
} as

∂g(β, Z)

∂zi,j
= θi,j − fi,j

∂g(β, Z)

∂βrecs
=

n∑
i=1,i<j

log(RiRj)(θi,j − fi,j)

∂g(β,D)

∂βgcc
=

n∑
i=1,i<j

log(GiGj)(θi,j − fi,j)

∂g(β,D)

∂βseq
=

n∑
i=1,i<j

log(UiUj)(θi,j − fi,j)

To initialize x1 = {β1, Z1}, we first set the variable zi,i+1 as a uniform con-

stant z for every two neighboring segments, si and si+1, because we assume that

the distance between every pair of neighboring segments is similar. The systematic

biases are then initialized as β1 by solving Eq. 4.1, with z = β0, on neighbor-

ing segments only. To obtain initial variables zi,j, where j − i > 1, θi,j is sampled

from the conjugate prior of Poisson distribution Γ(1, fi,j + 1) and then zi,j is cal-
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culated by using Eq. 4.3 with the fixed parameter β1. After the convergence of

the gradient descent search, the normalized contact frequency f̂i,j is computed by

f̂i,j = fi,j/{(RiRj)
βrecs(GiGj)

βgcc(UiUj)
βseq}. Our complete algorithm for GDNorm is

summarized in Algorithm 1. Here, Nmax denotes the maximum number of iterations

allowed and its default is set to be 10 based on our empirical observation that the

gradient descent search usually converges in no more than 10 iterations.

We assess the performance of GDNorm in terms of (i) the accuracy of its normal-

ized contact frequencies and (ii) the accuracy of structure determination using the

normalized contact frequencies. The latter will be done by simulating biased Hi-C

read count data from some simple reference chromosome structures and then trying

to recover the reference structures from normalized contact frequencies in combina-

tion with the most recent chromosome structure determination algorithm, ChromSDE

[141]. In other words, we will consider the impact of normalized contact frequencies on

the chromosome structures predicted by ChromSDE. To measure the quality of bias

correction, we consider the reproducibility of normalized contact frequencies between

biological replicates of an mESC line [28] and the correlation between normalized

contact frequencies and FISH distance values in the literature. The performance of

GDNorm will be compared with the state-of-the-art bias reduction algorithms HiC-

Norm [48], YT [135] and ICE [52].
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Algorithm 1 Bias Reduction Based on Gradient Descent

procedure Bias Reduction

Input:Contact frequency matrix F and genomic features R, G and U

Spatial Distance and Systematic Bias Estimation:

Initialize x1 = {β1, Z1};

for i from 2 to Nmax do

xi ← xi−1 − α∇g(x);

if g(xi) > g(xi−1) then

Go to Contact Frequency Normalization;

end if

end for

Contact Frequency Normalization:

for i < j do

f̂i,j = fi,j/{(RiRj)
βrecs(GiGj)

βgcc(UiUj)
βseq}

end for

return F̂ = {f̂i,j|1 < i, j < n}

end procedure
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Figure 4.1: Alignment between the reference chromosome 3D structures and struc-
tures predicted by GDNormsde, HiCNormsde and BACH on simulated data. The red
curves indicate the predicted structures and blue curves the reference structures. The
results of GDNormsde, HiCNormsde and BACH are shown from left to right. The top
row is for the helix and bottom for the random walk. The quality of each structural
alignment is evaluated by an RMSD value.

4.3 Experimental Results

4.3.1 Simulation Studies

To evaluate the accuracy of chromosome structure prediction, two reference 3D

structures, a helix and an arbitrary random walk, are constructed as shown in Fig.

4.1. In order to be close to the real chromosome structure prediction practice, each

of the reference 3D structures consists of 44 segments, where the number 44 was

determined by the average size of the chromosomal structure units studied in [49] (i.e.,
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conserved domains). Let Bi denote the systematic bias in a segment si and Ti,j the

true (unbiased) contact frequency between segments si and sj. To synthesize observed

contact frequencies fi,j, we follow the assumption fi,j = Ti,jBiBj as in [52]. Here, Ti,j

is assumed to be inversely proportional to the spatial distance di,j. That is, Ti,j = dρi,j,

where ρ < 0 is called the conversion factor between the unbiased contact frequency

and its corresponding spatial distance. The value of BiBj is estimated by using the

log-linear function log(BiBj) = β0 + βrecslog(RiRj) + βgcclog(GiGj) + βseqlog(UiUj)

introduced in [48]. The coefficient βseq is set to 1 as in [48] while ρ is set to −1.2 as

estimated from a mouse cell line by ChromSDE [141]. To determine the coefficients β0,

βrecs and βgcc, HiCNorm is run on the mm9 mESC data to form a pool of coefficients.

A set of coefficients β0, βrecs and βgcc are then randomly drawn from the pool and

used throughout the simulation study.

Because currently there is no tool to synthesize Hi-C reads reasonably from a

given 3D structure and the methods YT and ICE require actual Hi-C reads as in-

put, they are excluded from this simulation study but will be discussed in the real

data experiments in the section 3.2. The method GDNorm and HiCNorm are run

on the simulated contact frequencies and their normalized contact frequencies are

then used to predict chromosome 3D structures. Two structure prediction software,

MCMC5C and ChromSDE, in the literature use normalized contact frequencies to

predict chromosome 3D structures [104, 141]. Here, we choose ChromSDE, instead of

MCMC5C, as the structure prediction method because MCMC5C is not specific to
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Hi-C data and ChromSDE significantly outperformed MCMC5C in the most recent

study [141]. The combination of HiCNorm and ChromSDE is denoted as HiCNormsde

while the combination of GDNorm and ChromSDE is called as GDNormsde in the fol-

lowing discussion. To further study the performance of GDNormsde and HiCNormsde

as chromosome structure prediction tools on biased Hi-C data, another independent

prediction method, BACH [49], is also included in our comparisons. Note that BACH

always normalizes the size of its predicted structure by fixing the distance between

the first and the last segments to be 1 while ChromSDE does not perform this nor-

malization. To obtain a fair comparison, we calibrate the predicted structure sizes in

GDNormsde and HiCNormsde such that the distance between the first and last seg-

ment is fixed at 100. Finally, the accuracy of structure prediction is assessed using

the root mean square difference (RMSD) measure after optimally aligning a predicted

structure to the reference structure by Kabsch’s algorithm [55].

GDNorm provides the most accurate chromosome structure prediction on

noise-free data

The optimal alignments of the predicted and reference chromosome structures are

shown together with their RMSD values in Figure 1. In the structure predictions for

both the helix and random walk, GDNormsde predicted the chromosome structures

with the minimum RMSDs. In the structure prediction for the helix, GDNormsde

obtained a structure that can be almost perfectly aligned with the reference structure
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with a very small RMSD value of 0.3. This is because GDNorm was able to signifi-

cantly reduce the effect of systematic bias and the semi-definite programming method

employed by ChromSDE can guarantee perfect recovery of a chromosome structure

when the given distance values between segments are noise-free.

GDNorm reduces systematic biases significantly in noise-free data

To examine how much the effect of systematic biases can be reduced by the se-

lected bias reduction methods, we further analyze the predicted spatial distance values

between neighboring segments in the structure prediction for the helix. Because the

spatial distance between neighboring segments si and si+1 in the reference structure

of the helix is the same for all i, the difference in the observed contact frequency

between si and si+1, for different i, is mainly a result of the systematic biases. If

the systematic biases are correctly estimated and eliminated, the distance between

any two consecutive segments in the predicted structure is expected to be the same.

The spatial distance values between 10 pairs of consecutive segments with the great-

est systematic biases are compared with the distance values between 10 pairs with

the smallest systematic biases for each of the chromosome structures predicted by

GDNormsde, HiCNormsde and BACH. The box plots in Figure 4.2 summarizes the

comparison results. The absolute differences between the means of the two sets of 10

distance values obtained by GDNormsde, HiCNormsde and BACH are 0.045, 3.47 and

2.61, respectively. The statistical significance of the difference between two sets of
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Table 4.1: RMSD values of the predicted structures on noisy data.

Reference Structure Noise Level GDNormsde HiCNormsde BACH

Helix
30% 2.65 3.33 14.9
50% 4.19 4.26 20.0

Random Walk
30% 4.26 6.40 5.26
50% 5.17 7.11 6.43

10 distance values obtained by each method is also examined by a two-tailed t-Test

[42], which yielded a non-significant p-value of 0.42 for GDNormsde and significant

p-values of 1.3× 10−12 and 1.56× 10−6 for HiCNormsde and BACH, respectively.

GDNorm provides the most accurate chromosome prediction on noisy data

We have demonstrated the superior performance of GDNormsde on Hi-C data

without noise (but with systematic biases). To test its performance on noisy data, a

uniformly random noise δi,j is injected into every contact frequency fi,j such that the

noisy frequency f̃ ij = fi,j(1 + δi,j). In this test, we consider two noise levels, 30% and

50%. Table 4.1 summarizes the RMSD values of the optimal alignments between the

predicted structures and the reference structures. The results show GDNormsde still

outperforms the other two methods by achieving the overall smallest RMSD values

at both noise levels. Note that BACH failed to predict the helix structure at both

noise levels in this test, perhaps because its MCMC algorithm could sometimes be

trapped in a local optimum when the input data contains a significant level of noise.
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Figure 4.2: Comparison of the predicted spatial distance values with the 10 greatest
and 10 smallest systematic biases. For each structure prediction method studied, two
sets of 10 distance values form the two boxes in a comparison group. The left box
depicts the distribution of the distance values for contacts with the greatest systematic
biases while the right shows the distribution of the distance values for contacts with
the smallest systematic biases. Clearly, GDNormsde produced the most consistent
distance values and HiCNormsde the least.

4.3.2 Performance on Real Hi-C Data

In addition to the simulation study, several experiments on real Hi-C data are

conducted to evaluate the bias reduction capability of GDNorm, in comparison with

other state-of-the-art bias reduction methods, HiCNorm, YT and ICE. Unlike the

assessment in the previous simulation study, the reference structures for real Hi-C

datasets are hardly obtainable because of the complexity of chromosome structures.

To compare the performance of the studied bias reduction methods on real Hi-C data,

a commonly used evaluation criterion is the similarity (or reproducibility) between

normalized contact frequency matrices from biological replicates using different en-

zymes. Since these replicates are derived from the same chromosomal structures in
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the cell line, the contact frequencies normalized by a robust bias reduction algorithm

using one enzyme are expected to be similar to those using another enzyme. How-

ever, a high reproducibility is a necessary but not sufficient condition for robust bias

reduction algorithms. As suggested in [49], we further compare the correlation be-

tween normalized contact frequencies and the corresponding spatial distance values

measured by FISH experiments. Both the similarity between the normalized contact

frequency matrices and the correlation to FISH data will be measured in terms of

Spearman’s rank correlation coefficient that is independent to the conversion between

normalized contact frequencies and spatial distance values.

To prepare benchmark datasets for the performance assessment, we use two re-

cently published Hi-C data from human lymphoblastoid cells (GM06990) [74] and

mouse stem cells (mESC) [28]. For the GM06990 dataset, the Hi-C raw reads,

SRR027956 and SRR027960, of two biological replicates using restriction enzymes

HindIII and NcoI, respectively, were downloaded from NCBI (GSE18199). Each of

the chromosomes in the GM06990 cell line is binned into 1M bps segments and the

pre-computed observed frequency matrices at 1M resolution were obtained from the

publication website of [135]. For the mESC dataset, the mapped reads, uniquely

aligned by the BWA algorithm [71], were downloaded from NCBI (GSE35156). Be-

cause of the enhanced sequencing depth in the mESC dataset, the Hi-C data can be

analyzed at a higher resolution, i.e., 40kb. In other words, the 20 chromosomes in

the mESC cell line are binned into 40kb bps segments. To calculate observed contact
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frequencies from the mapped reads, the preprocessing protocols used in the literature

[74, 135] are followed. For every paired-end read, its total distance to the two closest

RECSs is calculated. Any read with a total distance greater than 500 bps is defined

as a non-specific ligation and thus removed to prevent reads from random ligation

being used, as suggested in [135]. Reads from RECSs with low sequence unique-

ness (smaller than 0.5) are also discarded. The remaining paired-end reads over the

20 chromosome, chr1 to chr20 (chrX), are used for calculating the observed contact

frequencies.

The contact frequencies are derived from a cell population that may consist of sev-

eral subpopulations of different chromosome structures. Without fully understanding

the structural variations in a cell population, any structural inference from the Hi-C

data can be distorted [49]. A recent single-cell sequencing study found that inter-

chromosome (or trans) contacts have much higher variability among cells of the same

cell line than intra-chromosome (or cis) contacts [85]. To avoid potential uncertainty

that may be caused by significant variations in a cell line, we follow suggestions in

the literature [28, 49] and focus on cis contacts within a chromosome.

To obtain normalized frequencies of the bias reduction methods, we run both

GDNorm and HiCNorm on the contact frequencies and ICE on the raw Hi-C reads.

The normalized frequencies by the YT method are downloaded from the publication

websites of the literature [28, 135]. Note that although the primary objective of

BACH is to predict chromosome structures, it also estimates systematic biases in the
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prediction of chromosome structures, using the log-linear regression model given in

Eq. 4.2.

Hence, BACH can be regarded as a bias reduction method if we divide each

observed contact frequency by its estimated systematic biases and use the quotient

as the normalized frequency. To study the accuracy of bias estimation by BACH, we

also include BACH in the comparison of bias correction methods. The reproducibility

between the two biological replicates and correlation to FISH data achieved by the

compared methods are discussed below.

Figure 4.3: Comparison of the reproducibility between two biological replicates
achieved by GDNorm, HiCNorm, YT, ICE, and BACH on the 23 chromosomes, chr1
to chr23 (chrX), in the GM06990 cell line at 1M resolution. The distribution of Spear-
man’s correlation coefficients achieved by a bias reduction method is represented as
a solid curve over the 23 chromosomes. Plot (a) illustrates the overall reproducibility
and plot (b) shows the reproducibility of high contact frequencies (RHCF).

114



Figure 4.4: Comparison of the reproducibility in the mESC dataset. Plots (a) and (b)
illustrate the overall reproducibility and RHCF of GDNorm, HiCNorm, YT, and ICE
on the 20 chromosomes, chr1 to chr20 (chrX), in the mESC cell line at 40kb resolution,
respectively. Here, the distribution of Spearman’s correlation coefficients achieved by
each bias reduction method is represented as a solid curve over the 20 chromosomes.
Plots (c) and (d) show the overall reproducibility and RHCF of GDNorm and BACH
at 1M resolution, respectively.

GDNorm achieves the best reproducibility on the two real datasets

The reproducibility between biological replicates is measured by Spearman’s cor-

relation coefficient. To prevent the assessment biased by background noise, when

calculating Spearman’s correlation coefficient, 2% of bins with lowest read counts

in the matrices are deleted as done in [52]. The reproducibility over the remaining

98% of the bins is referred to as the overall reproducibility. Some recent studies

in the literature using Hi-C data focused on high contact frequencies, e.g., studies

concerning gene promoter-enhancer contacts [54] and spatial gene-gene interaction

networks [130]. To assess the capability of reducing systematic biases in high contact

frequencies, we calculate another Spearman’s correlation coefficient, called the repro-
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ducibility of high contact frequencies (RHCF), by using only the top 20% of bins with

the highest observed contact frequencies.

The Spearman’s correlation coefficients over the 23 chromosomes in the GM06990

dataset are summarized in Figure 4.3. The average overall reproducibility of the ob-

served (i.e., raw) contact frequencies is 0.711 and GDNorm achieves the best overall

reproducibility 0.811 on average while HiCNorm, YT, BACH, and ICE obtain 0.799,

0.789, 0,761, and 0.721, respectively. GDNorm improves the average overall repro-

ducibility by up to 0.04 on an individual chromosome, over the second best method,

HiCNorm. In terms of RHCF, the improvement by GDNorm over the second best

method (HiCNorm) is more striking, 0.02 on average and up to 0.13 on an individual

chromosome.

In the experiments on the mESC dataset, all the selected methods are run on

the data at 40kb resolution except for BACH. The running time of BACH is pro-

hibitive for performing chromosome-wide bias correction on the mESC dataset at the

40kb resolution, because it requires 5000 iterations to refine the predicted structure

by default and each iteration takes about 30 minutes on average on our computer.

So, we excluded BACH from the experiments at 40kb resolution, but will compare

it with GDNorm at 1M resolution separately. The comparisons over the 20 chromo-

somes in the mESC dataset at 40kb resolution are summarized in Figure 4.4 (a) and

(b). The average overall reproducibility of the observed (raw) contact frequencies is

0.734. The average overall reproducibility provided by GDNorm is 0.865, which is
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about 0.02 higher than the average overall reproducibility (0.846) obtained by HiC-

Norm and 0.03 higher than the third best (0.83) obtained by YT. Although ICE

can eliminate systematic biases without assuming their specific sources, it achieves

the lowest average overall reproducibility, 0.783, which is significantly lower than the

average reproducibilities obtained by the other three methods. GDNorm achieves

similar improvements in terms of RHCF, which is also 0.02 higher than the second

best by HiCNorm on average and up to 0.04 on an individual chromosome. The

comparisons between BACH and GDNorm at 1M resolution are shown in Figure 4.4

(c) and (d). GDNorm significantly outperforms BACH on both average overall repro-

ducibility (0.02) and average RHCF (0.07). In the tests on individual chromosomes,

the maximum improvement on RHCF by GDNorm is up to 0.15. This result shows

that, although GDNorm and BACH both include spatial distance explicitly in their

models, the gradient descent method of GDNorm can estimate the systematic bi-

ases more accurately than the MCMC based optimization procedure of BACH. These

experimental results demonstrate that GDNorm is able to consistently improve on

the reproducibility between biological replicates at both high (40kb) and low (1M)

resolutions.
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The normalized contact frequencies obtained by GDNorm are well corre-

lated to the FISH data

To further validate the quality of normalized contact frequencies, we use an mESC

2d-FISH dataset that contains distance measurement for six pairs of genomic loci as

our benchmark data. The six pairs of genomic loci are distributed on chromosomes 2

and 11 of the mESC genome, with three pairs on chromosome 2 and the other three

on chromosome 11. The distance between each pair of the genomic loci is measured

by inter-probe distance on 100 cell images from 2d-FISH experiments and normalized

by the size of cell nucleus such that any change in the distance measurement is

attributed solely to altered nucleus size on the images as described in the literature

[33]. The average of the 100 normalized distance values for each pair of the genomic

segments is used to correlate with the normalized contact frequency corresponding

to the pair. The normalized frequencies are expected to be inversely correlated to

the corresponding spatial distance values. Table 4.2 compares Spearman’s correlation

coefficients obtained by all four methods. The correlation coefficient between the 2d-

FISH distance values and observed contact frequencies is low, −0.45 and −0.25 in

the HindIII and NcoI replicates, respectively. YT and GDNorm are able to improve

both correlation coefficients and achieve a strong correlation (smaller than −0.6)

in the HindIII replicate while HiCNorm and ICE fail to deliver strongly correlated

normalized frequencies in either replicate.
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Table 4.2: Correlation between normalized contact frequencies at
40kb resolution and spatial distance measured by FISH experiments
in the two biological replicates of the mESC data.

Replicates Raw GDNorm HiCNorm YT ICE
HindIII -0.49 -0.66 -0.60 -0.66 -0.25

NcoI -0.25 -0.37 -0.14 -0.37 0.31

The time efficiency of GDNorm

We evaluate the time efficiency of the selected methods by comparing their running

time on the two real datasets. Our computing platform is a high-end compute server

with eight 2.6GHz CPUs and 256GB of memory, but a single thread is used for

each method. Because the normalized frequencies of YT were downloaded from the

publication website, we did not run YT (in fact, we were unable to make YT run

on our server) and will exclude YT from the comparison. The running time of the

other four methods is summarized in Table 4.3. Due to the intensive computation

requirement of the MCMC algorithm for refining chromosome structures, BACH is

more than 10 time slower than HiCNorm and GDNorm on the 1M dataset (i.e.,

GM06990). As mentioned before, the running time of BACH increases drastically

with the number of genomic segments and becomes prohibitive when BACH is applied

to the 40kb dataset (i.e., mESC). ICE is significantly slower HiCNorm and GDNorm

because it starts from raw Hi-C reads (instead of read counts) and requires additional

time for iteratively mapping and processing the raw reads. Note that YT also uses

raw Hi-C reads as its input and was found to be more than 1000 times slower than

HiCNorm on the 1M dataset [48]. On both real datasets, GDNorm runs faster than
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Table 4.3: The running time on the GM06990 and mESC datasets.

Datasets GDNorm HiCNorm BACH ICE
GM06990 0.8 s 2.0 s 2 hr 17 m 5 hr 45 m

mESC 37 s 15 m 58 s - 8 hr 36 m

Figure 4.5: The running time of GDNorm and HiCNorm on the mESC data at four
different resolutions. The Y-axis shows the running time in seconds and the X-axis
indicates the number of genomic segments at each resolution.

HiCNorm. The standard iteratively reweighted least squares (IRIS) algorithm [29]

was implemented in the software of HiCNorm to solve its log-linear regression model.

In every iteration, the running time of the IRIS algorithm is quadratic in the number

of genomic segment pairs. However, in our gradient descent method, the execution

time of each iteration is only linear in the number of segment pairs, which makes

GDNorm faster than HiCNorm. As illustrated in Figure 4.5, a simple experiment on

the mESC data with resolutions at 40kb, 80kb, 200kb, and 1M shows that, when the

number of genomic segments increases, the running time of HiCNorm grows much

faster than that of GDNorm.
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4.4 Conclusion

The reduction of systematic biases in Hi-C data is a challenging computational

biology problem. In this paper, we proposed an accurate bias reduction method that

takes advantage of a more comprehensive model of causal relationships among ob-

served contact frequency, systematic biases and spatial distance. In our simulation

study, GDNorm was able to provide more accurate normalized contact frequencies

that resulted in improved chromosome structure prediction. Our experiments on

two real Hi-C datasets demonstrated that GDNorm achieved a better reproducibil-

ity between biological replicates consistently at both high and low resolutions than

the other state-of-the-art bias reduction methods and provided stronger correlation

to published 2d-FISH data. The experiments also showed GDNorm’s high time ef-

ficiency. With the rapid accumulation of high throughput genome-wide chromatin

interaction data, the method could become a valuable tool for understanding the

higher order architecture of chromosome structures.
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