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Abstract

The Large Synoptic Survey Telescope (LSST) project will conduct a 10 year multi-band survey starting in 2022. 
Observing strategies for this survey are being actively investigated, and the science capabilities can be best 
forecasted on the basis of simulated strategies from the LSST Operations Simulator (OpSim). OpSim simulates a 
stochastic realization of the sequence of LSST pointings over the survey duration, and is based on a model of the 
observatory (including telescope) and historical data of observational conditions. OpSim outputs contain a record 
of each simulated pointing of the survey along with a complete characterization of the pointing in terms of 
observing conditions, and some useful quantities derived from the characteristics of the pointing. Thus, each record 
can be efficiently used to derive the properties of observations of all astrophysical sources found in that pointing. 
However, in order to obtain the time series of observations (light curves) of a set of sources, it is often more 
convenient to compute all observations of an astrophysical source, and iterate over sources. In this document, we 
describe the open source python package OpSimSummary, which allows for a convenient reordering. The 
objectives of this package are to provide users with an Application Programming Interface for accessing all such 
observations and summarizing this information in the form of intermediate data products usable by third party 
software such as SNANA, thereby also bridging the gap between official LSST products and preexisting simulation 
codes.

 

1. Introduction

The Large Synoptic Survey Telescope (LSST) project will
conduct a multi-band imaging survey(LSST Science Collaboration
et al. 2009)of the sky with a 3.2 gigapixel camera on a 8m class
ground-based telescope at Cerro Pachon, Chile with a field of view
of about 10 square degrees. The survey is scheduled to start taking
data for science operations in 2022, and cover most of the Southern
sky to median single-visit depths of r∼24.3, revisiting each
location frequently. The combination of large sky-coverage, high
depth and repeated visits enables several major scientific goals such
as studying the solar system, astrophysical transients and variables,
the Milky Way, and the physics of dark matter and dark
energy(Ivezić et al. 2019). The efficacy of such investigations,
particularly the Time Domain Astronomy programs involving
observations of Time Domain Astronomical Sources (TDAS) such
as transients, variable stars, active galactic nucleus, as well as solar
system objects, depends critically on the observing strategy used to
determine the sequence of pointings of the telescope.

Forecasting the performance of a science program with LSST
survey strategies through the analysis of mock catalogs of
observations of sources relevant to the science program is
important and timely. Such forecasts are essential for the study
of the impact of survey design and strategy. They are also
instrumental for developing and testing appropriate analysis
methods. Simulations of such mock catalogs requires models of
the astrophysical sources, models of the observing instrument,

and the analysis methods used to reduce the real data to such
catalogs, and a model of the survey strategy along with a model
of the observing conditions.
During the survey, the LSST project will make observations of

the sky by pointing in different directions, recording the image for
a certain amount of time and then processing the image. This
procedure of procuring an image of a sky location for processing
is referred to as a “visit” in the LSST literature, and the visit itself
may involve two “snaps” separated by the shutter closing (current
baseline strategies have two snaps of 15 s each resulting in a visit
of exposure of 30 s). A visit will be followed by a possible slew of
the telescope to a different location, after which a new visit starts
again to repeat the cycle. As each visit is short, the observing
conditions determined by the atmospheric and sky conditions can
be approximated as constant during a visit. Currently, the LSST
project simulates observations during its survey period using the
Operations Simulator (OpSim) (Delgado et al. 2014; Delgado &
Reuter 2016; Reuter et al. 2016). This is done with a prototype
scheduler queuing visits according to a strategy designed to
optimize science using a high-fidelity model of the telescope to
calculate times required for telescope slews, and realtime
observing conditions simulated using an empirical model of the
sky and atmosphere. The output of such an OpSim simulation is a
sequence of all the visits during the survey, and includes quantities
required to describe the state of the telescope after each visit, and
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a complete description of their astrophysical properties at that
instance of time. In this method, obtaining the visit information
is simple; however, the state of the transient objects needs to be
persisted from one visit to another, and the output of several
visits has to be serialized before the light curves of the
transients can be built. In the second approach (b) popular in
the transient world, the paradigm involves distributing each
astrophysical source (or groups thereof) to different resources,
and simulating all of the observations of the source over a
sequence of times. While this automatically leads to outputs
with light curves for different objects in exactly the format
useful for analysis, this calls for collecting the correct sequence
of visits at a particular sky location, which is the only non-
trivial step remaining.
Our objective in this work is to provide a solution to the

collection of the correct sequence of visits for a transient or
variable source to make alternative (b) simple. As described,
we do this by providing an open source package with a simple
public Application Programming Interface (API) that users can
use to obtain such sequences of visits. We also recognize that
there are useful and often-used codes like SNANA(Kessler
et al. 2009, 2019a) that are used to produce catalog simulations
of TDAS and demand specific forms of inputs aggregating this
information. To enable the use of this code, we also provide a
script that produces an intermediate data product (an observa-
tion library file in the SNANA terminology) in exactly the input
form desired, so that this can work out of the box with SNANA
simulations.

2. Methods

While we will not discuss TDAS simulations here, note that
the observation information necessary for such simulations is
available from OpSim outputs, while a separate code (not
provided in this work) is necessary to model the population of
astrophysical objects themselves to get simulated observations.
In order to simulate catalogs of TDAS, one needs to simulate the
observed “flux” or photon counts of a source of known apparent
brightness, as parameterized by the specific flux Fν(λ) at the top
of the earth’s atmosphere, and the uncertainty in the measured
flux. The measured flux, or rather the counts of photons received
from an astrophysical point source or the sky are modeled as
random variables that follow a Poisson distribution, where the
expected counts from the source and the sky can be calculated
from the physical parameters of the telescope and instruments,
knowledge of the effective point-spread function (PSF), and the
specific flux per unit area of the sky. (See Appendix A or Ivezić
et al. 2010 for a more comprehensive discussion). The expected
counts of photons from astrophysical sources and the sky may be
written (please see the Appendix for a derivation; here we only
use a summary of the results) in terms of the source magnitude m
and the sky brightness msky:

k a= =- -c c10 , 10 , 1m m
source

0.4
sky

0.4 sky ( )

where κ, α are quantities that can be written in terms of
physical constants, physical parameters of the optical system,
and noise-equivalent area of the effective PSF (FWHMeff as
listed in OpSim outputs) of the visit, all of which are known or
measured quantities. Additionally, κ depends on the total
transmission function (optical system and atmosphere) through
the throughput integral Tb(defined in Equation (12)), which
changes from observation to observation, mostly driven by7 https://github.com/LSSTDESC/imSim

the observing conditions during the pointing. Such OpSim 
outputs may be considered realized forecasts of LSST.

Such forecasts of science performance can be done in several 
ways representing different tradeoffs between computation/
storage costs and the level of accuracy. On the low-resource end, 
the Metric Analysis Framework (Jones et al. 2014, MAF) uses 
“metrics” that are proxies of the scientific performance of the 
survey. Such proxies are built as functions of quantities related to 
observational conditions, and are usually designed by scientists 
on the basis of past experiences and intuition. Such metrics are 
extremely useful for studying the impact of survey strategy. On 
the resource-intensive end, there are image simulation codes 
(PhoSim (Peterson et al. 2015) and ImSim7) capable of using the 
OpSim outputs and producing detailed realistic simulations of 
LSST images, but are computationally expensive in terms of 
generation and storage. Furthermore, analysis of these images 
follows the expected LSST image processing using the LSST 
software stack (Jurić et al. 2017) and therefore best represents the 
scientific performance of LSST. The computational expense for 
forecasts using image simulations is much higher than the expenses 
for image simulation-aided efforts on current survey data, because the 
forecasts require both images of the sky, including galaxies and point 
sources, to be simulated. On the other hand, the use of simulated 
point sources on image stamps in characterizing photometry 
pipelines of survey data, as seen in the Supernova Legacy Survey
(Astier et al. 2013), the  Dark Energy Survey (Brout et al. 
2019), and the Palomar Transient Factory (Frohmaier et al. 2019) 
underscores the importance of the image-processing steps in the 
accuracy of final results.This leads to the conclusion that such end-
to-end explorations are hard, and therefore can only be used in a 
limited number of cases. An interesting middle ground is provided by 
catalog simulations, which utilize the OpSim outputs to obtain 
properties of visits, models of the astrophysical sources obtained 
from previous data or theoretical calculations, and models of aspects 
of the image-processing procedure in the LSST analyses to produce 
simulated catalogs directly. These simulated catalogs are mock 
realizations of the LSST Data Release Products (DRP) containing 
information on TDAS. LSST DRP catalogs are expected to contain 
forced photometry of all TDAS detected by LSST, and are expected 
to be released through a (nearly) annual frequency(Jurić et al. 2017). 
Thus, such catalog simulations replace the steps of image analysis 
and reduction to a catalog by an assumed model (which can in turn 
be improved through studies involving reprocessing older data and 
image simulations).

For the more abundant categories of TDAS such as Type Ia 
supernova (SN Ia), it is critical for catalog simulations to use 
distributed computing to speed up the simulations. There are at 
least two natural paradigms of organizing the distribution of 
computing resources. The first alternative (a) is to calculate the 
observed quantities corresponding to each telescope visit at a 
particular instance of time, which may be further split into smaller 
spatial regions. Indeed, this is almost essential for any image 
simulation, and is an approach utilized in generating “Instance 
Catalogs” by the LSST Catalog Simulations (CatSim; Connolly et 
al. 2010, 2014) that are used as intermediate data products by 
Image Simulation software like PhoSim and ImSim. These 
Instance Catalogs are catalogs of astrophysical objects in the 
simulated universe whose light are expected to impinge on the 
LSST CCDs on that particular visit, along with

https://github.com/LSSTDESC/imSim


k
a

=
´

+ + -25 10

2
1 1

4

25
10 , 2

m
m

0.4
0.4

5
sky ( )⎜ ⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

which reduces to the familiar background-dominated limit of
a ´ -5 10 m m0.2 2 5 sky( ) in the limit where c 1.sky  This is

similar in spirit to how σrand is calculated in Ivezić et al. (2019).
These expressions relate κ to physical constants, physical
parameters of the optical system that are constant in time through
α, and the quantities msky, m5, and FWHMeff, available in
OpSim. It should be remembered that all of these quantities
a m, , and m5 sky are not independent, therefore Equation (2)
does not imply that changing α by changing the PSF would
change κ. On the other hand, if the small difference between Tb
and Σb is ignored such that a

k
is considered to a measured

quantity from the measured PSF, one can find an expression for
κ in terms of the OpSim quantities msky, m5, FWHMeff, and the
pixel size

k
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without worrying about the physical characteristics of the
optical system. It should be noted that this formalism assumes
that the sky background used in these equations is the truth. In
the case of analysis of real data, these are estimated quantities,
and could be biased high due to the low-surface-brightness
wings of galaxies, as found, for example, in the Hyper-
SuprimeCam data sets or simulations similar to the Deep Lens
Survey(Ji et al. 2018). Since the OpSim values do not include
such corrections, there is no way to emulate this directly in
catalog simulations. However, supernova simulations including
SNANA simulations can be performed with an additional
attribute of location with respect to host galaxies. If such
corrections are estimated from image simulations as a function
of local host-galaxy properties, (e.g., surface brightness at the
location of the supernova) estimated biases can be added to the
results of catalog simulations.

Our goal is to obtain these terms for each visit in a transient
light curve from the OpSim output. This is explained in a step-
by-step procedure in Section 2.2

2.1. Input Data: Operation Simulator Outputs

To summarize the methodology used, we start by describing
the input data product, namely the outputs from OpSim. The
LSST project simulates observing strategies; using the OpSim

and the resulting sequence of pointings, properties of
observations are disseminated in the form of a sqlite database.
The database contains multiple tables, and the most important
ones for our purpose are the “summaryAllProps” and
“proposal”8 The “proposal” table is a table of scientific surveys
or proposals, each of which have their own requirements in
terms of desired visits and survey properties, along with a
unique integer identifier “proposalId.” Currently, LSST has a
Wide FastDeep survey (WFD), a Deep Drilling Field survey
(DDF), a Southern Galactic Cap Survey, a Milky Way Survey,
and a Northern Ecliptic Spur survey in different geographical
regions as shown in Figure 1 and different survey strategies
applied to each of them.
The “summaryAllProps” table is the sequence of simulated

observations based on the simulated conditions throughout the
10 year period. Each row of the table is an observation or a
telescope pointing that we will refer to as “visits.” The row for
a visit is identified by an integer “observationId” with
important properties characterizing the observation as well as
the “proposalId” whose criteria it satisfies. The characteristics
of the observations include the pointing location, the time of
observation, the bandpass in which the observation is made, the
airmass, the seeing and the PSF, the sky brightness, and the 5σ
depth. The seeing is based on historical data, while the sky
brightnesses are computed using a data-driven model (Yoachim
et al. 2016). Together, these two tables tell us about all of the
simulated observations, and the scientific proposal or survey
that they were taken to satisfy. These represent the sum total of
information available about the simulated strategies and are
sufficient to generate catalog simulations. Complete details on
such quantities are available from the schema of the output in
the relevant version.9,10 In the current versions, the pointings
are located on a discrete grid with an integer (fieldID)
identifying each point on the discrete grid. There is no
fundamental requirement that an observing strategy use such a
grid, and it is likely (and already true in some alternative
simulators) that this grid does not exist; consequently the
methodology we will describe below does not use this feature.
To give an idea of the sizes involved, a typical operations
simulator output contains about 2.5 million visits, while typical
OpSimdatabases have a size of about 4.6 GB. There are some
very specific details of OpSimoutputs that are not obvious in a
first encounter. We attempt to list them here:

1. Most of the proposals in the current baselines are non-
overlapping. If there was a spatial location that was
observed by survey WFD, it is not observed by a survey
like Southern Celestial Pole or the Northern Ecliptic
Spur. However, this is not true for WFD and DDF, and
DDF fields can be observed by WFD as well. There is no
reason that future mini-surveys will not have such
overlapping properties.

2. For a small fraction of cases, there can be multiple
(actually two) rows of the summary table that point to the
same visit. This happens whenever a particular visit
satisfies the requirements of two different proposals or
surveys. Currently, this is seen in the overlapping area of

8 In version 3, the “summaryAllProps” table was called the “summary” table.
9 https://www.lsst.org/scientists/simulations/opsim/summary-table-
column-descriptions-v335
10 https://lsst-sims.github.io/sims_ocs/tables/summaryallprops.html

airmass and clouds), while α depends on the system transmission 
function through the system throughput integral Σb (defined in 
Equation (16)), which is constant except for tiny differences 
caused by flexure of the system, or slowly over the years through 
the evolution of the system. The signal-to-noise ratio of the flux 
measurement is driven by the Poisson error due to both the source 
and sky counts. Since OpSim outputs do not contain κ or α, but 
an equivalent set of variables, it is convenient to eliminate some 
of them in terms of quantities that are measured in a survey or 
available as simulated quantities in the OpSim outputs like the 5σ 
depth m5, the sky brightness msky, and the PSF width provided in 
OpSim in terms of FWHMeff. The general expression is

https://www.lsst.org/scientists/simulations/opsim/summary-table-column-descriptions-v335
https://www.lsst.org/scientists/simulations/opsim/summary-table-column-descriptions-v335
https://lsst-sims.github.io/sims_ocs/tables/summaryallprops.html


the Wide Fast Deep/Deep Drilling Field due to the
previous point.

3. While some outputs of the OpSim come with a column of
ditheredRAand ditheredDec, these are added post
facto to the operation simulator output. Discussion of
what the dithers should be is still ongoing, but it is useful
to have the capability to replace these dithered observa-
tions with other dithers obtained from external sources.

2.2. Objectives

To further detail our objectives, we first define some terms
that we will use in this paper. For any particular visit in LSST,
a sky location within an angular radius of 1°.75 (the radius of
the LSST focal plane) will be said to be “observed by LSST
during this visit.” In reality, this is an approximation: there are
parts of the circular disk that are not covered by the rectangular
geometry of the LSST chips, as well as gaps between the chips.
Thus, the set of points observed by LSST during a visit
according to the above definition is a superset of the points
actually observed by the visit. We will ignore this distinction,
except to note that the fill factor of chips is about 90%.11 Given
a sequence of visits (or rows of LSST OpSim output) and a sky
location, one can find the sequence of visits that will observe
the sky location according to this definition. As this quantity
will be used repeatedly in this paper, we will refer to such a
subset of all of the visits in an OpSim output as the “visit set”
associated with a point on the sky.

In terms of the terminology defined above, our objectives are
quite simple:

1. Given an OpSim output, and a sky location in terms of
R.A. and decl., we need a simple API to obtain the visit
set of this location, i.e., the sequence of visits in the
OpSim output that observe this location.

2. Since the OpSim outputs are large (∼2.5 million visits)
and the number of transients in LSST simulation volumes

can be large (∼millions) for abundant and bright transients
like SN Ia, this could lead to 1012( ) simple computations
if done by brute force in a naive way. We would like the
process to be reasonably fast and not be a huge load on the
memory requirements. Note that while the number of
cosmologically useful SN in LSST will be smaller than the
number of supernovae exploding in the observable
volume, simulations have to simulate all of the supernovae
before applying selection cuts to identify cosmologically
useful supernovae.

3. Precompute this information on a dense grid and serialize
to SNANA observation library formats to enable fast
computations.

4. Since the Operations Simulation schema changes from
version to version in terms of names, even though the
conceptual setup remains the same, we would like to
account for these changes and provide a stable interface
for a catalog simulator.

3. Results

We present a simple, open source modular python package
OpSimSummary based on other open source libraries, particu-
larly the package Scikit-learn(Pedregosa et al. 2011) to
meet each of our objectives. The code(Biswas et al. 2019) is
available online,12 while the particular release described in this
paper is provided as a link. While the actual implementations
are somewhat different in terms of packages used, some of the
key ideas are inspired by those used in MAF. We first explain
how this code meets each of our objectives:

3.1. Objective 1: API to Collect Visits Observing a Transient

This package achieves our objective of collecting visits
observing a transient. It takes the publicly available LSST
project provided OpSim outputs (in OpSim versions 3 and 4,
as well as the two other schedulers that were used: the Feature

Figure 1. An all-sky representation in Celestial coordinates in the Mollweide projection of the different LSST proposals or surveys.

11 https://www.lsst.org/about/camera/features 12 https://www.github.com/lsstdesc/OpSimSummary

https://www.lsst.org/about/camera/features
https://www.github.com/lsstdesc/OpSimSummary


i. A set pl of selected points p, at which the visit sets v will
be precomputed with no approximation. For the approx-
imation to make a computing time difference, it would be
nice for the size of pl to be significantly smaller than the
size of the set tv of transients.

ii. A mapping from the visit sets v(x) for any point x in tl to
the visit sets v(y) of points y in pl.

= Î Îv x v v y x tl y pl, , . 4( ) ({ ( )}) ( )

A very simple algorithm along these lines would be nearest-
neighbor-interpolation, where the component (ii) would be
defined by assigning to an arbitrary point Îx tl, the visit sets
of the point in pl closest to x. Interpolation techniques exploit
the smoothness of the function being interpolated. Here the
“function” under consideration is a map that returns the visit
set of a point. While observing conditions in the sky vary
reasonably smoothly with location and time, the set of points
being observed by a visit is determined by a hard boundary
(edge of the focal plane). Any time such an edge falls between
two points, one of the two points will be observed and the other
will not. As the distance between two points decreases, the
probability of such a visit also decreases, but for a large number
of true visits in a visit set (in the WFD survey of LSST, this is
∼1000), this would still be expected to happen. This implies
that despite the smoothness of observing conditions with spatial
locations, the visit set associated with points would not be
“interpolated” as well as quantities like sky conditions. For a
dense enough set of points, such a strategy could still provide
an excellent approximation to the true visit sets. Of course,
precomputation of the quantities in a dense set and their storage
could itself be challenging, particularly if several versions of
survey strategies are analyzed.

An elegant way to exploit the locality of visits without using
the smoothness of the visit set is the use of a Tree data structure
to partition the data based on spatial positions, so that we
should expect a scaling of ´ N Nlog .transient visits( ) ( ( )) As far
as the distance computations are concerned, i.e., if we ignore
the position of the chips etc., then this calculation does not
involve any additional approximation, and the speed attained is
simply due to an organization of the calculation.
Here, we use a Tree implementation to exploit the locality of

visits and provide a simple API to compute the visit set
associated with individual visits. This should be easy to use for
a simulator in the sense described above. This is done using an
implementation within the package “Scikit-learn” (Pedregosa
et al. 2011) called “BallTree” (Buitinck et al. 2013). We also
use the API to precompute visit sets for a particular set of
points to obtain approximate visit sets for each point, through
an interpolation scheme for the well known SNANA code as
described in the next subsection.

3.3. Objective 3: SNANA Observation Libraries

For transient simulations, SNANA has historically utilized the
idea of splitting the sky into a relatively small set of
predetermined points. SNANA simulates transients at only
these locations. The abundance of transients simulated at each
of these locations is tuned so that the expected number of
transients (based on rates, survey volumes, etc.) starting within
any period of time over the total survey footprint is the sum of
the number of transients during the same time period at these
locations. To do such simulations, SNANA reads in a pre-
computed set of telescope pointings of a survey called “simlib
fields” and the observing conditions associated with each
pointing observing each of the simlib fields from an ASCII file
known as a SNANA observation library, with a specific format.
An important objective of the OpSimSummary codebase is to
provide precomputed observation libraries for SNANA to enable
simulations of LSST. Previous versions of this codebase have
been used to generate observation libraries used for SNANA
simulations and analyses in the LSST DESC Science Require-
ment Document(The LSST Dark Energy Science Collabora-
tion et al. 2018), while the code and features described here
were primarily for the data generation of the PLAsTiCC
challenge(The PLAsTiCC team et al. 2018), as described in
the PLAsTiCC model and simulations paper(Kessler et al.
2019b). We therefore include a script to use the more general
API of 3.1 to produce observation library files, which we are
using for SNANA simulations of LSST. We proceed to describe
the method by which such files were generated by first
describing the quantities being used by SNANA and how they
are related to OpSim quantities. We then describe the
procedure we follow (in the script) to generate these
observation library files: this includes the selection of
footprints, selection of simlib fields, and then computing the
quantities and writing them out.
First we tie the quantities in the observation library file to

OpSim outputs, with a brief justification of the procedure. We
then discuss the process of choosing the discrete locations at
which these evaluations take place. The SNANA observation
library quantities (bold-faced on the left side of Equation (5))
are related to the OpSim quantities (bold-faced on the right

Based Scheduler (Naghib et al. 2019) and AltSched(Rothchild et 
al. 2019) as input, and provides an API for obtaining the visits for 
a point source at a sequence of arbitrary locations (defined by R.A. 
and decl. values). The code structure and examples for doing this 
are in the Appendix of this paper, and available with the source 
code itself. It also allows for the usage of an additional set of 
dithers input as the file name of a file in comma separated values 
format. If the sources to be simulated can be simulated 
independently, distribution is trivial to achieve by splitting their 
locations into arrays and using these arrays independently.

3.2. Objective 2: Computational Efficiency

While the problem of enumerating all the transients, and the 
visits that observe each one of them is naively  Nvisits( ) ´  
Ntransient( ), it is intuitively clear that an easier computation 
should be possible. Since one does not require the computation of 
distances to visit centers that are too far away, the 
computation could take advantage of this.

There are different ways of implementing this intuitive idea of 
locality of visits. For example, a simple approach is choosing a 
convenient set of sky locations pl at which the visit sets are 
actually computed and approximating the visit set of an arbitrary 
point (for example, the set of point-source locations tl) by the visit 
set of a deterministically selected grid point. Thus, such schemes 
are defined by two components:
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In particular, the variables PSF1 and PSF2 of SNANA meant
to describe the PSF shape are represented by a simple two-
dimensional isotropic Gaussian profile with a radial standard
deviation. Since FWHMeff is related to the effective PSF area
in OpSim, we set PSF2 and PSF2/1 to zero, and then the
quantity PSF1 is simply related to FWHMeff of OpSim
through the first equation of Equation (5). The quantity skySig
of SNANA is related to a

k
of Equation (20). Finally, SNANA uses

the approximation of α/κ=1 in Equation (3). Thus, one can
see that ZPTAVG=2.5log10(κ) from Equation (3), with α/κ
set to unity.

Next, we discuss the selection of discrete points, which we
will refer to as “simlib fields,” where the visit sets, and the
quantities above are calculated for each visit in the visit sets
using the API of 3.1. This is done by first selecting the DDF
and WFD footprints, followed by uniformly selecting points
from each of these footprints. The first step in this procedure is
the selection of the DDF footprint. The footprint selection is
done by going over all the visits in the LSST DDF minisurvey,
which are identified by a “proposalId” index in OpSim. We
tessellate the sky into small HEALPix13 pixels(Górski et al.
2005), which we shall refer to as healpixels. The size of
healpixels is chosen as NSIDE=256, equivalent to pixel area
≈0.05square degrees, which is roughly the size of a LSST
chip), and find the healpixels that contain at least one point that
is observed by at least a threshold number of visits. These
healpixels together make up the footprint of the DDF
minisurvey. The provided script arguments allow the user to
set the threshold, but the default is 500 visits over 10 years. As
the healpixels have equal area, the total area of the DDF
footprint is the number of healpixels multiplied by the area of
each healpixel.

The footprint of the WFD survey is also found in a similar
way. First healpixels belonging to the DDF are removed, and
any other healpixel that contains at least a single point that has
a visit set with a number of visits over a threshold is taken to be
the WFD footprint. This gives us the footprint of the WFD
without any point that has been observed by DDF (i.e., with
holes around the DDF location) as shown in the top panel of
Figure 2. The color shows the healpix id in the HEALPix nest
scheme. Again, the threshold can be defined by the user, but the
default value used is 500. It should be noted that estimates of
the WFD area in the LSST literature follow a different
convention: the DDF area is not removed from the WFD
footprint as we have done, and areas for the WFD footprint are
often quoted with a threshold of 825 visits, the median
requirement (LSST SRD) of WFD visits in a field.

We treat these two geographical areas as different surveys
whose areas have been measured. In order to simulate
observation library files for each of these surveys, we first
choose a fixed number of simlib fields within the survey

Figure 2. Observation library fixed position choices. (Top panel) healpixels
from NSIDE=256 (nest scheme) filled by the WFD survey used in
observation libraries, which excludes the DDF areas as holes. The colors
show the healpixel id, which for the particular NSIDE and scheme uniquely
identify the healpixel. The solid color pattern shows that the healpixel ids have
been written out in increasing order of healpixel ids. (Middle panel) a sample of
50,000 healpixel positions, rather than all of the healpixel positions in a random
order that is written to observation library files. Here the color represents the
order in which the healpixels are written to the observation library, and the lack
of a solid color pattern shows that it is random rather than in increasing order of
healpixel ids. (Lower panel). A hex-binned 2D histogram of the number of
selected simlib fields in R.A. and sin decl. .( ) Since hex bins in these
transformed coordinates are of equal area, the color uniformity away from
the footprint edges demonstrates uniform sampling to obtain the points.

13 https://healpix.sourceforge.io

side of Equation (5)) through simple transformations as

https://healpix.sourceforge.io


∼18.0×103 and ∼47.6 sq. deg., respectively. These foot-
prints are modeled by 50,000 and 150 simlib fields respec-
tively, resulting in an average area per simlib field of 0.36 and
0.32sq. deg., respectively. Without compression, these ASCII
files have sizes of about 4.6 and 0.3 GB, respectively.

3.4. Validation, Performance, and Accuracy

First, as part of a standard test, we check that the visit sets
from the API match the values with the brute-force solution. To
give an idea of the time required in the current setup, (after a
common initialization for all sources, which mostly involves

reading in the database) the code required 37.2±3.1 s to
obtain visit sets for 50,000 sky locations spread over the same
100sq. degpatch of the sky as shown in Figure 3.
As we have seen, approximating the visit list by the visit list

of a nearby pre-computed point is a useful approach, not only
because it enables the use of other software, but also because
during the actual simulation obtaining the visit list is almost
instantaneous. We have noted that this will inevitably result in
differences with the correct calculations, but the approximation
approaches the correct results, as the set of points where the
precomputation is performed is made denser. Making the set of
precomputed points arbitrarily dense requires precomputations
and storage. So, quantifying a relationship between the
denseness of points (e.g., simlib fields) and the accuracy of a
precomputations at those points helps explain the tradeoffs.
With the tools available here, we can quantify this accuracy
with density.
To quantify the accuracy of visit sets in different approx-

imation schemes with precomputed points, we choose a
discretization scheme: following the discussion of such
schemes, this can be described by the two components (a) a
predetermined set pl of points p at which visit sets v(p) are
actually computed and (b) a prescription to assign visit sets to
each point x in the set of transients, and the visit sets of a
corresponding point p in pl. The approximation is perfectly
accurate if the true visit sets v(x) are identical to approximate
visit sets v(p), but when we study accuracy, we will limit
ourselves to a weaker definition of accuracy defined as the
difference in cardinality of the two visit sets v(x) and v(p). This
is the difference in the number of epochs over the survey time,
which is a good proxy for how the approximation affects
studies of TDAS.
Since we expect the accuracy of a discretization scheme to

depend strongly on the density of points pl at which the visit
sets were actually computed, and perhaps weakly, on the actual
discretization scheme, we choose a particular, convenient and
relevant (as the use of such schemes are already prevalent) kind

Figure 3. Location of the sky patch and a scatter plot of the points chosen
uniformly in the area to evaluate the accuracy of discretization schemes.

footprint. This fixed number can be chosen by the user, and the 
default number is 50,000 points for the WFD. The default number 
for the DDF is 150. The numbers are roughly proportional to the 
survey area footprints found above. The simlib fields are chosen 
randomly from the footprint. Here, random implies that any area of 
a fixed size within the footprint has the same probability of having a 
certain number of points. However, uniformly sampling an odd-
shaped footprint is somewhat complicated. While the codebase can 
uniformly sample healpixels (using rejection sampling), and 
therefore the footprint that is made of healpixels, this is inherently 
slow. Thus, we choose to not worry about it. Instead we pick a 
random integer from the set of healpixel IDs for the healpixels in 
the footprint, giving us different healpixels with equal probability. 
This is sufficient for our requirements of uniform sampling, but 
would not pass specific tests of isotropy, as the points are chosen to 
be healpixel centers. The uniformity of sampling is shown in the 
lower panel of Figure 2 where a hex-binned plot of the selected 
points against R.A. and sin decl.( ), where the color scale shows the 
number of selected points in each bin is shown to be roughly 
uniform, excluding the location of the Milky Way, which is not 
observed in detail by the WFD and DDF surveys in the current 
strategy.

For each of the selected simlib fields, we use the API of Section 
3.1 to obtain the visit sets observing these points from both WFD 
and DDF proposals of the OpSim output. By construction, the visit 
set of points in the DDF footprint includes visits from both WFD 
and DDF proposals of OpSim, which is the correct way to simulate 
transients. Points on the WFD footprint have visit sets that contain 
visits only from the OpSim WFD proposal. We calculate the 
derived quantities required for SNANA using the quantities available 
from OpSim through Equations (5) as described above, and write 
out the information in the format required by SNANA to simlib files. 
We have found that when used with SNANA for rare transients, it is 
important to randomize the order in which these healpixel positions 
is read (i.e., not according to increasing healpixel id) and randomize 
the order in which the selected points are written out. An example 
of such a selected sample, with the colors showing the serial 
ordering of these points, is shown in the middle panel of Figure 2. 
Often, to speed up the simulation process, and control sizes of 
outputs, these simlibs are coadded over nights by SNANA, before 
the simulation.

In the bottom panel, we check that the distribution of points is 
truly uniform (barring anomalous regions like the Milky Way 
where there are no WFD/DDF visits) by checking the rough 
uniformity of the hexbin plot in the bottom panel of Figure 2.

We end this subsection on SNANA simlibs with a description of 
a few generic features of the simlibs for the current baseline 
cadences of LSST. The sky area of the WFD and the DDF 
footprints calculated in the method described above are



of discretization scheme and vary the density. To that end, we
set up the following exercise: we choose a patch of the sky in
the R.A. range of (70°, 80°), and the decl. range of
(−35°,−25°), and select a sample tl of size=20,000 points
uniformly within this area. This patch of the sky and a scatter
plot of these points is shown in Figure 3. The points chosen for
precomputation pl are the positions of healpixels near the sky
patch at different values of NSIDE={64, 128, 256, 512,
1024}. We remind the reader that healpixels of a particular
NSIDE all have equal area, and ´12 NSIDE2 healpixels tile
the surface of the entire sphere. This allows the calculation of
the healpixel areas in square degrees, or their “resolution,”
which is simply the square root of the pixel area. Accordingly,
these pixels have areas of 0.84, 0.21, 0.05, 0.01, 0.003 square
degrees and resolutions of 55 0, 27 4, 13 7, 6 9, 3 4. This is
explained in Figure 4, where we show the setup for the choice
of NSIDE=64. Here, the black points show the pl, the
healpixel centers at which we actually compute the visit sets for
this scheme, while the blue lines connect pairs of points {x, y},
where xätl is a point in Figure 3, and yäpl is a black point
in Figure 4 where the visit sets assigned to x are the visit sets
computed at y. Before looking at the results, we recall from the
discussion that we expect the accuracy of visit sets to be related
to the length of these blue lines in Figure 4 connecting the
points x, y, and therefore show the distribution of such lengths
in Figure 5.

We compute the true visit sets for each of the points in tl
shown in Figure 3. We then use our discretization scheme for
different values of NSIDE, to compute only the visit sets at the
precomputed points pl, and assign to each point in tl the visit
sets of the healpix position of the healpixel where the point lies.
We refer to this as the approximated visit set under the specific
discretization scheme. Following a previous discussion, we
know that the inaccuracies will result in (a) visits in the original

visit set missing in the approximated visit set, and (b) new visit
sets in the approximate visit set that do not exist in the true visit
set. While we would like to keep both of these quantities small,
we also recognize that they will grow with the size of the true
visit set. Hence, the appropriate quantity to monitor is the ratio
of the number of missing visits to the number of true visits, and
the ratio of the number of new visits to the number of true
visits. In Figure 6, we show the distribution of the number of
missing visits to the number of true visits for different values of
NSIDE. The plot shows that the distribution is quite broad for
NSIDE=64, which has a resolution of ∼54′, and peaks at
about 15% of the visits missing, while for NSIDE=1024,
which has a resolution of ∼3′, this distribution is very narrow,
and peaks at slightly lower than a percent of missing visits,
with the values in between following the trend in both the
width of the distribution and the location of the peak. The
distribution of the ratio of new visits to the true visit sets is also
shown in Figure 7. The distribution of these visits is
quantitatively very similar to the visits in Figure 6.
We should note that the difference between the total number

of visits in the approximated visit set and the true visit set is
statistically smaller, as these two errors affect the size in the
opposite direction. However, replacing the visits by a different
set of visits does not preserve the time of observation and can
have significant differences due to, for example, differences of

Figure 4. Scatter plot of the points (black dots) at which the visit sets are
computed for a scheme where NSIDE=64. Since the scheme results in
assigning to any point x in Figure 3 the visit sets of exactly one black point y of
this scatter plot, we use the blue lines to connect the pair of points ({x, y} to
show the mapping operation.

Figure 5. Distribution of lengths of the blue lines in Figure 4 in degrees
connecting a point x in Figure 3 and a black point in Figure 4 where its visit set
is evaluated. Shorter displacements indicate better approximations.

Figure 6. Distribution of the ratio of the number of visits missing in the
approximate computation of visit sets to the true number of visits computed at
points in Figure 3.



bright and dark times. It also does not necessarily preserve the
observation bandpass. We know that the distance estimates of
SNe Ia are closely linked to band coverage, and thus cases
where the missing visits correspond to the less frequently
observed bands in LSST; it is likely that the additional visits
are going to be in the more frequently observed bands. Such
differences might be important for science programs like
supernova cosmology, even though investigating these details
is beyond the scope of this work. With this cautionary note, in
Figure 8 we show the ratio of differences in sizes between the
approximate visit set and the true visit set. Given the
quantitative similarity between Figures 7 and 6, it is not
surprising to see that the distribution of the difference in the
number of visits normalized by the number of visits in the true
visit set is centered at zero, with a width decreasing with
NSIDE from a few percent to 1%.

4. Summary and Discussions

In this paper, we discuss the importance of catalog simulations
of Time Domain Sources for the study of analysis methods and
survey strategy of LSST. Survey strategies of LSST are currently
simulated by the LSST project using OpSim; such simulated
survey strategies are made public in the form of sqlite databases
that are outputs of OpSim. We discuss the transformations of the

set of quantities in OpSim that are required for catalog simulations.
We also discuss the usefulness of reordering the outputs in terms of
OpSim visits observing a particular sky location, delineating the
necessity of such an API. While conceptually simple, we discuss
why a naive solution is inefficient, particularly during the
simulation of abundant sources. As strategies to address this issue,
we discuss exploiting the locality of visits using a Tree data
structure; and approximating the problem by serializing precom-
puted results for use with a simulator. This strategy makes the step
during simulations essentially instantaneous, but inevitably results
in errors that can be minimized by choosing a very dense set of
predetermined points at the cost of large file sizes.
We present an open source modular python source software

package for such operations, which contains an API for reading
in OpSim outputs and reordering them to obtain the visits for
each point. Thus, a simulation code can directly use this API to
obtain the important quantities. A Tree is used to speed up the
calculations. We also use the obtained visits, along with simple
transformations of OpSim quantities to serialize the results for
a set of points in the form of an SNANA simlib. The script to
perform this was also made available as part of the
OpSimSummary package. Currently, OpSimSummary works
with OpSim outputs of version 3, and 4, along with outputs of
Feature Based Scheduler and AltSched.
We study the accuracy of the approximate precomputed visit

sets as a function of the density (or average separation) of the
points at which the visit sets are actually computed, and show
that at large average separations between these points, the visit
set of sky locations has several visits missing, while several
new visits not originally in the visit set are inserted. According
to the numbers calculated for the current strategies, we would
expect the current method to include ∼10% visits as missing
while a similar number of ∼10% visits that were not in the true
visit set were added.
This code has been used through the direct use of API in the

study of serendipitous discoveries of kilonovae using the
LSST(Setzer et al. 2019), which also formed part of a LSST
DESC survey strategy white paper for Wide Fast Deep Fields
in LSST(Lochner et al. 2018). SNANA observation library
files(Biswas et al. 2017) generated through previous versions
of OpSimSummary (and distributed publicly with the SNANA
code) have been used in the study of serendipitous detection of
kilonovae(Scolnic et al. 2018a) and the LSST DESC Science
Requirement Document(The LSST Dark Energy Science
Collaboration et al. 2018). This paper describes the improved
versions of SNANA observation library files (simlibs) currently
available, developed primarily for the data generation of
PLAsTiCC (The PLAsTiCC team et al. 2018), as described in
the PLAsTiCC models and simulations paper(Kessler et al.
2019b). These observation library files have also been used in
the supernova simulations using SNANA used for the supernova
cosmology analyses in the LSST DESC Survey Strategy white
papers(Lochner et al. 2018; Scolnic et al. 2018b).

R.B. would like to thank David Cinabro for sharing his
DACG project at the beginning of this work, Rick Kessler for
stimulating discussions, particularly on the use of DACG with
SNANA and Lynne Jones for help in understanding MAF.
This paper has undergone internal review in the LSST Dark

Energy Science Collaboration. The internal reviewers were
Philippe Gris and Isobel Hook, and the authors would like to
thank them for their comments. Author contributions are as

Figure 7. Distribution of the ratio of the number of visits in the approximate
computation that are not in the true visit sets to the number of visits in the true
visit sets.

Figure 8. Distribution of the ratio of the difference in the number of visits in
the approximate computation and the number of visits in the true visit set to the
number of visits in the true visit sets.
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Similarly, using the intensity per unit area of the sky bν(λ),
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where pa is the area of a pixel. In order to estimate the number
of photons collected from the source and sky during a
particular exposure from he observed pixel counts, one uses
estimators such as “aperture photometry” and “psf photo-
metry.” In each of these, one can use a value of neff pixels
based on the observing conditions. For the estimator used in
PSF photometry, this is given by
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if the PSF profile is assumed to be a single radial Gaussian.
These counts obviously depend on the flux densities in

exactly the same way as magnitudes in the bands, and can be
calculated just by knowing the source magnitudes and the sky
brightness in mags arcsec−2, without requiring complete
information on the flux densities:
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where the numerical values in the last line assume that the
magnitude is in the AB system (i.e., =nF 3631 Jystd ), and that
the area is a circular disk of diameter D, and the throughput
integral Tb is

ò l l lº
¥

-T S d . 12b
0

tot 1( ) ( )

One can do a similar calculation for the counts of sky photons:
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Hence, we see that we can write the photon counts as
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where we can write κ, α in terms of physical quantities
emphasizing the fact that Tb(t) changes with time, as does neff,
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Software: Aside from the standard python package, this work 
used the following software packages: numpy (van der Walt 
et al. 2011), healpy (Zonca et al. 2019) and HEALPix 
packages (Górski et al. 2005), pandas (McKinney 2010), sqlal-
chemy, scikitlearn (Pedregosa et al. 2011; Buitinck et al. 2013). 
The examples use Jupyter Notebooks (Kluyver et al. 2016).

Appendix
Point Sources and S/N

Given the physical parameters describing a telescope, and a 
description of the sky and astrophysical sources, one can calculate 
quantities like the expected number of photons collected from a 
point source in the sky (i.e., no background galaxy), or the sky. 
Combining this with observing conditions based on seeing, 
airmass, etc., one can calculate a good estimate of the expected 
signal-to-noise ratio of an observation. We follow the discussion 
in Ivezić et al. (2010), keeping the gain g=1 in our calculation. 
(For an extensive discussion including latest updates to LSST 
values, see Jones 2016).

For a point source with intensity ò(λ) as a function of its 
wavelength λ, the number of photons collected with an exposure 
time T in a telescope with collecting area A is given by
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The signal-to-moise ratio (S/N) of a measured source can be
found from Poisson statistics:
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In practice, there may be other small sources of uncertainty
such as read noise or other systematic errors that could in
principle be grouped together with the Poisson noise in the
denominator of Equation (21). Plugging Equation (17) into
Equation (21), we can get
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If values of msky and m5 are supplied for an observation for a
survey (as they often are), one can solve this to obtain
Equation (2).
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