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Abstract

An entrainment-based model for annular wakes, with applications to airborne wind

energy

by

Sam Kaufman-Martin

Several novel wind energy systems produce wakes with annular cross-sections, which

are qualitatively different from the wakes with circular cross-sections commonly gener-

ated by conventional horizontal-axis wind turbines and by compact obstacles. Since wind

farms use arrays of hundreds of turbines, good analytical wake models are essential for

efficient wind farm planning. Several models already exist for circular wakes; however,

none have yet been proposed for annular wakes, making it impossible to estimate their

array performance. We use the entrainment hypothesis to develop a reduced-order model

for the shape and flow velocity of an annular wake from a generic annular obstacle. Our

model consists of a set of three ordinary differential equations, which we solve numeri-

cally. In addition, by assuming that the annular wake does not drift radially, we further

reduce the problem to a model comprising only two differential equations, which we solve

analytically. Both of our models are in good agreement with previously published large

eddy simulation results.
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1 Introduction

Wind turbine power is determined primarily by the diameter of the turbine and

its efficiency. This has led to the development of large horizontal axis wind turbines

(HAWTs), with diameters of over 130 [1]. While HAWTs have been very successful in

land-based and shallow-offshore arrays, they have yet to meaningfully take advantage of

far-offshore wind energy resources [2]. Additionally, HAWTs cannot access wind resources

in the upper atmosphere, where the wind power density is about two times greater than

it is at typical HAWT hub heights because wind speed increases with altitude [3].

To take advantage of these currently untapped energy resources, new airborne wind

energy (AWE) technologies are being developed that can harvest wind power from a

tethered kite or aircraft [4, 5]. Several AWE designs consist of a large, tethered kite that

flies transverse to the prevailing wind in a closed loop, allowing it to reach the faster-

moving winds present higher in the atmosphere. The kite harvests energy either by a

turbine generator on the kite that transmits electrical power to the base, or by trans-

mitting mechanical power from the kite to the base. Many different designs have been

developed with both of these power mechanisms, as well as with moving or stationary

base stations and a variety of flight patterns [5, 6]. A commonly considered operating

mode involves flying the kite along a circular path, thereby generating a wake with an

annular cross-section (henceforth referred to as an annular wake); this is the case, for

example, for the Makani energy kite [7]. As AWE development continues, the technology

may eventually be viable for large-scale wind farms. Indeed, conceptual studies have

estimated that power generated by AWE systems could potentially satisfy a significant

portion of global power demand [8]. However, for large-scale AWE farms to become a

reality, an understanding of their wakes will be critical for determining array spacing and

layout.
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Surprisingly, while circular wakes have been studied extensively in both the literature

on free shear flows [9, 10, 11] and in the literature on wind turbine wakes [12, 13, 14],

there appear to be no theoretical models of turbulent annular wakes, to the best of our

knowledge. The only existing study on annular turbine wakes appears to be a large eddy

simulation of AWE kite aerodynamics by Haas & Meyers [15]. Other related works in-

clude a study by the same group on pumping-mode AWE devices [16], a non-turbulent

wake model of pumping-mode AWE kites[17], a CFD study of HAWT wakes with radially-

varying thrust distributions [18], studies on the behavior of annular jets [19, 20], inves-

tigations on the wakes behind toroidal bluff bodies at low Reynolds number [21], and

a study on the impact of kites on HAWT farm wakes [22]. Additionally, we note that

models of annular wakes, which are the subject of this paper, are distinct from models of

circular wakes composed of annular elements, such as the vortex ring model of Øye[23].

In this paper, we develop two theoretical models for annular wakes by leveraging the

concept of entrainment velocity, whose history includes applications to modeling plumes

[24], wakes with circular cross-sections [25], gravity currents [26], and wind farms [27, 28].

In § 2, we derive two entrainment-based models for the shape and speed of an annular

wake as a function of distance behind an annular obstacle. The first model must be solved

numerically, whereas the second can be solved analytically. In § 3, we then compare the

models to the simulation results from Haas & Meyers [15], finding good agreement. A

discussion is presented in § 4, with conclusions following in § 5.
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2 Entrainment-based models of annular wakes

2.1 Assumptions and Definitions for Models

For simplicity, it is assumed that the obstacle that generates the wake is perpendicular

to a constant oncoming wind with a steady, uniform velocity V∞, and that the shape

of this wake is statistically axisymmetric and time-independent (the validity of these

assumptions will be addressed at the end of this section). The distance between the

inner and outer radii of the obstacle is denoted by S, and the overall diameter of the

obstacle is D, as shown in figure 1(a). The obstacle is assumed to slow the airflow

immediately downstream of it, according to the predictions of actuator disc theory. Unlike

in a conventional (circular) axisymmetric wake, there will be a core region at the center

of the annulus-shaped wake whose axial velocity Vi will initially be greater than the

wake velocity Vw. The initial value of Vi should be close to V∞ (although not necessarily

identical) and may vary with distance x behind the turbine. It is assumed that the wake

can be completely described by the wake velocity Vw, wake span Sw, and total diameter

Dw, which depend only on x. Turbulent entrainment is expected to increase Vw, Sw, and

Dw with increasing x.

In order to model the effects of turbulent entrainment, we employ the well-established

“entrainment hypothesis.” This turbulence closure was first introduced by G.I. Taylor

in the context of modeling turbulent plumes [24]. As noted earlier, this turbulence

closure has been applied extensively in geophysical and industrial flow problems including

plumes[29], jets[25], natural ventilation[30], and gravity currents[31], as well as wind

turbines and wind farms [27, 28].

Following the entrainment hypothesis, fluid downstream of the obstacle is assumed

to entrain into the wake with a radial velocity that is proportional to the streamwise

velocity difference across the interface. This yields entrainment from the external flow
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with a radial velocity of we = E(V∞−Vw), and from the core region with a radial velocity

of wi = E(Vi − Vw) , where E denotes the entrainment coefficient (see figure 1b,c). The

relationship between E and Reynolds stresses, as well as other physical quantities, has

been described in previous studies [28, 31, 32]. In brief, E constitutes a Reynolds stress

that has been made nondimensional using appropriate mean velocity scales.

Similarly to other established wake models [33], the pressure in the wake is assumed

to be constant (after the initial adjustment that takes place immediately behind the

obstacle) and equal to the ambient pressure (see § 2.5). The assumption that the wake

grows by turbulent entrainment is valid as long as the flow is turbulent and isobaric,

regardless of the shape of the wake.

Although the assumption that the average wake flow is time-independent and axisym-

metric is well-established in low-order models of HAWT wakes [12, 13, 27], it is worth

discussing whether or not these assumptions are still valid when modeling the wake of an

AWE device. First, we note that one-dimensional momentum theory (which underpins

actuator disc theory) makes no assumptions about the rotor design of the wind-energy-

extracting device [34], which means it is valid even for one-bladed HAWTs. Since the

AWE device modeled in this paper is analogous to a detached turbine blade, this sup-

ports using the actuator disc assumption here. Second, we note that the outer wingtips

of AWE kites can have similar tip speed ratios (λ) to conventional HAWTs. For example,

the AWE device modeled by [15] has a tip speed ratio of λ = 7, which is also a common

value for HAWTs [34]. This information can be used to estimate the pitch of the helical

wake generated by the device. For a wind energy harvesting device sweeping a circular

path perpendicular to the oncoming wind, the period T of the turbine’s rotation can be

defined as

T =
πD

λV∞
. (1)

4



Using this definition, we can describe the pitch h of the helical wake formed by such a

device in terms of known quantities:

h = V∞T =
πD

λ
. (2)

From this equation, we can see that for any device with λ = 7, the helical wake will

have h
D

< 0.5. Given the tightness of the helix generated by such an AWE device, the

time-averaged flow in the wake may be approximated as statistically axisymmetric. This

further validates both the use of actuator disc theory to model the near-wake behavior

and the assumption of axisymmetric growth of the wake by turbulent entrainment.

2.2 Full Model: Flux Conservation in Annulus and Core

Equations for mass and momentum conservation were derived for the annular wake

and the core region, following an approach analogous to previous analyses of circular

wakes[25, 27]. With reference to the wake sketched in figure 1(a), consider an axisym-

metric control volume of infinitesimal length ∆x in the axial direction, with radial di-

mensions corresponding to the inner and outer radial boundaries of the wake at the given

distance x, as sketched in figure 1(c). In a given plane, the area of the core region is

π
4
(Dw−2Sw)

2, implying that the area of the annular wake is π
4
[D2

w− (Dw−2Sw)
2], which

can be simplified to πSw(Dw−Sw). Assuming the fluid has uniform density, conservation

of mass in the annular control volume implies that

πSw(Dw−Sw)Vw+πDwwe∆x+π(Dw−2Sw)wi∆x = πSw(Dw−Sw)Vw+
d

dx

[
πSw(Dw−Sw)Vw

]
∆x.

(3)

Dividing through by π∆x, canceling the first term on each side, and using the definition

of the entrainment velocity given in § 2.1, the equation for conservation of mass in the
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Figure 1: (a) Schematic of the development of an annular wake behind a porous
obstacle or kite flying on a circular path. (b) Annular-wake cross-section, showing
definitions for the entrainment model. (c) Cross-section of the annular control volume
used for the turbulent wake region; for clarity, only the top portion is shown. A similar
control volume analysis is used for the core region.

annulus is

d

dx

[
Sw(Dw − Sw)Vw

]
= E (V∞ − Vw)Dw + E (Vi − Vw)(Dw − 2Sw). (4)

Assuming a negligible pressure gradient in the wake, the above approach can then

be used to derive an equation for conservation of axial momentum in the annulus. The

momentum flow into the control volume in figure 1(c) must equal the momentum flow

exiting the control volume. To obtain the x-direction momentum fluxes, we take the

corresponding mass flux terms shown in equation (3) and multiply them by the relevant
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axial velocities (which represent x-momentum per unit mass). This gives the following

equation for momentum conservation in the annular control volume:

πSw(Dw−Sw)V
2
w+πV∞Dwwe∆x+πVi(Dw−2Sw)wi∆x = πSw(Dw−Sw)V

2
w+

d

dx

[
πSw(Dw−Sw)V

2
w

]
∆x.

(5)

Once again, we divide through by π∆x, cancel the first term on each side, and substitute

in the definition of the entrainment velocity. This gives the following equation for the

conservation of momentum in the x-direction in the annulus:

d

dx

[
Sw(Dw − Sw)V

2
w

]
= E V∞(V∞ − Vw)Dw + E Vi(Vi − Vw)(Dw − 2Sw), (6)

Using the same approach employed to obtain (4) and (6), it is then possible to derive

the equations for conservation of mass and momentum in the core region (equations 9–

10). With π times the density factored out, the conservation equations are as follows,

with (4) and (6) repeated first for clarity:

d

dx

[
Sw(Dw − Sw)Vw

]
= E(V∞ − Vw)Dw + E(Vi − Vw)(Dw − 2Sw), (7)

d

dx

[
Sw(Dw − Sw)V

2
w

]
= EV∞(V∞ − Vw)Dw + E Vi(Vi − Vw)(Dw − 2Sw), (8)

d

dx

[
1

4
(Dw − 2Sw)

2Vi

]
= −E(Vi − Vw)(Dw − 2Sw), (9)

d

dx

[
1

4
(Dw − 2Sw)

2V 2
i

]
= −E Vi(Vi − Vw)(Dw − 2Sw). (10)

Upon closer examination, one can show that only three differential equations and one

constant are necessary to fully describe the mass and momentum fluxes in this model.

Using the product rule to expand the left side of equation (10) gives:

d

dx

[
1

4
(Dw − 2Sw)

2Vi

]
Vi +

1

4
(Dw − 2Sw)

2Vi
dVi

dx
= −EVi(Vi − Vw)(Dw − 2Sw). (11)
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Multiplying equation (9) by Vi and subtracting it from equation (11) then gives:

1

4
(Dw − 2Sw)

2Vi
dVi

dx
= 0, (12)

which implies

Vi = constant. (13)

Therefore, equations (9) and (10) are equivalent, and we retain only (7,8,9) to solve for

the three remaining unknowns Vw, Dw, Sw.

In order to solve this system of differential equations numerically, a set of initial

conditions (ICs) is required. Therefore, ICs are derived by applying streamtube analysis

and actuator disc theory to the flow in figure 1. Similar to approaches for circular

wakes[13], here we use one-dimensional momentum theory[34] to derive the initial values

of Vi, Vw, Sw, and Dw at x = 0. The wake-generating force is thereby accounted for

through the initial value of the wake velocity immediately behind the turbine. From the

definition of the axial induction factor a in actuator disc theory, it follows that Vw,0 =

V∞(1− 2a). The area of the annulus can then be obtained through mass conservation in

the streamtube passing through the obstacle:

Sw,0(Dw,0 − Sw,0)

S(D − S)
=

1− a

1− 2a
. (14)

Since there is no induction in the core region, one-dimensional momentum theory

predicts that Vi,0 = V∞. Once again, applying mass conservation in the core region

provides the initial condition for the core area:

Dw,0 − 2Sw,0 = D − 2S. (15)
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Equations (14) and (15) can be combined to solve explicitly for Dw,0 and Sw,0. Thus, the

ICs for the system of ordinary differential equations are as follows:

Vw,0 = V∞(1− 2a), (16)

Dw,0 =

√
D2 + S(D − S)

4a

1− 2a
, (17)

Sw,0 = S +
1

2
(Dw,0 −D). (18)

The fact that Vi = constant = Vi,0 = V∞ allows us to further simplify equations (7)-(9)

as follows:

d

dx

[
Sw(Dw − Sw)Vw

]
= 2E(V∞ − Vw)(Dw − Sw), (19)

d

dx

[
Sw(Dw − Sw)V

2
w

]
= 2EV∞(V∞ − Vw)(Dw − Sw), (20)

d

dx

[
1

4
(Dw − 2Sw)

2V∞

]
= −E(V∞ − Vw)(Dw − 2Sw). (21)

While the initial value problem (IVP) represented by (16)-(21) can be numerically

solved as-is with software such as Wolfram Mathematica, one can simplify the equations

by restating them in terms of the mass and momentum fluxes in the wake and core,

such that each left-hand side in (19)-(21) is the derivative of a single dependent variable,

rather than a combination of Sw, Dw, and Vw (this is a common approach for entrainment-

based models in geophysics [25]). In the following definitions, m signifies mass flux and

M denotes momentum flux. Once again, π times the density has been factored out:

mw ≡ Sw(Dw − Sw)Vw, (22)

Mw ≡ Sw(Dw − Sw)V
2
w , (23)

mi ≡
1

4
(Dw − 2Sw)

2V∞. (24)
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Using the above definitions, one can rewrite equations (19)-(21) in the following form:

dmw

dx
= 2E

(
V∞ − Mw

mw

)[√
mi

V∞
+

m2
w

Mw

+

√
mi

V∞

]
, (25)

dMw

dx
= V∞

dmw

dx
, (26)

dmi

dx
= −2E

(
V∞ − Mw

mw

)√
mi

V∞
. (27)

The IVP represented by equations (16)-(27) was integrated using MATLAB’s ode45

solver, which determined the resolution in x automatically to stay within the solver’s

solution error tolerance of 10−8. The solution was obtained within a fraction of a second,

as is to be expected for a quasi-one-dimensional model. The following definitions

(rearranged versions of equations 22-24) were then used to convert the results back into

the desired form:

Vw =
Mw

mw

, (28)

Sw =

√
mi

V∞
+

m2
w

Mw

−
√

mi

V∞
, (29)

Dw = 2

√
mi

V∞
+

m2
w

Mw

. (30)

Thus, results were obtained for Vw, Sw, and Dw, as a function of x (see § 3).

2.3 Analytical model: No Radial Wake Drift

While the full model produced results that were a close match to the simulations of

Haas & Meyers [15] (see § 3), we were curious to see if an analytical model of the wake

could be derived via a slight simplification of the control volume analysis. Therefore, a

second model was derived using a different approach to the behavior of the core region,
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inspired by the qualitative appearance of the wake profile in the results of Haas & Meyers

[15]. Instead of using the conservation equation (21) to model the core region, the center

of the wake ring (located at radial distance Dw

2
− Sw

2
from the axis of turbine rotation) is

assumed to not drift from its initial position at Dw,0

2
− Sw,0

2
. Equivalently, this assumes

Dw − Sw = Dw,0 − Sw,0 = constant, which is henceforth called the no radial wake drift

assumption.

There are theoretical and empirical reasons supporting the use of this No Radial Wake

Drift approximation in deriving an engineering model for an annular wake. Theoretically,

because of the axisymmetry of the problem, the continuity equation would require that

there be a significant change in Vi in order for radial displacement of the wake to occur.

In our derivation in § 2.2, Vi is found to be constant and equal to V∞, since the fluid

in the core does not pass through the kite-swept surface and does not lose momentum.

Empirically, we observed in the results of Haas & Meyers [15] (see figures 2 and 3 further

below) that the annular wake expands at similar rates into the outer flow and into the

core region, as long as the diameter of the core region is larger or similar in magnitude

to the span of the annular wake, as is expected theoretically.

The governing equations for this model are mass and momentum conservation in the

annulus (i.e. equations 19 and 20 from the full model) and the No Wake Drift assumption:

d

dx
[Sw(Dw − Sw)Vw] = 2E(V∞ − Vw)(Dw − Sw), (31)

d

dx
[Sw(Dw − Sw)V

2
w ] = 2EV∞(V∞ − Vw)(Dw − Sw), (32)

Dw − Sw = Dw,0 − Sw,0. (33)

Since we assumed that Dw − Sw is a constant, this term can be factored out of (31) and
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(32). Multiplying (31) by V∞ and subtracting (32) gives:

d

dx
[SwVw(V∞ − Vw)] = 0. (34)

Integrating, we find that:

SwVw(V∞ − Vw) = C, (35)

where C is a constant. A value for C can be obtained by using the same ICs (16-18)

already obtained in § 2.2:

C = Sw,0 V
2
∞ 2a(1− 2a). (36)

Solving equation (35) for Sw and substituting it into (31), one can integrate the resulting

equation, solve for Vw, and find that

Vw = V∞ −

√
C

4E(x− xc)
, (37)

where xc is a constant of integration, which is found to be

xc = −Sw,0(1− 2a)

8Ea
. (38)

Given this result for Vw, the above equations can be combined to solve for Sw and Dw.

In summary, the No Radial Drift assumption gives a set of three equations that form

a complete analytical model of an annular wake’s evolution. The full set of equations is

12



listed below:

Vw = V∞

1−√√√√ 4a2

8Eax
Sw,0(1− 2a)

+ 1

, (39)

Sw = Sw,0
2a(1− 2a)V 2

∞
Vw(V∞ − Vw)

, (40)

Dw = Dw,0 − Sw,0 + Sw. (41)

2.4 Predicting core disappearance

An additional feature of the analytical model derived in the previous section is that

it allows one to immediately predict the downstream location at which the core region

of an annular wake disappears (i.e. where Dw

2
−Sw = 0), which we call xnc (“x no-core”).

Downstream of this location, the analytical, entrainment-based model for circular wakes

[27] can be used to describe the wake without any further loss of accuracy associated

with the No Radial Drift assumption. Furthermore, the expression for xnc can provide

insight about the sensitivity of the model to the value of the entrainment coefficient E,

as described below.

To derive an equation for xnc, we start by substituting the condition for core disap-

pearance (Dw = 2Sw) into (33) to get an expression for Sw(xnc) in terms of the known

initial wake geometry:

Sw(xnc) = Dw,0 − Sw,0. (42)

We then substitute Sw(xnc) from (42) into equation (40) and rearrange the terms to

obtain:

Vw(V∞ − Vw) =
Sw,0

Dw,0 − Sw,0

2a(1− 2a)V 2
∞ for x = xnc. (43)

The right hand side is a constant for a given set of initial conditions; denoting it as c1

13



for brevity, we rearrange the left-hand side to obtain a quadratic equation for V∞ − Vw:

(V∞ − Vw)
2 − V∞(V∞ − Vw) + c1 = 0 for x = xnc. (44)

This quadratic has solutions:

V∞ − Vw =
V∞ ±

√
V 2
∞ − 4c1

2
for x = xnc. (45)

The physically relevant sign for the “±” is a minus sign; for example, this choice gives

Vw = V∞ when a = 0, as expected. We now note that equation (39), which gave Vw(x),

can also be rearranged in terms of V∞ − Vw:

V∞ − Vw = V∞

√√√√ 4a2

8Eax
Sw,0(1− 2a)

+ 1
. (46)

Finally, setting equations (45) and (46) equal to each other, we solve for xnc to obtain:

xnc =
Sw,0(1− 2a)

E

 2a[
1−

√
1− Sw,0

Dw,0 − Sw,0
8a(1− 2a)

]2 − 1

8a

 . (47)

Having obtained an analytical equation for xnc, we may also obtain an equation for the

velocity in the wake at xnc. Substituting xnc from equation (47) into (39) and simplifying

gives:

Vw(xnc) =
V∞

2

[
1 +

√
1− Sw,0

Dw,0 − Sw,0

8a(1− 2a)

]
. (48)

Additionally, the wake diameter at xnc can be obtained by substituting Sw(xnc) from
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equation 42 into 33 and solving for Dw, which gives:

Dw(xnc) = 2(Dw,0 − Sw,0). (49)

It is notable that in this model, the velocity and diameter of the wake at the loca-

tion of core disappearance are independent of the entrainment coefficient. Indeed, the

normalized quantities Vw(xnc)
V∞

and Dw(xnc)
D

depend only on the initial geometry (i.e. S/D)

and thrust properties (a) of the annular obstacle. Of course, the location of xnc is highly

dependent on E, as shown by (47).

2.5 Expansion Length

As mentioned in § 2.1, the entrainment hypothesis assumes that pressure in the wake

is equal to the ambient pressure. In actuality, wind turbines cause a pressure drop

immediately behind the rotor. Actuator disc theory predicts that, over a short distance

behind the rotor (henceforth referred to as the expansion length), the wake expands as

the fluid continues to decelerate until the pressure in the wake equalizes with the ambient

pressure[34]. At this point, the regime of turbulent entrainment is expected to become

dominant in the wake.

To account for the expansion length in our models, the results of both calculations

are shifted forward in the x direction by an empirically-chosen constant xe with values

typically in the range of 0 < x/D < 1. This is conceptually similar to the introduction

of a virtual origin in entrainment-based plume models [35, 36].
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3 Results

3.1 Numerical simulations of Haas & Meyers[15]

We compare the models obtained here with the recent large eddy simulations of Haas

& Meyers[15], who considered both laminar and turbulent inflow conditions. To facilitate

this comparison, velocity profiles from figure 5 in [15] were converted into tophat velocity

profiles in the following manner. (Note that U∞ in [15] is equivalent to V∞ in this paper.)

Data points with ux/U∞ < 1 are considered to be inside the wake; therefore, the surface

where ux/U∞ = 1 is considered to be the wake boundary. The normalized wake velocity

Vw/V∞ is considered to be the area average of ux/U∞ values inside the wake.

Note that Haas & Meyers[15] defined R as the radial distance to the midpoint of the

kite, whereas in this paper, the outer radius of the kite’s flight path is used. Therefore,

D in this paper is equal to 2R+S in [15]. The data of Haas & Meyers[15] used in figures

2 and 3 have been scaled to match the coordinate system defined in figure 1(a).

3.2 Parameters for models and results

The key parameters (independent variables) used as inputs for our models were made

to be the same as in [15], i.e. S/D = 0.18 and a = 0.33.

Our models also use the empirical parameter E, which is typically around 0.15 for

HAWT models in low-turbulence inflow [27] but can reach up to 0.6 for high-turbulence

plumes and jets [35], and the expansion length xe, which is typically in the range of

0 < x/D < 1. When choosing values of E and xe, only the fit of the models’ predictions

with the velocity data from [15] was considered, as opposed to attempting to fit both

the wake shape and the velocity. This is because the “wake boundary” is an artificially-

defined parameter compared to the wake velocity, and the wake velocity is the most
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important parameter for wind farm planning. To model the laminar inflow case from

[15], both models use E = 0.15 and xe = 0.5D. For the turbulent inflow case, both

models use E = 0.5 and xe = 0.5D. A comparison between our models and [15] is shown

in figures 2 (laminar) and figure 3 (turbulent).

Additionally, we examine the sensitivity of our models’ predictions to the entrainment

coefficient E and to the geometry of the kite-swept annulus (S/D) (all using a = 0.33).

Figure 4(a) shows how the location at which the core of the wake disappears, xnc, depends

on E and S/D as predicted by the No Radial Drift (analytical) model (equation 47). We

find that xnc/D decreases as E and S/D increase, as would be expected on physical

grounds. Figure 4(b) demonstrates that, for a given S/D, the approximate value of

xnc predicted by the analytical model is directly proportional to the value predicted by
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the Core Flux Conservation (full) model; this proportionality constant is independent

of E. Therefore, the xnc result from the full model can be obtained by multiplying the

analytical result by a constant, which depends on S/D but is independent of E. Finally,

figure 4(c) shows how Vw(xnc) varies with S/D in each model.

4 Discussion

In the region of the wake for which the entrainment hypothesis is valid (x/D ≳ 1),

the velocity predictions of both the Core Flux Conservation Model (full model) and the

No Radial Drift Model (analytical model) show good agreement with the simulation data

from Haas & Meyers [15] in both the laminar and turbulent inflow cases. There appears
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the core region disappears (xnc), as predicted by equation (47) from the No Radial
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Note that, for clarity, the initial expansion length xe is not included in the results as
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(b) The ratio between the xnc predictions of the Core Flux Conservation (full) and No
Radial Drift (analytical) models, plotted versus annulus geometry (S/D). (c) Wake
velocity (Vw) at the location of core disappearance (xnc) for both models, plotted
versus S/D.

to be little difference between the velocity results of the two models.

The main difference between the two solutions is that the full model correctly captures

the wake-merging behavior in the turbulent case, whereas the analytical model does not

(see figure 3). In the full model, once the core radius (Dw

2
− Sw) reaches r = 0 (i.e.

the wake’s annulus merges and eliminates the core region), it remains at r = 0 for all

subsequent values of x/D. In contrast, in the analytical model, the core radius continues

shrinking past r = 0 and becomes negative at large x/D. This is illustrated by the

translucent portion of the innermost dashed lines in figure 3(b). Therefore, the user

of the analytical model must know to either disregard the core radius results after the

core disappears or, preferably, switch to the circular wake model of [27] (as explained

in the next paragraph). However, the position of the outer wake boundary (Dw

2
) is still
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reasonably accurate for large x/D, as shown by the outermost dashed lines in figure 3(b).

This difference between the models is unsurprising given that the Core Flux Conservation

Model conserves mass in the core region, whereas the No Radial Drift Model ignores

core mass conservation in favor of a geometrically simplified approach that permits an

analytical solution.

When the core region is eliminated as the wake annulus merges, one can switch

to the traditional, analytical wake model [25, 27], using the values of Vw and Dw at

merger as the new initial conditions. For the full annular wake model, this would save

computational effort while retaining accuracy, which could be valuable in wind farm

optimization applications. Indeed, the results of the full model downstream from the

location of core disappearance are equivalent to the analytical model of circular wakes in

[25, 27].

Although the analytical model is less accurate than the full model, the fact that it

does provide a closed-form expression for xnc makes it useful for elucidating some of

the properties of annular wakes. For example, in equation (47) of the analytical model,

it is found that xnc is inversely proportional to E; solving the numerical model over

the full range of expected values of E and S/D demonstrates that this holds true for

the full model as well (see figure 4(a) and (b)). Likewise, both models show that the

wake velocity at the location of core disappearance (Vw(xnc)) is independent of E (figure

4(c)). That is to say, while the downstream location of xnc depends on the amount of

turbulence in the flow, the wake velocity at that location does not. Furthermore, the

structures of equations (19-21), (39) and (47) indicate that it is possible to rescale x to

a new independent variable X, in such a way that Vw(X) and Xnc are independent of E.

Specifically, substituting X = Ex into the above equations makes them independent of

E. The existence of this “reference solution” Vw(X) suggests that all turbulent annular

wakes generated by an annular obstacle with a given S/D are fundamentally similar, and
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that decreasing the ambient turbulence (parameterized by E) serves to simply “stretch”

the solution in x. Additionally, a reference solution would have benefits for practical

wind farm applications, as one would only need to calculate the solution Vw(X) for the

full (numerical) model once for a given S/D, and then Vw(x) could be calculated for any

E simply by transforming X back to x. If trying to locate xnc, the analytical model

could further expedite the process: instead of solving the full numerical model, simply

solve equation (47) and then multiply by the correct constant (which could be tabulated

from figure 4(b)) to obtain the correct result.

The models introduced here are not restricted to airborne wind energy applications.

For example, they could describe the wakes of ground-based annular wind turbines (which

have recently drawn attention[37]). With different initial conditions, they could poten-

tially also be applied to the wakes of other toroidal obstacles. The existing initial condi-

tions would be replaced by a matching condition between the momentum deficit and the

drag on the obstacle, and a development length that could be found empirically, similarly

to approaches for conventional wakes [33].

5 Conclusion

By using the entrainment hypothesis and considering mass and momentum budgets

behind an annular obstacle, we derived a model for the spatial development of a turbulent

annular wake. Initial conditions were obtained from one-dimensional momentum theory.

The model consists of three coupled ordinary differential equations, which are solved

numerically. By assuming negligible radial drift in the turbulent wake, we also derived a

simplified model, which admits an analytical closed-form solution.

Both models appear to compare well with existing data, especially for larger x/D

values. To help provide an even stronger test of the models developed here, experimental
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or computational results for larger x/D would be helpful, especially given that spacing

in wind turbine arrays is typically between 5 ≤ x/D ≤ 10.

If supported by additional data from experiments or simulations of annular wakes, the

models put forth in this paper would enable the modeling of AWE kite wakes at a much

lower computational cost than existing methods. In future work, these models could be

combined with existing wake superposition models, such as the momentum-conserving

approach developed by [38], in order to represent arrays of multiple kites. This would

greatly facilitate the planning of AWE wind farms, which in turn could enable society to

harvest previously untapped, energy-dense wind resources.
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