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Abstract:

The mass fluctuations in damped reactions of **O + %0 are studied
in an extended time-dependent Hartree-Fock theory. The theory deter-

" mines the time evolution of a two-body density matrix as well as that of
a one-body density matrix, providing us with a microscopic way to calcu-
late the fluctuations of one-body quantities. The results of the theory are
compared with those obtained in a transport model. It is found that the
dispersions in fragment mass calculated in the two models are of the same
order of magnitude and much larger than those calculated in the time-
dependent Hartree-Fock theory. The differences between the microscopic
theory and the transport model are also discussed.
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1 Introduction

A characteristic aspect of damped nuclear reactions is the broad distribution of the
observables such as mass, charge, energy and angular momentum'. The most funda-

mental theory so far applied to damped reactions is the time-dependent Hartree-Fock
(TDHF) theory.%3 Although the mean values of one-body observables are rather well -

reproduced by the TDHF model, the calculated fluctuations have been found to be
significantly too small. For example, the mass dispersions calculated in TDHF for
heavy systems are one order of magnitude smaller than experimental data.® This
failure arises from the one-body nature of TDHF: the total wave function in TDHF
is restricted to a single Slater determinant which is inadequate for the evaluation of
expectatlon values of two-b ,dy operators, e.g. dispersions of one-body quantities.*

Some microscopic approaches have been proposed to treat the fluctuations better. ‘

For example, Yarnajl and Tohyama included two-particle-two-hole configurations in a
perturbative way. 5 They found that the mass dispersions in 10 4 1°Ca are enhanced
by a factor of three as compared to TDHF results. However, the effects of nucleon-
nucleon (NN) collisions on the dynamics of the heavy-ion colhswn are neglected in
their approach. A different approach taken by Bonche and Flocard® and Marston and
Koonin” are based on the variation principle proposed by Balian and Vénéroni® which
provides a method for calculating the fluctuations in the framework of a mean-field
theory. The numerical results for 0 + 0 and “°Ca + “°Ca showed a 30 —400% in-
crease in the mass dispersions. However, the effect of NN collisions on the dynamical
development of the system are not included in this approach either.

In part I of this series of papers,® we developed a new, consistent method for cal-
culating fluctuations. This method, called the time-dependent density-matrix theory
(TDDM), was derived from the time-dependent density-matrix formalism proposed
by Wang and Cassing!® which includes the effects of NN collisions. TDDM deter-
mines the time evolution of the two-body density matrix in addition to that of the
one-body density matrix. In ref. 9 we applied the TDDM to the damping of the
isoscalar quadrupole motions of *0 and “°Ca and found that TDDM gives decay
widths comparable to the experimental values.

In the present paper we apply the TDDM to the partition of mass in damped re-
actions. Since TDDM provides the two-body density matrix, as well as the one-body
density matrix, it is straightforward to calculate the fluctuations of one-body observ-

ables. The aim of the paper is then to ascertain whether TDDM gives sufficiently -

large fluctuations in mass asymmetry to eliminate the qualitative failure of TDHF.
We focus on the reaction *0 4- 10 which is the largest system we can practically
treat for the present. Since no experimental data are available on the mass dispersions
in 160 4 %0, we compare our results with those calculated in a transport theory
called the nucleon exchange transport model (NET)!11213 NET has been successful
in reproducing experiment data for various systems'. Therefore, the results in NET
for %0 + %0 are considered to be “empirical” values. In the comparison between

NET and TDDM, basic macroscopic par ameters in NET are obtamed from quantltles'

calculated in TDDM.
The presentation is organized as follows. A brief description of TDDM and NET



is given in Sect. 2, and important details of numerical calculations are expléined in
Sect. 3. The results on %0 + %0 are then presented in Sect. 4, while Sect 5 is

devoted to a summary.

2 Formalism

In this section we briefly describe the two models employed.

2.1 Time-dependent denSity-matrix theory

- The TDDM treatment was formulated on the basis of the density-matrix for-
" malism of Wang and Cassing. 10 Sl ace the de11vat10n was discussed in ref. 9 and ref. 14,
we show only the basic equations of TDDM. The density matrix formalism!® deter-
mines the time evolution of the one-body density matrix p and the correlated part of
the two-body density matrix Cz = po — A(pp), where the second term is the antisym-
metrized product of the one-body density matrices. We expand p and C; on a finite
number of single-particle states {z,b,\}:v i '

) = Toneslt) woLO UL, _' (1)
C(12,1251) = Z Coparpr(1) a(1,1) $5(2,1) bo(Vs8) ¥5(2,8),  (2)
PR ")

where the numbers denote space, spin, and isospin coordinates. The time evolution
of p and 'C is determined by the following three equations. The first equation gives
the single-particle representation: : '

ihis(1,6) = ba(1,1) = [ A U[pJ] wLy, @
where the mean field U [p] is defined as | A
Ulplea(1,t) = [ 2{0(12)[p22 hha(1L,t) (120002, 0]} - (4)
' Hélje v( 12) is the effe(;'ti.ve interaction. The occupatioﬁ matrix Nag satisfies _ |
ititap = Y {Crspo < Q010178 > —Coto < (0|86 >} . (5)
8o _ .

The third equation determines the time evolution of C,p414,
ihCaﬁa'ﬁ’ = Baﬁa’ﬁ’(t.) + Haﬁa'ﬁ’(t) + Paﬁa’ﬂ'(t) ’ - (6)

where B is the lowest-order contribution with respect to v(12), i.e. the Born term,
and H and P contain terms describing particle-hole and particle-particle correlations
to infinite order. The explicit expressions of B, H and P are given in the Appendix.

o



The three coupled equations (3), (5), and (6) satisfy conservation-of total nucleon
number, energy, and momentum (both linear and angular), and parity.>1°

In damped reactlons the system malntams a binary character throughout and, in
partlcular there are two fragments in the final state of the collision. In order to countv _
_the number of nucleons in one of the fragments, we introduce the oper ator Np '

L e i NRzﬂzdra r a(r), T - (7)

where af(r) and a(r) are the creation and annihilation operators, respectively, and
“the subscript R means that the integration is restricted to half space containing one
of the two fragments.® The mean nucleon number of one fragment is glven by the
expectation-value of the operator: C ~ :

< Np >="/I%dr‘p(r,.r) L o - (8)
The variance of the mass distribution, - _
04 =< N} >—-<Np>%, S C))

‘involves the two-bodyi operatdl' (the first term on the right-hand 'side). Thereforé, it
is given in terms of both the one-body and two-body density matrices: '

/ dr p( r;r) / dridry p(ry;ra) p(ra;ry)

+ / dI‘]dl‘g 62(1‘11‘2,1'11‘2) .. . . ' E (10)
Eq. (10) can be written in terms of N and Coparpr
‘ Zna,@ < ﬁ|a >R _
+ Y <dla>p<f |B >r (Capargr — - Mapgar) 5 (1)
afa’f i '

where < a|f > is the overlap integral of the two single-particle states o and 3 in
the half space. Since Nog = dop and Caga;g( = 0in TDHF , og in TDHF simplifies

A A
ohrpEF = Y. <AMA>r - 3 < AN >p< XN[A >R, (12)
A=1 AN

where A is the total number of nucleons. : :
Since the total system is an eigenstate of the total numbe1 operator, the dispersion
for the entire space must be zero '

atotal ,f Znaa+z afaf naﬁnﬁa)

= A+>( aﬁaﬁ_'”aﬁnﬂa) =0. - (13)
oB , :
where < a|f >ioa= 64p has been used. TDHF conserves this condition because
Capsy = 0 and ngag = 645. In Appendix it is shown that TDDM also satisfies the
above condition. As is discussed in Appendix, the Born approximation for. Cygep:
does not satisfy the condition (Eq. 13) The higher-order terms must be included to
satisfy the condition that the system is an eigenstate of the number operator.
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2.2 Nucleon exchange transport model

In this subsection we briefly present how to calculate the mass dispersions in
NET. The details of NET are presented in refs. 11-13. The NET formulas presented
. below contain the macroscopic variables A and B which are the mass numbers of the
two reaction partners. Since the total mass number is conserved, A may be chosen
as the independent macroscopic variable. The time derivative of the mass variance
in NET is given by*?
ZO’A -——2DAA+268‘AAO'E‘,
whele DA 4 1s the mass diffusion coeflicient and V4 the mass drift coefficient. The
diffusion coefficient is evaluated under the assumption that the two nucle1 are Fermi
gases with the same temperature r. D44 is then given by

Dua =

(14)

g
_ T -
where ceq(t) is the time-dependent effective neck radius. T = 37 MeV denotes the
Fermi kinetic energy and no &~ 2.5 x 10! fm~2s™! is the one-way nucleon flux in
standard nuclear matter.’® Furthermore, the “effective temperature” 7+ is given by

* Weff West )
To= coth 5 - . (16)

“where 7 is obtained from the dissipated collective energy @ using the relation Q =
(A + B)7?/(8 MeV). The effective excitation energy weg is given by w?%; = %PI?-(R") +
U?), where R is the radial velocity, u; is the tangential velocity, and Pr = 265 .
MeV/c is the Fermi momentum in standard nuclear matter. In the calculations for
160 + %0 we use a rotational-frame approximation for peripheral collisions. In this
approximation U, =0. The drift coefficient depends on the potential energy of the
dinucleus and is obtained from the Lysekil mass formula.!® Its derivative is then glven

by'?,

8VA | ' 27i0= 9 ¢ M 2o 2 2 - :
?;1— = Tfﬂ'ceﬂ- _ﬂ(R + w R ) _ (17)
m 4 5 1 2
+9—AR2UJ2 + §G2A—% - 503/‘1_3 + EVCJ )
where the Coulomb energy is )
_ LT
624’470(2—%), R < R, : .
V. = . (18)

62%% ) ' R Z Ro

Here R is the distance between the two nuclear centers, Ry the sum of the nuclear
radii, w the rotational frequency, and the liquid-drop coefficients are a, = 17.9437
MeV and c3 = 0.7053 MeV. The time evolution of the quantities ceg, 7, R, R and
w is calculated in TDDM.}
'We wish to note that in ref. 13 there is a typographical error in the expression for the restoring

force: in (A.31) the mixed derivative (first line) is missing the (relatively small) Coulomb term
2(Z4/ A3 + Zp/B*/3)c, although this term was included in the associated NET computer code.
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3 Calculational details

Employing the two models described above, we have studied the reaction 0 +¢ O
at a bombarding energy of 185 MeV. The numerical procedures for solving the cou-
pled-equations of TDDM are similar to those used in part I of this series,® so we only
note a few points specific to *0 +!¢ 0. Eq. (3) for the single-particle: wave func-
tions is solved using a TDHF code with axial symmetry.l® The initial single-particle
wave functions are boosted with the phase factor associated with the relative mo-
tion of the two nuclei. For collisions at finite impact parameters the single-particle
wave functions are calculated m a rosating frame. The TDHF code uses several pre-
‘scriptions for the calculation of the rnoment of inertia. We employ the so-called R4
prescription’” because it prodiices a moment of inertia that changes continuously with
time and, therefore, leads to a smooth time dependence of the extracted temperature
7. Furthermore, our calculation incorporates the single-particle orbitals through to
the 2s — 1d shell (with the 1s and 1p orbitals being occupied initially). We use a
simple residual interaction of the §-function form, v = ve8*(r — r') with vy = —300
MeV fm®. The strength of the residual interaction appears to be reasonable because
the damping widths of the isoscalar quadrupole resonances of 10 and °Ca were.
reproduced with this residual interaction.® :

The time-dependent quantities entering in the NET model i.e. the sepa1at10n
R, its time derivative R (the radial velocity), the effective neck radius cq, and the
angular frequency w are calculated on the basis of the density distribution obtained
in the TDDM model, at each time step.!®'® This latter quantity is determined from
_ the relation w = L/Z(p), where L is the angular momentum and Z(p) is the moment
of inertia. Following the prescription developed in ref. 18, we determine the effective
neck radius cef from the one-way current

where N is the total transfer current across the neck, pg = 0.17 fm™> is the nuclear
matter density. At each time step, the nuclear temperature 7 is determined from the
_total kinetic energy loss obtained in the TDDM calculation.

4 Results

We first sought to determine the fusion threshold, i.e. that incident energy above
which fusion no longer occurs for a head-on collision, and found it to be Ejp &~ 170
MeV. This value is considerably higher than that obtained in TDHF which is only 54
MeV when the spin-orbit force is not included. However, it is not so high as the result
(EFiap = 140 MeV) of the previous TDDM calculation!® which included only the Born
term in Eq. (6). This indicates that the higher-order terms in Eq. (6) are not as
important as the Born term, as far as the dissipation in nuclear collisions is concerned.
The effects of the higher-order correlations in Eq. (6) were also studied by Cassing
and Wang for a one-dimensional system.?’ Solving the coupled equations for p and
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C, in coordinate space using a bare NN interaction with a short range repulsive part,
they found that the dissipation due to the NN collisions is weakened by the higher-
order terms. Their finding is apparently inconsistent with our result. We interpret
the difference in the following way. The higher-order terms may play two different
roles: one is to renormalize the bare NN interaction and the other modify the phase-
space distribution of two nucleons. The calculation by Cassing and Wang®® has no
truncation in momentum space, since the coupled equations were solved in coordinate
space. Therefore, it is likely that they observed the drastic renormalization of the
bare interaction when they included the higher-order terms. We believe that this
renormalization effect is small in our calculation because of the severe truncation in
single-particle space. There still remains the effect of modification of the phase-space
distribution due to the higher-order correlations. This effect enhances the dissipation,
~ as‘was found in thé damping of giant resonances.’

We calculate the mass dispe:sions for two different reactions, namely a head-on

collision and a peripheral collision (L = 40#%) at Ey,, = 185 MeV. The incident energy
is chosen to be above the determined fusion threshold. In table 1 we show the loss
in kinetic energy of relative motion and the reaction times, as calculated in TDHF
and TDDM. The reaction time is defined as the period during which two nuclei are
clutched!® (i.e. the density in the middle of the neck exceeds half of the nuclear
matter density). TDDM gives larger kinetic energy losses and longer reaction times
than TDHF. However, in the head-on colhs1on effect of the two- body collisions 1s
relatively small: - ‘ :
The change in the occupatlon matrix may be described by the entropy deﬁned
byl . , o
' S=- Z{nalnna + (1'= ny)In(l —ny)} , S ' (20)
where {n,} is the eigenvalues of the occupation matrix. This quantity is shown in
Fig. 1 as a function of time. The entropy increases rapidly in the initial stage of
the collision and reaches a steady value at the final stage. The asymptotic values for
the head-on and peripheral collisions are about 36kp and 18kpg, respectively. Using
the temperatures obtained in the NET calculation, which are shown in Fig. 2-3, the
Fermi- -gas model gives ent1op1es of 39k3 for the head on collision and 23kpg f01 the
peripheral collision.

The time evolution of the quantities needed in the transport equation for the mass
dispersion are shown in Figs. 2-3 (7 and 7*) and Fig. 4 (Daa). Although NET is
developed to treat reactions with relatively small overlap between the two nuclei,
such as occurs for our peripheral case, we also employ it for the head-on collision in
order to estimate the order of magnitude of the mass dispersion. The increase in the
effective temperature in the final stage of the peripheral reaction is due to the increase
in R. The effective temperature approaches an asymptotic value as the two fragments
separate. The peak in 7* in the head-on collision is due to an increase in the collective
energy after many nucleons from one nucleus penetrate into the other nucleus. The
temporal behavior of D44 is mainly determined by the one-way current N (Eq. (19))
which is plotted in Fig. 5 with solid curves. The double peaks of D 44 seen in the head-
on collision is caused by peak of the effective temperature (see Fig. 2). In the case



3 ' Calculational details

Employing the two models described above, we have studied the reaction *0 +'¢ O
at a bombarding energy of 185 MeV. The numerical procedures for solving the cou-
pled equations of TDDM are similar to those used in part I of this series,? so we only-
note & few points specific to 10 +¢ 0. Eq. (3) for th‘e single-particle wave func-
tious is solved using a TDHF code with axial symmetry.'® The initial single-particle
wave functions are boosted with the phase factor associated with the relative mo-
tion of the two nuclei. For collisions at finite impact parameters the single-particle
wave functions are calculated i a rotating frame: The TDHF code uses several pre-
scriptions for the calculation of the rnoment of inertia. We employ the so-called R4
prescription!” because it prodiices a moment of inertia that changes continuously with
time and, therefore, leads to a smooth time dependence of the extracted temperature
7.- Furthermore, our calculation incorporates the single-particle orbitals through to
the 2s — 1d shell (with the 1s and 1p orbitals being occupied initially). We use a
simple residual interaction of the §-function form, v = v6*(r — r’) with vg = —300
MeV fm3. The strength of the residual interaction appears to be reasonable because
the damping widths of the isoscalar quadrupole resonances of 16O and 1°Ca were
reproduced with this residual interaction.® ' '
‘The time-dependent quantities entering in the NET model, i.e. the separation
R, its time derivative R (the radial velocity), the effective neck radius c.s; and the
angular frequency w are calculated on the basis of the density distribution obtained
in the TDDM model, at each time step.l®'® This latter quantity is determined from
the relation w = L/Z(p), where L is the angular momentum and Z(p) is the moment
of inertia. Following the prescription developed in ref. 18, we determine the effective
neck radius ceg from the one-way current

R
. window

v » .
. =0 v .
dady (_(x_y__l) , (19)
Po ' S
where [V is the total transfer current across the neck, po = 0.17 fm=> is the nuclear
matter density. At each time step, the nuclear temperature 7 is determined from the

total kinetic energy loss obtained in the TDDM calculation.

4 ‘Results

We first sought to determine the fusion threshold, i.e. that incident energy above
which fusion no longer occurs for a head-on collision, and found it to be Fj,, & 170
MeV. This value is considerably higher than that obtained in TDHF which is only 54
MeV when the spin-orbit force is not included. However, it is not so high as the result
(Erap & 140 MeV) of the previous TDDM calculation!® which included only the Born
term in Eq. (6). This indicates that the higher-order terms in Eq. (6) are not as
important as the Born term, as far as the dissipation in nuclear collisions is concerned.
The effects of the higher-order correlations in Eq. (6) were also studied by Cassing
and Wang for a one-dimensional system.?® Solving the coupled equations for p and
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C, in coordinate space using a bare NN interaction with a short range repulsive part,
they found that the dissipation due to the NN collisions is weakened by the higher-
order terms. Their finding is apparently inconsistent with our result. We interpret
the difference in the following way. The higher-order terms may play two different
roles: one is to renormalize the bare NN interaction and the other modify the phase-
space distribution of two nucleons. The calculation by Cassing and Wang?® has no
truncation in momentum space, since the coupled equations were solved in coordinate
space. Therefore, it is likely that they observed the drastic renormalization of the
bare interaction when they included the higher-order terms. We believe that this
renormalization effect is small in our calculation because of the severe truncation in
single:particle space. There still remains the effect of modification of the phase-space
distribution due to the higher-order correlations. This effect enhances the dissipation,
as was found in the damping of giant resonances.®

We calculate the mass dispeisions for two different reactions, namely a head-on
collision and a peripheral collision (L = 40%) at Ey,, = 185 MeV. The incident energy
is chosen to be above the determined fusion threshold. In table 1 we show the loss .
in kinetic energy of relative motion and the reaction times, as calculated in TDHF
and TDDM. The reaction time is defined as the period during which two nuclei are
clutched'® (i.e. the density in the middle of the neck exceeds half of the nuclear
matter density). TDDM gives larger kinetic energy losses and longer reaction times
than TDHF. However, in the head-on collision effect of the two-body collisions is
relatively small.

The change in the occupation matrix may be described by the entropy defined

S == {ninn, + (1 = ny)In(l —ny)}, (20)

o

where {n,} is the eigenvalues of the occupation matrix. This quantity is shown in
Fig. 1 as a function of time. The entropy increases rapidly in the initial stage of
the collision and reaches a steady value at the final stage. The asymptotic values for
the head-on and peripheral collisions are about 36kg and 18kp, respectively. Using
the temperatures obtained in the NET calculation, which are shown in Fig. 2-3, the
Fermi-gas model gives entropies of 39kg for the head-on collision and 23kg for the
peripheral collision.

The time evolution of the quantities needed in the transport equation for the mass
dispersion are shown in Figs. 2-3 (7 and 7*) and Fig. 4 (Da4). Although NET is
" developed to treat reactions with relatively small overlap between the two nuclei,
such as occurs for our peripheral case, we also employ it for the head-on collision in
order to estimate the order of magnitude of the mass dispersion. The increase in the
effective temperature in the final stage of the peripheral reaction is due to the increase
in R. The effective temperature approaches an asymptotic value as the two fragments
separate. The peak in 7* in the head-on collision is due to an increase in the collective
energy after many nucleons from one nucleus penetrate into the other nucleus. The
temporal behavior of D 4,4 is mainly determined by the one-way current N (Eq. (19))
which is plotted in Fig. 5 with solid curves. The double peaks of D 44 seen in the head-
on collision is caused by peak of the effective temperature (see Fig. 2). In the case



of peripheral collision the average value of D44 over the reaction time is 2 102 s
This value is close to the “empirical” value D ~ (A + B) - 102 s~ = 32.10%° 5!
which is used in a simple transport model??.

The time evolution of the mass dispersions calculated in TDDM (Eq. (11)), TDHF
(Eq..(12)) and NET are plotted in Fig. 6. The mass dispersions in NET are dominated
by the diffusion term (the first term on the right hand side of Eq. (14)). All the results
of the mass dispersion are quite stable as functions of time after the two ions are well
separated. The entire space integral of Eq. (13) was calculated to check numerical
accuracy and was found to be smaller than 0.02. The final-state mass dispersions in
TDDM, TDHF and NET are shown in table 2. The TDDM results are of the same
order of magnitude as the NET values, whereas TDHF results are much smaller.
Since NET values are considered as “empirical”, the final-state TDDM results may
be large enough to reproduce experimental mass fluctuations.

There is a noticeablé difference between the TDDM results and the NET ones in
the intermediate stage of the collisions. While the transport model yields a monoton-
ically increasing mass variance, the quantal results exhibit large peaks at early times,
before approaching their respective final values. Before discussing this d1ffe1ence we
look at the mass dispersions in TDDM in more detail.

- We separate the expression for 0% (Eq. (11)) into two parts corresponding to a
one-body contribution and a two-body correlation contribution,

Znag <ﬂ|a >R — Z < O/ICY >p< ﬂ,lﬁ >R Nap'Ngat (21)

af3 ‘ afa’p’ N

+ Z < o'|a >gp< ,3/[[3 >R Copa'p’ - ' : (22)
. afa’ ! .

Each contrlbutlon is separately shown in Fig. 7.. The time when the one-body and
two-body contributions start growing is the time when the NN collisions were turned
on. This time is slightly before the two nuclei start overlapplng. The non-zero
contribution from each part before the collision of the two nuclei is due to the ground-
state correlations. The sum of these contributions is equal to zero before the two nuclei
overlap, guaranteeing that each nucleus is an eigenstate of the number operator. '

For the head-on collision the two-body contribution has a sharp peak (see Fig. 7)
which is not seen in the peripheral collision. The peak arises from an increase in
the two-body correlation matrix as a result of a decrease in the energy gap between
the occupied and unoccupied single-particle states. Fig. 8 shows the time evolution
of some of the single-particle energies defined by €y =< A|h|A >. The energy gap
between the 1p state and the 2d state becomes very small when the two nuclei overlap
strongly. Therefore, the dominant two-body correlation matrix in the initial stage of
the collision, i.e. the two-particle two-hole matrix (which is inversely p1oport10na1 to
the energy gap) is enhanced when the energy gap becomes small.

In the transport treatment, the growth of the mass variance is driven by the
directed current of transferred nucleons N, given in Eq. (19). In order to understand
the decrease in the TDDM mass variance during the final stage of the reaction, we



introduce a corresponding directed current®

N = / dxdy JA=B(5 =) . . - (23)

where JA™B is the z component (beam direction) of the current density assoaated
with the orbitals orlgmally in nucleus A4,

JA_’B(rF Zna[_, {zpavzpﬁ - Vet . ()

The sum in the above expression includes those smgle—particle orbitals that were ini-
tially localized in nucleus A. Of course, the directed current thus defined has no
direct physical significance, since the single-particle orbitals become delocalized when
the two nuclei start to overlap. The directed current (23) is plotted in Fig. 5 with
dashed curves. The current in TDDM is not positive definite and becomes negative
in the later stage of the collision. Using Eq. (23), we calculated the mass dispersions
in NET. The results are shown in Fig. 9 with dashed curves. The temporal behav1or,
of the mass dispersion is now similar to the TDDM result i.e. the decrease of o%
toward the final state. The above qualitative discussion suggests that the discrep-
ancy between TDDM and NET originates in the assumption of quick memory loss
inherent in the transport treatment. For central collisions of relatively small nuclei,
the opportunity for the single-particle motion to become disordered is significantly
reduced and the transferred particles may remain coherent beyond the echo time and
thus reduce the mass variance when transferred back to their original host nucleus.
Clearly, the time local treatment of the NET model is inadequate for such a situation.

In the following we point out some ambiguities in our calculation. The initial
Hartree-Fock ground state is not the true ground state of TDDM as was discussed
in ref. 9. Since the ground state correlations grow in time, the mass dispersions may
depend on when the NN colhs1ons are switched on. For the head-on collision we made
two calculatlons with dlfferent starting time of the NN collisions; in one calculatlon
the NN colhslons are turned on when the separation distance of the two nuclei is
5.2 fm and in the other the distance is 9 fm. The former has practically no ground
state correlations grown before the two nuclei overlap, and the latter fully grown
correlations. It was found that 0% vary from 3.6 to 4.0 when the separation distance
changes from 5.2 fm to 9 fm. The mass dispersions are, therefore, not very sensmve
to the initial ground state correlations.

In the peripheral collisions the kinetic energy loss and the reaction time depend
on how the moment of inertia is calculated. The R4 prescription!” which gives a
continuous change in the moment of inertia was found to give a larger kinetic energy
loss and a longer reaction time than other prescriptions, such as R2. As a result of
the longer reaction time, the R4 prescription gives a larger mass dispersion than R2.

The total energy for the head-on collision is shown in Fig. 10 as a function of time.
Although the equations of motion Eq. (3) - (6) formally satisfy energy conservation,
the total energy is not conserved in our numerical calculation, as was found in our
previous calculations®®. Some gain in energy occurs during the time when the two



nuclei strongly overlap. The violation of the energy conservation:is. not; sénisitiverto
the change in the parameters in the numerical calculations, such as the number of
‘mesh points and mesh sizes. Therefore we conclude that the violation is- mainly due
to the 'truncation in-the single-particle space, as was discussed in ref. 9.

We also calculated the relative momentum dispersion, as was done in ref. 7. Since
the initial Hartree-Fock state is not-an eigenstate of the relative momentum operator,
the initial dispersion of the momentum is finite, op = 1.17 fm~!., We found a slight
increase in the momentum dispersion in the final state. However, it is of the same
order of magnitude as the TDHF result. This suggests that a reliable calculation of
the momentum dispersion may require the inclusion of the fluctuations in the mean
field, an effect that has so far not been considered. .

5 Summary

We studied the mass dispersions in damped reactions of %0 4 160 at Ej,, = 185
MeV, based on the time-dependent density matrix theory. The advantage of the
TDDM theory is that it provides the two-body density matrix determined consistently
with the dynamics of a nuclear reaction. The fluctuations of one-body observables,
such as fragment mass, were calculated with the two-body density matrix. It was
found that the mass dispersions calculated in TDDM are considerably larger than
those in TDHF, by factors of 2.5-3. The TDDM results were also compared with
the nucleon exchange transport model which reproduces experimental data for many
reaction systems. The TDDM results were of the same order of magnitude as those
of the NET model. We have also discussed the difference in the temporal behavior
of the mass dispersion between TDDM and NET and it was noted that the NET
assumption of quick internal relaxation is not satisfactory for an accurate description
of the dynamics of these nuclear reaction processes.
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A Number conservation
In this. appendlx we prove that TDDM satlsﬁes the number conservatlon condltlon
_Eq (13). For that we use the explicit expression for the equation of motion for
’Caﬂot’ﬁ', .: ._' e : , : _
1hCaparpr = Baparpr(t) + Haﬂa’ﬁ'(t) + Poparp(t)
where SRR '
Baﬁa'ﬂ’ . ‘= Z < /\1A2|'U|/\3/\4 >0
' B A1A2 A3 Mg : .
{(ars = max )(8px, = o2 )nsa e N
—Na nﬂ/\z(‘s)\a&’ - nAsa')(‘SMﬁ’ - n/hﬁ’)} ’ (25)

Haﬁa'ﬁ’ = Z < /\1/\2]U|A3A4 >
A1d2A3 )0

{8ar; (M350 Cpruprrg, — M2 Corear s
: — a0yt Crs a8 = MrgsCrgBarns)
46825 (2,8 Coarngarny — Nagar Corgpray -
= g Cangeins — Tagar a,\,;,\lﬁ')
-5,\30 (na,\1 Charsias - f 1y Corgin,
‘ — a3, Coagpn — M0 Carongr)
=808 (782 Cargarry — Par,Coasarny .
=gy, Corgardy — na,\lcﬁ,\a,\za )}, (26)
Poparpr =~ Z <A /\2|U|)‘3)\4 > ' '
S S VY
{6531682 Corgrearsr — Caprirg6rsarOrpr
—8ax 1823, Crsrsasr = 88233 ary Cagraprar .
+630 2,8 Caprirg T Or8Mr30Cagring } - (27)

The subscript a in Eq. (25) means that the matrlx is antisymmetrized.

The time derivative of 3,5 Cagagp consists of three terms as can be séen from Eq.
(6). Using the fact that the matrix element of the interaction is antisymmetrized, it
is straightforward to show that the Born terms do not contnbute Sop Bagas = 0.
In the sum of the higher-order contributions H and P several terms cancel and the
remaining terms yield

ZHaﬁaﬁ = -2 Z < a/\2|U|/\3/\4 >a 71A3ﬁCﬁA4aA2
af affAz2As Ay
+2 5 < MAglvlads >. e, Carpr,
A1 Ao
and
Z Popap = —2 Z < adg|v[AgAg > 182, Crs Ao
af affhaAalg
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+2 Z < /\1)\2|v|a/\4 > n,\4p0aﬁ)‘l>\2( S e (28)
O’ﬂ/\lAQ/\,;v .

Thg%aé—rivative‘jof the Asurbh of C ﬁﬁzx_lly becor'nes‘

d 2 :
i Z Caﬁaﬁ = =T Z(nkaﬂ'< 04)\2|U|'/\4/\3 > Cﬂ)\4a)\2
di ‘3 th

- +'n,j/\1 <A A?‘Ula’\‘i > Caz\4ﬁ/\2)

= 2 L NoBNBa
af :

.= —Zna§1lﬁa . ‘ (29)
dt &5 | | |

From the first to the second line we have used the equation of motion for n.s (Eq. (5)).
Thus Eq. (13) is time‘independent. Since 02,, = 0 initially, Eq. (13) is always
satisfied. From the above discussion we found that whether the condition (13) is

satisfied or not depends on the approximation for the equation of motion for Copys-
In the Born approximation we always have 3,3 Caﬁag =0 because of 3,5 Bagas =0.
Since the time derivative of 3~ 5 n,4n4, is not always zero, the Born approxunatlon
does not conserve the condition (13).

11
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Table 1: Total kinetic-energy loss TKEL (MeV) and reaction time treact (10-2 s) .

L =0h T = 40h
TREL | fooss | TKEL | fronct
TDDM | 82 |0.43] 37 | 054
TDHF | 64 |025| 11 |0.25

Table 2: Mass dispersion o4 calculated in TDHF, TDDM and NET.

. O_A"
" [L=0n[L=40R
TDHF | 08 0.4 v
TDDM | 2.0 1.2

NET 2.7 1.5

13



Figure captions

Figure 1: Entropies calculated with Eq. (20) for the collisions of 0 +1°0 at Ej,p, =
185 MeV. The solid curve is for the head-on reaction while the dashed curve is
for the perlpheral case (L = 40h).

Figure 2: The time dependence of the temperature 7 (solid) and the effective tem-
perature 7* (dashed) as calculated in NET for the head-on reaction. The arrows
indicate the time interval during which two nuclei are clutched.

Figure 3: Same as Fig. 2 but for the peripheral collision (L = 404).

-Figure 4: Diffusion coefficients in NET as functions of time. The arrows indicate
“the time interval during which two nuclei are clutched. '

Figure 5: One-way currents as functions of time. The solid curves are calculated

with Eq. (19), and the dashed curves with Eq. (23).

Figure 6: 0% as a function of time. The solid curves are the results of TDDM, the
dashed curves are those of TDHF, and the dot-dashed curves the results of
NET.

Figure 7: 0% calculated with Eq. (21) (solid), Eq. (22) (dashed), and the sum of
both (dot-dashed). '

Figure 8: Single-particle energies €5 =< A|h|A > as functions of time for the head-
on reaction. The azimuthal quantum number is denoted by m and + and -
denote the z-parity.

Figure 9: The mass dispersion calculated in NET with the current Eq. (19) (solid)
and with the current Eq. (23) (dashed)

Figure 10: The total energy as a function of time for the head-on reaction, as cal-
- culated in the TDDM model.
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