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Abstract: 
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The mass fluctuations in damped reactions of 16 0 + 160 are studied 
in an extended time-dependent Hartree-Fock theory. The theory deter­
mines the time evolution of a two-body density matrix as well as that of 
a one-body density matrix, providing us with a microscopic way to calcu­
late the fluctuations of one-body quantities. The results of the theory are 
compared with those obtained in a transport model. It is found that the 
dispersions in fragment mass calculated in the two models are of the same 
order of magnitude and much larger than those calculated in the time­
dependent Hartree-Fock theory. The differences between the microscopic 
theory and the transport model are also discussed. 
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1 Introduction 

A characteristic aspect of damped nuclear reactions is the broad distribution of the 
observables such as mass, charge, energy and angular momentum1

. The most funda­
mental theory so far applied to damped reactions is the time-dependent Hartree-Fock .. 
(TDHF) theory.2•3 Although the mean values of one-body observables are rather well 
reproduced by the TDHF model, the calculated fluctuations have been found to be 
significantly too small. For example, the mass dispersions calculated in TDHF for 
heavy systems are one order of magnitude smaller than experimental data.3 This 
failure arises from the one-body nature of TDHF: the totaL wave function in TDHF 
is restricted to 11 single Slater Jeterminant which is inadequate for the evaluation of 
expectation values of two-b )dy operators, e.g. dispersions of one-body quantities.4 

Some microscopic approaches have been proposed to treat the fluctuations· better. 
For example, Yamaji and Tohyama included two-particle-two-hole configurations in a 
perturbative way.5 They found that the mass dispersions in 160 + 4°Ca are .enhanced 
by a factor of three as compared to TDHF results. However, the effects of nucleon­
nuCleon (NN) collisions on the dynamics of the heavy-ion collision are neglected in 
their approach. A different approach taken by Bonche and Flocard6 and Marston and 
Koonin7 are based on the variation principle proposed by Balian and V eneroni8 which 
provides a method for calculating the fluctuations in the framework of a mean-field 
theory. The numerical results for 160 + 160 and 4°Ca + 4°Ca showed a 30- 400% in­
crease in the mass dispersions. However, the effect of NN collisions on the dynamical 
development of the system are not included in this approach either. 

In part I of this series of papers,9 we developed a new, consistent method for cal­
culating fluctuations. This method, called the time-dependent density-matrix theory 
(TDDM), was derived from the time-dependent density-matrix formalism pr{)posed 
by Wang and Cassing10 which includes the effects of NN collisions. TDDM deter­
n/-ines the time evolution of the two-body density matrix in addition to that of the 
one-body density matrix. In ref. 9 we applied the TDDM to the damping of the 
isoscalar quadrupole motions of 160 and 4°Ca and found that TDDM gives decay 
widths comparable to the experimental values. 

In the present paper we apply the TDDM to the partition of mass in damped re­
actions. Since TDDM provides the two-body density matrix, as well as the one-body 
density matrix, it is straightforward to calculate the fluctuations of one-body observ­
ables. The aim of the paper is then to ascertain whether TDDM gives sufficiently 
large fluctuations in mass asymmetry to eliminate the qualitative failure of TDHF. 

We focus on the reaction 160 + 160 which is the largest system we can practically 
treat for the present. Since no experimental data are available on the mass dispersions 
in 160 + 160, we compare our results with those calculated in a transport theory 
called the nucleon exchange transport model (NET) 11 •12•13 . NET has been successful 
in reproducing expe1;iment data for various systems1

. Therefore, the results in NET 
for 160 + 160 are considered to be "empirical" values. In the comparison between 
NET and TDDM, basic macroscopic parameters in NET are obtained from quantities 
calculated in TDDM. 

The presentation is organized as follows. A brief description of TDDM and NET 
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is given in Sect. 2, and important details of I1Umerical calculations are explained in 
Sect. 3. The results on 160 + 160 are then presented in Sect. 4, while Sect. 5 is 
devoted to a summary . 

. 2 Formalism 

In this section we briefly describe the two models employed. 

2.1 Time-dependent density-matrix theory 

The TDDM treatment was formulated on the basis of the density-matrix for­
malism of Wang and C~ssing. 10 Si oce the derivation was discussed in ref. 9 and ref. 14, 
we show. only the basic equatio~s of TDDM. The density matrix formalism10 deter­
mines the time evolution of the one-body density matrix p and the correlated part of 
the two-body density matrix C2 = p2 -A(pp), where the second term is the antisym­
metrized product of the one-body density matrices. We expand p and C2 on a finite 
number of single-particle states {~.\}: 

p(ll'; t) , = L na13(t) ?j1a(1, t) ?j1~(1', t) , (1) 

C2(12, 1'2'; t) = 2:: Ca/3a'J3'(i) 1/Ja(:(, i) 1Pf3(2,i) 1f:,(1',, i) 1p~,(2', t) , (2) 
a/3a'{3' 

where the numbers denote space, spin, and isospin coordinates. The time evolution 
of p and C2 is determined by the following three equations. The first equation gives 
the single-particle representation: 

. . [ v:;! ] 
in~;..(1, t) = h1/J;..(1, t) = -n2 

2
A
1 

+ U[p] ~;..(1, t) , (3) 

where the mean field U[p] is defined as 

U[p]?j1;.. ( 1, t) = j d~{ v(12)[p(22; t )?j1;.. ( 1, t)- p( 12; t)~>. (2, t )]} . ( 4) 
. . . 

Here v(12) is the effe~tive interaction. The occupation matrix naf3 satisfies 

iMta/3 = L { C-y6{3a < aaJviJb' > -Ca6-ya < 1alvJ,88 >} · (5) 
-y6a 

The third equation determines the time evolution of Ca/3a'f3', 

(6) 

where B is the lowest-order contribution with respect to v(12), i.e. the Born term, 
and H and P contain terms describing particle-hole and particle-particle correlations 
to infinite order. The explicit expressions of B, Hand P are given in the Appendix. 
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The three coupled equations (3), (5), and (6) satisfy conservation·oftotal nueieon 
11umber, energy, a~d momentum (both linear and angular), and parity.9

•
10 

In damped reactioD:s the system maintains a binary character throughout and, in 
particular, there are two fragments in the final state of the collision. In order to count 
the number of ~ucleons ip one of the fragments, we i~troduce the operator NR 

;- Nn;:: k dr at(r) a(r) , (7) 

where at(r) and a(r) are the creation and annihilation: operators, respectively, and 
'the subscript R means that the integration is restricted to half space containing one 
of the- two fragments.3 The mean nucleon number of one fragment is given by the 
expectation-value of the operator: 

< Nn >= k dr p(r,r). (8) 

The variance of the mass distribution, 

(]'~ = < N~ > - < N R > 2 
' ( 9) 

. . . . 
·involves the two-body operator (the first term on the right-hand side). Therefore, it 
is given in terms of both the one-body and two-body. density matrices: 

u~ f dr p(r; r)- f. dr1dr2 p(r1; r2) p(r2; r1) ln · ln 
+ f dr1dr2 c2(r1r2; r1r2) . · (10) ln . 

Eq. (10) can be written in terms of ncxf3 and Caf3cx'f3' 

0'~ L ncxf3 < ,Bia > R 
cxf3 

(11) 
i:x{3cx' (3' . 

where < ai,B > R is the overlap integral of the two single-particle states a and ,B in 
the half space. Since ncxf3 = Daf3 and Caf3cx'f3' = 0 in TDHF , O'R in TDHF simplifies 

A A 

u~TDHF = L <-\I-\ >n L <-\I-\' >n< -\'I-\ >n, (12) 
.X=l .X,.X' 

where A is the total number of nucleons. 
Since the total system is an eigenstate of the total number operator, the dispersion 

for the entire space must be zero 

u?otal L ncxcx + L ( C cx(3cxf3 - ncxf3nf3cx) 
ex cxf3 . 

- A+ L( Caf3cx(3- ncxf3nf3cx) = 0 . (13) 
cxf3 

where < ai,B >total= .Daf3 has been used. TDHF conserves this condition because 
Caf38-y = 0 and ncxf3 = Daf3· In Appendix it is shown that TDDM also satisfies the 
above condition. As is discussed in Appendix, the Born approximati.on for Caf3cx'f3' 

does not satisfy the condition (Eq. 13). The higher-order terms must be included to 
satisfy the condition that the system is an eigenstate of the number operator. 
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2-Z N.ucleon exchange transport model 

In this subsection we briefly present how to calculate the mass dispersions in 
NET. The details of NET are presented in refs. 11~13. The NET formulas presented 
below contain the macroscopic variables A and B which are the mass numbers of the 
two reaction partners. Since the total mass number is conserved, A may be chosen 
as the independent lllacroscopic variable. The time derivative of the mass varip,nce 
in NET is given by13 

(14) 
·' 

where D AA is the mass d,iffusion coefficient and VA the mass drift coefficient. The 
diffusion coefficient is evaluated under the assumption that the two nuclei are Fermi 
gases with the same temperature r. DAA is then given by 

D no 2 ·* 
AA = TF 7l"Ceff T (15) 

where Ceff(t) is the time-dependent effective neck radius. TF ~ 37 MeV denotes the 
Fermi kinetic energy and n0 ~ 2.5 x 1021 fm- 2s-1 is the one-way nucleon flux in 
standard nuclear matter. i 3 Furthermore, the "effective temperature" r* is given by 

* Weff hWeff 
T = -cot-, 
' 2 2r 

(16) 

where T is obtained from the dissipated collective energy Q using the relation Q = 
(A+ B)r 2 /(8 MeV). The effective excitation energy Weff is given by w;ff = ~P}(R2 + 
Ul), where R is the radial velocity, Ut is the tangential velocity, and PF = 265 · 
MeV /c is the Fermi momentum in standard nuclear matter. In the calculations for 
160 + 160 we use a rotational-frame approximation for peripheral collisions. In this 
approximation Ut =0. The drift coefficient depends on the potential energy of the 
dinucleus and is obtained from the Lysekil mass formula. 15 Its derivative is then given 
by13, 

. 2no . 2 [ m (R. 2 2R2) . -7l"cff-- +w 
T1 e 2A · 

·, (17) 

m 22 4 4 51 2 
+-R w + -a2A-3- -c3 A-3 + -V] 

9A 9 9 A2 c ' 

where the Coulomb energy is 

{ 

2 A2 (2 . R) 
e 4Ro - Ro ' 

2 A 2 

e 4R ' 

(18) 

R ~ Ro 

Here R is the distance between the two nuclear centers, R0 the sum of the nuclear 
radii, w the rotational frequency, and the liquid-drop coefficients are a2 = 17.9437 
MeV and c3 = 0.7053 MeV. The time evolution of the quantities Ceff, r*,·R, R, and 
w is calculated in TDDM. t 

twe wish to note that in ref. 13 there is a typographical error in the expression for the restoring 
force: in (A.31) the mixed derivative (first line) is missing the (relatively small) Coulomb term 
~(ZA/ A413 + ZB/ B 413 )c3 , although this term was included in the associated NET computer code. 
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3 Calculational details 

Employing the two models described above, we have studied the reaction 160 +16 0 
at a bombarding energy of 185 MeV. The numerical procedures for solving the cou­
pled equations of TDDM are similar to those used in part I of this series,9 so we only 
note a few points specific to 160 +16 0. Eq. (3) for the single-particle wave func­
tions is solved using a TDHF code with axial symmetry.16 The initial single-particle 
wave functions are boosted with the phase factor associated with the relative mo­
tion of the two nuclei. For <·.1ll;sions at finite impact parameters the single-particle 
wave functions are calculated m a r0 Gating frame. The TDHF code uses several pre­
scriptions-for the calculation of the moment of inertia. We employ the so-called R4 
prescription17 because it produces a moment of inertia that changes continuously with 
time and, therefore, leads to a smooth time dependence of the extracted temperature 
r. Furthermore, our calculation incorporates the single-particle orbitals through to 
the 2s - 1d shell (with the 1s and 1p orbitals being occupied initially). We use a 
simple residual interaction of the <5-function form, v = v0P(r - r') with v0 = -300 
MeV fm3 . The strength ofthe residual interaction appears to be reasonable because 
the damping widths of the isoscalar quadrupole resonances of 160 and 4°Ca were. 
reproduced with this residual.interaction.9 

The time-dependent quantities entering in the NET model, i.e. the separation 
R, its time derivative R (the radial velocity), the effective neck radius Ceff, and the 
angular frequency w are calculated on the basis of the density distribution obtained 
in the TDDM model, at each time step. 16•18 This latter quantity is determined from 
the relation w = L/I(p), where Lis the angular momentum and I(p) is the moment 
of inertia. Following the prescription developed in ref. 18, we determine the effective 
neck radius Ceff from the one-way current 

( )

4/3 
2 p(x,y,z = 0) 

N = no7rCeff = no r. dxdy ' 
lwmdow Po 

(19) 

where N is the total transfer current across the neck, p0 = 0.17 fm- 3 is the nuclear 
matter density. At each time step, the nuclear temperature r is determined from the 
total kinetic energy loss obtained in the TDDM calculation. 

4 ·Results 

We first sought to determine the fusion threshold, i.e. that incident energy above 
which fusion no longer occurs for a head-on collision, and found it to be Elab ~ 170 
MeV. This value is considerablyhigher than that obtained in TDHF which is only 54 
MeV when the spin-orbit force is not included. However, it is not so high as the result 
(Eta.b ~ 140 MeV) of the previous TDDM calculation19 which included only the Born 
term in Eq. (6). This indicates that the higher-order terms in Eq. (6) are not ·as 
important as the Born term, as far as the dissipation in nuclear collisions is concerned. 
The effects· of the higher-order correlations in Eq. ( 6) were also studied by Cassing 
and Wang for a one-dimensional system. 20 Solving the coupled equations for p and 
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C2 in coordinate space using a bare NN interaction with a short range repulsive part,, 
they found that the dissipation due to the NN collisions is weakened by the higher­
order terms. Their finding is apparently inconsistent with our result. We interpret 
the difference in the following way. The higher-order terms may play two different 
roles: one is to renormalize the bare NNinteraction and the other modify the phase­
space distribution of two nucleons. The calculation by Cassing and Wang20 has no 
truncation in momentum space, since the coupled equations were solved in coordinate 
space. Therefore, it is likely that they observed the drastic renormalization of the 
bare interaction when they included the higher-order terms. We believe that this 
renormalization effect is small in our calculation because of the severe truncation in 
single-particle space. There still. remains the effect 'of modification of the phase-space 
distribution due to the higher-order correlations. This effect enhances the dissipation, 
as·was found in the dampjng of giant resonances.9 

Vve calculate the mass dispe1 sions for two different reactions, namely a head-on 
collision and a peripheral collision (L = 40h) at Elab = 185 MeV. The incident energy 
is chosen to be above the determined fusion threshold. In table 1 we show the loss 
in kinetic energy of relative motion and the reaction times, as· calculated in TDHF . 
and TDDM. The reaction time is defined as the period during which two nuclei are 
clutched16 (i.e. the density in the middle of the neck exceeds half of the nuclear 
matter density). TDD.A1 gives larger kinetic energy losses and longer i·eaction times 
than TDHF. However, in the head-on collision effect of the two-body collisions is 
relatively smalL · 

The change iii the occupation matrix may be described by the entropy defined 
by21 

(20) 

where { na} is the eigenvalues of the occupation matrix. This quantity is shown in 
.Fig. 1 as a function of time. The entropy increases rapidly in the initial stage of 
the collision and reaches a steady value at the final stage. The asymptotic values for 
the head-on and peripheral collisions are about 36kB and 18kB, respectively. Using 
the temperatures obtained in the NET calculation, which are shown in Fig. 2-3, the 
·F~rmi-gas model gives entropies of 39kB fo.r the head-on collision and 23kB for the 
peripheral collision. 

The time evolution of the quantities needed in the transport equation for the mass 
dispersion are shown in Figs. 2-3 (r and r*) and Fig. 4 (DAA)· Although NET is 
developed to treat reactions with relatively small overlap between the two nuclei, 
such as occurs for our peripheral case, we also employ it for the head-on collision in 
order to estimate the order of magnitude of the mass dispersion. The increase in the 
effective temperature in the final stage of the peripheral reaction is due to the increase 
in k The effective temperature approaches an asymptotic value as the two fragments 
separate. The peak in r* in the head-on collision is due to an increase in the collective 
energy after many nucleons from one nucleus penetrate into the other nucleus. The 
temporal behavior of DAA is mainly determined by the one-way current N (Eq. (19)) 
which is plotted in Fig. 5 with solid curves. The double peaks of D AA seen in the head­
on collision is caused by peak of the effective temperature (see Fig. 2). In the case 
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3 · Calculational details 

Employing the two models described above, we have studied the reaction 160 +16 0 
at a bombarding energy of 185 MeV. The numerical procedures for solving the cou­
pled equations of TDDM are similar to those used in part I of this series,9 so we only· 
note a few points specific to 160 +16 0. Eq. (3) for the single-particle wave func­
tions is- solved using a TDHF code with axial symmetry.16 The initial single-particle 
wave functions are boosted with the phase factor associated with the relative mo­
tion of' the two nuclei. For c. ~u; sions at finite impact parameters the single-particle 
wave functions are calculated Jll a r0 eating frame. The TDHF code uses several pre­
scriptions for the calculation of the rnoment of inertia. We employ the so-called R4 
prestription17 because it produces a rnoment of inertia that changes continuously with 
time and, therefore, leads to a smooth time dependence of the extracted temperature 
T. Furthermore, our calculation incorporates the single-particle orbitals through to 
the 2s - 1d shell (with the 1s and 1p orbitals being occupied initially). We use a 
simple residual interaction of the 8-function form, v = vo83 (r - r') with vo == -300 
MeV'fm3 . The strength of the residual interaction appears to be reasonable because 
the damping widths of the isoscalar quadrupole resonances of 160 and 4°Ca were 
reproduced with this residual interaction.9 

· The time-dependent quantities entering in the NET model, i.e. the separation 
R, its time derivative R (the radial velocity), the effective neck radius Ceff; and the 
angular frequency w are calculated on the basis of the density distribution obtained 
in the TDDM model, at each time step.16

•
18 This latter quantity is determined from 

the relation w = L/I(p), where Lis the angular momentum and I(p) is the moment 
of inertia. Following the prescription developed in ref. 18, we determine the effective 
neck radius Ceff from the one-way current 

( )

4/3 
2 - p( X, y, Z = 0) 

N = no7rCeff = no r. dxdy 
lwmdow Po 

(19) 

where N is the total transfer current across the neck, p0 = 0.17 fm- 3 is the nuclear 
matter density. At each time step, the nuclear temperature Tis determined from th~ 
total kinetic energy loss obtained in the TDDM calculation. 

4 Results 

We first sought to determine the fusion threshold, i.e. that incident energy above 
which fusion no longer occurs for a head-on collision, and found it to be E 1ab ~ 170 
MeV. This value is considerably higher than that obtained in TDHF which is only 54 
MeVwhen the spin-orbit force is not included. However, it is not so high as the result 
(Elab ~ 140 MeV) of the previous TDDM calculation19 which included only the Born 
term in Eq. (6). This indicates that the higher-order terms in Eq. (6) are not as 
important as the Born term, as far as the dissipation in nuclear collisions is concerned. 
The effects of the higher-order correlations in Eq. (6) were also studied by Cassing 
and \,Yang for a one-dimensional system. 20 Solving the coupled equations for p and 
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C2 in coordinate space using a bare NN interaction with a short range repulsive part, 
they found that the dissipation due to the NN collisions is weakened by the higher­
order terms. Their finding is apparently inconsistent with our result. We interpret 
the difference in the following way. The higher-order terms may play two different 
roles: one is to renormalize the bare NN interaction and the other modify the phase­
space distribution of two nucleons. The calculation by Cassing and Wang20 has no 
truncation in momentum space, since the coupled equations were solved in coordinate 
space. Therefore, it is likely that they observed the drastic renormalization of the 
ba.i'e interaction when they included the higher-order terms. We believe that this 
renormalization effect is small in our calculation because of the severe truncation in 
single-' particle space. There still remains the effect of modification of the phase-space 
distribution due to the higher-order correlations. This effect enhances the dissipation, 
as was found in the damping of giant resonances. 9 

Vl/e calculate the mass dispe: sions for two different reactions, namely a head-on 
collision and a peripheral collision (L = 40h) at Elab = 185 MeV. The incident energy 
is chosen to be above the determined fusion threshold. In table 1 we show the loss . 
in kinetic ~nergy of relative motion and the reaction times, as calculated in TDHF 
and TDDM. The reaction time is defined as the period during which two nuclei are 
clutched16 (i.e. the density in the middle of the neck exceeds half of the nuclear 
matter density). TDDM gives larger kinetic energy losses and longer reaction times 
than TDHF. However, in the head-on collision effect of the two-body collisions is 
relatively small. 

The change in the occupation matrix may be described by the entropy defined 
by21 

(20) 

where { n 01 } is the eigenvalues of the occupation matrix. This quantity is shown in 
Fig. 1 as a function of time. ·The. entropy increases rapidly in the initial stage of 
the collision and reaches a steady value at the final stage. The asymptotic values for 
the head-on and peripheral collisions are about 36k8 and 18kB, respectively. Using 
the temperatures obtained in the NET calculation, which are shown in Fig. 2-3, the 
Fermi-gas model gives entropies of 39k8 for the head-on collision and 23k8 for the 
peripheral collision. 

The time evolution of the quantities needed in the transport equation for the mass 
dispersion are shown in Figs. 2-3 (T and T*) and Fig. 4 (DAA)· Although NET is 
developed to treat reactions with relatively small overlap between the two nuclei, 
such as occurs for our peripheral case, we also employ it for the head-on collision in 
order to estimate the order of magnitude of the mass dispersion. The increase in the 
effective temperature in the final stage of the peripheral reaction is due to the increase 
in k The effective temperature approaches an asymptotic value as the two fragments 
separate. The peak in r* in the head-on collision is due to an increase in the collective 
energy after many nucleons from one nucleus penetrate into the other nucleus. The 
temporal behavior of DAA is mainly determined by the one-way current N (Eq. (19)) 
which is plotted in Fig. 5 with solid curves. The double peaks of D AA seen in the head­
on collision is caused by peak of the effective temperature (see Fig. 2). In the case 
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of peripheral collision the average value of D AA over the reaction time is· 2 · 1021 s~ 1 • 
This value is close to the "empirical" value D ~ (A + B) · 1020 s-1 = 32 · 1020 s- 1 

which is used in a simple transport model22
. 

The time evolution of the mass dispersions calculated in TDDM (Eq. (11) ), TDHF 
(Eq. (12)) and NET are plotted in Fig. 6. The mass dispersions in NET are dominated 
by the diffusion term (the first term on the right hand side of Eq. (14)). All the results 
of the mass dispersion are quite stable as functions of time after the two ions are well 
separated. The entire space integral of Eq. (13) was calculated to check numerical 
accuracy and was found to be smaller than 0.02. The final-state mass dispersions in 
TDDM, TDHF and NET arc shown in table 2. The TDDM results are of the same 
order of magnitude as the NET va.lues, whereas TDHF results are much smaller. 
Since NET values are considered as "empirical", the final-state TDDM results may 
be large enough to reproduce experimental mass fluctuations. 

There is a noticeable difference between the TDDM results and the NET ones in 
the intermediate stage of the collisions. While the transport model y}elds a monoton­
ically increasing mass variance, the quantal results exhibit large peaks at early times, 
before approaching their respective final values. Before discussing this difference we 
look at the ma:ss dispersions in TDDM in more detail. 

We separate the expression for O'h (Eq. (11)) into two parts cortesponding to a 
one-body contribution and a two-body correlation contribution, 

O'h = L:>~a/3 < ,Bia >R ~ :L < a'la >R< ,8'1,8 >R nat3'nt3a' (21) 
a/3 at3a' !3' 

+ :L < a'la >R< ,8'1,8 >n Cat3a't3' · (22) 
a{3a 1 /31 

Each contribution is separately shown in Fig. 7 .. The time ~hen the one-body and 
two-body contributions start growing is the time when the NN collisions were tu~ned 
on. This ti.me is slightly before the two nuclei start overlapping. The non-zero 
contribution from each part before the collision of the two nuclei is due to the ground­
state correlations. The sum of these contributions is equai to zero before the two nu~lei 
overlap, guaranteeing that each nucleus is an eigenstate of the number operator. 

For the head-on collision the two-body contribution has a sharp peak (see Fig. 7) 
which is not seen in the peripheral collision. The peak arises from an increase in 
the two- body correlation matrix as a result of a decrease in the energy gap between 
the occupied and unoccupied single-particle states. Fig. 8 shows the time evolution 
of some of the single-particle energies defined by (\ =< .Aihi.A > .. The energy gap 
between the 1p state and the 2d state becomes very small when the two nuclei overlap 
strongly. Therefore, the dominant two-body correlation matrix in the initial stage of 
the collision, i.e. the two-particle two-hole matrix (which is inversely proportional to 
the energy gap), is enhanced whe~ the energy gap becomes small. 

In the transport treatment, the growth of the ma.ss variance is driven by the 
directed current of transferred nucleons N, given in Eq. (19). In order to understand 
the decrease in the TDDM mass variance during the final stage of the reaction, we 
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introduce a corresponding directed current18 

N = j dxdy J:->B(z = 0) . (23) 

where J;->B is the z component (beam direction) of the current density associated 
with the orbitals originally in nucleus A, 

(24) 

The sum in the above expression includes those single-particle orbitals that were ini­
tially localized in nucleus A. Of course, the directed current thus defined has no 
direct physical significance, since the single-particle orbitals become delocalized when 
the two nuclei start to overlap. The directed current (23) is plotted in Fig. 5 with 
dashed curves. The current in TDDM is not positive definite and becomes negative 
in the later stage of the collision. Using Eq. (23), we calculated the mass dispersions 
in NET. The results are shown in Fig. 9 with dashed curves. The temporal behavior. 
of the mass dispersion is now similar to the TDDM result i.e. the decrease of ak 
toward the final state. The above qualitative discussion suggests that the discrep­
ancy between TDDM and NET originates in the assumption of quick memory loss 
inherent in the transport treatment. For central collisions of relatively small nuclei, 
the opportunity for the single-particle motion to become disordered is significantly 
reduced and the transferred particles may remain coherent beyond the echo time and 
thus reduce the mass variance when transferred back to their original host nucleus. 
Clearly, the time local treatment of the NET model is inadequate for such a. situation. 

In the following we point out some ambiguities in our calculation. The initial 
Hartree-Fock ground state is n~t the true ground state of TDDM as was discussed. 
in ref. 9. Since the ground state correl~.tions grow in time, the mass dispersions may 
depend on when the NN collisions are switched on. For the head-on collision we made 
two calculations with different starting time of the NN collisions; in one ca.icula.tion 
the NN col~isions are turned on when the separation distance of the two nuclei i.s 
5.2 fm and in the other the distance is 9 fm. The former has practically no ground 
state correlations grown before the two nuclei overlap, and the latter fully grown 
correlations. It was found that ak vary from 3.6 to 4.0 when the separation distance 
changes from 5.2 fm to 9 fm. The mass dispersions are, therefore, not very sensitive 
to the initial ground state correlations. 

In the peripheral co~lisions the kinetic energy loss and the reaction time depend 
oh how the rpoment of inertia. is calculated. The R4 presc~iption17 which gives a. 
continuous change in the moment of inertia. was found to give a. larger kinetic energy 
loss and a. longer reaction time than other prescriptions, such as R2. As a. result of 
the longer reaction time, the R4 prescription gives a. larger mass dispersion than R2. 

The total energy for the head-on collision is shown in Fig. 10 as a. function of time. 
Although the equations of motion Eq. (3) - (6) formally satisfy energy conservation, 
the total energy is not conserved in our numerical calculation, as was found in our 
previous ca.lcula.tions9•19 . Some gain iri energy occurs during the time when the two 
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nuclei strongly overlap. The violation of th~ energy conservc;~.tion,;is, not:,seri:sitive:to 
the change in the parameters in the numerical calculations, such as the number of 
mesh points and mesh sizes. Therefore we conclude that the violation is· mainly due 
to the 'truncation in the single-particle·space, as was discussed in ref. 9. 

We also calculated the relative momentum dispersion, as was done in ref. 7. Since 
the initial Hartree-Fock state is not an eigenstate of the relative momentum operator, 
the initial dispersion of the momentum is finite, a-p = 1.17 fm- 1

. We found a slight 
increase in the momentum dispersion in the final state. However, it is of the same 
order of magnitude as the TDHF result. This suggests that a reliable calculation of 
the momentum dispersion may require the inclusion' of the fluctuations in the mean 
field, an effect that has so far not been considered. 

5 Summary 

We studied the mass dispersions in damped reactions of 160 + 160 at Etab = 185 
MeV, based on the time-dependent density matrix theory. The advantage of the 
TDDM theory is that it provides the two-body density matrix determined consistently 
with the dynamics of a nuclear reaction. The fluctuations of one-body observables, 
such as fragment mass, were calculated with the two-body density matrix. It was 
found that the mass dispersions calculated in TDDM are considerably larger than 
those in TDHF, by factors of 2.5-3. The TDDM results were also compared with 
the nucleon exchange transport model which reproduces experimental data for many 
reaction systems. The TDDM results were of the same order of magnitude as those 
of the NET model. We have also discussed the difference in the temporal behavior 
of the mass dispersion between TDDM and NET and it was noted that the NET 
assumption of quick internal relaxation is not satisfactory for an accurate description 
of the dynamics of these nuclear reaction processes. 
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A N timber conservation 
In this. appendix we prove that TDDM satisfle~ th~ number-cohs~rvation. condltl,o~ 
Eq. (13). For that we use the explicit ~xpression for the equation of motion tor 

where 

. . . 

i1iC01(301'(3' = Baf301'f3'(t) + H01(301'(3'(t) + P01(301'(3'(t) , 

L < AtA21vl.\3,\4 >a 
>..1>..2>..3>..4 

{( 601>..1 - n~>-. 1 )(8(3>..2 - nf3>..2 )n>..301•n>..4(3' 

-nOIAinf3>..2(6>..3~'- nAJOl')(6>..4f3'- n>..4f3')}' 

L: < ,\t.\2lvl.\3.\4 > 
>..1 >..2>..3 A4 

{_bOlA! (nA301 1 C(3>..4(3'>..2 --: nA3{3'C(3>..4011 A2 

- n.>..401•C>..3(3>.. 2(3 1 - n>..4(3 1 C>..3(301 1 >..2) 

+6(3>..2(n>..4f3'C01 >..301•Xi ·- n>..40l,COIA3(3 1 >.. 1 · 

- n>..3(3·'C01.\4011A! - n>..3a'C01A4A;(3') 

-::6>..3.01 1( nOi,\l cf3A4(3 1A2 _:. nf3AJ COIA4(31 A2 

- n01A2Cf3>..4(3'>..1- nf3>..2COIA4AJf3') 

-6>..4f3'(nf3>..2Cet>..Jet'>..J - nOIA2Cf3>..JOl1 Al 

~ n(3>..1C01)..301 1 >..2·- nn>..1C(3>..3>..2n•)},. 

L. < ,\1.\2lvl.\3,\4 > 
>..1 >..2>..3>..4 '; 

{ 80.,>.. 1 6(3>.. 2C>..3>..401•(31 - Cn(3>..;>..26>..3n1 6>..4(31 

-601>..1 n(3>..2 C>..3>.. 401'{3' - 6(3>..2 n01>..1 C>.. 4 ~~/3'01' 
+8>..3n'n>..4(3'C01(3>..l>..2 + 8>..4(3'n>..301 1 Cn(3>..J>..2} · 

The subscript a in Eq. (25) means that the matrix is antisymmetrized. 

(25) 

(26) 

(27) 

The time derivative of L 01!3 C01 f3nf3 consists ofthree terms as can be seen from Eq. 
(6). Using the fact that the matrix element of the interaction is antisymmetrized, it 
is straightforward to show that the Born terms do not contribute, L 01 f3 B 01 f3 01 f3 = 0. 
In the sum of the higher-order contributions H and P several terms cancel and the 
remaining terms yield 

L HOI/3et{3 -2 E < a.\2lvl.\3,\4 >a n>..3f3Cf3>..4n>..2 
et{3 nf3>..2>..3>..4 

+2 E < AtA21vla.\4 >a nf3>.. 1 Cet>..4(3>..2 
>..1>..2>..4nf3 

and 

L POI{301{3 -2 E < a.\2lvl.\3,\4 > nf3>..2CA3A401f3 
et/3 01{3>..2 AJ A4 
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+2 2: < A1A2Ivla.-\4 > n>,4 (3Ccx(3>. 1>.. 2 ,: . ._·; · · ; • (~8) 
cx{3>.1 >-2 >.4 

. Th~ .derivativeof the sum of C finally becomes 

(29) 

From the first to the second linewe have used the equation of motion for ncxf3 (Eq. ( 5)). 
Thus Eq. (13) is time:independent. Since a;otal = 0 initially, Eq. (13) is always 
satisfied. From the above discussion we found that whether the. condition (13) is 
satisfied or not depends on the approximation for the equation of motion for Ccxf3-yS· 

In the Born approximation we always have Lcx,B Ccxf3cx/3 =0 because of Lcx/3 Bcxf3cxf3 =0. 
Since the time derivative of Lcxf3 ncxf3nf3cx is not always zero, the Born approximation 
does not conserve the condition (13). · · · · · 
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Table 1: Total kinetic-energy loss TKEL (MeV) and reaction time treact (10- 21 s) .. 

.:· 

.. 

.. L =On L = 40n · .'< 

TKEL ireact TKEL treact 

TDDM 82 0.43 37 0.54 
TDHF 64 0.25 11 0.25 

Table 2: Mass dispersion a A calculated in TDHF, TDDM and NET. ' 

L =On 
TDHF .. 0.8 
TDDM 2.0 
NET 2.7 

13 

a A 

L =40n 
0.4 
1.2 
1.5 

· .. 
: ,·· ., 

... : ' 



Figure captions 

Figure 1: Entropies calculated with Eq. (20) for the collisions of 160 + 160 at E~ab = 
185 MeV. The solid curve is for the head-on reaction while the dashed curve is 
for the peripheral case (L = 40h). 

Figure 2: The time dependence of the temperature r (solid) and the effective tem­
perature r* (dashed) as calculated in NET for the head-on reaction. The arrows 
indicate the time interval during which two nuclei are clutched. 

Figure 3: Same as Fig. 2 but for the peripheral collision (L = 401i). 

Figure 4: Diffusion coefficients in NET as functions of time. The arrows indicate 
· the time interval during which two nuclei are clutched. 

Figure 5: One-way currents as functions of time. The solid curves are calculated 
with Eq. (19), and the dashed curves with Eq. (23). 

Figure 6: ah as a function of time. The solid curves are the results of TDDM, the 
dashed curves are those of TDHF, and the dot-dashed curves the results of 
NET. 

Figure 7: ah calculated with Eq. (21) (solid), Eq. (22) (dashed), and the sum of 
both (dot-dashed). 

Figure 8: Single-particle energies c>.. =< >.ihi>. > as functions of time for the head­
on reaction. The azimuthal quantum number is denoted by m and + and -
denote the z-parity. 

Figure 9: The mass dispersion calculated in NET with the current Eq. (19) (solid) 
and with the current Eq. (23) (dashed). 

Figure 10: The total energy as a function of time for the head-on reaction, as cal­
culated in the TDDM model. 
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