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ARTICLE

Diverse sediment microbiota shape methane
emission temperature sensitivity in Arctic lakes
Joanne B. Emerson 1,10✉, Ruth K. Varner 2,3✉, Martin Wik4, Donovan H. Parks 5,

Rebecca B. Neumann 6, Joel E. Johnson2, Caitlin M. Singleton 5,11, Ben J. Woodcroft 5,

Rodney Tollerson II1,12, Akosua Owusu-Dommey7,13, Morgan Binder7,14, Nancy L. Freitas 7,15,

Patrick M. Crill 4, Scott R. Saleska8, Gene W. Tyson 5,9 & Virginia I. Rich 1✉

Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through

ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4

flux correlates strongly with temperature, reflecting that solar radiation drives emissions.

However, here we show that the slope of the temperature-CH4 flux relationship differs

spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns

with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The

temperature-associated increase in CH4 emissions was greater in lake middles—where

methanogens were more abundant—than edges, and sediment communities were distinct

between edges and middles. Microbial abundances, including those of CH4-cycling micro-

organisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest

that deeper lake regions, which currently emit less CH4 than shallower edges, could add

substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be

improved by accounting for spatial variations in sediment microbiota.
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At high latitudes, lakes and ponds are recognized as a large
and understudied source of methane (CH4)1–4, a radia-
tively important trace gas. Post-glacial lakes (formed by

glaciers and receding ice sheets, leaving mineral-rich sediments)
represent the largest lake area at high latitudes5. Because of their
areal extent, these lakes contribute to approximately two-thirds of
the model-predicted natural CH4 emissions above 50°N latitude1.
Their geochemistry and emissions are distinct from thermokarst
lakes formed by permafrost thaw6. With warming, permafrost
thaw, and predicted increased precipitation, northern lakes are
expected to receive more terrestrially derived carbon, likely
increasing their carbon dioxide (CO2) and CH4 emissions7,8.

Ebullition commonly accounts for >50%, sometimes >90%, of
the CH4 flux from post-glacial lakes, with the remainder pri-
marily attributed to diffusion-limited hydrodynamic flux9,10.
Ebullition moves CH4 rapidly from sediments directly to the
atmosphere, typically bypassing microbial CH4 oxidation in the
water column11. Incoming short-wave radiation and sediment
temperature have been identified as strong predictors of ebullitive
CH4 emission from sub-arctic post-glacial lakes on an annual
basis, with higher temperatures increasing emissions during the
ice-free season2,12. However, the extent and drivers of spatial
variability in this temperature response, particularly within lakes,
are poorly understood.

To address this knowledge gap, we analyzed ebullitive CH4

emissions over a 6-year period and collected underlying sediment
cores in July 2012 from the littoral (edge) and pelagic (middle)
locations of two shallow post-glacial lakes, Mellersta Harrsjön and
Inre Harrsjön (Supplementary Fig. 1, Supplementary Table 1).
These lakes are part of the Stordalen Mire complex, a hydro-
logically interconnected, discontinuous permafrost ecosystem
encompassing post-glacial lakes and a mosaic palsa/wetland in
approximately equal portions13. The lakes contribute ~55% of the
total Stordalen Mire ecosystem CH4 loss2, and are model sites for
studying ebullitive CH4 emissions via inverted funnel bubble
traps at the lake surface9,12,14. These ebullitive flux measurements
were collected for the six summers from 2009 to 201412,14 every
1–3 days9. Here, we analyzed 5126 ebullitive CH4 emission
measurements (Supplementary Table 2) from this previously
published dataset for spatial patterns (edge vs. middle), and we
linked these patterns to analyses of the microbiota and bio-
geochemistry in the underlying sediments.

Results and discussion
Spatial variation in ebullitive CH4 temperature sensitivity.
Previous work has shown that annual ebullitive emissions are
consistently higher from these lakes’ shallow littoral zones than
their deeper pelagic zones9,15, as expected since the shallow
sediments experience higher temperatures for longer periods and
also receive more substrate input from aquatic vegetation16.
However, assessing the temperature sensitivity of ebullition for
the two lake zones in this study revealed a previously unnoticed
significant difference, with ~3–5-fold higher temperature sensi-
tivity in lake middles relative to edges (Fig. 1, Supplementary
Table 3). The statistical significance of these differences was
consistent across all edge-to-middle comparisons (within and
between lakes) and was generally also robust to re-analyses
considering three subsets of the data (removal of edge data at
temperatures above those experienced by middles and removal of
potential outliers at the highest and lowest temperatures experi-
enced by lake middles, respectively), with one exception: Inre
Harrsjön edges and middles were not statistically significantly
different when higher temperature edge data were removed
(Supplementary Table 3, Supplementary Fig. 2). Predicted future
emissions from post-glacial subarctic lakes are based on current

measurements of temperature responsiveness1, which are domi-
nated by ebullitive flux data from shallow lake zones because
those locations currently experience a longer period of sufficient
warmth for seasonal emissions than lake middles (~3 months
relative to ~1 month)2. If, as suggested here by our spatially
resolved emissions data, temperature responsiveness is sub-
stantively higher in the deeper sediments, then, as deeper regions
warm and remain heated for longer before cooling off in the fall,
future lake emissions would be greater than currently predicted.
Thus, accurate CH4 emission predictions rely on understanding
the spatial heterogeneity and underlying causes of this tempera-
ture responsiveness.

Ebullition is controlled by CH4 production (which is in turn
driven by redox, substrates, temperature, and microbiota),
consumption (driven by redox and microbiota)17–19, and the
physics of bubble formation and escape (determined by sediment
texture and overlying hydrostatic pressure, which is largely
controlled by atmospheric conditions)2,15. Therefore, the edge-
to-middle difference in temperature responsiveness of CH4

ebullition could be partly due to differences in physicochemical
characteristics (e.g., sediment texture, pressure, and redox),
substrates (e.g., organic carbon), and/or microbiota (abundance,
composition, and/or activity)20. Although differences in sediment
texture were observed between the lake edge and middle in
Mellersta Harrsjön, these differences were not consistent between
lakes (Supplementary Fig. 3, Supplementary Table 4). Our
previous work has shown higher and more variable ebullition
rates during periods of dropping atmospheric pressure, but there
were no differences in edge vs. middle locations9. In terms of
redox, we expect concentrations of terminal electron acceptors to
be low, as the likely source would be runoff21, and total sulfur and
nitrogen did not correlate with ebullition rates by lake or
location15. In terms of measured substrates, carbon:nitrogen
(C:N) ratios and bulk δ13CTOC (indicative of vegetation composi-
tion) did not vary from edges to middles. Total organic carbon
(TOC) varied by the lake, with similar concentrations observed
between lake edge and middle in Mellersta and appreciably higher
TOC in middle sediments in Inre Harrsjön. Carbon quality, as
assessed by visual comparisons of organic matter composition,
revealed coarse, less decomposed detritus gyttja (organic-rich,
peat-derived mud) in the edge sediments of both lakes, while
middle sediments were characterized by fine-grained, generally
more decomposed detritus gyttja15. Thus, higher temperature
responsiveness occurred where there was lower potential substrate
quality, suggesting that substrate differences do not readily explain
patterns in CH4 emission responses to temperature in edge vs.
middle lake locations, although more detailed substrate analyses
could further evaluate this in the future.

Spatial differences in sediment microbial communities. Next,
we sought to characterize differences in the microbiota that could
contribute to the observed temperature response patterns in CH4

emissions. We first used a 16S rRNA gene amplicon sequencing
approach to characterize microbial community composition from
the edge and middle cores from each lake (Fig. 2A, B, Supple-
mentary Table 5). Although microbial community composition
differed most significantly by depth within the sediment (Sup-
plementary Fig. 4, Supplementary Table 6), as is typical for
aquatic sediments22, significant differences between lake edges
and middles (Fig. 2C, PERMANOVA p= 0.001) revealed shared
spatial patterns in microbiota and ebullitive CH4 flux measure-
ments, suggesting that microbiota could contribute to the
observed temperature sensitivity in CH4 emissions.

While total microbial abundances correlated most strongly
with depth in the sediment and did not exhibit edge vs. middle
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differences (p= 0.15, Supplementary Fig. 5, Supplementary
Table 7), an exploration of functional guilds revealed multiple
significant edges vs. middle differences. Methanogens (defined
here as populations from known methanogenic clades23,
Supplementary Table 5) were significantly more relatively
abundant in lake middles than edges (Fig. 2D, ANOVA
p= 0.0001). Combining relative abundances and quantitative
polymerase chain reaction (qPCR) absolute abundances as a
proxy for methanogen total abundances showed no significant
difference between lake edges and middles (p= 0.94), likely due
to the strong sediment-depth patterns of total cell numbers
(qPCR abundances) in combination with the low relative
abundances of methanogens (0.3–2.3%, consistent with other
studies24–27). Syntrophs have been shown to be upstream
regulators of methane production28–31, and they can be obligately
mutualistic with methanogens, for example by producing
hydrogen used in hydrogenotrophic methanogenesis. While
syntrophy does not exhibit a strong phylogenetic signal32,

precluding its robust quantification here as a functional guild,
the Syntrophaceae lineage, whose syntrophic potential was
supported by reconstruction of a metagenome-assembled genome
(MAG) (see below), did show significantly higher relative
abundances in lake middle sediments relative to edges
(p= 0.047). Aerobic methanotrophs, which are posited to have
minimal impact on ebullitive CH4 loss due to rapid bubble
movement through sediment11, were confined to the surface
sediment layers as expected (Supplementary Table 8) and did not
differ significantly in composition or relative abundance between
edges and middles (ANOVA p= 0.76). Anaerobic methanotroph
(ANME archaeal) abundances differed significantly between lake
edges and middles (ANOVA p= 0.014) and were approximately
one order of magnitude higher in edge sediments (Supplementary
Tables 8 and 9). Although this could suggest that increased
anaerobic methane oxidation in the edge sediments could
contribute to the observed differences in temperature sensitivity,
these ANME archaea comprised only 0.1% of the community on

Fig. 1 Temperature responsiveness of ebullitive methane flux from two post-glacial lakes. Ebullitive CH4 flux as a function of surface sediment
temperature (data were binned in 1 °C intervals; see Methods) from June to September 2009–2014 for the edge vs. middle regions of a Lake Mellersta
Harrsjön (MH) (MH edge—n= 1581, MH middle—n= 795 independent ebullitive CH4 flux measurements) and b Lake Inre Harrsjön (IH) (IH edge—
n= 2318, IH middle—n= 432 independent ebullitive CH4 flux measurements). Error bars in a and b are 95% confidence intervals, fit lines are 2nd-degree
polynomials, and points are means. c Arrhenius plots of the data in a and b (n= 5126 independent ebullitive CH4 flux measurements); ln(bubble CH4 flux)
vs. the inverse surface sediment temperature in K. Points are means and error bars are 95% confidence intervals. Data are color-coded by the lake and by
edge (littoral) and middle (pelagic) zones.
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average (range 0.0–0.6%, Supplementary Tables 5 and 8), and
again, ebullition is expected to largely bypass methane oxidation.
Still, future work to further constrain ANME activity at different
temperatures33,34 may help to elucidate the significance of the
observed patterns in ANME abundance.

Sediment incubations and modeling of CH4 production. To
more directly evaluate the CH4 production potential of the
microbial communities in these sediments at different tempera-
tures, we performed 48 ex situ anaerobic incubations of edge and
middle sediments collected in 2012 (linked directly to our
microbial and biogeochemical data) and 2013 (from the same
four core locations) (Supplementary Table 10). These incubations
at 5 and 22 °C showed that the lake-middle sediments had sig-
nificantly higher CH4 production potentials than lake-edge
sediments at both temperatures (Fig. 3), paralleling their higher
methanogen and syntroph relative abundances and indicating
that the lake-middle methanogens can remain metabolically
active at higher temperatures, despite never yet experiencing
them in situ. However, it is important to note that a difference in
temperature responsiveness (i.e., different CH4 production

potentials at 5 °C, relative to 22 °C) was not observed for the edge
or middle sediments (ANOVA p= 0.38 for edges, p= 0.91 for
middles), as might have been expected from the in situ ebullition
data (Fig. 1). One potential explanation for this is that the ex situ
incubations measured relatively immediate CH4 production when
the entire sediment was maintained at a certain temperature,
whereas the in situ measurements linked temperatures at the
sediment/surface interface with ebullitive CH4 flux measurements
at the lake surface. Thus, the measured in situ temperatures were
somewhat disconnected from the temperatures (and times) of
CH4 production, and their associated flux measurements repre-
sent CH4 production potential integrated over the time scales of
bubble generation and flow through the sediment and water
column, as observed over multiple years.

Since lake surface ebullition measurements represent CH4

production integrated across depths in the underlying sediment,
we applied isotope and mass balance calculations to partition
CH4 production to its likely source depths, in order to link CH4

production to depth-discrete microbiota. Based on stable carbon
isotope values and porewater concentrations of CH4 and
dissolved inorganic carbon (DIC), we inferred total CH4 loss
(fugitive CH4) at each depth interval (Supplementary Table 4).

Fig. 2 Lake sediment bacteria and archaea in two post-glacial lakes. a, b Schematic overview of lakes and cores collected for DNA sequencing analyses,
with core subsections indicated by horizontal lines. Cores in each lake are referred to as Lake edge or Lake middle, with overlying water depth as indicated,
and the four colored circles are used to distinguish each core and/or lake location throughout the figures. Yellow stars indicate cores and depths targeted
for shotgun metagenomics. c Principal coordinates analysis (PCoA) of microbial community composition across samples (each core subsection, n= 21),
based on 16S rRNA gene amplicon abundances of microbial operational taxonomic units (OTUs); circles represent samples, and samples in closer
proximity have more similar microbial community composition. Thin arrows along colored lines indicate increasing depth within each core. p-Values from
one-way PERMANOVA indicate how significantly microbial community composition differed according to the indicated categorical variable (significant if
p < 0.05). d Percent relative abundance of OTUs identified as methanogens in 16S rRNA gene amplicon data in lake edges compared to lake middles (p-
value from two-tailed Student’s t-test, significant if p < 0.05), n= 21 biologically independent samples. Lines in boxes depict the median, boxes indicate
75th percentile, whiskers 95th percentile, and points are outliers.
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This fugitive CH4 production was correlated with microbiota
from the same depths, revealing a significant correlation between
overall microbial community composition and fugitive CH4

(Mantel p= 0.016) and between fugitive CH4 and the relative
abundances of specific microbial lineages, including Phyci-
sphaerae, Thermoplasmata, and Aminicenantes (Supplementary
Tables 6 and 11). All of these lineages have representative MAGs
with metabolic reconstructions discussed further below.

Microbial metabolic predictions and ties to biogeochemistry.
To more specifically investigate links between CH4-associated
microbial functional guilds and CH4 chemistry, we identified
multiple known CH4-cycling clades in the 16S rRNA gene
amplicon data and applied targeted metagenomic sequencing to a
subset of samples to examine diagnostic genes for CH4 cycling
(and to assemble genomes for metabolic pathway reconstructions,
discussed further below). From the metagenomes, using hidden
Markov models (see Methods), we recovered 5470 sequencing
reads with high similarity to phylogenetically diverse functional
genes indicative of CH4 production (mcrA) and consumption
(pmoA) potential (Supplementary Fig. 6, Supplementary
Table 12). The mcrA data, together with 16S rRNA gene abun-
dances of specific lineages of known hydrogenotrophic and
acetoclastic methanogens, support αC isotopic calculations in
indicating that hydrogenotrophic methanogenesis was the
dominant methanogenic pathway in these lake sediments (Sup-
plementary Fig. 7).

Using partial least squares regressions (PLSR) and multiple
linear regression (MLR) analyses, we predicted porewater CH4

concentrations from methanogen and methanotroph relative
abundances, as measured via 16S rRNA gene amplicon sequen-
cing data. Although the modeled fugitive CH4 calculations might
have provided a better depth-resolved link to CH4 production
than the porewater CH4 concentrations analyzed here, we opted
to use two direct measurements (microbiota and porewater CH4)
in these statistical models, rather than essentially modeling a
model. When using either PLSR or MLR to predict porewater

CH4 concentrations, a better prediction was achieved when both
depth-resolved abiotic variables (i.e., depth, TOC, DIC, 13CTOC, S,
and TOC:TS, see Methods) and the relative abundances of
predicted CH4-cycling organisms were included (PLSR:
r2= 0.640, p= 0.00001, MLR: adjusted r2= 0.752, p= 0.0003),
relative to including the abiotic variables alone (PLSR: r2= 0.390,
p= 0.002, MLR: adjusted r2= 0.532, p= 0.0004) (Fig. 4A, B,
Supplementary Table 13). These results suggest that direct
measurements of microbial abundances could contribute to more
accurate predictions of future CH4 emissions, consistent with
previous statistical models that have linked specific microbiota to
C- and/or CH4-cycling dynamics in marine ecosystems and
thawing permafrost peatlands35–39.

By expanding our PLSR analyses to consider the full microbial
community, in addition to known CH4 cycles, our ability to
predict CH4 concentrations improved further. This analysis
considered the following groupings of 16S rRNA gene abun-
dances as explanatory variables for the prediction of porewater
CH4 concentrations: (1) each operational taxonomic unit (OTU)
at >1% relative abundance in any sample (Supplementary
Table 5), (2) summed lineage abundances of all bacteria and
archaea (mostly at the phylum or class levels, see Supplementary
Fig. 4 for groupings), and (3) summed abundances of the most
highly resolved lineage representative in the amplicon data for
each MAG (a population genome computationally reconstructed
from shotgun metagenomic community DNA sequencing data,
Supplementary Table 14). In two cases (for Aminicenantes MAG
Bin 1/OTU 4 and a Methanomassiliicoccales-related Thermo-
plasmata, MAG Bin 16/OTU 27), a MAG was linked directly to a
specific OTU in the amplicon data through a co-binned 16S
rRNA gene sequence in the MAG, such that the MAG relative
abundance could be inferred from the amplicon data. In all other
cases, the summed abundances of amplicon OTUs in the same
lineage as the MAG were used as proxies for MAG abundances. A
total of 153 potential explanatory variables were considered in
this PLSR analysis, 26 of which, including methanogen and
methanotroph abundances, were identified as significant pre-
dictors of porewater CH4 concentrations (Fig. 4C).

Four of the top five microbial groups most predictive of
porewater CH4 concentrations in the PLSR analysis were lineages
for which we were able to reconstruct a MAG (Fig. 4C,
Supplementary Tables 15 and 16), thus organization into MAGs
helped to unravel the specific metabolic processes most predictive
of carbon chemistry. In total, five MAGs were reconstructed with
>85% completeness and <6% contamination (Supplementary
Discussion). The best overall predictor of porewater CH4

concentrations was the Syntrophaceae class of Deltaproteobac-
teria, which was considered in the PLSR analysis as the summed
abundance of all OTUs in this clade. Consistent with a syntrophic
metabolism, including hydrogen production (e.g., in support of
hydrogenotrophic methanogenesis, which is the dominant
methanogenic pathway in these sediments, as described above),
the Syntrophaceae MAG revealed 15 hydrogenase-associated
genes, along with the capacity to ferment diverse carbon
compounds (particularly carbon-sulfur compounds), with the
added potential capacity for respiration (see Supplementary
Discussion).

Though the Syntrophaceae lineage was overall most predictive
of porewater CH4 concentrations, the most significant predictive
single OTU was a member of the candidate phylum Aminice-
nantes, which we also recovered as a MAG. While this lineage has
been previously predicted to be fermentative, saccharolytic, and/
or aerobic40–42, our lake sediment genome revealed the metabolic
potential for several C1 metabolic processes, including methylo-
trophy through the assimilation of methylamines, methane-thiols,
and/or dimethylsulfide, similar to previous recoveries of complete

Fig. 3 Methane production from anaerobic laboratory incubations of lake
sediments. Sediments were collected from edges and middles of lakes Inre
Harrsjön and Mellersta Harrsjön in 2012 and 2013 (see Methods) and
incubated at a 5 °C (n= 12 independent incubation experiments) and
b 22 °C (n= 12 independent incubation experiments). Headspace CH4

concentrations were measured daily for 5 days and average daily CH4

fluxes were calculated for each sample. Lines in boxes depict the median,
boxes indicate 75th percentile, whiskers 95th percentile, and points are
outliers. ds dry sediment. p-Values for both a and b are from one-way
ANOVA edge vs. middle comparisons (significant if p < 0.05).
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Wood–Ljungdahl pathways for C1 metabolism via carbonyl and
methyl pathways in this lineage43. The predicted capacity for
methylotrophy could explain the strong correlation between
Aminicenantes relative abundance and porewater CH4

concentrations.
The relative abundances of two other lineages with MAGs, the

Thermoplasmata (a group of Archaea) and Phycisphaerae (a class
of Planctomycetes bacteria), were also strongly predictive of both

porewater CH4 concentrations in the PLSR analysis and of
calculated fugitive CH4 in linear regressions (Supplementary
Tables 11 and 16). Phylogenetic analyses showed that the
Thermoplasmata Bin 19 MAG was derived from a divergent
member of the Thermoplasmatales order, and it encodes the
capacity for CO2 production from a formate, along with peptide
and amino acid degradation (as previously indicated44) and
complex carbon degradation. Our recovered Phycisphaerae

Fig. 4 Partial least squares regression (PLSR) statistical modeling to predict sediment CH4 concentrations. PLSR analyses tested the ability of different
suites of explanatory variables to predict measured sediment CH4 concentrations in the four cores from 2012 across depths (n= 21); in all models, all
measured abiotic variables (except those related to CH4 concentrations, see Methods) were included as explanatory variables, and biotic variables were
added as indicated. Biotic variables included relative abundances of specific OTUs and/or summed OTU abundances grouped by taxonomy or predicted
metabolism (as indicated), from 16S rRNA gene amplicon data. a Correlation coefficient (r2) for PLSR models predicting sediment CH4 using different
combinations of explanatory variables. Each bar represents a single underlying data point, with the value of that point indicated by the bar height along the
y-axis. b Linear regression of measured and model-predicted sediment CH4, considering all abiotic variables and methanogen and methanotroph
abundances as explanatory variables; error band represents 95% confidence interval; each point is a sample, colored by core. c For the model with the
highest r2 (rightmost in panel a), all significant explanatory variables are shown (VIP scores > 1, n= 26 significant explanatory variables out of 153 total
variables considered). VIP scores show the relative contribution of each variable to the model, with higher VIP scores indicating a more significant
contribution. Each bar represents a single underlying data point, with the value of that point indicated by the bar height along the y-axis.
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population genome appears to have the capacity to metabolize a
wide variety of complex carbon compounds, potentially via
fermentation, consistent with previous predictions for the
Planctomycetes phylum45. While direct ties to CH4 are not
obvious in these two genomes, we speculate that their contribu-
tions to overall carbon cycling, potentially including through
fermentative contributions of CO2 as a substrate, may be driving
these strong correlations with both CH4 concentrations and
modeled fugitive CH4.

Interestingly, the only lineage represented by a MAG that was
not a significant predictor of porewater CH4 concentrations in the
PLSR analysis was classified by its 16S rRNA gene sequence as a
member of the Methanomassiliicoccales, an archaeal lineage
presumed to consist exclusively of obligate H2-dependent
methylotrophic methanogens46,47. We hypothesized that this
lake sediment population did not have the capacity for
methanogenesis, as we did not recover genes from the
methanogenesis pathway in this 95% complete genome. Further
analysis of this MAG, reported in a separate paper48, revealed that
this population is not a member of the Methanomassiliicoccales
but rather is part of a new order basal to the Methanomassilii-
coccales within the Thermoplasmata. All 12 MAGs that we
analyzed from this new order and related lineages (including 11
MAGs from other ecosystems, mostly anoxic sediments) were
found to lack >20 methanogenesis biomarker genes that are
present in Methanomassiliicoccales genomes, including mcrA.
Instead, the lake sediment MAG reported here is predicted to
conserve energy through amino acid metabolism48. While mcrA
sequences that were putatively phylogenetically assigned to
Methanomassiliicoccaceae were recovered from metagenomic
reads in our GraftM analysis here (Supplementary Table 12),
these genes were presumably derived from other OTUs classified
as Methanomassiliicoccaceae in our amplicon data, some of
which may be true methanogens. These results highlight the value
of reconstructing near-complete genomes for a better under-
standing of metabolism, along with the limitations of using 16S
rRNA gene sequences to infer metabolic processes.

In conclusion, we found significant differences in the slope of
the temperature vs. CH4 flux relationship between sub-arctic lake
edges and middles, suggesting that radiative forcing (tempera-
ture) and a concomitant increase in microbial metabolic rates are
not the only primary controls on CH4 emissions. These edge vs.
middle differences were shared by underlying sediment microbial
communities, suggesting that differences in sediment microbial
community composition (i.e., not simply differences in microbial
activity) contribute to spatial differences in the response of CH4

emissions to increasing temperature. Specifically, we observed
significant differences in microbial community composition
between lake edges and middles, including significantly higher
methanogen and Syntrophaceae abundances in lake middles
relative to edges, and CH4 emissions from lake middle sediments
were significantly higher than from lake edges when incubated at
the same temperatures. In addition, the relative abundances of
CH4-cycling organisms and their reconstructed population
genomes (MAGs) were significantly better predictors of sediment
CH4 concentrations than abiotic variables alone. Syntrophic
lineages, which can generate the hydrogen required for hydro-
genotrophic methanogenesis, and lineages capable of C degrada-
tion to CO2 (also potentially “upstream” of methanogenesis) were
also predictive of sediment CH4 concentrations. Together, these
results suggest that when lake middles reach the temperatures of
lake edges, they may emit even more CH4 than the lake edges
currently do, such that our projected future CH4 emissions may
be underestimating contributions from subarctic lakes, and that
knowledge of microbial community composition and metabolism
could improve these predictions. Future investigations that

consider the combined effects of microbiota, carbon quality,
and temperature on lake CH4 emissions, including further
exploration of sediment depth-resolved contributions to total
CH4 emissions across multiple locations and years, will help to
provide a more comprehensive understanding of spatiotemporal
controls on global CH4 emissions.

Methods
Field site and sample collection. Stordalen Mire is a subarctic peatland complex
located 10 km east of Abisko in northern Sweden (68°21′N, 19°02′E). Lakes Mel-
lersta Harrsjön and Inre Harrsjön are 1.1 and 2.3 ha in area, reaching maximum
depths of 7 and 5 m, respectively49. These lakes are post-glacially formed, and,
unlike some thermokarst lakes at high latitude, they do not have underlying per-
mafrost or seeps that emit geologic CH4; the CH4 is biologically derived9,21.
Mellersta Harrsjön receives water from a small stream, while Inre Harrsjön is fed
through groundwater and runoff from the surrounding mire. Ebullitive and
diffusion-limited CH4 emissions from these lakes have been documented using
floating funnels and chambers distributed across the lakes, and sampled
frequently2,9,12. Ebullition varies spatially with higher emissions from shallow
zones and in the presence of plants9,15.

We collected quadruplicate sediment cores (four cores from two locations in
each of two lakes: Mellersta Harrsjön edge (68°357832′N, 19°042046′E) and middle
(68°358291′N, 19°042132′E) and Inre Harrsjön edge (68°357880′N, 19°048525′E)
and middle (68°358418′N, 19°045650′E)) on July 10 and 18, 2012 at the Stordalen
Mire nature reserve, a research site near Abisko, northern Sweden (Supplementary
Table 1). Samples were taken from cores (as described below) along a depth
gradient (ranging from 4 to 40 cm) for geochemical measurements and microbial
DNA sequencing data.

Geochemical data collection and analysis. For each set of four cores, we sampled
the first core for sediment C, N, and S (weight percent), percent TOC, and bulk
sediment 13CTOC and 15NTOC. Samples of 1 cm3 were taken in 6 cm increments
from the top of the core to the bottom. The samples were then dried, ground, and
split into an untreated sample for total carbon (C) and an acidified TOC sample.
Details regarding sample preparation for measurement on a Perkin Elmer 2400
Series II CHNS/O Elemental Analyzer at the University of New Hampshire (UNH)
were described previously15. Repeatability error was established by analyzing
replicate samples and calculating the standard deviation. Duplicate samples were
run approximately every 10 samples. Potential outliers were also run in duplicate.
Isotopic analysis was performed by combusting dried sediment samples in a
Costech ECS 4010 elemental analyzer coupled to a Thermo Trace GC Ultra isotope
ratio mass spectrometer (IRMS), based on calibration with acetanilide, Atlantic
cod, black spruce needles, sorghum flour, corn gluten, NIST 1515 apple leaves, and
tuna muscle standards (UNH Stable Isotope Lab). In 2013 we also collected
sediment cores in the same locations in these lakes. We report sediment textural
analyses from these cores as % sand, % silt, and % clay (Supplementary Table 4).
Those samples were dried and run through a laser particle size analyzer (Malvern
Mastersizer 2000).

The second replicate core was used for quantifying total CH4 in the core
sediment reported in μM. After coring, we pulled 2 cm3 sediment plugs using cut
plastic syringes through pre-drilled holes cut at 4 cm increments along the core
liner. The sediment plugs were transferred to 30 ml serum vials containing 5 ml of
2 M NaOH, capped quickly, and shaken50,51. After sitting overnight then heating
for 1 h at 60 °C, the headspace of the vials was analyzed for CH4 using a Shimadzu
GC-2014 gas chromatograph (GC) with a flame ionizing detector9. The CH4

measured represents the total, that is, nearly all of the CH4 dissolved in the water
from the sediment plug and any bubbles that may have been trapped in the
sediment. The remaining sediment samples in the vials were weighed and dried to
constant weight to determine the mass of water in the samples to be used for
calculating the CH4 concentration in μM.

The third replicate core was used for the measurement of DIC. Rhizon samplers
were inserted every 2 cm through pre-drilled holes in the core and a vacuum was
pulled with a 30 ml polypropylene syringe. The first ~1 ml of sediment water was
discarded because of contamination with DI water. After 10 ml of sediment pore
water was collected, it was injected into a 30 ml evacuated serum vial with 1 ml 30%
H4PO4 solution. This caused forms of inorganic C in the water to form CO2. A
headspace sample was then extracted and run on an infrared gas analyzer to
determine the CO2 concentration.

Porewater isotopic composition was determined in samples from cores collected
in the same locations in 2014. Methods were described previously35. Briefly, sample
vials that were collected for CH4 and DIC were acidified with 0.5 ml of 21% H3PO4

and brought to atmospheric pressure with helium. The sample headspace was
analyzed for δ13C of CH4 and CO2 on a continuous-flow Hewlett-Packard 5890
gas chromatograph (Agilent Technologies) at 40 °C coupled to a FinniganMAT
Delta S isotope ratio mass spectrometer via a Conflo IV interface system (Thermo
Scientific).

Methods for measuring ebullition and water temperature have been described
previously, and the ebullitive CH4 flux and temperature data analyzed here are a
subset of those previously reported9. In brief, measurements of CH4 bubble flux
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during the ice-free season (June to September) have been ongoing at these lakes
since 2009. A total of 40 bubble traps (here, 22 traps), distributed in a depth-
stratified sampling scheme were sampled frequently (every 1–3 days). For this
study, averages of CH4 bubble flux were calculated for each lake by binning data
from the edge (shallower water, littoral) and middle (deeper water, pelagic) areas
separately in 1 °C interval (total of 4–22 °C) of corresponding surface sediment
temperature. For this, we used flux and temperature data collected from 2009-2014.
Water and surface sediment temperatures were measured in profiles continuously,
using intercalibrated Onset HOBO v22 loggers, as previously described9 (data are
available here: https://bolin.su.se/data/). The binned flux data were used to
construct Arrhenius equations in order to investigate differences in temperature
response on the ebullition from the edge and middle areas.

DNA extraction and 16S rRNA gene sequencing. A fourth replicate core was
collected for DNA extraction. After coring, we pulled 2 cm3 sediment plugs using
cut plastic syringes through pre-drilled holes cut at 4 cm increments along the core
liner. Samples were immediately put in Eppendorf tubes and placed in a cooler
until returned to the research station where they were stored at −80 °C until
extraction.

For DNA extraction from each core depth range, 0.25 g of sediment was
collected under sterile conditions and added to a MoBio PowerSoil DNA Isolation
Kit (MoBio, Inc., Carlsbad, CA, USA). DNA was extracted according to the
manufacturer’s instructions. PCR amplification and sequencing were performed at
the Environmental Sample Preparation and Sequencing Facility at Argonne
National Laboratory, in accordance with previously described protocols52–54.
Briefly, 515F and barcoded 806R primers with Illumina flowcell adapter sequences
were used to amplify the V4 region of bacterial and archaeal 16S rRNA genes55.
Each 25 μl PCR reaction contained 12 μl of PCR water (MoBio, Inc., Carlsbad, CA,
USA), 10 μl of 1 × 5 PRIME Hot Master Mix (5 PRIME Inc., Bethesda, MD, USA),
1 μl each of F and R primers (5 μM concentration, 200 pM final), and 1 μl of
template DNA. PCR cycling conditions were as follows: 94 °C for 3 min, 35 cycles
of [94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s], 72 °C for 10 min. A PicoGreen
assay (Life Technologies, Grand Island, NY, USA) was used to measure amplicon
concentrations. Equimolar concentrations for each barcoded sample were
combined and then cleaned with the UltraClean PCR Clean-Up Kit (MoBio Inc.,
Carlsbad, CA, USA) and then quantified using the Qubit (Invitrogen, Carlsbad,
CA, USA). The pool was then diluted to 2 nM, denatured, and then diluted to a
final concentration of 4 pM with a 10% PhiX spike for sequencing on the Illumina
MiSeq platform.

Quantitative PCR (qPCR). A quantitative polymerase chain reaction (qPCR) was
performed to measure microbial abundances in units of 16S rRNA gene copies per
g wet sediment54,56. Each reaction used 5 µl of 2× SYBR Green PCR Master Mix
(Applied Biosystems, Carlsbad, CA, USA), 4 µl of template DNA, and 1 µl of
primer mix. The 16S rRNA gene 1406F/1525R primer set (0.4 µM,
F-GYACWCACCGCCCGT and R-AAGGAGGTGWTCCARCC) was designed to
amplify bacterial and archaeal 16S rRNA genes. The rpsL primer pair (0.2 µM,
F-GTAAAGTATGCCGTGTTCGT and R-AGCCTGCTTACGGTCTTTA) was
used for inhibition control samples to amplify Escherichia coli DH10B only. Three
dilutions (1/100, 1/500, and 1/1000), as well as an inhibition control (1/100 dilution
of E. coli DH10B genomic DNA spiked into a 1/100 dilution of the sample), were
run in triplicate for each sample and standard. For the standards, E. coli DH10B
genomic DNA dilutions of 10−2, 10−3, 10−4, 10−5, and 10−6 of the 20 ng/µl stock
solution were used. The qPCRs were run on the ViiA7 Real-Time PCR System
(Applied Biosystems, Carlsbad, CA, USA), with cycling conditions as follows:
10 min at 95 °C, 40 cycles of [15 s at 95 °C, then 20 s at 55 °C, then 30 s at 72 °C]. A
melt curve was produced by running a cycle of 2 min at 95 °C and a final cycle of
15 s at 60 °C. The cycle threshold (Ct) values were recorded and analyzed using
ViiA7 v1.2 software, and 16 S rRNA gene copy numbers were calculated for each
sample, accounting for the genome size (4,686,137 bp) and 16S rRNA gene copy
number (7) of the standard.

16S rRNA gene sequence processing and OTU table generation. Sequences
were processed as previously described54. Briefly, after demultiplexing by sample,
each pair of forward and reverse 16S rRNA gene reads was merged. Sequences were
then quality-filtered, and singletons were removed with QIIME57 and UPARSE58.
Dereplicated sequences were then clustered at 97% nucleotide identity using
UCLUST v759 to generate a database containing one sequence for each OTU.
Sequencing reads from the full dataset were then clustered to the database to
generate an OTU table. Each OTU was assigned taxonomy via the Ribosomal
Database Project taxonomic classifier60, and all OTUs assigned as mitochondria or
chloroplasts were removed. The resulting OTU table was rarefied to 3000 16S
rRNA gene sequences per sample. Following this OTU table curation, 36 samples
across 21 core-depth combinations were retained, of which 30 were replicates (i.e.,
15 pairs). For each pair of replicates, each OTU count was averaged (for 14 of 15
pairs, replicates were indistinguishable, Supplementary Fig. 8), and the averages
were used for all downstream analyses. For the six samples without successful
replicates, OTU counts from a single sample were used.

Metagenomic sequencing and bioinformatics. Based on preliminary 16S rRNA
gene amplicon sequencing data from eight samples (IHM4, IHM36, IHE4, IHE28,
MHM4, MHM34, MHE4, and MHE16), three samples with the most distinct
microbial communities (IHM4, IHE28, and MHE16) were selected for metage-
nomic sequencing to maximize recovery of diverse microbial populations. DNA
(from the same extractions described above for 16S rRNA gene sequencing) was
sent to the Australian Centre for Ecogenomics for metagenomic library con-
struction and sequencing on the Illumina NextSeq platform, as previously
described36,37. Metagenomic assembly, genome binning to recover microbial
MAGs, and annotation (to predict gene functions and reconstruct metabolic
pathways) were performed as previously described61. Briefly, each metagenome was
separately assembled using the CLC de novo assembler v4.4.1 (CLCBio, Denmark),
reads were mapped to contigs using BWA v0.7.12-r103962, and the mean coverage
of contigs was obtained using the ‘coverage’ command of CheckM v1.0.663. Gen-
omes were binned using MetaBAT v0.26.364 with all five preset parameters (very
sensitive, sensitive, specific, very specific, super specific), and genome completeness
and contamination were estimated using CheckM63. To investigate predicted
metabolic functions of interest in the metagenomic data, metagenomic reads with
sequence similarity to genes diagnostic of specific metabolic functions (e.g.,
methane monooxygenase, pmoA, and methyl-coenzyme M reductase, mcrA, indi-
cative of aerobic methane oxidation and methanogenesis, respectively) were
identified using hidden Markov models via GraftM v1.065.

Incubations for CH4 production rates. Anaerobic incubations of lake sediment
samples were performed to assess rates of production of CH4. Four replicate sediment
samples (4ml) from three depths in 2012 (0–5, 10, 20 cm) were collected in the field
and immediately sealed in a 120ml serum vial. The headspace was immediately
flushed for 5minutes with Ultra High Purity (UHP) N2 in the field (replacing the
headspace 20 times) to establish an anaerobic headspace. The vials were stored in
coolers, taken to the research station, flushed again with N2 before incubations began
in the laboratory, and then stored during the experiment as follows: 2 vials were
incubated at 5 °C and 2 vials were held at room temperature (22 °C) for each depth.
Consistent with previous incubations from lake sediments18, 5 ml of headspace was
sampled daily for 5 days and analyzed on a flame ionization GC to determine CH4

fluxes. Flux was calculated as a change in headspace concentration over time, then
normalized by sediment mass after incubations, when vials were dried and weighed to
determine sediment dry weight. We also report data from incubations in 2013 that
were treated the same way with samples collected at depths consistent with changes in
core sediment transitions: Inre Harrsjön edge: 2.5, 27.5, 47.5 cm; Inre Harrsjön
middle: 4.5, 35, 60 cm; Mellersta Harrsjön edge: 7.5, 22.5, 37.5 cm; and Mellersta
Harrsjön middle: 2.5, 27.5, 47.5 cm.

Calculations of depth-resolved fugitive CH4. Depth-resolved fugitive CH4 (total
CH4 released from the sediments, including ebullitive and diffusive CH4, though
ebullition is by far the dominant CH4 production pathway in these sediments,
accounting for 80–88% of total emissions12) was calculated from the concentration
and stable carbon isotopic composition of CH4 and DIC in sediment porewater66.
This approach leverages the fact that (1) microbial fermentation and respiration,
which generate CO2, do not fractionate carbon, while methanogenesis, which
generates CH4 and CO2 (1:1), does fractionate carbon, and (2) DIC largely remains
dissolved in water, while dissolved CH4 escapes porewater by ebullition. In this
framework, the measured isotopic composition of CH4 in porewater was used to
calculate the fractionation factor associated with methanogenesis, assuming the
starting isotopic composition of the substrate matched that measured for organic
carbon in the sediment. The model assumes that the products of fermentation,
including acetate and/or CO2, feed directly into methanogenesis as substrates.
While evidence for microbial fractionation of the bulk acetate pool has been
demonstrated67, we do not have knowledge of the isotopic composition of acetate
in our system, and thus we could not use this information to constrain our model.
The calculated fractionation factor associated with methanogenesis, along with the
measured isotopic composition of DIC in porewater, was used to determine the
relative amount of DIC that came from methanogenesis vs. non-fractionating
pathways (e.g., fermentation). Because any CO2 produced was assumed to stay
dissolved in porewater, the relative amount of DIC generated from methanogenesis
could be multiplied by the measured concentration of DIC to determine the
concentration of CO2 and CH4 generated through methanogenesis. This generated
CH4 concentration was larger than the actual measured concentration of CH4 in
porewater, and the difference between the two was assigned as ‘fugitive’ CH4.
Calculations assumed that the system was at a steady state.

Statistics and reproducibility. Homogeneity of regression among groups in
Arrhenius plots (Fig. 1 and Supplementary Fig. 2) was tested using pairwise full
factorial analyses with JMP statistical software (SAS Institute Inc., Cary, NC). The
significance level of the group interaction of lake zone by temperature interval was
0.05 (Supplementary Table 3).

Unless otherwise indicated, other statistical analyses were performed using
PRIMER v768,69. The rarefied OTU table was square-root transformed, and Bray-
Curtis similarity matrices were generated for sample comparisons and used to
make a Principal Coordinates Analysis (PCoA) plot. We used permutational
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ANOVA (PERMANOVA) to test for significant differences in microbial
community composition between categorical groups of samples (e.g., between the
two lakes and between the edges and middles of the lakes), and we used Mantel
tests with Spearman’s rank correlations to compare microbial community
composition (Bray–Curtis similarity matrices) to continuous variables (Euclidean
distance matrices), including sediment depth and biogeochemical data. ANOVA
and linear regression analyses (Supplementary Tables 9 and 11) were performed
with StatPlus v6.1.7.0.

We performed PLSR in the R programming language via the package PLS
(function PLSR)70–72 to predict measured sediment CH4 concentrations from biotic
and abiotic variables, similar to our previously described PLSR analyses36. Briefly,
PLSR models a causal relationship between explanatory variable(s) (in this case,
abundances of abiotic measurements and/or microorganisms) and the response
variable being predicted (here, measured sediment CH4 concentrations). Abiotic
variables included all depth-resolved abiotic measurements that were not directly
related to CH4, as such measurements could be confounding variables in our analysis.
The included abiotic variables were: depth, TOC, δ13CTOC, DIC, S, and TOC:TS. The
PLSR analysis yielded Pearson’s product–moment correlations between measured
environmental and/or geochemical variables, the abundances of microbial lineages,
and the abundances of specific microbial populations. This allowed for a
quantification of the added value of microbial abundances in predicting sediment
CH4 concentrations, relative to predictions from abiotic factors alone. Variance in
projection (VIP) scores for each explanatory variable indicate the extent to which that
variable was predictive of the response variable (i.e., sediment CH4 concentrations),
with VIP scores≥ 1 considered to be highly significant73.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data are available at NCBI under BioProject PRJNA667178 and also here:
https://isogenie-db.asc.ohio-state.edu/datasources#lake_data (from the IsoGenie link,
note that the two folders with MAGs are based on initial taxonomy; some MAGs
subsequently determined to be archaea are in the bacteria folder and vice versa). NCBI
accession numbers are as follows: raw 16S rRNA gene amplicon sequences
SRX10114484–SRX10114504, raw metagenomic sequences SRX10063754–SRX10063756,
and MAGs JAFNEO000000000–JAFNIC000000000. Other raw data and relevant
processed data are provided in supplementary tables and/or associated with prior
publications, as cited in the paper. Data underlying Figs. 1–4 can be found as follows:
Fig. 1A–C (Supplementary Table 2), Fig. 2C, D (Supplementary Table 5), Fig. 3
(Supplementary Table 10), and Fig. 4A–C (raw data in Supplementary Tables 4–5,
relevant processed data in Supplementary Tables 13 and 16).
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