UCLA

Posters

Title
Program Analysis for Reliable Sensor Network Software

Permalink
https://escholarship.org/uc/item/3gd2k2n\

Authors

Roy Shea
Shane Markstrum
Mani Srivastava

Publication Date
2005

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3gd2k2nv
https://escholarship.org/uc/item/3gd2k2nv#author
https://escholarship.org
http://www.cdlib.org/

CE!\IS Center for Embedded Networked Sensing

Program Analysisfor Reliable
Sensor Networ k Software

Roy Shea, Shane Markstrum, Mani Srivastava, Todd Millstein, Rupak Majumdar
NESL - http://nesl.ee.ucla.edu

|ntroduction: Early Identification of Errorsin Embedded Sensor Networ k Systems

Using Staged Checksto Identify Errors

« Staged checks can detect many classesof errorsin sensor networks « Analysisimproves softwar e development

— Static checkers verify that code base is compliant with system policies and — Earlyerror identification eliminates many problems before deployment

conventions at compiletime — Provides meaningful feedback to systems designers

— Load-time checkers examine hardware and software of deployed nodes i I« f . "
during module insertion to ensure safe module operation « Thiswork focuseson static checkers

— Run-time checkers monitor node execution to detect entry into error states — Builds upon foundation created by established analysis techniques

and provide runtime permutations to system state — Static analysis can be applied with minimal changes to the target system
« Program analysis complements debugging techniques ranging from _ Static checkers provide base work that load-time checkers and run-time
JTAG to network oriented tools such as Sympathy checkers can stand upon

Approaching the Problem: Static Analysis of Program Source Code

Overview of Statically Analysi ng Sensor Code
« (1) Begin with program code e (3) Apply domain specific checksto transformed code

— Anaysisisapplied directly to SOS module code — Examine stylistic properties specific to target OS
— Same framework should work for other C based — Verify that protocols and resource models are followed
systems such as EmStar and TinyOS
. (2) Transform codeinto wor kable for mat (@ (4) Fix any noted errorsand compile code
o \ 1 a

— Modules generated from verified code can be used without
having to worry about classes of common errors

— Currently using the C I ntermediate Language (CI L)
— Transforms C to an unambiguous low level form
— Maintains types and form of original program

Current Status: Checking Stylistic Conventions and Memory M odels

Convention and Style Checking Memory Ownership Verification
o Statically check system specific conventionsimportant to safety « Mote classdevices often have scarce memory (4k — 10k bytes)
— Verify that modules handle events critical to module insertion and removal — SOS provides asimple fixed block memory allocation mechanism that

_ Warn users about unsafe use of global variablesin modules applications can use to alocate memory at run time

— Ownership of data can change as data is passed between SOS modules

— Direct users towards proper checking of return values from system critical
Kernel calls — Memory leaks within or between modules can be a serious problem
— Prevent accidental use of black listed functions « A smplememory model helpsto guide programmers

— Each alocated memory block is owned by exactly one module

Sample Run of Static Checker

ns = (app_state *)state;

— The owning module must either store a persistent reference to the block,
release the block to another module, or free the block

— Thismodel aids modular analysis
« Memory model isverified for each module loaded onto a node

Warning: Data released in statment #line 82 "storeBeforeRelease00.c"
post net((unsigned char)129, s->pid,
(unsigned char)32, msg->len,
(void *)msg->data,
(unsigned char)l6, msg->daddr);

— Control flow information is combined with alias analysis to check that
ELSE IF) released data is treated as dead

int)msg->type =— MSG_FINAL

escapes at #line 77
s->data ptr = (void *)msg->data;

End of output

— Full dataflow analysisis combined with alias analysis to check that data
claimed by a node is properly stored, released, or freed

Current Challenges and Future Work
« Event based framework is pushing the limits of static analysis

ELSEIF
int ymsg->type =— MSG_RELAY_DAT

(line 77)

MSG_RELAY_DATA:

s->data_ptr = (void *)msg->data;
dest = msg->daddr;

tmp = route_to(dest, msg->len);

detault:
return -EINVAL:

— Many modules are designed to handle events that conform to an
established protocol

— Exploring ways to encode this information in programs without burdening
the system devel oper

« Developing formal models of the system

Sample bug similar to that found
in the 1700 line AODV
Implementation for SOS. Output
from checker islisted next to a
graphical flow diagram of the
program.

MSG_INIT:
s—>pid = msg->did,;
s->routed = 0;
s->status = Q;

— Current checkers provide a good intuitive model for memory ownership

(line 82)
post_net(RELAY_PID, s>pid. RELAY_PACKET, msg->len,
(void *)msg->data, SOS_MSG_RELEASE, msg->daddr);
s->routed = s->routed + 1;

— Formal models provide formal guarantees about the checkers
« EXxpanding checker framework to other systems

@: ROUTED_OKAY:

— Systems such as TinyOS and EmStar have properties similar to those of
SOS and will benefit from similar tools

UCLA - UCR - Caltech — USC - CSU - JPL - UC Merced

