
UCLA
Posters

Title
Program Analysis for Reliable Sensor Network Software

Permalink
https://escholarship.org/uc/item/3gd2k2nv

Authors
Roy Shea
Shane Markstrum
Mani Srivastava
et al.

Publication Date
2005

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gd2k2nv
https://escholarship.org/uc/item/3gd2k2nv#author
https://escholarship.org
http://www.cdlib.org/

 Approaching the Problem:Approaching the Problem: Static Analysis of Program Source CodeStatic Analysis of Program Source Code

 Current Status:Current Status: Checking Stylistic Conventions and Memory Models Checking Stylistic Conventions and Memory Models

Program Analysis for Reliable Program Analysis for Reliable
Sensor Network SoftwareSensor Network Software

Roy Shea, Shane Markstrum, Mani Srivastava, Todd Millstein, Rupak Majumdar
NESL - http://nesl.ee.ucla.edu

 Introduction:Introduction: Early Identification of Errors in Embedded Sensor Network Systems Early Identification of Errors in Embedded Sensor Network Systems

• Staged checks can detect many classes of errors in sensor networks

– Static checkers verify that code base is compliant with system policies and
conventions at compile time

– Load-time checkers examine hardware and software of deployed nodes
during module insertion to ensure safe module operation

– Run-time checkers monitor node execution to detect entry into error states
and provide runtime permutations to system state

• Program analysis complements debugging techniques ranging from
JTAG to network oriented tools such as Sympathy

Convention and Style Checking Memory Ownership Verification

UCLA – UCR – Caltech – USC – CSU – JPL – UC MercedUCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

Using Staged Checks to Identify Errors
• Analysis improves software development

– Early error identification eliminates many problems before deployment

– Provides meaningful feedback to systems designers

• This work focuses on static checkers

– Builds upon foundation created by established analysis techniques

– Static analysis can be applied with minimal changes to the target system

– Static checkers provide base work that load-time checkers and run-time
checkers can stand upon

• (1) Begin with program code

– Analysis is applied directly to SOS module code

– Same framework should work for other C based
systems such as EmStar and TinyOS

Overview of Statically Analysing Sensor Code

• (2) Transform code into workable format

– Currently using the C Intermediate Language (CIL)

– Transforms C to an unambiguous low level form

– Maintains types and form of original program

• (4) Fix any noted errors and compile code

– Modules generated from verified code can be used without
having to worry about classes of common errors

• (3) Apply domain specific checks to transformed code

– Examine stylistic properties specific to target OS

– Verify that protocols and resource models are followed

• Statically check system specific conventions important to safety

– Verify that modules handle events critical to module insertion and removal

– Warn users about unsafe use of global variables in modules

– Direct users towards proper checking of return values from system critical
kernel calls

– Prevent accidental use of black listed functions

• Mote class devices often have scarce memory (4k – 10k bytes)

– SOS provides a simple fixed block memory allocation mechanism that
applications can use to allocate memory at run time

– Ownership of data can change as data is passed between SOS modules

– Memory leaks within or between modules can be a serious problem

• A simple memory model helps to guide programmers

– Each allocated memory block is owned by exactly one module

– The owning module must either store a persistent reference to the block,
release the block to another module, or free the block

– This model aids modular analysis

• Memory model is verified for each module loaded onto a node

– Control flow information is combined with alias analysis to check that
released data is treated as dead

– Full data flow analysis is combined with alias analysis to check that data
claimed by a node is properly stored, released, or freed

Warning: Data released in statment #line 82 "storeBeforeRelease00.c"
 post_net((unsigned char)129, s->pid,
 (unsigned char)32, msg->len,
 (void *)msg->data,
 (unsigned char)16, msg->daddr);
escapes at #line 77
 s->data_ptr = (void *)msg->data;

End of output

Sample bug similar to that found
in the 1700 line AODV
implementation for SOS. Output
from checker is listed next to a
graphical flow diagram of the
program.

Sample Run of Static Checker

Current Challenges and Future Work
• Event based framework is pushing the limits of static analysis

– Many modules are designed to handle events that conform to an
established protocol

– Exploring ways to encode this information in programs without burdening
the system developer

• Developing formal models of the system

– Current checkers provide a good intuitive model for memory ownership

– Formal models provide formal guarantees about the checkers

• Expanding checker framework to other systems

– Systems such as TinyOS and EmStar have properties similar to those of
SOS and will benefit from similar tools

