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Abstract

BACKGROUND AND AIMS: Acute kidney injury (AKI) has a poor prognosis in cirrhosis.
Given the variability of creatinine, the prediction of AKI and dialysis by other markers is needed.
The aim of this study is to determine the role of serum and urine metabolomics in the prediction of
AKI and dialysis in an inpatient cirrhosis cohort.

APPROACH AND RESULTS: Inpatients with cirrhosis from 11 North American Consortium
of End-stage Liver Disease centers who provided admission serum/urine when they were AKI
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and dialysis-free were included. Analysis of covariance adjusted for demographics, infection,

and cirrhosis severity was performed to identify metabolites that differed among patients (1)

who developed AKI or not; (2) required dialysis or not; and/pr (3) within AKI subgroups who
needed dialysis or not. We performed random forest and AUC analyses to identify specific
metabolite(s) associated with outcomes. Logistic regression with clinical variables with/without
metabolites was performed. A total of 602 patients gave serum (218 developed AKI, 80 needed
dialysis) and 435 gave urine (164 developed AKI, 61 needed dialysis). For AKI prediction,
clinical factor-adjusted AUC was 0.91 for serum and 0.88 for urine. Major metabolites such as
uremic toxins (2,3-dihydroxy-5-methylthio-4-pentenoic acid [DMTPA], N2N2dimethylguanosine,
uridine/pseudouridine) and tryptophan/tyrosine metabolites (kynunerate, 8-methoxykyunerate,
quinolinate) were higher in patients who developed AKI. For dialysis prediction, clinical factor—
adjusted AUC was 0.93 for serum and 0.91 for urine. Similar metabolites as AKI were

altered here. For dialysis prediction in those with AKI, the AUC was 0.81 and 0.79 for serum/
urine. Lower branched-chain amino-acid (BCAA) metabolites but higher cysteine, tryptophan,
glutamate, and DMTPA were seen in patients with AKI needing dialysis. Serum/urine metabolites
were additive to clinical variables for all outcomes.

CONCLUSIONS: Specific admission urinary and serum metabolites were significantly additive
to clinical variables to predict AKI development and dialysis initiation in inpatients with cirrhosis.
These observations can potentially facilitate earlier initiation of renoprotective measures.

Acute kidney injury (AKI) is one of the most common complications in hospitalized patients
with cirrhosis, and the one associated with the highest mortality.(12) Its diagnosis is based
on changes in serum creatinine (sCr).(3) Newer serum and urine biomarkers are being
developed to aid in the differential diagnosis of AKI that will guide therapy®; however,
trying to predict the development of AKI is challenging.(®) Once AKI is established, there

is often progression to need renal replacement therapy (RRT).(®) Therefore, in patients with
decompensated cirrhosis, there is an urgent need to find biomarkers that can (1) identify
susceptibility to AKI and/or (2) predict progression to RRT, so that future studies can
evaluate prevention or earlier intervention strategies. Studies have shown major changes in
metabolomic profiles of serum and urine in patients who have established renal insufficiency
without cirrhosis.(7-8) In patients with cirrhosis, single-center outpatient studies have also
demonstrated changes in metabolomics in those who died or required liver transplant,(¢-11)
and in multicenter studies in which renal impairment is already established.(12) However, the
role of metabolomics in the prediction of AKI development and its progression to need RRT
is unclear from a multicenter perspective.

Our aims were therefore to determine, in hospitalized patients with cirrhosis, whether
specific urinary and serum metabolites on admission can predict the development of AKI,
and, in those who develop AKI, to prognosticate progression to need dialysis.

Patients and Methods

Patients were enrolled prospectively in 11 centers of the North American Consortium for
the Study of End-Stage Liver Disease (NACSELD). They gave samples after informed
consent. NACSELD consists of North American tertiary care hepatology centers that have
collected prospective data from patients with cirrhosis hospitalized nonelectively, without
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HIV infection or prior organ transplants. The study was approved by institutional review
boards at all sites. Data were entered in a REDCAP database. For this study, we only
included the subset of hospitalized patients who were (1) without AKI or dialysis on
admission and (2) who consented to providing serum or urine samples within 12 hours of
admission. Patients with pre-existing AKI, those on dialysis on admission, and those who
were unable or unwilling to provide samples were excluded from this substudy. All sites
were instructed on uniform sample collection practices before study initiation, and samples
were stored in —80°C freezers until analysis.

Data pertaining to demographics, cirrhosis details, medications, reasons for admission, and
hospital course were recorded. AKI was defined as an acute increase in sCr of >0.3 mg/dL
within 48 hours or by =50% from a stable baseline sCr within 3 months and presumed to
have developed within the past 7 days when no prior readings are available.(!3) Peak AKI
stage was recorded.

Analyses were performed at Metabolon Inc. (Morrisville, NC) using validated ultrahigh-
performance liquid chromatography-tandem mass spectroscopy (LC/MS-MS). Analysis of
covariance (ANCOVA) analyses were performed adjusting for age, sex, alcohol-associated
etiology, admission values of Model for End-Stage Liver Disease (MELD), white blood
count (WBC), infection, serum sodium, and serum albumin using false discovery rate (FDR)
adjustment, represented by the g-value, were performed to account for variability related to
patient-level variables. After log transformation and imputation of missing values, if any,
with the minimum observed value for each compound, analysis of variance contrasts and
Welch’s two-sample t-test were used to determine metabolites that were different between
groups. Then an ANCOVA was performed. An estimate of the FDR was calculated to
consider the multiple comparisons that normally occur in metabolomic-based studies. (1)
Instrument variability was determined by calculating the median relative standard deviation
(RSD) for the internal standards that were added to each sample before injection into the
mass spectrometers. Overall process variability was determined by calculating the median
RSD for all endogenous metabolites (i.e., noninstrument standards) present in 100% of

the Client Matrix samples, which are technical replicates of pooled client samples. Overall
process variability was determined by calculating the median RSD for all endogenous
metabolites (i.e., noninstrument standards) present in the technical replicates.

Metabolites that were independently associated with the outcomes of interest (AKI
development and need for dialysis) on ANCOVA were considered predictive of such
outcomes. The ANCOVA tables were ranked according to P values, FDRs, and pathways
found to be consistently involved in protection from or associated with the outcomes were
then explored deeper for each outcome. Random forest analysis (RFA) was then performed,
which is a supervised classification technique based on an ensemble of decision trees.(14)
For a given decision tree, a random subset of the data with identifying true class information
is selected to build the tree without replacement and sample the same number from each
group. The in-bag samples are different for each tree. Then after the forest is constructed,
the predictions are made for the out-of-bag (OOB) samples for each tree. For each tree,
only a subset of variables is considered as determined by the mtry parameter (which is

the number of random variables used in each tree “bootstrap sample” or “training set™).
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The final classification of each sample is determined by computing the class prediction
frequency (“votes”) for the OOB samples over the whole forest. This method is unbiased,

as the prediction for each sample is based on trees built from a subset of samples that do

not include that sample. To determine which metabolites make the largest contribution to the
classification, a “variable importance” measure called the mean decrease accuracy (MDA)
was computed. The MDA is determined by randomly permuting a variable, running the
observed values through the trees, and then reassessing the prediction accuracy. If a variable
is not important, then this procedure will have little change in the accuracy of the class
prediction (permuting random noise will give random noise). In contrast, if a variable is
important to the classification, the prediction accuracy will drop after such a permutation,
which we record as the MDA. Thus, the RFAs provide an “importance” rank ordering of
metabolites, and the first 30 for each outcome are displayed. AUCs for all metabolites were
calculated for the ANCOVA-adjusted models for each category, including those with/without
admission infection. Then, we compared urinary and serum metabolomics of the patients
with AKI who required dialysis versus those who did not progress to require dialysis using
ANCOVA, and RFAs were also performed. Finally, logistic regression models for AKI
(yes/no) and dialysis (yes/no) were developed for the clinical variables only (age, admission
values of WBC, Na, albumin, and MELD-Na, and infection) and then clinical models plus
metabolites significant on RFA. From these models, receiver operator characteristic (ROC)
curves were created, and the AUCs with 95% Cls were calculated. Finally, the AUC values
for the clinical variables only and combined models were compared using the nonparametric
method of DeLong® for two or more correlated ROC curves.

OVERALL PATIENT FLOW

We considered a total of 2,403 patients, of whom 105 had AKI on admission and 56 were
already on dialysis on admission or at home. Of the remaining 2,242 patients, 527 were
transferred in from another hospital, 623 were approached more than 12 hours following
admission (as allowed in the NACSELD protocol), and 490 refused to provide serum/urine
or were unable to provide urine during this time period. Ultimately, 602 patients who fit the
criteria gave serum and 435 patients who fit the criteria gave urine.

CLINICAL COURSE

Of the 602 patients without AKI on admission who provided serum samples, 218 developed
AKI 4+2 days following admission, and 80 required dialysis 6+3 days following admission
(Table 1 and Supporting Fig. S1). Of these 218 patients, 179 or 82% developed = stage 2
AKI. Patients who developed AKI had similar age, sex, admission spontaneous bacterial
peritonitis (SBP) prophylaxis, mean arterial pressure (MAP), and serum albumin, but had
worse cirrhosis severity by MELD scores, higher prevalence of ascites and HE, higher

rate of admission in the past 6 months, infections as the reason for admission, and higher
admission WBC, compared with those who did not develop AKI. Admission sCr, MAP,
statin and nonselective beta-blocker (NSBB) use were similar. Patients with AKI had a
higher rate of acute-on-chronic liver failure (ACLF) development as defined by NACSELD,
(18) a longer hospital length of stay (LOS), a higher rate of intensive care unit (ICU)
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admission, and a higher rate of death versus those who did not. Patients who required
dialysis again had similar demographics, admission SBP prophylaxis, NSBB and statin use,
and admission WBC compared with patients who did not require dialysis but had a higher
rate of admission infections, higher admission MELD score and sCr and lower MAP, and
worse inpatient outcomes (development of ACLF, ICU admissions, LOS, and death).

Of the 435 patients without AKI on admission who provided urine samples, 164 developed
AKI 4+2 days following admission, and 61 patients required dialysis 6+2 days following
admission (Table 1 and Fig. 1). As found in serum, most patients with AKI developed

stage 2 or higher disease (n = 139, 79%). Patients who provided urine samples and who
developed AKI had similar age, sex, admission SBP prophylaxis, MAP, and serum albumin,
but had worse cirrhosis severity (admission MELD score and prevalence of ascites and HE),
and higher rate of admission infections and admission WBC, which resulted in a higher
percentage of patients who developed ACLF, had a longer hospital LOS, and a higher
mortality when compared with those who did not develop AKI. When comparing patients
with AKI who progressed to need for dialysis (n = 61) versus those who did not (n =

103), once again they had similar demographics, admission serum creatinine, admission SBP
prophylaxis, NSBB and statin use, and serum albumin, but had a greater infection rate and
higher admission WBC, worse cirrhosis severity, and worse outcomes (ACLF development,
ICU admission, LOS, and death). None of the patients were on vasopressors on admission.
The peak sCr was higher in those with renal outcomes, regardless of the cohort studied.

PREDICTION OF AKI DEVELOPMENT

In the entire group (n = 602 with serum samples and n = 435 with urine samples),
ANCOVA analysis adjusted for age, gender, alcohol-associated etiology and admission
WBC, Na, albumin, and MELD score showed multiple metabolites in serum and urine that
differentiated between those who developed AKI compared with those who did not. These
metabolites spanned all classes but aromatic and branched chain amino acids (BCAAS),
urea cycle and dipeptides, and bile acids, along with products of purine and pyrimidine
metabolism, were major contributors toward this difference. Prediction of AKI development
had an AUC of 0.91 based on serum metabolites and 0.88 based on urine metabolites
adjusted for the clinical variables using ANCOVA. The top metabolites that were relevant
in the MDA analysis are shown in Fig. 2. The OOB values for AKI prediction was 0.3 for
both serum and urine, implying that the error rate of these metabolites in predicting AKI
was 30%. Of these, the direction of metabolites in those who developed outcomes versus
those who did not are given in Table 2. Several known uremic toxins or metabolites that are
known to be increased in patients without cirrhosis with renal insufficiency were higher in
our study cohort who developed AKI, and in all of them increased before sCr increased, and
the clinical diagnosis of AKI was established. In addition, potentially beneficial metabolites
such as homoarginine and BCAA were reduced. We also found changes in lipid moieties
(bile acids and phospholipids) that were perturbed in patients with AKI. Representative
metabolite least squares (LS) mean comparisons are shown in Fig. 2 and Supporting Tables
S1 and S2. Infected/uninfected patients were analyzed separately using all metabolites for
AKI prediction. For serum, the AUC in the uninfected group was 0.81 and in the infected
group was 0.82, while in urine the AUC for the uninfected patients was 0.76 and in the

Hepatology. Author manuscript; available in PMC 2022 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bajaj et al.

Page 6

infected patients it was 0.79. Due to the relatively low number of people who required
dialysis either in the entire group or within AKI subgroups, this calculation was not possible
for that outcome by splitting the data set.

PREDICTION OF DIALYSIS INITIATION IN THE ENTIRE GROUP

Among all patients included in the study (n = 602 serum and n = 435 urine), there were
metabolites that differentiated patients who required dialysis versus those who did not.
Prediction of dialysis requirement had an AUC of 0.93 for serum and 0.91 for urine
metabolites, which was adjusted for clinical variables with ANCOVA. The OOB values for
RFA for dialysis requirement were 0.2 for both serum and urine, meaning that the error rate
for dialysis prediction was 20%. As with the results for AKI development, these metabolites
were from amino acid (cysteine, tryptophan, tyrosine), purine/pyrimidine metabolism, and
uremic toxins whose relative changes in LS means and direction of change are shown in Fig.
3 and Supporting Tables S3 and S4). Similar changes in serum and urine to those seen in
AKI prediction were also identified on RFA and ANCOVA analyses.

PREDICTION OF DIALYSIS INITIATION IN AKI SUBGROUP

In the patients who developed AKI, the analysis of differences in metabolites between those
who did or did not require dialysis was performed. The OOB values for both serum and
urine AKI with random forest development was 0.3. The AUC for urine metabolites to
predict who required dialysis was 0.79, whereas it was 0.81 for serum metabolites. The
major changes in direction of relevant metabolites between these groups are given in Table
3, and representative metabolite LS mean changes are displayed in Fig. 4 and Supporting
Tables S5 and S6.

COMPARISON WITH CLINICAL MODEL

As indicated in Table 4, the addition of metabolites different on RFA significantly increased
the AUC of outcomes prediction of AKI and dialysis in the entire group and of dialysis in
the group with AKI in both serum and urine.

Discussion

Biomarkers for the prediction of or early detection of AKI and progression to dialysis are
critically important for earlier implementation of therapy and prognostication in patients
with decompensated cirrhosis.(1:17) Using data and samples from a multicenter cohort of
hospitalized patients with cirrhosis, we demonstrate that specific panels of metabolites in
urine and serum obtained on hospital admission can predict the development of AKI in those
without it on admission, as well as progression to dialysis in those who developed AKI.

Sarcopenia and variations in muscle mass between sexes makes the status quo for
diagnosing AKI challenging in cirrhosis.(18) Studies have shown that even relatively minor
changes in sCr can portend higher short-term mortality even after reversal.(1% Therefore,
prevention of AKI development and earlier institution of treatment are urgently needed.
Unfortunately, biomarkers to predict AKI development that are available clinically have yet
to be developed and validated. These are of critical importance for intervention strategies

Hepatology. Author manuscript; available in PMC 2022 November 01.
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before AKI develops and prognosis worsens. Although focused studies on urinary and serum
biomarkers such as neutrophil gelatinase—associated lipocaliin, kidney injury molecule 1,
IL-18, and liver type fatty acid binding protein have been reported, a more expansive view
that considers the multiple system alterations inherent in patients with advanced cirrhosis

is needed.(24) Therefore, untargeted metabolomics of serum and urine are important tools

in agnostically determining patterns of metabolic dysfunction, which can guide diagnosis,
prognosis, and improve insight into the pathophysiology of disease.

Biomarkers of kidney disease can be those related to kidney damage, inflammation,
retention of metabolites that should have been excreted, secretion changes in metabolites
due to injury, or a combination of these.®® The liver and kidney individually impact systemic
metabolism; therefore, injuries to both organs makes it more challenging and complicated to
interpret biomarkers.

Our analysis demonstrates that key metabolites belonging to aromatic and BCAA and
cysteine/methionine metabolism, known uremic toxins, and lipids can predict and detect the
development of AKI and the need for dialysis in those with and without AKI in inpatients
with cirrhosis. These data provide a framework for us to explore proactive strategies to
prevent AKI and need for dialysis in hospitalized patients by identifying this at-risk group.

Metabolite changes showed robust AUC values in serum and urine for prediction even
after adjusting for clinically relevant biomarkers. Specific metabolites include uremic
toxins and substances that parallel glomerular filtration rate (GFR) reduction such as 2,3-
dihydroxy-5-methylthio-4-penten oic acid (DMTPA), N,N,N-trimethyl-L-alanyl-L-proline
betaine (TMAP), N2-N2 dimethylguanosine, C-glucosyltryptophan and pseudouridine,
which are associated with kidney function regardless of cirrhosis, were higher in those
that developed AKI and required dialysis.(720-24) Major metabolites belonging to aromatic
amino acid metabolism (tryptophan: kynunerine, 8-methoxykynunerate; tyrosine, 3-(4-
hydroxyPhenyl) lactate, homovanillate sulfate, vanillactic, and hydroxyphenyllactic acid)
were also higher in patients who developed AKI. These metabolites largely reflect the
excretion ability of the kidney and parallel the GFR reduction regardless of etiology of
kidney disease. Our analysis extends the importance of these metabolites in hospitalized
patients with cirrhosis, as they reflect not only the current but the future risk for development
of negative renal outcomes despite adjustment for age, gender, and cirrhosis severity. This
underlines the need to better prognosticate these outcomes than our current biomarkers.

The catabolism of S-adenosyl methionine toward polyamine synthesis generates
methylthioadenosine, which is a precursor of DMTPA. S-adenosyl methionine is also the
precursor for S-adenosylhomocysteine (SAH) and cystathionine. Cystathionine in serum was
associated with only AKI development but not the need for dialysis, whereas SAH was one
of the strongest predictors for AKI development and dialysis initiation in the urine and the
serum. SAH was higher in those who required dialysis, whether the entire group of patients
or just those with AKI was used as the denominator, indicating the wide applicability of the
data. The specific metabolites are in line with Mindikoglu et al. and further extend them

into a multicenter realm using both prospectively collected serum and urine samples.(®) The
metabolomic signature detected reflects the beginning of the bio-energetic and amino acid
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disruption that has been published in prior studies in which renal failure has already been
established.(12:25)

In addition to excretory markers, we also found profound changes in potential secretory
markers that are influenced by multiple systems in patients who developed AKI and needed
dialysis. Our findings focused on tryptophan metabolism leading to kynunerate, anthranilate,
quinolinate, and picolinate formation. These metabolites can be generated from dietary
tryptophan and converted to kynunerate in the liver or (12)peripheral organs, such as the
kidney.(?) The role of the kidneys in tryptophan metabolism is complex and can result in
excretion of derivatives and production of kynunerine pathway metabolites. In rodent models
of renal failure, only renal and not hepatic generation of kynunerine is increased.(28) The
accumulation and excess of these metabolites result in mitochondrial dysfunction and lead to
neurological, vascular, and lipid metabolic impairments.(2”) In patients with cirrhosis, Claria
et al. reaffirmed this in patients with renal failure in the setting of ACLF, in which elevated
tryptophan metabolites were associated with greater mortality.(28)

Our study extends these data into a predictive analysis of secreted and accumulated
metabolites in cirrhosis. In addition to tryptophan, several other aromatic amino acid
metabolites were higher in those who developed AKI or required dialysis. Consistent
among these were vanillactate, homovanillate sulfate and hydroxyphenyllactate moieties,
which are tyrosine and levodopa degradation products.® Vanillactate and homovanillate
sulfate are stress markers that we found to be higher in those with negative consequences,
regardless of whether the entire group or the AKI subgroup was considered.®) In addition
to the compounds that were higher and reflect accumulation, kidney damage or excess
secretion, certain other metabolites that are usually associated with benefit such as

BCAA derivatives (leucine leading to methylmalonic and valine leading to beta-hydroxy
isovalerate), homoarginine(®® and lipid moieties (phospholipids and androgens) were lower
in those who developed AKI and needed dialysis.(11:30:31) These findings show that the
altered metabolites detected are not just increased by functional accumulation and excessive
renal secretion, but also decreased beneficial metabolites that protect against sarcopenia and
cell membrane instability.

We also focused on the AKI-only group to assess whether we could predict who improved
versus progressed to require dialysis. Although the AUCs were greater than 0.79 for

both serum and urine samples, the smaller sample size was a limitation. Despite this,

we identified several metabolites that could predict which AKI patients would eventually
need versus not need dialysis. Several of these compounds (vanillactate, DMTPA, C-
glycosyl tryptophan, kynunerate, 8-methoxykynunerate, and SAH) were similar to what
was seen for dialysis prediction in the entire group. This validates the importance of

these specific metabolites in the progression to dialysis. However, there were some other
metabolites that were unique to this subgroup, including other catecholamine degradation
products (vanillylmandelic acid) and N-acetylated/carbamolyated amino acids, which have
been independently associated with renal function in patients with and without cirrhosis.
(9:32) |n addition, arginine derivatives (asymmetric dimethylarginine [ADMA]/symmetric
dimethylarginine [SDMA]) and tryptophan metabolite from the serotonin pathway (5-
hydroxyindoleacetate SHIAAA) were also higher. ADMA/SDMA are associated with
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vascular reactivity, portal hypertension, and brain dysfunction in cirrhosis and are produced
by the kidneys in health and increase with disease.(33) SHIAAA in addition to kynunerine
represents further tryptophan breakdown in both these pathways and again underlines the
importance of tryptophan metabolism in patients with cirrhosis and renal insufficiency.

The study’s strengths are the multicenter nature of the data, collection of urine and serum
samples within 12 hours of admission using uniform techniques, use of robust LC/MS-MS
metabolomic technology, and narrowing down the significant metabolites that were additive
to clinical variables. In addition, once validated, the predictive nature of these metabolites
before the sCr increases could potentially guide clinicians to initiate preventive therapy,
remove nephrotoxic agents earlier, and monitor these patients closer. These metabolomic
data reflect the several pathways that are affected in this complex group of inpatients with
cirrhosis and impending AKI and possible need for dialysis. The untargeted nature of our
approach identified several metabolic derangements, which provides a greater overall view
of the alterations and reduced the multiple compounds discovered to the most predictive few
significant metabolites. These particular markers are typically less dependent on age and sex
than the usual biomarkers such as sCr.(34) They also are distinct from what we found in

the same population as predictors of ACLF and death in the hospital.(3% This indicates that
these metabolites are specific to AKI and dialysis development, rather than markers for a
generally poor prognosis in this inpatient cirrhosis population.

The study’s weaknesses include (1) the use of samples from all AKI types and severities
rather than separating the group into subtypes (i.e., AKI-hepatorenal syndrome [HRS] vs.
AKI-non-HRS) or severities, although most were at least stage 2 at peak AKI stage. Given
the diagnostic dilemma frequently present when trying to subdivide AKI types in patients
with cirrhosis combined with our limited numbers, further subdivision was not possible.
(2) We used requirement for dialysis, which can vary between centers and by the patient’s
transplant candidacy. However, we found consistent changes in metabolites. (3) Of the
602 patients who provided serum samples and 435 who provided urine samples, only 286
gave both samples, which is a relatively low sample size for metabolomics-related outcome
modeling. Therefore, the analysis was done separately, but we found similar metabolites
that were important in AKI and dialysis requirement prediction in serum and urine. (4)
Serum-based metabolomics was better at predicting AKI and need for dialysis than urine,
but it could also be due to the larger sample size of patients who provided serum. This also
demonstrates that only one biofluid may be enough to predict these outcomes.

This experience is the a step in developing a serum or urine metabolomic profile to predict
the development and progression of AKI. Our data need to first be replicated in other
cohorts before specific metabolites can be translated into laboratory panels for point-of-care
diagnostics. Future advances need to focus on finding biomarkers to identify susceptibility,
mechanism of injury, and response to treatment. The use of metabolomics, if validated,
could result in earlier prediction and diagnosis, which can enable earlier intervention to
improve renal function and subsequent prognosis.

We conclude that serum and urinary metabolites, especially those involved in the catabolism
of S-adenosyl methionine or tryptophan metabolism, can predict the development of AKI
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and requirement for dialysis in a multicenter cohort of inpatients with cirrhosis. Further
validation and potential translation of these metabolite changes may be important to initiate
point-of-care diagnostics to guide management of patients to prevent AKI and progression
toward requirement of renal replacement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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mean decrease accuracy

Model for End-Stage Liver Disease

North American Consortium for the Study of End-Stage Liver
Disease

nonselective beta blocker
out-of-bag

random forest analysis
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RRT renal replacement therapy
RSD relative SD
SAH S-adenosylhomocysteine
SBP spontaneous bacterial peritonitis
sCr serum creatinine
SDMA symmetric dimethylarginine
TMAP N,N,N-trimethyl-L-alanyl-L-proline betaine
WBC white blood count
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FIG. 1.

Patient flow after entry into the study.
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FIG. 2.

Random forest mean decrease accuracy for AKI development using serum and urine
metabolites for the entire group. (A) Mean decrease accuracy on random forest for serum
metabolites in patients who developed AKI. (B) Representative LS mean differences: AKI
serum yes or no. (C) Mean decrease accuracy on random forest for urine metabolites in
patients who developed AKI. (D) Representative LS mean differences: AKI urine yes or no.
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FIG. 3.
Random forest mean decrease accuracy for dialysis (RRT) requirement using serum and

urine metabolites for the entire group. (A) Mean decrease accuracy on random forest for
serum metabolites in patients who required RRT. (B) Representative LS mean differences:
serum yes or no. (C) Mean decrease accuracy on random forest for urine metabolites in
patients who required RRT. (D) Representative LS mean differences: urine yes or no.
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FIG. 4.
Random forest mean decrease accuracy for dialysis requirement using serum and urine

metabolites for the subgroup with AKI. (A) Mean decrease accuracy on random forest for
serum metabolites in patients who required dialysis (AKI-RRT) within the AKI group. (B)
Representative LS mean differences: serum, yes or no. (C) Mean decrease accuracy on
random forest for urine metabolites in patients who required dialysis (AKI-RRT) within the
AKI group. (D) Representative LS mean differences: urine yes or no.
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