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Abstract 

 

In response to water uncertainties, the almond community has set a goal to reduce the 

amount of water used to grow a pound of almonds by 20% by the year 2025. The research 

presented in this paper addresses this goal by developing site-specific irrigation management 

strategies in different ages and varieties of almond trees using field experiments and data-

driven modeling.  

Crop water use and crop coefficients for young almond trees (1-5 years old) were 

determined at three adjacent Nonpareil/Monterey almond orchards in the northern Sacramento 

Valley. Crop water use was determined through a land surface energy balance using eddy 

covariance. Crop coefficients were determined using the evapotranspiration estimates from 

each orchard and a short grass reference evapotranspiration from the nearest California 

Irrigation Management Information System (CIMIS) station. Results showed that crop water use 

and crop coefficients increased until the 4th year, suggesting that farmers should closely monitor 

tree development and orchard age and adjust irrigation scheduling as young trees grow. The 

results led to the conclusion that farmers should use age-specific crop coefficients until the 4th 

year and then they can start using mature almond crop coefficients.  

In mature almonds orchards, regulated deficit irrigation (RDI) during hull-split can 

reduce water use, but limited research has been done on strategies for imposing RDI in almond 

orchards with multiple varieties with different hull-split schedules. A 2-year study evaluated 

the impacts of two different regulated deficit irrigation schedules under two levels of crop 

evapotranspiration irrigation replacement rates in an almond orchard with Butte, Aldrich, and 

Nonpareil varieties in the Sacramento Valley of California, USA. The two irrigation schedules 

were (1) regulated deficit irrigation in Butte, Aldrich, and Nonpareil varieties during Nonpareil 

hull-split timing and (2) regulated deficit irrigation in each variety according to variety-specific 
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hull-split timing. The two levels of irrigation were 50% and 75% of crop evapotranspiration 

(ETc) replacement during the hull-split period. Results show that the kernel thickness of Aldrich 

almonds significantly increased under 75% ETc irrigation replacement during Aldrich hull-split 

period compared to 75% ETc and 50% ETc irrigation replacement during Nonpareil hull-split 

period. In the Butte almonds, 75% ETc and 50% ETc irrigation replacement during variety-

specific hull-split significantly reduced the fraction of sealed shells of the Butte variety 

compared to 75% ETc and 50% ETc irrigation replacement during Nonpareil hull-split period. 

This study demonstrated that almond physical quality could change in the Butte and Aldrich 

varieties when RDI is imposed according to variety-specific hull-split schedules. No marketable 

kernel yield improvements were achieved by implementing RDI according to variety-specific 

hull-split after two years. The least labor-intensive strategy of RDI during Nonpareil hull-split 

in all three varieties is recommended. 

Advanced RDI regimes should use a sensitive indicator of plant water status to avoid 

excessive accumulation of plant water stress. In this research, a low-cost site-specific data-

driven modeling scheme was developed for estimating midday stem water potential in 

different varieties of almond trees under various RDI regimes. The available explanatory data 

for the data-driven model of MSWP included soil water content at 30 cm, 60 cm, 90 cm, 120 cm, 

and 150 cm, solar radiation, air temperature, relative humidity, soil texture and gravel content 

at four layers, and fraction of photosynthetically active radiation intercepted by the canopy. Soil 

water content at 30 cm was the most significant explanatory variable of MSWP and showed a 

nonlinear relationship with MSWP. The square of soil water content at 30 cm was included in 

the model to approximate the nonlinear relationship between MSWP and soil water content at 

30 cm. When all varieties were combined, the best regression model included the following 

explanatory variables of MSWP that were significant to enter and exit the model at the 0.001 
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significance level: soil water content at 30 cm, the square of soil water content at 30 cm, daily 

minimum air temperature, daily maximum relative humidity, daily minimum relative 

humidity, fraction of photosynthetically active radiation, and soil texture class between 10 to 86 

cm (adjusted R2=0.66, RMSE=0.31). Separate regression models for each variety improved the 

correlations in the Aldrich and Butte varieties with explanatory inputs selected at the 0.05 

significance level to enter and exit the model (adjusted R2=0.74, RMSE=0.27 and adjusted 

R2=0.73, RMSE=0.28, respectively), but slightly worsened in the Nonpareil variety (R2=0.64, 

RMSE=0.30). The results from this work indicate that the explanatory variables can vary across 

almond varieties and that site-specific characteristics, such as soil texture and the fraction of 

photosynthetically active radiation, are significant in determining MSWP in addition to the 

meteorological conditions and soil water content.  

Key results of this research include (1) baseline data on crop water requirements in 

young almond trees, (2) new data and refined methods on regulated deficit irrigation in multi-

variety almond orchards, and (3) a site-specific data-driven model for estimating stem water 

potential. This research directly addresses pressing issues affecting almond production, 

including uncertainties in water supplies and labor shortages in agriculture, that merit 

advanced research on precision irrigation.   
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Chapter 1 

Introduction 

1.1 Problem statement 

Farmers face mounting pressure to use water wisely due to limitations in water resources 

and increasing demands for food and biomass production. Recent policy changes such as the 

Sustainable Groundwater Management Act (SGMA) in California, water scarcity, and climate 

change challenge the way farmers have traditionally irrigated their crops and require advanced 

studies to improve irrigation management. California is the top producer of almonds in the 

world with almost 1.4 million acres (567,000 hectares) of almond orchards with an increase of 

7% between 2016 and 2017 (California Department of Food and Agriculture, 2018a, 2018b). 

Almonds were California’s third most valuable agricultural commodity, worth $5.47 billion in 

2018 (California Department of Food and Agriculture, 2018b). The combination of high value, 

increasing crop acreage, and reliance on irrigation under limited water supplies requires 

improved techniques for sustainable irrigation management of almond orchards. In January 

2019, the Almond Board of California set a bold goal of reducing the amount of water used to 

produce a pound of almonds by 20% by the year 2025 (Almond Board of California, 2019).  

The goal of this research was to develop site-specific irrigation management strategies to 

help almond farmers conserve water while continuing profitable production levels. The word 

site-specific refers to specific characteristics or local conditions about the orchard that may merit 

adjustments to irrigation management. Every orchard has unique characteristics such as soil 

texture, tree age, tree varieties, canopy cover, topography, irrigation system design, climate, and 

so on. There is limited research on irrigation management strategies for almond orchards with 

young trees (<5 years) and multiple varieties (most of California’s almond orchards). Also, there 

is a gap in research on developing site-specific models of plant water status. 
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1.2. Background and rationale 

 Almond orchards are perennial crops with a profitable production lifespan of 

approximately 25-30 years (Holtermann, 2016). Farmers must carefully manage their irrigation 

to achieve long-term productivity without under- or over-using water. Some important 

considerations in knowing the proper location, amount, and timing of irrigation include tree 

age, soil type, tree variety, and the plant water status response to irrigation scheduling. Young 

trees are smaller and require less water than older trees. Different varieties may be different 

sizes or have different tolerances to soil water supplies and atmospheric evaporative demands. 

Different soil types have different storage and infiltration properties. Stem water potential and 

evapotranspiration can serve as metrics of the plant water status response to irrigation 

scheduling, but these responses may vary by age, variety, and soil type. It is important to 

understand the implications of these site-specific factors on achieving sustainable irrigation 

management. 

Satisfactory irrigation in young almond orchards is essential for canopy and root 

establishment during the non-bearing years and is the topic of Chapter 3. Young almond trees 

have small root systems, so there is a greater possibility of irrigating outside of the root zone 

than in mature trees. Too much irrigation can result in additional pruning and weed control 

requirements (Jarvis-Shean et al., 2018). Under- or over-irrigation can influence tree health, 

orchard uniformity, years to full production potential, and the total cost to establish an orchard 

(Jarvis-Shean et al., 2018). With a 7% increase in new almond orchards in California between 

2016 and 2017, knowing how much to irrigate young almond orchards is critical to the future of 

the state’s almond production (California Department of Food and Agriculture, 2018a). Limited 

research has been done in California to quantify actual evapotranspiration and crop coefficients 



3 
 

in young almond trees during the non-bearing years (Jarvis-Shean et al., 2018). As a result, 

farmers have little information to consider when irrigating their young almond trees. 

Evapotranspiration is a measure of crop water use and can serve as the basis for 

scheduling irrigation in young almond trees. A farmer can irrigate in the amount that replaces 

the water lost due to evaporation and transpiration (i.e. evapotranspiration). Eddy covariance is 

a method for measuring turbulent fluxes such as sensible heat flux density. When sensible heat 

flux density is measured in conjunction with net radiation and ground heat flux density, the 

latent heat flux density can be calculated as the residual of the surface energy balance. The 

latent heat flux density can be converted into half-hourly and daily evapotranspiration 

measurements in mm/day using a turnkey data logger program and commercial sensors 

(Shapland et al., 2013). If evapotranspiration of a well-watered crop of interest and reference 

evapotranspiration from a standard well-watered grass surface are known, a crop coefficient 

can be calculated following Equation 1.1 (R.G. Allen et al., 1998). 

𝐾𝑐 =
𝐸𝑇𝑐

𝐸𝑇𝑜
                                                                                                                                                        Equation 1.1  

where ETc is the crop evapotranspiration, ETo is the reference evapotranspiration, and Kc is the 

crop coefficient. The crop coefficient method is a convenient and often cost-free way for farmers 

to approximate the crop water requirements for their orchard by calculating ETc=Kc*ETo using 

tabulated Kc values specific to their crop and ETo from a local weather station, such as the 

California Irrigation Management Information System (CIMIS). A farmer could reasonably 

guess that their orchard needs approximately 100% ETc replacement in irrigation, with some 

error due to canopy and soil characteristics that differ from the orchard from which Kc was 

developed and discrepancies in the atmospheric evaporative demand due to the difference in 

location between the weather station and the orchard. Not many farmers use CIMIS data to aid 
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in irrigation scheduling. Twenty-six percent of registered CIMIS users identified themselves as 

farmers in a survey in 2013 (1,220 out of 45,000 registered users) (Eching et al., 2013). An 

estimated 15,000 farmers receive CIMIS related irrigation advisory services from agricultural 

consultants (Eching et al., 2013). 

When water resources are limited, farmers may have to irrigate less than 100% ET 

replacement. Strategically applying less than 100% ET replacement during specific phenological 

stages when the trees can tolerate less water is known as regulated deficit irrigation (RDI) and is 

the topic of Chapter 4 (Zhang and Theib, 1999). A farmer may limit irrigation during growth 

stages that are minimally sensitive to drought, but not during critical development stages when 

drought could compromise crop yield or quality, such as during kernel development and 

during the non-bearing years (<5 years) in almonds. The relationship between applied water 

and yield has been shown to be nonlinear (Goldhamer and Fereres, 2017), so regulated deficit 

irrigation has the potential to reduce the amount of water used to produce a pound of almonds. 

RDI in mature almond trees has been studied under different severities and growth stages 

(Goldhamer et al., 2006; Kizer et al., 2017). Moderate RDI during the hull-split period has been 

shown to be successful in Nonpareil almond trees without significantly reducing crop yield or 

quality (Kizer et al., 2017). On the other hand, severe RDI during hull-split in Nonpareil almond 

trees, especially over multiple years, can significantly reduce kernel weight at harvest 

(Goldhamer et al., 2006). While RDI generally reduces kernel yields, the overall effect on yield is 

modest. For example, an irrigation treatment of 45% full ET replacement reduced yield by only 

13% (Goldhamer et al., 2006). This shows that major reductions in water use through RDI may 

result in moderate losses in yield and profits for almond orchards.  RDI can also improve 

orchard health and crop quality. Moderate RDI at hull-split can reduce hull rot, which is a 

disease caused by pathogens that colonize the hull tissue in the natural wounds that develop as 
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the hulls split (Gordon, 2019). Research has shown that short and severe pre-harvest RDI can 

reduce leaf and shoot death (Teviotdale et al., 2001). RDI during hull split can also reduce 

‘sticktights’ (i.e., hulls that don’t split) (Goldhamer et al., 2006).  

Although regulated deficit during hull-split may seem straightforward, the strategy 

becomes more complicated when factoring in the different hull-split schedules of multiple 

varieties in the same orchard. Since most almond varieties are self-incompatible, farmers 

typically plant almond orchards in rows alternating between two or three different varieties for 

effective cross-pollination. Hull-split initiates at different times in each variety, as shown in 

Table 1.1. Farmers who cut back irrigation during hull-split usually do so according to the hull-

split schedule of the Nonpareil variety in California because it is easier to irrigate the entire 

orchard the same way. The Nonpareil variety is highly valued for its soft thin outer shell, 

smooth attractive kernel, and consistently high yields, so farmers typically favor the irrigation 

toward optimizing this variety’s output (Almond Board of California, 2015). No research has 

been published on RDI according to variety-specific hull-split schedules. 

Table 1.1. 2019 Hull-Split and Harvest Dates in a Nonpareil-Butte-Aldrich Almond Orchard in 
Arbuckle, CA 

2019 Dates Nonpareil Aldrich Butte 

1% hull-split 
initiation 

7/9 7/27 8/7 

Harvest date 8/22 9/11 9/11 

Pickup date 9/4 9/25 9/25 

 

Regulated deficit irrigation can lead to increased plant water stress. If not controlled, the 

plant water stress can become challenging to control later in the growing season. Effective 

indicators of the plant response to irrigation scheduling are important to avoid an accumulation 

of water stress during regulated deficit irrigation. Midday stem water potential (MSWP) has 

been showed to be a sensitive indicator of plant water status in tree crops and has been widely 
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recommended by crop advisors as a guide for irrigation scheduling (A. Fulton et al., 2017; 

Harold McCutchan and Shackel, 1992). The pressure chamber is the standard instrument for 

measuring MSWP, but it has the disadvantage of being labor-intensive and time-consuming. 

Multiple efforts have attempted to automate the pressure chamber with some success by 

commercial companies. However, these sensors have not been widely validated against the 

pressure chamber, they are expensive, and they are usually installed on a single tree for the 

entire season, limiting the flexibility to measure MSWP anywhere in the orchard. The labor-

intensive nature of measuring MSWP has led to several efforts to model MSWP. Limited 

research has been published on site-specific data-driven modeling of midday stem water 

potential, which is the topic of Chapter 5.  

 

1.3. Statement of research objectives 

The primary goal of this research was to develop new strategies for site-specific irrigation 

management in almond orchards by assessing the implications of tree age and variety on 

irrigation scheduling and developing a site-specific data-driven modeling approach for 

estimating midday stem water potential. The overarching hypothesis is that tree age and variety 

have considerable implications on improving water use efficiency in almond orchards. The 

main objectives of this dissertation include: 

1. Determine crop coefficients and crop water use of young almond orchards (Chapter 3). 

2. Develop and evaluate a strategy for implementing regulated deficit irrigation based on 

variety-specific hull-split schedule in almond orchards (Chapter 4).  

3. Develop a site-specific data-driven modeling approach for estimating midday stem 

water potential for different varieties of almond trees (Chapter 5). 
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1.4. Hypotheses 

 This research addresses the following hypotheses: 

 

1. Crop water use and crop coefficients changes as the trees mature, and farmers should 

adjust the applied water depths as the trees grow.  

2. Regulated deficit irrigation during variety-specific hull-split schedules can improve yield 

and nut quality and reduce the amount of water used to produce a pound of almonds. 

3. Almond varieties have different stem water potential responses to regulated deficit 

irrigation, suggesting the need for irrigation by variety. 

4. Multiple linear regression and nonlinear regression models can satisfactorily predict 

midday stem water potential from local plant, soil, and weather data. 
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Chapter 2 

Literature Review 

Abstract  

 

 The intersection of limited water resources and increasing water demand for agriculture 

has presented an urgency to develop strategies for improving water use efficiency. Regulated 

deficit irrigation (RDI) is a potential method for optimizing crop yield and quality while 

conserving water under limited water supplies. Effective implementation of RDI requires 

understanding water consumption—or evapotranspiration (ET)—of the plant and other site-

specific characteristics, such as the soil, species, cultivar, and climate. Many methods exist to 

measure ET, each with advantages and disadvantages. RDI has been tested in a variety of crops, 

including peach, almond, walnut, apple, lemon, and mandarin, resulting in improved—or 

worse—crop production, depending on the crop, the phenological stage during which RDI was 

implemented, and the severity of deficit irrigation. Monitoring the plant water status is also 

crucial to successfully implementing RDI. Midday stem water potential is a sensitive indicator 

of plant water status than can be used as a guide for implementing regulated deficit irrigation. 

Together, regulated deficit irrigation, evapotranspiration, and plant water status measurements 

can be valuable tools for improving water use efficiency in agricultural regions with limited 

water supplies. 
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2.1. Introduction 

 

With limited water resources and increasing food demands for a growing population, 

farmers face increasing pressure to improve water use efficiency. In 2010, irrigation in 

California used an average of 60.7% of total water withdrawals, averaging 87,000 m3 of water, 

per day (United States Geological Survey, 2017). In drought, many farmers must cut back 

irrigation. Regulated deficit irrigation (RDI) may help improve water use efficiency while 

minimizing detrimental effects to crop production in drought. 

RDI is an optimization approach to irrigation scheduling in which the farmer restricts 

water application during strategic phenological stages (Zhang and Theib, 1999). RDI is a type of 

precision irrigation—applying the right amount of water at the right place and at the right time. 

The purpose of RDI is to reduce water use and sometimes to improve crop quality. The farmer 

may limit irrigation during growth stages that are minimally sensitive to soil water deficit, but 

not during critical development stages when soil water deficit could compromise crop yield or 

quality.  

RDI should optimize the water productivity of the crop, balancing competing goals of 

conserving water and optimizing crop yield and quality. The water productivity, colloquially 

referred to as the ‘crop per drop,’ is a measure of the water required to produce a unit of 

profitable yield. Measuring water productivity requires knowing the water consumption of the 

plant, also known as the evapotranspiration (ET), and the effective precipitation. ET is defined 

as the combination of water loss due to free-water evaporation, plant transpiration, and soil 

moisture evaporation (Fetter, 2001). Most ET in California occurs during the hot and dry 

summer, when precipitation is usually zero (Fetter, 2001). Intuitively, farmers should irrigate an 

amount equal the ET minus any effective precipitation. However, the water holding capacity of 
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soil enables farmers to strategically irrigate less than the ET minus the effective precipitation 

(i.e. RDI) by forcing plants to use more of the water already in the soil. Ideally, RDI would be 

implemented to avoid depleting the soil water storage beyond the management allowable 

depletion (MAD) set by the farmer, at which point the yield and/or quality of the crop begins to 

decline. Figure 2.1 shows the nonlinearity of a typical water production curve, where a small 

reduction of irrigation does not significantly reduce crop yield while reducing water use.  

 

Figure 2.1. Generalized relationship between corn seed yield and water applied or water use (Crop water 
use and yield, 2015). 
 

Small reductions in irrigation could be particularly important, especially for perennial 

crops (e.g. fruit and nut trees). Perennial crops are a large part of California’s agricultural 

economy with walnuts, almonds, and grapes worth $1.24 billion, $5.16 billion, and $5.58 billion 

in 2016 (California Department of Food and Agriculture, 2019). Perennial crops such as fruit and 

nut trees cover large swaths of California’s agricultural land and consume much of California’s 

available freshwater. The acreage of land in California for producing fruit and nut crops 

continues to increase (e.g. almond acreage in California increased 7% between the years 2016 

and 2017 according to the CDFA). This expanse of fruit and nut tree production coupled with 

growing criticism from the media toward tree farmers for using too much water partly explains 

the Almond Board of California’s recent motivation to improve water use efficiency in almond 

trees. RDI in tree crops merits special research consideration because these crops experience 
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prolonged effects in irrigation management from year to year, unlike annual crops. Irrigation 

management decisions made this year affects the number of buds formed for next year’s yield. 

Optimal RDI regimes require knowledge of the phenological stages where water stress would 

significantly compromise the crop yield or quality (González-Altozano and Castel, 1999). 

This paper discusses the relevance and uses of RDI in perennial crops, starting with the 

origins of RDI and moving onto examples of RDI research in various tree crops. This paper 

presents a literature review of existing methods for measuring or estimating evapotranspiration 

and their applications to regulated deficit irrigation. Then this paper discusses stem water 

potential as a sensitive indicator of plant water status, which could be used as the basis of 

irrigation scheduling. 

 

2.2. Regulated deficit irrigation 

Regulated deficit irrigation (RDI) was introduced in the 1980s in peach and pear 

orchards to reduce excessive vegetative growth by increasing water stress (Chalmers et al., 1981; 

Mitchell et al., 1984). Excessive watering could increase production of vegetative growth rather 

than more fruit or nut, so RDI could prevent ‘wasting’ water on producing non-profitable parts 

of the crop. Further studies on RDI in the 1990s concluded that RDI also could improve fruit 

shelf life, taste, and quality in some fruit tree species but not others (Fereres and Goldhamer, 

1990). Research in the 2000s expanded on the idea that reducing applied water during certain 

phenological stages of the year could improve water use efficiency and conservation, perhaps at 

the expense of decreased fruit production (Girona et al., 2003).  

Early research on RDI resulted in questionable results on the effects of RDI on fruit 

growth partly due to different experimental conditions such as the cultivar, soil type, plant 

spacing, and meteorological conditions (Chalmers et al., 1981; Mitchell et al., 1984). Soil depth 



12 
 

and soil water holding capacity appear to be critical factors in determining the success of RDI 

regimes (Girona et al., 2003). RDI in tree orchards with shallow soils where the root system is 

more restricted can be more successful because it is easier to control excessive shoot growth. 

However, orchards with expansive root systems can seek water in far reaches of the soil even 

when the grower restricts water, making it harder to control excessive vegetative growth using 

RDI (Girona et al., 2003). Furthermore, cultivar, plant spacing, and climatic conditions could 

affect the sensitivity of an orchard to an RDI regime. Different cultivars may have different 

plant sizes, which would affect plant water consumption (i.e. larger plants need more water). 

Orchards with dense plant spacing and/or arid climate would also require more water (partly 

due to increases in evaporative water loss), increasing the sensitivity of the orchard to RDI. The 

tree species is one of the most important variables to consider in implementing RDI, partly 

because different tree species have unique physiological development stages that affect water 

needs. The rest of this section describes RDI experiences in different fruit and nut trees and is 

summarized in Table 1.  

Moderate RDI during the hull-split period has been shown to be successful in nonpareil 

almond trees without significantly affecting crop yield or quality (Kizer et al., 2017). In a 2016 

experiment in Arbuckle, CA, two management zones were created based on soil and plant 

characteristics and were managed via RDI. Of the two treatment zones, 69% ET and 80% ET 

were applied in irrigation (Kizer et al., 2017). Differences in yield and quality compared to the 

grower treatment (94% ET treatment) were not statistically significant. Severe pre-harvest RDI 

in nonpareil almond trees, especially over multiple years, reduces kernel weight at harvest 

(Goldhamer et al., 2006). While RDI generally reduces kernel yields, the overall effect on yield is 

modest (i.e., an irrigation treatment of 45% full ET replacement reduced yield by only 13%). 

Hull splitting can be delayed by severe pre-harvest stress but accelerated by milder stress. RDI 
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during hull split can also reduce ‘sticktights’ (i.e., hulls that don’t split) and hull rot. Severe 

water stress induced by RDI can reduce canopy size without reducing fruit load (number of 

nuts/tree), although kernel sizes will be reduced. Processors tend to pay less for smaller 

kernels, where each of approximately five kernel size categories is worth about 5% less than the 

next biggest size (Goldhamer et al., 2006). In conclusion, major reductions in water use through 

RDI may result in moderate losses in yield for almond orchards.   

Although RDI can improve quality for some crops, it can worsen the quality of others, 

including apple and peach, especially during some growth stages. At harvest,  ‘Delicious’ 

apples (Malus domestica Borkh.) under RDI during cell-elongation phase of fruit growth were 

smaller, had higher soluble solids concentration (SSC), and lower titratable acidity than apples 

under full irrigation (Ebel et al., 1993). RDI could reduce fruit size but advance fruit maturity in 

apples while reducing water use. In peaches, RDI during the lag phase of the fruit growth curve 

can increase fruit yield but reduce fruit size (Girona et al., 2003). However, post-harvest RDI can 

lower peach yield but increase fruit size (Girona et al., 2003). A combination of RDI during the 

lag phase of the fruit growth curve and post-harvest periods could leave fruit yield and size 

relatively unchanged with water savings of 22% of the control applied water (Girona et al., 

2003).  

Previous research on RDI in citrus fruits in Spain’s Mediterranean region may be 

relevant for evaluating potential RDI use in citrus orchards in California because of the similar 

climate. In mandarin oranges, summer RDI treatments could allow water savings between 7 

and 14% without significantly affecting the yield or fruit quality, as long as the pre-dawn stem 

water potential does not surpass -1.3 MPa (González-Altozano and Castel, 1999). However, 

even small drops in pre-dawn stem water potential (0.1 to 0.2 MPa) due to spring RDI reduced 

yield by 62% and 28%, respectively, in the 25% ET and 50% ET treatments as a result of 
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increased “June drop,” or early falling of fruit. Fall RDI resulted in 25 to 11% reduction in fruit 

size for the 25% ET and 50% ET treatments and increased external peel disorders, degrading 

fruit quality. In conclusion, summer RDI in mandarin oranges may result in water savings with 

little to no effects in yield or quality, but growers should be careful about doing spring and fall 

RDI. 

An RDI study in Fino lemon trees subjected trees to three different irrigation levels: 

100% ETc all year (T0), 25% ETc all year except during the rapid fruit development period 

during which 100% ETC was applied (T1), and 100% ETc all year except during the rapid fruit 

growth period during which 70% ETc was applied (T2) (Domingo et al., 1996). Water savings of 

30% and 20% were achieved in the T1 and T2 treatments, respectively. The T1 and T2 

treatments did not result in significant yield reduction, but the T2 treatment did cause delay in 

reaching the marketable fruit size. Chemical characteristics related to the quality of the lemons 

were not significantly affected by any of the irrigation treatments. In conclusion, RDI in lemon 

trees may be promising for reducing water use. 

Several studies have investigated the potential for RDI in walnut orchards. An RDI 

study in ‘Chandler’ walnut subjected trees to mild, moderate, and well-watered treatments 

(Buchner, R.P, 2008). The well-watered trees were irrigated to achieve midday stem water 

potential between -0.3 MPa and -0.6 MPa. The mild and moderate treatments were irrigated to 

achieve -0.3 MPa and -0.6 MPa early in the season and -0.7 to -0.9 MPa or -0.9 to -1.1 MPa, 

respectively, until harvest. Both RDI treatments reduced nut load and kernel quality. Similar 

results were found in ‘Chico’ walnuts (Goldhamer, 1988). In a study on ‘Serr’ walnuts, well-

watered trees resulted in 43% higher returns than non-irrigated trees (Ramos, 1978). Another 

study found that water stress due to RDI decreased the number of dormant buds that flowered, 
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reducing nut load in English walnuts (Little, 2006). In conclusion, walnut trees do not appear to 

be good candidates for RDI regimes. 

 

Table 2.1: Summary of RDI Experiences with Positive/Neutral Effects on Crop Yield and Quality 

Crop General RDI Regime with 
Positive/Neutral Effects 

Effects on Quality Effects on Yield 

Almond 
Moderate RDI during hull-
split. 

- Pros: Can reduce 
‘sticktights’ and hull rots 
and speed up hull-split. 
- Cons: May reduce kernel 
size. 

Modest reductions in 
yield, which could be 
offset by 
improvements in 
quality and water 
savings 

Apple None 

-Pros: May advance fruit 
maturity  
-Cons: RDI could reduce 
fruit size and alter chemical 
characteristics 

Would reduce yield 
due to smaller fruit 
sizes. 

Peach 

A combination of RDI 
during the lag phase of the 
fruit growth curve and 
post-harvest periods 

Relatively unchanged Relatively unchanged 

Mandarin 
Summer RDI with pre-
dawn stem water potential 
not surpassing -1.3 MPa 

Relatively unchanged Relatively unchanged  

Lemon 
RDI all year except during 
rapid fruit development 
stage 

Relatively unchanged Relatively unchanged 

Walnut None 
RDI would have major 
negative effects on quality. 

RDI would have 
major negative effects 
on yield. 

 
 

2.3. Evapotranspiration and crop coefficients 

Farmers must know the water consumption or ET of their orchard to intelligently 

implement RDI. Several techniques exist to measure or model ET, each with pros and cons. 

Major methods include mass balance using a lysimeter, crop coefficient methods, surface energy 

balance algorithms using remote sensing, statistical methods of eddy covariance, and basic 

water balance methods. In this paper, each method will be considered in terms of spatial and 
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temporal resolution, accuracy, convenience, cost, and other relevant criteria and whether it can 

be used for implementing RDI. Although most methods for estimating ET are not currently 

employed by farmers, future water limitations and water budgets may make formal ET 

estimates more important in irrigation management and water rights administration. 

 

2.3.1. Weighing Lysimeter  

A direct measurement of actual evapotranspiration, or ETa, can be obtained from a 

lysimeter. A lysimeter is a large container holding soil and plants suspended on a weighing 

system to measure changes in soil moisture storage (Jensen and Allen, 2016). The initial soil 

water content is recorded. Any irrigation water or precipitation into the container is measured, 

so changes in soil moisture storage can be calculated (Fetter, 2001). The amount of water lost 

through evaporation and transpiration is determined by the change in weight in the lysimeter. 

ETa measurements from a lysimeter can be combined with meteorologically derived grass ET 

estimations (ETo) to estimate crop coefficients (Ayars et al., 2003; Wright, 1991). A problem with 

lysimeters is that the container holds only one or a small number of plants, so it must accurately 

represent the soil type and profile, moisture content, and type and size of vegetation of the 

entire surrounding field (Jensen and Allen, 2016). In addition, lysimeters are time-consuming to 

validate, expensive, and are typically only used by researchers (Fetter, 2001). Lysimeters have 

been used to measure crop water requirements and determine crop coefficients of a variety of 

crops, including pomegranate and vegetables (Bryla et al., 2010; Zhang et al., 2017). 

 

2.3.2. Soil Water Balance Method 

The ETa can be estimated from the following soil water balance equation: 

𝐸𝑇𝑎 = 𝐼 + 𝑃 − (𝑆𝑊2 − 𝑆𝑊1) − 𝐷                                                                                    Equation 2.1 
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where I is the applied irrigation water (mm) and P is the precipitation (mm) during the 

sampling duration, SW1 is the soil water content at the beginning of the sampling period (mm), 

SW2 is the soil water content at the end of the sampling period (mm), and D is the drainage 

during the sampling period (mm) (Jensen and Allen, 2016). Soil water content measurements 

derived from neutron probe counts can be used to measure the change in soil water content at 

the beginning and end of the sampling period. Electromagnetic devices based on capacitive and 

dielectric properties can also be used for determining the soil water content, but the volume of 

influence of these devices is much smaller than the neutron probe (size of a volleyball) and may 

not be appropriate for sampling large and representative area for estimating 

evapotranspiration.  

 

 2.3.3. Crop Coefficient Methods  

Reference evapotranspiration (ET0) is the evapotranspiration that would occur for a 

standard crop under unlimited soil moisture given the climatic conditions (Jensen and Allen, 

2016). The ET0 is usually measured from a well-watered  field of grass with an assumed crop 

height of 0.12 m, a fixed surface resistance of 70 s m-1, and an albedo of 0.23 (R.G. Allen et al., 

1998). To compute ET for a different crop, the ET0 should be multiplied by a crop coefficient, Kc, 

to obtain the crop evapotranspiration, or the ETc (R.G. Allen et al., 1998). The crop coefficient 

corrects for differences in the vegetative density and maturity, the climatic conditions, and the 

water-storage capacity of the actual crop of interest compared to the reference crop (R.G. Allen 

et al., 1998).  

Since 1982, the California Irrigation Management Information System (CIMIS) has 

provided hourly and daily ET0 data. The ET0 from the CIMIS stations is measured as the 

evapotranspiration of a well-watered 0.08 to 0.15 m grass surface using either the Penman-
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Monteith equation or the CIMIS Penman equation (“California Irrigation Management 

Information System,” 2018). There are several limitations to using CIMIS stations for irrigation 

management. ET0 from CIMIS weather stations could poorly represent the water consumption 

of a farmer’s orchard because the weather stations may be far away from the field and not in the 

same climatic conditions. Also, the required crop coefficients to estimate the ETc are tabulated 

values that may not represent the climatic or vegetative conditions of a specific field (A. E. 

Fulton et al., 2017).  Furthermore, any increase in water stress through RDI would cause the ETa 

to be less than the ETc because transpiration—the T component in ET—would decline due to 

stomatal closure induced by water stress (Jensen and Allen, 2016). The difference between ETa 

and ETc under deficit irrigation highlights the importance of measuring ETa when 

implementing RDI. 

Crop coefficient values have been tabulated for a variety of crops (R.G. Allen et al., 1998; 

Jensen and Allen, 2016). The crop coefficient does not account for variations in region or climate 

between the reference crop and the actual crop. Therefore, it is usually assumed that the ET0 

contains all information regarding variation in weather and climate. A problem with tabulated 

crop coefficients is that they do not consider the variation in vegetation height, amount, and 

density throughout the growing season or from year to year. Typically, crop coefficient values 

are tabulated by the month for a specific crop and these values may not be updated 

frequently—the same crop coefficients may be used for a decade or more.  

The simplest crop coefficient method for estimating the ETc is known as the single crop 

coefficient method, where ETc = Kc* ET0. This method assumes the plant is under well-watered 

conditions. If the plant is not under well-watered conditions, a stress coefficient can be factored 

in through the ‘dual crop coefficient’ method, where the total crop coefficient is computed as 

follows (Allen et al., 2005): 
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𝐾𝑐 = 𝐾𝑐𝑏 ∗ 𝐾𝑠 + 𝐾𝑒                                                                                                                 Equation 2.2 

where Kc is the total crop coefficient, Ks is the dimensionless ‘stress’ coefficient ranging from 0 

to 1, Ke is a coefficient that adjusts for changes in evaporation due to wet soil from an irrigation 

or precipitation, and Kcb is a basal crop coefficient representing the transpiration component of 

ET and a small amount of evaporation from soil that is dry at the surface. The ETa can be 

estimated from the ‘dual crop coefficient’ approach using the following equation (Richard G. 

Allen et al., 1998) 

𝐸𝑇𝑎 = (𝐾𝑐𝑏 ∗ 𝐾𝑠 + 𝐾𝑒) ∗ 𝐸𝑇0                                                                                                   Equation 2.3 

The derivation of Ke comes from daily soil water balance curves and depends on the 

shape function of Ks versus soil water content or soil water potential (R.G. Allen et al., 1998). 

The Kcb is a function of the fractional canopy cover, which can be determined using the 

Normalized Difference Vegetation Index (NDVI). 

𝐾𝑐𝑏 = 𝑓(𝑓𝑐)                                                                                                                               Equation 2.4 

𝑓𝑐 = 𝑓(𝑁𝐷𝑉𝐼)                                     Equation 2.5 

 The NDVI quantifies vegetation from multispectral remote sensing data by measuring 

the difference between near-infrared—strongly reflected by plants—and red light—absorbed by 

plants. Sensors that detect near infrared (NIR) light are used on satellites, unmanned aerial 

vehicles (UAVs), planes, and/or static sensors for quantifying NDVI. Healthy vegetation 

reflects considerable amounts of NIR, whereas unhealthy vegetation does not. Additionally, soil 

does not reflect much NIR, so NDVI can be used for vegetation and land change detection 

(Glenn, E., 2011). NDVI can be calculated from the following equation: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                                                                                                     Equation 2.6 

where Red and NIR are the spectral reflectance measurements obtained in the red (visible) and 

near-infrared regions, respectively. The individual reflectances are ratios of reflected over 
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incoming radiation in each spectral band. Therefore, reflectances range from 0.0 to 1.0. NDVI 

ranges in value from -1.0 to +1.0.  

Typically, the total crop coefficient increases during the growing season due to plant 

development, wet soil surface, and limitations in available water. Under well-watered 

conditions, 𝐾𝑠 is 1, but less than 1 under water limited conditions (Richard G. Allen et al., 1998). 

The computation of Kcb has been widely studied in recent years with the increasing availability 

of data from multispectral remote sensing at varying temporal and spatial resolutions (Allen 

and Pereira, 2009; Anderson et al., 2017). 

 

2.3.4. Modeling evapotranspiration using energy balance theory 

Energy balance methods for estimating ET are based on a key requirement for the 

process of evapotranspiration to occur—the existence of available energy for water to change 

phase from liquid to vapor (Jensen and Allen, 2016). To use energy balance methods, the 

following parameters typically must be known: net solar radiation input, energy output 

through conduction to the ground, net output of sensible heat to the atmosphere, change in heat 

energy stored in the ground per unit of surface area, and the latent heat of vaporization at the 

given temperature. Heat transfer models over canopy cover typically involve solving for ET as a 

residual of the one-dimensional surface energy transfer equation (Kustas, 1990). 

𝜆𝐸 = 𝑅𝑛 − 𝐺 − 𝐻                                                                                                                    Equation 2.7 

where 𝑅𝑛 is the energy flux of net radiation (W/m2), H is the sensible heat flux into the air 

(W/m2), 𝜆E is the latent heat flux into the air (W/m2), and G is the ground heat flux (W/m2) 

(Bastiaanssen et al., 1998). Other energy components such as the heat storage in the vegetation 

or canopy air space and the energy associated with photosynthesis are considered negligible 

and are typically not included in these modeling schemes. 
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2.3.5. Eddy Covariance Method 

 The eddy covariance method is based on turbulent transport theory in the atmospheric 

surface layer (Jensen and Allen, 2016). Eddy covariance is based on the concept of the 

covariance (or the correlation) between the vertical fluxes of vapor (H2O or CO2) or the sensible 

heat in the vertical portion of the movement of the eddies. Eddies are defined as turbulent 

airflow due to the Earth’s undulating surface, wind, and the convective heat flow between the 

Earth’s surface and the surrounding atmosphere. Evapotranspiration occurs when more water 

vapor occurs in upward moving eddies than downward moving eddies. The eddy covariance 

method directly measures components in the eddies such as water vapor, carbon dioxide, or 

heat. The eddy covariance method measures evapotranspiration using eddy covariance 

sampling of the boundary layer using the relationship between the vapor flux (E ) and a specific 

form of the covariance of the H2O concentration and the vertical wind speed as shown in 

equation 2.8. 

𝜆𝐸 =  𝜌𝑤′𝑞′̅̅ ̅̅ ̅̅ =
0.622

𝑃
𝜌𝑤′𝑒′̅̅ ̅̅ ̅̅                                                                                                  Equation 2.8 

where E is the vapor flux [kg m-2 s-1], 𝑞′ is the instantaneous deviation of specific humidity from 

the mean specific humidity (q) [kg kg-1], 𝑒′ is the instantaneous deviation of vapor pressure 

from the mean vapor pressure (e) [kPa], 𝑤′ is the instantaneous deviation of vertical wind 

velocity from the mean vertical wind velocity (w) [m s-1], P is the atmospheric pressure, 𝜌 is the 

air density [kg m-3], and the overbar representing the means of the products of the 

instantaneous deviations, typically over 15 to 30 minute periods (Jensen and Allen, 2016; 

Swinbank, 1951). 

 The sensible heat flux density (H) can also be measured using the eddy covariance 

method, as shown in equation 2.9. 

𝐻 =  𝜌𝐶𝑝𝑤′𝑇′̅̅ ̅̅ ̅̅                                                                                                                     Equation 2.9 
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where 𝑇′ is the instantaneous deviation of air temperature from the mean air temperature [K] 

and H is in W m-2. 

The eddy covariance method can provide ET estimates with high temporal resolution 

through the use of high-speed, high-precision instruments (Wilson et al., 2001). Covariances 

between high-frequency (10 or 20 Hz) vertical wind speed and H2O concentration can be used 

to estimate the latent heat flux density using co-located sonic anemometer and infrared gas 

analyzer (Jensen and Allen, 2016). Measuring small changes in upward and downward moving 

air is critical to accurately determine ET using the eddy covariance method because turbulent 

flow is continually changing. The eddy covariance method has the challenge of lack of closure 

of the energy balance, where the sum of the measured latent heat flux density and the sensible 

heat flux density (𝜆𝐸 + 𝐻) does not equal the measured 𝑅𝑛 − 𝐺 (Jensen and Allen, 2016; Twine 

et al., 2000; Wilson et al., 2001). Lack of closure could be due to unaccounted contributors to the 

energy balance such as storage of heat in canopies, horizontal advection, and change in storage 

of heat in the boundary layer underneath the instrumentation, as well as frequency responses of 

the eddies that are not detected by the sensors (Jensen and Allen, 2016). Covariances between 

high-frequency (10 or 20 Hz) vertical wind speed and the air temperature can be used to 

estimate the sensible heat flux density using a sonic anemometer and calculating the latent heat 

flux density through the residual 𝜆𝐸 from the energy balance equation: 𝜆𝐸 = 𝑅𝑛 − 𝐺 − 𝐻 

(Shapland et al., 2013). 

 

2.3.6. Surface Renewal Method 

Like eddy covariance, surface renewal method is based on turbulent transport theory in 

the atmospheric surface layer (McElrone, 2013). With the surface renewal method, the ET is 

determined by calculating the latent heat flux density as the residual of the energy balance 
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equation, as shown in Equation 2.7. While measurements of Rn and G are simple and 

inexpensive, direct measurements of H can be more difficult because high-frequency 

measurements are needed due to the ephemeral nature of air parcels above the canopy. The 

surface renewal method uses fine thermocouples to measure high frequency air temperatures at 

the surface-atmosphere interface, reducing the cost and complexity of the method (French et al., 

2012; Snyder et al., 1996).  

 

2.3.7. Bowen Ratio Method 

 The Bowen Ratio is the ratio of the sensible heat flux and the latent heat flux. Flux 

densities of sensible and latent heat are expressed as: 

𝐻𝐵𝑅 = (𝑅𝑛 − 𝐺)/(1 + 𝛽−1)                                                                                                   Equation 2.10 

𝜆𝐸𝐵𝑅 = (𝑅𝑛 − 𝐺)/(1 + 𝛽)                                                                                                     Equation 2.11 

where β is the Bowen Ratio (H/λE) (Bowen, 1926). It is assumed that the principle of similarity 

holds and atmospheric resistances to heat and water vapor are equivalent, so 𝛽 can be obtained 

from the following: 

𝛽 = 𝛾(𝜕𝑇/𝜕𝑒)                                                                                                                         Equation 2.12 

where e is the vapor pressure of the air and γ is the psychrometric constant with a value of 0.066 

MPa K-1 at 20 °C and a pressure of 101.3 MPa. 

A minimum of two sets of measurements at two heights are required, but systematic 

measurement errors can be reduced by calculating values of 𝐻𝐵𝑅 and 𝜆𝐸𝐵𝑅 from plots of 

temperature against vapor pressure (Huband and Monteith, 1985). The Bowen ratio method can 

accurately estimate λE when -1.5 <  β < -0.5. 

The Bowen Ratio method has the advantage of canceling the aerodynamic transport 

terms from the energy balance equation. Also, only simple measurements of air temperature 
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and vapor pressure at two different elevations as well as net radiation and ground heat flux 

(Wang, 2015). The Bowen Ratio method has the advantage of being able to estimate 𝜆𝐸 for 

potential and nonpotential surfaces. On the other hand, the Bowen ratio method has the 

disadvantages of numerical instability of 𝛽 near -1 and requires large fetch (Jensen and Allen, 

2016). 

 

2.3.8. Spatial evapotranspiration using remote sensing 

Remote sensing data, such as from satellites or unmanned aerial vehicles (UAV), are 

useful for deriving maps of ET using energy balance methods (Allen et al., 2007; Bastiaanssen et 

al., 1998; Norman et al., 1995). ET is generally determined from aerial imagery by calculating the 

latent heat energy consumed by ET, which is equal to the residual of the surface energy balance 

equation. One surface energy balance algorithm is the Surface Energy Balance Algorithm for 

Land (SEBAL) (Bastiaanssen, W, 2005; Bastiaanssen et al., 1998). A distinct feature of the SEBAL 

algorithm is the calculation of a near-surface temperature gradient, dT, using two points to 

represent ‘hot’ pixels and ‘cold’ pixels to denote hydrologic contrast (i.e., dry and wet land 

surfaces). The dT is indexed to the radiometric surface temperature, eliminating the problematic 

need for absolute surface temperature calibration. SEBAL uses land surface characteristics such 

as surface albedo, vegetation index (or leaf area index), and surface temperature derived from 

satellite imagery. Meteorological data such as wind speed, relative humidity, solar radiation, 

and air temperature must also be measured. Rn is calculated from satellite-measured narrow-

band reflectance and surface temperature. G is estimated from Rn, surface temperature, and leaf 

area index. H is calculated from surface temperature ranges, surface roughness, and wind 

speed. 
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The Mapping Evapotranspiration at High-Resolution with Internalized Calibration 

(METRIC) method is another satellite-based method for estimating ET as a residual of the 

surface energy balance equation and is based on the SEBAL method (Allen et al., 2007). 

METRIC differs from SEBAL in that it uses ETo from weather stations to define the energy 

balance condition of the ‘cold’ pixel, or well-watered condition. The energy balance is internally 

calibrated at the dry and wet extreme conditions usually local weather data, such as from 

CIMIS weather stations. Factoring in weather station data is a way to ground-truth satellite-

based ET estimations.  

While SEBAL and METRIC treat soil and vegetation as one lumped component, the 

Two-Source Energy Balance Model (TSEB) treats them separately. TSEB uses directional 

radiometric surface temperature for partitioning soil and vegetation heat fluxes (William P 

Kustas and Norman, 2000; Norman et al., 1995). Remote sensing-based ET estimations for 

sparse canopies, such as tree orchards, can be more accurate by considering the effects of soil 

and vegetation temperatures (Burchard-Levine et al., 2019; William P. Kustas and Norman, 

2000; Semmens et al., 2016). TSEB estimates of ET tend to agree better with ET flux tower 

observations for bare soil and sparsely vegetated areas (William P Kustas and Norman, 2000). 

Large discrepancies in sensible heat flux (H) estimates can arise due to inadequacies in 

accurately representing land cover scenarios. For energy balance residual methods, inaccuracies 

in H estimates will ultimately lead to inaccuracies in ET estimates, emphasizing the importance 

of knowing the land cover type for which ET will be estimated. Although TSEB may be more 

accurate for estimating ET in sparse canopies, this method requires additional information on 

the fractional canopy cover and high spatial resolution for distinguishing between canopy and 

soil surfaces. 
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2.3.9. Comparison of Methods for Measuring ET 

ET has been studied for decades, but challenges remain in accurately, continuously, and 

remotely quantifying it. Not all methods for estimating ET are practical for farmers to use in 

irrigation management. Table 2.2 compares major methods for estimating ET in terms of spatial 

and temporal resolution, challenges, and advantages.   

Weighing lysimeter and soil water balance methods have the advantage of being simple 

to understand, but neither method is practical for farmers, each for unique reasons. ET 

measurements from lysimeters can have high accuracy if set up correctly but are very expensive 

and cannot provide high-resolution spatial measurements of ET. Lysimeters also must be 

installed upon planting a new tree because it is difficult to transplant a tree into a lysimeter once 

it is mature. Lysimeters are labor-intensive to use because they must be continuously 

maintained to represent the conditions of the rest of the orchard (e.g., weeds cannot grow in the 

lysimeter when they are not in the rest of the orchard). The soil water balance also can be labor-

intensive to implement. The soil moisture must be measured at multiple locations and depths to 

obtain a spatial representation of the soil moisture in the orchard. Also, not all soil moisture 

sensors have the same accuracies, and labor-intensive manual methods (e.g., neutron probe, 

volumetric method) for measuring soil moisture still surpass most remotely and continuously 

sensing soil moisture measurements in terms of accuracy. Furthermore, it can be difficult to 

close the soil water balance due to poor estimates of drainage, which is sometimes assumed to 

be zero. ET estimates from the soil water balance method do not include evaporation from 

canopy interception (Wilson et al., 2001). Simplicity is a huge advantage of the lysimeter and 

soil water balance methods, but maintenance and data collection issues make them unattractive 

for use by most farmers.  
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Unlike the lysimeter and soil water balance methods, the crop coefficient methods 

provide farmer-friendly methods for estimating ET where the data is open-source and has high 

temporal resolution (i.e., hourly, daily, and monthly estimates are available through CIMIS). 

Crop coefficient methods may be easy to use for irrigation scheduling, but  crop coefficients are 

developed from experimental studies and are limited in how well they represent a farmer’s 

orchard characteristics, such as the soil type, vegetative cover, and species. Despite 

inadequacies in the crop coefficient method, it is probably the most popular choice among tree 

farmers for estimating ET because the data are free to California almond farmers, the 

calculations are simple, and the data are available daily.   

Satellite-based residual energy balance methods attempt to fill in some gaps from crop 

coefficient methods, including the need to accurately represent the vegetative cover conditions, 

the climatic region, and plant water stress level of the vegetation. Satellite-based approaches 

have the advantage of estimating ETa instead of ETc, so dry conditions can be more accurately 

measured. Furthermore, satellite imagery can be obtained above specific sites, making it 

possible to factor in the climate of a specific agricultural site. Some satellite-based algorithms for 

estimating ET such as TSEB can separate vegetation and soil in the same image, offering more 

detailed analysis of ET in regions where crop coefficients may not be accurate due to differences 

in tree spacing, cover crop, and weeds between the orchard where the crop coefficients were 

derived and a farmer’s orchard (Norman et al., 1995).   

A disadvantage of residual energy balance approaches is that the ET estimate is only as 

accurate as the Rn, G, and H components. METRIC attempts to overcome this disadvantage by 

applying internalized calibration on H instead of 𝜆𝐸 to absorb estimation errors and biases 

introduced during the data processing. There is also a strong need to evaluate uncertainties in 
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satellite-based ETa algorithms across a range of hydrometeorological and surface cover 

scenarios to improve the operationality of the algorithms (Paul et al., 2012).   

Another problem with remote sensing methods for estimating ET is that satellites 

typically have an inverse relationship between spatial resolution and temporal resolution. 

Satellite imagery with high temporal resolution tend to have low spatial resolution and vice 

versa. Landsat 8 attempts to balance the tradeoff between spatial and temporal resolution by 

offering imagery once every 16 days (if no clouds interfere with image quality) and 30 m spatial 

resolution, so it is a popular satellite for ET estimations. The temporal resolution could be 

further improved by also using satellite imagery from Sentinel, which has similar temporal and 

spatial resolution but flies over California on a different schedule than Landsat 8. Landsat 8 and 

Sentinel imagery are open-source, so they essentially free sources of data for estimating ET. 

Although the imagery is open-source, the labor and expertise required to process satellite 

imagery into meaningful ET estimates is beyond what a typical farmer would be willing to do. 

Therefore, the applicability of satellite-based ET estimates partly relies on successfully 

transforming the complex algorithms into a farmer-friendly platform displaying ET estimates.  

Eddy covariance methods are complex due their foundation in turbulent transport 

theory. Independent measurements of the flux components used in eddy covariance methods 

can lead to lack of closure of the surface energy balance (Jensen and Allen, 2016). As a result, the 

sensible and latent heat fluxes can be underestimated (Twine et al., 2000). Data processing can 

be very complex and not something a typical farmer would have the expertise to do. Eddy 

covariance methods also has the disadvantage of being very expensive ($30,000+) and requiring 

a large fetch to accurately represent the turbulent transport of the vegetation of interest (Jensen 

and Allen, 2016). It requires the following sensors: net radiometer, soil temperature sensors, air 

temperature sensor, relative humidity sensor, wind vane to measure wind direction, 
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anemometer to measure wind speed, soil heat flux plates to measure ground heat flux, soil 

temperature sensors, a rain gauge to measure precipitation, and an infrared gas analyzer to 

measure the densities of water vapor, CO2, and CH4 (Jensen and Allen, 2016; Lee et al., 2005). 

Despite these disadvantages, the eddy covariance method is still one of the most accurate 

methods for estimating ETa as long as there is enough fetch 

The eddy covariance method can be simplified into the surface renewal method for 

estimating ETa by eliminating the sonic anemometer (McElrone, 2013; Shapland et al., 2013). 

However, eddy covariance is still needed to calibrate the sensible heat flux density in the 

surface renewal method, so the sonic anemometer is still for calibration. Also, ET flux towers for 

eddy covariance and surface renewal methods require adequate fetch for incoming atmospheric 

gases to flow to accomplish an accurate ETa estimate of the orchard. An expert is essentially 

required to correctly install an ET flux tower and specialized software would be needed to 

analyze the data. The complexity and the cost of eddy covariance and surface renewal systems 

make it less attractive to farmers.  

Variations in the uncertainty among ET estimation methods complicates accurately 

accounting for ET in water management and planning. Medellin-Azuara et al. (2018) attempted 

to reveal the uncertainty in ET estimates in several field crops in the Sacramento-San Joaquin 

Delta (Medellin-Azuara, J., 2018). Future research should do a similar study focusing on ET 

estimation uncertainty in perennial crops in other regions, especially where canopies are sparse 

and varying in age. ET is one of the largest and most important components not only in 

agriculture, but also in regional water budgets.  
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Table 2.2: Comparison of methods for estimating evapotranspiration 
Method General Operation Resolution  Challenges Advantages 

Lysimeter 
A large container 
measures changes in 
soil water storage 

- Measures Eta at 
one location 
- Can have 
frequent 
temporal 
resolution 
 

- Labor-intensive to 
validate 
- Expensive 
- Only used by 
researchers 

- Direct 
measurement of 
Eta 

- Highly 
accurate if set 
up correctly 
- Simple 

Soil Water 
Balance 

Estimates the ETa as 
the residual of the soil 
water balance 
equation, which 
considers the 
irrigation, 
precipitation, drainage, 
and change in soil 
water content at the 
site. 

- Manual 
measurements 
can lead to 
infrequent 
spatial and 
temporal 
resolution.  

- Labor-intensive 
- Only used by 
researchers 
- Difficulty factoring in 
drainage. 

- Simple 

Crop 
Coefficient 

The ET of a reference 
crop is multiplied by a 
crop coefficient to 
estimate ETc 

- One ET 
estimate is 
assumed to 
represent the 
entire orchard 
- Can be hourly, 
daily, or monthly 
 

- Not site-specific 
- The single-crop 
coefficient method 
measures the ETc, not 
Eta. 
- The dual crop-
coefficient method is 
complex to implement. 

- Open-source 
data 
- Easy 
calculations 
- High temporal 
resolution 

Satellite-
Based 
Energy 
Balance 

ET is calculated from 
satellite imagery as the 
latent heat flux 
consumed by ET, 
which is equal to the 
residual of the surface 
energy balance 
equation. 

- Inverse 
relationship 
between spatial 
and temporal 
resolution 

- ETa estimate is only as 
good as the net 
radiation, ground heat 
flux, and sensible heat 
flux estimates.  
- Must be ground-
truthed. 
- Complex calculations. 

- Estimates ETa, 

- Can factor in 
the climate, 
vegetative 
cover, and plant 
water stress 
level 
- Open-source 
data 

Eddy 
Covariance 

Covariances between 
the wind speed and 
gas concentration are 
used to estimate scalar 
and energy fluxes, 
such as water vapor, 
carbon dioxide, and 
heat.  

- High temporal 
resolution, but 
usually one 
tower per 
orchard 

-Complex turbulent 
transport theory 
-Issues with lack of 
closure in the surface 
energy balance  
-Expensive 
-Need expert installation 

-Highly accurate  
- Frequent ETa 
estimates 
 

Surface 
Renewal 

ET is computed as the 
residual of the energy 
balance of the crop 
canopy using complex 
turbulent transport 
theory. 

- High temporal 
resolution, but 
usually one 
tower per 
orchard 

-Complex turbulent 
transport theory 
-Sensible heat flux 
estimates require eddy 
covariance calibration 
-Moderately expensive 
-Need expert installation 

-Can be highly 
accurate if 
properly 
calibrated  
- Frequent ETa 
estimates 
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2.4. Leaf and stem water potential 

 

 Plant water status measurements can serve as a useful guide for optimizing water use.  

Water potential is a measurement that combines the effects of the soil, plant, and atmospheric 

conditions on water availability within the plant (Harold McCutchan and Shackel, 1992). Sunlit 

leaf water potential has been used to measure the plant water stress, but it is known to have 

rapid temporal fluctuations as a function of the environmental conditions (such as passing 

clouds) (Jones, 2004). Pre-dawn leaf water potential can reduce the variability associated with 

changing environmental conditions, but it measures the overnight recovery of water potential 

rather than the maximum water demand during the day (Meyers and Green, 1980). Leaf water 

potential has also been shown to have little or no statistically significant differences between 

wet and moderate irrigation treatments, so it may not be a good indicator of plant water status 

under moderate soil water depletion (Harold McCutchan and Shackel, 1992). 

 Stem water potential, also known as the xylem water potential, is another measurement 

of the plant water status. Stem water potential is more stable to environmental conditions than 

leaf water potential (Jones, 2004). Stem water potential can be measured using a pressure 

chamber on shaded leaves. Since there can be a within-leaf water potential gradient, the leaves 

should be enclosed inside mylar bags for about 10-20 minutes before measurement to allow for 

the equilibrium between the leaf and the adjacent branches and trunk (Fulton et al., 2014). 

Midday stem water potential is measured between 12:00 and 4:00 p.m., which is when the plant 

is experiencing relatively constant and maximum water demand. Placing the leaf inside a mylar 

bag limits photosynthesis, reducing the measurement variability associated with using sunlit 

leaves with varying exposures to light and heat (Fulton et al., 2014). 
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 Stem water potential has been shown to be a sensitive indicator of water stress in tree 

crops, including almonds, walnuts, and prunes (A. Fulton et al., 2017; Harold McCutchan and 

Shackel, 1992). Furthermore, stem water potential has relative predictability with respect to the 

environmental vapor pressure deficit and is closely related to the crop water use and stomatal 

conductance. Irrigated and unirrigated trees have shown clear differences in stem water 

potential in prunes.  

 

2.5. Conclusions 

 The review of literature shows that the tools for developing site-specific irrigation 

management exist but need to be refined into information that a farmer can use towards 

building strategies for improving water use efficiency. Various studies have been done on 

regulated deficit irrigation in various crops, but strategies need to be developed for 

implementing regulated deficit irrigation at specific sites, such as almond orchards with 

multiple varieties. Furthermore, the methodology for developing crop coefficients and water 

use of various crops exist, but research needs to employ that methodology towards determining 

site-specific crop coefficients and water use estimates, such as almond orchards with young 

trees. Lastly, stem water potential has clearly been shown to be a good indicator of plant water 

status, but further research needs to examine how site-specific characteristics, such as climate, 

canopy size, and soil texture, affect the midday stem water potential, which can be investigated 

through site-specific data-driven modeling.   
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Chapter 3 

Crop coefficients and water use of young almond orchards  

 

Abstract 

 

          An observational study was conducted in the northern Sacramento Valley to determine 

crop water use and crop coefficients of three adjacent young Nonpareil/Monterey almond 

orchards. Methods used to quantify evapotranspiration estimates of crop water use include (1) 

soil water balance and (2) land surface energy balance using eddy covariance. Three adjacent 

almond orchards that were planted in 2016, 2017, and 2018 were monitored from 2018 to 2020. 

Crop coefficients were determined using actual evapotranspiration estimates from each orchard 

and short grass reference evapotranspiration from the Gerber South California Irrigation 

Management Information System (CIMIS) station (ID #222) and refined to adjust for water stress 

using a dual crop coefficient approach. Results showed that crop water use and crop coefficients 

increased until the 4th leaf, indicating the need to closely consider tree development and orchard 

age as factors in irrigation scheduling of young almond trees. The results led to the conclusion 

that farmers should use development or age-specific crop coefficients in developing orchards for 

irrigation-scheduling until the 4th leaf when they can start using mature almond Kc values. This 

study has generated baseline data on crop water requirements of young almond orchards that 

could prove useful for (1) developing irrigation scheduling tools for young almond orchards, and 

for (2) determining water budgets for areas with new almond orchards. 
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3.1. Introduction 

California almond acreage continues to rise as more farmers are converting from annual to 

permanent crops such as almonds. Total almond acreage in California, including non-bearing 

trees, increased by 10% between 2018 and 2019 (CDFA, 2019). Of the total almond area of 619,000 

hectares in California, 142,000 hectares were non-bearing almond trees (22.9%). The necessity for 

irrigation to achieve profitable production of almond trees, especially in developing trees, 

coupled with increasing uncertainty in California water supplies, requires the adoption of 

management practices that optimize irrigation water use. 

Optimal irrigation scheduling requires information about the crop water use, also known as 

the evapotranspiration (ET). The ratio between the evapotranspiration of a well-watered crop 

(ETc) and the evapotranspiration of a well-watered reference crop such as grass (ET0), known as 

a crop coefficient (Kc), can serve as a tool for irrigation scheduling of a variety of crops (Jensen 

and Allen, 2016). Crop coefficients are primarily a function of the vegetative cover and are 

expected to increase as young trees grow in size (Jensen and Allen, 2016). The maximum daily 

transpiration of young almond trees near Córboda, Spain has been shown to increase from 1 mm 

to 4 mm as canopy ground cover increases from 3 to 50%, confirming the need to adjust irrigation 

amounts as the young trees increase in size (Espadafor et al., 2015). Under- or over-irrigation can 

influence tree health, orchard uniformity, years to full production potential, and the total cost to 

establish an orchard (Jarvis-Shean et al., 2018). Prevention of under-irrigation throughout the 

growing season in young almond trees is essential for accelerating canopy and root establishment 

during the non-bearing years (Fereres et al., 1981). Over-irrigation outside the small root zones of 

young almond trees can result in additional pruning and weed control requirements (Jarvis-

Shean et al., 2018).  

Estimates of ET and Kc in almonds have primarily focused on mature trees. In recent years, the 
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recommended maximum (mid-stage) Kc for mature almonds has ranged between 0.90 and 1.15 

(Richard G. Allen et al., 1998; Goldhamer, 2012; Sanden et al., 2012). Developing almond trees, 

which have smaller canopies and root systems, are expected to have lower Kc values than mature 

trees. Efforts have been made to scale Kc values of mature almond trees to young almond trees 

using either the percent ground cover (GC) or the midday fraction of photosynthetically active 

radiation intercepted by the canopy (fPAR). Doorenbos and Pruitt (1977) recommended a 

reduction in maximum Kc values by 25-35% and by 10-15% for canopies with 20 and 50% ground 

cover, respectively (Doorenbos and Pruitt, 1977). Espadafor et al. (2015) measured the ratio 

between KT, which is equivalent to the ratio between the transpiration (T) and ET0, and fPAR in 

3rd and 4th year ‘Guara’ almond trees and found that the ratio oscillated around a value of 1.2 

during the entire irrigation season from mid-May to early September.  

Fereres et al. (1982) measured the ET of drip-irrigated young almond trees (ages 1-6 years) 

using a soil water balance procedure. They obtained a relationship between the percentage 

ground cover (GC) and the ET of young trees as a percentage of calculated ET of mature trees. 

Their empirical relationship has been extensively used to estimate ET of young trees (Ayars et al., 

2003). In contrast to the Fereres et al. (1982) study which involved an orchard with 7.3 x 7.3 meter 

tree spacing, modern almond orchards tend to have tighter tree spacing (commonly, 4.3 x 6.7 

meter), and thus, crop water use is expected to be significantly higher in modern orchards. 

Updated research is needed on crop water requirements of young almond orchards to better 

reflect current orchard management practices. 

Evapotranspiration and crop coefficients are typically determined using weighing lysimeters, 

but lysimeter data may not be representative of field conditions with potential errors of up to 

200% (Allen et al., 1991). Evapotranspiration estimates determined through energy balance 

principles using modern meteorological instrumentation can measure field-scale 
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evapotranspiration. Although evapotranspiration can be estimated using measurements of latent 

heat flux density, λE, using the eddy covariance method, the requirement of an expensive quick-

response infrared gas analyzer limits the practical use of that method. Computing λE as the 

residual of the soil-vegetation surface energy balance removes the need for an infrared gas 

analyzer but requires estimation or assumption of all other components in the energy balance of 

the soil-vegetation surface. 

The objectives of this study were to: (1) estimate evapotranspiration in 1st through 5th leaf 

almond trees using energy balance and soil water balance methods, and (2) determine crop 

coefficients that farmers could use for irrigation scheduling of young almond trees. 

 

3.2. Materials and Methods 

3.2.1. Study Area 

The study was conducted at a commercial almond orchard [Prunus dulcis, cultivars 75% 

Nonpareil and 25% Monterey], located in Corning, California (39.95° N, 122.13° W) with rows 

North-South oriented. The study area consisted of three adjacent orchards that were planted in 

2016, 2017, and 2018 as shown in Figure 3.1. Row spacing was 6.7 meters and tree spacing was 4.3 

meters, resulting in 348 trees per hectare. The plots were irrigated with one Olsen microspinkler 

per tree at 9.7 gph. Each plot had a Tule station that estimated ETa using a propriety version of 

the surface renewal method, which the farmer used as the primary (but not the only) basis for 

irrigation scheduling (www.tuletechnologies.com). The farmer also considered midday stem 

water potential measurements from a pressure bomb for the irrigation scheduling. The farmer 

implemented deficit irrigation for approximately a week before shaking the almond trees during 

harvest in the 4th and 5th year trees to minimize the risk of bark splitting and improve the ease of 

access of the harvesting machine. The plots were monitored from 2018 to 2020 to determine crop 

http://www.tuletechnologies.com/
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water use and crop coefficients in 1st through 5th leaf almond orchards. The study area has a 

warm-summer Mediterranean climate with mean monthly minimum and maximum 

temperatures of 7.5 ℃ (January) and 26.5 ℃ (July), respectively. Average annual rainfall in this 

region of California is 548 mm, which mainly occurs between the months of October and May. 

Little to no rainfall occurs in the months leading up to almond maturity (June to September), 

requiring irrigation to maintain plant health and productivity. The primary soil series was 

Kimball loam with some sections of Perkins gravelly loam and Tehama loam (USDA NRCS 

National Cooperative Soil Survey). Cover crop was grown in each orchard during the fall/winter 

and terminated in the spring prior to the peak irrigation season.  

 

3.2.2.  Estimation of ETa Using an Energy Balance  
 

Field-scale energy flux densities were measured to evaluate the actual evapotranspiration (ETa) 

to determine the crop water use in each orchard. Estimations of sensible heat flux density, ground 

heat flux density, and net radiation were used to calculate latent heat flux density as the residual 

of soil-vegetation surface energy balance, as shown in equation 3.1.  

𝜆𝐸 = 𝑅𝑛 − 𝐺 − 𝐻                                                                                                                    Equation 3.1 

where 𝑅𝑛 is net radiation [W m-2], 𝐺 is ground heat flux density [W m-2], 𝐻 is the sensible heat 

flux density [W m-2], and λ is the latent heat of vaporization of water [MJ kg-1]. The change in 

energy stored in the canopy or surface boundary layer between the ground surface and the height 

where H was measured, and the energy consumed by photosynthesis are usually less than a few 

percent of the energy balance and can be assumed to be negligible (Jensen and Allen, 2016). The 

energy balance was forced closed by assuming that H was accurately measured and solving for 

𝜆E as the residual of the energy balance equation shown by equation 3.1. This method obeys 

conservation of energy and does not require measurements of 𝜆E (Twine et al., 2000). 
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 The latent heat flux density was converted into half-hourly and daily evapotranspiration, ETa, 

measurements in mm/day using a turnkey data logger program and commercial sensors 

(Shapland et al., 2013). A two-dimensional coordinate rotation correction was applied to the sonic 

anemometer wind speed data in the datalogger program to force the mean crosswind and vertical 

wind velocities to zero (Shapland et al., 2013). ETa instead of ETc was measured because the 

orchard was commercial with occasional water stress and heterogeneity of vegetation within the 

orchard. 

Between 2018 and 2019, three flux stations were installed in each of the three adjacent young 

almond orchards to estimate Rn, G, and H, as shown in Figure 3.1. Each flux station consisted of 

a three-dimensional, sonic anemometer (Model 81000 VRE, R.M. Young Company, Traverse City, 

MI, USA) oriented in the prevailing wind direction (North to South) and installed approximately 

1 m above the top of the canopy, two Type E fine-wire thermocouples with 0.0762 mm diameter 

(FW3, Campbell Scientific, Logan, UT, USA) at the same height as the sonic anemometer, a net 

radiometer (NR-LITE2, Campbell Scientific, Logan, UT, USA), and soil heat flux plates at 5 cm 

depth (HFT3.1, REBS, Bellevue, WA, USA), as shown in Figure3.2. Auxiliary data included air 

temperature and relative humidity (HMP45C, Campbell Scientific, Logan, UT, USA), soil water 

content at 5 cm depth (EC5, METER Group, Pullman, WA, USA), and soil temperature from 

thermocouples at 5 cm depth (TCAV-L, Campbell Scientific, Logan, UT, USA), and a tipping rain 

gauge with a 20 cm orifice (TE525WS, Campbell Scientific, Logan, UT, USA). Each orchard had 

enough fetch to accurately estimate ET using each flux station. P18 was 13 hectares, P17 was 8 

hectares, and P16 was 14 hectares. The flux stations had the capability of estimating H using both 

eddy covariance and surface renewal methods (Shapland et al., 2013).   
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Figure 3.1. Locations of the three flux stations near Corning, CA to estimate evapotranspiration in young 
almond orchards.  
 

 

Figure 3.2. Left: A picture of the flux station in the 2nd leaf orchard in 2019, showing the sonic 
anemometer and the net radiometer. Right: A picture of the soil water content sensor, heat flux plate, and 
thermocouples installed at 5 cm depth to measure the ground heat flux.  
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3.2.3. Estimation of ETa Using a Soil Water Balance 
 

Neutron probe access tubes were installed in the orchards planted in 2017 and 2018 using a 

Geoprobe (Salina, KS, USA). Four transects of six tubes centered around a tree trunk were 

installed in each of the two orchards. In each transect, two access tubes were installed 90 and 180 

cm from the tree trunk into the row to the east, two access tubes were installed at 90 and 180 cm 

from the tree trunk along the tree row to the north, and two access tubes were installed at 90 and 

180 cm from the tree trunk along the tree row to the south. The soil texture was analyzed using 

the pipette method at 0-30, 30-60, 60-90, 90-120, 120-240 cm sections at the same locations that the 

soil was excavated for installing the access tubes (Soil Survey Laboratory Methods Manual, Soil 

Survey Investigations Report No. 42, 1992). Neutron counts were measured before the irrigation 

season began and immediately prior to harvest in 2019 and 2020. Seasonal ETa was estimated 

using a soil water balance, as shown in equation 3.2. 

𝐸𝑇𝑎 = 𝑃 + 𝐼 − 𝐷 − 𝑅 − ∆𝑆                                                                                                      Equation 3.2 

where P is precipitation, I is irrigation, D is drainage, R is runoff, and ∆𝑆 is the change in soil 

water storage during the period used for assessing the water balance. Runoff was observed to be 

negligible. Minimal or no rainfall occurred during the major periods of the study and neutron 

probe data showed that drainage was negligible. Most of the change in soil water content was 

driven by root water uptake in response to irrigation events.  

 

3.2.4. Estimation of Crop Coefficients 

Actual crop coefficients, Ka, were calculated as the ratio between ETa and the reference 

evapotranspiration from a standard well-watered grass surface (ETo) as shown in equation 3.3. 

𝐾𝑎 =
𝐸𝑇𝑎

𝐸𝑇𝑜
                                                                                                                                              Equation 3.3         
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where ETa is the actual evapotranspiration, ETo is the reference evapotranspiration, and Ka is the 

actual crop coefficient. ETo was obtained from the CIMIS (California Irrigation Management 

Information System) Gerber South Station ID 222 (40.028778° N, 122.15575° W), located 

approximately 9.6 kilometers from the flux stations used in this study. The FAO Penman-

Monteith method was used to estimate hourly ETo (Richard G. Allen et al., 1998). 

     Ka estimates were converted into standardized crop coefficients, Kc, through the dual crop 

coefficient approach shown in equation 3.4. 

𝐾𝑎 = 𝐾𝑠𝐾𝑐𝑏 + 𝐾𝑒 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝐾𝑠 ≤ 1                                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4  

where Kcb is a basal crop coefficient, Ks is a water stress coefficient, and Ke is an evaporation 

coefficient.  

      Kcb during the mid-season (Kcb mid)was estimated from leaf area index (LAI) using equation 3.5 

with Kcmin=0.15 and Kcb,full  assumed to be 0.85 for almonds (Richard G. Allen et al., 1998). 

𝐾𝑐𝑏 𝑚𝑖𝑑 = 𝐾𝑐 𝑚𝑖𝑛 + (𝐾𝑐𝑏 𝑓𝑢𝑙𝑙 −  𝐾𝑐 𝑚𝑖𝑛)(1 − exp[−0.7 𝐿𝐴𝐼 ])                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.5  

where 𝐾𝑐𝑏 𝑚𝑖𝑑 is the estimated basal Kcb during the mid-season when the plant density are lower 

than the full cover condition, 𝐾𝑐𝑏 𝑓𝑢𝑙𝑙 is the estimated basal Kcb during the mid-season when the 

vegetation is at full cover condition (0.85), 𝐾𝑐 𝑚𝑖𝑛 is the minimum Kc for bare soil (0.15), and LAI 

is the leaf area index, or the area of leaves per area of underlying ground surface averaged over 

a large area [m2 m-2] (R.G. Allen et al., 1998). LAI for each plot was estimated using the fractional 

photosynthetically active radiation (PAR) intercepted by the canopy (fPAR) derived from a mule 

lightbar that consisted of 18 ceptometers (Lampinen et al., 2012; Zarate-Valdez et al., 2012). The 

fPAR is the ratio of the PAR measurements below the canopy and outside the canopy. The LAI 

was calculated using the inverted formula for predicting scattered and transmitted PAR under a 

canopy shown in equation 3.6 (Campbell and Norman, 1998). 
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𝐿𝐴𝐼 =
[(1−

1

2𝐾
)∗𝑓𝑏−1]∗ln (𝜏)

𝐴∗(1−0.47∗𝑓𝑏)
                                                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.6              

where K is the canopy extinction coefficient calculated using an assumed spherical leaf angle 

distribution (LAD) and the zenith angle of the sun, fb is the sun beam fraction (0.98 measured in 

an almond orchard from a different study, Zarate-Valdez et al. (2012)), A is the leaf absorptivity 

in the PAR band and assumed to by 0.86071 for green plants (Ross, 1975), and 𝜏 is the 

transmittance of the canopy in the PAR range (calculated as 1-fPAR). 

 𝐾𝑠 was estimated using a weekly soil water balance as shown in equation 3.7 (Richard G. Allen 

et al., 1998).  

𝐷𝑟,𝑖 = 𝐷𝑟,𝑖−1 − (𝑃 − 𝑅𝑂)𝑖 − 𝐼𝑖 − 𝐶𝑅𝑖 + 𝐸𝑇𝑐,𝑖 + 𝐷𝑃𝑖                                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.7                                                  

where 𝐷𝑟,𝑖 is the root zone depletion at the end of the week [mm], 𝐷𝑟,𝑖−1is the water content in the 

root zone on the previous week [mm], 𝑃𝑖 is the precipitation on week i [mm], 𝑅𝑂𝑖 is the runoff 

from the soil surface on week i which was observed to be negligible [mm], 𝐼𝑖 was the net irrigation 

on week i [mm], 𝐶𝑅𝑖 was the capillary rise from the groundwater table on week i which was 

assumed to be negligible according to knowledge about the site [mm], 𝐸𝑇𝑐,𝑖 was the crop 

evapotranspiration on week i estimated using the eddy covariance energy budget method from 

the onsite flux stations [mm], and 𝐷𝑃𝑖 was the water loss out of the root zone due to deep 

percolation [mm] which was observed to be negligible based on the neutron probe observations 

(Richard G. Allen et al., 1998). The maximum rooting depth was estimated to be roughly 106 cm 

(42 in) for the almond trees (2nd through 5th year) by observing that most of the changes in the soil 

water content estimates derived from the neutron probe data occurred in the top 106 cm (42 in) 

of the soil and observing that root water uptake was responsible for most of the changes in soil 

water content throughout the study. The initial depletion within the maximum rooting depth (106 

cm) was assumed to be equal to the readily available water (RAW) of 26.7 cm (10.5 in) which was 
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determined for the site’s Kimball loam soil based on the NRCS Soil Survey which approximately 

corresponded with the soil texture determined from the pipette method. The total available water 

(TAW) in the root zone was determined to be 66.7 cm (26.25 in) from the NRCS Soil Survey for 

Kimball loam soil. The Ks was calculated using equation 3.8. 

𝐾𝑠 =
𝑇𝐴𝑊−𝐷𝑟,𝑖

𝑇𝐴𝑊−𝑅𝐴𝑊
                                                                                                                         Equation 3.8 

      Once Ka, Kcb, and Ks were determined, Ke was calculated as the residual of equation 3.4. Not 

enough data was determined to conduct a weekly soil water balance of the topsoil, so the Ke was 

not estimated using the methods described in FAO no. 56 (Richard G. Allen et al., 1998).  

𝐾𝑒 = 𝐾𝑎 − 𝐾𝑠𝐾𝑐𝑏 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝐾𝑠 ≤ 1                                                                                                Equation 3.9 

 Once Ke, 𝐾𝑠, and Kcb have been estimated, Kc can be calculated using equation 3.5. 

𝐾𝑐 = 𝐾𝑠𝐾𝑐𝑏 + 𝐾𝑒 𝑤ℎ𝑒𝑟𝑒 𝐾𝑠 = 1                                                                                            Equation 3.10  

 Equation 3.10 assumes that Ke is the same when the almond trees are under well-

watered conditions (Kc) and under water stressed conditions (Ka). Under well-watered 

conditions, there might be increased evaporation of the topsoil compared to under-watered 

conditions, so Ke might be underestimated and, as a result, Kc would be underestimated in 

equation 3.10.  

 

3.2.5. Auxiliary Plant and Soil Measurements 

The fraction of photosynthetically active radiation intercepted by the canopy (fPAR) was 

determined using a mule lightbar to gain insight on differences in canopy size between the three 

orchards (Lampinen et al., 2012; Zarate-Valdez et al., 2012). The fPAR of 7 to 14 rows in each 

orchard were averaged to determine a single fPAR estimate in each orchard in 2019 and 2020, as 

shown in Table 3.1. Leaf area index was estimated from fPAR measurements using equation 3.6 

as described in section 3.2.4 (Campbell and Norman, 1998).  
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Table 3.1. Fraction of photosynthetically active radiation intercepted by the canopy in relation to orchard 
age 

Orchard Age Date Average fPAR 

P18 second leaf 6/5/2019 0.09 

P17 third leaf 6/5/2019 0.23 

P16 fourth leaf 6/5/2019 0.47 

P18 third leaf 6/19/2020 0.25 

P17 fourth leaf 6/19/2020 0.22 

P16 fifth leaf 6/19/2020 0.55 

 
Midday stem water potential (MSWP) was measured using a pressure chamber once a week 

during the irrigation season in all three orchards in all years of the study. Neutron probe counts 

were measured at depths 20, 46, 76, 107, 137, 168, and 198 cm and converted into soil water content 

measurements through a local calibration equation. 

 

3.2.6. Multiple Linear Regression Model of Crop Coefficients 

A stepwise selection procedure was used to select significant predictor variables in a multiple 

linear regression model to predict ETa/ETo. The significance levels to enter and exit the model 

were set at 0.2. Variables that were tested for significance in the model included MSWP, fPAR, 

and soil water content at 20, 46, and 76 cm. Soil water content at 107, 137, 168, and 198 cm had 

severe multicollinearity (i.e. variance inflation factor > 10 and Pearson correlation coefficient > 

0.95) and were not included in the multiple linear regression model. The Cp statistic was 

computed and used to determine the model with the least bias. The Proc Reg procedure in SAS 

was used to conduct stepwise selection and multiple linear regression. Data from the months of 

June through August of 2019 and 2020 were included in the model from all three orchards.  
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3.3.  Results 

3.3.1.  Daily evapotranspiration 

Daily reference evapotranspiration (ETo) from the Gerber South CIMIS station from 2018-2020 

are shown in Figure 3.3. The Penman-Monteith equation was used to calculate ETo. The data 

shows that the climate was relatively consistent in all years of the study. 

 

 

Figure 3.3: Daily reference evapotranspiration (ETo) for 2018-2020 near Corning, CA obtained from the 
Gerber South CIMIS (California Irrigation Management Information System) station #222. 

 

Monthly crop water use (ETa) of each orchard from 2018-2020 is shown in Table 3.2. ETa was 

calculated using an eddy covariance energy balance method. In every year of the study, monthly 

ETa was higher in the older orchards except in 2020 when the 4th leaf orchard had higher monthly 

ETa than the 5th leaf orchard.  
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Table 3.2. Monthly crop water use (ETa) of young almond trees measured using an eddy covariance energy 
balance in the 2016 (P16), 2017 (P17), and 2018 (P18) plantings in 2018-2020. 

Month 

 
2018 2018 2019 2019 2019 2020 2020 2020 

1st leaf 
P18 

2nd leaf 
P17 

2nd leaf 
P18 

3rd leaf 
P17 

4th leaf 
P16 

3rd leaf 
P18 

4th leaf 
P17 

5th leaf 
P16 

February      42 57 39 

March      66 78 73 

April      114 135 128 

May      151 186 172 

June   98 198  175 212 202 

July 61  97 193 219 197 245 229 

August 67 105 84 129 130 137 164 151 

September 47 92 50 95 99    

October 28 48 25 86 67    
Note on missing data: The flux stations were installed in June and July in 2018 and were taken down in the 
winter of 2018 and re-installed in June and July of 2019. 

 

          Figure 3.4 shows the daily ETa [mm/day] of 1st and 2nd leaf almond orchards in 2018 

measured using eddy covariance energy balance method. The 2nd leaf trees had higher daily ETa 

than the 1st leaf trees in June through September. Normally, almond farmers reduce irrigation 

during the week leading up to the harvests of each variety in August and September to reduce 

damage to tree trunks and to improve orchard access of harvest machinery, which would reduce 

ETa and increase water stress. The farmer normally continues to withhold irrigation for a couple 

of weeks after harvest while the almonds are drying on the ground, which also contributes to 

water stress and a reduction in ETa. However, neither the 1st nor 2nd leaf trees were harvested 

using a mechanical shaker to avoid damaging the tree trunks of the developing trees. The 1st and 

2nd leaf orchards approached similar daily ETa at the end of September and early October as the 

leaves progressed into senescence and atmospheric evaporative demand decreased. By mid-

October, the daily ETa was again higher in the 2nd leaf orchard than in the 1st leaf orchard.  
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Figure 3.4. Daily crop water use (ETa) of 1st and 2nd leaf almond orchards in 2018 near Corning, CA 
measured using an eddy covariance energy balance. 

 

Figure 3.5 shows the daily ETa [mm/day] of 2nd, 3rd, and 4th leaf almond orchards in 2019 

measured using eddy covariance energy balance method. The 2nd leaf almond orchard had the 

lowest daily ETa. The 3rd and 4th leaf orchards had similar daily ETa except in July when the 4th 

leaf orchard had higher daily ETa than the 3rd leaf orchard. Both the 3rd and 4th leaf orchards were 

harvested using a mechanical shaker in August for the Nonpareil trees and September for the 

Monterey trees. The farmer reduced irrigation in August during the harvest activities, so the ETa 

declined in the 3rd and 4th leaf orchards. The 2nd leaf orchard was not mechanically shaken to 

avoid damaging the tree trunks, so there was no decrease in ETa during August. 
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Figure 3.5. Daily crop water use (ETa) of 2nd, 3rd, and 4th leaf almond orchards in 2019 near Corning, CA 
measured using an eddy covariance energy balance. 

 

Figure 3.6 shows the daily ETa [mm/day] of 3rd, 4th, and 5th leaf almond orchards in 2020 

measured using eddy covariance energy balance method. Both the 4th and 5th leaf orchards had 

similar daily ETa,  with the 4th leaf orchard typically slightly above the 5th leaf orchard. The 3rd leaf 

orchard had the lowest daily ETa. Daily ETa increased beginning in January and peaked in all 

three orchards in July before decreasing as the atmospheric evaporative demand lowered in 

August through October and leaves began to fall due to harvest activities and senescence. All 

three orchards were harvested with a mechanical shaker in August for the Nonpareil trees and 

September for the Monterey trees. The farmer reduced irrigation during August and September 

to prepare for the harvest activities, resulting in a reduction in ETa. Also, smoke from the LNU 

Lightning Complex Fires between August 17th and the end of September reduced net radiation, 

which also contributed to a decline in ETa. 
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Figure 3.6. Daily crop water use (ETa) of 3rd, 4th, and 5th leaf almond orchards in 2020 near Corning, CA 
measured using an eddy covariance energy balance. 

 

3.3.2. Daily actual crop coefficients (ETa/ETo) 

Figure 3.7 shows the daily actual crop coefficients (ETa/ETo) for 1st and 2nd leaf orchards in 

2018. Daily ETa/ETo was consistently higher in the 2nd leaf orchard than in the 1st leaf orchard, 

indicating the need to use crop coefficients according to age to schedule irrigation through crop 

water use replacement. Spikes in the ETa/ETo throughout the season aligned with irrigation 

events. Daily ETa/ETo considerably increased around 229 to 233 days after bloom because there 

was low ETo on those days. Daily ETa/ETo was smoother when the ETo was also smoother. When 

ETo decreases, ETa theoretically should decrease accordingly because the environmental 

conditions that drive ETo also drive ETa. However, low ETo due to clouds at the CIMIS station 

may not always be present at the flux station at the orchard where ETa was measured. Therefore, 

ETo and ETa may not always increase or decrease accordingly.  
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Figure 3.7. Daily actual crop coefficients (ETa/ ETo) for young almond orchards in 2018. 

 

Figure 3.8 shows the daily actual crop coefficients (ETa/ETo) for 2nd, 3rd, and 4th leaf orchards 

in 2019. Daily ETa/ETo was consistently higher in the 3rd and 4th leaf orchards than in the 2nd leaf 

orchard. The ETa/ETo declined between 150 and 170 days since full bloom due to the farmer’s 

reduction in irrigation during the harvest activities. 
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Figure 3.8 Daily actual crop coefficients (ETa/ ETo) for young almond orchards in 2019. 

 

Figure 3.9 shows the daily actual crop coefficients (ETa/ETo) for 3rd, 4th, and 5th leaf orchards in 

2020. Daily ETa/ETo was the lowest in the 3rd leaf orchard.  In 2020, the 4th leaf orchard sometimes 

had a higher daily ETa/ETo than the 5th leaf orchard, indicating that age is not the only 

development factor that affects the crop coefficient. Like in 2019, daily ETa/ETo decrease between 

150 and 170 days since full bloom due to a reduction in irrigation during harvest activities. The 

reduction in daily ETa/ETo during this period was lower in 2020 than in 2019 because the farmer 

irrigated more in 2020 prior to harvest to avoid the severe water stress that he experienced in 2019 

during the harvest period. 

 

0

2

4

6

8

10

12

14

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

70 90 110 130 150 170 190 210 230 250

E
T

o
 (

m
m

/d
ay

)

E
T

a/
E

T
o

Days Since Full Bloom

ETa/ETo 2nd leaf (P18)

ETa/ETo 3rd leaf (P17)

ETa/ETo 4th leaf (P16)

ETo (mm/day)



52 
 

 

Figure 3.9. Daily actual crop coefficients (ETa/ETo) for young almond orchards in 2020. 

 

3.3.3. Seasonal crop water use estimated from a soil water balance 

Table 3.3 shows results of the soil water balance for the period April 12, 2019 to July 12, 2019 

in the 2nd and 3rd leaf orchards, representing the crop water use of the spring to mid-summer 

period. The grower applied 149 mm of irrigation to the 2nd leaf orchard and 234 mm of irrigation 

to the 3rd leaf orchard, indicating that he intended to irrigate the older trees with more water. The 

soil water content decreased by 81 mm and 164 mm in the 2nd and 3rd leaf orchards, respectively, 

during the period. The crop water use was 315 mm in the 2nd leaf orchard and 484 mm in the 3rd 

leaf orchard.  
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Table 3.3 Soil water balance for the period April 12, 2019 to July 12, 2019 

 2018 Planting 
(2nd leaf) 

2017 Planting 
(3rd leaf) 

Irrigation (mm) 149 234 

Rainfall (mm) 85 85 

Δ Soil water (mm) -81 -164 

Evapotranspiration (mm) 315 484 

 
Figures 3.10 and 3.11 show the soil texture at the locations of the neutron probe measurements 

used in the soil water balance calculations. The soil texture was primarily sandy loam, loam, and 

loamy sand in P18 and sandy loam, clay loam, silt loam, and loam in P17. The predominance of 

loam in P17 may explain the increased root water uptake of that orchard that may have 

contributed to greater ETa in the 4th leaf orchard in 2020 (P17) than the 5th leaf orchard in 2020 

(P16). Not enough access tubes were installed for neutron probe measurements in the orchard 

planted in 2016 (P16), so no soil water balance was computed and soil texture was not analyzed. 

Figure 3.10. A diagram of the soil texture of P18 (orchard planted in 2018) measured using the pipette 
method at the locations of the neutron probe measurements. 
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Figure 3.11. A diagram of the soil texture of P17 (orchard planted in 2017) measured using the pipette 
method at selected locations of the neutron probe measurements. 
 

Table 3.4. shows results of the soil water balance for the period of July 12, 2019 to September 

10, 2019 (in the 3rd leaf orchard) and September 18, 2019 (in the 4th leaf orchard), representing the 

late summer period. During this period, the grower applied approximately the same amount of 

water to both ages of orchards, 147 mm in the 2nd leaf orchard and 142 mm in the 3rd leaf orchard. 

Despite approximately the same amount of irrigation water applied, the soil water content 

decreased more in the 3rd leaf orchard than in the 2nd leaf orchard—81 mm versus 29 mm—likely 

due to larger canopy sizes and root systems in the 3rd leaf orchard. The crop water use was higher 

in the 3rd leaf orchard than in the 2nd leaf orchard—223 mm versus 184 mm. 
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Table 3.4. Soil water balance between July 12, 2019 and mid-September of 2019 

 2018 Planting 
(2nd leaf) 

2017 Planting 
(3rd leaf) 

Irrigation (mm) 147 142 

Rainfall (mm) 8 0 

Δ Soil water (mm) -29 -81 

Evapotranspiration (mm) 184 223 

Note: The soil water balance was computed for the period of July 12, 2019 to September 10, 2019 
in P17 and for the period July 12, 2019 to September 18, 2019 for P18. 
 
 

Table 3.5 shows the soil water balance for the period February 26, 2020 to September 16, 2020 

in the 3rd and 4th leaf orchards. The grower applied 672 mm of irrigation to the 3rd leaf orchard 

and 725 mm of irrigation to the 4th leaf orchard, indicating that he irrigated the older trees more 

than the younger trees and increased the irrigation amount compared to 2019 in both orchards. 

The soil water content decreased by 19 mm in the 3rd leaf orchard whereas the soil water content 

decreased by 175 mm in the 4th leaf orchard. The net result was 817 mm of crop water use in the 

3rd orchard and 1026 mm of crop water use in the 4th leaf orchard. 

 

Table 3.5. Soil water balance between February 26, 2020 and September 16, 2020 

 2018 Planting 
(3rd leaf) 

2017 Planting 
(4th leaf) 

Irrigation (mm) 672 725 

Rainfall (mm) 125 125 

Δ Soil water (mm) -19 -175 

Evapotranspiration (mm) 817 1026 

 
 

Table 3.6 compares the seasonal ETa estimates using a soil water balance method versus an 

eddy covariance energy balance method. Seasonal ETa estimates were in close agreement between 

the two methods with percent errors ranging between 3% and 20% for the different periods 

analyzed. A shorter sample interval may have contributed to an increased percent error in the 
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soil water balance derived ETa estimate of the 3rd leaf orchard during the July 15, 2019 to 

September 10, 2019 period. 

 

Table 3.6. Comparison of seasonal evapotranspiration estimates 

Field Age Period 
ETa (mm) 
Soil Water 

Balance 

ETa (mm) 
Energy Balance 

Percent 
Error 

P18 

2nd leaf 
 

July 12, 2019 to 
September 18, 2019 

180 175 3% 

3rd leaf 
 

February 26, 2020 to 
September 16, 2020 

817 899 10% 

P17 

3rd leaf 
 

July 15, 2019 to 
September 10, 2019 

223 268 20% 

4th leaf 
 

February 26, 2020 to 
September 16, 2020 

1026 1090 6% 

 
 

3.3.4. Seasonal crop water use estimated from eddy covariance energy balance  

          Figure 3.12 shows the cumulative crop water use as measured through eddy covariance 

energy budget method in 3rd, 4th, and 5th leaf almond trees in 2020 starting from peak bloom. The 

cumulative ETa from full bloom until September 11th (around the end of harvest activities) was 

888, 1075, and 995 mm in the 3rd, 4th, and 5th leaf orchards, respectively, in 2020. The cumulative 

ETa was 21% higher in the 4th leaf orchard than in the 3rd leaf orchard, 12% higher in the 5th leaf 

orchard than in the 3rd leaf orchard, and 8% lower in the 5th leaf orchard than in the 4th leaf 

orchard. Differences in canopy size and root system may have resulted in lower cumulative ETa 

in the 5th leaf orchard than in the 4th leaf orchard, indicating that age is not the only factor to 

consider in deciding what crop coefficients to use for irrigation scheduling.  
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Figure 3.12 Cumulative crop water use in 3rd, 4th, and 5th leaf almond trees in 2020 near Corning, CA. 
 

3.3.5. Dual crop coefficient approach 

Tables 3.7 to 3.13 show the results of the dual crop coefficient approach in the 2nd leaf 

orchard in 2018, the 2nd through 4th leaf orchards in 2019, and the 3rd through 5th leaf orchards in 

2020. The Ks estimates show that water stress was not a major issue except in the 2nd and 3rd leaf 

orchards in 2019 (average Ks of 0.42 and 0.6, respectively) when the farmer struggled to 

maintain adequate soil water content levels leading up to and during harvest activities when 

reduced irrigation was necessary to allow farm vehicles to enter the orchard and the farmer was 

concerned about overirrigation. The Ks estimates had good correlations with measurements of 

midday stem water potential. Average Ke ranged from 0.27 to 0.63. Typically, the Kc was similar 

to the Ka value except in the 2nd and 3rd leaf orchards in 2019 when the low Ks  values resulted in 

higher calculated Kc than the measured Ka. When Ks decreases, the calculated Kc will be higher 

than the measured Ka, which is evident from equations 4 and 5. The farmer’s irrigation 

scheduling resulted in sub-optimal, underirrigated conditions during the Nonpareil and 

Monterey harvest activities (mid-August and mid-September). 
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Table 3.7. Dual crop coefficient results in the 2nd leaf orchard in 2018 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 25-Jul 31-Jul 0.93 0.46 0.28 0.74 0.72 
2 1-Aug 7-Aug 0.95 0.34 0.28 0.63 0.61 
3 8-Aug 14-Aug 0.99 0.32 0.28 0.60 0.60 
4 15-Aug 21-Aug 0.97 0.41 0.28 0.69 0.68 
5 22-Aug 27-Aug 0.97 0.35 0.28 0.63 0.62 
6 28-Aug 6-Sep 0.93 0.43 0.28 0.71 0.69 
7 7-Sep 13-Sep 0.91 0.45 0.28 0.73 0.70 
8 14-Sep 20-Sep 0.92 0.36 0.28 0.64 0.62 
9 21-Sep 4-Oct 0.89 0.31 0.28 0.59 0.56 

10 5-Oct 17-Oct 0.94 0.25 0.28 0.53 0.51 
11 18-Oct 26-Oct 0.95 0.26 0.28 0.54 0.53           

Average 0.94 0.36 0.28 0.64 0.62 

 
 
Table 3.8. Dual crop coefficient results in the 2nd leaf orchard in 2019 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 29-May 4-Jun 0.49 0.44 0.30 0.74 0.59 
2 5-Jun 11-Jun 0.42 0.30 0.30 0.60 0.43 
3 12-Jun 18-Jun 0.40 0.39 0.30 0.69 0.51 
4 19-Jun 25-Jun 0.43 0.27 0.30 0.57 0.40 
5 26-Jun 2-Jul 0.44 0.32 0.30 0.62 0.45 
6 3-Jul 9-Jul 0.45 0.40 0.30 0.70 0.53 
7 10-Jul 14-Jul 0.42 0.26 0.30 0.56 0.38 
8 15-Jul 21-Jul 0.43 0.28 0.30 0.58 0.41 
9 22-Jul 30-Jul 0.41 0.32 0.30 0.62 0.44 

10 31-Jul 6-Aug 0.45 0.34 0.30 0.64 0.47 
11 7-Aug 12-Aug 0.45 0.43 0.30 0.73 0.57 
12 13-Aug 20-Aug 0.42 0.34 0.30 0.63 0.46 
13 21-Aug 27-Aug 0.39 0.29 0.30 0.59 0.41 
14 28-Aug 3-Sep 0.41 0.18 0.30 0.47 0.30 
15 4-Sep 10-Sep 0.38 0.23 0.30 0.53 0.34 
16 11-Sep 17-Sep 0.39 0.46 0.30 0.76 0.58 
17 18-Sep 27-Sep 0.40 0.20 0.30 0.50 0.32   

Average 0.42 0.32 0.30 0.62 0.45 
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Table 3.9. Dual crop coefficient results in the 3rd leaf orchard in 2019 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 29-May 4-Jun 0.95 0.53 0.43 0.97 0.94 
2 4-Jun 12-Jun 0.94 0.46 0.43 0.89 0.86 
3 12-Jun 19-Jun 0.91 0.60 0.43 1.03 0.99 
4 19-Jun 26-Jun 0.80 0.45 0.43 0.88 0.80 
5 26-Jun 3-Jul 0.75 0.59 0.43 1.02 0.91 
6 3-Jul 10-Jul 0.71 0.69 0.43 1.12 0.99 
7 10-Jul 15-Jul 0.67 0.75 0.43 1.19 1.04 
8 15-Jul 22-Jul 0.63 0.60 0.43 1.03 0.87 
9 22-Jul 31-Jul 0.57 0.57 0.43 1.00 0.81 

10 31-Jul 7-Aug 0.51 0.62 0.43 1.05 0.84 
11 7-Aug 13-Aug 0.46 0.46 0.43 0.89 0.66 
12 13-Aug 21-Aug 0.39 0.38 0.43 0.82 0.55 
13 21-Aug 4-Sep 0.42 0.62 0.43 1.05 0.80 
14 4-Sep 11-Sep 0.36 0.59 0.43 1.02 0.74 
15 11-Sep 18-Sep 0.33 0.45 0.43 0.89 0.60 
16 18-Sep 27-Sep 0.27 0.50 0.43 0.93 0.62   

Average 0.60 0.55 0.43 0.99 0.81 

 
 
Table 3.10. Dual crop coefficient results in the 4th leaf orchard in 2019 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 19-Jun 26-Jun 1.00 0.40 0.64 1.04 1.04 
2 26-Jun 3-Jul 1.00 0.38 0.64 1.02 1.02 
3 3-Jul 10-Jul 1.00 0.37 0.64 1.01 1.01 
4 10-Jul 15-Jul 1.00 0.49 0.64 1.13 1.13 
5 15-Jul 22-Jul 1.00 0.41 0.64 1.05 1.05 
6 22-Jul 31-Jul 0.97 0.37 0.64 1.00 0.98 
7 31-Jul 7-Aug 0.98 0.35 0.64 0.99 0.97 
8 7-Aug 13-Aug 0.91 0.18 0.64 0.82 0.76 
9 13-Aug 21-Aug 0.86 0.00 0.64 0.64 0.42 

10 21-Aug 28-Aug 0.95 0.05 0.64 0.69 0.66 
11 28-Aug 4-Sep 0.95 0.29 0.64 0.93 0.90 
12 4-Sep 11-Sep 0.93 0.26 0.64 0.90 0.85 
13 11-Sep 18-Sep 0.89 0.17 0.64 0.81 0.73 
14 18-Sep 27-Sep 0.84 0.00 0.64 0.64 0.52   

Average 0.95 0.27 0.64 0.90 0.86 
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Table 3.11. Dual crop coefficient results in the 3rd leaf orchard in 2020 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 30-Apr 7-May 0.92 0.37 0.44 0.82 0.78 
2 7-May 23-May 1.00 0.40 0.44 0.84 0.84 
3 23-May 2-Jun 0.91 0.64 0.44 1.08 1.05 
4 2-Jun 9-Jun 0.91 0.48 0.44 0.92 0.88 
5 9-Jun 16-Jun 1.00 0.33 0.44 0.77 0.77 
6 16-Jun 23-Jun 1.00 0.34 0.44 0.78 0.78 
7 23-Jun 30-Jun 1.00 0.42 0.44 0.87 0.87 
8 30-Jun 7-Jul 0.96 0.52 0.44 0.96 0.95 
9 7-Jul 14-Jul 0.98 0.40 0.44 0.84 0.83 

10 14-Jul 21-Jul 0.98 0.46 0.44 0.91 0.90 
11 21-Jul 28-Jul 0.96 0.48 0.44 0.92 0.91 
12 28-Jul 4-Aug 1.00 0.44 0.44 0.88 0.88 
13 4-Aug 12-Aug 1.00 0.36 0.44 0.81 0.81 
14 12-Aug 17-Aug 0.98 0.43 0.44 0.87 0.87 
15 17-Aug 26-Aug 0.90 0.57 0.44 1.02 0.97 
16 26-Aug 2-Sep 0.98 0.16 0.44 0.60 0.59 
17 2-Sep 9-Sep 0.96 0.31 0.44 0.75 0.73   

Average 0.97 0.42 0.44 0.86 0.85 

 
 
 
Table 3.12. Dual crop coefficient results in the 4th leaf orchard in 2020 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 30-Apr 7-May 0.89 0.65 0.41 1.07 1.02 
2 7-May 23-May 1.00 0.63 0.41 1.04 1.04 
3 23-May 2-Jun 0.89 0.80 0.41 1.22 1.17 
4 2-Jun 9-Jun 0.88 0.69 0.41 1.10 1.05 
5 9-Jun 16-Jun 0.97 0.55 0.41 0.96 0.95 
6 16-Jun 23-Jun 0.98 0.53 0.41 0.94 0.93 
7 23-Jun 30-Jun 0.98 0.63 0.41 1.05 1.04 
8 30-Jun 7-Jul 0.92 0.74 0.41 1.15 1.12 
9 7-Jul 14-Jul 0.93 0.64 0.41 1.05 1.02 

10 14-Jul 21-Jul 0.92 0.77 0.41 1.18 1.15 
11 21-Jul 28-Jul 0.88 0.75 0.41 1.16 1.11 
12 28-Jul 4-Aug 0.89 0.71 0.41 1.12 1.08 
13 4-Aug 12-Aug 0.89 0.67 0.41 1.08 1.04 
14 12-Aug 17-Aug 0.86 0.69 0.41 1.11 1.05 
15 17-Aug 26-Aug 0.78 0.55 0.41 0.97 0.87 
16 26-Aug 2-Sep 0.87 0.35 0.41 0.77 0.71 
17 2-Sep 9-Sep 0.84 0.44 0.41 0.85 0.79   

Average 0.90 0.63 0.41 1.05 1.01 
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Table 3.13. Dual crop coefficient results in the 5th leaf orchard in 2020 

Period Start 
Date 

End 
Date 

Ks Ke Kcb Kc Ka 

1 30-Apr 7-May 0.90 0.33 0.68 1.01 0.95 
2 7-May 23-May 0.98 0.28 0.68 0.96 0.94 
3 23-May 2-Jun 0.97 0.40 0.68 1.08 1.06 
4 2-Jun 9-Jun 1.00 0.27 0.68 0.95 0.95 
5 9-Jun 16-Jun 1.00 0.29 0.68 0.98 0.98 
6 16-Jun 23-Jun 1.00 0.13 0.68 0.81 0.81 
7 23-Jun 30-Jun 1.00 0.33 0.68 1.02 1.02 
8 30-Jun 7-Jul 0.95 0.45 0.68 1.13 1.10 
9 7-Jul 14-Jul 0.93 0.35 0.68 1.04 0.99 

10 14-Jul 21-Jul 0.99 0.36 0.68 1.04 1.03 
11 21-Jul 28-Jul 1.00 0.36 0.68 1.04 1.04 
12 28-Jul 4-Aug 1.00 0.31 0.68 0.99 0.99 
13 4-Aug 12-Aug 1.00 0.25 0.68 0.93 0.93 
14 12-Aug 17-Aug 0.93 0.37 0.68 1.05 1.00 
15 17-Aug 26-Aug 0.84 0.46 0.68 1.14 1.03 
16 26-Aug 2-Sep 1.00 0.00 0.68 0.68 0.45 
17 2-Sep 9-Sep 1.00 0.09 0.68 0.77 0.77 
18 9-Sep 16-Sep 0.92 0.25 0.68 0.93 0.88   

Average 0.97 0.30 0.68 0.97 0.94 

 

 

3.3.6. Seasonal average crop coefficients as a function of orchard age 

Figure 3.13 shows the seasonal average Kc in each age orchard from 1st leaf to 5th leaf. The 

correlation between orchards of different age and canopy size and Kc is excellent (R2=0.94) and 

the curve flattened when the age reached 4th and 5th leaf. 
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Figure 3.13. Seasonal average Kc in young almond orchards of age 1 to 5 years. 

 

Table 3.14 shows the seasonal average crop coefficients in 1st through 5th leaf almond orchards 

estimated in 2018 to 2020. Generally, the crop coefficient increased as each orchard increased in 

age. 

 
Table 3.14. Seasonal average Kc in 1st through 5th leaf almond orchards in 2018 to 2020 

Age (Years) 2018 2019 2020 

1 0.34    
2 0.64 0.62   
3  0.99 0.86 
4  0.90 1.05 
5     0.97 

 
 

3.3.7. Crop coefficients as a function of radiation interception 

    Figure 3.14 shows actual crop coefficients (ETa/ETo) as a function of fraction of 

photosynthetically active radiation intercepted by the canopy (fPAR) estimated through lightbar 

measurements. As fPAR increased, ETa/ETo increased nonlinearly and plateaued at 

approximately fPAR of 0.55. 
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Figure 3.14. Ka as a function of fraction of PAR intercepted by the canopy. 

 

Table 3.15 shows the crop coefficient as a function of percent PAR intercepted by the canopy 

in relation to the percentage of ETc of a mature almond orchard using Kc estimates from the 

average of Sanden (2007) June and July estimates. 

 

Table 3.15. Crop coefficient as a function of percent PAR intercepted by the canopy in relation to %ETc of 
a mature almond orchard 

Percent PAR 
Intercepted by 

the Canopy 

ETa/ETo Mature Kc (June/July Average 
from Sanden, 2007) 

% ETc of a 
Mature 
Almond 
Orchard 

10 0.53 1.05 51 

20 0.72 1.05 69 

30 0.86 1.05 82 

40 0.95 1.05 90 

50 0.98 1.05 94 

 

 

3.3.8. Multiple linear regression model of ETa/ETo 

     The stepwise selection procedure chose the following independent variables: MSWP, fPAR, 

and soil water content measured at 46 and 76 cm. Other parameters were tried in the model, but 

y = -2.6155x2 + 2.6788x + 0.2926
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were found insignificant such as soil water content shallower than 46 cm and deeper than 76 cm.  

Table 3.16 shows the parameter estimates and p-value for each independent variable in the 

model.  

 
Table 3.16. Multiple linear regression model of the ratio of actual evapotranspiration to reference 
evapotranspiration 

Variable Parameter Estimate P-Value 

Intercept 1.05 <0.0001 

MSWP [MPa] 0.32 <0.0001 

fPAR  1.71 <0.0001 

Soil Water Content at 46 cm [cm/cm] −0.13 0.0004 

Soil Water Content at 76 cm [cm/cm] 0.05 0.0019 

 
The adjusted R-square value was 0.68 and the RMSE was 0.15. The model had a C(p) of 4.6. All 

the data available was used to develop the model, so no data was left over for validation. 

 

𝐸𝑇𝑎

𝐸𝑇0
= 1.05 + 0.32 [𝑀𝑃𝑎−1] ∗ 𝑀𝑆𝑊𝑃 [𝑀𝑃𝑎] + 1.71 ∗ 𝑓𝑃𝐴𝑅 − 0.13 ∗ 𝑆𝑊𝐶46 𝑐𝑚 + 0.05 ∗ 𝑆𝑊𝐶76 𝑐𝑚    

Equation 3.11 

 

3.4.  Discussion 

Within each year of the study and for each age of almond orchard, daily ETa peaked in June 

through August, as shown in Figures 3.4 through 3.6. Daily ETa was relatively consistent in June 

through August due to little or no precipitation and clear sky conditions. Precipitation and 

ephemeral clouds in the spring and fall months resulted in some sporadic ETa estimates. The 

grower’s irrigation scheduling resulted in a peak in ETa after each irrigation event followed by a 

period of decreasing ETa for several days. The grower’s reduction in irrigation during harvest 

activities in August and September reduced ETa in the 3rd through 5th leaf orchards. Wildfire 

smoke from the LNU Lightning Complex Fires resulted in low net radiation in mid-August and 
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September of 2020, resulting in reduced ETa measurements. 

The ETa data from this study were similar to crop water use estimates of young almond 

orchards from  Jarvis-Shean et al. (2018). This study’s 1st leaf  ETa estimates of 61 mm and 67 mm 

in June and July were close to the Jarvis-Shean et al. (2018) estimates of 64 mm and 68 mm, 

respectively. This study’s August and September 1st leaf ETa estimates of 47 mm and 28 mm were 

considerably lower than the Jarvis-Shean et al. (2018)  1st leaf estimates of 61 mm and 45 mm, 

respectively. This study’s 2nd leaf ETa estimates from P17 (orchard planted in 2017) were 105 mm, 

92 mm, and 48 mm in August, September, and October, compared to the Jarvis-Shean et al. (2018) 

estimates of 112 mm, 82 mm, and 49 mm, respectively. Tables 3.17 through 3.19 show 

comparisons of 1st, 2nd, and 3rd leaf crop water use between this study and Jarvis-Shean et al. 

(2018). 

 

Table 3.17. Comparison of 1st leaf crop water use in P18 versus Jarvis-Shean et al. (2018) 

Month ETa of 1st leaf  P18 
[mm/month] 

ETc of 1st leaf Jarvis-Shean et al. (2018) 
[mm/month] 

June 61 64 

July 67 68 

August 47 61 

September 28 45 
Note: P18 refers to the orchard planted in 2018 

 
 
 
Table 3.18. Comparison of 2nd leaf crop water use in P17 and P18 versus Jarvis-Shean et al. (2018) 

Month ETa of 2nd leaf 
P18 [mm/month] 

ETa of 2nd leaf 
P17 

[mm/month] 

ETc of 2nd leaf Jarvis-Shean et al. (2018) 
[mm/month] 

August 84 105 112 

September 50 92 82 

October 25 48 49 
Note: P18 refers to the orchard planted in 2018 and P17 refers to the orchard planted in 2017 
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Table 3.19. Comparison of 3rd leaf crop water use in P17 and P18 versus Jarvis-Shean et al. (2018) 

Month ETa of 3rd leaf  
P18 [mm/month] 

ETa of 3rd leaf 
P17 

[mm/month] 

ETc of 3rd leaf Jarvis-Shean et al. (2018) 
[mm/month] 

June 175 198 159 

July 197 193 171 

August 137 129 152 

September 
 

95 112 

October 
 

86 67 
Note: P18 refers to the orchard planted in 2018 and P17 refers to the orchard planted in 2017 

 

The ETa/ETo shown in Figure 3.7 to 3.9 increased with increasing age, indicating the need for 

different crop coefficients for each age of young almond orchards. Like the crop water use 

estimates, ETa/ETo also tended to be more consistent in the summer months June-August when 

ETo was more consistent from day to day. ETa/ETo became erratic in the spring and fall months, 

primarily because the ETo and ETa were so small that any changes in one or the other resulted in 

considerable changes in ETa/ETo.  

Table 3.20 compares the average ETa/ETo of each age almond orchard to the mature almond 

Kc estimates from Sanden (2007) that were obtained from eddy covariance heat flux estimates of 

ETc divided by the modified Penman ETo data. By the 4th leaf, ETa/ETo in June and July (1.02 and 

1.09, respectively) had approached mature almond Kc in June and July (1.01 and 1.08, 

respectively). 5th leaf orchard (P16 planted in 2016) had lower ETa/ETo values in May through 

July than the average ETa/ETo of the 4th leaf orchard, which may have been due to extreme water 

stress during August of 2019 during harvest activities (midday stem water potential as low as -

3.11 MPa on August 21, 2019) which may have reduced shoot growth and tree development, 

carrying over to lower ETa levels in 2020. Another explanation would be that the 5th leaf trees in 

2020 were not irrigated enough to compensate for the year older trees than the 4th leaf trees and, 

as a result, the ETa was lower in the 5th leaf trees than in the 4th leaf trees. ETa/ETo was higher in 

the 4th and 5th leaf orchards in May, but lower in August and September than the Sanden (2007) 
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mature Kc estimates. Lower ETa/ETo during August and September may be due to the 

commercial grower’s difficulty in controlling water stress during the harvest season. The Sanden 

(2007) study attempted to control water stress through neutron probe and stem water potential 

readings, which was not done in the present study since it was a purely grower-managed 

commercial orchard. The Sanden (2007) ETc data was highly variable from year to year during 

the 4-year study in the months of May, August, and especially September, which indicated 

increased uncertainty in the Kc estimates during those months. Table 3.21 shows the percentage 

of mature almond Kc in 1st through 5th leaf almond orchards. By the 4th leaf, the ETa/ETo reached 

101% of mature almond Kc in June and July.  

 

Table 3.20. Comparison of young and mature almond orchard Kc estimates 

Month 1st leaf 
P18 

2nd leaf 
P17 & P18 
Average 

3rd leaf 
P17 & P18 
Average 

4th leaf 
P17 & P18 
Average 

5th leaf 
P16 

Mature 
Almond 
(Sanden, 

2007) 

May 
  

0.92 1.11 1.02 0.92 

June 
 

0.65 0.89 1.02 0.94 1.01 

July 0.30 0.61 0.99 1.09 1.06 1.08 

August 0.40 0.62 0.92 0.90 0.96 1.08 

September 0.32 0.63 0.81 0.84 0.85 1.02 

 
 
 
Table 3.21. Percentage of mature almond Kc in 1st through 5th leaf almond orchards 

Month 1st 
leaf 
P18 

2nd leaf 
P17 & P18 
Average 

3rd leaf P17 
& P18 

Average 

4th leaf P17 
& P18 

Average 

5th leaf 
P16 

Mature 
Almond 
Sanden 
(2007) 

May 
  

99 121 111 100 

June 
 

64 88 101 93 100 

July 28 57 92 101 98 100 

August 37 58 85 83 89 100 

September 32 62 79 82 84 100 
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  Evapotranspiration was the largest component in each of the soil water balances shown in Tables 

3.3 through 3.5. The close estimates of ETa determined by eddy covariance energy balance method 

and soil water balance methods (less than 20% error and often less than 10% error) validate the 

ETa estimates determined in this study for determining crop water use and crop coefficients. 

    The correlation between age and Kc shown in Figure 3.13 was excellent (R2=0.94) and showed 

that the Kc increased until approximately the 4th leaf before becoming flat. This relationship 

indicates that almond farmers need to adjust the Kc values as the almond orchards develop until 

at least the 4th leaf before using the mature almond orchard Kc values. 

Fraction of photosynthetically active radiation intercepted by the canopy (fPAR) had a good 

correlation with ETa/ETo (R2=0.69), which possibly could have been improved if water stress 

were controlled. By 50% fPAR, the ETa/ETo of the developing almond orchard reached 94% of 

the mature almond Kc. When fPAR was regressed against the Kc estimates obtained through the 

dual crop coefficient method shown in Tables 3.7 through 3.13, the resulting curve was non-

monotonic. 

    The multiple linear regression model of ETa/ETo resulted in a good prediction of ETa/ETo using 

fPAR, MSWP, and soil water content measured at 46 and 76 cm. The adjusted R-square value of 

0.68 and  RMSE of 0.15 were promising considering that two years of data from all three orchards 

were combined to develop this model.  

     The crop coefficients were not determined in a controlled environment that prevented water 

stress from occurring in the orchards. The crop coefficients in this study were the ratio of the ETa 

and ETo of a commercial almond orchard and were affected by the grower’s management 

practices. Further research should investigate the crop water use of young almond orchards in an 

environment where water stress is controlled and prevented. This study provides insight on crop 

water use of one commercial almond farmer in the Sacramento Valley of California. 
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3.5.  Conclusions 

    Actual evapotranspiration was measured using eddy covariance energy balance method to 

estimate crop water use in young almond orchards aged 1st leaf through 5th leaf.  Crop water use 

increased as the orchards increased in age, indicating the need to adjust irrigation applied as 

orchards grow. Crop coefficients (Kc) were determined by calculating the ratio between actual 

evapotranspiration and reference evapotranspiration (ETa/ETo) and corrected for water stress 

using the dual crop coefficient approach, resulting in an excellent correlation between Kc and 

orchard development and age (R2=0.94). The results show that almond farmers should use age 

and development-specific Kc values for irrigation scheduling until the 4th leaf when mature 

almond Kc could be used. Fraction of photosynthetically active radiation (fPAR) intercepted by 

the canopy, midday stem water potential, and soil water content at 46 and 76 cm were found to 

be good predictors of ETa/ETo and could be used for determining site-specific crop coefficients. 

Further research should focus on determining crop water use by young almond orchards with 

different irrigation systems, varieties, soils, and management practices.  
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Chapter 4  

Regulated deficit irrigation in almonds by variety during hull-split 

 

Abstract 

Regulated deficit irrigation (RDI) during hull-split can reduce water use in almond 

orchards, but strategies for imposing RDI in almond orchards with multiple varieties with 

different hull-split schedules have not been extensively developed. Commonly, irrigation 

system design restricts all varieties in the same orchard to be on the same irrigation schedule. A 

2-year study evaluated the impacts of two different regulated deficit irrigation schedules under 

two levels of crop evapotranspiration irrigation replacement rates in an almond orchard with 

Butte, Aldrich, and Nonpareil varieties in the Sacramento Valley of California, USA. The two 

irrigation schedules were (1) regulated deficit irrigation in Butte, Aldrich, and Nonpareil 

varieties during Nonpareil hull-split timing and (2) regulated deficit irrigation in each variety 

according to variety-specific hull-split timing. The two levels of irrigation were 50% and 75% of 

crop evapotranspiration (ETc) replacement during the hull-split period. Results show that the 

kernel thickness of Aldrich almonds increased under 75% ETc irrigation replacement during 

Aldrich  hull-split period compared to 75% ETc and 50% ETc irrigation replacement during 

Nonpareil hull-split period. In the Butte almonds, 75% ETc and 50% ETc irrigation replacement 

during variety-specific hull-split reduced the fraction of sealed shells of the Butte variety 

compared to 75% ETc and 50% ETc irrigation replacement during Nonpareil hull-split period. 

This study demonstrated that almond physical quality can be changed in the Butte and Aldrich 

varieties when RDI is imposed according to variety-specific hull-split schedules, revealing 

previously unknown opportunities from irrigation system designs that permit independent 

irrigation scheduling of each variety. No marketable kernel yield improvements were achieved 
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by implementing RDI according to variety-specific hull-split after two years. Under conditions 

similar to those in this study, the least labor-intensive strategy of RDI during Nonpareil hull-

split in all three varieties is recommended. More research should be conducted for different 

orchard designs, varieties, and climates. 

 

4.1. Introduction 

Uncertainty of water availability is a significant concern for almond farmers. California, 

USA,  is the world leader in almond production with a $6.09 billion (USD) almond industry, 

covering almost 619,000 hectares in 2019 (California Department of Food and Agriculture, 2020, 

2019). Increasing acreage of almonds and uncertainty about water deliveries from the 

Sacramento-San Joaquin Delta has contributed to a greater demand for groundwater by farmers 

(Harter, 2015). The increased pressure on groundwater as a water resource for agriculture 

effectively led to the passage of the Sustainable Groundwater Management Act (SGMA) in 2014, 

which will ultimately limit the amount of groundwater that farmers can pump to halt 

groundwater overdraft (Pavley and Dickinson, 2014). Furthermore, climate change has resulted 

in increased uncertainty of water availability for agriculture and increased crop water demands, 

a trend that is expected to continue in the future (Pathak et al., 2018). Improvements in water 

use efficiency must be developed to address uncertainties in water availability due to climate 

change, water policies, and water scarcity. 

In January 2019, the Almond Board of California set a goal of reducing the amount of 

water used to produce a pound of almonds by 20% by the year 2025 (Almond Board of 

California, 2019). Meeting this goal could involve irrigating less than 100% crop 

evapotranspiration (ETc) through regulated deficit irrigation (RDI). RDI is a strategy that 

involves applying less than 100% ETc during specific phenological stages when a crop is less 
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sensitive to water deficit with the goal of reducing water use while minimizing losses in crop 

productivity (Zhang and Theib, 1999). Hull-split is one phenological stage when almond yield is 

less sensitive to deficit irrigation (Stewart et al., 2011). Mild to moderate RDI at hull-split in 

almonds can decrease water consumption and reduce hull rot, which is a disease caused by 

pathogens that colonize the hull tissue in the natural wounds that develop as the hulls split 

(Teviotdale et al., 2001). 

A complication of RDI during hull-split is that orchards with multiple varieties have 

different hull-split schedules, with hull-split initiating between late June to mid-August, 

depending on the variety, in the Sacramento Valley of California (Connell et al., 2010). Most 

commercial almond varieties are self-incompatible, so almond orchards usually have two or 

three different varieties for effective cross-pollination (Hamby and Zalom, 2013). Farmers who 

cut back irrigation during hull-split usually do so according to the hull-split schedule of the 

Nonpareil variety in California because irrigation systems are usually designed for irrigating 

the entire orchard on the same irrigation schedule. Farmers typically favor the irrigation toward 

optimizing yield and quality of the Nonpareil variety, which is the most valuable almond 

variety in California (Almond Board of California, 2015). However, other varieties in the same 

orchard as the Nonpareil variety may not be optimally irrigated according to the variety-

specific phenological stages. 

Despite the large number of studies on RDI in almond orchards, there is a lack of research 

on the RDI strategies for multi-variety almond orchards, which make up approximately 97% of 

California’s almond orchards (California Department of Food and Agriculture, 2020). No 

research has been published on implementing RDI in almond orchards with multiple varieties 

in California, USA, but some research has been done in Spain. In a study in Spain, three almond 

varieties received various deficit irrigation amounts and the Marta variety was more sensitive to 
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drought conditions than the other varieties according to stem water potential and stomatal 

conductance measurements, indicating the need to consider variety as a factor in irrigation 

scheduling (Gutiérrez-Gordillo et al., 2019).  

The relationship between applied water and yield in almond orchards has been shown 

to be nonlinear, so RDI has the potential to improve the amount of water used to produce a 

pound of almonds (Goldhamer and Fereres, 2017). Deficit irrigation during the pre-harvest  

period has been shown to less damaging to sustained productivity than deficit irrigation during 

the post-harvest period (Goldhamer and Viveros, 2000). While RDI generally reduces kernel 

yields in almond orchards, the overall effect on yield is modest. For example, an irrigation 

treatment of 45% ETc reduced yield by only 13%, showing that major reductions in water use 

through RDI may result in moderate losses in yield and profits for almond orchards 

(Goldhamer et al., 2006). On the other hand, severe RDI during hull-split in Nonpareil almond 

trees, especially over multiple years, can significantly reduce kernel weight at harvest 

(Goldhamer et al., 2006). Furthermore, RDI has been shown to improve almond quality. Short 

and severe pre-harvest RDI can reduce leaf and shoot death (Teviotdale et al., 2001). RDI during 

hull-split can also reduce ‘sticktights’ (i.e., hulls that don’t split) (Goldhamer et al., 2006). The 

research shows that almonds are a suitable crop for RDI as a strategy for reducing water use 

while minimizing crop losses. 

This paper aims to compare regulated deficit irrigation during Nonpareil hull-split timing 

and regulated deficit irrigation during variety-specific hull-split timing in Nonpareil, Aldrich, 

and Butte almond varieties at 50% ETc and 75% ETc irrigation replacement rates in terms of 

marketable nut yield, total water applied, water use efficiency, nut physical quality, light 

interception, soil water content, and midday stem water potential.  
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4.2.  Materials and Methods 

4.2.1. Study area 

This study was conducted at a 1.6-hectare almond [Prunus dulcis] orchard of mature cv. 

‘Nonpareil,’ ‘Aldrich,’ and ‘Butte’ trees planted on peach rootstock (4.3 m tree spacing x 6 m 

row spacing) located near Arbuckle, California, United States (38.97 °N, 122.07° W). The climate 

of the region is semi-arid Mediterranean with warm dry summers and cool wet winters. The 

soil was sandy loam with a gravel layer at approximately 1 m below the soil surface. Figure 4.1 

shows the digital elevation, shallow electrical conductivity, leaf temperature, canopy cover, and 

silt and sand content in the top 30 cm. Figure 2 shows the soil texture of the orchard. The root 

zone depth was about 1 m, typical for mature almond orchards. Each row of the orchard was 

irrigated with two lines of polyethylene drip tubing (18 mm diameter) with 38 cm emitter 

spacing and average emitter flow rate of 1.9 L/h. There were approximately 22 emitters per 

tree. The runtimes of each subplot within the orchard were adjusted to implement the irrigation 

treatments. 

 

Figure 4.1. Digital elevation, shallow electrical conductivity, leaf temperature, canopy cover, and silt and 
sand content in the top 30 cm. Reproduced from Kizer et al. (2017). 
 

4.2.2. Experimental design 

Figure 4.2 shows the study experimental design of this study. The almond orchard was 

designed in rows that alternate between three varieties, where each row contains all the same 



76 
 

variety. Since the rows of almond trees cannot be moved, randomization of the variety factor 

was not possible using the land available for the experiment. The orchard was divided into five 

main blocks or replications, each block divided vertically into three rows (i.e., one Nonpareil 

row, one Butte row, and one Aldrich row). Each block was split horizontally into four sections 

in a strip plot experimental design, resulting in 12 subplots in each block. Since there were 

concerns of lateral movement of water in the soil between adjacent subplots, it made sense to 

strip the rows in a strip-plot design and randomize the irrigation among the strips. The 

Nonpareil, Butte, and Aldrich rows of each block had treatments S1 (75% ETc during Nonpareil 

hull-split) and S3 (50% ETc during Nonpareil hull-split). In addition, the Aldrich and Butte rows 

of each block had treatments S2 (75% ETc during variety-specific hull-split) and S4 (50% ETc 

during variety-specific hull-split). In Nonpareil, S1 and S2 would be identical and S3 and S4 

would be identical, so only this paper will only mention S1 and S3 in Nonpareil in this paper. 

The Nonpareil row in each block also had a control treatment S5 (100% ETc during Nonpareil 

hull-split), which took two subplots in each block to double the number of replicates of this 

control treatment. In total there were 15 rows and each row contained approximately 50 trees. 

Each of the four subplots within each row contained approximately 10 trees, allowing 

approximately five trees to serve as border trees at the ends of each row.  
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Figure 4.2. The experimental layout for the almond irrigation by variety study at Nickels Soil Lab near 
Arbuckle, CA.  

Irrigation Schedule Varieties

S1: 75% ET c  during Nonpareil 

hull-split period

Nonpareil, Butte, Aldrich

S2: 75% ET c  during variety-

specific hull-split period

Butte, Aldrich

S3: 50% ET c  during Nonpareil 

hull-split period

Nonpareil, Butte, Aldrich

S4: 50% ET c  during variety-

specific hull-split period

Butte, Aldrich

S5: 100% ET c  during Nonpareil 

hull-split period

Nonpareil
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4.2.3.  Irrigation scheduling 

A wireless network of solenoid valves controlled the irrigation in all 60 subplots. One 

solenoid valve actuator circuit board controlled all four irrigation treatments in each row. In 

2019, the solenoid valve actuator circuit boards used were developed by Metronome Systems 

(Berkeley, CA). In 2020, the solenoid valve actuator circuit boards used were developed at 

University of California, Davis (Coates et al., 2013). The remote valve actuator system required 

manually inputting the irrigation runtimes for all 60 subplots into a website every irrigation. 

Irrigation runtimes were determined based on ETc, which was calculated using the 

single crop coefficient method using the reference evapotranspiration, ETo, from the Williams 

California Irrigation Management Information System (CIMIS) station (obtained from the 

CIMIS Penman equation, which uses a wind function developed at University of California, 

Davis and unique cloud factor values for each CIMIS station location 

(https://cimis.water.ca.gov/Resources.aspx) and crop coefficients (Kc) for mature almonds, as 

shown in equation 1. Kc values of 1.15, 1.17, and 1.12 were used in the months of July, August, 

and September, respectively (Goldhamer, 2012). Cumulative ETc since the previous irrigation 

was computed in terms of water depth, which was then converted into a runtime using the 

representative area of the subplot (approximately 10 trees), the irrigation system specifications, 

and either 50% or 75% ETc adjustment depending on the RDI regime. The emitter spacing was 

38 cm and the average emitter flow rate was 1.89 L/h. There was dripline on both sides of the 

tree rows and the diameter of the dripline was 18 mm. There were about 22 emitters per plant. 

A plant spacing of 4.3 m, row spacing of 6 m, and a distribution uniformity of 0.9 were used to 

calculate a net application rate of 0.147 cm per hour. Before hull-split initiation, the orchard was 

irrigated by the farmer, guided by a watermark sensor at one location in the orchard. 

ETc = ETo*Kc                                                                                                                      Equation 4.1 
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Careful observation of the orchard leading up to when hull-split was expected to begin 

based on historical hull-split initiation data led to the decision of when to begin RDI treatments. 

Although the trees at the ends of the rows began hull-split first, RDI treatments were postponed 

until most of the trees in the inner parts of the orchard showed approximately 1% hull-split 

initiation, typically starting at the top of the trees. The hulls with blanks (no kernel inside the 

shell) usually begin splitting about a week before the hulls with kernels begin splitting, so 

careful observations were made to wait until hulls not containing blanks began splitting. The 

1% hull-split initiation, harvest, pickup dates, and days between 1% hull-split initiation and 

harvest in 2019 and 2020 are shown in Table 4.1. The number of days between 1% hull-split 

initiation and harvest (i.e., shaking of the nuts to the ground) influenced the total amount of 

water applied in each RDI treatment in this study. 

 

Table 4.1. Number of days between 1% hull-split and harvest in Nonpareil, Butte, and Aldrich varieties 
at Nickels Soil Lab near Arbuckle, CA 

2019 Nonpareil Aldrich Butte 

1% hull-split initiation July 9th  July 27th  August 7th  
Harvest August 22nd  September 

11th  
September 
11th 

Pickup September 
4th  

September 
25th  

September 
25th     

    

2020 Nonpareil Aldrich Butte 

1% hull-split initiation July 7th  July 23rd  August 3rd  
Harvest August 13th  September 

4th  
September 
4th 

Pickup August 26th  September 
15th  

September 
15th     

 

Days between 1% hull-split initiation and 
harvest 

 

 
Nonpareil Aldrich Butte 

2019 44 46 35 
2020 37 43 32 
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4.2.4. Tree and soil water status 

Neutron probe counts were measured at 30 cm, 60 cm, 90 cm, 120 cm, and 150 cm depths 

using a neutron probe (CPN 503 ELITE Hydroprobe, InstroTek, Raleigh, North Carolina, USA) 

in all subplots twice a week between April and September of both years of the experiment and 

usually immediately before irrigation. A local calibration equation was developed using the 

gravimetric method based on soil samples collected at 30 cm and 60 cm depths from the study 

field in 2020 using a Madera probe with a soil volume of 66 cc (N=11, R2=0.86). The bulk density 

was measured using the same soil samples and was between 1.28 to 1.72 g/cc. The neutron 

probe counts were converted into volumetric soil water content with the calibration equation. 

For each subplot, average soil water content was calculated for the top 150 cm of the soil.  

Midday stem water potential (MSWP) was also measured using a pressure chamber (Model 

615D, PMS Instruments, Albany, Oregon, USA) in all subplots on most occasions that neutron 

probe counts were measured, which was usually immediately before irrigation. The MSWP 

measurements were used as feedback for irrigation adequacy. The expectation was that the 50% 

ETc treatments would be water stressed, but irrigation was scheduled frequently enough to 

keep the MSWP above -20 bars, although this became challenging later in the season as soil 

water deficit progressed. Typically, all treatments were irrigated once every three or four days.  

 

4.2.5. Almond yield, quality, and water use efficiency 

The almonds were harvested from the trees with a mechanical shaker on the dates listed in 

Table 4.1 using a Shockwave Sprint model made by Orchard Machinery Corporation (OMC) in 

Yuba City, CA, USA. The almonds dried on the orchard ground for 12-15 days after the trees 

were shaken before being picked up by a tree shaker when total yield and almond samples 

were collected. 
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All almonds in each subplot were picked up with a harvesting machine and total yield was 

measured with a load cell-based scale retrofitted onto a tractor that picks up the almonds off the 

ground at harvest of each variety. The total yield was multiplied by the fraction of kernel 

weight to total weight (hulls, shells, and kernels) to determine the kernel yield of each subplot. 

The marketable kernel yield measurements have been reduced by 10% to account for rocks, 

leaves, and other debris collected with the almonds based on expert consultation with the farm 

advisor of the almond orchard. The orchard ground was thoroughly conditioned with a blower 

to remove most of the pre-existing debris before the harvest, so only a 10% correction was 

needed to account for leaves from the harvest and any rocks not moved by the blower, unlike at 

larger commercial orchards which may have less thorough conditioning and may require a 

larger correction than 10%.  

Almond samples were collected at harvest in all subplots of each variety for a physical nut 

quality analysis. The quality analysis included quantifying (1) the number of sealed shells out of 

50 shells, (2) weights of 50 hulls, 50 inshell kernels, and 50 shelled kernels, (3) counts of double, 

twin, blank, gum, severe shrivel, and insect damage detected in 50 almonds, and (4) 

measurements of kernel length, width, and thickness of 10 kernels lined up end to end in a row, 

side by side, and flipped each possible way (length, width, and height).  

Nonpareil is a soft-shelled almond whereas Aldrich and Butte are hard-shelled almonds, so 

it is expected that Nonpareil would have fewer sealed shells per 50 than Aldrich and Butte 

almonds (Almond Board of California, 2015). Double is when two separate embryos form and 

grow into two individual almonds located in the same shell. Twin is when a single almond has 

two radicals. Blank is when a kernel did not develop within the shell. Gum is a rust-colored 

hard and shiny resin that sometimes is clear. Almond kernel shrivel can occur on almond trees 
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planted on peach rootstock and is caused by the Peach yellow leafroll phytoplasma (Adaskaveg 

et al., 2017). 

Kernel irrigation water use efficiency (KIWUE) was calculated as the ratio of marketable 

almond yield (the kernels), Y [kg], divided by the total amount of irrigation from March 1st to 

harvest, I [mm], as shown in equation 4.2. 

𝐾𝐼𝑊𝑈𝐸 =  
𝑌

𝐼
                             Equation 4.2 

    

4.2.6.  Light interception 

 Photosynthetically active radiation (PAR) intercepted by the canopy was measured at 

solar noon in each subplot of the experiment on June 14th and July 20th, 2019 and on June 8th and 

August 2nd, 2020 using a mobile PAR measurement system  (Lampinen et al., 2012). The orchard 

was planted with alternating rows of three different varieties, so data from the left and right 

sides of the mobile PAR measurement system were kept separate to allow partitioning of 

canopy PAR interception for each variety independently.  

 

4.2.7.  Statistical analysis  

Statistical comparisons were made across the irrigation treatments of each variety to 

assess differences in marketable kernel yield, various almond physical quality measurements, 

and canopy PAR interception using analysis of variance (ANOVA). The main objective of the 

statistical comparisons was to identify significant differences in the response variables due to 

irrigation treatment for each variety. Equation 4.3 shows the ANOVA model used in this study 

where yij is the response variable, μ is the overall mean, ⍴i is the block effect, βj is the irrigation 
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effect, (ρβ)ij is the interaction between the block effect and the irrigation effect, and εij is the 

experimental error term.  

yij = μ + ⍴i + βj + (ρβ)ij + εij                                                                                                                        Equation 4.3 

Separate ANOVA tests following the model in equation 4.3 were done on each of the 

three varieties to optimize precision of the irrigation effect. For the Aldrich and Butte varieties, 

the irrigation factor levels were S1, S2, S3, and S4. For the Nonpareil variety, the irrigation factor 

levels were S1, S3, and S5. The block effect was included because there was a pre-existing yield 

and plant canopy size gradient with larger yields and canopy going from east to west. 

Furthermore, a previous experiment in 2016-2017 involved RDI treatments in blocks 1-3 and full 

irrigation in blocks 4-5 in the Nonpareil rows (Kizer et al., 2017). Data were analyzed using the 

Proc GLIMMIX procedure in SAS 

(https://support.sas.com/rnd/app/stat/procedures/glimmix.html) . Means were separated at 

the 0.05 significance level using the Tukey type least squares means (LSMEANS) procedure in 

SAS.  

An alternative two-factor strip plot ANOVA model with variety and irrigation factors 

shown in equation 4.4 was tested but did not detect significant differences across irrigation 

treatments. In equation 4.4, yijk is the response variable, μ is the overall mean, ⍴i is the block 

effect, αj is the variety effect, δij is the whole plot error of the variety factor, βk is the irrigation 

effect, λik is the whole plot error of the irrigation factor, (αβ)ij is the interaction between variety 

and irrigation factors, and εijk is the experimental error term. Significant differences not detected 

by the two-factor strip plot ANOVA model from equation 4.4 were detected in the single-factor 

ANOVA model from equation 4.3. The variety factor in the two-factor strip plot ANOVA model 

had an overwhelming effect on the almond physical quality and marketable kernel yield, so 

differences within a variety due to the irrigation treatments were less detectable by the two-

https://support.sas.com/rnd/app/stat/procedures/glimmix.html
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factor strip plot ANOVA model. Therefore, it made sense to do a single-factor ANOVA on each 

variety to optimize the precision of the irrigation effect of a single variety at a time. Strong 

variety effects likely due to genetics were so dominant that irrigation effects played a small role 

in the overall effect on the physical quality parameters, so it was not possible see the irrigation 

effect on the physical quality parameters unless a single factor ANOVA was done on each 

variety. The purpose of the study was to identify the most optimal irrigation regime for each 

variety in terms of various response variables, so the variety main effect was not of primary 

interest to this study. 

yijk = μ + ⍴i + αj + (αρ)ij + βk + (ρβ)ik + (αβ)ij + εijk       Equation 4.4 

There are several implications to the strip-plot experimental design. The whole plot A 

treatment is confounded with the whole plots of factor A. The whole plot B treatment is 

confounded with the whole plots of factor B. The strip plot design tends to sacrifice precision in 

testing the main effects but improves precision in testing interaction effects. 

 

4.3.  Results 

4.3.1. Precipitation and evapotranspiration 

 Figure 4.3 shows the monthly precipitation at the California Irrigation Management 

Information System (CIMIS) in Williams, CA, which was located approximately 11 miles from 

the experimental site. The monthly precipitation was organized by water year, where a water 

year begins on October 1st and ends on September 30th of the following calendar year. 

Precipitation in the months of January through March of 2019 was high, but low in 2020. An 

unusually dry winter occurred in 2020 with zero precipitation during February. Figure 4.3 

shows the precipitation starting in October of the calendar year before each year of the study. 
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Although the precipitation was measured 11 miles from the experimental site, the data gives a 

general idea of the precipitation amount between 2019 and 2020. 

 

Figure 4.3. Monthly precipitation at the California Irrigation Management Information System station 
near Williams, CA during water years 2018-2019 and 2019-2020, where a water year begins on October 
1st and ends on September 30th of the following calendar year.  
 
 
 Figure 4.4 shows the monthly evapotranspiration of a grass reference crop at the CIMIS 

station near Williams, CA. The monthly reference evapotranspiration was similar during both 

years of the experiment. 
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Figure 4.4. Monthly evapotranspiration of a grass reference crop at the California Irrigation Management 
Information System station near Williams, CA during water years 2018-2019 and 2019-2020, where a 
water year begins on October 1st and ends on September 30th of the following calendar year. 
 

4.3.2. Cumulative irrigation   

In 2019, the grower began irrigation for the year in mid-April and applied 327 mm of 

water between April 12, 2019 and the start of the experimental irrigation treatments in July. In 

2020, the grower started irrigation at the beginning of March due to an unusual winter drought 

and applied 554 mm of water between March 3, 2020 and the start of the experimental irrigation 

treatments in July. Table 4.2 shows the total water applied from leaf out to harvest in all the 

irrigation treatments of each variety. Differences in total water applied between irrigation 

treatments were small because the RDI periods of the experimental irrigation treatments ranged 

between only 32 to 46 days as shown in Table 4.1, compared to the total irrigation season for the 

year of approximately 240 days (March to October). The total water applied shown in Table 4.2 

does not include post-harvest irrigation (between September and November). Less total water 
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was applied before harvest in 2019 than in 2020 because there was more precipitation in the 

spring in 2019, so the grower did not irrigate as much in the spring compared to in 2020. 

 

Table 4.2. Total water applied from leaf out to harvest in different irrigation regimes (mm) 

Irrigation Schedule 
Total water applied from leaf out to harvest 
(mm)a 

2019 Aldrich Butte Nonpareil 
S1: 75% ETc during Nonpareil hull-split 
period 

522 525 498 

S2: 75% ETc during variety-specific hull-split 
period 

561 608 
  

S3: 50% ETc during Nonpareil hull-split 
period 

495 497 
475 

S4: 50% ETc during variety-specific hull-split 
period 

542 580 
  

S5: 100% ETc during Nonpareil hull-split 
period 

    
553 

        

2020b Aldrich Butte Nonpareil 
S1: 75% ETc during Nonpareil hull-split 
period 

786 792 
731 

S2: 75% ETc during variety-specific hull-split 
period 

836 804 
  

S3: 50% ETc during Nonpareil hull-split 
period 

727 724 
661 

S4: 50% ETc during variety-specific hull-split 
period 

738 792 
  

S5: 100% ETc during Nonpareil hull-split 
period 

    
774 

    
aThe mean of five replicates of each irrigation schedule of the total applied water was calculated. 
bMore irrigation was applied in 2020 because minimal rainfall occurred in the winter and spring that 
year. 

 
Figure 4.5 show the cumulative water applied since the grower began irrigation in the 

spring from each irrigation treatment in each variety as the average of five replicates in 2019. In 

the Aldrich variety, S2 and S4 were at 100% ETc until Aldrich hull-split started on July 27th, so S2 

and S4 trees received more water in the beginning of the season than S1 and S3, which were at 

75% ETc and 50% ETc beginning on July 9th when Nonpareil hull-split initiated. By harvest on 
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September 11th, S2 received the most water of the irrigation treatments in Aldrich because it was 

irrigated at the 75% ETc rate during hull-split and the RDI treatment was initiated for fewer 

days than S1 and S3 due to variety differences in the period between 1% hull-split initiation and 

harvest, as shown in Table 4.1. There were some differences in water applied between S2 and S4 

prior to Aldrich hull-split due to malfunctions with the irrigation system on July 25th, although 

they should have both received the same amount of water at the 100% ETc rate. 

In the Butte variety, S2 and S4 were at 100% ETc until Butte hull-split started on August 

7th, so S2 and S4 trees received more water in the beginning of the season than S1 and S3, which 

were at 75% ETc and 50% ETc beginning on July 9th when Nonpareil hull-split initiated. Water 

applied increased in S1 and S3 after the Nonpareil trees were harvested on August 22nd. By 

harvest on September 11th, S2 received the most water of the irrigation treatments in Butte 

because it was irrigated at the 75% ETc rate during hull-split and the RDI treatment was 

initiated for fewer days than S1 and S3 due to variety differences in the period between 1% hull-

split initiation and harvest, as shown in Table 4.1.  

In the Nonpareil variety, S5 was irrigated at 100% ETc and received the most water of all 

the treatments. S1 received 75% ETc and S3 received 50% ETc Nonpareil during hull-split, which 

began on July 9th. A plateau in cumulative water applied in all the irrigation treatments began 

around August 3rd as the grower restricted irrigation to dry the orchard ground in preparation 

for the harvest activities. Graphs of the cumulative water applied in 2020 are shown in the 

appendix. 
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Figure 4.5. Cumulative water applied in the Aldrich, Butte, and Nonpareil varieties under various 
irrigation regimes in 2019 at the Nickels Soil Lab near Arbuckle, CA.  
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4.3.3. Irrigation effect on soil water content 

Figure 4.6 shows the soil water content in all the irrigation treatments of each variety. 

Most soil water content measurements were taken immediately before irrigation when the soil 

water content was expected to be low. Large standard deviations were found in the soil water 

content in each treatment, likely due to spatial variations in water-holding capacity due to 

heterogeneity in the soil texture or topographic influences on distribution uniformity. In the 

Aldrich variety, there was a malfunction with the irrigation system on July 25th, so S1 had a 

large unintended spike in soil water content. In general, the soil water content followed the 

schedule of the water applied from irrigation. Between Nonpareil 1% hull-split initiation (July 

9th) and Aldrich 1% hull-split initiation (July 27th) , the soil water content in treatments S2 and S4 

(100% ETc) were maintained at a higher level than in S3 (50% ETc) due to the additional 

irrigation. After Aldrich hull-split began on July 27th, the soil water contents of S2 and S4 were 

reduced in response to the deficit irrigation, with S4 (50% ETc) under more soil water deficit 

than S2 (75% ETc) for most of the remainder of the season. The grower irrigated on August 19th, 

so all the treatments had approximately the same soil water content on that day. After the 

Nonpareil harvest on August 22nd, treatments S1 and S3 entered the 100% ETc irrigation stage 

and soil water content increased, although it took longer for S3 to replenish the soil water 

content due to having been under more limited irrigation prior to harvest. Unlike the two 

Nonpareil-based hull-split treatments (S1 and S3), the soil water content of S4 remained low 

until the Aldrich harvest on September 11th. A malfunction with the irrigation system resulted 

in unintended extra irrigation in S2 on September 7th, although it should have followed the 

trend of S4. Graphs of the soil water content in each variety in response to the various irrigation 

treatments in 2020 can be found in the appendix.  
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In the Butte variety, the soil water contents in treatments S2 and S4 were maintained 

between 0.1 cm/cm and 0.2 cm/cm when they were in the 100% ETc stage before dropping 

below 0.1 cm/cm after Butte hull-split started on August 7th. Differences in soil water content 

between S2 and S4 between Butte 1% hull-split (August 7th) and Butte harvest (September 11th) 

were small despite different applied water amounts. The soil water contents in treatments S1 

and S3 were lower than in S2 and S4 between Nonpareil 1% hull-split (July 9th) and Butte 1% 

hull-split (August 7th) due to the deficit irrigation during that period. The grower irrigated on 

August 19th, so all the treatments had approximately the same soil water content on that day. 

After Nonpareil harvest (August 22nd), the S1 and S3 treatments entered the 100% ETc stage, 

increasing the soil water contents.  

Figure 4.6 (bottom) shows the soil water content in response to the irrigation treatments 

in the Nonpareil variety. Between Nonpareil 1% hull-split (July 9th) and August 13th, increased 

water applied led to higher soil water content with the highest soil water content in S5 (100% 

ETc), followed by S1 (75% ETc), and then by S3 (50% ETc). The grower irrigated on August 19th, 

so all the treatments had approximately the same soil water content on that day and on August 

21st. After the Nonpareil harvest, all treatments entered the 100% ETc stage and soil water 

content increased on September 7th to the almost same soil water content as on April 12th prior 

to RDI treatments.  
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Figure 4.6. Soil water content under different irrigation schedules in the Aldrich (top), Butte (middle), and 
Nonpareil (bottom) varieties in 2019. S1 = 75% ETc during Nonpareil hull-split period. S3 = 50% ETc during 
Nonpareil hull-split period. S5 = 100% ETc during Nonpareil hull-split period. S5 = 100% ETc throughout the 
season. Error bars are standard deviations.  
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4.3.4. Irrigation effect on midday stem water potential 

Figure 4.7 shows the midday stem water potential (MSWP) in the Aldrich, Butte, and 

Nonpareil varieties under the various irrigation treatments between July and September. The 

MSWP measurements are shown in MPa, where 1 MPa is equal to 10 bars. Most MSWP 

measurements were taken immediately before irrigation when the MSWP was expected to be 

low (high water stress). In the Aldrich variety, the average MSWP in 2019 and 2020, 

respectively, were -1.6 and -1.5 MPa in S1, -1.3 and -1.2 MPa in S2, -1.7 and -1.6 MPa in S3, and -

1.6 and -1.6 MPa in S4. In both years in the Aldrich variety, 75% ETc during variety-specific hull-

split period (S2) resulted in the least water stress whereas 50% ETc during Nonpareil hull-split 

period (S3) resulted in the most water stress. In the Butte variety, the average MSWP in 2019 

and 2020, respectively, were -1.6 and -1.2 MPa in S1, -1.2 and -1.0 MPa in S2, -1.8 and -1.3 MPa 

in S3, and -1.5 and -1.1 MPa in S4. There was more water stress in 2019 than in 2020 in the Butte 

variety. In both years in the Butte variety, 75% ETc during variety-specific hull-split period (S2) 

resulted in the least water stress whereas 50% ETc during Nonpareil hull-split period (S3) 

resulted in the most water stress, which was the same result as in the Aldrich variety. In the 

Nonpareil variety, the average MSWP in 2019 and 2020, respectively, were -1.5 and -1.1 MPa in 

S1, -1.6 and -1.5 in S3, and -1.3 and -1.1 in S5. Between the two years of the study, S5 (100% ETc ) 

resulted in the least water stress, followed by S1 (75% ETc ), and then by S3 (50% ETc ). The 

grower irrigated the orchard on August 19th, 2019, so the MSWP was approximately the same in 

all subplots.  
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Figure 4.7. Midday stem water potential under different irrigation schedules in the Aldrich (top), Butte (middle), 
and Nonpareil (bottom) varieties in 2019. S1 = 75% ETc during Nonpareil hull-split period. S2 = 75% ETc during 
variety-specific hull-split period. S3 = 50% ETc during Nonpareil hull-split period. S4 = 50% ETc during variety-
specific hull-split period. S5 = 100% ETc throughout the season. Error bars are standard deviations.   
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 4.3.5. Irrigation effect on almond physical quality 

Table 4.3 shows the physical quality results of the Aldrich almond samples under 

different irrigation regimes. In the Aldrich variety, the thickness per 10 kernels was significantly 

higher in S2 than S3 in 2019 and significantly higher in S2 than both S1 and S3 in 2020 at the 95% 

confidence level. This means that 75% ETc during variety-specific hull-split period (S2) in 

Aldrich resulted significantly thicker kernels than 75% ETc and 50% ETc during Nonpareil hull-

split period (S1 and S3). In the Aldrich variety, S3 resulted in significantly higher occurrence of 

severe shrivel in S3 than in S1 and S4 in 2020. Although not significant, both Nonpareil-based 

hull-split RDI treatments resulted in higher occurrence of severe shrivel than both variety-

specific hull-split RDI treatments in 2019. No significant differences were found across 

irrigation treatments in the Aldrich variety in the length and width per 10 kernels, sealed shells 

per 50 shells, grams per 50 kernels, double, twin, blank, gum, or insect damage at the 95% 

confidence level. S1 resulted in significantly fewer sealed shells out of 50 shells than S3 in 2019 

at the 90% confidence level. 

Table 4.4 shows the physical quality results of the Butte almond samples under different 

irrigation regimes. In 2019, both variety-specific hull-split RDI treatments (S2 and S4) resulted in 

significantly fewer sealed shells out of 50 shells than both Nonpareil-based hull-split RDI 

treatments (S1 and S3). In 2020, although only S2 had significantly fewer sealed shells out of 50 

shells than S3, both variety-specific hull-split RDI treatments (S2 and S4) resulted in fewer 

sealed shells out of 50 shells than both Nonpareil-based hull-split RDI treatments (S1 and S3). 

No significant differences were found across irrigation treatments in the Butte variety in the 

thickness, length, width per 10 kernels, grams per 50 kernels, shrivel, double, twin, blank, gum, 

or insect damage at the 95% confidence level. However, the occurrence of severe shrivel was 

significantly higher in S2 than S1 in 2019 at 90% confidence level. S2 and S4 (according to 
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variety specific hull-split) tended to have more shrivel than S1 and S3 (according to Nonpareil 

hull-split), although not significant. 

Table 4.5 shows the physical quality results of the Nonpareil variety under different 

irrigation regimes. No significant differences were found across irrigation treatments in the 

Nonpareil variety in the thickness, length, width per 10 kernels, sealed shells per 50 shells, 

grams per 50 kernels, shrivel, double, twin, blank, gum, or insect damage at the 95% confidence 

level. However, S5 resulted in significantly higher thickness per 10 kernels than S3 in 2020 at the 

90% confidence level. Also, S1 resulted in significantly higher occurrence of severe shrivel than 

S5 in 2020 at the 90% confidence level. 
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Table 4.3. Aldrich variety physical quality under different irrigation regimes at Nickels Soil Lab near 
Arbuckle, CAa 

  Almond physical quality parameter   

Irrigation 
Schedule 

Thickness 
per 10 
kernels 
(cm)b 

Lengt
h per 
10 
kernel
s 
(cm)b 

Width 
per 10 
kernels 
(cm)b 

Sealed 
shells 
per 50 
shells 

Grams 
per 50 
Kernels 

Shrivelc Double
c 

Twinc Blankc Gumc 

2019                     

S1: 75% ETc 
during 
Nonpareil 
hull-split 
period 

7.94 ab 22.9 a 11.7 a 22 a 50 a 2.0 a 3.0 a 0.4 a 0.2 a 0.2 a 

S2: 75% ETc 

during variety-
specific hull-
split period 

8.14 a 23.2 a 11.8 a 27 a 51 a 0.4 a 3.8 a 0.2 a 0.2 a 0.8 a 

S3: 50% ETc 
during 
Nonpareil 
hull-split 
period 

7.78 b 23.1 a 12.0 a 37 a 50 a 2.0 a 4.6 a 0.6 a 0.2 a 0 a 

S4: 50% ETc 
during variety-
specific hull-
split period 

8.06 ab 23.1 a 12.0 a 35 a 50 a 0.8 a 3.4 a 1.2 a 0.8 a 0.6 a 

           

p-value 0.0458 0.6748 0.3757 0.0716 0.7391 0.091 0.6642 0.1102 0.3425 0.0951 

2020                     

S1: 75% ETc 
during 
Nonpareil 
hull-split 
period 

8.20 b 20.0 a 10.6 a 39 a 42 a 0 b 0.4 a 2.2 a 0.4 a 0 a 

S2: 75% ETc 
during variety-
specific hull-
split period 

8.48 a 20.6 a 10.9 a 39 a 42 a 0.4 ab 0.6 a 0.8 a 0 a 0 a 

S3: 50% ETc 
during 
Nonpareil 
hull-split 
period 

8.24 b 20.3 a 10.8 a 39 a 41 a 0.8 a 0.4 a 1.4 a 0.4 a 0 a 

S4: 50% ETc 
during variety-
specific hull-
split period 

8.32 ab 19.8 a 10.7 a 39 a 41 a 0 b 1.2 a 1.6 a 0.4 a 0 a 

           

p-value 0.008 0.0989 0.4512 0.9996 0.2395 0.0064 0.3477 0.5479 0.7413 NA 

a Average values of five replicates for each irrigation schedule for 2019 and 2020. Different letters represent significant 
differences between irrigation schedule according to the Tukey multiple comparison adjustment at p<0.05. 
b Ten kernels were lined up end to end in a row side by side and flipped each possible way to measure thickness, length, and 
width of ten kernels in centimeters. 
c Shrivel, double, twin, blank, and gum were counted out of 50 kernels. Only severe shrivel was counted. 
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Table 4.4. Butte variety physical quality under different irrigation regimes at Nickels Soil Lab near 
Arbuckle, CAa 

  Almond physical quality parameter   

Irrigation 
Schedule 

Thickness 
per 10 
kernels 
(cm)b 

Lengt
h per 
10 
kernel
s 
(cm)b 

Width 
per 10 
kernels 
(cm)b 

Sealed 
shells 
per 50 
shells 

Grams 
per 50 
Kernels 

Shrivelc Double
c 

Twinc Blankc Gumc 

2019                     

S1: 75% ETc 
during 
Nonpareil 
hull-split 
period 

8.3 a 20.5 a 11.6 a 40 a 44 a 0 a 5.2 a 0.6 a 0.2 a 0.6 a 

S2: 75% ETc 

during variety-
specific hull-
split period 

8.2 a 20.9 a 12.1 a 25 b 47 a 1.4 a 5.4 a 0.8 a 0 a 0 a 

S3: 50% ETc 
during 
Nonpareil 
hull-split 
period 

8.3 a 20.5 a 11.8 a 37 a 45 a 0.2 a 4.2 a 0.2 a 0.2 a 0.2 a 

S4: 50% ETc 
during variety-
specific hull-
split period 

8.4 a 20.5 a 11.7 a 26 b 46 a 0.6 a 6.0 a 0.4 a 0.8 a 0 a 

           
p-value 0.35 0.14 0.10 0.001 0.12 0.06 0.59 0.47 0.37 0.16 

2020           

S1: 75% ETc 
during 
Nonpareil 
hull-split 
period 

8.9 a 19.4 a 12.0 a 43 ab 48 a 0.8 a 2.5 a 4.0 a 0 a 0 a 

S2: 75% ETc 
during variety-
specific hull-
split period 

9.0 a 19.7 a 12.2 a 40 b 50 a 1.4 a 0.8 a 1.8 a 0 a 0 a 

S3: 50% ETc 
during 
Nonpareil 
hull-split 
period 

9.1 a 19.5 a 12.1 a 45 a 51 a 0.6 a 1.2 a 2.8 a 0.6 a 0.2 a 

S4: 50% ETc 
during variety-
specific hull-
split period 

9.2 a 19.6 a 12.4 a 42 ab 49 a 0.8 a 0.5 a 2.0 a 0.3 a 0.3 a 

           

p-value 0.71 0.79 0.39 0.05 0.40 0.66 0.30 0.33 0.10 0.58 

a Average values of five replicates for each irrigation schedule for 2019 and 2020. In 2020, S1 and S4 had only four replicates 
due to a mistake during the almond sample collection. Different letters represent significant differences between irrigation 
schedule according to the Tukey multiple comparison adjustment in 2019 and the Tukey-Kramer multiple comparison 
adjustment in 2020 at p<0.05.  
b Ten kernels were lined up end to end in a row side by side and flipped each possible way to measure thickness, length, and 
width of ten kernels in centimeters. 
c Shrivel, double, twin, blank, and gum were counted out of 50 kernels. Only severe shrivel was counted. 
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Table 4.5. Nonpareil variety physical quality under different irrigation regimes at Nickels Soil Lab near 
Arbuckle, CAa 

  Almond physical quality parameter   

Irrigation 
Schedule 

Thickness 
per 10 
kernels 
(cm)b 

Lengt
h per 
10 
kernel
s 
(cm)b 

Width 
per 10 
kernels 
(cm)b 

Sealed 
shells 
per 50 
shells 

Grams 
per 50 
Kernels 

Shrivelc Double
c 

Twinc Blankc Gumc 

2019                     

S1/S2: 75% ETc 
during 
Nonpareil 
hull-split 
period 

7.7 a 24.3 a 13.4 a 22 a 63 a 2.6 a 0.4 a 8.4 a 0.2 a 0 a 

S3/S4: 50% ETc 
during 
Nonpareil 
hull-split 
period 

7.4 a 24.6 a 13.3 a 26 a 60 a 1.4 a 1.0 a 6.4 a 1.2 a 0 a 

S5: 100% ETc 
during 
Nonpareil 
hull-split 
period 

7.6 a 24.2 a 13.4 a 23 a 60 a 1.8 a 0.8 a 5.3 a 1.1 a 0.2 a 

 
          

p-value 0.2256 0.3037 0.878 0.688 0.1447 0.367 0.4382 0.102 0.1495 0.3897 
 

          

2020           

S1/S2: 75% ETc 
during 
Nonpareil 
hull-split 
period 

8.4 a 22.9 a 12.6 a 17 a 61 a 2.8 a 0.6 a 3.8 a 1.4 a 0.2 a 

S3/S4: 50% ETc 
during 
Nonpareil 
hull-split 
period 

8.2 a 23.1 a 12.9 a 29 a 60 a 1.6 a 1.8 a 2.8 a 0.6 a 0 a 

S5: 100% ETc 
during 
Nonpareil 
hull-split 
period 

8.6 a 23.1 a 12.9 a 22 a 60 a 0.9 a 0.7 a 2.5 a 0.5 a 0 a 

           

p-value 0.0758 0.7934 0.34 0.1306 0.8418 0.0721 0.1924 0.4205 0.2145 0.2777 

a Average values of five replicates for each irrigation schedule for 2019 and 2020. Different letters represent significant 
differences between irrigation schedule according to the Tukey multiple comparison adjustment at p<0.05. 
b Ten kernels were lined up end to end in a row side by side and flipped each possible way to measure thickness, length, and 
width of ten kernels in centimeters. 
c Shrivel, double, twin, blank, and gum were counted out of 50 kernels. Only severe shrivel was counted. 
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4.3.6.  Yield 

Table 4.6 shows the marketable kernel yield of almond trees under different irrigation 

regimes in 2019 and 2020.  No significant differences were found across any of the irrigation 

treatments in the Aldrich, Butte, and Nonpareil varieties in 2019 and 2020 at the 90% or 95% 

confidence levels. Although not statistically significant, the marketable kernel yield of the 

Aldrich variety under both variety-specific hull-split RDI regimes (S2 at 4048 kg/hectare and S4 

at 4180 kg/hectare) was higher than the marketable kernel yield of the Aldrich variety under 

the Nonpareil-based hull-split RDI regimes (S1 at 3993 kg/hectare and S3 at 3825 kg/hectare). 

The marketable kernel yield in 2020 was considerably higher than in 2019 in the Aldrich and 

Nonpareil varieties (between 123% and 147% increase in Aldrich and between 37% and 45% 

increase in Nonpareil), which was likely due to no rainfall during peak bloom in 2020 and was 

corroborated by record-breaking almond yields across California. The Aldrich variety is known 

for a strong alternate bearing response and usually alternates between high yield and low yield 

from year to year, which partly explains the large increase in marketable kernel yield from 2019 

to 2020. The Butte variety showed minimal increase in marketable kernel yield between 2019 

and 2020, possibly related to its later maturity. In 2019 and 2020, the marketable kernel yield of 

the Nonpareil variety was the highest in S5 (100% ETc during Nonpareil hull-split period), 

followed by S1 (75% ETc during Nonpareil hull-split period), and then by S3 (50% ETc during 

Nonpareil hull-split period), meaning that marketable kernel yield increased with increased 

water applied, although the differences were not statistically significant. 
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Table 4.6. Marketable kernel yield of almond trees under different irrigation regimes in 2019 and 2020 at 
Nickels Soil Lab near Arbuckle, CAa 

Irrigation Schedule Kernel Yield (kg/hectare)   

    
2019 Aldrich Butte Nonpareil 
S1: 75% ETc during Nonpareil hull-split 
period 

1789 a 2937 a 3072 a 

S2: 75% ETc during variety-specific hull-split 
period 

1694 a 2820 a 
  

S3: 50% ETc during Nonpareil hull-split 
period 

1608 a 2731 a 
2769 a 

S4: 50% ETc during variety-specific hull-split 
period 

1691 a 2649 a 
  

S5: 100% ETc during Nonpareil hull-split 
period 

    
3275 a 

p-value 0.5229 0.3153 0.1533 
    

    
2020 Aldrich Butte Nonpareil 
S1: 75% ETc during Nonpareil hull-split 
period 

3993 a 2998 a 
4194 a 

S2: 75% ETc during variety-specific hull-split 
period 

4048 a 2829 a 
  

S3: 50% ETc during Nonpareil hull-split 
period 

3825 a 2936 a 
3855 a 

S4: 50% ETc during variety-specific hull-split 
period 

4180 a 2695 a 
  

S5: 100% ETc during Nonpareil hull-split 
period 

    
4221 a 

p-value 0.6255 0.2302 0.2551 
    

        
Percent increase in yield from 2019 to 2020 Aldrich Butte Nonpareil 
S1: 75% ETc during Nonpareil hull-split 
period 

123 a 2 a 37 a 

S2: 75% ETc during variety-specific hull-split 
period 

139 a 0 a   

S3: 50% ETc during Nonpareil hull-split 
period 

138 a 7 a 39 a 

S4: 50% ETc during variety-specific hull-split 
period 

147 a 2 a   

S5: 100% ETc during Nonpareil hull-split 
period 

  
  

29 a 

p-value 0.3005 0.5901 0.3415 
    

a The marketable kernel yield measurements have been reduced by 10% to account for rocks, leaves, and 
other debris collected with the almonds. The total yield of each subplot was collected with a scale at the 
orchard and then multiplied by the fraction of kernel weight to total weight (hulls, shells, and kernels) to 
determine the kernel yield of each subplot. 
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4.3.7. Kernel irrigation water use efficiency 

Table 4.7 shows the kernel irrigation water use efficiency of Aldrich, Butte, and Nonpareil 

almond trees under various irrigation regimes in 2019 and 2020. In 2019 and 2020, the kernel 

irrigation water use efficiency of the Butte variety was higher in both Nonpareil-based hull-split 

RDI treatments, S1 and S3, than the two variety-specific hull-split RDI treatments, S2 and S4, 

meaning that more marketable kernel yield was produced per volume of water applied when 

irrigating the Butte trees according to Nonpareil hull-split schedule. Earlier RDI application in 

both Nonpareil-based hull-split RDI treatments (S1 and S3) resulted in less total water applied 

during the growing season than RDI application according to variety-specific hull-split (S2 and 

S4) due to variety differences in the duration between hull-split initiation and harvest. In 2019, 

the kernel irrigation water use efficiency in Butte of S1 was significantly higher than in S2 and 

S4 at the 95% confidence level. In 2020, the kernel irrigation water use efficiency in Butte of S3 

was significantly higher than in S2 and S4 at the 95% confidence level. No significant differences 

in kernel irrigation water use efficiency were found across irrigation treatments in the Aldrich 

and Nonpareil varieties in 2019 and 2020. 
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Table 4.7. Kernel irrigation water use efficiency of almond trees under various irrigation regimes in 2019 
and 2020 

 
 

4.3.8. Light interception 

Table 4.8 shows the percent of photosynthetically active radiation intercepted by the 

canopy (percent PAR) of almond trees under various irrigation regimes. On the 6/14/19, 

7/20/19, and 8/2/20, no significant differences in percent PAR were found across irrigation 

treatments light interception measurements in any of the varieties at the 90% or 95% confidence 

levels. However, the p-value decreased between 6/14/2019 and 6/8/2020 (mid-season dates) as 

well as between 7/20/2019 and 8/2/2020 (late-season dates) in all varieties, indicating that the 

significance of the irrigation effect on percent PAR increased over the two years of the 

experiment.  

On 6/8/20, the percent PAR of the Aldrich variety was significantly higher in S4 (50% 

ETc during variety-specific hull-split period) compared to S1 (75% ETc during Nonpareil hull-

Irrigation Schedule 
Kernel Irrigation Water 
Use Efficiency (kg/m3) 

 

2019 Aldrich Butte Nonpareil 

S1: 75% ETc during Nonpareil hull-split period 0.34 a 0.54 a 0.62 a 
S2: 75% ETc during variety-specific hull-split 
period 

0.30 a 0.46 bc 
 

S3: 50% ETc during Nonpareil hull-split period 0.32 a 0.55 ab 0.59 a 
S4: 50% ETc during variety-specific hull-split 
period 

0.31 a 0.46 c 
 

S5: 100% ETc during Nonpareil hull-split period   0.58 a 
p-value 0.32 0.01 0.68 
    

2020 Aldrich Butte Nonpareil 

S1: 75% ETc during Nonpareil hull-split period 0.51 a 0.38 ab 0.57 a 
S2: 75% ETc during variety-specific hull-split 
period 

0.49 a 0.35 b 
 

S3: 50% ETc during Nonpareil hull-split period 0.52 a 0.41 a 0.58 a 
S4: 50% ETc during variety-specific hull-split 
period 

0.57 a 0.34 b 
 

S5: 100% ETc during Nonpareil hull-split period   0.50 a 
p-value 0.11 0.01 0.42 
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split period) at the 95% confidence level. However, this significant difference was not repeated 

on any of the other dates of light interception measurements and does not align with the 

expectation that more water applied leads to higher percent PAR.  

No significant differences across irrigation treatments were found in the percent 

difference in percent PAR between 6/14/2019 and 6/8/2020 (mid-season dates) as well as 

between 7/20/2019 and 8/2/2020 (late-season dates) at the 90% or 95% confidence levels. In the 

Aldrich variety, the percent difference in percent PAR was higher in both 50% ETc treatments 

(S3 at 17% and S4 at 10%) than the two 75% ETc treatments (S1 at 5% and S2 at 8%) between 

6/14/2019 and 6/8/2020 (mid-season dates). Similarly, the percent PAR of the Aldrich variety 

slightly decreased between 7/20/2019 and 8/2/2020 in the two 75% ETc treatments (S1 at -1% 

and S2 at -2%) but increased between 7/20/2019 and 8/2/2020 in both 50% ETc treatments (S3 

at 6% and S4 at 3%). In the Butte variety, the percent PAR increased between 6/14/2019 and 

6/8/2020 as well as between 7/20/2019 and 8/2/2020 in all the irrigation treatments except for 

S3 (50% ETc during Nonpareil hull-split period) which resulted in 0% change between both sets 

of dates. 
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Table 4.8. Percent of photosynthetically active radiation intercepted by almond trees under different 
irrigation regimes at Nickels Soil Lab near Arbuckle, CA 

       
2019 6/14/2019 7/20/2019 6/14/2019 7/20/2019 6/14/2019 7/20/2019 

Irrigation Schedule Aldrich Aldrich Butte Butte Nonpareil Nonpareil 

S1: 75% ETc during 
Nonpareil hull-split period 

64 a 70 a 67 a 71 a 73 a 79 a 

S2: 75% ETc during variety-
specific hull-split period 

66 a 73 a 68 a 73 a   

S3: 50% ETc during 
Nonpareil hull-split period 

61 a 68 a 68 a 72 a 70 a 77 a 

S4: 50% ETc during variety-
specific hull-split period 

64 a 70 a 66 a 69 a   

S5: 100% ETc during 
Nonpareil hull-split period 

    72 a 78 a 

p-value 0.3382 0.289 0.9531 0.7817 0.6651 0.6832 

       

2020 6/8/2020 8/2/2020 6/8/2020 8/2/2020 6/8/2020 8/2/2020 

 Irrigation Schedule Aldrich Aldrich Butte Butte Nonpareil Nonpareil 

S1: 75% ETc during 
Nonpareil hull-split period 

67.3 b 69 a 71 a 73 a 80 a 81 a 

S2: 75% ETc during variety-
specific hull-split period 

70.5 ab 71 a 73 a 76 a   

S3: 50% ETc during 
Nonpareil hull-split period 

70.7 ab 72 a 68 a 72 a 77 a 78 a 

S4: 50% ETc during variety-
specific hull-split period 

70.9 a 72 a 71 a 73 a   

S5: 100% ETc during 
Nonpareil hull-split period 

    78 a 80 a 

p-value 0.0333 0.2175 0.4728 0.6866 0.312 0.4832 

        

 
6/14/20 to 

6/8/20 
7/20/19 to 

8/2/20 
6/14/20 to 

6/8/20 
7/20/19 to 

8/2/20 
6/14/20 to 

6/8/20 
7/20/19 to 

8/2/20 

Percent difference Aldrich Aldrich Butte Butte Nonpareil Nonpareil 

S1: 75% ETc during 
Nonpareil hull-split period 

5 a -1 a 7 a 3 a 9 a 2 a 

S2: 75% ETc during variety-
specific hull-split period 

8 a -2 a 8 a 4 a   

S3: 50% ETc during 
Nonpareil hull-split period 

17 a 6 a 0 a 0 a 9 a 1 a 

S4: 50% ETc during variety-
specific hull-split period 

10 a 3 a 9 a 6 a   

S5: 100% ETc during 
Nonpareil hull-split period 

    9 a 3 a 

p-value 0.2845 0.2822 0.6976 0.7571 0.9488 0.9195 
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4.4.  Discussion 

The RDI treatments in this study resulted in minor reductions in total water applied because 

the hull-split period when RDI was implemented is short (between 32 and 46 days) compared to 

the total irrigation season for the year of approximately 240 days (March to October). For 

example, 50% ETc during hull-split in Nonpareil resulted in 14-15% less total water applied than 

100% ETc in Nonpareil. RDI according to variety-specific hull-split in later splitting varieties, 

such as Aldrich and Butte, resulted in more total water applied than RDI according to 

Nonpareil-based hull-split, as shown in Table 4.2. In the Aldrich and Butte varieties, S2 (75% 

ETc rate during variety-specific hull-split) resulted in the most total water applied of all the 

irrigation treatments in this study and more total water applied than the similar treatment S1 

(75% ETc rate during Nonpareil hull-split) due to differences in the length of the hull-split 

period across the varieties. 

Implementing RDI in Butte during Butte hull-split resulted in lower water use efficiency 

due to fewer days in between 1% hull-split initiation and harvest. The Butte variety had only 35 

and 32 days between 1% hull-split initiation and harvest in 2019 and 2020, respectively, whereas 

the Aldrich variety had 46 and 43 days and the Nonpareil variety had 44 and 37 days in 2019 

and 2020, respectively, as shown in Table 4.1. A farmer may use significantly more water per 

weight of Butte almonds produced by implementing RDI during Butte hull-split as opposed to 

during Nonpareil hull-split, which is the opposite of the Almond Board of California’s goal of 

reducing the amount of water used to produce a pound of almonds by 20% by 2025. 

A reduction in the fraction of sealed shells induced by RDI during variety-specific hull-split 

in Butte increases exposure of the edible kernel to the environment and may have implications 

on kernel damage. Lower percentage of sealed shells has been correlated with a higher 

percentage of navel orangeworm (Amyelois transitella) infestation of the kernel (Hamby et al., 



107 
 

2011; Hamby and Zalom, 2013). Lower percentage of navel orangeworm infestation has been 

correlated with later splitting varieties, such as Butte (Hamby et al., 2011). This study did not 

detect significant differences in insect damage to the kernel (which mostly included the 

occurrence of navel orangeworm and ant damage) across irrigation treatments. The orchard 

used in this study did not have a recent history of navel orangeworm infestation because it was 

sprayed with insecticide and mummy nuts were removed each winter. Further research should 

investigate RDI during Butte hull-split period in Butte at an almond orchard with a history of 

navel orangeworm infestation to quantify the effects of irrigation induced changes in the 

fraction of sealed shells on navel orangeworm occurrence. Further research should also 

investigate possible functional explanations for the reduction in sealed shells induced by RDI 

during variety-specific hull-split in Butte almonds. 

An increase in the thickness of the kernel induced by RDI during variety-specific hull-split 

in Aldrich may have implications on its marketability and storage requirements. Other physical 

quality measurements such as kernel length and width, grams per 50 kernels, double, twin, 

blank, and gum did not show significant differences after two years of the RDI irrigation 

treatments and do not seem to be affected by the variations in RDI schedules from this study.  

The marketable kernel yield data was higher than in the literature for California almond 

varieties, likely because most of the literature was from many years ago when almond yields 

were considerably lower (Goldhamer et al., 2006; Goldhamer and Fereres, 2017). Management 

practices of almond orchards have improved marketable kernel yield in recent years. Light 

interception results aligned with yield results with no significant differences across irrigation 

treatments. The lack of significant effect of irrigation treatments on marketable kernel yield 

indicates that outlying variables other than irrigation contribute to the yield response of 

almonds. 
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The soil water content and midday stem water potential responded to the various RDI 

treatments in each variety, as shown in Figures 4.6 and 4.7, indicating that both measurements 

could be used as feedback on irrigation scheduling regimes based on phenological schedules 

such as hull-split. The effect of soil texture was observed to affect the midday stem water 

potential. Further research should evaluate the coupled roles of soil properties and variety 

differences that may together impact the productivity of almond orchards for a more robust 

understanding of how to improve water use. 

Implementing the intended irrigation treatments was cumbersome under the strip plot 

experimental design due to the involvement of 60 independently irrigated subplots that 

required precise amounts of irrigation water to be applied. The wireless communication system 

and solenoid valves were intended to ease the labor involved in independently controlling the 

irrigation amounts in 60 subplots in this study, but they were not reliable enough, resulting in 

frequent manual irrigations to keep the irrigation on track to meet the requirements of the 

experimental irrigation treatments. Problems that occurred included valves not opening or 

closing due to broken solenoids, frequent low battery voltage in the controllers, communication 

issues in the wireless communication system, and web server outages. Further research and 

development should refine the technology of remote irrigation control systems to achieve a high 

level of reliability for the application of irrigating by variety by row to reduce the labor and time 

for the farmer to implement RDI by variety.  
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4.5.  Conclusions 

Regulated deficit irrigation (RDI) during hull-split was implemented in Butte, Aldrich, and 

Nonpareil almond varieties with varying hull-split schedules in the same orchard and 

compared against RDI during Nonpareil hull-split in terms of marketable kernel yield, total 

water applied, water use efficiency, nut physical quality, light interception, soil water content, 

and midday stem water potential. RDI during Butte hull-split in Butte reduced the fraction of 

sealed shells compared to RDI during Nonpareil hull-split in Butte, increasing the vulnerability 

of the kernel to the environment and possible pests. Kernel thickness increased in the Aldrich 

variety when RDI was implemented during Aldrich hull-split instead of Nonpareil hull-split 

period. Water use efficiency decreased in the Butte variety when it was irrigated during Butte 

hull-split instead of Nonpareil hull-split due to fewer number of days in between the initiation 

of Butte hull-split and harvest compared to Nonpareil. RDI during hull-split in Aldrich, Butte, 

and Nonpareil varieties did not significantly decrease marketable kernel yield, showing that 

RDI is a promising strategy for reducing water use in almond orchards with multiple varieties 

while minimizing yield losses. No increase in marketable kernel yield was achieved by 

implementing RDI according to variety-specific hull-split compared to scheduling RDI in all 

three varieties according to Nonpareil hull-split. In terms of yield only, the best strategy for 

implementing RDI in almond orchards with multiple varieties would the least labor-intensive 

method of irrigating all varieties in the same orchard according to the Nonpareil variety hull-

split schedule. More research is needed for different orchard designs, varieties, and climates. 
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4.6. Appendix  

4.6.1. Cumulative water applied in 2020 

 

Figure 4.8. Cumulative water applied in the Aldrich variety under various irrigation regimes in 2020. 
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Figure 4.9. Cumulative water applied in the Butte variety under various irrigation regimes in 2020. 
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Figure 4.10. Cumulative water applied in the Nonpareil variety under various irrigation regimes in 2020. 
 

4.6.2. Soil water content in 2020 

 

Figure 4.11. Soil water content under different irrigation schedules in the Aldrich variety in 2020. S1 = 
75% ETc during Nonpareil hull-split period. S2 = 75% ETc during variety-specific hull-split period. S3 = 
50% ETc during Nonpareil hull-split period. S4 = 50% ETc during variety-specific hull-split period. 
Error bars are standard deviations.  
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Figure 4.12. Soil water content under different irrigation schedules in the Butte variety in 2020. S1 = 
75% ETc during Nonpareil hull-split period. S2 = 75% ETc during variety-specific hull-split period. S3 = 
50% ETc during Nonpareil hull-split period. S4 = 50% ETc during variety-specific hull-split period. 
Error bars are standard deviations.  
 

 

Figure 4.13. Soil water content under different irrigation schedules in the Nonpareil variety in 2020. S1 
= 75% ETc during Nonpareil hull-split period. S3 = 50% ETc during Nonpareil hull-split period. S5 = 
100% ETc during Nonpareil hull-split period. Error bars are standard deviations.  
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4.6.3. Midday stem water potential in 2020 

 

Figure 4.14. Midday stem water potential under different irrigation schedules in the Aldrich variety in 
2020. S1 = 75% ETc during Nonpareil hull-split period. S2 = 75% ETc during variety-specific hull-split 
period. S3 = 50% ETc during Nonpareil hull-split period. S4 = 50% ETc during variety-specific hull-split 
period. Error bars are standard deviations.  
 

 

Figure 4.15. Midday stem water potential under different irrigation schedules in the Butte variety in 
2020. S1 = 75% ETc during Nonpareil hull-split period. S2 = 75% ETc during variety-specific hull-split 
period. S3 = 50% ETc during Nonpareil hull-split period. S4 = 50% ETc during variety-specific hull-split 
period. Error bars are standard deviations.  
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Figure 4.16. Midday stem water potential under different irrigation schedules in the Nonpareil variety in 
2020. S1 = 75% ETc during Nonpareil hull-split period. S2 = 75% ETc during variety-specific hull-split 
period. S3 = 50% ETc during Nonpareil hull-split period. S4 = 50% ETc during variety-specific hull-split 
period. Error bars are standard deviations.  
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Chapter 5 

Site-specific data-driven modeling of midday stem water potential in almond trees 

 

Abstract 

Midday stem water potential (MSWP) is a valuable measurement of plant water status 

for guiding advanced regulated deficit irrigation regimes. In almond orchards, regulated deficit 

irrigation during hull-split to achieve MSWP between -1.4 and -1.8 MPa has been showed to 

reduce water use without significantly reducing yield, so it is important for almond farmers to 

have access to estimates of MSWP as a guide for irrigation scheduling. The objective of this 

research was to develop a site-specific low-cost data-driven model to estimate MSWP using 

environmental data that might be available to a farmer at a five-acre almond orchard with 

Nonpareil, Butte, and Aldrich varieties. Available data as potential explanatory variables of 

MSWP include soil water content at 30 cm, 60 cm, 90 cm, 120 cm, and 150 cm, solar radiation, air 

temperature, relative humidity, soil texture and gravel content at four layers, and fraction of 

photosynthetically active radiation intercepted by the canopy. Soil water content at 30 cm was 

the most significant explanatory variable of MSWP and showed a nonlinear relationship with 

MSWP, so the square of soil water content at 30 cm was included in the model. When all 

varieties were combined, the best regression model included the following explanatory 

variables of MSWP that were significant to enter and exit the model at the 0.001 significance 

level: soil water content at 30 cm, the square of soil water content at 30 cm, daily minimum air 

temperature, daily maximum relative humidity, daily minimum relative humidity, fraction of 

photosynthetically active radiation, and soil texture class between 10 to 86 cm (adjusted R2=0.66, 

RMSE=0.31). Separate regression models for each variety improved the correlations in the 

Aldrich and Butte varieties with explanatory inputs selected at the 0.05 significance level to 
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enter and exit the model (adjusted R2=0.74, RMSE=0.27 and adjusted R2=0.73, RMSE=0.28, 

respectively), but slightly worsened in the Nonpareil variety (R2=0.64, RMSE=0.30). This work 

decompresses midday stem water potential into explanatory data that might be available to a 

farmer. 

 

5.1. Introduction 

The Sustainable Groundwater Management Act of California (SGMA) has called for 

major limitations on groundwater pumping in overdrafted basins, many of which are 

agriculturally important areas. This new legislation places considerable pressure on almond 

farmers, many of whom have traditionally relied on groundwater, to re-evaluate their irrigation 

management practices. Regulated deficit irrigation (RDI) at hull-split is an irrigation strategy 

than can decrease water use while minimally affecting yield and possibly reducing hull rot, a 

pathogenic disease that can result in irreversible spur and shoot mortality (Goldhamer et al., 

2006; Teviotdale et al., 2001). RDI involves applying a percentage of the hypothetical crop water 

use of a well-watered plant of the same species during strategic growth stages that have 

potential for optimizing the water applied per pound of crop produced.  

The best way to implement RDI is to use a pressure chamber to target specific plant 

water status levels during hull-split in each variety. A pressure chamber measures stem water 

potential, which can be thought of as the “blood pressure of the plant” and is a sensitive 

indicator of the plant water status (A. Fulton et al., 2017; Harold McCutchan and Shackel, 1992; 

Shackel et al., 2010). Table 5.1 shows an example RDI scheme driven by midday stem water 

potential measurements for a multi-variety almond orchard (Fulton et al., 2003): 
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Table 5.1: Example regulated deficit irrigation scheme guided by pressure chamber measurements in three 
almond varieties 

Phenological 
Stage 

Target Stem 
Water 

Potential 
(MPa) 

Nonpareil Aldrich Butte 

Shoot growth 
period 

-0.6 to  
-0.8 

Early March to 
late June 

Mid-March to 
Mid-July 

Late-March to 
late July 

Just before 
hull-split 
initiation 

-1.0 to 
 -1.2 

Late June to early 
July 

Mid-July to late 
July 

Late July to early 
August 

Hull-split 
period 

-1.4 to  
-1.8 

Early July to 
mid-August 

Late July to mid-
September 

Early August to 
late September 

Post-Harvest -0.6 to  
-0.8 

Mid-August to 
late November 

Mid-September 
to late November 

Late-September 
to late November 

 
Stem water potential is driven by effective gradients in water potential through the soil, 

roots, stems, leaves, and atmosphere (Hillel, 2004). Soil water potential will be affected by soil 

water content, soil texture, and gravel content. Atmospheric evaporative demand will be driven 

by meteorological conditions, such as  solar radiation, air temperature, relative humidity, and 

wind speed. 

The pressure chamber is the standard instrument for measuring MSWP, but it is labor-

intensive and time-consuming (Jones, 2004). The pressure chamber has a sealed chamber where 

a leaf is inserted with the stem protruding through a rubber gasket. Pressure is increased in the 

chamber (often using a tank of nitrogen) until plant sap gushes out of the xylem to determine 

the leaf water potential (Sanden et al., 2010). Bagging shaded leaves for at least 20 minutes stops 

transpiration for the measurement of stem water potential (A. Fulton et al., 2017). Shaded 

bagged leaf water potential has been shown to be less variable due to changes in vapor pressure 

deficit (VPD) than unbagged leaf water potential and is more useful for irrigation scheduling (H 

McCutchan and Shackel, 1992). The labor-intensive nature of measuring MSWP and important 

of MSWP to optimizing water use efficiency in almond orchards has led to several efforts to 

model MSWP in almond trees. Prior research has focused on correlating leaf-temperature based 
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stress indices with MSWP in an attempt to develop a surrogate for the pressure chamber 

(Drechsler et al., 2019; Kizer et al., 2017). An artificial neural network approach attempted to 

model the relationship between environmental conditions and plant water status (Meyers et al., 

2019). However, all those empirical modelling attempts required a specialized leaf monitoring 

system and were not easily transferable between fields, between seasons, or even between 

leaves.  

Attempts to model MSWP using physics-based approaches have also been made. Van 

den Honert (1948) developed an Ohm’s law electrical analogy of water movement through a 

plant that involves analyzing the water potentials and resistances along the water pathways 

through the plant, but this model is a steady-state oversimplification of a highly complex 

process of water movement through the soil-plant-atmosphere continuum. Rings et al. (2013) 

used a nonlinear hydrodynamic flow model to simulate unsaturated flow in the soil-tree 

domain to simulate stem water potential in a white fur tree with satisfactory agreement with 

stem water potential measurements. Correlations between volumetric soil water content in the 

upper 1.5 m and the difference between the observed MSWP and the baseline MSWP have been 

satisfactory in prune (Shackel et al., 2000). 

Other efforts have focused on using artificial intelligence to estimate MSWP, but those 

models risk overfitting to the training data set and are often viewed as black boxes (Valdés-Vela 

et al., 2015). A machine learning approach to modeling MSWP in grapevine as a function of 

maximum and minimum air temperature, rainfall, soil texture, gravel, and slope using a 

gradient boosting machine yielded outstanding predicted performance (Brillante et al., 2016).  

The work presented here uses data-driven modeling approaches to describe trends in 

midday stem water potential as a function of environmental data that might be available to an 

almond farmer. This environmental data includes soil water content, soil texture, gravel 
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content, fraction of photosynthetically active radiation intercepted by the canopy (fPAR), and 

air temperature and relative humidity from a local weather station, such as the California 

Irrigation Management Information System (CIMIS). This paper also investigates whether 

significant explanatory environmental variables of MSWP vary across almond varieties. The 

overall goal of this research is to determine what environmental data is important in developing 

site-specific data-driven models of MSWP in almond trees. 

 

5.2. Materials and Method 

5.2.1. Site description 

The study area was a 1.6-acre almond [Prunus dulcis] orchard of mature cv. ‘Nonpareil,’ 

‘Aldrich,’ and ‘Butte’ trees planted on peach rootstock (4.3 m tree spacing x 6 m row spacing) 

located near Arbuckle, California, United States (38.97 °N, 122.07° W).  The study area was 

described in more detail in Drechsler and Kisekka (2021). This study area had considerable 

spatial variability in soil texture, as shown in Figure 5.1 and was the reason for another study 

that involved the creation of management zones (Kizer et al., 2017). 

 

Figure 5.1. Digital elevation, shallow electrical conductivity, leaf temperature, canopy cover, and silt and 
sand content in the top 30 cm. Reproduced from Kizer et al. (2017). 
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5.2.2. Data collection 

Midday stem water potential (MSWP) was measured at 60 trees using a pressure chamber 

(Model 615D, PMS Instruments, Albany, Oregon, USA) twice a week from June to September in 

2019 and from April to September in 2020, usually immediately before an irrigation during a 

deficit irrigation experiment. One shaded leaf in the lower canopy of each of the 60 trees was 

covered with a mylar bag for at least 20 minutes prior to excision immediately (less than 30 

seconds) before the pressure chamber measurement (between 12:00 and 16:00 hours). Table 5.3 

shows the dates of all the MSWP measurements. Between April and May of 2020, MSWP was 

measured at only 8 to 19 of the 60 trees under the grower’s irrigation regime prior to the deficit 

irrigation treatments of the experiment that started in July of 2020. In 2019, MSWP was 

measured during the grower’s irrigation only once on 7/2/19. All the other dates in 2019 were 

under the deficit irrigation experiment. Figure 5.2 shows a map of the 60 locations of midday 

stem water potential and neutron probe measurements, denoting by black dots. 
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Figure 5.2. A map of the 15-row almond orchard with black dots indicating the 60 locations of the 
neutron probe and midday stem water potential measurements. 
 

Neutron probe counts were measured at 30 cm, 60 cm, 90 cm, 120 cm, and 150 cm depths at 

60 locations using a neutron probe (CPN 503 ELITE Hydroprobe, InstroTek, Raleigh, North 

Carolina, USA) at 60 locations in the orchard between April and September in 2019 and 2020 

and usually immediately before irrigation. A local calibration equation was developed using 

volumetric soil samples taken at 30 cm and 60 cm depths from the study field in 2020 (N=11, 
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R2=0.86). The neutron probe counts were converted into volumetric soil water content with the 

calibration equation.  

Photosynthetically active radiation (PAR) intercepted by the canopy was measured at solar 

noon in each subplot of the experiment on June 14th and July 20th, 2019 and on June 8th and 

August 2nd, 2020 using a mobile PAR measurement system  (Lampinen et al., 2012). The orchard 

was planted with alternating rows of three different varieties, so data from the left and right 

sides of the mobile PAR measurement system were kept separate to allow partitioning of 

canopy PAR interception for each variety independently.  

Solar radiation (pyranometer), air temperature/relative humidity (HMP35), wind speed 

(anemometer), and reference evapotranspiration (Penman-Monteith equation) data were 

downloaded from the Williams CIMIS station. Soil texture was classified at 0-10, 10-86, 86-112, 

and 112-183 cm layers using the pipette method from soil cores obtained from a Geoprobe. 

There were six Nonpareil trees that were intensively monitoring using affordable soil water 

content, soil water potential, and in-tree stem water potential sensors using the setup shown in 

Figure 5.3. At these six trees, soil water content was measured at 30 cm, 60 cm, and 90 cm at six 

locations using commercially available dielectric sensors (TEROS 10 and 12, METER Group, 

Pullman, WA) located approximately 1 m away from the neutron probe access tube. The 

neutron probe had a larger measurement volume of influence than the dielectric sensors, so the 

measurements were expected to possibly have different correlations with MSWP. Soil water 

potential was measured at 30 cm, 60 cm, and 90 cm at six locations using commercially available 

sensors (TEROS 21, METER Group, Pullman, WA) located approximately 10 cm away from the 

dielectric soil water content sensors. MSWP was also measured at these six trees in 2020 using 

commercially available sensors that were embedded into the tree trunk and connected to the 

vascular tissue (StemSense™, Saturas, Pasadena, CA and Migdal HaEemeq , Israel).  
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Figure 5.3. A conceptual diagram of the data collection setup in the six intensively monitored Nonpareil 
trees.  
 

5.2.3. Variable input selection 

Available data as possible predictor variables of midday stem water potential included: soil 

water content at 30 cm, 60 cm, 90 cm, 120 cm, and 150 cm measured using a neutron probe 

[m3/m3], soil water content at 30 cm, 60 cm, and 90 cm measuring using dielectric sensors 

[m3/m3], solar radiation [W/m2], air temperature [℃], relative humidity [%], vapor pressure 

deficit [kPa], water potential of the air [MPa], percent sand, silt, clay, and gravel at four layers 

[%], and fraction of photosynthetically active radiation intercepted by the canopy (fPAR) 

[unitless]. The fPAR measurements can be thought of as a proxy of the canopy sizes of the 

various varieties in this study. The percent sand, silt, clay, and gravel at four layers were 

classified once during the study period and were assumed to not change during the study 
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period. The stepwise selection procedure in SAS was used for selecting the input variables for 

the multiple linear regression models. When severe multicollinearity (variance inflation factor > 

10 or Pearson correlation coefficient > 0.95) was found between similar possible input variables 

(such as between solar radiation at solar noon and daily average solar radiation), the possible 

input variable with the better correlation with MSWP was used in the stepwise selection 

procedure. Vapor pressure deficit (VPD) and the water potential of the air (𝜑𝑎) had severe 

multicollinearity with air temperature and relative humidity, so only air temperature and 

relative humidity were used in the stepwise selection procedure. The average air temperature 

was severely correlated with the maximum and minimum air temperature (and similarly, 

relative humidity), so only minimum and maximum air temperature were used in the stepwise 

selection procedure. Both the significance level to enter the model (SLE) and the significance 

level to exit the model (SLE) in the stepwise selection procedure were tested at two different 

values: 0.001 (to allow fewer variables to enter the model) and 0.05 (to allow more variables to 

enter the model). More details about the stepwise selection procedure can be found in the SAS 

documentation on Proc Reg (https://documentation.sas.com/). 
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Table 5.2. Variable input selection for the data-driven modeling approach for estimating midday stem 
water potential 

Type of variable Variables 

Meteorological variables Daily minimum relative humidity 
Daily maximum relative humidity 
Daily minimum air temperature 
Daily maximum air temperature 
Daily solar radiation at solar noon 
 

Soil water content  Soil water content at 30 cm 
Soil water content at 60 cm 
Soil water content at 90 cm 
Soil water content at 120 cm 
Soil water content at 150 cm 
 

Canopy characteristics Variety  
Fraction of photosynthetically active 
radiation intercepted by the canopy 
(fPAR) 
 

Soil profile characteristics Soil texture 0-10 cm (layer A) 
Soil texture 10-86 cm (layer B) 
Soil texture 86-112 cm (layer C) 
Soil texture 112-180 cm (layer D) 
Gravel content 0-10 cm (layer A) 
Gravel content 10-86 cm (layer B) 
Gravel content 86-112 cm (layer C) 
Gravel content 112-180 cm (layer D) 
 

 

5.2.4. Model development 

The regression models were developed using the Proc Reg procedure in SAS 

(https://documentation.sas.com/). Multiple linear regression models and nonlinear regression 

models were developed for each variety and for all varieties combined. An artificial neural 

network (ANN) was developed in MATLAB using the variables selected from the stepwise 

selection as input variables but correlation between predicted and measured MSWP was poor 

(less than R2=0.3).  
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5.3. Results 

5.3.1. Descriptive statistics  

Table 5.3 shows the descriptive statistics of the MSWP measurements. Deficit irrigation 

treatments were applied on all the dates of MSWP measurements in 2019 and in July through 

September of 2020. The purpose of this paper was to develop a data-driven model of MSWP, so 

the deficit irrigation details are explained in another paper (Drechsler and Kisekka, 2021). The 

table shows that a wide range of MSWP values were obtained from 1233 measurements from a 

total of 29 different dates, making the data set suitable for data-driven modeling approaches. 

Figure 5.4 shows a distribution analysis of the MSWP data, indicating that there was a wide 

range of measurements collected. 
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Table 5.3. Descriptive statistics of midday stem water potential [MPa] on various dates 

Analysis Variable : SWP (MPa) 

Date Mean 

Standard 

Deviation Minimum Maximum 

Number of 

Observations 

07/02/19 -1.63 0.27 -2.17 -0.80 24 

07/18/19 -1.52 0.48 -2.70 -0.50 49 

07/26/19 -1.32 0.41 -2.57 -0.80 51 

07/30/19 -1.27 0.57 -2.88 -0.64 52 

08/07/19 -1.58 0.48 -2.48 -0.74 55 

08/13/19 -2.06 0.43 -2.79 -1.13 54 

08/19/19 -0.97 0.17 -1.44 -0.68 59 

08/21/19 -1.38 0.37 -2.23 -0.85 20 

08/23/19 -1.92 0.46 -2.80 -0.93 59 

08/28/19 -1.68 0.30 -2.55 -1.00 39 

08/30/19 -1.37 0.32 -1.98 -0.87 20 

09/08/19 -1.19 0.47 -2.64 -0.74 59 

04/22/20 -0.57 0.05 -0.66 -0.50 21 

04/30/20 -0.83 0.11 -1.00 -0.63 11 

05/07/20 -1.01 0.21 -1.50 -0.70 24 

05/20/20 -0.60 0.07 -0.75 -0.46 23 

06/16/20 -1.10 0.35 -1.83 -0.61 24 

06/25/20 -0.97 0.26 -1.59 -0.63 22 

06/30/20 -1.25 0.31 -1.79 -0.78 22 
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Table 5.3 – continued 

Date Mean 

Standard 

Deviation Minimum Maximum 

Number of 

Observations 

07/07/20 -1.03 0.27 -1.76 -0.58 59 

07/10/20 -1.48 0.44 -2.36 -0.67 59 

07/14/20 -0.95 0.15 -1.51 -0.76 59 

07/21/20 -0.81 0.09 -1.02 -0.60 58 

07/28/20 -1.49 0.48 -2.50 -0.76 56 

07/31/20 -1.27 0.48 -2.77 -0.69 58 

08/03/20 -1.83 0.43 -2.69 -0.96 38 

08/07/20 -1.26 0.36 -2.10 -0.66 58 

08/11/20 -1.35 0.57 -2.63 -0.67 44 

09/03/20 -1.46 0.53 -2.88 -0.79 56 

 

 

Figure 5.4. Distribution analysis of midday stem water potential. 
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5.3.2. Simple regression approach  

 There is a clear nonlinear relationship between MSWP and soil water content at 30 cm, 

as shown by the quadratic regression model in Figure 5.5. This model includes all the data from 

2019 and 2020 from Nonpareil, Butte, and Aldrich varieties, totaling 1222 observations. As the 

soil water content at 30 cm increases, the MSWP increases until around 0.1 (v/v) when there is a 

diminishing increasing response to MSWP due to increases in soil water content at 30 cm. 

Although the model shows a negative relationship between MSWP and soil water content at 30 

cm after around 0.2 (v/v), it makes more physical sense for the relationship to be flat, indicating 

no change in MSWP upon increases in soil water content at 30 cm. Low density of 

measurements at large soil water content at 30 cm resulted in more uncertainty in the model 

estimates of MSWP in that region. 

 

 

Figure 5.5. A quadratic regression model of midday stem water potential explained by soil water content 
measured at 30 cm below the soil surface. The dashed curves indicate the 95% prediction limits of the 
regression model. 
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 Table 5.4 shows the parameter estimates from a quadratic regression model of 

MSWP with soil water content at 30 cm and the square of soil water content at 30 cm as 

explanatory variables. The adjusted R2 was 0.5158, the RMSE was 0.36383, and the number of 

observations was 1222. 

𝜑𝑠𝑡𝑒𝑚 [𝑀𝑃𝑎] = −20.46 [𝑀𝑃𝑎] × 𝜃30 𝑐𝑚
2 + 8.05 [𝑀𝑃𝑎] × 𝜃30 𝑐𝑚 − 1.69 [𝑀𝑃𝑎]    Equation 5.1 

where 𝜑𝑠𝑡𝑒𝑚 is the midday stem water potential and 𝜃30 𝑐𝑚 is the soil water content at 30 cm. 

 

Table 5.4. Coefficients of simple quadratic regression of midday stem water potential explained by soil 
water content measured at 30 cm below the soil surface. 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 -1.69351 0.01469 -115.26 <.0001 

Soil water content at 30 
cm [v/v] 

1 8.04888 0.31242 25.76 <.0001 

Square of soil water 
content at 30 cm [v/v]2 

1 -20.45886 1.48906 -13.74 <.0001 

 
 
5.3.3. Multiple linear regression of MSWP  

This section shows candidate multiple linear regression models of MSWP with soil 

water content and meteorological data as possible explanatory variables (soil texture and gravel 

content as possible explanatory variables will be discussed later in this paper). All terms in 

these candidate models are linear. When all the available data from 2019 and 2020 were 

separated by variety, there were some differences in significant predictors of MSWP across the 

varieties. The stepwise selection procedure chose the following independent variables for the 

Aldrich variety: soil water content at 30 cm, daily maximum relative humidity, daily minimum 

relative humidity, and daily minimum air temperature. The adjusted R-square value was 

0.6484, the RMSE was 0.31500, and the number of observations used in the model was 367. The 
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number of parameters in the selected model was 4 and the C(p) value was 10.58. Table 5.5 

shows the multiple linear regression results for the Aldrich variety. Table 5.6 shows alternative 

multiple linear regression models involving explanatory variables that met SLE=0.05 and 

SLS=0.05. 

 
Table 5.5. Multiple linear regression model of midday stem water potential in the Aldrich variety using 
soil water content and meteorological data 

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Variance 
Inflation 

Intercept 1 2.15022 0.42286 5.08 <.0001 0 
Soil water content at 30 cm 
[v/v] 

1 4.43072 0.21200 20.90 <.0001 1.08912 

Daily maximum relative 
humidity [%] 

1 -0.03572 0.00438 -8.15 <.0001 1.55467 

Daily minimum relative 
humidity [%] 

1 0.01245 0.00249 5.00 <.0001 1.65610 

Daily minimum air 
temperature [℃] 

1 -0.07607 0.00933 -8.15 <.0001 1.29908 
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Table 5.6. Potential multiple linear regression models of midday stem water potential in the Aldrich 
variety using soil water content and meteorological data 

Number i
n 

Model R-Square 
Adjusted 
R-Square C(p) MSE Variables in Model 

1 0.5596 0.5584 102.509
2 

0.1246
3 

Soil water content at 30 cm [v/v] 

1 0.0570 0.0544 633.660
3 

0.2668
3 

Daily minimum air temperature [℃] 

1 0.0392 0.0365 652.526
5 

0.2718
8 

Daily maximum relative humidity [%] 

2 0.5883 0.5860 74.1283 0.1168
1 

Soil water content at 30 cm [v/v]  
Daily minimum air temperature [℃] 

2 0.5860 0.5837 76.5809 0.1174
7 

Soil water content at 30 cm [v/v]  
Daily maximum relative humidity [%] 

2 0.5608 0.5584 103.146
1 

0.1246
0 

Soil water content at 30 cm [v/v] 
Daily minimum relative humidity [%] 

3 0.6282 0.6252 33.9163 0.1057
7 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

3 0.5885 0.5850 75.9733 0.1170
9 

Soil water content at 30 cm [v/v] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 

3 0.5884 0.5850 76.0370 0.1171
1 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 

4 0.6522 0.6484 10.5800 0.0992
3 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 

 

The stepwise selection procedure chose the following independent variables for the 

Butte variety: soil water content at 30 cm, fPAR, daily maximum relative humidity, daily 

minimum relative humidity, daily minimum air temperature, and daily average solar radiation. 

The adjusted R-square value was 0.5607, the RMSE was 0.34334, and the number of 

observations in the model was 383. The number of parameters in the model was 6 and the C(p) 

value was 17.8.  Table 5.7 shows the multiple linear regression results for the Butte variety. 
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Table 5.8 shows alternative multiple linear regression models involving explanatory variables 

that met SLE=0.05 and SLS=0.05. 

 
Table 5.7. Multiple linear regression model of midday stem water potential in the Butte variety using soil 
water content and meteorological data 

Parameter Estimates 

Variable DF 

Paramete
r 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 0.28546 0.53746 0.53 0.5956 0 

Soil water content at 30 cm [v/v] 1 3.47550 0.21658 16.05 <.0001 1.20980 

fPAR 1 0.01857 0.00260 7.13 <.0001 1.13025 
Daily maximum relative 
humidity [%] 

1 -0.03109 0.00466 -6.67 <.0001 1.61308 

Daily minimum relative 
humidity [%] 

1 0.00737 0.00262 2.81 0.0052 1.62936 

Daily minimum air temperature 
[℃] 

1 -0.07658 0.00999 -7.67 <.0001 1.31766 

Daily average solar radiation [W 
m-2] 

1 0.00161 0.00049166 3.28 0.0011 1.21071 
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Table 5.8. Potential multiple linear regression models of midday stem water potential in the Butte variety 
using soil water content and meteorological data 

Number in 
Model R-Square 

Adjusted 
R-Square C(p) MSE Variables in Model 

1 0.3611 0.3594 192.5966 0.17190 Soil water content at 30 cm [v/v] 

1 0.0798 0.0774 444.1979 0.24757 Daily average solar radiation [W m-2] 

1 0.0777 0.0752 446.1312 0.24815 Daily maximum relative humidity [%] 

2 0.4571 0.4542 108.7023 0.14645 Soil water content at 30 cm [v/v] 
fPAR 

2 0.4191 0.4161 142.6545 0.15669 Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 

2 0.4002 0.3970 159.5800 0.16180 Soil water content at 30 cm [v/v] 
Daily minimum air temperature [℃] 

3 0.4956 0.4916 76.2393 0.13642 Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 

3 0.4909 0.4868 80.4863 0.13771 Soil water content at 30 cm [v/v] 
fPAR  
Daily minimum air temperature [℃] 

3 0.4824 0.4783 88.0646 0.14000 Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

4 0.5487 0.5439 30.7602 0.12239 Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

4 0.5154 0.5103 60.4902 0.13140 Soil water content at 30 cm [v/v] 
fPAR  
Daily minimum air temperature [℃] 
Daily average solar radiation [W m-2] 

4 0.4997 0.4944 74.5527 0.13567 Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily average solar radiation [W m-2] 

5 0.5585 0.5527 23.9503 0.12004 Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 
Daily average solar radiation [W m-2] 

5 0.5552 0.5493 26.9264 0.12094 Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 
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Table 5.8 – continued 

Number in 
Model R-Square 

Adjusted 
R-Square C(p) MSE Variables in Model 

5 0.5164 0.5100 61.6344 0.13149 Soil water content at 30 cm [v/v] 
fPAR  
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 
Daily average solar radiation [W m-2] 

6 0.5676 0.5607 17.8307 0.11788 Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 
Daily average solar radiation [W m-2] 

 
The stepwise selection procedure chose the following independent variables for the 

Nonpareil variety: soil water content at 30 cm and 150 cm, fPAR, daily maximum relative 

humidity, and daily minimum air temperature. The adjusted R-square value was 0.5465, the 

RMSE was 0.33851, the number of observations was 369, and the C(p) value was 13.65 (as 

opposed to 5 parameters in the model), indicating some bias in the best model. Table 5.9 shows 

the multiple linear regression results for the Nonpareil variety. Table 5.10 shows alternative 

multiple linear regression models involving explanatory variables that met SLE=0.05 and 

SLS=0.05. 

Table 5.9. Multiple linear regression model of midday stem water potential in the Nonpareil variety using 
soil water content and meteorological data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value 
Pr > |t

| 
Variance 
Inflation 

Intercept 1 -0.21137 0.54987 -0.38 0.7009 0 
Soil water content at 30 
cm [v/v] 

1 4.10268 0.23540 17.43 <.0001 1.22664 

Soil water content at 
150 cm [v/v] 

1 -0.58418 0.25634 -2.28 0.0233 1.40726 

fPAR 1 0.01387 0.00324 4.27 <.0001 1.32504 
Daily maximum 
relative humidity [%] 

1 -0.01425 0.00373 -3.82 0.0002 1.25906 

Daily minimum air 
temperature [℃] 

1 -0.06866 0.00907 -7.57 <.0001 1.07315 
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Table 5.10. Potential multiple linear regression models of midday stem water potential in the Nonpareil 
variety using soil water content and meteorological data 

Number i
n 
Model R-Square 

Adjusted 
R-Square C(p) MSE Variables in Model 

1 0.4158 0.4142 119.027
4 

0.1480
1 

Soil water content at 30 cm [v/v] 

1 0.0901 0.0876 388.897
0 

0.2305
3 

Daily minimum air temperature [℃] 

1 0.0267 0.0240 441.465
9 

0.2466
1 

Daily maximum relative humidity [%] 

2 0.4738 0.4709 72.9673 0.1336
8 

Soil water content at 30 cm [v/v] 
fPAR 

2 0.4719 0.4691 74.5228 0.1341
6 

Soil water content at 30 cm [v/v] 
Daily minimum air temperature [℃] 

2 0.4338 0.4307 106.096
4 

0.1438
4 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 

3 0.5321 0.5283 26.6525 0.1191
9 

Soil water content at 30 cm [v/v] 
fPAR  
Daily minimum air temperature [℃] 

3 0.5097 0.5057 45.2459 0.1249
1 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

3 0.4868 0.4825 64.2443 0.1307
5 

Soil water content at 30 cm [v/v] 
Soil water content at 150 cm [v/v] 
Daily minimum air temperature [℃] 

4 0.5463 0.5413 16.9546 0.1159
1 

Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

4 0.5347 0.5296 26.5233 0.1188
6 

Soil water content at 30 cm [v/v] 
Soil water content at 150 cm [v/v] 
fPAR  
Daily minimum air temperature [℃] 

4 0.5301 0.5250 30.3069 0.1200
3 

Soil water content at 30 cm [v/v] 
Soil water content at 150 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

5 0.5527 0.5465 13.6515 0.1145
9 

Soil water content at 30 cm [v/v] 
Soil water content at 150 cm [v/v] 
fPAR  
Daily maximum relative humidity [%]  
Daily minimum air temperature [℃] 
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When all varieties were combined, the stepwise selection procedure chose the following 

independent variables: soil water content at 30, 60, and 90 cm, fPAR, daily minimum and 

maximum relative humidity, and daily minimum and maximum air temperature. The adjusted 

R-square value was 0.5839, the RMSE was 0.33825, the number of observations was 1119, and 

C(p) was 10.6. Table 5.11 shows the multiple linear regression results for all varieties combined. 

This model had the least bias of all the possible models with all or some of the selected input 

variables, so therefore it was the best model. Table 5.12 shows alternative multiple linear 

regression models involving explanatory variables that met SLE=0.05 and SLS=0.05. The soil 

water content data in this table were from the neutron probe. Soil water content at 30 cm had 

the best correlation with MSWP [adjusted R2 of 0.4375], followed by soil water content at 60 cm 

[adjusted R2 of 0.2325] and then by soil water content at 90 cm [adjusted R2 of 0.0801]. This 

result suggests that measurements of soil water content at 30 cm could be useful to farmers in 

attempting to target specific MSWP values during certain growth stages. Improvements in 

correlation were achieved by including both fPAR, daily minimum and maximum air 

temperature, and daily minimum and maximum relative humidity. The addition of fPAR helps 

to factor in variety differences in canopy size that may affect MSWP. This result says that a 

farmer should install a soil water content at 30 cm, 60 cm, and 90 cm and have a relative 

humidity and air temperature sensor (or access to a nearby weather station with those sensors) 

for the best correlations with MSWP. 
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Table 5.11. Multiple linear regression model of midday stem water potential of all varieties combined 
using soil water content and meteorological data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 0.64322 0.29409 2.19 0.0289 0 
Soil water content at 30 cm 
[v/v] 

1 3.84713 0.18178 21.16 <.0001 2.34826 

Soil water content at 60 cm 
[v/v] 

1 0.42332 0.18107 2.34 0.0196 3.49750 

Soil water content at 90 cm 
[v/v] 

1 -0.46304 0.15566 -2.97 0.0030 2.30055 

fPAR 1 0.01336 0.00139 9.60 <.0001 1.12809 
Daily maximum relative 
humidity [%] 

1 -0.03159 0.00290 -10.91 <.0001 1.99174 

Daily minimum relative 
humidity [%] 

1 0.01239 0.00214 5.79 <.0001 3.32550 

Daily maximum air 
temperature [℃] 

1 0.01580 0.00636 2.49 0.0131 2.82155 

Daily minimum air 
temperature [℃] 

1 -0.08918 0.00829 -10.76 <.0001 2.74022 
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Table 5.12. Potential multiple linear regression models of midday stem water potential using soil water 
content and meteorological data 

Number in 
Model 

R-
Square 

Adjusted 
R-Square C(p) MSE Variables in Model 

1 0.4380 0.4375 397.209
1 

0.1546
7 

Soil water content at 30 cm [v/v] 
 

1 0.2331 0.2325 948.435
4 

0.2110
4 

Soil water content at 60 cm [v/v] 

1 0.0809 0.0801 1358.02
2 

0.2529
3 

Soil water content at 90 cm [v/v] 

2 0.5006 0.4997 230.656
3 

0.1375
5 

Soil water content at 30 cm [v/v] 
fPAR 

2 0.4811 0.4802 283.141
6 

0.1429
2 

Soil water content at 30 cm [v/v] 
Daily minimum air temperature [℃] 

2 0.4674 0.4665 320.042
5 

0.1467
0 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 

3 0.5371 0.5359 134.484
9 

0.1276
1 

Soil water content at 30 cm [v/v] 
fPAR  
Daily minimum air temperature [℃] 

3 0.5298 0.5285 154.179
7 

0.1296
3 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

3 0.5176 0.5163 187.111
8 

0.1330
1 

Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 

4 0.5689 0.5674 50.8934 0.1189
5 

Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

4 0.5396 0.5380 129.808
7 

0.1270
4 

Soil water content at 30 cm [v/v] 
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 

4 0.5384 0.5367 133.163
9 

0.1273
9 

Soil water content at 30 cm [v/v] 
Soil water content at 90 cm [v/v] 
fPAR  
Daily minimum air temperature [℃] 

5 0.5811 0.5792 20.2303 0.1157
0 

Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 
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Table 5.12 – continued 

Number in 
Model 

R-
Square 

Adjusted 
R-Square C(p) MSE Variables in Model 

5 0.5709 0.5690 47.5952 0.1185
1 

Soil water content at 30 cm [v/v] 
Soil water content at 90 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum air temperature [℃] 

5 0.5709 0.5690 47.6294 0.1185
2 

Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily maximum air temperature [℃] 
Daily minimum air temperature [℃] 

6 0.5834 0.5811 15.9856 0.1151
7 

Soil water content at 30 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily maximum air temperature [℃] 
Daily minimum air temperature [℃] 

6 0.5823 0.5800 19.0270 0.1154
8 

Soil water content at 30 cm [v/v] 
Soil water content at 90 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 

6 0.5814 0.5791 21.3681 0.1157
2 

Soil water content at 30 cm [v/v] 
Soil water content at 60 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 

7 0.5848 0.5822 14.0995 0.1148
7 

Soil water content at 30 cm [v/v] 
Soil water content at 90 cm [v/v]  
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily maximum air temperature [℃] 
Daily minimum air temperature [℃] 

7 0.5846 0.5820 14.8125 0.1149
4 

Soil water content at 30 cm [v/v] 
Soil water content at 60 cm [v/v] 
Soil water content at 90 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily minimum air temperature [℃] 
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Table 5.12 – continued 

Number in 
Model 

R-
Square 

Adjusted 
R-Square C(p) MSE Variables in Model 

7 0.5836 0.5810 17.4867 0.1152
2 

Soil water content at 30 cm [v/v] 
Soil water content at 60 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily maximum air temperature [℃] 
Daily minimum air temperature [℃] 

8 0.5869 0.5839 10.6256 0.1144
1 

Soil water content at 30 cm [v/v] 
Soil water content at 60 cm [v/v] 
Soil water content at 90 cm [v/v] 
fPAR  
Daily maximum relative humidity [%] 
Daily minimum relative humidity [%] 
Daily maximum air temperature [℃] 
Daily minimum air temperature [℃] 

 

5.3.4. Nonlinear regression of MSWP  

 The simple nonlinear regression between MSWP and soil water content at 30 cm shown 

in Figure 5.5 that there is a nonlinear relationship between MSWP and soil water content at 30 

cm. Therefore, the square of soil water content at 30 cm was tried as a possible explanatory 

variable in various nonlinear regression models of MSWP in addition to linear soil water 

content terms at various depths and linear meteorological terms. Because both soil water 

content at 30 cm and the square of soil water content at 30 cm were included in the model, the 

multicollinearity increased but the variance inflation factor was still less than 10 for all input 

variables, which was acceptable. A significance level to enter and exit the model was 0.001 

(stricter than the previously used 0.05 to avoid too many predictor variables). The square of soil 

water content at 30 cm satisfied the SLE=0.001 and SLS=0.001 required in all varieties and in the 

“all varieties” model. The addition of the square of soil water content at 30 cm increased the 
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adjusted R2 to 0.6338 in the selected “all varieties” model, 0.6902 in the selected Aldrich model, 

0.6221 in the selected Butte model, and 0.5838 in the selected Nonpareil model. Tables 5.13 to 

5.16 show the parameter estimates for the selected models for “all varieties”, Aldrich, Butte, and 

Nonpareil. Table 5.17 shows detailed statistics about each of the selected models. 

 
Table 5.13: Nonlinear regression of MSWP with all varieties combined using soil water content and 
meteorological data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 0.40989 0.26963 1.52 0.1287 0 
Soil water content at 
30 cm [v/v] 

1 7.32367 0.28767 25.46 <.0001 6.68160 

Square of the soil 
water content at 30 
cm [v/v] 

1 -17.47298 1.35248 -12.92 <.0001 6.53958 

fPAR 1 0.01354 0.00127 10.66 <.0001 1.06861 
Daily maximum 
relative humidity [%] 

1 -0.02550 0.00247 -10.31 <.0001 1.65200 

Daily minimum 
relative humidity [%] 

1 0.00757 0.00142 5.34 <.0001 1.65621 

Daily minimum air 
temperature [℃] 

1 -0.06753 0.00533 -12.68 <.0001 1.28617 

 
 
Table 5.14. Nonlinear regression of MSWP in the Aldrich variety using soil water content and 
meteorological data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 1.87359 0.39885 4.70 <.0001 0 

Soil water content at 
30 cm [v/v] 

1 7.58681 0.48925 15.51 <.0001 6.58308 

Square of the soil 
water content at 30 
cm [v/v] 

1 -17.63613 2.49752 -7.06 <.0001 6.38791 

Daily maximum 
relative humidity [%] 

1 -0.03335 0.00413 -8.08 <.0001 1.56504 

Daily minimum 
relative humidity [%] 

1 0.01151 0.00234 4.91 <.0001 1.66140 

Daily minimum air 
temperature [℃] 

1 -0.07083 0.00879 -8.06 <.0001 1.30842 
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Table 5.15. Nonlinear regression of MSWP in the Butte variety using soil water content and 
meteorological data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 -0.78840 0.47890 -1.65 0.1005 0 
Soil water content at 
30 cm [v/v] 

1 7.42871 0.49830 14.91 <.0001 7.44518 

Square of the soil 
water content at 30 
cm [v/v] 

1 -17.72218 2.11353 -8.39 <.0001 7.39130 

fPAR 1 0.01784 0.00242 7.38 <.0001 1.13192 
Daily maximum 
relative humidity [%] 

1 -0.01958 0.00369 -5.31 <.0001 1.17368 

Daily minimum air 
temperature [℃] 

1 -0.05949 0.00840 -7.08 <.0001 1.08231 

Daily average solar 
radiation [W m-2] 

1 0.00175 0.0004533
6 

3.87 0.0001 1.19684 

 
 
Table 5.16. Nonlinear regression of MSWP in the Nonpareil variety using soil water content and 
meteorological data 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 -2.15109 0.24332 -8.84 <.0001 0 
Soil water content at 
30 cm [v/v] 

1 7.30067 0.51292 14.23 <.0001 6.34523 

Square of the soil 
water content at 30 
cm [v/v] 

1 -18.62090 2.64286 -7.05 <.0001 6.33524 

fPAR 1 0.01880 0.00274 6.86 <.0001 1.02952 
Daily minimum air 
temperature [℃] 

1 -0.05730 0.00844 -6.79 <.0001 1.01341 
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Table 5.17: Detailed statistics of nonlinear regression of MSWP with SLE=0.001 and SLS=0.001 

Variety Selected Inputs Output Adjusted 
R2 

RMSE C(p) Number 
in the 
model 

All varieties Soil water content at 30 
cm 
(Soil water content at 30 
cm)2 

fPAR 
Daily maximum relative 
humidity 
Daily minimum relative 
humidity 
Daily minimum air 
temperature 
 

MSWP 0.6338 0.31732 29.2 6 

Aldrich Soil water content at 30 
cm 
(Soil water content at 30 
cm)2 

Daily maximum relative 
humidity 
Daily minimum relative 
humidity 
Daily minimum air 
temperature 
 

MSWP 0.6902 0.29568 11.4 5 

Butte Soil water content at 30 
cm 
(Soil water content at 30 
cm)2 

fPAR 
Daily maximum relative 
humidity 
Daily minimum air 
temperature 
Daily average solar 
radiation 
 

MSWP 0.6221 0.31843 29.0 6 

Nonpareil Soil water content at 30 
cm 
(Soil water content at 30 
cm)2 

fPAR 
Daily minimum air 
temperature 
 

MSWP 0.5838 0.32430 26.0 4 
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5.3.5.  Soil texture and gravel as possible explanatory variables of MSWP 

 This section demonstrates how the nonlinear regression models can considerably 

improve when soil texture and gravel class are allowed as possible explanatory variables of 

MSWP. Soil texture and gravel content class at four layers were included as possible 

explanatory variables with (1) a strict SLS=0.001 and SLE=0.001 (Table 5.18), and (2) then later 

with a more flexible SLS=0.05 and SLS=0.05 (Table 5.23). Soil texture at layer B was significant 

in the “all varieties” model with SLS=0.001 and SLE=0.001. Soil texture at layer A was 

significant in the Butte model with SLS=0.001 and SLE=0.001. Soil texture at layer C was 

significant in the Aldrich model with SLS=0.001 and SLE=0.001. No soil texture layer was 

significant in the Nonpareil model with SLS=0.001 and SLE=0.001. None of the gravel class 

layers were significant in any of the varieties with SLS=0.001 and SLE=0.001. A variety class 

was tested in the “all varieties” model but was not significant with SLS=0.001 and SLE=0.001.  

 

  



148 
 

Table 5.18. Detailed statistics of nonlinear regression model with soil texture and gravel as possible 
predictors of MSWP with SLE=0.001 and SLS=0.001 

Variety Selected Inputs Output Adjusted 
R2 

RMSE C(p) Number 
in the 
model 

Number of 
Observations 

All 
varieties 

Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

fPAR 
Daily 
maximum 
relative 
humidity 
Daily 
minimum 
relative 
humidity 
Daily 
minimum air 
temperature 
Soil texture at 
layer B 
 

MSWP 0.6559 0.30732 44.44 7 834 

Aldrich Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

Daily 
maximum 
relative 
humidity 
Daily 
minimum 
relative 
humidity 
Daily 
minimum air 
temperature 
Soil class at 
layer C 
 

MSWP 0.6958 0.2888 55.86 6 291 
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Table 5.18 – continued 

Variety Selected Inputs Output Adjusted 
R2 

RMSE C(p) Number 
in the 
model 

Number of 
Observations 

Butte Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

fPAR 
Daily 
maximum 
relative 
humidity 
Daily 
minimum air 
temperature 
Soil class at 
layer A 
 

MSWP 0.6821 0.30195 60.26 6 272 

Nonpareil Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

fPAR 
Daily 
minimum air 
temperature 
 

MSWP 0.6191 0.30709 27.00 4 271 
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Table 5.19. Parameter estimates of nonlinear regression model with soil texture and gravel with all 
varieties combined (SLE, SLS = 0.001) 

All Varieties: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 0.61933 0.30178 2.05 0.0405 0 
Soil water content at 
30 cm [v/v] 

1 7.39825 0.33227 22.27 <.0001 6.56596 

Square of the soil 
water content at 30 
cm [v/v] 

1 -16.69394 1.61148 -10.36 <.0001 6.34504 

fPAR 1 0.01228 0.00159 7.72 <.0001 1.04867 

Daily maximum 
relative humidity [%] 

1 -0.02530 0.00276 -9.18 <.0001 1.68110 

Daily minimum 
relative humidity [%] 

1 0.00669 0.00160 4.17 <.0001 1.70383 

Daily minimum air 
temperature [℃] 

1 -0.06685 0.00596 -11.22 <.0001 1.29282 

Soil class B 1 -0.04197 0.00895 -4.69 <.0001 1.08758 

 
Table 5.20. Parameter estimates of nonlinear regression model with soil texture and gravel in Aldrich 
(SLE, SLS = 0.001) 

Aldrich: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 1.81008 0.43743 4.14 <.0001 0 
Soil water content at 
30 cm [v/v] 

1 7.65952 0.58006 13.20 <.0001 7.88344 

Square of the soil 
water content at 30 
cm [v/v] 

1 -17.70306 2.81251 -6.29 <.0001 7.53385 

Daily maximum 
relative humidity [%] 

1 -0.03058 0.00451 -6.78 <.0001 1.61236 

Daily minimum 
relative humidity [%] 

1 0.01267 0.00257 4.93 <.0001 1.68550 

Daily minimum air 
temperature [℃] 

1 -0.07596 0.00977 -7.77 <.0001 1.32941 

Soil class C 1 -0.04040 0.00953 -4.24 <.0001 1.06035 
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Table 5.21. Parameter estimates of nonlinear regression model with soil texture and gravel in Butte (SLE, 
SLS = 0.001) 

Butte: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 0.62047 0.51855 1.20 0.2326 0 
Soil water content at 
30 cm [v/v] 

1 8.84883 0.59172 14.95 <.0001 7.51092 

Square of the soil 
water content at 30 
cm [v/v] 

1 -19.66814 2.56711 -7.66 <.0001 6.70706 

fPAR 1 0.01872 0.00371 5.05 <.0001 1.14090 

Daily maximum 
relative humidity [%] 

1 -0.02511 0.00374 -6.71 <.0001 1.07561 

Daily minimum air 
temperature [℃] 

1 -0.05428 0.00915 -5.93 <.0001 1.05090 

Soil class A 1 -0.23063 0.04116 -5.60 <.0001 1.22413 
 
 
Table 5.22. Parameter estimates of nonlinear regression model with soil texture and gravel in Nonpareil 
(SLE, SLS = 0.001) 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 -2.15268 0.26920 -8.00 <.0001 0 
Soil water content at 
30 cm [v/v] 

1 7.77683 0.56534 13.76 <.0001 5.60227 

Square of the soil 
water content at 30 
cm [v/v] 

1 -22.19709 3.05809 -7.26 <.0001 5.56068 

fPAR 1 0.01849 0.00304 6.08 <.0001 1.00130 
Daily minimum air 
temperature [℃] 

1 -0.05551 0.00933 -5.95 <.0001 1.02505 

 
  

Table 5.23 shows another version of the nonlinear regression model with soil texture and 

gravel as additional explanatory variables with a less strict SLE=0.05 and SLS=0.05. As opposed 

to the previous nonlinear regression model that had SLE=0.001 and SLS=0.001, the significance 

levels for possible explanatory variables to enter and exit the next model were less strict. 

Therefore, more explanatory variables entered and stayed in the model and the adjusted R2 

improved. The “all varieties” model included soil water content at 120 cm, daily maximum air 



152 
 

temperature, daily average solar radiation, soil texture at layer C, and gravel content at layer B, 

in addition to the same explanatory variables in the previous model (soil water content at 30 

cm, the square of soil water content at 30 cm, fPAR, daily maximum relative humidity, daily 

minimum relative humidity, daily minimum air temperature, and soil texture at layer B). The 

adjusted R2 increased to 0.67 and RMSE decreased to 0.30193. 

 The variety-specific models also improved with the addition of new explanatory 

variables when the SLE and SLS were increased to 0.05.  In the Aldrich model, soil water 

content at 120 cm, soil class at layer A, soil class at layer D, gravel class at layer A, and gravel 

class at layer D, entered and stayed in the model at SLE and SLS of 0.05 (in addition to the same 

explanatory variables in the previous model: soil water content at 30 cm, the square of soil 

water content at 30 cm, daily maximum relative humidity, daily minimum relative humidity, 

daily minimum air temperature, and soil texture at layer C). The adjusted R2 increased to 0.74 

and RMSE decreased to 0.27, which were considered very good. In the Butte model, soil water 

content at 60 cm and 120 cm and soil class at layers B and C entered and stayed in the model at 

SLE and SLS of 0.05 (in addition to the same explanatory variables in the previous model: soil 

water content at 30 cm, the square of soil water content at 30 cm, fPAR, daily maximum relative 

humidity, daily minimum air temperature, and soil class at layer A). The adjusted R2 increased 

to 0.73 and the RMSE decreased to 0.28, which were considered very good. In the Nonpareil 

model, daily maximum relative humidity and gravel class at layer B entered and stayed in the 

model at SLE and SLS of 0.05 (in addition to the same explanatory variables in the previous 

model: soil water content at 30 cm, the square of soil water content at 30 cm, fPAR, and daily 

minimum air temperature). The adjusted R2 increased to 0.64 and the RMSE decreased to 0.30, 

which were considered satisfactory. Tables 5.24 to 5.27 show the parameter estimates for the 

models. The Butte model did have some multicollinearity in the soil water content at 30 cm 
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(VIF=10.95), evidently due to the correlation with the square of the soil water content at 30 cm 

(VIF=7.2) and soil water content at 60 cm (VIF=7.6). Figure 5.6 shows graphs of the predicted 

MSWP versus the measured MSWP for the Aldrich, Butte, Nonpareil, and “all varieties” 

models. 
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Table 5.23. Detailed statistics of nonlinear regression model with soil texture and gravel as possible 
predictors of MSWP with SLE=0.05 and SLS=0.05 

Variety Selected 
Inputs 

Output Adjusted 
R2 

RMSE C(p) Number of 
parameters 
in the 
model 

Number of 
Observations 

All 
varieties 

Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

Soil water 
content at 120 
cm 
fPAR 
Daily 
maximum 
relative 
humidity 
Daily 
minimum 
relative 
humidity 
Daily 
maximum air 
temperature 
Daily 
minimum air 
temperature 
Daily average 
solar 
radiation 
Soil texture at 
layer B 
Soil texture at 
layer C 
Gravel 
content at 
layer B 
 

MSWP 0.6678 0.30193 19.4 12 834 
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Table 5.23 – continued  

Variety Selected 
Inputs 

Output Adjusted 
R2 

RMSE C(p) Number of 
parameters 
in the 
model 

Number of 
Observations 

Aldrich Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

Soil water 
content at 120 
cm 
Daily 
maximum 
relative 
humidity 
Daily 
minimum 
relative 
humidity 
Daily 
minimum air 
temperature 
Soil class at 
layer A 
Soil class at 
layer C 
Soil class at 
layer D 
Gravel class 
at layer A 
Gravel class 
at layer D 
 

MSWP 0.7409 0.26650 11.46 11 291 
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Table 5.23 – continued  

Variety Selected 
Inputs 

Output Adjusted 
R2 

RMSE C(p) Number of 
parameters  

Number of 
Observations 

Butte Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

Soil water 
content at 60 
cm 
Soil water 
content at 120 
cm 
fPAR 
Daily 
maximum 
relative 
humidity 
Daily 
minimum air 
temperature 
Soil class at 
layer A 
Soil class at 
layer B 
Soil class at 
layer C 
 

MSWP 0.7260 0.28035 20.22 10 272 

Nonpareil Soil water 
content at 30 
cm 
(Soil water 
content at 30 
cm)2 

fPAR 
Daily 
minimum air 
temperature 
Daily 
maximum 
relative 
humidity 
Gravel class 
at layer B 

MSWP 0.6419 0.29778 11.76 6 271 
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Table 5.24. Parameter estimates of nonlinear regression model with soil texture and gravel with all 
varieties combined (SLE, SLS = 0.05) 

All Varieties: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value 
Pr > |t

| 
Variance 
Inflation 

Intercept 1 0.04650 0.32755 0.14 0.8871 0 
Soil water content at 30 
cm [v/v] 

1 7.40294 0.33695 21.97 <.0001 6.99547 

Soil water content at 120 
cm [v/v] 

1 0.41241 0.17151 2.40 0.0164 1.88671 

Square of the soil water 
content at 30 cm [v/v] 

1 -16.99363 1.59954 -10.62 <.0001 6.47661 

fPAR 1 0.01153 0.00171 6.75 <.0001 1.25333 
Daily maximum relative 
humidity [%] 

1 -0.02740 0.00301 -9.10 <.0001 2.08016 

Daily minimum relative 
humidity [%] 

1 0.01149 0.00226 5.09 <.0001 3.50140 

Daily maximum air 
temperature [℃] 

1 0.01783 0.00666 2.68 0.0076 2.93154 

Daily minimum air 
temperature [℃] 

1 -0.08598 0.00873 -9.85 <.0001 2.87952 

Daily average solar 
radiation [W m-2] 

1 0.00060491 0.00029953 2.02 0.0438 1.29541 

Soil class B 1 -0.02429 0.00964 -2.52 0.0119 1.30615 
Soil class C 1 -0.02702 0.00724 -3.73 0.0002 1.55025 
Gravel class B 1 0.06649 0.02043 3.26 0.0012 1.38233 
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Table 5.25. Parameter estimates of nonlinear regression model with soil texture and gravel in Aldrich 
(SLE, SLS = 0.05) 

Aldrich: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 1.41013 0.42215 3.34 0.0010 0 
Soil water content at 
30 cm [v/v] 

1 8.51186 0.56611 15.04 <.0001 8.81760 

Square of the soil 
water content at 30 
cm [v/v] 

1 -21.87583 2.68098 -8.16 <.0001 8.03896 

Soil water content at 
120 cm [v/v] 

1 2.47406 0.39361 6.29 <.0001 4.23675 

Daily maximum 
relative humidity [%] 

1 -0.02688 0.00421 -6.38 <.0001 1.64991 

Daily minimum 
relative humidity [%] 

1 0.01014 0.00242 4.20 <.0001 1.74666 

Daily minimum air 
temperature [℃] 

1 -0.06331 0.00919 -6.89 <.0001 1.37980 

Soil class A 1 -0.23040 0.04474 -5.15 <.0001 1.84979 
Soil class C 1 -0.05790 0.01133 -5.11 <.0001 1.75820 
Soil class D 1 -0.05328 0.01137 -4.69 <.0001 1.54395 
Gravel class A 1 0.12437 0.04566 2.72 0.0069 2.11489 

Gravel classD 1 0.12263 0.02501 4.90 <.0001 3.28861 
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Table 5.26. Parameter estimates of nonlinear regression model with soil texture and gravel in Butte (SLE, 
SLS = 0.05) 

Butte: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 
Variance 
Inflation 

Intercept 1 -0.01900 0.51011 -0.04 0.9703 0 
Soil water content at 30 cm 
[v/v] 

1 7.21769 0.66336 10.88 <.0001 10.95033 

Square of soil water 
content at 30 cm [v/v] 

1 -17.00391 2.46332 -6.90 <.0001 7.16387 

Soil water content at 60 cm 1 2.05947 0.50061 4.11 <.0001 7.63771 

Soil water content at 120 
cm 

1 0.85548 0.35633 2.40 0.0171 3.49711 

fPAR 1 0.02627 0.00379 6.93 <.0001 1.38085 
Daily maximum relative 
humidity 

1 -0.02149 0.00355 -6.06 <.0001 1.12189 

Daily minimum air 
temperature 

1 -0.05002 0.00858 -5.83 <.0001 1.07005 

Soil class A 1 -0.22223 0.04200 -5.29 <.0001 1.47885 
Soil class B 1 -0.06109 0.02390 -2.56 0.0111 2.60117 
Soil class C 1 -0.08868 0.01769 -5.01 <.0001 2.85251 

 

   

Figure 5.6. Predicted versus measured MSWP [MPa] in the Aldrich (far left), Butte (second from the 
left), Nonpareil (second from the right), and all varieties combined (far right). 
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Table 5.27. Parameter estimates of nonlinear regression model with soil texture and gravel in Nonpareil 
(SLE, SLS = 0.05) 

Nonpareil: Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Variance 
Inflation 

Intercept 1 -0.66479 0.51514 -1.29 0.1980 0 
Soil water content at 
30 cm [v/v] 

1 7.58936 0.54994 13.80 <.0001 5.63808 

Square of the soil 
water content at 30 
cm [v/v] 

1 -20.31812 3.01386 -6.74 <.0001 5.74425 

fPAR 1 0.01310 0.00320 4.09 <.0001 1.17869 

Daily maximum 
relative humidity [%] 

1 -0.01295 0.00377 -3.43 0.0007 1.15899 

Daily minimum air 
temperature [℃] 

1 -0.06155 0.00931 -6.61 <.0001 1.08504 

Gravel class B 1 0.08723 0.02885 3.02 0.0027 1.20579 

 

5.3.6. Multiple linear regression model of MSWP using commercial sensor data 

 The previous data-driven modeling results involved using data from research-grade 

sensors, (i.e., the neutron probe for soil water content and the pressure chamber for stem water 

potential). This section investigates whether commercial grade sensors that a farmer might have 

at their orchard can be used instead of research grade sensors to achieve similar levels of 

predictive performance of MSWP. The commercial sensor data was only available from 

Nonpareil trees at six locations. Soil texture and gravel content were not included as potential 

explanatory variables in this section because soil texture and gravel content data were not 

available at all six locations. 

 The input variables for the regression model were the same as the previous stepwise 

selected inputs for Nonpareil: soil water content at 30 cm, the square of soil water content at 30 

cm, daily minimum air temperature, daily maximum relative humidity, and fPAR. Soil water 

content was measured using Meter Group TEROS 10 sensors instead of with the neutron probe 

and MSWP was measured using the pressure chamber. The adjusted R2 was 0.48 and the RMSE 
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was 0.32 when the TEROS 10 soil water content sensors (77 observations), which was worse 

than when soil water content derived from the neutron probe was used (adjusted R2 = 0.58). 

This indicates that the correlation between soil water content and MSWP depends on the soil 

water content sensor, with the neutron probe yielding better correlations. Table 5.28 shows the 

parameter estimates of this model.  

 
Table 5.28. Multiple linear regression model of MSWP using commercial soil water content sensors 

Parameter Estimates 

Variable Label DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Intercept Intercept 1 -3.95716 1.57640 -2.51 0.0143 
Soil water content at 
30 cm [v/v] 

SWC1_m3/m3 1 26.98888 5.72157 4.72 <.0001 

Square of the soil 
water content at 30 
cm [v/v] 

SWC1_sq 1 -55.20217 15.04103 -3.67 0.0005 

Daily minimum air 
temperature [℃] 

Min_Air_Temp_
C 

1 -0.04522 0.01668 -2.71 0.0084 

Daily maximum 
relative humidity 
[%] 

Max_Rel_Hum_p
erc 

1 -0.02219 0.01014 -2.19 0.0320 

fPAR fPAR 1 0.03194 0.00837 3.82 0.0003 

 

 The same possible input variables were used but with MSWP measured with Saturas 

sensors instead of the pressure chamber and with soil water content measured with Meter 

Group TEROS 10 sensors instead of the neutron probe. The correlation was considerably worse 

using Saturas sensor data instead of MSWP from the pressure chamber with an adjusted R2 of 

0.24 and RMSE of 0.42 (number of observations = 523). Table 5.29 shows the parameter 

estimates of this model.  
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Table 5.29. Multiple linear regression model of MSWP using commercial soil water content and stem 
water potential sensors 

Parameter Estimates 

Variable Label DF 
Parameter 

Estimate 
Standard 

Error 
t Valu

e 
Pr > |

t| 
Intercept Intercept 1 -1.75863 0.64208 -2.74 0.0064 
Soil water content at 
30 cm [v/v] 

SWC1_m3/m3 1 17.24895 2.36223 7.30 <.0001 

Square of the soil 
water content at 30 
cm [v/v] 

SWC1_sq 1 -38.16615 6.35141 -6.01 <.0001 

Daily minimum air 
temperature [℃] 

Min_Air_Temp_
C 

1 -0.00946 0.00748 -1.26 0.2067 

Daily maximum 
relative humidity 
[%] 

Max_Rel_Hum_p
erc 

1 -0.01680 0.00297 -5.66 <.0001 

fPAR fPAR 1 0.00354 0.00616 0.57 0.5660 

 
 

5.3.7. Prediction of MSWP using the nonlinear regression model 

The best research-grade model of MSWP was used for prediction of MSWP in Nonpareil 

using the commercial sensor data. The model was developed using the research-grape neutron 

probe and pressure chamber data and then used for prediction with the commercial sensor 

data. The results in Figures show that the nonlinear regression model was good at predicted 

MSWP at high MSWP (less negative) but was unsatisfactory at low MSWP (more negative). 

𝑀𝑆𝑊𝑃 [𝑀𝑃𝑎] =  −2.15268 [𝑀𝑃𝑎] + 7.7683 [𝑀𝑃𝑎] × 𝜃30𝑐𝑚 − 22.19709 [𝑀𝑃𝑎] × 𝜃30 𝑐𝑚
2

+ 0.01849[𝑀𝑃𝑎] × 𝑓𝑃𝐴𝑅 − 0.05551[𝑀𝑃𝑎 × ℃−1] × 𝑇𝑎𝑖𝑟,𝑑𝑎𝑖𝑙𝑦 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

Equation 5.2 

where MSWP is the midday stem water potential, 𝜃30𝑐𝑚 is the soil water content at 30 cm, 𝑓𝑃𝐴𝑅 

is the fraction of photosynthetically active radiation intercepted by the canopy, and 

𝑇𝑎𝑖𝑟,𝑑𝑎𝑖𝑙𝑦 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 is the daily minimum air temperature. Figures 5.7 through 5.12 show the 

results of the predictions of MSWP using the regression model for Nonpareil versus the 

measured MSWP using the pressure chamber and using the Saturas sensors. 
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Figure 5.7. Nonlinear regression model prediction of MSWP compared to the pressure chamber and 
Saturas sensors in tree ID R5MN. 
 

 
Figure 5.8. Nonlinear regression model prediction of MSWP compared to the pressure chamber and 
Saturas sensors in tree ID R5N. 
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Figure 5.9. Nonlinear regression model prediction of MSWP compared to the pressure chamber and 
Saturas sensors in tree ID R5S. 
 

 
Figure 5.10. Nonlinear regression model prediction of MSWP compared to the pressure chamber and 
Saturas sensors in tree ID R8MN. 
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Figure 5.11. Nonlinear regression model prediction of MSWP compared to the pressure chamber and 
Saturas sensors in tree ID R8MS. 

 

 
Figure 5.12. Nonlinear regression model prediction of MSWP compared to the pressure chamber and 
Saturas sensors in tree ID R8S. 
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5.4. Discussion 

The most significant explanatory variable in all the candidate models of MSWP was the soil 

water content at 30 cm. This depth was observed to be where most of the root water uptake in 

almond trees occurred according to the neutron probe derived measurements of soil water 

content in relation to irrigation events. A simple explanation of the correlation between MSWP 

and soil water content at 30 cm is that the reduction in availability of water in the root zone led 

to a reduction in water potential of the entire plant, as suggested by other researchers (Shackel 

et al., 2000). Research has previously confirmed strong correlations between MSWP and soil 

water content in the root zone measured using a neutron probe (Sanden et al., 2010). A 

regression model of MSWP with soil water content at 30 cm as the sole linear explanatory 

variable did not provide a satisfactory correlation (adjusted R2=0.44, RMSE=0.39), but a 

quadratic regression model of MSWP with linear and squared terms of soil water content at 30 

cm substantially improved the correlation (adjusted R2 =0.52, RMSE was 0.36) when all varieties 

were combined. The correlation further improved when meteorological explanatory variables 

were added, including fPAR, daily maximum relative humidity, daily minimum relative 

humidity, and daily minimum air temperature (adjusted R2 =0.63, RMSE=0.32) when all 

varieties were combined. The correlation improved again when the soil texture at layer B was 

added as an explanatory variable (adjusted R2 =0.66, RMSE=0.31) when all varieties were 

combined and SLE=0.001 and SLS=0.001. When the SLE and SLS was decreased to 0.05, 

additional variables of soil water content at 120 cm, daily maximum air temperature, daily 

average solar radiation, soil texture at layer C, and gravel content at layer B, entered the model 

and the correlation only slightly improved (adjusted R2 =0.67, RMSE=0.30). Since the correlation 

only slightly improved with the addition of those variables, it may not be necessary to measure 

those extra variables for data-driven models of MSWP. 
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The regression models had better correlation in the Aldrich and Butte varieties than in the 

Nonpareil variety. The Nonpareil variety had greater diversity of irrigation treatments (50% 

ETc, 75% ETc, and 100% ETc) than the Aldrich and Butte varieties during the July and August 

months. There were measurements of 100% ETc in the Aldrich and Butte varieties in April 

through June and September, but measurements were done less frequently during those 

months (once every 1 or 2 weeks) compared to in July and August (twice a week). A greater 

range of MSWP and soil water content measurements in the Nonpareil variety complexified the 

model of MSWP to include a wider range of plant water stress conditions and may be a reason 

for weakening the correlation of the selected model. The data-driven models with the best 

correlations for the Aldrich and Butte varieties included irrigation treatments that were mostly 

50% ETc and 75% ETc and had very good correlation coefficients (adjusted R2 of 0.74 and 0.73, 

respectively). 

Including the square of soil water content at 30 cm considerably improved the prediction of 

MSWP. There is a known nonlinear relationship between soil water content and soil water 

potential (Hillel, 2004). Since the soil water potential will affect the MSWP, it makes sense that 

soil water content is also nonlinear with MSWP. Other research confirms the nonlinear 

relationship between soil water content derived from neutron probe measurements and MSWP 

(Sanden et al., 2010). The graph shown in Figure 5.5 likely captures a region of various soil 

water retention curves due to various soil textures.  

Daily minimum air temperature and daily maximum relative humidity were significant 

explanatory variables of MSWP. Interestingly, these data points occurred in the early morning 

and not in the afternoon when MSWP was measured. This means that the recovery period in 

the early morning affects the MSWP later in the day. This is the opposite of the findings of 

Brillante et al. (2016), who found that the maximum air temperature was very significant to 
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midday stem water potential in grapevine. The daily maximum air temperature and daily 

minimum relative humidity (which occurred in the afternoon when MSWP was measured), 

were only sometimes significant in this study.  

The labeled outliers in Figure 5.13 were all in 2019 and many were from tree 1MN. There 

was no justifiable reason to remove the data points from the model. 

 

 
Figure 5.13. Potential outliers in the relationship between soil water content at 30 cm and midday stem 
water potential. 
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contents, and fPAR ranges. Further research should investigate whether there is hysteresis in 

the wetting and drying of soil, affecting the relationship between soil water content and MSWP 

in wetting versus drying scenarios. 

Using neutron probe derived soil water content data considerably improved predictions of 

MSWP compared to using dielectric soil water content sensors (TEROS 10). Dielectric soil water 

content sensors have a smaller volume of influence (430 mL) compared to soil water content 

measurements derived from a calibrated neutron probe (approximately the size of a volleyball). 

Using in-tree MSWP sensors in conjunction with dielectric soil water content sensors to develop 

a data-driven model of MSWP yielded poor results. This questions whether affordable in-tree 

MSWP and dielectric soil water content sensors can be reliably used together in decision 

support tools since they appear to share poor correlation as opposed to their research-grade 

counterparts that showed good correlation. Further research developing data-driven models of 

MSWP with the use of dielectric soil water content sensors should involve multiple sensors at 

the same depth to increase the volume of influence with the hope of obtaining better 

correlations with MSWP. This study involved multiple dielectric sensors at different depths, but 

further research should investigate how multiple sensors at the same depth might improve 

predictions of MSWP. 

 

5.5. Conclusions 

This research developed data-driven models of midday stem water potential using soil 

water content at various depths, meteorological data, and canopy and soil characteristics. The 

best data-driven model offered a tradeoff between correlation and simplicity and included the 

following explanatory variables: soil water content at 30 cm, the square of soil water content at 

30 cm, daily minimum air temperature, daily maximum relative humidity, daily minimum 



170 
 

relative humidity, fraction of photosynthetically active radiation, and soil texture class between 

10 to 86 cm (adjusted R2=0.66, RMSE=0.31). The advantage of this data-driven modeling 

approach is that it requires soil water content at only one depth of 30 cm, uses weather station 

data from the nearest California Irrigation Management Information System (CIMIS), fraction of 

photosynthetically active radiation (fPAR), and simple soil texture information at layer 10-86 

cm. When separate data-driven models were developed for Butte and Aldrich almond varieties, 

the correlations improved (adjusted R2=0.74, RMSE=0.27 and adjusted R2=0.73, RMSE=0.28, 

respectively), but slightly worsened in the Nonpareil variety (R2=0.64, RMSE=0.30). Attempts at 

using the data-driven model developed for Nonpareil, which were developed using soil water 

content derived from a calibrated neutron probe and MSWP measurements from a pressure 

chamber, using commercially available and affordable dielectric soil water content sensors and 

in-tree MSWP sensors yielded poor results. This data-driven model could be used as (1) a 

prediction tool for coarse estimates of midday stem water potential, (2) simulating the effect of 

soil water deficits on midday stem water potential in different almond varieties, and (3) as an 

educational tool for helping students and farmers understand midday stem water potential in 

the context of soil water content, meteorological data, and soil and canopy characteristics. The 

data-driven modeling approach presented in this paper decompresses midday stem water 

potential into explanatory variables that a farmer might have measurements of at or near their 

almond orchard. 
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Chapter 6 

Conclusions 

 

          This research led to new insights for developing site-specific irrigation management 

strategies for almond orchards for optimizing water use while minimizing detriments to yield 

and nut quality. This research presented new information on the crop water use and crop 

coefficients (Kc) for young almond orchards and on the effects of imposing regulated deficit 

irrigation (RDI) in multiple almond varieties according to variety-specific hull-split schedules. A 

farmer could use the crop coefficients developed in this study in conjunction with reference 

evapotranspiration measurements from the nearest CIMIS station to guide irrigation scheduling 

for each age up until the 4th leaf and then use mature almond crop coefficients while 

implementing RDI according to variety-specific hull-split schedules. While imposing RDI, a 

farmer could use a site-specific, variety-specific data-driven model using the approach presented 

in this research to estimate the midday stem water potential (MSWP) to avoid excessive 

accumulation of water stress and to aim for target MSWP values. Based on the results of this 

study, the following conclusions can be made: 

1. Crop water use increases as almond orchards increases in age up until the 4th year, 

indicating the need to adjust irrigation applied as orchards grow. 

2. Almond farmers should use age and development-specific Kc values for irrigation 

scheduling until the 4th year, and then mature almond Kc could be used.  

3. Fraction of photosynthetically active radiation intercepted by the canopy, MSWP, and soil 

water content at 46 and 76 cm are good predictors of the ratio of actual evapotranspiration 

and reference evapotranspiration and could be used for determining site-specific crop 

coefficients.  

4. RDI during Butte hull-split in Butte reduced the fraction of sealed shells compared to RDI 
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during Nonpareil hull-split in Butte, increasing the vulnerability of the kernel to the 

environment and possible pests.  

5. The kernel thickness increased in the Aldrich variety when RDI was implemented during 

Aldrich hull-split instead of Nonpareil hull-split period.  

6. Water use efficiency decreased in the Butte variety when it was irrigated during Butte 

hull-split instead of Nonpareil hull-split due to fewer number of days in between the 

initiation of Butte hull-split and harvest compared to Nonpareil.  

7. RDI during hull-split in Aldrich, Butte, and Nonpareil varieties did not significantly 

decrease marketable kernel yield, showing that RDI is a promising strategy for reducing 

water use in almond orchards with multiple varieties while minimizing yield losses.  

8. No significant change in marketable kernel yield was achieved by implementing RDI 

according to variety-specific hull-split compared to scheduling RDI in all three varieties 

according to Nonpareil hull-split.  

9. In terms of yield only, the best strategy for implementing RDI in almond orchards with 

multiple varieties would the least labor-intensive method of irrigating all varieties in the 

same orchard according to the Nonpareil variety hull-split schedule. 

10. The best site-specific data-driven model of MSWP offered a tradeoff between correlation 

and simplicity and included the following explanatory variables: soil water content at 30 

cm, the square of soil water content at 30 cm, daily minimum air temperature, daily 

maximum relative humidity, daily minimum relative humidity, fraction of 

photosynthetically active radiation, and soil texture class between 10 to 86 cm (adjusted 

R2=0.66, RMSE=0.31).  

11. When separate data-driven models of MSWP were developed for Butte and Aldrich 

almond varieties, the correlations improved (adjusted R2=0.74, RMSE=0.27 and adjusted 
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R2=0.73, RMSE=0.28, respectively), but slightly worsened in the Nonpareil variety 

(R2=0.64, RMSE=0.30).  

12. Attempts at using the data-driven model of MSWP developed for Nonpareil, which were 

developed using soil water content derived from a calibrated neutron probe and MSWP 

measurements from a pressure chamber, using commercially available and affordable 

dielectric soil water content sensors and in-tree MSWP sensors yielded poor results.   
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Chapter 7 

Recommendations for Future Studies 

 

 The research presented in this paper generated new insights on site-specific irrigation 

management strategies for almond orchards with multiple varieties and different ages of trees. 

There are still gaps in the research on site-specific irrigation management of almond orchards.  

 

7.1. Crop water use and crop coefficients of young almond orchards 

New research should focus on estimating evapotranspiration of young almond trees under 

various irrigation systems (mister, flood, drip, etc.), varieties, soil characteristics, climates, 

management practices, and cover crops. This information would help a farmer who is starting a 

new almond orchard understand the site-specific water requirements. Research should be 

conducted on how much the evapotranspiration changes by planting cover crop in young 

almond orchards. Also, new research should conduct a surface renewal versus eddy covariance 

comparison for young almond orchards, which have sparse canopy, to determine if the 

inexpensive surface renewal method for estimating evapotranspiration is a good candidate for 

irrigation scheduling.  

 

7.2. Regulated deficit irrigation in almond orchards with multiple varieties 

Future work could develop and evaluate regulated deficit irrigation during variety-specific 

phenological stages other than hull-split (e.g., post-harvest period, etc.) in different varieties 

(e.g., Monterey, Padre, Fritz, etc.) and under various irrigation methods (e.g., mister, sprinkler, 

subsurface drip, etc.). Also, further research and development should refine the technology of 

remote irrigation control systems to achieve a high level of reliability for the application of 

irrigating by variety by row to reduce the labor and time for the farmer to implement RDI by 
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variety. Further research should investigate the tradeoff between irrigating according to variety 

needs and irrigating according to management zones based on soil characteristics, and whether 

those two approaches could be combined into one holistic irrigation strategy.  

 

7.3. Site-specific data-driven modeling of midday stem water potential  

Future research should expand the data-driven modeling of midday stem water potential to 

other almond varieties, soil textures, and climates. Artificial intelligence methods could be used 

instead of regression modeling to develop data-driven models of midday stem water potential. 

With more data than what was available in this paper, deep learning could be used. Further 

research should investigate if multiple nearby dielectric soil water content sensors at 30 cm 

could substitute for neutron probe derived measurements of soil water content in the data-

driven modeling approach of MSWP. Dielectric sensors would be significantly more available 

to farmers and can be automated for irrigation scheduling, unlike the neutron probe. Further 

research could also develop and evaluate water retention curves between soil water content and 

midday stem water potential under various soil textures. 
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